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Abstract

Deep neural networks have lead to a breakthrough in
depth estimation from single images. Recent work shows
that the quality of these estimations is rapidly increasing. It
is clear that neural networks can see depth in single images.
However, to the best of our knowledge, no work currently
exists that analyzes what these networks have learned.

In this work we take four previously published networks
and investigate what depth cues they exploit. We find that
all networks ignore the apparent size of known obstacles
in favor of their vertical position in the image. The use of
the vertical position requires the camera pose to be known;
however, we find that these networks only partially recog-
nize changes in camera pitch and roll angles. Small changes
in camera pitch are shown to disturb the estimated distance
towards obstacles. The use of the vertical image position
allows the networks to estimate depth towards arbitrary ob-
stacles — even those not appearing in the training set — but
may depend on features that are not universally present.

1. Introduction

Stereo vision allows absolute depth to be estimated us-
ing multiple cameras. When only a single camera can be
used, optical flow can provide a measure of depth; or if im-
ages can be combined over longer time spans then SLAM or
Structure-from-Motion can be used to estimate the geome-
try of the scene. These methods tend to treat depth estima-
tion as a purely geometrical problem, ignoring the content
of the images.

When only a single image is available, it is not possi-
ble to use epipolar geometry. Instead, algorithms have to
rely on pictorial cues: cues that indicate depth within a sin-
gle image, such as texture gradients or the apparent size of
known objects. Shape-from-X methods (e.g. [18, 1], [14],
[7]) use some of these cues to infer shape, but often make
strong assumptions that make them difficult to use in un-
structured environments such as those seen in autonomous
driving. Other cues such as the apparent size of objects may
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require knowledge about the environment that is difficult to
program by hand. As a result, pictorial cues have seen rela-
tively little use in these scenarios until recently.

With the arrival of stronger hardware and better
machine-learning techniques — most notably Convolutional
Neural Networks (CNN) — it is now possible to learn pic-
torial cues rather than program them by hand. One of the
earliest examples of monocular depth estimation using ma-
chine learning was published in 2006 by Saxena et al. [19].
In 2014, Eigen et al. [4] were the first to use a CNN for
monocular depth estimation. Where [4] still required a true
depth map for training, in 2016 Garg et al. proposed a new
scheme that allows the network to learn directly from stereo
pairs instead [9]; this work was further improved upon
by Godard et al. in [11]. In parallel, methods have been
developed that use monocular image sequences to learn
single-frame depth estimation in an unsupervised manner,
of which the works by Zhou et al. [25] and Wang et al. [23]
are examples. Recent work focuses primarily on the accu-
racy of monocular depth estimation, where evaluations on
publicly available datasets such as KITTI [15] and NYUv2
[20] show that neural networks can indeed generate accu-
rate depth maps from single images. However, to the best
of our knowledge, no work exists that investigates how they
do this.

Why is it important to know what these neural networks
have learned? Firstly, it is difficult to guarantee correct be-
havior without knowing what the network does. Evaluation
on a test set shows that it works correctly in those cases, but
it does not guarantee correct behavior in other scenarios.
Secondly, knowing what the network has learned provides
insight into training. Additional guidelines for the training
set and data augmentation may be derived from the learned
behavior. Thirdly, it provides insight into transfer to other
setups. With an understanding of the network, it is for in-
stance easier to predict what the impact of a change in cam-
era height will be and whether this will work out-of-the-
box, require data augmentation or even a new training set.

In this work, we take four previously published neural
networks (MonoDepth by Godard et al. [11], SfMLearner
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by Zhou et al. [25], Semodepth by Kuznietsov et al. [13]
and LKVOLearner by Wang et al. [23]) and investigate their
high-level behavior, where we focus on the distance estima-
tion towards cars and other obstacles in an autonomous driv-
ing scenario. Section 2 gives an overview of related litera-
ture. In section 3 we show that the all of the networks rely
on the vertical image position of obstacles but not on their
apparent size. Using the vertical position requires knowl-
edge of the camera pose; in section 4 we investigate whether
the camera pose is assumed constant or observed from the
images. For MonoDepth we investigate in section 5 how it
recognizes obstacles and finds their ground contact point.
We discuss the impact of our results in section 6.

2. Related work

Existing work on monocular depth estimation has ex-
tensively shown that neural networks can estimate depth
from single images, but an analysis of how this estimation
works is still missing. Feature visualization and attribution
could be used to analyze this behavior. One of the earlier
examples of feature visualization in deep networks can be
found in [6]. The methods have been improved upon in
e.g. [22, 24] and an extensive treatment of visualization
techniques can be found in [16]. In essence, the features
used by a neural network can be visualized by optimizing
the input images with respect to a loss function based on
the excitation of a single neuron, a feature map or an entire
layer of the network. The concurrent work of Hu et al. [12]
in which the authors perform an attribution analysis to find
the pixels that contribute most to the resulting depth map is
most closely related to our work. However, these methods
only provide insight into the low-level workings of CNNs.
A collection of features that the neural network is sensitive
to is not a full explanation of its behavior. A link back to
depth cues and behavior in more human terms is still miss-
ing, which makes it difficult to reason about these networks.

In this work, we take a different approach that is perhaps
more closely related to the study of (monocular) depth per-
ception in humans. We treat the neural network as a black
box, only measuring the response (in this case depth maps)
to certain inputs. Rather than optimizing the inputs with re-
gards to a loss function, we modify or disturb the images
and look for a correlation in the resulting depth maps.

Literature on human depth perception provides insight
into the pictorial cues that could be used to estimate dis-
tance. The following cues from [10] and more recent re-
views [3, 2] can typically be found in single images:

e Position in the image. Objects that are further away
tend to be closer to the horizon. When resting on the
ground, the objects also appear higher in the image.

e Occlusion. Objects that are closer occlude those that
lie behind them. Occlusion provides information on
depth order, but not distance.

e Texture density. Textured surfaces that are further
away appear more fine-grained in the image.

e Linear perspective. Straight, parallel lines in the phys-
ical world appear to converge in the image.

e Apparent size of objects. Objects that are further away
appear smaller.

e Shading and illumination. Surfaces appear brighter
when their normal points towards a light source. Light
is often assumed to come from above. Shading typi-
cally provides information on depth changes within a
surface, rather than relative to other parts of the image.

e Focus blur. Objects that lie in front or behind the focal
plane appear blurred.

e Aerial perspective. Very far away objects (kilometers)
have less contrast and take on a blueish tint.

Of these cues, we expect that only the position in the im-
age and apparent size of objects are applicable to the KITTI
dataset; other cues are unlikely to appear because of low
image resolution (texture density, focus blur), limited depth
range (aerial perspective) or they are less relevant for dis-
tance estimation towards obstacles (occlusion, linear per-
spective and shading and illumination).

Both cues have been experimentally observed in humans,
also under conflicting conditions. Especially the vertical
position in the visual field has some important nuances.
For instance, Epstein shows that perceived distances do not
solely depend on the vertical position in the visual field, but
also on the background [5]. Another important contextual
feature is the horizon line, which gains further importance
when little ground (or ceiling) texture is present [8]. Us-
ing prismatic glasses that manipulated the human subjects’
vision, Ooi et al. showed that humans in real-world experi-
ments use the angular declination relative to the ‘eye level’
[17] rather than the visual horizon, where the eye level is
the expected height of the horizon in the visual field. The
apparent size of objects also influences their estimated dis-
tance. Sousa et al. performed an experiment where sub-
jects needed to judge distances to differently-sized cubes
[21]. The apparent size of the cubes influenced the esti-
mated distance even though the true size of the cubes was
not known and the height in the visual field and other cues
were present. No work was found that investigates whether
these observations also apply to neural networks for depth
estimation.

3. Position vs. apparent size

As stated in section 2, the vertical image position and ap-
parent size of objects are the most likely cues to be used by
the networks. Figure 1 shows how these cues can be used
to estimate the distance towards obstacles. The camera’s
focal length f is assumed known and constant and is im-
plicitly learned by the neural network. We furthermore as-
sume that the camera’s pitch angle relative to the horizon is
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Figure 1. True object size H and position Y, Z in the camera
frame and vertical image position y and apparent size h in image
coordinates. Image coordinates are measured from the center of
the image.

small; pitch angles can therefore be approximated by a shift
in vertical image coordinates y, where the horizon level y,
is used as a measure for the camera’s pitch. All coordinates
are measured relative to the center of the image.

Given the obstacle’s real-world size H and apparent size
h in the image, the distance can be estimated using:

f

Z = . H (1
This requires the obstacle’s true size H to be known. The
objects encountered most often in the KITTI dataset come
from a limited number of classes (e.g. cars, trucks, pedestri-
ans), where all objects within a class have roughly the same
size. It is therefore possible that the networks have learned
to recognize these objects and use their apparent size to es-
timate their distance.

Alternatively, the networks could use the vertical image
position y of the object’s ground contact point to estimate
depth. Given the height Y of the camera above the ground,
the distance can be estimated through:

Z = /
Y—Yn

Y )

This method does not require any knowledge about the true
size H of the object, but instead assumes the presence of a
flat ground and known camera pose (Y, y,). These assump-
tions also approximately hold in the KITTI dataset.

3.1. Evaluation method

To find which of these cues are used by the networks,
three sets of test images are generated: one in which the
apparent size of objects is varied but the vertical position of
the ground contact point in the image is kept constant, one
in which the vertical position is varied but the size remains
constant, and a control set in which both the apparent size
and position are varied with distance — as would be expected
in real-world images.

The test images are generated as follows: the objects
(mostly cars) are cropped from the images of KITTI’s scene
flow dataset. Each object is labeled with its location relative
to the camera (e.g. one lane to the left, facing towards the
camera) and with the position in the image it was cropped

from. Secondly, each image in the test set was labeled with
positions where an obstacle could be inserted (e.g. the lane
to the left of the camera is still empty). Combining this in-
formation with the object labels ensures that the test images
remain plausible.

The true distance to the inserted objects is not known;
instead the network’s ability to measure relative distances
will be evaluated. Distances are expressed in relation to the
original size and position of the object, which is assigned
a relative distance Z’/Z = 1.0. The relative distance is
increased in steps of 0.1 up to 3.0 and controls the scaling s
and position z’, 3y’ of the object as follows:

A
8277 (3)
and
! ! __ Z 4
T =T y—yh+(y_yh)? 4

with 2/, ¥’ the new coordinates of the ground contact point
of the object and with y;, the height of the horizon in the
image which is assumed constant throughout the dataset.

The estimated depth towards the car is evaluated by av-
eraging the depth map over a flat region on the front or rear
of the car (Figure 2). A flat region is used rather than the
entire object to prevent the estimated length of the vehicle
from influencing the depth estimate; the length is very likely
dependent on the apparent size of the object, while the dis-
tance might not be.

3.2. Results

The results of this experiment are shown in Figure 3.
When both the position and scale are varied, all depth es-
timates except Wang et al.’s behave as expected: the es-
timated depth stays close to the true depth of the object
which shows that the networks still work correctly on these
artificial images. When only the vertical position is varied,
the networks can still roughly estimate the distance towards
the objects, although this distance is slightly overestimated
(Godard et al., Zhou et al., Wang et al.) or underestimated
(Kuznietsov et al.). Additionally, the standard deviation of
the distance estimate has increased compared to the control
set. The most surprising result is found when only the ap-
parent size of the object is changed but the ground contact
point is kept constant: none of the networks observe any
change in distance under these circumstances.

These results suggest that the neural networks rely pri-
marily on the vertical position of objects rather than their
apparent size, although some change in behavior is ob-
served when the size information is removed. The fact
that all four networks show similar behavior also suggests
that this is a general property that does not strongly de-
pend on the network architecture or training regime (semi-
supervised, unsupervised from stereo, unsupervised from
video).
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Position and size

Position only

Size only

Relative distance

Figure 2. Example test images and resulting disparity maps from MonoDepth. The white car on the left is inserted into the image at a
relative distance of 1.0 (left column), 1.5 (middle column) and 3.0 (right column), where a distance of 1.0 corresponds to the size and
position at which the car was cropped from its original image. In the top row, both the position and apparent size of the car vary with
distance, in the middle row only the position changes and the size is kept constant, and in the bottom row the size is varied while the
position is constant. The region where the estimated distance is measured is indicated by a white outline in the disparity maps.

4. Camera pose: constant or estimated?

The use of vertical position as a depth cue implies that
the networks have some knowledge of the camera’s pose.
This pose could be inferred from the images (for instance,
by finding the horizon or vanishing points), or assumed to
be constant. The latter assumption should work reason-
ably well on the KITTI dataset, where the camera is rigidly
fixed to the car and the only deviations come from pitch and
heave motions of the car and from slopes in the terrain. It
would, however, also mean that the trained networks cannot
be directly transferred to different camera setups. It is there-
fore important to investigate whether the networks assume
a fixed camera pose or estimate this on-the-fly.

If the networks can measure the camera pitch, then
changes in pitch should also be observed in the estimated
depth map. The unmodified KITTI test images already have
some variation in the horizon level; in an initial experi-
ment we look for a correlation between the true horizon
level in the images (determined from the Velodyne data)
and the estimated horizon level in the depth estimates from
MonoDepth. The horizon levels were measured by crop-
ping a central region of the disparity map (the road surface)
and using RANSAC to fit a line to the disparity-y pairs. Ex-
trapolating this line to a disparity of zero (i.e. infinite dis-
tance) gives the elevation of the horizon. For each image,

this procedure was repeated five times to average out fitting
errors from the RANSAC procedure.

Figure 4 shows the relation between the true and
estimated horizon levels. While it was expected that
MonoDepth would either fully track the horizon level or not
at all, a regression coefficient of 0.60 was found which in-
dicates that it does something between these extremes.

A second experiment was performed to rule out any po-
tential issues with the Velodyne data and with the small
(£10 px) range of true horizon levels in the first experiment.
In this second experiment, a smaller region is cropped at
different heights in the image (Figure 5). For each image,
seven crops are made with offsets between -30 and 30 pix-
els from the image center, which approximates a change in
camera pitch of £2-3 degrees. Instead of using the Velo-
dyne data to estimate the true horizon level, the horizon
level from the depth estimate of the centrally cropped image
is used as a reference value. In other words, this experiment
evaluates how well a shift in the horizon level is reflected in
the depth estimate, rather than its absolute position.

The results for all four networks are shown in Figure 6.
A similar result as in the previous experiment is found: all
networks are able to detect changes in camera pitch, but
the change in the horizon level is underestimated by all net-
works. Since the networks use the vertical position of obsta-
cles to estimate depth, we expect this underestimation to af-
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Figure 3. Influence of vertical image position and apparent size
cues on depth estimates. Shaded regions indicate £1SD (N =
1862) for the network by Godard er al. When both depth cues are
present, all networks successfully estimate the distance towards
the objects, except Wang et al.’s which overestimates the distance.
When only the vertical position is available, the distance is either
over- or underestimated and the standard deviation of the mea-
surement increases (only shown for MonoDepth). When only the
apparent size is available, none of the networks are able to estimate
distance.

fect the estimated distances. To test this hypothesis, we use
the same pitch crop dataset and evaluate whether a change
in camera pitch causes a change in obstacle disparities. The
results are shown in Figure 7. The estimated disparities are
indeed affected by camera pitch. This result also suggests
that the networks look at the vertical image position of ob-
jects rather than their distance to the horizon, since the latter
does not change when the images are cropped.

4.1. Camera roll

Similarly to the pitch angle, the roll angle of the camera
influences the depth estimate towards obstacles. If the cam-
era has a nonzero roll angle, the distance towards obstacles
does not only depend on their vertical position but also on
their horizontal position in the image. A similar experiment
was performed as for the pitch angle: a smaller region of
the images was cropped at varying angles (Figure 8). To
measure the roll angle, a Hough line detector was applied
to a thin slice of the depth map to find the angle of the road
surface. As in the previous experiment, we look for a cor-

190 1

Measured

185 Lin.reg. (r = 0.50)

180

175 ¢

170 ¢

Estimated horizon [px]

165 f

160 : : ’ : : '
160 165 170 175 180 185 190

True horizon [px]

Figure 4. True and estimated horizon levels in unmodified KITTI
images. Results for MonoDepth (Godard et al.). A medium-to-
large correlation is found (Pearson’s » = 0.50, N = 1892) but
the slope is only 0.60, indicating that the true shift in the horizon
is not fully reflected in the estimated depth map.

993 px ‘
Figure 5. Larger camera pitch angles are emulated by cropping the
image at different heights.

401 e Godard et al.
——4—— Zhou et al. 4
v Kuznietsov et al. -
20 1 | —»— Wang et al. 7 /'
— — —Ideal

)

Y
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x
\
\

Horizon shift in depth map [px]

-30 -20 -10 0 10 20 30
True horizon shift [px]
Figure 6. True and estimated shifts in horizon levels after cropping
the images at different heights. Shaded regions indicate +1 SD
for the network by Godard et al. (N = 194, six outliers > 3 SD
removed).

relation between the camera angle and the change in the
estimated angle of the road surface. The result is shown in
Figure 9 and is similar to that for pitch angles: all networks
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Figure 7. Changes in camera pitch disturb the estimated distance

towards obstacles. Shaded regions indicate =1 SD for the network
by Godard et al.

Figure 8. Camera roll angles are emulated by cropping smaller,
tilted regions from the original KITTI images.
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Figure 9. True and estimated roll shifts in the cropped images.
For all networks, the change in road surface angle is smaller than
the true angle at which the images are cropped. Shaded regions
indicate +1 SD for the network by Godard ez al. (N = 189, eleven
outliers > 3 SD removed).

are able to detect a roll angle for the camera, but the angle
is underestimated.

Figure 10. Objects that are not found in the training set (fridge,
dog) are not reliably detected when pasted into the image.

5. Obstacle recognition

Section 3 has shown that all four networks use the ver-
tical position of objects in the image to estimate their dis-
tance. The only knowledge that is required for this estimate
is the location of the object’s ground contact point. Since no
other knowledge about the obstacle is required (e.g. its real-
world size), this suggests that the networks can estimate the
distance towards arbitrary obstacles. Figure 10, however,
shows that this is not always the case. The car is recognized
as an obstacle, but the other objects are not recognized and
appear in the depth map as a flat road surface.

To correctly estimate the depth of an obstacle, the neu-
ral networks should be able to: 1) find the ground contact
point of the obstacle, as this is used to estimate its distance,
and 2) find the outline of the obstacle in order to fill the
corresponding region in the depth map. In this section, we
attempt to identify the features that the MonoDepth network
by Godard et al. uses to perform these tasks. The results of
Figure 10 suggest that the network relies on features that are
applicable to cars but not to the other objects inserted into
the test images.

5.1. Color and Texture

The objects inserted in Figure 10 differ from cars in
terms of color, texture and shape. In a first experiment, we
investigate how color and texture affect MonoDepth’s per-
formance by evaluating it on modified versions of the KITTI
images. To investigate the influence of color, two new test
sets are created: one in which the images are converted to
grayscale to remove all color information, and one in which
the hue and saturation channels are replaced by those from
KITTI’s semantic_rgb dataset to further disturb the colors.
Two other datasets are used to test the influence of texture: a
set in which all objects are replaced by a flat color that is the
average of that object class — removing all texture but keep-
ing the color intact — and the semantic_rgb set itself where
objects are replaced with unrealistic flat colors. Examples
of the modified images and resulting depth maps are shown
in Figure 11, the performance measures are listed in Table 1.

As long as the value information in the images remains
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Figure 11. Example images and depth maps for unmodified, grayscale, false color, class average color, and semantic rgb images.

Test set AbsRel SqRel RMSE RMSElog Dil-all §<1.25 §<1.252 §<1.25°
Unmodified images 0.124 1.388  6.125 0.217 30.272 0.841 0.936 0.975
Grayscale 0.130 1.457  6.350 0.227 31.975 0.831 0.930 0.972
False colors 0.128 1.257  6.355 0.237 34.865 0.816 0.920 0.966
Semantic rgb 0.192 2784  8.531 0.349 46.317 0.714 0.850 0.918
Class-average colors  (0.244 4159 9.392 0.367 50.003 0.691 0.835 0.910

Table 1. MonoDepth’s performance on images with disturbed colors or texture. The unmodified image results were copied from [11];
the table lists results without post-processing. Error values for images that keep the value channel intact (grayscale and false colors) are
close to the unmodified values. Images where the value information is removed and the objects are replaced with flat colors (semantic rgb,

class-average colors) perform significantly worse.

Figure 12. Objects do not need to have a familiar shape nor texture
to be detected. The distance towards these non-existent obstacles
appears to be determined by the position of their lower extent.

Figure 13. Influence of car parts and edges on the depth map. Re-
moving the center of the car (top right) has no significant influence
on the detection. The car’s bottom and side edges (bottom right)
seem most influential for the detected shape, which is almost iden-
tical to the full car image (top left).

unchanged (the unmodified, grayscale and false color im-
ages), only a slight degradation in performance is observed.
This suggests that the exact color of obstacles does not

strongly affect the depth estimate. However, when the tex-
ture is removed (class-average colors and semantic rgb)
the performance drops considerably. The network also per-
forms better on the semantic_rgb dataset with false colors
than on the realistically colored images. This further sug-
gests that the exact color of objects does not matter and that
features such as the contrast between adjacent regions or
bright and dark regions within objects are more important.

5.2. Shape and contrast

Since color does not explain why the objects in Figure 10
are not detected, we next look at shape and contrast. A
first qualitative experiment shows that objects do not need
a familiar shape nor texture to be recognized (Figure 12).
Furthermore, the distance towards these unfamiliar objects
seems to follow from their lower extent, further supporting
our claim that the networks use the ground contact point as
the primary depth cue.

In a second experiment, we find the features that the net-
work is the most sensitive to by systematically removing
parts of a car until it is no longer detected. The car is still
detected when the interior of the shape is removed, suggest-
ing that the network is primarily sensitive to the outline of
the object and ‘fills in’ the rest. The car is no longer de-
tected when the side- or bottom edges are removed. How-
ever, when only the bottom edge is removed, the sides of
the car are still detected as two thin objects.

We suspect that the dark region at the bottom of the shape
is the main feature by which the network detects obstacles.
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Figure 14. To measure the influence of the bottom edge, we vary
its brightness and thickness. The experiment is repeated over 60
background images.

. 100
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Figure 15. Mean distance error as a function of the bottom edge

color and thickness. For comparison, we include results for re-

alistically textured shapes (Tex) and completely filled shapes (F).

Distance errors are measured relative to the estimated distance of

the realistic (F, Tex) shape.

The bottom edge formed by the shadow underneath the car
is highly contrasting with the rest of the scene and an ex-
amination of the KITTI images shows that this shadow is
almost universally present and could form a reliable feature
for the detection of cars. We examine the influence of the
bottom edge in a quantitative experiment where both the
brightness and thickness of the lower edge are varied (Fig-
ure 14, 15). Additionally, the results are compared to com-
pletely filled shapes (F) and shapes with a realistic texture
(Tex). We measure the error in the obstacle’s depth relative
to the estimated depth of the realistic shape (F, Tex). The
results are averaged over 60 background images in which
the shape does not overlap other cars.

Figure 15 shows that the bottom edge needs to be both
thick and dark for a successful detection, where a com-
pletely black edge with a thickness of > 13 px leads to an
average distance error of less than 10% relative to a realistic
image. A white edge does not result in a successful detec-
tion despite having a similar contrast to the road surface.

Figure 16. Adding a shadow at the bottom of the objects of Fig-
ure 10 causes them to be detected. The fridge, however, is only
detected up to the next horizontal edge between the doors.

Furthermore, a completely black edge results in a smaller
distance error than when realistic textures are used. This
suggests that the network is primarily looking for a dark
color rather than contrast or a recognizable texture. Finally,
the results show that completely filled shapes result in a bet-
ter distance estimate. We suspect that completely filling the
shape removes edges from the environment that could oth-
erwise be mistaken for the outline of the obstacle.

As a final test, we add a black shadow to the undetected
objects of Figure 10. The objects are now successfully de-
tected (Figure 16).

6. Conclusions and future work

In this work we have analyzed four neural networks for
monocular depth estimation and found that all of them use
the vertical position of objects in the image to estimate their
depth, rather than their apparent size. This estimate de-
pends on the pose of the camera, but changes to this pose
are not fully accounted for, leading to an under- or overes-
timation of the distance towards obstacles when the camera
pose changes. This limitation has a large impact on the de-
ployment of these systems, but has so far received hardly
any attention in literature. We further show that MonoDepth
can detect objects that do not appear in the training set, but
that this detection is not always reliable and depends on fac-
tors such as the presence of a shadow under the object.

While our work shows how these neural networks per-
ceive depth, it does not show where this behavior comes
from. Likely causes are the lack of variation in the train-
ing set, which could be corrected by data augmentation, or
properties inherent to convolutional neural networks (e.g.
their invariance to translation but not to scale). Future work
should investigate which of these is true and whether the
networks can learn to use different depth cues when the ver-
tical image position is no longer reliable.
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