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Falls are a significant cause of injury among cyclists, highlighting the need for effective fall prevention inter-
ventions. However, ex-ante evaluation of such interventions remains challenging for engineers designing safer
infrastructure and bicycles, as well as for safety professionals developing training programs. This study proposes
the Maximum Allowable Handlebar Disturbance (MAHD) — the largest external handlebar disturbance a cyclist
can recover from — as a performance indicator for evaluating fall prevention interventions. While bicycle
dynamics and cyclist control models have the potential to determine this indicator and simulate interventions,
their application is currently limited by a lack of validation in predicting the MAHD and the narrow range
of interventions that can be incorporated into existing cyclist control models. To address these limitations,
we conducted controlled experiments with 24 participants of varying ages and skill levels, exposing them to
impulse-like handlebar disturbances that resulted in both recoveries and falls. This dataset, which includes
recorded cyclist falls, supports future validation of bicycle dynamics and control models in predicting the
MAHD. In addition, using Bayesian Model Averaging, we identified key cyclist factors influencing the MAHD,
with forward speed and cyclist balancing skill being critical predictors. Incorporating these predictors into
cyclist control models can substantially improve their practical application. These insights were then used to
develop a Bayesian multilevel logistic regression model to predict the MAHD for different types of cyclists.
Our findings improve the potential for bicycle dynamics and control models to proactively evaluate cyclist fall
prevention methods, contributing to safer cycling environments.

1. Introduction

cyclists (de Waard et al., 2010; Vlakveld et al.,, 2015; Dubbeldam
et al., 2017; Andersson et al., 2023; Kircher and Niska, 2024; Andersérs

Falls are a leading cause of serious cycling injuries, accounting
for approximately two-thirds of incidents (Schepers et al., 2015). This
underscores the need for effective fall prevention interventions (Beck
et al., 2016; Schepers et al., 2017; Utriainen et al., 2023). The fall
risk relates to the inherent instability of the bicycle—cyclist system,
especially in emergency situations involving non-linear dynamics. Bal-
ance recovery in such moments requires skill and becomes impossible
beyond certain lean and steering angles. Although the mechanics of bi-
cycle stability have been well studied (Meijaard et al., 2007; Kooijman
et al., 2011; Schwab and Meijaard, 2013; Schwab et al., 2012), evaluat-
ing fall prevention interventions remains methodologically challenging.

Various approaches have been used to evaluate cycling safety in-
terventions, including statistical analysis of crash records (Elvik, 2001;
Hoye, 2018; Hellman and Lindman, 2023; Lubbe et al., 2022), surro-
gate safety indicators from video recordings (Sayed et al., 2013; van
der Horst et al., 2014), field-based and experimental studies involving
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et al., 2024), crash-testing (Niska and Wenall, 2019; Niska et al., 2022;
Peng et al.,, 2012; Fahlstedt et al.,, 2016; Baker et al., 2024), and
traffic simulation models (Twaddle et al., 2014; Schmidt et al., 2023).
However, these methods have limitations in evaluating fall-specific
interventions such as balance training programs (Keppner et al., 2023),
balance-assist technologies (Alizadehsaravi and Moore, 2023), sloped
kerbs (Janssen et al., 2018), and ridable road shoulders (Westerhuis
et al., 2020).

Crash data analyses are limited by underreporting of single-bicycle
crashes, most of which are falls (Schepers et al.,, 2015; Utriainen
et al., 2023). Surrogate indicators, such as Time-To-Collision or Post
Encroachment Time, typically focus on interactions with other road
users, ignoring single bicycle crashes, which account for most serious
injuries (Utriainen et al., 2023). Studies involving cyclists often rely
on indirect and unvalidated indicators, such as perceived safety or
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Fig. 1. Overview of the experimental setup, with: 1-treadmill, 2-bicycle, 3-pull force motor (4), 4-pull rope (4), 5-force sensor (4), 6-Speedgoat real-time controller, 7-intelligent
harness, 8-soft padding (8), 9-disc wheel cover (2), 10-foot strap (2), 11-mechanical rotation limiter, 12-rear-brake handle, 13-helmet, 14-protective gloves (2), 15-motion capture

camera (12), 16-IMU (4), 17-EMG measurement unit (4), 18-folding fence.

lean angles. Crash tests primarily target injury mitigation rather than
fall prevention. Moreover, current traffic simulation models overlook
bicycle balance and lateral dynamics, which are essential for simu-
lating falls. Thus, while falls are the dominant crash mechanism, it
remains difficult to evaluate fall prevention interventions using existing
methods.

To address this gap, we propose a novel, proactive evaluation
approach based on the Maximum Allowable Handlebar Disturbance
(MAHD), defined as the largest lateral disturbance a cyclist can with-
stand before losing balance, and using bicycle dynamics and cyclist
control models to determine the MAHD.

This disturbance-based approach draws inspiration from gait re-
search, where such methods have proven effective for identifying fall
risk and evaluating interventions (Bruijn et al., 2013). A similar concept
is applicable to cycling. However, past cycling studies have only consid-
ered small disturbances using linearised models (Moore, 2012; Schwab
et al., 2013). These studies are insufficient for understanding fall risk
from large disturbances. Cyclists may respond differently depending on
disturbance magnitude because of differences in individual characteris-
tics such as strength or reaction time — a pattern also observed in gait
research (Bruijn et al., 2013).

Bicycle dynamics and control models, grounded in physics and
control theory, offer a cost-effective approach to proactively evaluate a
wide range of fall prevention interventions. However, two key chal-
lenges limit their current use. First, existing models have only been
validated for small disturbances, not actual falls, making it unclear if
they can predict the MAHD. Second, cyclist control models currently
rely on abstract control parameters (Schwab and Meijaard, 2013), re-
stricting their applicability to incorporate interventions targeting cyclist
control. Improving the practicality of these models requires identifying
key cyclist characteristics that influence MAHD.

The long-term goal of this study is to improve the application of
bicycle dynamics and cyclist control models for proactively evaluating
fall prevention interventions. As a step towards this, we conducted
controlled cyclist experiments involving 24 participants exposed to
impulse-like handlebar disturbances, resulting in both recoveries and
falls. These are the first such experiments to safely simulate actual
cycling falls. Using Bayesian Model Averaging and multilevel logis-
tic regression, we identified key cyclist characteristics predicting fall
outcomes and estimated each participant’s MAHD.

Table 1
Summary of participant characteristics by age group, including number of participants,
gender distribution, mean age, length, and weight with standard deviations (S.D.)

Group # Gender Age (y) Length (m) Weight (kg)

Young 12 73,59 28.8 (4.1) 1.82 (0.10) 75.2 (13.4)

Oold 12 73,59 65.2 (4.9) 1.78 (0.09) 78.0 (11.6)
2. Methods

This section describes the experimental data and the development of
a Bayesian multilevel logistic regression model to predict the Maximum
Allowable Handlebar Disturbance (MAHD).

2.1. Experimental data

Controlled cyclist experiments were conducted at Delft University of
Technology, with approval from the Human Research Ethics Committee
(approval no. 1870). Participants cycled on a treadmill while handlebar
disturbances of varying magnitudes were repeatedly applied, resulting
in both balance recoveries and falls. The threshold beyond which
balance could not be recovered was defined as the MAHD.

2.1.1. Participants

Twenty-four participants were recruited, equally divided into two
age groups: 20-35 years and 60+ years. Each group included seven men
and five women. Heights and weights were comparable across groups
and representative of the Dutch population. All participants were in
good health, experienced cyclists, and cycled regularly. Participant
characteristics are summarised in Table 1.

2.1.2. Experimental set-up

The experimental setup (Fig. 1) included a treadmill, a standard
Dutch city bicycle equipped with sensors, a rope-driven perturbation
system to apply handlebar disturbances, twelve motion-capture cam-
eras, four EMG sensors, and an intelligent safety harness. The bicycle’s
forward speed, steer rate, and lean rate were recorded, and the cyclist’s
motion and muscle activity were measured.
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Fig. 2. Disturbance force profile, of the force sensors, for a clockwise handlebar
disturbance of 60 N for 0.3 s, with the desired step-like force profile F,, denoted by
the dashed line. This corresponds to an angular impulse AL of 18 N ms. The red lines
are the measured clockwise forces on the left and right handlebars F, and F,, whereas
the green lines are the counterclockwise forces F, and F;. The ropes generating the
disturbance forces were positioned relative to the cyclist on the treadmill as follows:
rope 1, front right; rope 2, front left; rope 3, rear left; and rope 4, rear right. The
black line is the effective force profile F; = (F, + F, — F, — F;)/2. All ropes have a
controlled pre-tension of 5 N. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Treadmill and bicycle

Participants cycled on a 2.62 m by 1.2 m treadmill and on a Gazelle
Grenoble/Arroyo Elite HVMB e-bike (battery removed, small frame size).
The participants were allowed to adjust saddle and handlebar positions.
All gears were available, and cycling was unassisted.

Disturbances

To determine the MAHD, we applied impulse-like torque distur-
bances (0.3 s) about the steering axis using a closed-loop, rope-driven
perturbation system. Four motor-controlled ropes were attached to
the extended handlebars to generate clockwise or counterclockwise
torques. Disturbance magnitude was defined in terms of force (eas-
ily convertible to angular impulse; see Section 2.1.4). Disturbances
were algorithmically selected and manually triggered when the cyclist
was riding upright, straight ahead, and centred on the treadmill. An
example of a force profile is shown in Fig. 2.

The motors could exert forces up to 200 N with a 44 ms rise time,
surpassing typical human reaction latency (Tan et al., 2020). Forces
were measured via inline Sciame force sensors. Each motor (260 W
Maxon EC-90 Flat, Maxon Group, Switzerland) was controlled by an
ECSON 70/10 motor driver. A Speedgoat real-time controller (1 kHz)
maintained 5 N pretension during undisturbed cycling and controlled
the desired disturbance profile.

The closed-loop force controller used proportional (K,) and integral
(K;) feedback. Gain tuning resulted in K, » values of 1.5 (motors 1 and
3), 2.00 (motor 2), and 1.75 (motor 4), with a uniform K; of 2 (1/s).
The motors were positioned as follows: motor 1 - front right; motor 2
- front left; motor 3 - rear left; motor 4 - rear right.

Safety precautions

To allow for safe falls, participants wore an intelligent harness
(Plooij et al., 2018) suspended from an overhead rail system. It allowed
natural cycling movement while providing immediate support during
falls (Fig. 3). As a backup, the treadmill was surrounded by angled
(45°) padding. During the experiment, the intelligent harness caught
the participant every time.

Accident Analysis and Prevention 221 (2025) 108159

Additional safety measures included a wheel spoke cover and foot
straps to prevent entrapment, foam padding on the frame and handle-
bars, a mechanical stop limiting handlebar rotation to +45°, relocation
of the rear brake lever (centre-mounted) to prevent sudden braking,
mandatory use of helmet and gloves, software limits on motor current
and a Dyneema carbon-reinforced fishing line (minimal elasticity) tied
in series with the ropes to prevent excessive disturbance forces.

These combined precautions ensured that all participants completed
the experiment without injury.

2.1.3. Experimental protocol

All participants provided informed consent prior to participation
and participated voluntarily. The experimental protocol consisted of
two phases: first a familiarisation phase to build trust in the safety
harness and learn to cycle on the treadmill, and second the MAHD
determination phase.

Familiarisation phase

Participants first practised with the harness, initially standing still
and then sitting on the stationary bicycle, to gain confidence that the
harness would safely catch them in case of a fall (Fig. 3). They then
learned to cycle on the treadmill at a constant speed while gradually
releasing a padded support fence, which was folded down once partic-
ipants were cycling steadily upright and straight ahead. The learning
phase was completed when participants could cycle in a controlled
manner for several seconds within 10 cm of the left and right borders
of the treadmill and for one minute along its centreline. The familiari-
sation phase typically took 10 to 15 min. Only one participant required
longer. Full details of this phase are provided in Supplementary Online
Material.

MAHD determination phase

The MAHD was defined as the threshold at which there is a 50%
probability the participant will fall. Participants experienced a se-
ries of impulse-like handlebar disturbances of varying magnitude and
direction while cycling steadily. They were informed prior to the exper-
iment that disturbances would be applied and were instructed to brace
themselves and try their best to recover balance.

The outcomes (fall/recovery) were used to fit a logistic regression
model. To illustrate this concept, Fig. 4 shows the results of a simple
logistic regression analysis applied to example trial data from Fig. 5. In
Section 2.2, we describe the more complex Bayesian multilevel logistic
regression model used in this study to determine the MAHD for each
participant.

An initial MAHD estimate was obtained using a simple staircase
procedure. Subsequently, 20 disturbances were applied per speed con-
dition. The disturbance magnitudes were centred around the estimated
MAHD and adjusted adaptively using a random adaptive staircase
procedure (Doll et al.,, 2014). This procedure defined a set of five
equidistant disturbance forces centred around the moving MAHD esti-
mate, from which each upcoming force was randomly selected. Clock-
wise and counterclockwise disturbances were applied in random or-
der. Between disturbances, participants repositioned themselves to ride
upright, straight ahead, and centred on the treadmill.

Experiments were conducted at 12 km/h initially. Participants could
then opt to repeat the protocol at 6 or 18 km/h in randomised order.
The familiarisation phase and initial staircase procedure were repeated
at each new speed. During the experiments, several participants spon-
taneously noted that a treadmill speed of 12 km/h felt subjectively
comparable to 18 km/h on an open road and a treadmill speed of
18 km/h felt much faster.

Participants could pause or stop the experiment at any time. One
participant stopped early, while all others completed at least one set
of 20 disturbances at 12 km/h. Minor technical interruptions occurred
occasionally and affected trials were repeated as needed. Further details
of the staircase algorithm and speed selection rationale are provided in
the Supplementary Online Material.
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Fig. 3. A snapshot of a situation where the harness caught the participant.
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Fig. 4. Example of a logistic regression model applied to the pull force data from Fig. 5. The white dots mark no fall, the dark dots mark a fall, and the area of the dots
corresponds to the number of pulls at that specific force value. The solid line is the logistic regression line for the probability p of falling as a function of the pull force F. The
pull force for which there is a 50% chance of falling is Fsy, = 56.1 N. This corresponds to an angular impulse of 13 N ms.
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Fig. 5. Example of the random and adaptive staircase procedure to find the MAHD of the pull force F applied at the handlebar for which a cyclist will not fall. White dots mark
no fall, dark dots mark a fall, and grey crosses show potential pull forces from which is chosen at random. The initial search is to locate where the random staircase procedure
should start.
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Table 2
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Independent variables collected and considered for the statistical analysis to identify the key variables

predictive of fall outcomes and the MAHD.

Symbol Description Unit
Trial characteristics
v Forward speed km/h
by Lean angle at the moment the disturbance was applied rad
& Lean rate at the moment the disturbance was applied rad/s
8 Steering angle at the moment the disturbance was applied rad
8y Steer rate at the moment the disturbance was applied rad/s
vy Heading at the moment the disturbance was applied rad
Y00 Lateral position of the ground contact point of the front wheel with mm
Respect to the centre line of the treadmill at the moment the
Disturbance was applied
Disturbance characteristics
AL Angular impulse (magnitude of the applied handlebar disturbance) N ms
j Identification number of disturbance -
d Rotational direction of the disturbance, where 0 is a counterclockwise
Disturbance and 1 a clockwise perturbation -
y Outcome of disturbance, where 0 is a recovery of balance and 1 is a fall -
Task-unrelated participant characteristics
a Age years
m Mass kg
h Length m
g Gender, where 0 is female and 1 is male -
i Identification number of participant -
Task-related participant characteristics
S Balancing control skill performance mm
E Balancing control effort rad?/s
T Reaction time of participant to applied disturbance s

2.1.4. Data collection

This study focuses on identifying cyclist control characteristics that
predict falls and the MAHD. We collected general — task-unrelated —
participant characteristics and task-related characteristics. In addition,
we measured bicycle states as well as trial and disturbance parameters.
A summary of all variables is provided in Table 2, and details are
described below.

Task-unrelated participant characteristics

Age (a), height (h), and gender (g) were self-reported. Mass (m) was
measured prior to the experiment with participants wearing the pro-
tective gear. Finally, each participant was assigned a unique identifier

.

Task-related participant characteristics

Balancing control skill (.S) and effort (E) were determined from a
one-minute undisturbed cycling task at each forward speed. Prior to the
application of disturbances at that speed, participants were instructed
to maintain balance and follow a marked centreline on the treadmill
for one minute.

Balance control skill (S) was defined as the standard deviation of
the lateral front wheel position relative to the treadmill centreline (yy,,),
reconstructed from Qualisys motion capture data (100 Hz) using rigid
body constraints and least-squares methods. Balance control effort (E)
was computed as the integral of squared steer rate (6), derived from
an IMU on the front fender (Delsys Trigno EMG sensor). This data
was collected at 2 kHz and smoothed using a second-order low-pass
Butterworth filter with a cutoff frequency of 20 Hz.

Reaction time (r) was determined for each disturbance from EMG
signals recorded on both biceps and triceps. The raw data was rectified,
normalised, and smoothed using a second-order low-pass Butterworth
filter with a cutoff frequency of 40 Hz. Reaction time was defined as
the first point at which any of the four EMG signals exceeded twice
the standard deviation of the baseline signal during the second before
t = 0. Here, t = 0 was defined as the time after the operator triggered
the disturbance and when any of the four pull force measurements
exceeded twice the baseline standard deviation of the force signal one
second prior.

Trial and disturbance characteristics

Forward speed (v) was set by the treadmill (6, 12, or 18 km/h).
Bicycle states at the moment the disturbance was applied — lean angle
(), lean rate (¢), steering angle (5,), steer rate (5,), heading (y),
and lateral position of the front wheel ground contact point (yg ) —
were reconstructed from motion capture data.

The disturbance magnitude (4L), defined as the angular impulse,
was calculated from the effective force applied by four rope-driven
actuators (measured at 1 kHz), multiplied by half of the handlebar
width (w,, = 0.82 m), disturbance duration (47 = 0.3 s), and corrected
for steer axis tilt (4 = 21.5°), by

AL =(Fy+ F,~ F, - 173)% cos(A)AL. )

Each disturbance was labelled with an identifier (j) and rotational
direction (d; 0 = counterclockwise, 1 = clockwise). Fall outcome (y)
was manually classified per trial (y = 1 if the participant fell, y = 0
otherwise), based on observable events (e.g., a fall, foot placement or
riding off the treadmill).

Synchronisation

EMG and motion capture data were synchronised via Qualisys Track
Manager. Disturbance data from the Speedgoat real-time controller was
synchronised with the Qualisys Track Manager via an analog signal
representing the desired disturbance force.

2.2. Statistical modelling

In analysing the collected experimental data, we start with ex-
ploratory data analysis. We adopt the Bayesian approach to statistics
to facilitate uncertainty quantification and derive a multilevel logistic
regression model. For general background on Bayesian multilevel re-
gression modelling we refer to Gelman et al. (2013). We have centred
and scaled all numerical predictors to have average zero and unit stan-
dard deviation. We use Bayesian Model Averaging to choose relevant
variables. These are chosen to be those variables which are in the
posterior median model (Barbieri and Berger, 2004; Clyde et al., 2011).
We then refine the model based on the chosen set of variables by
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taking into account the multilevel structure of the data. Clearly, such
a structure is present in the data because experiments can be grouped
by participant.

From the obtained multilevel logistic regression model we derive
the posterior distribution of ALsyy, which we define as the angular
impulse for which a participant has chance 50% of falling (i.e. our
definition of the MAHD). In Sections 2.2.1-2.2.3 below, we detail the
methods used in the statistical analysis.

The dataset, R scripts, additional explanatory notes, additional anal-
yses supporting our modelling choices and robustness checks are avail-
able in the Supplementary Online Material.

2.2.1. Bayesian model averaging
In the logistic regression model, we assume

ind
Vij |9,-j ~ Ber(@ij)

with log(6;;/(1 - 6,;)) being modelled by linear combination of the
available predictors. Suppose the coefficient of the kth predictor in
the model is ;. With p predictors, there are 27 possible models. In
the Bayesian approach, we equip each of these models with a prior
probability. If additionally a prior on the coefficients «;, ..., q, is im-
posed, the posterior probability of each of the models can be derived.
In general, the computations can be intensive, and approximation- or
sampling methods may be required. For the logistic regression model
this topic is covered in Clyde et al. (2011). Bayesian Model Averaging
(see for instance Hoeting et al., 1999) encapsulates the idea that there
may be multiple models that explain the data and predictions should
be aggregated over predictions within all models, weighted by their
posterior probabilities. In our setting, however, besides model predic-
tion, we also care about finding those predictors that are relevant,
hoping that some predictors are irrelevant (and therefore need not
be recorded) for the prediction of the outcome. Barbieri and Berger
(2004) advocate the median probability model which is the model that
only includes all predictors which have posterior inclusion probability
exceeding 1/2. It is this approach we follow here, using the R-package
BAS (Clyde, 2022). Specific settings (including the prior specification)
can be found in the online supplementary material. In the search over
models, we impose that angular impulse AL is always included in the
model. Furthermore, we impose that the identification number of the
participant i is treated as one factor, which is either in- or excluded
from the model.

2.2.2. Multilevel logistic regression model

The dataset comprises multiple observations per participant. By
using the grouping variable participant p; we induce a hierarchical
(multi-level) structure as one can expect that some participants simply
perform better than others.

The very simplest model that takes the grouping structure into
account is the following.

yij 1 0; ™ Ber(6;)
A©) = p; @
{6} ~ N, o).

Here A(x) = log(x/(1 —x)) and Ber(d) denote the logit-function
and Bernoulli-distribution respectively where §; denotes the probability
of falling for the ith participant. The bottom line specifies the prior
distribution of the model parameters. One disadvantage of this model
is the data for each participant are analysed separately. A multilevel
model rightfully acknowledges that these participants are part of a
larger population and share common features: data of one participant
may help predict if a similar participant will fall in a particular setting.
This pooling (sharing) of information is a key idea in multilevel models.
Within the Bayesian viewpoint taken here, this can be accomplished by
providing priors on f§ and 0'12].
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Another apparent disadvantage of the model specified in Eq. (2) is
that it only takes participant variation into account. Potentially better

models can be obtained by adding variables. Let x;; = (x,(.jl.),xl(.f.),

. xf;')) denote a vector of n variables. Then we propose the following
model

ind
Vij |9,-j ~ Ber(eij)

AW = Bo+ B+ Y X)) +yAL,
k=1
it 3)
(A} ~ N©.o2)
Bo- Ly ). 7 < N(0,0)
oy ~ half-t;(2.5).

Recall that for this model it is assumed that all numerical predictors
have been centred and scaled and that we imposed that angular impulse
AL is always included in the model. For the results presented, we took
o = 2. We comment on sensitivity to this choice in Section 2.2.4.
We used the brms-library in the R-language (Biirkner, 2017) to get
posterior samples for the model specified in Eq. (3). For o; we used
the default half Student-s prior with 3 degrees of freedom and scale
parameter equal to 2.5, which is denoted by half-t;(2.5).

In addition, to assess the quality of the model, we performed sev-
eral posterior predictive checks. These checks can be found in the
online supplementary material. In addition, for an excellent accessible
exposition on this topic, we refer to Chapter 10 in Lambert (2018).

2.2.3. Maximum allowable handlebar disturbance

We define the MAHD as the angular impulse that induces a 50%
chance of falling and use the model described in Eq. (3) to determine
the MAHD. Note that 50% is an arbitrary value, but other thresholds
can be derived in a similar matter.

The MAHD is the value of the angular impulse for which the
probability of falling is equal to 50% (that is, 1/2), denoted by ALy,
and is uniquely determined by the relation

n
Bo+ B+ 2 @ x® +yALsgy =0
py

from which we derive
Bo+ B+ Xy ex®
S .
The posterior distribution of ALy, is intractable, but can be approxi-
mated using Monte Carlo simulation, since the fitted model provided
us with samples from the posterior distribution of (8. {5;}. {a}. 7).
Hence, the posterior distribution of ALsy, for participant i can be
approximated as follows.

ALsgq (x!, ..., x5) =

4

1. take a posterior sample (;, fy. {a;}.7);
2. compute ALsy, according to Eq. (4);
3. repeat steps (1) and (2) a large number of times.

Here, we see that the Bayesian approach easily allows for uncer-
tainty quantification on ALsyq(x!, ..., xX). Rather than a simple point
estimate, we get its posterior distribution.

For a new participant, not part of the experiment, steps (1) and (2)
need a slight adjustment. In this case, we do not have any samples
from p; in step (2). Instead, we first sample o, from its posterior and
subsequently sample from a Normal distribution with this standard
deviation. As a consequence, there will be much higher uncertainty
on predictions for people who were not among the participants in the
experiment.

To evaluate the model’s predictions for ‘new’ participants, we de-
fined six cyclist types that vary in skill level and forward speed (Table
3). These types were selected to span a range of skill performance §
levels and forward speeds. Specifically, S = 40 and .S = 90 represent
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Fig. 6. Each panel corresponds to a participant, ordered by age. The binary outcome variable ‘falling’ is displayed versus angular impulse. The colouring of points corresponds to

forward speed. This figure shows the substantial influence of angular impulse on the outcome variable.

reader is referred to the web version of this article.)

Table 3

Posterior distribution of parameter ALsy, for six types of cyclists. The name is
representative of the characteristics of that cyclist. For example, s40v12 has a skill
performance S of 40 mm and cycles at a forward speed v of 12 km/h.

Cyclist type S (mm) v (km/h)
s40v12 40 12
s90v12 90 12
s40v6 40 6

s90v6 90 6
s40v18 40 18
s40v25 40 25

the approximate lower and upper bounds observed in the experiments
among participants, while the speeds of 6, 12, and 18 km/h reflect the
tested speed conditions. One extrapolated case at 25 km/h is included
to illustrate the model’s prediction slightly outside the experimental
conditions. The disturbance number j and disturbance direction were
kept constant and were 1 and clockwise, respectively.

2.2.4. Robustness check

To asses robustness of the highest ranked model, we also fitted
a generalised linear model including random effects model using the
1me4-package in R (Bates et al., 2015) and conducted a prior sensitivity
analysis by varying ¢ in the prior to the value 5.

3. Results

A total of 928 observations were collected from 24 participants
across one to three forward speeds (Fig. 6). Six participants completed
the experiment at 12 km/h only, six at 12 and 6 km/h, six at 12 and
18 km/h, and six at all three speeds. For each set of 20 disturbances per
speed, participants experienced at least seven falls and eight recoveries,
confirming that the random staircase procedure targeted a 50% fall
probability. Only one participant dropped out after 10 disturbances.

Reaction time (r) was missing for 17 observations due to occasional
EMG data loss and approximately 150 observations with implausibly
low r were excluded. Skill performance (S) was missing for one par-
ticipant at one forward speed (twenty observations) due to marker
occlusion. Similarly, four observations of the disturbance direction (d)
were missing.

(For interpretation of the references to colour in this figure legend, the

Bayesian Model Averaging results are shown in Figs. 7 and 8. The
most probable model (log posterior odds 1.594) included participant
ID (i), angular impulse (4L), skill performance (.5), forward speed (v),
disturbance ID (), disturbance direction (d), lean angle (¢,), and steer
rate (6y). The second-ranked model differed only by excluding d.

Table 4 summarises the posterior distributions for the highest-
ranked model. None of the credible intervals from all the variables
contains a zero and the Rhat-values indicate no problems with the
underlying Hamiltonian-Monte-Carlo method.

Figs. 9 and 10 display the posterior distributions of participant
effects (f;) and independent variable coefficients. The posterior of each
p; seems to be approximately normally distributed and there is more
variation in g, among younger participants than older participants. The
posterior distributions of the coefficients of the independent variables
also seem to be normally distributed.

Fig. 11 provides a posterior predictive check, indicating reasonable
agreement between observed and predicted fall rates across partici-
pants and speeds.

Figs. 12 and 13 show posterior distributions of ALsy, (MAHD)
for selected participants and hypothetical cyclist profiles, respectively,
across different forward speeds.

The results from the robustness check can be found in the online
supplementary material. The estimates agree very well with the coeffi-
cient estimates obtained within the Bayesian setup. At 5% significance
level all included variables are significant. While we have a preference
for the Bayesian approach, it is reassuring to see that the frequentist
approach gives similar results. We also refitted the Bayesian model
in Eq. (3) with o equal to 5. The results in the latter case are not
much different from those presented. If ¢ is set to 1 we noticed that
the estimates get more shrunken towards zero.

4. Discussion

This study provides the first experimental data on cyclist falls and
the Maximum Allowable Handlebar Disturbance (MAHD), addressing
two key gaps in the application of bicycle dynamics and cyclist control
models: the lack of experimental fall data, and the abstract nature
of existing cyclist control models. Using controlled fall experiments
with 24 participants, we identified key predictors of balance recovery,
determined MAHD values, and demonstrated how such models can
support proactive evaluation of fall prevention interventions.
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Results for model defined in Eq. (3) and ranked highest in the heat map (see Fig. 7). The table shows the posterior mean estimate, the estimated error, the lower and upper 95%

credible interval, the Rhat values, and the bulk and tail ESS.

Variable Coeff. Estimate Est. error 1-95% CI u-95% CI Rhat bulk, g tail g g g
Intercept fo ) 0.47 0.73 -0.97 1.90 1.00 8326 15883
b a; (1/rad) 0.42 0.18 0.08 0.77 1.00 40802 41365
d a () -0.49 0.25 -0.98 —-0.01 1.00 46 800 43224
N a; (1/mm) 0.71 0.22 0.28 1.14 1.00 31057 39087
S a, (s/rad) —0.49 0.15 —0.79 -0.18 1.00 45573 42651
v as (h/km) 1.62 0.18 1.27 1.98 1.00 32852 38786
J as () -0.77 0.15 -1.07 —-0.48 1.00 43014 39719
AL y (1/N ms) 5.26 0.38 4.55 6.03 1.00 32380 36693
sd (Intercept) oy () 3.69 0.63 2.66 5.10 1.00 11420 21438
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Fig. 7. Heat map of models, ordered along the horizontal axis by their log posterior
odds. Black boxes denote that the variable is not in the model. The participant IDs i
are ordered according to age.

Disturbance choice

Cycling disturbances that throw a cyclist off balance can arise from
impacts (e.g., collisions), uneven surfaces, wind gusts, or unintended
steering. While real-world force profiles remain largely unmeasured,
impulse-like disturbances offer a reasonable approximation, as many
such disturbances occur over short timescales. The chosen 0.3-s con-
stant high torque input provided a sudden disturbance within hardware
limits.

Given the coupling of lean and steer dynamics, handlebar dis-
turbances effectively reflect cyclist responses to other impulse-like

steering into the direction of the fall is the most effective recovery strat-
egy across these types of disturbances (Kooijman et al., 2011). Hence,
we believe it is reasonable to assume that if an intervention increases
the MAHD, it will also increase the threshold for other disturbances.

While previous studies have applied disturbances to the rear frame
via lateral pushes or shifts in tire-ground contact points (Schwab et al.,
2013; Bulsink et al., 2016; Dialynas et al., 2023), we chose to apply
an impulse-like torque to the handlebars for three reasons. First, the
handlebars are highly sensitive, requiring minimal torques to induce
falls, thereby improving safety in case of experimental setup malfunc-
tions. Second, rear-frame disturbances demand greater forces than our
system can safely generate (Tan et al., 2020). Third, handlebar torques
more closely simulate real-world disturbances, while displacing the rear
wheel’s ground contact point lacks similarity to typical disturbances
encountered in real-world cycling.

Cyclist fall experiments

This study was the first to simulate actual cyclist falls. Our ex-
perimental setup and protocol proved both practical and safe: only
one of 24 participants dropped out, and no injuries occurred — a
notably low dropout rate compared to similar fall studies in walking or



M.M. Reijne et al. Accident Analysis and Prevention 221 (2025) 108159

34
104
154
174

- -
.
A
By -

- -

| el

03 el

o iy -
18 _ el

134 A age (y)
1o By - 70
y - 60
- - 0
.- .
y - 2
B -
By -
B -
- -
iy -
By -

20+
194
64
144
2
7
94
124

24+

224 A

L
o
L
o

]
o
o
o1+
o

Bi

Fig. 9. Posterior distribution of coefficients g, which represent a baseline for each participant’s cycling performance based on the highest ranked model and described by Eq. (3).
The coefficients are ordered from the lowest to the highest coefficient. The colour indicates the age of the individual participant. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

9 16 19 22 6
AL A e — 0.67 : .
0.54 s s o 8
044 ¢ b4 3 T .
op 4 —_— 0.34
0.24
v —— 5 12 2 15 20
@064 s : ° o o
1 ~ 2054 ° .
s 5 0.44 . . i « * . L]
3 034
Bo _— ?g 0.2 L
g 11 21 1 10 23
G0 4 —— o
0.64
E 0.54 s s (] ° 3 s . type
So i Fo4q g ° H © observed
2 0.3 ® predicted
2024
d 4 —_— %’
4 24 13 7 14 4
]
<06 .
11 - e s ° ° )
| . | | | §o4] s Tl ;
25 0.0 25 5.0 75 B 0a1 ¢
coefficient = 24
. . TR - . . 17 8 18 3 e 0
Fig. 10. Posterior distribution of the coefficients, shown in Table 4, for the highest s
ranked model. 061 s
0.5 L] o o ')
0.44 .
0.34
0.29
standing (Pijnappels et al., 2008; Crenshaw et al., 2018). While some -5 0 14 -15 0 ‘4| 7115( tU d“;_ 8;5 0 14
L. N K . L velocity (standardize
participants initially expressed anxiety, this dissipated after their first
fall. Fig. 11. Posterior predictive check for the highest ranked model: fraction of falling
A key limitation is the use of a treadmill, which may affect en- per total number of disturbances for each participant and each forward speed, both

vironmental validity. This choice prioritised safety and measurement observed in the experimental data and as predicted by the highest ranked model.

accuracy. While straight-ahead cycling dynamics at constant forward
speed are comparable to real-world cycling, sensory inputs differ. Most
participants required several attempts to cycle steadily on the treadmill,
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Fig. 13. Posterior distribution of parameter 4L,, which is equivalent to the MAHD,
for 6 types of cyclists, with characteristics as displayed in Table 3.

and many perceived 12 km/h on the treadmill as equivalent to higher
speeds outdoors. The potential impact of treadmill cycling on cycling
behaviour requires further investigation.

Participants were briefed about the upcoming disturbances. Conse-
quently, the MAHD values reported here may be considered optimistic.
Randomisation of disturbance direction, magnitude, and timing helped
mitigate predictability, yet the sequence number j still influenced
MAHD, with later trials showing higher thresholds.

Finally, the experimental dataset can be used for validating bicycle
dynamics and cyclist control models for large disturbances close to
the fall threshold. The recorded transient responses before, during,
and after disturbances enable direct comparison with model predic-
tions. A validated model would allow safe, cost-effective evaluation of
interventions without requiring further fall experiments.

Discussion on the statistical analysis

We evaluated models with different combinations of variables and
used Bayesian Model Averaging to select the ‘best’ model. The problem
of model selection has received substantial attention in the statis-
tics literature. There are many approaches to this and conclusions
on a ‘best’ model do not necessarily agree among methods. In an
early analysis of the data, model choice was based on expected log
predictive density (elpd) (Vehtari et al., 2017), implemented in the
loo-package (Vehtari et al., 2020). Here one can choose between
leave-one-out or leave-group-out cross-validation to estimate the elpd.
The grouping by participant makes the second option a natural choice
but is computationally very intensive. While it is feasible to compare
a given set of models, to the best of the author’s knowledge the 1oo-
package does not provide a methodology to effectively screen through
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a large set of models. The BAS-package does allow for this, though
it appears not easy to include the multilevel structure into it. For
that reason, we have used the median probability model for variable
selection and subsequently fitted the multilevel model described with
(3). The resulting multilevel model turned out to give better LOO values
than an initial search in the model space based on expert knowledge.

Experimental measurements of the MAHD

We determined the MAHD using a Bayesian multilevel logistic
regression model. For participants in this study, mean MAHD values
ranged from approximately 8 to 16 N ms across forward speeds of 6 to
18 km/h, with a standard deviation of 4 N ms. These results provide
an initial estimate of the maximum handlebar disturbance cyclists can
withstand. We recommend eliminating disturbances exceeding these
values from the road environment, though direct comparison to real-
world disturbances is currently limited by the lack of systematic data
on their force and torque profiles.

Key cyclist characteristics predictive of fall outcome

We identified two key cyclist characteristics influencing MAHD:
forward speed v and balance skill S.

Forward speed v was a strong predictor of MAHD (Fig. 8). Sur-
prisingly, participants tolerated higher disturbances at lower speeds,
contrary to expectations based on increased bicycle instability at low
speeds (Meijaard et al., 2007). This likely reflects treadmill constraints:
at higher speeds, cyclists approached the treadmill edge more rapidly,
requiring faster responses.

Balance skill S also strongly predicted MAHD. We defined S prag-
matically as the cyclist’s ability to maintain a centred trajectory during
undisturbed cycling. While skill to respond to disturbances may differ
from undisturbed performance, our findings underscores the notion
that our definition at least captures an important fraction of the cyclist’s
balancing skill.

Control effort E was not a significant predictor of MAHD, nor was it
correlated with .S (see the Supplementary Online Material). This aligns
with findings from car-following studies, where task performance and
effort show complex relationships (Abbink et al., 2011, 2012; Petermei-
jer et al., 2015). Cyclists, like drivers, may optimise performance to a
level they consider sufficient rather than maximal.

Four other attributes — age, mass, length, and reaction time —
showed limited predictive power (Fig. 8). The lack of an age effect
was unexpected given older cyclists’ overrepresentation in injury statis-
tics (Weijermars et al., 2016; Boele-Vos et al., 2017; Boufous et al.,
2012), but suggests that when faced with a disturbance, older cyclists
can recover as well as younger ones in controlled conditions. The higher
injury rate could also be attributed to elderly being more sensitive to
injury than younger cyclists.

The absence of a mass effect likely reflects our focus on handlebar
disturbances, which primarily influence lateral dynamics independent
of the cyclist mass. Variations in centre of mass height were also small,
potentially explaining the lack of a length effect.

Reaction time (z) was also absent in the highest-ranked model,
but this result is inconclusive. Approximately 150 observations showed
implausibly low 7 values due to noisy EMG signals. These were omitted,
reducing dataset size and potentially biasing the result. Importantly,
this measurement issue affected only the reaction time variable.

Finally, participant ID i emerged as an important predictor, suggest-
ing that other unmeasured cyclist characteristics influence MAHD and
require further investigation.

Other key variables influencing the MAHD prediction

In addition to cyclist characteristics, our study highlighted other
important predictors of MAHD: bicycle state at disturbance onset and
disturbance direction.

Although we aimed to apply disturbances during steady, upright
cycling at the treadmill centre, small variations in lean angle and steer
rate (+3° and +1°/s, see online supplementary material) remained.
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These small variations already significantly affected the MAHD. This
observation aligns with expectations, as disturbances applied in the
same direction as the cyclist was already steering at that time amplifies
the effect.

Finally, the disturbance rotational direction also affected MAHD,
potentially reflecting individual differences in dexterity, although this
characteristic was not explicitly measured.

Practical implications

Our study aims to improve the practical use of bicycle dynamics
and cyclist control models for proactively evaluating fall prevention
interventions. This can provide valuable evidence on the effectiveness
of a broader range of interventions, such as improved bicycle and
infrastructure design and training programs. Such insights can support
engineers, practitioners, and policymakers in selecting and promoting
effective measures.

Beyond modelling, our experimental setup also has direct practical
applications, such as screening individual fall risk or comparing bicy-
cle designs. Further details are provided in the online supplementary
material.

5. Conclusion

This study is the first to provide experimental data on cyclists falls
under controlled disturbances. We conducted the controlled cyclist fall
experiments with 24 participants and developed a Bayesian multilevel
logistic regression model to predict the Maximum Allowable Handlebar
Disturbance (MAHD), reflecting the maximum disturbance from which
a cyclist can recover balance.

This dataset and model provide a valuable tool for validating bicycle
dynamics and cyclist control models in fall scenarios and predicting
MAHD thresholds.

We identified forward speed v and skill performance S — the
ability to maintain balance and follow a centreline — as key predictors
of the MAHD. Notably, age did not emerge as a significant factor.
Incorporating v and S into cyclist control models can improve their
practical application.

Our findings represent a step forward in applying bicycle dynamics
and cyclist control models to proactively evaluate fall prevention in-
terventions such as safer infrastructure or bicycle designs, and training
programs.
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