
Effect of Sample Difficulty on the Time-to-First-Spike of Spiking Neural
Networks

Eren Aydoslu
TU Delft

Abstract

Spiking neural networks (SNNs) with Time-to-First-Spike
(TTFS) coding promise rapid, sparse, and energy-efficient
inference. However, the impact of sample difficulty on TTFS
dynamics remains underexplored. We investigate (i) how in-
put hardness influences first-spike timing and (ii) whether
training on hard samples expedites inference. By quanti-
fying difficulty via geometric margins and Gaussian-noise
perturbations, and modeling leaky integrate-and-fire dy-
namics as Gaussian random walks, we derive first-hitting-
time predictions. We further show that training-time noise,
akin to ridge regularization, reduces weight variance and
increases expected spike latencies. Empirical results on a
synthetic task, MNIST, NMNIST, and CIFAR-10 with spik-
ing MLPs/CNNs confirm that harder inputs slow inference
and noise-trained models trade robustness for latency. Our
findings align TTFS behavior with drift-diffusion models
and provide a framework for balancing speed and robust-
ness in neuromorphic SNNs.

1. Introduction

Spiking neural networks (SNNs), inspired by biological
neural systems, encode information using spike timings
rather than continuous activation values. Among various
neural coding schemes, Time-to-First-Spike (TTFS) cod-
ing has garnered attention for its efficiency and biological
plausibility. TTFS-based SNNs inherently prioritize rapid,
sparse, and energy-efficient computation, making them par-
ticularly appealing for low-power and real-time applications
[10].

However, the performance and characteristics of TTFS-
based SNNs under conditions of varying sample difficulty
remain under-explored. Specifically, understanding how
the time-to-first-spike behavior of latency-encoded SNNs
changes as samples become intrinsically more challenging
is crucial for both theoretical insights and practical appli-
cations. In classical machine learning, sample difficulty is

often associated with ambiguity in the data distribution and
proximity to decision boundaries [8, 41]. Inspired by this,
our research investigates the following central questions:
1. What happens to the TTFS behavior of latency-encoded

SNNs as samples become increasingly difficult?
2. Can we use harder samples during training to make in-

ference faster?
We approach this question by considering sample dif-

ficulty through a proxy measure, additive Gaussian noise.
Drawing parallels from statistical learning theory and ridge
regression equivalence in linear models, we hypothesize
that introducing Gaussian noise to training samples reduces
the variance of the learned weights. Under this assump-
tion, we model neuronal membrane potentials as Gaussian
random walks, enabling analysis through the lens of first-
hitting-time stochastic processes. We believe that reduced
weight variance, induced by noisy training, leads to higher
expected first-spike times, thus potentially decelerating in-
ference.

To validate our hypothesis, we conducted extensive ex-
periments utilizing spiking multi-layer perceptrons (MLPs)
and convolutional neural networks (CNNs) using a syn-
thetic dataset and across widely-used datasets, MNIST,
NMNIST, and CIFAR-10, examining network responses
under various noise strength. Through empirical analyses,
we measure and explain how first-spike latency evolves rel-
ative to sample difficulty, thereby advancing the understand-
ing of latency coding dynamics in spiking neural networks.

In summary, we make the following contributions:
1. We introduce a principled analytical framework that

models TTFS dynamics under varying sample difficulty
by treating membrane-potential accumulation as a Gaus-
sian random walk with decay/mean-reversion and apply-
ing first-hitting-time theory.

2. We establish a theoretical link between training-time
Gaussian noise (akin to parameter regularization) and in-
creased first-spike latencies via reduced synaptic-weight
variance.

3. We empirically validate our theory on both a synthetic
SepDots task and three standard benchmarks (MNIST,

1

NMNIST, CIFAR-10) using spiking MLPs and CNNs,
showing that harder inputs systematically slow inference
and that noise training trades robustness for latency.

4. We demonstrate that TTFS latency under uncertainty
aligns with classical drift-diffusion models.

2. Related Work
2.1. Sample Difficulty Metrics
In related literature, many different principal approaches
have been proposed to quantify the intrinsic “difficulty” of
individual samples. However, for the scope of this research,
we are only interested in two: (i) geometric margin mea-
sures relative to a decision boundary, and (ii) synthetic hard-
ness induced by Gaussian-noise perturbations. These met-
rics have been successfully applied in supervised learning,
active learning and robustness studies, but have not yet been
systematically linked to latency behavior in TTFS-coded
SNNs.

2.1.1. Margin-Based Difficulty
A classical measure of sample difficulty is the signed dis-
tance (margin) from the sample to the optimal decision
boundary. In support vector machines, maximizing the min-
imum margin yields better generalization, and samples with
small margins are those most susceptible to misclassifica-
tion under slight model perturbations [9, 43]. Varshney et
al. [45] showed that margin directly captures both geomet-
ric resilience and Bayes error: points near the boundary lie
in regions where class-conditional distributions overlap, in-
curring high irreducible error. More recent work has ex-
tended margin concepts to deep networks, demonstrating
that margin distributions correlate with per-sample uncer-
tainty and generalization gaps [1, 26]

2.1.2. Gaussian Noise as a Proxy for Difficulty
When the true decision boundary is unknown or intractable,
hardness can be induced by adding isotropic Gaussian
noise to inputs. The manifold hypothesis posits that
high-dimensional data (e.g., images) lie near much lower-
dimensional manifolds, each encoding semantic factors
such as object identity or pose [12]. In modern vision em-
bedding spaces, whether derived from contrastive models
like CLIP or from GAN latent representations, individual
semantic concepts (e.g., “cat”-ness, orientation, age) align
with specific low-dimensional directions on these manifolds
[22, 33]. Because isotropic Gaussian noise perturbs all co-
ordinates equally at random, it is very unlikely to produce
a change that aligns with a particular semantic direction
(with probability near zero in high dimensions) and thus
very unlikely to increase a sample’s semantic class align-
ment or “margin” relative to its true manifold [2, 19]. In
other words, to give an example, adding noise to an image
of a cat is not very likely to make the image more cat-like.

Instead, noise almost invariably pushes samples off their na-
tive manifolds toward regions of higher class overlap, in-
creasing conditional uncertainty and Bayes error [13, 20].
Empirical studies confirm that moderate Gaussian pertur-
bations can improve generalization by discouraging overfit-
ting, whereas large noise amplitudes reliably degrade accu-
racy by elevating sample hardness [6, 21, 31].

2.2. Sample Difficulty and SNNs
Drift Diffusion Models (DDMs) describe the decision pro-
cess as the accumulation of noisy evidence to one of two
decision thresholds (see Figure 1), successfully capturing
response-time distributions and choice accuracies across
tasks and species [34, 35]. In their simplest form, DDMs
introduce a one-dimensional decision variable X(t) that
evolves according to

dX = v dt+ σ dW (t), (1)

where v is the drift rate (mean evidence per unit time),
σ the diffusion coefficient (noise magnitude), and W (t) a
standard Wiener process; choice and response time corre-
spond to the first-passage time of X(t) to one of two ab-
sorbing boundaries at ±a [35]. This framework naturally
accounts for both the mean and variability of reaction times
as well as speed–accuracy trade-offs: higher v yields faster,
more consistent responses, while lower v produces slower,
more variable decisions with increased error rates [3].

Figure 1. Schematic of the drift diffusion model. The decision
variable accumulates noisy momentary evidence e(t) over time
with mean drift rate µ (red dashed line), until it reaches the upper
boundary +A (choose H1) or lower boundary −A (choose H2).
The side-panel plot illustrates the probability density of momen-
tary evidence e, whose mean shifts according to stimulus strength.
Emphasizing how strong evidence leads to faster decisions. Figure
taken from [18].

Although DDMs provide an elegant account of behavior,
their abstract variables lack a clear mapping onto biophys-
ically realistic neurons, motivating neural-level implemen-
tations that can measure diffusion dynamics in spiking ac-
tivity. Analyses have directly linked neuron firing rates to
accumulator processes in perceptual decisions, motivating
neural-level diffusion analogues of DDM [18, 27, 29, 32].

2

In computational neuroscience, spiking neural network im-
plementations have long been proposed as neural substrates
for evidence accumulation, with early work demonstrating
that interconnected pools of excitatory and inhibitory neu-
rons can instantiate drift-like dynamics mapped onto diffu-
sion model parameters [3, 47]. For instance, the biophys-
ically detailed model by Wang (2002) [46] and its exten-
sion by Wong and Wang (2006) [47] showed that recurrent
spiking circuits could replicate behavioral data by varying
input “drift rate” and synaptic parameters corresponding to
decision thresholds. Subsequent analyses mapped manip-
ulations of spiking circuit parameters, such as input sensi-
tivity, background excitation, and recurrent connectivity, to
drift rate, boundary separation, and non-decision time in the
diffusion model, elucidating concrete neural implementa-
tions of cognitive-level variables [44]. Additionally, spiking
decision-making models with learning rules have been pro-
posed to bridge cognitive models and SNNs, showing that
accumulation can emerge from trainable spiking networks
[23, 28].

However, these efforts have primarily focused on biolog-
ical plausibility and parameter-mapping, often overlooking
task-performance and latency effects under varying sample
difficulties in deep learning oriented TTFS SNN architec-
tures [3, 28, 47]. To date, the impact of sample-specific
difficulty metrics, such as margin distance or noise-induced
hardness, on first-spike latency within a drift-diffusion
framework in TTFS SNNs has not been systematically ad-
dressed. This gap underscores the need to integrate sample
difficulty measures into evidence-accumulation analyses of
TTFS networks to predict and control inference latency un-
der uncertainty.

In the DDM framework, the impact of sample difficulty
on decision times is captured by the drift rate parameter v.
Harder samples, such as stimuli with lower discriminability
or higher noise, yield smaller drift rates, resulting in longer
times for the decision variable to reach a boundary and
thus slower and more variable response times (RT) [3, 35].
Across diverse perceptual tasks, formal fittings of the DDM
consistently show that difficulty-induced reductions in drift
rate account for observed changes in RT distributions under
ambiguous or noisy conditions [27, 37]. Classic random-dot
motion tasks illustrate this relationship: as motion coher-
ence decreases (i.e., the stimuli becomes harder), drift rate
diminishes, producing increased mean reaction times and
heavier right tails in RT distributions [30, 34, 37]. Conse-
quently, when mapping sample difficulty metrics to TTFS-
coded SNNs, higher difficulty should correspond to lower
effective drift rates in a DDM interpretation, predicting sys-
tematically later first-spike latencies for harder samples.

Moreover, the DDM also predicts that trials ending in
an incorrect choice tend to have longer response times than
correct trials. This follows from across-trial variability in

drift rate: high drift rates produce fast, accurate bound-
ary crossings, whereas low drift rates both increase error
probability and slow the accumulation process, leading to a
distribution of missclassified response times that is shifted
toward longer latencies [35, 38]. In our TTFS context,
this implies that samples with particularly small or negative
margins, not only accumulate evidence more slowly on av-
erage, but when they do lead to misclassification, will evoke
the longest first-spike latencies.

2.3. Spiking Neuron as a Stochastic Process
2.3.1. Membrane Potential as a Gaussian Random Walk
The sub-threshold membrane potential of leaky integrate-
and-fire neurons has long been modeled as a stochastic pro-
cess whose increments converge to a Gaussian distribution
under the Central Limit Theorem (CLT) when driven by
many weak synaptic inputs [14, 16]. Gerstein and Mandel-
brot [17] first employed an inverse-Gaussian framework to
describe first-passage problems in neural spiking, demon-
strating that membrane dynamics under constant drift and
Gaussian noise can be treated as a random walk with drift.
Later works formalized the discrete-time analogue, show-
ing that if (i) the number of presynaptic inputs is large, (ii)
synaptic weights have finite variance, and (iii) presynap-
tic spike trains are weakly correlated, then the membrane
potential sum approaches Gaussian [4, 25]. These analy-
ses, however, predominantly consider continuous-time or
asymptotic regimes and do not fully characterize the influ-
ence of finite-step effects or input “difficulty” in Time-to-
First-Spike coding schemes.

2.3.2. First Hitting Time Models for Time-to-First-Spike
First-hitting time (or first-passage time) models have been
extensively used to predict spike latencies in stochastic
neuron models. Classic results by Siegert derived the
inverse-Gaussian density for barrier crossing times in diffu-
sion approximations of integrate-and-fire neurons [39, 40].
Chang and Peres [7] later provided rigorous bounds show-
ing that discrete-time Gaussian random walks converge to
the inverse-Gaussian limit as the time step vanishes. More
recent numerical methods have improved the estimation of
first-passage time densities for Ornstein–Uhlenbeck neuron
models [5, 42]. Despite these foundational contributions,
existing work largely addresses homogeneous synaptic in-
puts and continuous diffusion models; the specific effects
of discrete timesteps, synaptic weight variability, sample
and difficulty, remain underexplored in the context of TTFS
SNNs architectures.

3. Approach

In this section, we detail the methodologies and key theo-
retical formulations employed in our research.

3

tspike(x, y, c) =

{
round((1− I(x, y, c))× Tmax), if I(x, y, c) > ϵ

no spike, otherwise
(2)

3.1. Leaky Integrate-and-Fire Neuron Model
We use the discrete-time Leaky Integrate-and-Fire (LIF)
neuron model, characterized by the following update equa-
tion:

Vi[t+ 1] = βVi[t] +
∑
j

WijSj [t]− VthSi[t] (3)

Here, Vi[t] denotes the membrane potential of neuron i at
discrete timestep t, β ∈ [0, 1] is the leak parameter control-
ling the decay of the potential over time, Wij represents the
synaptic weight between neuron j (presynaptic) and neuron
i (postsynaptic), Sj [t] indicates whether neuron j emitted
a spike at timestep t, and Vth is the threshold potential. If
Vi[t] surpasses Vth, neuron i emits a spike (Si[t] = 1) and
its membrane potential resets accordingly.

3.2. Latency Encoding of Inputs
In our implementation, latency encoding converts pixel in-
tensities from input images into spike timings. Each pixel
value, initially in the range [0, 1], is transformed into a
spike timing such that pixels with higher intensities (closer
to 1) spike earlier, and pixels with lower intensities spike
later. Formally, this is described in Equation 2, where
I(x, y, c) represents the intensity of the pixel at location
(x, y) in channel c, Tmax denotes the maximum number of
timesteps, and ϵ is a clipping threshold below which pixel
intensities do not generate spikes.

3.3. Temporal Mean Squared Error Loss
To effectively train our latency-encoded SNN, we utilize a
temporal mean squared error (MSE) loss function defined
over spike timings [10]. Consider an output layer of neu-
rons, each producing spike times represented as normalized
timings within [0, 1]. Given example spike times [t1, t2, t3]
for three neurons, normalized by dividing each by the to-
tal number of timesteps Tmax (e.g., for spike times [1, 2, 3]
and Tmax = 5, the normalized times are [0.2, 0.4, 0.6]), the
temporal MSE loss is computed as follows:

L =
1

N

N∑
i=1

(ti − yi)
2 (4)

where ti is the normalized spike time of neuron i, yi is
the desired normalized target time (0 for the correct class,
meaning spike as early as possible, and 1 for incorrect
classes, meaning spike as late as possible or ideally never),

and N is the total number of output neurons. This ap-
proach encourages the network to minimize the latency of
correct class spikes while delaying or inhibiting incorrect
class spikes.

One significant challenge in training with the temporal
MSE loss arises from the fundamental discontinuity in spike
timing mechanisms. Since the precise moment a neuron
fires depends on a threshold-crossing event, the derivative
of spike timing with respect to membrane potential is math-
ematically undefined. To circumvent this issue, we employ
a commonly used custom gradient approximation during
backpropagation [10]. Specifically, we set:

∂tspike
∂U

= −1 (5)

This sign estimator establishes the directional relationship
that increasing membrane potential leads to earlier firing
times.

3.4. Surrogate Gradients and Backpropagation
Through Time

Training SNNs presents a fundamental challenge: the spike
generation mechanism is inherently non-differentiable, cre-
ating a discontinuity in the gradient flow. To address this,
we employ surrogate gradients that approximate the deriva-
tive of the spiking function. For the forward pass, we use
the Heaviside step function:

S =

{
1 if U ≥ Uthr

0 if U < Uthr

(6)

For the backward pass, we utilize the gradient of a shifted
arc-tangent function as our surrogate:

S ≈ 1

π
arctan(πU

α

2
) (7)

∂S

∂U
=

1

π

1

(1 + (πU α
2)

2)
(8)

where α is a hyperparameter controlling the smoothness of
approximation [11]. Additionally, since our network pro-
cesses information across multiple timesteps, we use Back-
propagation Through Time (BPTT), which unfolds the SNN
temporally and applies backpropagation across the resulting
computational graph. This allows gradients to flow back-
ward through both spatial connections and temporal dynam-
ics, enabling end-to-end training while preserving the tem-
poral characteristics essential to latency-encoded networks.

4

0.0100.0150.0200.0250.0300.0350.0400.0450.050
Random Walk Variance

16

17

18

19

20

21

R
W

 S
te

ps
 b

ef
or

e
Sp

ik
e

[1
, 2

7]

Mean Number of Steps to First Spike

0.0100.0150.0200.0250.0300.0350.0400.0450.050
Random Walk Variance

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5

Ti
m

es
te

p
of

 S
pi

ke
 [1

, 2
0]

Mean First Spike Timestep

Monte Carlo Estimates of Gaussian Random Walk Variance vs First Spike

Figure 2. Monte Carlo (N = 100 000) estimates of (a) mean number of steps to first spike and (b) mean first-spike timestep as functions
of synaptic variance σ2. Decreasing σ2 leads to slower accumulation relative to leak, increasing the expected latency. N.B., the x-axis is
inverted.

3.5. Discrete-Time Spiking Neuron Model and Vari-
ance Effects

We model each neuron as a non-leaky integrate-and-fire unit
operating in discrete timesteps. Let St denote the mem-
brane potential at timestep t. Assuming each presynaptic
spike contributes a weight wi ∈ {0, 1} · N (µ, σ2), the sub-
threshold dynamics form a Gaussian random walk:

St = St−1 +

nt∑
i=1

wi (9)

with S0 = 0 and threshold Vth = 1. Under the i.i.d. Gaus-
sian weight assumption, the first-hitting time T to reach Vth

admits a continuous-time approximation via a Wiener pro-
cess with drift µ > 0 and diffusion σ2, whose hitting-time
density is inverse Gaussian [15, 24]:

fT (t) =
1√

2πσ2t3
exp

(
− (1−µt)2

2σ2t

)
, (10)

E[T] =
1

µ
, Var(T) =

σ2

µ3
(11)

To capture realistic membrane leakage and finite input
spikes, we introduce a decay factor β ∈ (0, 1] and bin inputs
into T discrete steps:

St = β St−1 +

nt∑
i=1

wi,

T∑
t=1

nt = Nmax ≤ 27. (12)

Monte Carlo simulations of this leaky random walk (with
β = 0.95, varying σ2, up to Nmax = 27 for a 3×3 RGB re-
ceptive field in a convolutional layer) reveal that decreasing
synaptic-weight variance shifts the first-spike distribution to

the right, i.e., lower σ2 yields heavier tails and longer mean
latencies (see Figure 2).

Quantitatively, both the expected number of steps to
threshold and the mean first-spike timestep increase mono-
tonically as σ2 decreases, confirming that reduced weight
variability slows evidence accumulation relative to leak,
thereby prolonging time-to-first-spike.

3.6. SepDots Synthetic Classification Task
SepDots (short for separating the dots) is a synthetic binary
classification dataset designed to provide analytical control
over sample difficulty via tunable class separation, enabling
exact margin computation and direct investigation of first-
spike latency under varying difficulty.

3.6.1. Problem Definition

x =

{
N
(
[−µ,−µ]T , σ2I

)
, Class 1,

N
(
[+µ,+µ]T , σ2I

)
, Class 2,

(13)

where µ > 0 controls class separation (and thus difficulty)
and σ2 = 0.05 is fixed. We simulate 20 discrete timesteps
and at each timestep we draw K = 5 i.i.d. samples from
the true class distribution (see Figure 3), where each class
is chosen with probability 1/2. Finally, sampled values are
mapped to a binary 35× 35 image in a linear fashion, such
that [0, 0] corresponds to the center of the image.

3.6.2. Margin Computation
The optimal linear decision boundary is

x1 + x2 = 0 . (14)

Then, we can calculate the signed margin of a sample x as

m(x) =
x1 + x2√

2
. (15)

5

Figure 3. Three-timestep slices of a SepDots sample. Each yellow square is one of the K = 5 dots at that timestep and the red cross is the
true class mean.

Dataset Type Levels

SepDots Class mean, µ {0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.25}
MNIST Gaussian noise, σ {0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}
NMNIST Pixel-flip, pflip {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1}
CIFAR-10 Gaussian noise, σ {0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25}
CIFAR-10 Gaussian blur (33× 33 kernel), σ {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}

Table 1. Perturbation parameters used to induce sample difficulty.

Let the true label be

y =

{
+1, x from Class 2,
−1, x from Class 1,

(16)

so that the class-corrected margin is

m̃(x) = ym(x) . (17)

3.6.3. Temporal Margin Aggregation
At each discrete timestep t, we draw K i.i.d. samples
{x(t)

k }Kk=1. We then compute:

m̃(t) =
1

K

K∑
k=1

m̃(x
(t)
k) (instantaneous margin), (18)

M̃ (t) =
1

t

t∑
τ=1

m̃(τ) (cumulative margin). (19)

These exact margin metrics allow us to quantitatively link
sample difficulty, via m̃ and M̃ .

The key advantage of SepDots is its tunable difficulty via
µ: as µ decreases, class overlap increases and the Bayes er-
ror rises, offering a fine-grained control over sample hard-
ness. This synthetic task thus provides a clear testbed for

linking evidence-accumulation predictions under the Drift
Diffusion Model to actual TTFS latency under varying dif-
ficulty levels.

3.7. Experiments
We evaluate our theoretical predictions on four datasets,
SepDots, MNIST, NMNIST, and CIFAR-10, by systemat-
ically varying both testing and training sample hardness.
Furthermore, we repeat each experiment 30 times to in-
crease the reliability of the results. Our two primary hy-
potheses are:
1. Increasing testing hardness will slow inference (longer

first-spike latencies) due to reduced effective drift
(weaker evidence accumulation).

2. Increasing training hardness will also slow inference,
because noise-driven reductions in learned synaptic-
weight variance will decrease membrane potential
threshold-crossing speed.

3.7.1. SepDots
Hardness is controlled by the class-separation parameter µ,
which directly modulates Gaussian overlap and margins.
We train and test networks under multiple separation set-

6

tings, observing how reduced µ (smaller margins) affects
first-spike latency.

3.7.2. MNIST, NMNIST, CIFAR-10
For MNIST and CIFAR-10, hardness is induced by adding
isotropic Gaussian noise or (only for CIFAR-10) Gaussian
blur to each image prior to training and/or evaluation. For
event-based NMNIST, hardness is induced by flipping each
pixel with a fixed probability. However, we don’t want to
augment the data. Therefore, we sample each noise or blur
pattern once before training and use the same perturbed
dataset both during training. To keep overall spike-count
statistics constant, we histogram-match the noisy inputs to
their clean counterparts.

Additionally, for CIFAR-10 we use a small CNN (CNN-
S) with ≈ 86k parameters and a large CNN (CNN-L) with
≈ 20M parameters.

3.7.3. Training and Evaluation Regime
The perturbation parameters we use to induce hardness in
each dataset are defined in Table 1.
1. For each dataset and training hardness setting, train a

TTFS-coded SNN from scratch.
2. For each trained model, evaluate on each testing hard-

ness setting, recording first-spike latencies across output
neurons.

3. Analyze the mean and variance of first-spike times as
functions of training and testing hardness.
This process should allow us to separate the effects of

testing difficulty, slower evidence accumulation, from those
of training difficulty, changed synaptic weight statistics, on
TTFS inference latency.

4. Results
Before we go into classic datasets, let’s first analyze the be-
havior of the first spike times in our synthetic classification
task SepDots.

4.1. Time-to-First-Spike Behavior
4.1.1. SepDots
Figure 4 reports the classification accuracy matrix as a func-
tion of the training-distribution mean µtrain (x–axis) and the
testing-distribution mean µtest (y–axis). Accuracy remains
near 100% when µtest ≥ 0.1 regardless of training hard-
ness, but degrades sharply when testing separation falls be-
low µtest ≈ 0.05.

To probe the latency effects, we first examine the
marginal relationship between cumulative margin at spike
time and latency (Figure 5). Latency is longest for near-
zero cumulative margins, where evidence is weakest, and
decreases monotonically as M̃ grows in magnitude. This
brings prominence to the drift-diffusion prediction that
higher net evidence yields faster first-spike times.

0.010.01750.0250.050.0750.10.150.25
Train Distribution Mean

0.
01

0.
01

75
0.

02
5

0.
05

0.
07

5
0.

1
0.

15
0.

25
Te

st
 D

is
tri

bu
tio

n
M

ea
n

6464636059585756

7473726766646261

8281797472706765

9696958987858179

9999999595939189

1001001009898979694

100100100981001009999

10010010098100100100100

SepDots Accuracy Matrix

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Figure 4. SepDots: Classification accuracy for varying train and
test distribution means µtrain (x-axis) and µtest (y-axis). High test
separation (µtest ≥ 0.2) yields near-perfect accuracy, while low
separation degrades performance, especially when networks are
trained on very hard (small-µtrain) data. From left-to-right harder
training; from bottom-to-top harder testing.

0.2 0.0 0.2 0.4 0.6
Cumulative Margin

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Fi
rs

t S
pi

ke
 T

im
e

[0
, 1

9]

Marginal Effect of Cumulative Margin on Latency

Figure 5. SepDots: Marginal effect of cumulative margin M̃ at
first-spike time on latency, estimated via LOWESS regression. La-
tency peaks near zero margin (weak evidence) and decreases as
the absolute cumulative margin grows, confirming that stronger
net evidence speeds first spikes.

Next, Figure 6a and Figure 6b show how mean first-
spike time varies with µtest and µtrain, respectively. Aver-
aging out training effects, increasing µtest reduces latency
from ≈ 3.7 timesteps at µtest = 0.01 down to ≈ 2.4 at
µtest = 0.25. Conversely, when averaging out testing hard-
ness, raising µtrain speeds inference even more dramati-
cally, from over 5.5 timesteps at µtrain = 0.01 to just under
2.0 at µtrain = 0.25. Thus both testing and training hard-
ness could be independently controlling spike-latency via

7

0.000.050.100.150.200.25
Test Distribution Mean

2.4

2.6

2.8

3.0

3.2

3.4

3.6

M
ea

n
Fi

rs
t-S

pi
ke

 T
im

e
[0

, 1
9]

SepDots Marginal Effect of test on Latency

(a) SepDots: Mean first-spike time versus test distribution mean µtest (av-
eraging over µtrain). Decreasing µtest yields slower spikes. Networks
tested on easier data exhibit faster inference. N.B. the x-axis is inverted to
show the effect of going from easy to hard.

0.000.050.100.150.200.25
Train Distribution Mean

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

M
ea

n
Fi

rs
t-S

pi
ke

 T
im

e
[0

, 1
9]

SepDots Marginal Effect of train on Latency

(b) SepDots: Mean first-spike time versus train distribution mean µtrain

(averaging over µtest). Networks trained on harder data exhibit slower
inference. N.B. the x-axis is inverted to show the effect of going from easy
to hard

Figure 6. Marginal effects of test-set and train-set distribution
means on TTFS first-spike latency.

evidence-accumulation dynamics.
Finally, the combined heatmap in Fig. Figure 7 visu-

alizes mean first-spike time across the full (train, test)
grid. The lower-left corner (small µtrain, µtest) exhibits
the largest latencies, while the upper-right corner (large
µtrain, µtest) compresses latencies. The smooth gradient
along both axes seems to provide evidence for our two hy-
potheses.

4.1.2. Qualitative Analysis
To motivate our quantitative analysis (which will come later
in subsection 4.2) and better understand its implications,
we visualize the results obtained on the NMNIST dataset.
While our earlier qualitative study focused on the SepDots

0.010.01750.0250.050.0750.10.150.25
Train Distribution Mean

0.
01

0.
01

75
0.

02
5

0.
05

0.
07

5
0.

1
0.

15
0.

25
Te

st
 D

is
tri

bu
tio

n
M

ea
n

7.05.64.63.42.62.32.12.1

6.85.54.53.32.52.32.12.1

6.65.34.43.32.52.32.12.1

5.84.63.83.02.42.22.12.0

5.14.03.42.82.22.12.12.0

4.73.63.02.62.12.02.01.9

4.23.22.72.42.01.91.91.9

4.13.02.62.31.91.91.91.8

SepDots Mean First-Spike Time

2

3

4

5

6

M
ea

n
Fi

rs
t-S

pi
ke

 T
im

e
[0

, 1
9]

Figure 7. SepDots: Heatmap of mean first-spike time across the
grid of (µtrain, µtest) values. Latency increases smoothly from
easy–easy settings in the bottom left to from hard–hard settings in
the top-right, confirming both training and testing hardness effects.

dataset, we now extend this investigation to the classic NM-
NIST benchmark. In particular, we examine:
1. Accuracy under noise: how varying levels of additive

input noise affect overall classification accuracy.
2. Spiking behavior: the temporal spike patterns produced

during correctly and incorrectly classified samples as
noise increases.

3. Latency dynamics: the impact of noise injected dur-
ing training on the time-to-first-spike inference latency
of the network.

0.00 0.02 0.04 0.06 0.08 0.10
Training Noise

82

84

86

88

90

92

94

96

Ac
cu

ra
cy

 (%
)

NMNIST Test Set Accuracy
Zero Test Noise
Same Test Noise

Figure 8. NMNIST test-set accuracy as a function of the training
noise level. The blue curve shows performance when evaluated
with zero test noise, while the orange curve shows performance
when evaluated with the same noise level used during training.

Figure 8 illustrates how increasing the level of additive
noise during training impacts classification accuracy on the

8

NMNIST test set. When evaluated without any test noise
(blue line), accuracy degrades sharply as training noise in-
creases, dropping from about 96% at zero noise to around
81% at a noise level of 0.1. By contrast, evaluating with
matching test noise level with training noise level yields
a more shallow decline, demonstrating that training with
noise produces robustness to the similar perturbations at in-
ference time.

0.00 0.02 0.04 0.06 0.08 0.10
Training Noise

2

4

6

8

10

12

Fi
rs

t S
pi

ke
 T

im
e

[0
, 1

9]

Correct vs Incorrect - Mean First Spike Time in NMNIST
Zero Test Noise Incorrect
Same Test Noise - Incorrect
Zero Test Noise - Correct
Same Test Noise - Correct

Figure 9. Mean time-to-first-spike for correctly and incorrectly
classified NMNIST samples as a function of training noise. Solid
lines denote correctly classified samples (blue: zero test noise; or-
ange: matching test noise with training noise), while dashed lines
denote incorrectly classified samples.

Figure 9 reveals a key insight: incorrectly classified sam-
ples (dashed lines) exhibit substantially longer TTFS com-
pared to correctly classified ones (solid curves), indicating
that misclassifications are associated with delayed spiking
responses.

Figure 10 focuses on the TTFS of the correctly classified
samples. In the figure, the TTFS under matching test noise
(orange) consistently lies above that under zero test noise
(blue), demonstrating that higher inference noise reliably
increases latency. Moreover, for both test-noise settings,
the mean TTFS increases monotonically with the training
noise level, showing that increased training hardness pro-
longs output latency in all these cases.

4.2. Quantitative Analysis of Results
Prior to detailed latency analysis, we first examined how
first-spike times varies between correct versus incorrect
classifications (see Table 2). Since classification accuracy
itself varied substantially with both training and testing
noise, pooling all TTFS values would merge the effects cor-
rect vs incorrect spike times with sample difficulty. If we
used all, the estimated parameters might be dominated by
the change in accuracy rather than observing the real effect
of training and testing noise. To isolate changes in latency

0.00 0.02 0.04 0.06 0.08 0.10
Training Noise

2.0

2.2

2.4

2.6

2.8

3.0

Fi
rs

t S
pi

ke
 T

im
e

[0
, 1

9]

NMNIST Mean First Spike Time of Correct Classifications
Zero Test Noise
Same Test Noise

Figure 10. Mean time-to-first-spike of correctly classified NM-
NIST samples under zero test noise (blue) and matching test noise
(orange) as a function of training noise. This figure is equivalent
to Figure 9 except it’s zoomed in on correct classifications

Dataset Hardness Model Correct
TTFS

Incorrect
TTFS

SepDots
Distribution
Overlap CNN 3.04 3.47

MNIST GWN MLP 0.91 6.82

MNIST GWN CNN 2.61 8.24

NMNIST Pixel Flip CNN 2.75 8.39

CIFAR-10 GWN CNN-S 3.85 4.62

CIFAR-10 GWN CNN-L 3.88 4.58

CIFAR-10
Gaussian
Blur CNN-S 3.91 4.84

Table 2. Mean first spike times for correct and incorrect predic-
tions across different datasets and models. The table highlights
the significant difference between the first spike times of correctly
classified samples and incorrectly classified samples. GWN =
Gaussian White Noise

from accuracy, we do the following analysis exclusively on
correctly classified samples.

To estimate quantify the effects of testing and training
hardness, we fit a ordinary least squares (OLS) regression to
predict TTFS as a function of training noise, testing noise,
and their interaction. Formally, for test sample i:

TTFSi = β0 + β1 σ
train
i + β2 σ

test
i

+ β3

(
σtrain
i × σtest

i

)
+ εi (20)

where σtrain
i and σtest

i are the noise levels during training
and testing, respectively, and εi is the residual error.

Although our primary focus is on the marginal effects

9

Dataset Hardness Model Type Intercept Training Noise Test Noise Interaction
β0 (±SE) β1 (±SE) β2 (±SE) β3 (±SE)

SepDots Distribution Overlap CNN 4.83 (< 0.01) −15.5† (0.01) −9.17† (0.01) 45.1 (0.06)
MNIST Gaussian White Noise MLP 0.66 (< 0.01) −0.30 (< 0.01) 2.23 (0.01) −2.30 (0.02)
MNIST Gaussian White Noise CNN 2.34 (< 0.01) 0.37 (0.01) 1.10 (0.01) 0.62 (0.03)
NMNIST Pixel Flip CNN 1.94 (< 0.01) 4.13 (0.03) 23.7 (0.03) −212. (0.44)
CIFAR-10 Gaussian White Noise CNN-S 3.78 (< 0.01) 1.21 (0.01) −1.07 (0.01) 4.53 (0.08)
CIFAR-10 Gaussian White Noise CNN-L 3.81 (< 0.01) 0.14 (< 0.01) 0.14 (< 0.01) 3.76 (0.06)
CIFAR-10 Gaussian Blur CNN-S 3.70 (< 0.01) 0.11 (< 0.01) 0.12 (< 0.01) −0.02 (< 0.01)

† For SepDots we expect β1 and β2 to be negative due to decreasing hardness with increasing distribution µ. For all other datasets, we expect β1, β2 > 0.

Table 3. OLS estimates for predicting TTFS from training noise, test noise, and their interaction (correctly classified samples only).
Standard errors in parentheses. N.B., because each dataset’s noise levels are defined over a different scale and exhibits a distinct functional
relationship with TTFS, the magnitudes of β1, β2, β3 estimates aren’t directly comparable across datasets.

of training and test noise on TTFS, we additionally include
the interaction term σtrain×σtest to guard against potential
moderation effects. In this context, a significant interaction
would indicate that the impact of increasing test-time noise
on TTFS depends on the noise regime under which the net-
work was trained, for instance, a model trained with high
noise might exhibit smaller latency shifts when exposed to
further noise at test time compared to a model trained on
clean data. By modelling this non-additivity, we ensure that
the estimates of the main effects β1 and β2 remain unbiased
and that the overall model fit is improved.

To evaluate how training-noise (hardness) acts as a regu-
larizer on the learned synaptic weights, we fit the following
two OLS regression models. Let σtrain denote the noise
level used during training, and let

y
(std)
i = StdDev

(
wlearn

i

)
, y

(mean)
i = Mean

(
wlearn

i

)
be, respectively, the standard deviation and mean of the
synaptic weights measured across the 30 repeats. We then
estimate

y
(std)
i = β4 + β5 σ

train + εi, (21)

y
(mean)
i = β6 + β7 σ

train + εi. (22)

Table 4 reports the estimates of β4 and β5 for (21), while
Table 5 reports the estimates of β6 and β7 for (22).

As summarized in Table 3, we fit a OLS to predict the
time-to-first-spike based on training noise intensity, test
noise intensity, and their interaction. The intercept term,
β0, captures the baseline TTFS for each dataset under zero
noise. For the SepDots dataset, both the training-hardness
coefficient β1 = −15.5 and the testing-hardness coefficient
β2 = −9.17 are significantly negative1, providing evidence

1For SepDots we a priori expected β1, β2 < 0 due to decreasing hard-
ness (and sample margins) with increasing distribution separation; for all
other datasets we hypothesized β1, β2 > 0.

for our hypothesis that increasing sample difficulty deceler-
ates inference latency. In contrast, for MNIST, NMNIST,
and CIFAR-10, the noise coefficients are mostly positive,
indicating that higher noise levels tend to delay spike emis-
sion, in agreement with our prior research. Finally, only
SepDots exhibits a strong positive interaction (β3 = 45.1),
suggesting a compounding effect when both training and
test noises are elevated.

4.3. Effect of Test-Time Difficulty on TTFS
The estimates of the test-noise coefficient β2 across most
datasets are positive, indicating that as samples become
more difficult at test time (higher σtest), the mean time-to-
first-spike increases. This provides direct evidence for our
first research question “What happens to the TTFS behav-
ior of latency-encoded SNNs as samples become increas-
ingly difficult?”. Furthermore, the results are consistent
with drift-diffusion predictions that lower drift rates yield
longer response times as harder inputs slow down inference
latency [3, 35]. An exception arises for CIFAR-10 with
Gaussian white noise, where β2 = −1.07 (SE = 0.01), sug-
gesting a slight decrease in latency under added test noise.
One plausible explanation is that the CNN never learned a
robust feature representation on CIFAR-10 (peak accuracy
≈ 60% across all training-testing combinations), so moder-
ate noise may inadvertently regularize activations in a way
that triggers earlier spikes. To an extent, this is supported
by the near–zero β2 = 0.12 in the Gaussian-blur condition,
indicating very minimal sensitivity.

4.4. Effect of Training-Time Difficulty on TTFS
The training-noise coefficient β1 quantifies whether expos-
ing the network to harder samples during training speeds
up or slows down inference, our second research question,
“Can we use harder samples during training to make in-
ference faster?” Except for SepDots (where hardness is in-
versely correlated with µ), almost all β1 estimates are pos-

10

Dataset Hardness Model Type Intercept Training Noise
β4 (±SE) β5 (±SE)

SepDots Distribution Overlap CNN 0.099 (0.001) 0.163† (0.006)
MNIST Gaussian White Noise MLP 0.046 (< 0.001) −0.008 (< 0.001)
MNIST Gaussian White Noise CNN 0.114 (< 0.001) 0.009 (0.001)
NMNIST Pixel-Flip CNN 0.056 (< 0.001) −0.024 (< 0.001)
CIFAR-10 Gaussian White Noise CNN-S 0.075 (< 0.001) −0.018 (< 0.001)
CIFAR-10 Gaussian White Noise CNN-L 0.017 (< 0.001) −0.003 (< 0.001)
CIFAR-10 Gaussian Blur CNN-S 0.075 (< 0.001) −0.002 (< 0.001)

† For SepDots we expect β5 to be positive due to decreasing hardness with increasing distribution µ, i.e., increased standard deviation in weights with
increased training distribution µ. For all other datasets, we expect β5 < 0.

Table 4. OLS estimates for the effect of training noise on the model’s synaptic weight standard deviation. In all cases but MNIST-CNN,
the standard deviation of synaptic weights decreases with increased training hardness. Giving us a reasonable indication that increased
latency during inference due to increased training noise might be stemming from decreased weight variance.

Dataset Hardness Model Type Intercept Training Noise
β6 (±SE) β7 (±SE)

SepDots Distribution Overlap CNN 0.028 (< 0.001) 0.065 (0.004)
MNIST Gaussian White Noise MLP −0.003 (< 0.001) 0.014 (< 0.001)
MNIST Gaussian White Noise CNN 0.012 (< 0.001) 0.009 (0.001)
NMNIST Pixel-Flip CNN −0.003 (< 0.001) −0.005 (0.001)
CIFAR-10 Gaussian White Noise CNN-S 0.001 (< 0.001) 0.003 (< 0.001)
CIFAR-10 Gaussian White Noise CNN-L −0.002 (< 0.001) < 0.001 (< 0.001)
CIFAR-10 Gaussian Blur CNN-S 0.001 (< 0.001) < 0.001 (< 0.001)

Table 5. OLS estimates for the effect of training noise on model’s learned synaptic weights. Overall, the coefficient β7 values are near
zero, except for SepDots. The effect of training hardness seems to be minimal on mean weight.

itive, indicating that noisier training regimes systematically
increase TTFS and thus slow inference. Hence, on standard
vision benchmarks, harder training does not accelerate first
spikes but rather delays them, reflecting a trade-off between
robustness and latency. Furthermore, in SepDots, where in-
creasing µ makes samples easier, β1 = −15.5 (SE = 0.01)
also confirms that training on “easier” distributions quick-
ens inference, consistent with our first-hitting-time model
of spiking neuron predictions.

An interesting exception also appears for the MNIST
MLP, which exhibits a slightly negative β1 = −0.30 (SE
< 0.01), suggesting that moderate Gaussian-noise training
speeds up TTFS. We hypothesize this arises from an unex-
pected increase in the mean of synaptic weights under noise
(see β7 for MNIST-MLP in Table 5): whereas statistical
learning theory predicts that adding input noise should reg-
ularize the network, reducing both the mean and variance of
learned weights, the MLP instead showed an upward trend
in weight means. Within our stochastic integrate-and-fire
framework, an increased mean input current corresponds to
a higher effective drift rate, thereby reducing first-hitting
times and yielding faster spikes.

As shown in Table Table 4, the coefficient β5 indicates

that increased training hardness reduces parameter variance
in all cases except the MNIST-CNN. This aligns with the
concept of noise as a regularizer and provides reasonable
evidence as to why inference slows down with increased
training hardness. In contrast, Table Table 5 shows that β7

remains mostly near zero, demonstrating that noise has min-
imal effect on the mean synaptic weight.

Finally, Figure 5 demonstrates that cumulative decision
margin M̃ at the spike time exhibits the inverted-U relation-
ship with latency, very closely mimicking what drift dif-
fusion models predict [18, 35, 36, 38]: TTFS peaks near
zero margin and decreases as |M̃ | grows. This suggests
that in SepDots, margin could be an effective proxy for in-
stantaneous drift rate, and that TTFS SNNs embody classic
evidence-accumulation dynamics when sample difficulty is
measured geometrically.

5. Conclusion

In this work, we have shown that the classical drift-diffusion
model, long used to describe decision times in biological
neurons and detailed spiking-network simulators, also pro-
vides a principled framework for understanding latency-

11

encoded TTFS SNNs in machine-learning settings [44, 46,
47]. Specifically, we hypothesized that (i) harder samples,
whether defined by geometric margin or synthetic Gaus-
sian perturbations, would slow down inference by reduc-
ing the effective drift rate, and (ii) misclassified trials would
exhibit longer first-spike times, mirroring DDM predic-
tions about error-driven RT elongation. Our empirical re-
sults confirm both implications: test-noise coefficients (β2)
are overwhelmingly positive (indicating longer TTFS for
harder inputs) and mean TTFS for incorrect trials is substan-
tially higher than for correct ones across all datasets. Fur-
thermore, the relationship between cumulative margin M̃
and latency (Figure 5) exhibits the characteristic inverted-U
shape of DDM first-passage times, peaking near zero evi-
dence and decaying as |M̃ | grows, thus validating geomet-
ric margin as a drift-rate proxy in TTFS SNNs.

We built a model based on the classical first-hitting-
time theory for static thresholds, most notably the inverse-
Gaussian model, to discrete-time leaky integrate-and-fire
neurons under sample-dependent inputs. Statistical learn-
ing theory predicts that adding Gaussian noise during train-
ing is mathematically equivalent to a ridge penalty, thus
reducing the variance of the learned synaptic weights [2].
Our Monte Carlo simulations then show that a reduction in
weight variance alone systematically increases first-hitting
times, and hence TTFS, across discrete timesteps. More-
over, the empirical training-noise coefficients β1 from our
OLS analyses provide strong evidence for this mechanism,
as increased training-time hardness led to longer inference
latencies in nearly all dataset–model combinations, yield-
ing a clear accuracy-latency trade-off: test-time corruption
degraded accuracy sharply unless matched by comparable
training-time noise, but this matching incured slower infer-
ence. These findings bridge a gap between mathematical
neuroscience and ML-oriented TTFS SNNs, demonstrat-
ing that (i) first-hitting-time analyses are directly applica-
ble to predict SNN latency under discrete timesteps [39],
and (ii) controlling synaptic-weight variance via noise-
equivalent regularization provides a tunable mechanism for
trading off robustness against speed in neuromorphic clas-
sifiers.

References
[1] Aurélien Bellet, Amaury Habrard, and Marc Sebban. A

survey on metric learning for feature vectors and structured
data. 2013. 2

[2] Christopher M Bishop. Neural networks for pattern recogni-
tion. 1995. 2, 12

[3] Rafal Bogacz, Eric Brown, Jeff Moehlis, Philip Holmes, and
Jonathan D. Cohen. The physics of optimal decision mak-
ing: a formal analysis of models of performance in two-
alternative forced-choice tasks. Psychological review, 113:
700–765, 2006. 2, 3, 10

[4] Nicolas Brunel. Dynamics of sparsely connected networks
of excitatory and inhibitory spiking neurons. Journal of com-
putational neuroscience, 8:183–208, 2000. 3

[5] A. N. Burkitt. A review of the integrate-and-fire neuron
model: I. homogeneous synaptic input. Biological Cyber-
netics, 95:1–19, 2006. 3

[6] Alexander Camuto, Xiaoyu Wang, Lingjiong Zhu, Chris
Holmes, Mert Gürbüzbalaban, and Umut Şimşekli. Asym-
metric heavy tails and implicit bias in gaussian noise injec-
tions, 2021. 2

[7] Joseph T. Chang and Yuval Peres. Ladder heights, gaussian
random walks and the riemann zeta function. Annals of Prob-
ability, 25:787–802, 1997. 3

[8] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3):273–297, 1995. 1

[9] Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3):273–297, 1995. 2

[10] Jason K. Eshraghian, Max Ward, Emre O. Neftci, Xinxin
Wang, Gregor Lenz, Girish Dwivedi, Mohammed Ben-
namoun, Doo Seok Jeong, and Wei D. Lu. Training spiking
neural networks using lessons from deep learning. Proceed-
ings of the IEEE, 111(9):1016–1054, 2023. 1, 4

[11] Wei Fang, Zhaofei Yu, Yanqi Chen, Timothee Masquelier,
Tiejun Huang, and Yonghong Tian. Incorporating learnable
membrane time constant to enhance learning of spiking neu-
ral networks. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2641–2651, 2021. 4

[12] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan.
Testing the manifold hypothesis. Journal of the American
Mathematical Society, 29(4):983–1049, 2013. 2

[13] Charles Fefferman, Sergei Ivanov, Matti Lassas, and Hari-
haran Narayanan. Fitting a manifold of large reach to noisy
data. Journal of Topology and Analysis, 2019. 2

[14] William Feller. An Introduction to Probability Theory and
Its Applications. John Wiley & Sons, 1968. 3

[15] J. L. Folks and R. S. Chhikara. The inverse gaussian distribu-
tion and its statistical application—a review. Journal of the
Royal Statistical Society Series B: Statistical Methodology,
40:263–275, 1978. 5

[16] Crispin W. Gardiner. Handbook of Stochastic Methods for
Physics, Chemistry and the Natural Sciences. Springer,
1985. 3

[17] George L. Gerstein and Benoit Mandelbrot. Random walk
models for the spike activity of a single neuron. Biophysical
journal, 4:41–68, 1964. 3

[18] Joshua I. Gold and Michael N. Shadlen. The neural basis
of decision making. Annual Review of Neuroscience, 30(1):
535–574, 2007. 2, 11

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org. 2

[20] Matthias Hein and Markus Maier. Manifold denoising. NIPS
2006: Proceedings of the 19th International Conference
on Neural Information Processing Systems, pages 561–568,
2007. 2

[21] Dan Hendrycks and Thomas G. Dietterich. Benchmarking
neural network robustness to common corruptions and sur-
face variations, 2018. 2

[22] Irina Higgins, Le Chang, Victoria Langston, Demis Hass-
abis, Christopher Summerfield, Doris Tsao, and Matthew

12

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Botvinick. Unsupervised deep learning identifies semantic
disentanglement in single inferotemporal face patch neurons.
Nature Communications 2021 12:1, 12:1–14, 2021. 2

[23] Sophie Jaffard, Giulia Mezzadri, Patricia Reynaud-Bouret,
and Etienne Tanré. Spiking neural models for decision-
making tasks with learning. 2025. 3

[24] Ioannis Karatzas and Steven E. Shreve. Brownian Motion
and Stochastic Calculus. Springer, 1991. 5

[25] Bruce W. Knight. Dynamics of encoding in a population of
neurons. The Journal of general physiology, 59:734–766,
1972. 3

[26] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations
of Machine Learning. MIT Press, 2nd edition, 2018. 2

[27] M. J. Mulder, L. van Maanen, and B. U. Forstmann. Percep-
tual decision neurosciences - a model-based review, 2014. 2,
3

[28] Bernhard Nessler, Michael Pfeiffer, Lars Buesing, and Wolf-
gang Maass. Bayesian computation emerges in generic corti-
cal microcircuits through spike-timing-dependent plasticity.
PLOS Computational Biology, 9:e1003037, 2013. 3

[29] Redmond G. O’Connell, Paul M. Dockree, and Simon P.
Kelly. A supramodal accumulation-to-bound signal that de-
termines perceptual decisions in humans. Nature Neuro-
science, 15, 2012. 2

[30] John Palmer, Alexander C. Huk, and Michael N. Shadlen.
The effect of stimulus strength on the speed and accuracy of
a perceptual decision. Journal of Vision, 5, 2005. 3

[31] Da Costa Gabriel B. Paranhos, Welinton A. Contato,
Tiago S. Nazare, João E. S. Batista Neto, and Moacir Ponti.
An empirical study on the effects of different types of noise
in image classification tasks, 2016. 2

[32] Marios G. Philiastides, Hauke R. Heekeren, and Paul Sajda.
Human scalp potentials reflect a mixture of decision- related
signals during perceptual choices. Journal of Neuroscience,
34, 2014. 2

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. Proceedings of
Machine Learning Research, 139:8748–8763, 2021. 2

[34] Roger Ratcliff. A theory of memory retrieval. Psychological
Review, 85:59–108, 1978. 2, 3

[35] Roger Ratcliff and Gail McKoon. The diffusion decision
model: theory and data for two-choice decision tasks. Neural
computation, 20:873–922, 2008. 2, 3, 10, 11

[36] Roger Ratcliff and Philip L. Smith. A comparison of sequen-
tial sampling models for two-choice reaction time. Psycho-
logical Review, 111:333–367, 2004. 11

[37] Roger Ratcliff and Francis Tuerlinckx. Estimating param-
eters of the diffusion model: Approaches to dealing with
contaminant reaction times and parameter variability. Psy-
chonomic Bulletin and Review, 9, 2002. 3

[38] Roger Ratcliff, Philip L. Smith, and Gail McKoon. Modeling
regularities in response time and accuracy data with the dif-
fusion model. Current directions in psychological science,
24:458, 2015. 3, 11

[39] Arnold J.F. Siegert. On the first passage time probability
problem. Physical Review, 81:617, 1951. 3, 12

[40] David Siegmund. Sequential Analysis. Springer New York,
1985. 3

[41] Michael Reed Smith, Tony Martinez, and Cristophe Giraud-
Carrier. An empirical study of instance hardness, 2010. 1

[42] Jonathan Touboul and Olivier Faugeras. A characterization
of the first hitting time of double integral processes to curved
boundaries. Advances in Applied Probability, 40:501–528,
2008. 3

[43] K. Tumer and J. Ghosh. Estimating the bayes error rate
through classifier combining. In Proceedings of 13th Inter-
national Conference on Pattern Recognition, pages 695–699
vol.2, 1996. 2

[44] Akash Umakantha, Braden A. Purcell, and Thomas J.
Palmeri. Relating a spiking neural network model and the
diffusion model of decision-making. Computational brain
& behavior, 5:279, 2022. 3, 12

[45] Kush R Varshney, Alan S Wilskv, and Edwin Sibley Webster.
Frugal hypothesis testing and classification. 2010. 2

[46] Xiao Jing Wang. Probabilistic decision making by slow re-
verberation in cortical circuits. Neuron, 36:955–968, 2002.
3, 12

[47] Kong Fatt Wong and Xiao Jing Wang. A recurrent network
mechanism of time integration in perceptual decisions. The
Journal of neuroscience : the official journal of the Society
for Neuroscience, 26:1314–1328, 2006. 3, 12

13

A. Performance of Trainings

Figure 11. Accuracy matrix for MNIST-MLP

Figure 12. Accuracy matrix for MNIST-CNN

Figure 11 up to Figure 15 present heatmaps of test accu-
racy (%) as a function of training-time noise (x-axis) and
test-time noise (y-axis) for each dataset–model combina-
tion. Several patterns are apparent:
• MNIST-MLP (Fig. 11). High accuracy (> 90%) is main-

tained across low to moderate noise levels; performance
only degrades when both training and test noise exceed
approximately σ = 0.3. Models trained with nonzero
noise exhibit greater robustness to test-time corruption
than those trained on clean images.

• MNIST-CNN (Fig. 12). The convolutional network
achieves peak accuracies near 93% under clean condi-
tions and shows a more gradual decline under increasing
test noise compared to the MLP, sustaining ≥ 90% accu-
racy up to σ ≈ 0.3 even when trained without noise.

Figure 13. Accuracy matrix for NMNIST-CNN

Figure 14. Accuracy matrix for CIFAR-CNN

• NMNIST-CNN (Fig. 13). Baseline accuracy on event-
based inputs is around 95%. Test-time pixel-flip rates
above 0.02 causes very steep drops in accuracy in the
clean training case, whereas injecting 5–10% flips dur-
ing training shifts the robust region upward, preserving
80–90% accuracy under moderate corruption.

• CIFAR-CNN with Gaussian Noise (Fig. 14). Clean ac-
curacy peaks near 60%. Small amounts of training noise
(σ ≤ 0.05) modestly improve clean and noisy inference,
but heavy noise degrades performance across the board.

• CIFAR-CNN with Gaussian Blur (Fig. 15). Test-time
blur with σ ≥ 1.0 reduces accuracy by 10–15%. Light
blur augmentation during training (σ = 0.25–0.5) par-
tially mitigates this drop, whereas strong blur training
harms both clean and blurred inference.

14

Figure 15. Accuracy matrix for CIFAR-CNN with blur

B. Noise and Synaptic Weights
The line plots in Figure Figure 16 summarize the overall
shift in the first-layer weight distribution as a function of
training noise standard deviation. The left plot shows the
mean deviation from the noiseless baseline, and the right
plot shows the variance. As σ increases further, both met-
rics decrease monotonically, reflecting a global smoothing
or regularization effect as the network learns to ignore high-
frequency fluctuations and focus on robust features.

However, these aggregate statistics obscure important
spatial patterns. The heatmaps in Figure 17 reveal that at
low noise levels (σ = 0.0125–0.05), the model develops
large negative weights on the border pixels (bright red re-
gions), effectively “subtracting” noisy edges instead of just
ignoring them with zero-mean edges. This pixel-wise over-
fitting is invisible in the line plots, which simply report
an average increase in variance. As noise grows beyond
σ ≈ 0.1, the border artifacts fade and the receptive field
becomes smoother and more centrally focused on the digit
shape—precisely the smoothing trend hinted at by the de-
clining variance in Figure 13. Thus, while the line plots
capture the magnitude of regularization, the heatmaps ex-
pose the location and nature of the weight adjustments in-
duced by noise training.

15

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Training Noise Std. Dev.

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

St
an

da
rd

 D
ev

ia
tio

n

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Training Noise Std. Dev.

0.00200

0.00205

0.00210

0.00215

0.00220

0.00225

0.00230

Va
ria

nc
e

Effect of Noise Training on Weights (Layer 1)

Figure 16. Statistics of first-layer weights in MNIST-MLP as a function of training noise standard deviation.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.0125

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.025

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.05

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.075

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.15

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.25

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.3

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.35

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2

4
6

8
10

12
14

16
18

20
22

24
26

= 0.4

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Mean Weight per Pixel

Figure 17. Pixel-wise mean edge weights in MNIST-MLP for various training noise levels.

16

	Introduction
	Related Work
	Sample Difficulty Metrics
	Margin-Based Difficulty
	Gaussian Noise as a Proxy for Difficulty

	Sample Difficulty and SNNs
	Spiking Neuron as a Stochastic Process
	Membrane Potential as a Gaussian Random Walk
	First Hitting Time Models for Time-to-First-Spike

	Approach
	Leaky Integrate-and-Fire Neuron Model
	Latency Encoding of Inputs
	Temporal Mean Squared Error Loss
	Surrogate Gradients and Backpropagation Through Time
	Discrete‐Time Spiking Neuron Model and Variance Effects
	SepDots Synthetic Classification Task
	Problem Definition
	Margin Computation
	Temporal Margin Aggregation

	Experiments
	SepDots
	MNIST, NMNIST, CIFAR-10
	Training and Evaluation Regime

	Results
	Time-to-First-Spike Behavior
	SepDots
	Qualitative Analysis

	Quantitative Analysis of Results
	Effect of Test‐Time Difficulty on TTFS
	Effect of Training‐Time Difficulty on TTFS

	Conclusion
	Performance of Trainings
	Noise and Synaptic Weights

