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Abstract

The urgent need for sustainable intensification of food production, driven by a growing global
population and increasing climate variability, has positioned greenhouse cultivation and ad-
vanced climate control as critical areas of innovation in agriculture. Greenhouses enable pre-
cise environmental management, significantly boosting crop yields. However, realizing these
benefits requires climate and crop models that accurately represent greenhouse dynamics
while remaining interpretable and suitable for real-time control.

This thesis addresses greenhouse climate prediction by developing a hybrid modeling approach
combining the strengths of physics-based system identification with modern machine learning
techniques. In collaboration with Hoogendoorn Growth Management, a hybrid model was
developed utilizing a physics-informed Sparse Identification of Nonlinear Dynamics (SINDy)
method to capture primary mechanisms influencing temperature and humidity, augmented
by an Long Short-Term Memory (LSTM) neural network to account for residual, unmodeled
effects. A key contribution of this research is demonstrating the feasibility of transfer learning,
successfully adapting a model trained initially on simulation data to real-world greenhouse
scenarios, yielding reliable predictions for both air temperature and humidity under opera-
tional conditions.

Empirical results validate that transfer learning effectively bridges simulation and practi-
cal greenhouse environments, underscoring the practicality of data-driven climate models
for industry applications. Integrating the model into an Model Predictive Control (MPC)
framework illustrates its operational viability; the controller accurately tracks temperature
setpoints but experiences challenges maintaining humidity within desired limits. These find-
ings emphasize the necessity for accurate predictive models and underscore the importance
of carefully formulating MPC strategies. Further research into modeling humidity dynamics,
expanding the model’s state space, and refining targeted retraining methodologies is essential
to ensure robust, year-round practical deployment.

Overall, this thesis advances greenhouse climate modeling and control by showcasing how hy-
brid modeling combined with transfer learning can effectively close the gap between simulation-
based development and operational implementation, thereby laying the groundwork for adap-
tive and efficient greenhouse management practices.
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Chapter 1

Introduction

1-1 Motivation

Feeding a global population projected to reach approximately 9.7 billion people by 2050 will
require a substantial increase in food production, estimated at around 70% more compared
to 2010 levels [1]. At current productivity levels, this would lead to a significant expansion
of arable land, potentially resulting in widespread deforestation [2]. Simultaneously, climate
change is intensifying the frequency of extreme weather events, introducing increased climatic
variability and stress on agricultural systems. Severe events such as heatwaves and droughts
consistently have negative impacts on global crop yields [3]. These challenges underline the
urgent need for sustainable intensification of agriculture, producing more food with fewer
resources while increasing resilience to external disruptions.

Controlled environment agriculture, particularly greenhouse cultivation, provides a promising
pathway toward addressing these challenges. Greenhouses allow precise climate control, ef-
fectively decoupling crop growth from external weather conditions and creating stable, highly
productive environments. Compared to conventional open-field farming, greenhouses can sig-
nificantly increase yields per unit area and substantially reduce the use of pesticides and
irrigation water [4]. Thus, greenhouses present an attractive solution for enhancing agricul-
tural productivity sustainably.

Realizing the full potential of greenhouse cultivation hinges on precise and adaptive climate
control. The greenhouse environment is inherently complex, governed by dynamic interac-
tions between external weather conditions, internal crop processes, and various actuators,
including heating, ventilation, shading, irrigation, and CO2 dosing. Automation is therefore
crucial to effectively manage this complexity. In this context, model-based control approaches,
particularly MPC, have become increasingly attractive. MPC utilizes a predictive model to
anticipate future greenhouse climate states, enabling proactive adjustments of actuators and
thus offering improved stability and efficiency compared to reactive control methods.

The accuracy and predictive capability of MPC depend critically on the underlying climate
model. Traditional mechanistic models based on physical principles offer transparency and
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2 Introduction

interpretability but often struggle to fully represent complex real-world dynamics without
extensive calibration. Conversely, purely data-driven methods, such as neural networks, can
flexibly adapt to data but typically lack interpretability and face difficulties in generalizing
beyond their training datasets.

To overcome these limitations, hybrid modeling approaches have gained interest, as they com-
bine the strengths of both mechanistic and data-driven modeling paradigms. One prominent
example is discrepancy modeling, where a physics-based model is augmented by a data-driven
component trained specifically to capture residual errors. This method has proven effective
in balancing interpretability with predictive accuracy, addressing previously unmodeled dy-
namics [5].

This thesis was initiated in collaboration with Hoogendoorn Growth Management, a leading
developer of automation solutions for greenhouse climate control. Hoogendoorn is actively
exploring new advanced control strategies and seeks to leverage extensive historical climate
and crop data from commercial greenhouse operations to improve predictive modeling. Their
primary question was whether historical operational data could be effectively used to enhance
climate model accuracy. To address this, the thesis adopts a hybrid modeling approach
that combines physics-based modeling with data-driven discrepancy learning. This approach
was selected for its potential to make effective use of historical data while ensuring model
interpretability and accuracy.

The main objective of this research is therefore to develop and evaluate a hybrid greenhouse
climate model that effectively leverages available data, maintains interpretability, and provides
accurate predictions suitable for use in real-time predictive control. This objective directly
informs the research questions addressed in this thesis, outlined in the following section.

1-2 Research Questions

The central objective of this thesis is captured in the following main research question:

How can a hybrid modeling framework, combining physics-informed SINDy for
system identification, LSTM-based discrepancy modeling, and transfer learning,
be systematically designed and validated to provide accurate, interpretable, and
generalizable greenhouse climate predictions for use in MPC?

This is further explored through the following sub-questions:

1. How can domain knowledge be effectively incorporated into the candidate library of
SINDy, and how does this inclusion impact the interpretability and physical consistency
of the resulting greenhouse climate model?

2. To what extent does the hybrid SINDy-LSTM discrepancy model improve predictive
accuracy compared to a purely physics-based SINDy approach?

3. How well does the pre-trained hybrid model generalize to unseen real-world greenhouse
data, and how does transfer learning (fine-tuning) affect the prediction accuracy?

J.J.G.B. Giesen Master of Science Thesis



1-3 Thesis Contribution 3

4. How robust is the fine-tuned model to seasonal variation, and can targeted re-training
on recent or season-specific data further improve predictive performance throughout the
year?

5. Is the final hybrid model suitable for integration into an MPC framework for green-
house climate management, and how does it perform in terms of setpoint tracking and
constraint satisfaction in operational scenarios?

1-3 Thesis Contribution

This thesis makes several contributions at the intersection of greenhouse climate modeling,
machine learning, and control systems, addressing both scientific and practical challenges in
sustainable agriculture. The key contributions are as follows:

1. Development of a Hybrid Physics-Informed Modeling Framework This thesis intro-
duces and systematically develops a hybrid modeling framework that couples first-principles-
based modeling with advanced machine learning techniques. By integrating the SINDy algo-
rithm with a data-driven LSTM discrepancy learner, the framework achieves both physical
interpretability and high predictive accuracy. Unlike conventional black-box approaches, the
hybrid model explicitly encodes physical knowledge while remaining flexible enough to capture
unmodeled or nonlinear phenomena present in real greenhouse operations.

2. Physics-Informed Library Construction and Model Sparsity A significant methodologi-
cal contribution is the construction of a physics-informed candidate function library for SINDy,
tailored to the unique thermodynamic and hydrodynamic processes in greenhouse environ-
ments. This ensures that the resulting models remain physically meaningful and interpretable,
facilitating understanding and trust for both researchers and practitioners. The work demon-
strates how domain knowledge can be systematically incorporated into data-driven modeling
pipelines to enhance model sparsity, generalizability, and explanatory power.

3. Systematic Evaluation of Discrepancy Learning for Climate Prediction This thesis
provides an empirical assessment of the discrepancy modeling paradigm, evaluating the hybrid
SINDy-LSTM approach on both simulated and real-world greenhouse datasets. By explicitly
modeling previously unrepresented dynamics, such as crop dynamics and other unmeasured
processes, the hybrid approach demonstrates an enhanced ability to capture critical climate
variables, including air temperature and absolute humidity. Furthermore, the work explores
the robustness of this approach under seasonal and operational variability, providing insight
into practical deployment challenges.

4. Application of Transfer Learning for Domain Adaptation Addressing the challenge of
domain shift between simulation and operational greenhouses, this research applies transfer
learning to adapt the pre-trained hybrid model to real-world conditions. The study demon-
strates how fine-tuning on a limited amount of operational data enables the hybrid model
to generalize and maintain predictive performance, thereby reducing reliance on extensive
retraining or manual recalibration.

Master of Science Thesis J.J.G.B. Giesen



4 Introduction

5. Integration and Validation within Model Predictive Control The thesis extends beyond
model development to practical application, integrating the hybrid climate model into an
MPC framework. It provides a systematic validation of the end-to-end approach, assessing
its suitability for real-time climate management in terms of setpoint tracking, constraint
satisfaction, and control smoothness. This contribution bridges the gap between advanced
modeling and operational deployment.

Taken together, these contributions advances the state of the art in hybrid dynamical modeling
and predictive control for greenhouse environments, offering practical tools and insights for
achieving sustainable, data-driven agricultural intensification.

1-4 Thesis Outline

This thesis is organized to guide the reader from foundational system knowledge, through
methodological innovation, to practical application and final conclusions.

Chapter 2 introduces the operational and physical principles underlying modern greenhouse
cultivation. It provides an overview of the greenhouse climate system, describing the energy
and mass flows, as well as the main control mechanisms used in practice. The Tap greenhouse
climate model is introduced, and the specific model structure and variables used throughout
this thesis are defined.

Chapter 3 presents the theoretical and methodological background for the hybrid modeling
and control framework developed in this work. It reviews the SINDy algorithm for inter-
pretable physical modeling, the use of LSTM neural networks for modeling temporal patterns
in climate data, techniques for transfer learning to enable domain adaptation, and the core
principles of MPC as applied to greenhouse environments.

Chapter 4 describes the data sources and processing steps that are used in this thesis. This
includes the generation of simulation data using the Tap greenhouse model, a discussion of the
available real-world greenhouse datasets, and the procedures used for preprocessing, cleaning,
and structuring the data for subsequent analysis.

Chapter 5 details the development and evaluation of a physics-informed SINDy model for
greenhouse climate prediction. It explains the construction of candidate function libraries
for absolute humidity and air temperature, describes the training and parameter selection
process, and presents an evaluation of the model’s predictive performance, with a particular
focus on generalization across different seasons.

Chapter 6 introduces the hybrid modeling framework that augments the SINDy model with
an LSTM-based discrepancy learner. It outlines the two-stage training approach, the design
of the LSTM network, the selection of hyperparameters, and the transfer learning strategy
that enables adaptation to real-world greenhouse data. Validation results are provided for
both simulated and real datasets, including analyses of multi-step forecasting accuracy, model
sensitivity, and robustness to seasonal changes.

Chapter 7 demonstrates the application of the developed hybrid model within a MPC frame-
work for greenhouse climate management. This chapter formulates the MPC problem, in-
cluding the definition of control objectives, constraints, and cost functions. It then evaluates
the closed-loop performance of the hybrid model in various simulation scenarios, assessing the
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1-4 Thesis Outline 5

system’s ability to track climate setpoints, satisfy operational constraints, and deliver robust
performance across different conditions.

Finally, Chapter 8 summarizes the main findings of the thesis and provides direct answers
to the research questions. It discusses the broader implications of the results, reflects on the
limitations of the current work, and offers recommendations for future research directions in
hybrid modeling and advanced greenhouse control.
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Chapter 2

The Greenhouse System

2-1 Introduction

Greenhouse systems are vital to modern agriculture, providing a controlled environment that
enhances growth conditions for various crops by regulating key factors such as tempera-
ture, humidity, and CO2 levels [6]. This ability to manipulate the internal climate enables
year-round cultivation and improved yields, making greenhouses essential for efficient and
sustainable agricultural practices [7].

Despite the diversity of greenhouse types worldwide, which may differ in shape, covering ma-
terials, and operational subsystems, the fundamental principles governing greenhouse climate
remain consistent [8]. Regardless of these differences, the core mass and energy exchanges, as
well as information flows, are generic and critical to all greenhouse systems. These fluxes in-
volve the transfer of heat, water vapor, and CO2 between the greenhouse and its surroundings,
as well as internally, driven by processes such as ventilation, heating, cooling, and transpira-
tion [9]. Accurate modeling of these exchanges is essential for predicting climate dynamics
and implementing effective control measures.

In addition to these physical exchanges, information flows are integral to greenhouse climate
control. These flows involve real-time data acquisition through sensors monitoring climate
variables, and the subsequent adjustments made by control systems to maintain optimal
growing conditions [7]. Effective information management enables precise regulation, ensuring
that the internal environment supports optimal plant growth.

This chapter provides an overview of the fundamental principles governing greenhouse sys-
tems, describing key components and their functions, and a detailed examination of mass,
energy, and information flows between the greenhouse climate and crops. Particular emphasis
is placed on the general climate system and on the variables and conceptual structure used
in the Tap model [10], which is applied in this thesis for generating simulation data and as a
proxy for a real greenhouse in the control loop.

Master of Science Thesis J.J.G.B. Giesen



8 The Greenhouse System

2-2 Greenhouse Climate Principles

Greenhouse systems rely on an intricate balance of mass, energy, and information fluxes, as
visualized in Figure 2-1. Mass and energy fluxes involve the movement of materials such
as water vapor and CO2, and energy in the form of heat, both within the greenhouse and
between the greenhouse and its surrounding environment [11]. These include fluxes between
equipment and the greenhouse environment, between the greenhouse air and the outdoor
environment, between the internal greenhouse environment and the crop, and between the
crop and the outdoor environment [12]. These transfers are crucial in regulating the internal
climate, impacting factors such as humidity, temperature, and CO2 levels, all of which are
vital for plant growth.

Figure 2-1: Simplified Greenhouse System with the mass and energy fluxes (solid lines) and the
information flows (dashed lines) [12]

Mass and Energy Fluxes The system shows four main types of mass and energy fluxes:

• je_g: Fluxes between the equipment and greenhouse.

• jg_o: Fluxes between the greenhouse air and the outdoor environment.

• jg_c: Fluxes between the greenhouse internal environment and the crop.

• jc_o: Fluxes between the crop and the outdoor environment.

Information Fluxes The system also contains multiple information flows:

• (1) Control inputs such as opening and closing of the heat- and CO2-supply valve.

• (2), (5), (6) States of the greenhouse such as air temperature, CO2 concentration, and
humidity.

• (3) Control input for the window opening and closing.

• (4) External disturbances such as wind speed, radiation flux, and external temperature.

J.J.G.B. Giesen Master of Science Thesis



2-3 The Tap Greenhouse Climate Model 9

• (7), (9) States of the crop such as growth stage and number of fruits and leaves.

• (8) Direct influence of solar radiation on jg_c fluxes such as CO2 and water uptake and
release.

• (10) Discrete decision actions such as picking leaves and pruning.

2-3 The Tap Greenhouse Climate Model

The Tap model is a widely cited, physics-based framework for simulating greenhouse climate
dynamics, providing a quantitative description of the primary energy and mass balances
within the greenhouse environment [10, 13]. The Tap model represents five core state vari-
ables: greenhouse air temperature (Tg), soil temperature (Ts), heating pipe temperature (Tp),
CO2 concentration (Ci), and absolute humidity of the greenhouse air (Vi). The time evolu-
tion of these variables is governed by a system of differential equations, reflecting the physical
processes of heat and mass transfer as well as biological fluxes.
In this thesis, the Tap model plays a three-fold role. First, it is used to generate simulation
data for model development and benchmarking. Second, it serves as the basis for analysis to
inform the construction of the physics-informed candidate library for SINDy. Third, it acts
as the ground-truth system within the MPC framework, providing a realistic reference for
closed-loop control evaluation. This integrated approach ensures that all models and control
strategies are developed, benchmarked, and validated against a physically meaningful and
well-established greenhouse climate description.
The dynamic behavior of each state variable in the Tap model is described by the following set
of differential equations, which together provide a comprehensive representation of greenhouse
climate processes.

Greenhouse Air Temperature (Tg): The dynamics of greenhouse air temperature are de-
scribed by:

Ṫg = 1
Cg

[
(kv + kr)(To − Tg) + α(Tp − Tg) + ks(Ts − Tg) + ηG− λE + λ

1 + ϵ
Mc

]
(2-1)

where Cg denotes the heat capacity of the greenhouse air. The model accounts for several
heat and mass transfer mechanisms: ventilation and cover heat transfer coefficients (kv and
kr) represent heat exchange with the outside air at temperature To; α is the heat transfer
coefficient between the heating pipes and air, with Tp as the heating pipe temperature; ks

is the soil-to-air heat transfer coefficient with Ts as the soil temperature. Additional terms
include the fraction of solar radiation transmitted through the greenhouse cover (ηG), the
latent heat associated with crop transpiration (λE), and condensation at the cover (Mc),
which is modulated by the latent heat factor and cover heat resistance (ϵ).

Heating Pipe Temperature (Tp): The dynamics of heating pipe temperature are described
by:

Ṫp = 1
Vp

[
ϕh(Th − Tp) + Ap

ρwCp
(βG− α(Tp − Tg))

]
(2-2)
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10 The Greenhouse System

Here, Vp is the pipe volume, ϕh is the opening of the heating valve, and Th is the supply water
temperature. The first term quantifies the energy supplied to the pipes, while the second term
describes heat exchange between the pipes and both the greenhouse air and solar radiation,
where Ap is the pipe surface area, ρw is the density of water, Cp is the specific heat of water,
and β is the absorption coefficient for solar energy.

Soil Temperature (Ts): The dynamics of soil temperature are described by:

Ṫs = 1
Cs

[ks(Tg − Ts) + kd(Td − Ts)] (2-3)

In this equation, Cs is the soil heat capacity, ks is the soil-to-air heat transfer coefficient, and
kd is the transfer coefficient with the deep soil layer at temperature Td. This model captures
the exchange of heat between the greenhouse air, upper soil, and deeper soil strata.

Greenhouse CO2 Concentration (Ci): The dynamics of greenhouse air CO2 concentration
are described by:

Ċi =
(
Vg

Ag

)−1

[Φv(Co − Ci) + ϕinj +R− µP ] (2-4)

where Vg/Ag is the average greenhouse height, Φv is the ventilation flux, Co is the outside
CO2 concentration, ϕinj is the injection flux of CO2, R is crop respiration, P is the rate of
photosynthesis, and µ is a stoichiometric constant accounting for CO2 consumption.

Greenhouse Absolute Humidity (Vi): The dynamics of greenhouse absolute humidity are
described by:

V̇i =
(
Vg

Ag

)−1

[E − Φv(Vi − Vo) −Mc] (2-5)

Here, E denotes crop transpiration, Φv is the ventilation flux, Vo is the outside absolute
humidity, and Mc is the condensation mass flow at the cover. This equation captures the
interplay between moisture production, ventilation-driven exchange, and condensation losses.

The most important auxiliary relations for heat and mass transfer coefficients and biological
processes are given below:

• Ventilation heat transfer coefficient: kv = ρacpΦv, where ρa is air density, cp is
specific heat of air, and Φv is the ventilation flux.

• Ventilation flux:
Φv =

(
σϕlee

1 + χϕlee
+ ζ + ξϕwind

)
w + ψ

where ϕlee and ϕwind are vent openings (as a percentage of maximum opening), w is
wind speed, and σ, χ, ζ, ξ, ψ are empirical coefficients.

• Pipe heat transfer: α = ν/τ +
√

|Tg − Tp|, with ν, τ empirical parameters.

• Latent heat: λ = l1 − l2Tg, with l1, l2 coefficients.

J.J.G.B. Giesen Master of Science Thesis



2-4 Climate Model Structure and Variables 11

• Crop transpiration:
E = sηG+ ρacpDggb

s+ γ(1 + gb
g )

where s is the slope of the saturated vapor pressure curve, Dg is the vapor pressure
deficit, gb is leaf boundary conductance, γ is the psychrometric constant, and g is the
leaf conductance.

• Slope of saturated vapor pressure: s = s1T
2
g + s2Tg + s3.

• Vapor pressure deficit: Dg = p∗
g − pg, with p∗

g the saturated vapor pressure and pg

the air vapor pressure.

• Cover condensation mass:

Mc =
{
m1|Tg − Tc|m2(Wg −W ∗

c ) if Wg > W ∗
c

0 otherwise

where Tc is cover temperature, Wg and W ∗
c are humidity ratios.

All parameter definitions, empirical relationships, and auxiliary states are provided in detail
in Tap et al. [10]. This comprehensive structure enables the Tap model to represent the major
thermodynamic and physiological drivers of greenhouse climate.

In compact form, the state, control, and external input vectors for the Tap model are:

xg =


Tg

Tp

Ts

Ci

Vi

 , u =


Th

ϕlee
ϕwind
ϕc

 , v =



To

Td

Co

Vo

w
G


where xg denotes the greenhouse state, u the actuators, and v the exogenous disturbances.

2-4 Climate Model Structure and Variables

While the full Tap model allows for detailed mechanistic studies of greenhouse climate, a
reduced set of variables is typically sufficient for control and operational purposes. In this
thesis, a minimal subset is selected to balance physical representativeness, measurement avail-
ability, and relevance for climate control. For simplicity, and because the primary aim is to
explore the modeling framework itself, the focus is on variables that are routinely measured,
directly controllable, and essential for describing the main climate dynamics.

The variables used in this thesis are:

• Greenhouse air temperature (Tair, state): Temperature of the air inside the green-
house.
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12 The Greenhouse System

• Absolute humidity inside (AHin, state): Mass concentration of water vapor in the
air inside the greenhouse.

• Energy screen position (Escreen, control): Fractional position of the energy screen.

• Windward vent position (V entwind, control): Fractional opening of the vent on
the windward side.

• Leeward vent position (V entlee, control): Fractional opening of the vent on the
leeward side.

• Heating pipe temperature (Tpipe, control): Temperature of the water supplied to
the greenhouse heating pipes.

• Outside air temperature (Tout, exogenous): Temperature of the outside air.

• Outside absolute humidity (AHout, exogenous): Mass concentration of water
vapor in the outside air.

• Global solar radiation (Iglob, exogenous): Total solar radiation incident on the
greenhouse.

• Outside wind speed (Uwind, exogenous): Speed of the wind measured outside the
greenhouse.

Variables such as CO2 concentration, soil temperature, and canopy temperature, while valu-
able for specialized or research-focused applications, are not explicitly included in this thesis,
in order to maintain focus and simplicity. The modeling framework remains extensible should
additional states be needed in future work.

In the original Tap model, the heating pipe temperature Tp is a dynamic state determined by
the heating system, with the heating water temperature Th and valve position ϕh as the main
control inputs. In this thesis, Tpipe is treated directly as a control input, which maintains
physical interpretability and simplifies integration into climate control schemes.
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Chapter 3

Methodology and Background
Information

3-1 Methodology Overview

This thesis employs a hybrid modeling and control framework for greenhouse climate man-
agement, integrating physics-based modeling, data-driven machine learning, and model based
control. The central objective is to develop a control-oriented model that achieves a balance
between physical interpretability, generalizability across different conditions, and predictive
accuracy, and to implement this model within a real-time MPC architecture. The methodol-
ogy consists of four main stages:

1. Physics-Informed Modeling with SINDy

The modeling process begins with the application of the SINDy algorithm to identify inter-
pretable Ordinary Differential Equations (ODEs) governing the evolution of key greenhouse
climate variables, specifically air temperature and absolute humidity. SINDy utilizes a candi-
date function library that incorporates terms based on physical principles relevant to green-
house dynamics, such as solar radiation, ventilation, and heating. The resulting models are
sparse, emphasizing interpretability and physical consistency.

2. Learning Residual Dynamics with LSTM Networks

The SINDy model, while physics-informed, may not capture all system dynamics due to
unmodeled effects, nonlinearities, or temporal dependencies. To address this, a LSTM neural
network is trained on the residuals between observed and SINDy-predicted derivatives. This
LSTM-based discrepancy model learns to represent the remaining dynamics not captured
by the initial physics-based model, thereby improving overall predictive accuracy without
compromising interpretability.
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14 Methodology and Background Information

3. Transfer Learning for Real-World Adaptation

The initial hybrid model (SINDy + LSTM) is trained using data generated from a simulated
greenhouse environment. To adapt the model for use with real-world greenhouses, which
may differ in structure, crop type, or sensor configuration, transfer learning is applied. The
pre-trained LSTM model is fine-tuned using a limited set of measured operational data from
the target greenhouse. This process enables the model to capture site-specific dynamics while
retaining its general predictive capability.

4. Implementation in Model Predictive Control

The fully trained hybrid model is integrated into a MPCframework using the GEKKO opti-
mization library. The MPC computes optimal control actions for variables such as heating
setpoints, vent positions, and screen shading, subject to constraints that reflect system limits
and operational requirements, including temperature and humidity bounds. The objective of
the MPC is to minimize a cost function that balances setpoint tracking accuracy and actuator
usage, enabling effective and efficient climate management in the greenhouse. This approach
supports real-time optimization and practical deployment in a control environment.

This methodology enables the systematic combination of physics-based and data-driven mod-
eling approaches for robust, interpretable, and adaptive greenhouse climate control.

3-2 Background Information on SINDy

The SINDy framework is a data-driven method for discovering parsimonious, interpretable
models of nonlinear dynamical systems directly from time-series data [14]. In many engineer-
ing applications, governing equations are unknown or only partially known, while data are
abundant. SINDy leverages the empirical observation that the dynamics of many physical
systems are sparse in a suitable function space, meaning only a few terms from a large set of
possible candidate functions are actually active in the system dynamics.

Mathematical Formulation

Consider a continuous-time deterministic dynamical system,

dx
dt

= f(x), (3-1)

where x(t) ∈ Rn is the state vector and f : Rn → Rn is an unknown nonlinear function.

SINDy assumes that f(x) can be represented as a sparse linear combination of candidate basis
functions. Define a library of candidate functions e.g.,

Θ(x) = [1, x1, . . . , xn, x
2
1, x1x2, . . . , sin(x1), . . .], (3-2)
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3-2 Background Information on SINDy 15

where the choice of terms is tailored to the problem domain. Evaluated over the data, this
yields Θ(X) ∈ Rm×p, where m is the number of samples and p is the number of candidate
functions.

The dynamical system is then written as

Ẋ = Θ(X)Ξ, (3-3)

where Ẋ are estimated time derivatives, and Ξ ∈ Rp×n is a sparse coefficient matrix (each
column corresponds to one state equation).

SINDy formulates a sparse regression problem for each state xj :

ξj = arg min
ξj

∥Θ(X)ξj − ẋj∥2
2 + λ∥ξj∥1, (3-4)

where λ is a regularization parameter, and ∥ · ∥1 denotes the ℓ1 norm to promote sparsity.
While LASSO is a popular choice, Sequential Thresholded Least Squares (STLSQ) is also
widely used for computational efficiency [14, 15].

STLSQ Optimizer

A critical component of the SINDy framework is the optimizer used to identify the sparse set
of active terms in the candidate library. STLSQ optimizer is widely used due to its simplicity,
efficiency, and robustness to noise.

The STLSQ algorithm operates as follows:

• Initial regression: A standard least-squares regression is first performed to fit all
candidate functions to the target derivatives, solving

min
w

∥y −Xw∥2
2 + α∥w∥2

2, (3-5)

where X is the library of candidate functions, y is the target derivative, w is the
coefficient vector, and α is the L2 regularization parameter.

• Thresholding: After fitting, coefficients with an absolute value below a set threshold
are zeroed, enforcing sparsity in the model.

• Iterative refinement: The regression and thresholding steps are repeated, using only
the active (nonzero) terms, until the set of active terms stabilizes or a convergence
criterion is met.

Key parameters include:

• Threshold: Controls model sparsity by zeroing small coefficients; higher thresholds
produce sparser models.

• Alpha: Regularizes coefficient magnitudes, balancing fit quality and model simplicity.
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16 Methodology and Background Information

Noise Robustness and Practical Considerations

The STLSQ optimizer, by leveraging regularization and iterative thresholding, offers robust-
ness to moderate measurement noise. Additional noise-mitigation strategies in SINDy include
pre-processing or denoising time derivatives before sparse regression. The expressiveness of
the candidate library is also crucial; it must be rich enough to represent the true system,
but not so large as to encourage overfitting or spurious dynamics. Incorporating domain
knowledge into the library improves both interpretability and model identifiability.

SINDy with Control (SINDy-c)

SINDy has been extended to identify systems subject to exogenous inputs and feedback
control, a method known as SINDy-c [15]. In this framework, the dynamical system is
modeled as

dx
dt

= f(x,u), (3-6)

where u(t) denotes the input or control vector. The candidate function library is augmented
to include functions of both states and inputs, denoted Θ(x,u). Typical libraries can include
all monomials in x and u up to a specified degree, as well as cross terms and nonlinearities
reflecting physical intuition or prior knowledge.

Figure 3-1: Schematic workflow for SINDy with control (SINDy-c) [15]. (Left) Data collection:
measurements of states x and control inputs u over time. (Right) Construction of a candidate
library Θ(x,u) containing functions of both state and input. Sparse regression is used to identify
a minimal set of active terms that govern the controlled dynamics.

SINDy-c enables the identification of data-driven models suitable for control design and anal-
ysis in systems where actuation or external forcing plays a significant role.

Model Selection: Individual vs. Joint Optimization of Coupled ODEs

When applying SINDy to systems with multiple coupled state variables, such as greenhouse
temperature and humidity, an important modeling decision is how to formulate the optimiza-
tion problem for identifying the underlying ODEs. Two main strategies are commonly used:
individual optimization and joint optimization [16, 17]. The mathematical formulation and
practical consequences of each approach are outlined below.
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Individual Optimization In individual optimization, each ODE is identified independently
by defining a separate loss function for each state variable. For example:

LTair =
N∑

i=1

[∣∣∣∣dTair
dt

− f1(Tair, AH, . . .)
∣∣∣∣2 + λ1

∣∣∣Tair − T̂air
∣∣∣2] (3-7)

LAH =
N∑

i=1

[∣∣∣∣dAHdt − f2(Tair, AH, . . .)
∣∣∣∣2 + λ2

∣∣∣AH − ÂH
∣∣∣2] (3-8)

Each loss is minimized independently, resulting in two separate optimization problems. This
can be viewed as solving for the parameters ξTair and ξAH in parallel:

ξ∗
Tair = arg min

ξTair
LTair ξ∗

AH = arg min
ξAH

LAH (3-9)

While this approach offers flexibility, it can miss important cross-dependencies. If there is
coupling in the true dynamics (e.g., temperature directly affects humidity and vice versa), op-
timizing independently may ignore or under-represent these effects. As a result, the identified
models might contain spurious or missing coupling terms and may fail to capture feedback
between variables.

Joint Optimization In joint optimization, a single, global loss function is defined over all
state variables, and all ODE parameters are estimated simultaneously:

Ljoint =
N∑

i=1

[ ∣∣∣∣dTair
dt

− f1(Tair, AH, . . .)
∣∣∣∣2 + λ1

∣∣∣Tair − T̂air
∣∣∣2

+
∣∣∣∣dAHdt − f2(Tair, AH, . . .)

∣∣∣∣2 + λ2
∣∣∣AH − ÂH

∣∣∣2 ] (3-10)

All coefficients across all ODEs are then jointly optimized:

ξ∗ = arg min
ξ

Ljoint (3-11)

where ξ contains all the parameters for both ODEs. This shared loss couples the parameter
estimation processes: gradients for one state’s equation may depend on errors in the other,
especially through shared or cross-terms.

Mathematical Implications:

• Parameter coupling: Joint optimization naturally penalizes models that are accurate
for one state but inaccurate for others, resulting in solutions where all variables are fit
together and true physical couplings are more likely to be discovered.

• Optimization: The loss surface in joint optimization is higher-dimensional and the
optimization is performed in a larger parameter space. While this may increase com-
putational cost, it typically results in improved physical consistency.

• Information sharing: Robustness in one state, such as temperature which is often
better measured and modeled, can regularize the fit for noisier or more weakly modeled
states such as humidity, enhancing overall model reliability.
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18 Methodology and Background Information

• Cross-validation: Validation metrics for each state are jointly optimized, helping to
avoid overfitting to one state at the expense of others.

In summary, individual optimization fits each ODE in isolation, which may result in decoupled
or unphysical solutions in systems with coupled dynamics. Joint optimization, by fitting all
ODEs together with a shared set of parameters, enforces that the model as a whole best
explains the data across all variables.
Application in This Thesis: In this thesis, SINDy is used to identify interpretable, physics-
informed models for greenhouse air temperature and absolute humidity. A joint optimization
strategy is employed to ensure the accurate recovery of both individual and coupled dynamics.
Candidate libraries are constructed using physical domain knowledge, and model selection is
based on both interpretability and performance on training and test data. This approach
provides a reliable foundation for subsequent hybrid modeling and control development.

Software Used. PySINDy [18] is an open-source Python package for sparse system identi-
fication, used in this thesis to automatically discover parsimonious dynamical models from
time-series data. The package offers a modular framework where users can define libraries
of candidate nonlinear functions—either built-in (e.g. polynomials, trigonometric terms) or
custom—by composing Python lambda functions and bundling them into CustomLibrary
or GeneralizedLibrary objects. This enables flexible specification of which input variables
appear in each candidate term, allowing domain knowledge to shape the search space and
yielding interpretable, physics-informed models.
To identify governing equations from noisy measurements, PySINDy first applies robust nu-
merical differentiation methods such as SmoothedFiniteDifference or total variation regu-
larization to estimate time derivatives from experimental data. It then formulates a sparse
regression problem, fitting linear combinations of candidate terms to these derivatives us-
ing optimizers such as sequential thresholded least squares (STLSQ), SR3, or constrained
variants, which promote model parsimony by selecting only a small set of nonzero terms,
optionally under explicit coefficient or convexity constraints. Once identified, the govern-
ing equations can be automatically exported in several formats, including symbolic strings,
callable Python functions, and JIT-compiled code, and the package provides tools for model
validation such as prediction accuracy metrics and significance tests. Together, these features
enable transparent, automated discovery of compact dynamical models that can be readily
analyzed and embedded in larger simulation or control frameworks.

3-3 Background Information on LSTM Networks

Articfical Neural Networks (ANNs) are powerful computational models inspired by the hu-
man brain, composed of layers of interconnected neurons that process information and learn
complex relationships from data. The learning process in a standard feedforward neural net-
work consists of a sequence of steps: (1) initializing the model weights, (2) feeding forward
the input data through the network and applying activation functions at each neuron, (3)
computing the loss function based on the difference between the predicted and target outputs,
(4) backpropagating the error through the network, and (5) updating the weights using an
optimization algorithm such as gradient descent [19, 20, 21].
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Figure 3-2: General workflow and architecture of a feedforward neural network, illustrating the
steps of forward propagation, loss calculation, backpropagation, and weight updates. [22]

In training neural networks, a range of hyperparameters must be specified. These include:

• Batch size: The number of samples processed before the model’s parameters are up-
dated. Typical values range from 16 to 256, with 32 being a common default.

• Epochs: The number of times the entire training dataset is passed forward and back-
ward through the network.

• Optimizer: The algorithm used to update the model weights, such as Adam or stan-
dard stochastic gradient descent.

• Loss function: A metric such as the Mean Squared Error (MSE) that the network
attempts to minimize during training.

• Early stopping: A regularization technique that halts training if the validation loss
does not improve for a set number of epochs, helping to prevent overfitting.

• Learning rate scheduling: Methods for adapting the learning rate during training,
for example by reducing it when the validation loss plateaus (e.g., using ReduceLROn-
Plateau).

These hyperparameters strongly influence the convergence speed, model generalization, and
the ability to learn complex data patterns.

This structure enables deep networks to model highly nonlinear functions and fit complex
data, but in a standard feedforward network, each prediction is based solely on the current
input, without memory of previous data points.

Recurrent Neural Networks (RNNs): Adding Memory

Unlike feedforward networks, RNNs are designed to process sequential data by incorporating
cycles within their architecture, allowing information to persist across time steps. In an RNN,
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the hidden state ht at each time step t is computed as a function of both the current input
xt and the previous hidden state ht−1:

ht = ϕ(Whhht−1 +Wxhxt + bh), (3-12)

where ϕ is a nonlinear activation function, and Whh,Wxh, bh are trainable parameters. This
design enables RNNs to capture temporal dependencies and is fundamental for tasks such as
time series forecasting, speech recognition, and natural language processing [23].
However, traditional RNNs are limited in their ability to learn long-term dependencies due
to the problem of vanishing and exploding gradients during backpropagation through time.
In practice, they struggle to retain information over many time steps, especially when the
relevant signals are separated by large gaps in the sequence [24].

LSTM Overcoming RNN Limitations

LSTM networks were introduced by Hochreiter and Schmidhuber [24] to address these lim-
itations and to enable learning of long-range dependencies in sequential data. The LSTM
architecture augments the standard RNN by introducing a memory cell (ct) and a system of
gates that regulate the flow of information. These mechanisms protect important informa-
tion from being overwritten or forgotten too soon, thereby preserving gradients and enabling
effective training over long sequences [23].

LSTM Cell Structure and Information Flow

An LSTM unit consists of three multiplicative gates: forget, input, and output gates. Each
controlling a different aspect of information flow:

• Forget gate (ft): Decides what fraction of the previous cell state to keep.

• Input gate (it): Regulates the incorporation of new information into the cell state.

• Output gate (ot): Controls how much of the internal cell state should be exposed as
output.

At each time step t, the LSTM cell receives the input xt, previous hidden state ht−1, and
previous cell state ct−1, and performs the following computations:

ft = σ(Wf [ht−1, xt] + bf ) (3-13)
it = σ(Wi[ht−1, xt] + bi) (3-14)
c̃t = tanh(Wc[ht−1, xt] + bc) (3-15)
ct = ft ⊙ ct−1 + it ⊙ c̃t (3-16)
ot = σ(Wo[ht−1, xt] + bo) (3-17)
ht = ot ⊙ tanh(ct) (3-18)

Here, σ(·) is the sigmoid activation function, tanh(·) is the hyperbolic tangent, and ⊙ denotes
element-wise multiplication. The cell state ct serves as an internal memory, while ht is the
hidden state passed to the next time step or output layer. This gating mechanism is illustrated
in Figure 3-3, which shows how information is selectively forgotten, updated, and exposed by
the LSTM unit.
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Figure 3-3: LSTM unit architecture. Each unit receives the current input xt, previous hidden
state ht−1, and cell state ct−1, and computes the new cell and hidden states using three gates.
[23]

Training LSTM Networks

Training an LSTM network follows the general process of neural network optimization, as
with feedforward networks: weights are initialized, data is propagated forward through the
network to produce predictions, loss is computed, gradients are backpropagated through time,
and weights are updated via an optimizer such as stochastic gradient descent or its variants
(e.g., Adam, RMSProp) [23]. Due to the presence of multiple gates and the need to process
sequences, LSTMs are typically more computationally intensive and contain more parameters
than traditional RNNs.

Recent research has highlighted the importance of proper weight initialization [25, 26] and
advanced optimization techniques to stabilize and accelerate LSTM training, especially for
long and complex sequences [23].

Application in This Thesis In this thesis, LSTM networks are used as data-driven discrep-
ancy models to complement the physics-informed SINDy framework for greenhouse climate
dynamics. After identifying interpretable ODE models for air temperature and absolute hu-
midity, an LSTM network is trained to capture complex residual patterns, such as temporal
dependencies, delayed responses, and periodic phenomena, that are not fully represented by
the SINDy model. This hybrid approach leverages the LSTM’s ability to learn from sequen-
tial data. The resulting combined model achieves higher predictive accuracy and robustness,
effectively integrating physical domain knowledge with the flexibility of neural network learn-
ing.

Furthermore, to enable effective application in real-world greenhouses where labeled data are
often scarce, this thesis makes use of transfer learning techniques for the LSTM network. By
pretraining the model on large-scale simulated data and then fine-tuning it with limited real-
world measurements, transfer learning ensures that the LSTM model adapts to site-specific
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conditions while retaining generalizable knowledge. The next section provides an overview of
transfer learning and its specific role within the proposed hybrid modeling framework.

Software Used. TensorFlow [27] is a widely used open-source framework for numerical com-
putation and machine learning, here serving as the backend for constructing and training deep
learning models. Leveraging its high-level Keras API, neural network architectures are spec-
ified declaratively by stacking layers such as LSTM units for sequence modeling and dense
layers for nonlinear readout. TensorFlow’s functional API enables models with multiple paral-
lel input streams—such as system states, controls, and disturbances—to be flexibly combined
and processed within a unified network. Model training is supported by a suite of built-in
callbacks, including EarlyStopping to halt training when validation loss ceases to improve,
ReduceLROnPlateau for dynamic adjustment of the learning rate, and ModelCheckpoint for
saving optimal weights during long training runs. The framework also offers comprehensive
support for transfer learning: pre-trained models can be loaded without recompilation, further
fine-tuned at modified learning rates, or re-used as modules in larger architectures.

3-4 Background Information on Transfer Learning

Transfer learning is a paradigm in machine learning where knowledge acquired from training
a model on one task or domain (the source task) is repurposed to improve learning or general-
ization on a different but related task or domain (the target task) [28, 29]. This framework is
particularly advantageous when data in the target domain are scarce or noisy, but substantial
data or computational resources are available for the source domain. Transfer learning enables
the reuse of feature representations, parameter initializations, or learned structures from the
source, with the assumption that there exist commonalities or shared patterns between the
source and target tasks.

A common approach within transfer learning is fine-tuning. In fine-tuning, a neural network
is first pretrained on the source task, often using a large and diverse dataset [30, 31]. The
pretrained model is then further trained (fine-tuned) on the target task using its (usually
smaller) dataset. During this stage, some or all of the model’s parameters are updated to
better accommodate the specific characteristics of the target domain, while retaining the
knowledge encoded during pretraining [28]. Fine-tuning often results in faster convergence,
improved accuracy, and increased robustness.

Application in This Thesis In this thesis, transfer learning is employed to bridge the domain
gap between simulated and real-world greenhouse climate data. Initially, the LSTM discrep-
ancy model is pretrained on abundant simulated data, enabling it to learn generic temporal
dependencies and variability patterns present in the climate dynamics. Subsequently, the
pretrained LSTM model undergoes fine-tuning on a limited set of real-world greenhouse mea-
surements. This two-stage process allows the model to adapt its parameters to unique envi-
ronmental, structural, or operational features specific to the actual greenhouse system, while
retaining generalizable patterns learned from simulation. The use of transfer learning thus
maximizes the value of limited real-world data and enhances the model’s ability to generalize
to previously unseen or rare operational scenarios.
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Figure 3-4: Schematic illustration of the transfer learning process for greenhouse climate model-
ing. An LSTM network is first pretrained on simulated (source) climate data and then fine-tuned
using real-world (target) greenhouse measurements, facilitating adaptation to the specific char-
acteristics of the deployment environment.

3-5 Background Information on MPC

MPC is an advanced, optimization-based control methodology widely used in modern process
industries, robotics, and building automation. Unlike classical feedback controllers, which
compute control actions based solely on the current state, MPC utilizes a dynamic model
of the system to predict future evolution and to optimize a sequence of control inputs over
a receding time horizon [32, 33]. This predictive framework enables MPC to handle Multi-
Input Multi-Output (MIMO) systems with hard constraints on states and actuators, and to
proactively anticipate disturbances or changing setpoints.

Mathematical Formulation

At each control interval k, MPC solves a finite-horizon optimal control problem of the form:

min
{uj|k}Np−1

j=0

Np−1∑
j=0

(
∥yj|k − rj|k∥2

Q + ∥uj|k − uref
j|k∥2

R

)
(3-19)

s.t. xj+1|k = f
(
xj|k, uj|k, dj|k

)
, x0|k = xk (3-20)

xj|k ∈ X, uj|k ∈ U, xNp|k ∈ XN (3-21)

where:

• xk is the current state of the system at time k.
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• uj|k denotes the input at predicted time k + j, computed at time k.

• uref
j|k is the reference control input at prediction step k + j.

• yj|k is the predicted output.

• rj|k is the reference trajectory.

• f(·) is the (possibly nonlinear) system model, mapping state, input, and disturbance to
the next state.

• Q and R are positive semi-definite weighting matrices for tracking and actuation effort.

• X, U , and XN define admissible state, input, and terminal state sets.

After solving the optimization, only the first input u∗
0|k of the optimal control sequence is

applied. At the next step, the state is remeasured, the horizon is shifted forward (receding
horizon principle), and the optimization is repeated. This rolling optimization introduces
closed-loop feedback and allows the controller to adapt to model mismatches and disturbances
in real time.

Figure 3-5: Receding horizon MPC: At each time step, the controller predicts system outputs
and control inputs over a finite horizon, optimizing the sequence to track a reference while
respecting constraints. Only the first input is applied before re-optimizing at the next step.
Adapted from [34].

Advantages and Practical Considerations

MPC provides several advantages over conventional control approaches:

• Constraint handling: MPC incorporates operational and safety constraints on both
states and actuators directly into the control synthesis, ensuring safe and feasible oper-
ation.

• Multivariable control: MPC can simultaneously coordinate multiple, possibly inter-
acting actuators to achieve multiple control objectives.
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• Proactive adjustment: By explicitly forecasting system dynamics and anticipated
disturbances, MPC makes proactive adjustments, improving performance under time-
varying conditions.

• Flexibility: MPC can be readily extended to nonlinear models, time-varying references,
and to integrate external forecasts.

These properties make MPC particularly attractive for applications such as building climate
control, chemical processes, and advanced robotics, where safe, robust, and efficient operation
is critical.

Application in This Thesis In this thesis, MPC serves as the supervisory control strategy
for greenhouse climate management. The developed hybrid model, which combines physics-
based and data-driven elements, is used as the predictive model within the MPC framework.
The controller determines optimal control actions, such as heating, ventilation, and shading,
by solving a constrained optimization problem over a finite prediction horizon. The MPC
framework systematically accounts for operational constraints, setpoint tracking, and actuator
limitations, enabling adaptive and efficient climate regulation under varying conditions.

Software Used. GEKKO [35] is a Python library that translates systems of algebraic and
differential equations into a nonlinear programme, solved with IPOPT or APOPT. Model
entities are declared with high-level objects: manipulated variables (MV) for actuators, con-
trolled variables (CV) for measured states, fixed variables (FV) for parameters, and Param for
any time-series data (e.g. weather forecasts or LSTM corrections). Dynamics are added with
symbolic Equation statements.

For MPC, GEKKO provides two key settings. First, rate-of-change penalties are assigned
through the DCOST attribute: the solver adds ∆u2 to the objective, discouraging large moves
between consecutive control actions. Second, setting IMODE = 6 engages the built-in receding-
horizon routine, which automatically shifts the time grid, updates measurements, re-optimises,
and applies the first control move every cycle. Internally, in MPC mode, GEKKO discretises
differential equations using orthogonal collocation on finite elements, effectively translating
continuous dynamics into algebraic constraints equivalent to implicit Runge–Kutta numeri-
cal integration. The resulting collocated equations and objective are then assembled into a
sparse nonlinear programme solved by IPOPT (selected by SOLVER = 3). GEKKO automat-
ically manages mesh shifting and solver warm-starting with each MPC iteration, enabling a
fully declarative MPC interface where numerical integration, horizon updates, and nonlinear
optimisation are transparently handled by the software.
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Chapter 4

Data Generation and Processing

This chapter details the origin, characteristics, and pre-processing of the datasets used for
modeling and control in this thesis. Both high-fidelity simulation data and real-world green-
house measurements are included to enable robust model development and evaluation.

Simulation data are generated using the Tap greenhouse model, as described in Chapter 2,
coupled with a receding-horizon MPC. Two distinct 90-day simulation datasets, based on
different years of real weather data, serve as training and test sets for model development and
validation. In addition, three real-world datasets from Dutch tomato greenhouses are used
for model transfer and evaluation under realistic conditions.

To ensure data quality and improve model performance, all datasets undergo systematic
outlier detection and smoothing procedures prior to model training. The following sections
describe the data generation process, real-world datasets, and the pre-processing pipeline in
detail.

4-1 Simulation Data Generation

High-fidelity simulation data are generated by integrating the Tap greenhouse simulator [10]
with a receding-horizon MPC. Two 90-day simulation datasets are created: one using April–
June 2024 weather data for model training, and another using April–June 2023 weather data
for testing and validation. At each MPC timestep (∆t = 300 s), the controller optimizes
control actions over a 3-hour prediction horizon (Np = 36), relying on forecasts of outside
temperature, solar radiation, and absolute humidity, with wind speed fixed at 2 m/s. The
first calculated control actions, vent positions, screen position, and heating-pipe temperature,
are then applied to the Tap simulator, which advances with a 30 s internal timestep. All
simulated states and control inputs are logged at a 5-minute resolution.

To ensure idealized data for model development, the Tap simulator is also used as the internal
prediction model within the MPC. This removes any model-plant mismatch, ensuring that
the simulation data have zero setpoint tracking error and complete state observability.
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Setpoints for air temperature are generated using the Radiation–Temperature Ratio (RTR)
strategy, which is inspired by the Plant Empowerment framework [36]. This method links
average daily temperature targets to the cumulative daily sum of solar radiation, reflecting a
key crop physiological relationship:

Tavg = Tbase + RTR ·
∑288

k=1Rk∆t
1000 ,

where Tbase = 18 ◦C and RTR = 2. Daily average setpoints are mapped to full 24-hour
profiles via piecewise-linear day–night transitions, with additional Gaussian smoothing (σ =
30 samples) to ensure gradual setpoint changes. The resulting profiles (illustrated in Figure 4-
1) span 14–28 ◦C, with the lower range applied during periods of low radiation.

Figure 4-1: Smoothed air temperature setpoint profile generated by the RTR strategy over 90
days using the training dataset.

Relative Humidity (RH) is maintained between 60% and 90% through automatic ventila-
tion and screen control. The heating-pipe temperature is constrained to always exceed air
temperature, supporting realistic heat transfer dynamics.

Key assumptions and value ranges for the simulation are as follows:

• Crop processes: Mature tomato crop, with net leaf biomass of approximately 400–
450 g/m2.

• External weather: Realistic Dutch weather data: outside temperature Tout ranges
from 2–32 ◦C, global radiation from 0–1000 W m−2, outside absolute humidity from
5–25 g m−3, and wind speed fixed at 2 m/s.

• Simulated variable ranges:

– Air temperature: Tair ∈ [14, 28] ◦C
– Pipe temperature: Tpipe ∈ [20, 80] ◦C
– Vent/screen position: 0–100%
– Internal absolute humidity: AHin ∈ [5, 20] g m−3

4-2 Real-World Datasets

In addition to simulated data, three real-world datasets are used for external validation and
transfer learning:
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• Hoogendoorn Customer A: May 2024–May 2025

• Hoogendoorn Customer B: May 2024–May 2025

• TomatoWorld: May 2024–May 2025

All datasets originate from commercial Dutch tomato greenhouses and are sampled at a
5-minute resolution. Each dataset covers a full annual cycle, capturing a wide range of
environmental and operational conditions relevant for greenhouse climate modeling.

4-3 Data Processing

Prior to model training, all datasets undergo systematic cleaning and smoothing to improve
robustness and numerical stability, especially for data-driven models such as LSTM networks.

• Outlier removal: For each variable (except wind speed), outliers are identified using
a z-score threshold of 3.0. Outlier values are set to NaN and subsequently imputed
by linear interpolation, minimizing the risk of propagating spurious values through the
modeling pipeline.

• Smoothing: After outlier removal, a Savitzky–Golay filter (window length = 5, poly-
nomial order = 3) is applied to each time series. This technique reduces high-frequency
measurement noise while preserving underlying trends and signal shape.

Both the cleaned and the smoothed series for each variable are retained and made available for
subsequent model training and evaluation. This two-step data processing workflow ensures
that the resulting datasets are suitable for robust model identification, accurate forecasting,
and reliable control synthesis.
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Chapter 5

Physics-Informed SINDy Model

This chapter details the development and validation of a physics-informed SINDy model for
greenhouse climate dynamics, with a focus on the coupled evolution of air temperature and
absolute humidity. The modeling approach leverages both physical insight and data-driven
methods to identify interpretable ODEs suitable for control design.

The modeling procedure follows four main steps:

1. Construction of candidate function libraries for both absolute humidity and air temper-
ature, based on physical insight and domain knowledge.

2. Numerical differentiation of observed state trajectories to obtain target derivatives for
model fitting.

3. Fitting the SINDy model to simulation data using a sparsity-promoting optimizer, with
hyperparameter tuning to balance model accuracy and parsimony.

4. Evaluation of model accuracy and complexity on both training and test data, leading
to the selection of a final model for control-oriented applications.

The structure of this chapter is as follows. Section 5-1 and Section 5-2 describe the construc-
tion of the candidate function libraries for absolute humidity and air temperature, respectively,
each based on an analysis of the dominant physical mechanisms in the greenhouse. Section 5-3
presents the model training procedure, including numerical differentiation, hyperparameter
tuning, and joint optimization of the coupled ODEs. Section 5-4 evaluates the final model’s
performance on both training and independent test datasets, reporting on predictive accuracy,
robustness, and generalization across different seasons.

Residual modeling errors due to unmodeled or complex dynamics are subsequently addressed
in the next chapter using a data-driven discrepancy modeling approach, which augments the
physics-informed model with a neural network correction.
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5-1 Physics-Informed Candidate Library for Absolute Humidity

The first step in constructing the SINDy model is to analyze the underlying physical mecha-
nisms that govern absolute humidity in the greenhouse. The high-fidelity Tap model describes
the dynamics of absolute humidity with an ODE comprising three core processes: ventilation,
transpiration, and condensation. By decomposing the ODE and examining the contribution
of each process using simulation data, physically interpretable candidate functions are selected
for inclusion in the SINDy library.

Figure 5-1: Simulated contributions of ventilation, transpiration, and condensation to the abso-
lute humidity ODE.

Figure 5-1 shows that the contribution of condensation is negligible, this is consistent across
different weather conditions. Condensation is therefore omitted from the candidate library
and any remaining effects are addressed in the discrepancy model described in the following
chapter. However, ventilation and transpiration are significant and further analyzed.

Ventilation: Ventilation drives the exchange of moisture between indoor and outdoor air,
represented in the Tap model as:

Φ(AHout −AHin), (5-1)

where the ventilation rate is a function of window positions and wind speed (dWind):

Φ =
(
a1Ventlee

1 + a2
+ a3 + a4Ventwind

)
dWind. (5-2)

Neglecting the constants, the ventilation rate can be expressed as a weighted sum of the
following terms:

• Ventlee dWind (AHout −AHin)

• Ventwind dWind (AHout −AHin)

• dWind (AHout −AHin)

An additional candidate is the sum of all vents, (Ventlee + Ventwind) dWind (AHout − AHin).
All terms are included as candidate functions and are appropriately scaled to prevent the
optimizer from favoring numerically dominant terms.
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Transpiration: Transpiration is the process by which plants lose water vapor through their
stomata, transferring moisture from the leaf interior into the greenhouse air. In the Tap
model, the transpiration rate is modeled as:

Trans_rate = DLW · (SWP ·RCL+ c1 · VPD)
EEW ·

(
SWP + c2 + c3

LC

) (5-3)

where DLW (dryLeafWeight) is the effective crop leaf area, SWP (saturatedWaterPressure)
is a temperature-dependent function, RCL (radiationCropLevel) quantifies the available radi-
ation at the crop, VPD is the vapor pressure deficit, EEW (evaporationEnergyWater) is the
latent heat of evaporation, and LC (leafConductance) characterizes vapor transfer from leaf to
air. The constants c1, c2, and c3 are determined by physical properties and crop parameters.

Simulation analysis and decomposition (see Figure 5-2) highlight the primary drivers of tran-
spiration. Radiation at crop level and air temperature are especially influential, while VPD
and leaf conductance also play significant roles. The denominator is typically dominated
by saturated water pressure under greenhouse conditions, and the evaporation energy can
be considered approximately constant. As such, these simplifications guide the selection of
physically meaningful candidate functions.

The key physical variables, each with a clear mechanistic interpretation and potential for
inclusion in the candidate library, are:

SWP = 1.8407 · 10−4 T 2
air + 9.7838 · 10−4 Tair + 0.051492 (5-4)

RCL = 0.68 Iglob (1 − 0.3Escreen) (5-5)

SVP = 610.78 exp
( 17.27Tair
Tair + 237.3

)
(5-6)

VP = AHin patm
0.622 +AHin

(5-7)

VPD = SVP − VP (5-8)
LC = 20.3 (1 − 0.44 exp(−2.5 · 10−3 Iglob)) (5-9)

where Tair is in degrees Celsius, Iglob is incoming global radiation, Escreen is the screen
position, AHin is the internal absolute humidity, and patm is atmospheric pressure.

Figure 5-2 shows the relative influence of these components: removing radiation, for example,
greatly reduces predicted transpiration, while omitting leaf conductance or the energy term
has more subtle effects.
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(a) All transpiration terms.

(b) Without evaporation energy.

(c) Without radiation term.

(d) Without leaf conductance.

Figure 5-2: Stepwise decomposition of the transpiration ODE terms: (a) all terms, (b) without
evaporation energy, (c) without radiation, (d) without leaf conductance.
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Based on this physical analysis and the ODE structure, the candidate function library for
absolute humidity includes terms representing:

• Air temperature and its nonlinear effects: Tair, T 2
air

• Radiation effects: Iglob, Iglob (1 − 0.3Escreen), IglobEscreen

• Humidity and temperature interaction: AHin (Tair + 273.15)

• Nonlinearities: exp(c Tair), 1/ exp(c Iglob)

• Vapor pressure deficit: VPD, as constructed above

• Interaction terms: Tair Iglob, T 2
air Iglob, (Tair + T 2

air) Iglob (1 − 0.3Escreen), Tair IglobEscreen

These functions directly represent the main drivers of greenhouse transpiration, as supported
by both model structure and simulation results. This ensures that the SINDy model can
capture the essential effects of environmental control and plant response on absolute humidity
dynamics.

5-2 Physics-Informed Candidate Library for Air Temperature

The development of a physics-informed SINDy model for greenhouse air temperature begins
with a detailed analysis of the physical mechanisms represented in the Tap model. The ODE
for Tair includes contributions from ventilation, heating, convection, soil, radiation, lighting,
evaporation, and condensation. The contribution of each process over a representative three-
day simulation is shown in Figure 5-3.

Figure 5-3: Simulated contributions of all heat transfer mechanisms to the air temperature ODE.
Radiation and evaporation are the largest contributors.

Figure 5-3 highlights that radiation and evaporation are the dominant drivers of air temper-
ature dynamics. To clarify the influence of other processes, these two terms are omitted in
Figure 5-4.

The effect of condensation is again negligible and is therefore omitted from the candidate
library. The soil contribution shows a small, lagged effect that closely follows air temper-
ature and is difficult to measure in practice. Therefore, it is also omitted from the SINDy
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Figure 5-4: Heat transfer mechanisms contributing to air temperature, with radiation and evap-
oration omitted for clarity. Ventilation, convection, and heating have significant, dynamic contri-
butions; soil and condensation play minor roles.

model. Consequently, the candidate library for Tair primarily includes ventilation, heating,
convection, radiation, and evaporation terms.

Ventilation: Ventilation governs heat exchange between indoor and outdoor air. In the Tap
model this is represented as

Q̇vent = Φ ρair cp (Tout − Tin), (5-10)

with the ventilation rate Φ given by (5-2). Disregarding constants, this motivates the following
candidate functions:

• Ventlee dWind (Tout − Tin)

• Ventwind dWind (Tout − Tin)

• dWind (Tout − Tin)

An additional candidate is the sum of all vents, (Ventlee + Ventwind) dWind (Tout − Tin).

Heating: The sensible heat supplied by the pipe network is described by the following ex-
pression, which models heat transfer between the pipe surface and the greenhouse air:

Q̇PipeHeating = αAp(Tpipe − Tair)
Agreenhouse

(5-11)

where

• α is the heat transfer coefficient between the pipe and the air [W m−2K−1],

• Ap is the total surface area of the heating pipes [m2],

• Agreenhouse is the total greenhouse floor area [m2].

Ignoring constants, this yields the candidate function:

Tpipe − Tair.
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Convection: Convective exchange between the interior air and the roof surface is described
by

Q̇conv = hroof (Tout − Tair), (5-12)
with

• hroof the overall heat-transfer coefficient of the roof [W m−2 K−1].

A suitable candidate term is therefore Tout − Tair.

Radiation: Direct solar gain inside the greenhouse (attenuated by roof and, when present,
the screen) is

Q̇rad = Iglob τroof
[
1 − Escreen + Escreen τscr

]
. (5-13)

Relevant candidate functions are

• Iglob

• IglobEscreen

• Iglob (1 − Escreen)

• Iglob
[
1 − 0.3Escreen

]
Evaporation: Latent cooling due to plant transpiration and misting is given by

Q̇evap = −Lv
(
ṁtrans + ṁmist

)
, (5-14)

where

• Lv is the latent heat of vaporisation of water (≈ 2.45 · 106 J kg−1 at 20 °C).

• ṁtrans is the water-vapour mass-flux from crop transpiration [kg s−1].

• ṁmist is the mass-flux from misting systems [kg s−1].

The same candidate functions devised for transpiration in the absolute-humidity library (Sec-
tion 5-1) apply here; misting is neglected in this study.

Based on this analysis, the SINDy candidate library for air temperature is constructed from
physically motivated functions representing each of the dominant heat transfer mechanisms:

• Ventlee dWind (Tout − Tin)

• Ventwind dWind (Tout − Tin)

• Tpipe − Tair

• Tout − Tair

• Iglob · (1 − 0.3 · Escreen)

• Evaporation-related terms (see Section 5-1)

All terms are scaled according to their magnitudes.
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5-3 Model Training

The SINDy framework is used to identify interpretable models from the candidate libraries de-
fined for air temperature and absolute humidity. Model training consists of three main steps:
(1) constructing a design matrix from the selected candidate functions, (2) differentiating
the observed state trajectories to obtain the target derivatives, and (3) solving a regularized
sparse regression problem to identify the governing equations.

Data Preparation and Differentiation: To estimate the time derivatives required for model
fitting, a smoothed finite difference approach is applied to the time series data:

• Smoothing and Differentiation: A Savitzky–Golay filter (window length 15, poly-
nomial order 2) is used to smooth the measured time series and estimate dx

dt .

• Time Vector Alignment: The time vector is constructed to match the sampling
interval of the measurements, ensuring that each derivative estimate corresponds to the
correct input features.

• Feature Construction: Each input variable is mapped to its corresponding candidate
functions, resulting in a design matix.

Training both ODEs jointly requires careful tuning of the optimizer’s hyperparameters to
achieve the best balance between model complexity and predictive accuracy. In particular, the
STLSQ optimizer relies on two critical parameters: the sparsity threshold, which determines
the minimum size for coefficients to be retained, and the regularization parameter α, which
penalizes large coefficients and controls overfitting.

To systematically explore the trade-off between sparsity and accuracy, a grid search was
performed across a logarithmic range of both parameters (thresholds from 10−10 to 100 and
α values from 10−10 to 1010). For each parameter combination, the total model complexity
and the combined R2 score on held-out validation data were recorded.

Figure 5-5: Double heatmap of (left) model complexity (number of nonzero terms) and (right)
model score (R2) as functions of threshold and α in the grid search.
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Figure 5-5 presents a double heatmap, with model complexity (number of nonzero terms)
shown on the left and model score (R2) on the right, as functions of threshold and α. In
the lower-left region (low threshold, low α), the model includes nearly all candidate terms
and achieves the highest fit, but risks overfitting and reduced interpretability. Conversely,
the upper-right region (high threshold, high α) yields highly sparse, sometimes trivial models
with poor accuracy. Between these extremes, a clear diagonal transition zone emerges where
sparsity and predictive power are balanced: only the most informative terms are retained,
while redundant or noisy terms are set to zero.

The trade-off between sparsity and accuracy is further illustrated in Figure 5-6, which shows
the R2 score as a function of model complexity for all models found during the grid search.
Each point corresponds to a model trained with a unique set of parameter values, and the blue
trend line highlights the region where the highest accuracy is achieved for a given complexity.
Although the maximum combined model score is approximately 0.7, achieved with a model
complexity of 14 nonzero terms, the final model selected has a lower complexity of 11 and a
model score of 0.56.

This choice reflects a critical trade-off, while including all candidate terms can maximize R2

on validation data, it also produces an overparameterized model that lacks physical inter-
pretability and may encode spurious relationships. Such models are unsuitable for control
frameworks, as excess terms can introduce nonphysical behavior and obscure the control
law. By selecting the model with a complexity of 11, the resulting ODEs retain only the
relevant physical processes, reflect the expected model structure, and ensure interpretability,
robustness, and suitability for use in model-based control. This systematic tuning procedure
ensures that the final SINDy models are not only accurate and generalizable, but also remain
parsimonious and physically meaningful.

Figure 5-6: Trade-off between model complexity and predictive accuracy. Each point corresponds
to a unique combination of α and threshold, and the blue line represents the trend line.
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The final SINDy model selected for greenhouse climate dynamics is given by:

dTair
dt

= 0.76 Ventlee dWind (Tout − Tair) + 0.32 Ventwind dWind (Tout − Tair)

+ 0.10 (Tpipe − Tair) + 0.65 (Tout − Tair) + 0.93 Ventwind (AHout −AHin) dWind

+ 2.87 Iglob
(
1 − 0.3 (Escreen/100)

)
,

dAHin
dt

= −0.25 Ventlee dWind (Tout − Tair) + 0.06 Ventwind dWind (Tout − Tair)

+ 2.75 Ventlee (AHout −AHin) dWind + 1.79 Ventwind (AHout −AHin) dWind

+ 3.80 Iglob
(
1 − 0.3 (Escreen/100)

)
.

The final model structure reveals several key features of greenhouse climate dynamics. The
dominant components in both ODEs are associated with ventilation and solar radiation, which
is consistent with established physical understanding for a ventilated greenhouse. Ventilation
terms-, both temperature- and humidity-driven-, are present in both the air temperature and
absolute humidity equations, illustrating the coupled nature of heat and moisture exchange
through air movement. The consistent inclusion of global radiation terms in both equations
highlights the role of solar energy as a primary driver of temperature and humidity dynamics.

No direct transpiration terms are present in the final model, despite their theoretical relevance.
This outcome indicates that transpiration effects may be indirectly represented through in-
teractions with radiation and ventilation, or that these effects are not sufficiently distinct in
the available data to be isolated by the sparse identification process. This finding reflects
both the strengths and the limitations of the SINDy approach: while it yields interpretable
and physically consistent models, processes that are less directly observable or are highly
correlated with other mechanisms may be underrepresented.

Overall, the identified ODEs retain only the most influential mechanisms for heat and moisture
exchange, with ventilation emerging as the primary coupling pathway between temperature
and humidity. This result demonstrates the utility of a physics-informed candidate library,
joint optimization, and systematic model selection in obtaining parsimonious, robust, and
interpretable models. The resulting model is suitable for use in model-based control and
further analysis of greenhouse climate systems.

5-4 Model Evaluation through Simulation

With the final SINDy model identified, we evaluate its predictive performance and suitability
for greenhouse climate control. Model evaluation is carried out using the simulation data,
providing an assessment of both in-sample fit and generalizability to new conditions.

Evaluation Metrics for Control-Oriented Models

To comprehensively assess model quality, we employ four key performance metrics. These
will be used to evaluate all simulations in this report:
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• Mean Squared Error (MSE): MSE quantifies the average of the squared differences
between model predictions and observed values. A lower MSE indicates a more accurate
model, penalizing larger errors more heavily.

• Root Mean Squared Error (RMSE): The Root Mean Squared Error provides the
square root of MSE, giving an interpretable, scale-dependent summary of prediction
error in the original units of measurement. For control applications, a low RMSE
ensures that the model can track reference trajectories closely, minimizing cumulative
regulation error.

• Maximum Absolute Error (MAE): The Mean Absolute Error measures the average
absolute difference between model predictions and observations. MAE is less sensitive
to outliers than MSE and RMSE, providing an intuitive measure of typical prediction
error.

• Coefficient of Determination (R2): This metric quantifies the proportion of variance
in the observed data explained by the model. A high R2 indicates that the model
captures the dominant dynamics of the system, which is essential for robust long-term
prediction and feedback control.

By combining these metrics, we not only assess overall fit and accuracy, but also ensure
that the model’s typical and worst-case performance remain within acceptable bounds—an
essential requirement for real-world greenhouse operation and closed-loop control.

5-4-1 Results on Training and Test Data

The predictive performance of the final SINDy model was evaluated on both the training
dataset (2024) and a temporally separated test set (2023), with results summarized in Fig-
ures 5-7 and 5-8. The model was re-initialized every 24 hours during simulation, allowing for a
realistic assessment of how prediction errors evolve over a typical operational prediction hori-
zon. This approach is consistent with practical MPC deployment and enables identification
of any tendencies toward error accumulation or drift.

On the training data, the model achieved a high degree of fit for both greenhouse air tem-
perature and absolute humidity. For air temperature, the R2 score was 0.9601, with a RMSE
of 0.7630 ◦C and a MAE of 2.90 ◦C (Figure 5-7a). Absolute humidity predictions were also
robust, with R2 = 0.8679, RMSE = 0.9583 g m−3, and a MAE of 3.90 g m−3 (Figure 5-7b).
These results confirm that the SINDy model, constructed with a physics-informed library,
captures the dominant dynamics of the greenhouse climate on the training set.

On the test set, the SINDy model maintained strong predictive ability, with an R2 of 0.9421
for air temperature and an RMSE of 0.9101 ◦C (Figure 5-8a). The MAE remained below 3 ◦C,
demonstrating that the model does not accumulate substantial drift over a typical prediction
horizon. For absolute humidity, the model achieved R2 = 0.8771 and RMSE = 0.9778 g m−3

(Figure 5-8b), only modestly reduced from the training performance.

Overall, these results show that the identified SINDy model provides a balance between
physical interpretability and predictive accuracy. The error metrics remain within the range
required for practical, real-time predictive control applications. Furthermore, no significant
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(a) MSE = 0.5822, RMSE = 0.7630, MAE = 2.9000, R2 = 0.9601

(b) MSE = 0.9183, RMSE = 0.9583, MAE = 3.8959, R2 = 0.8679

Figure 5-7: Performance of the SINDy models on training data for greenhouse air temperature
(top) and absolute humidity (bottom).

error accumulation or outlier deviations are observed for either air temperature or absolute
humidity, supporting the robustness and reliability of the SINDy modeling approach when
informed by physical knowledge and systematic model selection.

5-4-2 Generalization to Different Seasons

To further assess the robustness and versatility of the SINDy model, its predictive perfor-
mance was evaluated on test data representing distinct seasonal conditions. Specifically, the
months of February (winter), August (summer), and November (autumn). Figure 5-9 presents
model predictions for both air temperature and absolute humidity across these months, while
Table 5-1 summarizes the corresponding quantitative metrics.

The results indicate that the SINDy model maintains high predictive accuracy for air tem-
perature across different seasons. R2 values are consistently above 0.94, with RMSE values
ranging from 0.66 to 0.91. Even in February, which represents a colder winter period, the
model retains a strong fit with R2 = 0.96 and RMSE = 0.79. Maximum absolute errors for
air temperature are also within typical control boundaries for greenhouse applications.

Performance for absolute humidity displays more seasonal variability. The model achieves its
highest accuracy during August, with R2 = 0.94 and RMSE = 0.67, while lower R2 values
are observed during February (R2 = 0.86) and November (R2 = 0.85). The increase in
prediction error during these months may be attributed to more complex humidity dynamics
under low external absolute humidity and temperature, or to processes not fully captured
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(a) MSE = 0.8283, RMSE = 0.9101, MAE = 2.8388, R2 = 0.9421

(b) MSE = 0.9561, RMSE = 0.9778, MAE = 3.6459, R2 = 0.8771

Figure 5-8: Performance of the SINDy models on testing data for greenhouse air temperature
(top) and absolute humidity (bottom).

by the SINDy model. However, MAE values for absolute humidity remain below 4 for all
months, indicating that the largest individual errors are bounded within a range that is likely
acceptable for operational purposes.

Overall, these results demonstrate that the SINDy model is capable of robust year-round
prediction for greenhouse air temperature and provides generally reliable estimates for ab-
solute humidity. Some loss of accuracy is observed for humidity under challenging seasonal
regimes, highlighting opportunities for further improvement, such as the inclusion of dis-
crepancy modeling or adaptive retraining protocols. Nonetheless, the strong cross-seasonal
performance supports the practical suitability of the identified SINDy model as the foundation
for data-driven, interpretable, and robust greenhouse climate control.

Table 5-1: Performance metrics for the SINDy model on test datasets from different months.
Metrics are shown for both air temperature and absolute humidity.

Month Air Temperature Absolute Humidity

MSE RMSE MAE R2 MSE RMSE MAE R2

February 0.5887 0.7673 2.3427 0.9459 1.4827 1.2177 2.8891 0.7309
May 0.8283 0.9101 2.8388 0.9421 0.9561 0.9778 3.6459 0.8771
August 0.5052 0.7108 1.7289 0.9595 0.4464 0.6681 3.2876 0.9432
November 0.4322 0.6574 1.6266 0.9597 0.9004 0.9489 2.6942 0.8542
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Chapter 6

Discrepancy Model

While the physics-informed SINDy model effectively captures the dominant greenhouse cli-
mate dynamics, systematic discrepancies between model predictions and observed data re-
main. These residual errors often stem from complex or unmodeled physical processes, mea-
surement noise, or greenhouse-specific influences not fully represented in the model. To
address these limitations, this chapter employs a data-driven discrepancy modeling approach
based on a LSTM network. The discrepancy model serves two key functions: it corrects the
dynamic residual errors of the physics-based model and enables adaptation to new green-
houses through transfer learning. By leveraging both simulation and real-world data, the
combined approach aims to improve prediction accuracy and generalization across diverse
greenhouse conditions.

The structure of this chapter is as follows. Section 6-1 introduces the two-stage LSTM-based
discrepancy modeling framework, describing both the pre-training on simulation data and the
fine-tuning on real greenhouse data. Section 6-2 details the design and training procedure
for the LSTM model. Section 6-3 presents validation results on simulated data, including
sensitivity analysis, multi-step forecasting, and generalization to real greenhouse datasets.
Section 6-5 explores targeted transfer learning for real-world adaptation, and assesses the
impact of seasonal and window-based retraining strategies.

6-1 Two-Stage LSTM Training for Discrepancy Modeling

The core of the discrepancy modeling approach is a two-stage LSTM framework designed
to supplement the physics-informed SINDy model. Rather than modeling the complete dy-
namics, the LSTM network is trained to predict the residual errors, defined as the difference
between the derivatives predicted by the SINDy model and those observed in the data. The
training procedure begins with pre-training on simulated data to capture general dynamic pat-
terns, followed by fine-tuning on a limited set of real greenhouse measurements. This staged
process enables the model to generalize to new environments while maintaining adaptability
to specific greenhouse conditions.
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46 Discrepancy Model

Pre-training on Simulated Greenhouse Data

In the first stage, the LSTM discrepancy model is trained on the same simulation dataset from
2024 as the SINDy model, with part of the 2023 dataset used for validation. This allows the
model to learn the unmodeled dynamics of the system by detecting discrepancies between the
physics-based predictions and the true values generated by the simulator. The objective of
this stage is to capture the general dynamic residuals that the SINDy model fails to explain.

Fine-tuning with Real Greenhouse Data

In the second stage, the pre-trained LSTM model is further fine-tuned using a small set of
historical data from the target greenhouse. This transfer learning step allows the model to
specialize to the specific characteristics, processes, and climate control strategies of individual
greenhouses, ensuring robust and accurate predictions in practical applications.

6-2 Discrepancy Model Design and Training Procedure

Building on the two-stage training framework, this section details the design and implementa-
tion of the LSTM-based discrepancy model, including network architecture selection, training
settings, and the transfer learning strategy.

The dataset used for pre-training is the 2024 simulation dataset as used for training the
SINDy model. The 2023 simulation dataset is split into a validation set, which is two-thirds
of the dataset, and a testing set which is the other one-third. Fine-tuning is subsequently
performed on real-world datasets collected from target greenhouses as described in Section
4-2.

The following subsections describe the network architecture and hyperparameter selection, as
well as the training settings and procedures adopted for both the pre-training and fine-tuning
stages.

6-2-1 LSTM Network Architecture and Hyperparameter Selection

The LSTM network was chosen for the discrepancy model because of its demonstrated ability
to capture temporal dependencies in sequential greenhouse data. To determine the most
effective architecture, we conducted a grid search over several architectural hyperparameters,
including the number and type of layers, the number of units per layer, and the use of dropout
for regularization.

The following factors were systematically varied during grid search:

• Layer composition: Networks with both dense (1–3 layers) and LSTM (1–3 layers)
layers were evaluated. Dense layers capture instantaneous relationships, while LSTM
layers are designed for temporal features.

• Number of layers: Architectures with 1 to 3 dense layers and 1 to 3 LSTM layers
were considered to capture complex dynamics.
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6-3 Validation on Simulated Data 47

• Units per layer: Each layer was assigned 16, 32, 64, 128, or 256 units to balance
underfitting and overfitting.

• Dropout rates: Dropout rates of 0.1 and 0.2 were applied to reduce overfitting.

The best-performing LSTM network has the following structure:

• First LSTM layer: 64 units, 0.2 dropout, returns sequences.

• Second LSTM layer: 128 units, 0.1 dropout, does not return sequences.

• Dense layer: 32 nodes, ReLU activation.

• Output layer: 2 nodes (predicting Tair and AH).

6-2-2 Training Settings and Transfer Learning Strategy

Training was performed using a batch size of 32 and a maximum of 50 epochs. The Adam
optimizer was used, and a MSE loss function. Early stopping was implemented with a patience
of 5 epochs. Learning rate scheduling was handled using ReduceLROnPlateau when the
validation loss plateaued.

After initial training on simulated data, the pre-trained LSTM model was adapted to each
real greenhouse using transfer learning. The model’s learned weights served as initialization;
fine-tuning was performed with a reduced learning rate of 1×10−4 and a reduced epoch count
of 30. Model checkpointing was used to retain the best validation performance.

The transfer learning process consisted of loading the pre-trained simulation model, fine-
tuning on real greenhouse data with the reduced learning rate, and saving the model check-
point with the lowest validation loss.

6-3 Validation on Simulated Data

After training the discrepancy model, the combined SINDy and discrepancy model is tested on
the simulation testing dataset. A sensitivity analysis follows to assess the impact of different
parameters on the model’s predictions, helping to identify key factors influencing its behavior.
The model’s response to varying simulation horizons is also analyzed, providing insights into
its performance over short-term and long-term periods. Finally, the model is tested on real-
world greenhouse data to evaluate its generalization capabilities. This step helps assess how
well the model can predict greenhouse conditions without being trained specifically on each
greenhouse’s data.

6-3-1 Model Performance on Simulated Test Sets

The discrepancy model’s accuracy is evaluated by running simulations on the testing dataset
and analysing the performance metrics.
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48 Discrepancy Model

(a) Tair: MSE=0.2582, RMSE=0.5081, MAE=1.8380, R2=0.9819

(b) AH: MSE=0.8147, RMSE=0.9026, MAE=3.8605, R2=0.8954

Figure 6-1: Tair and AH predictions on the testing dataset from May 2023.

The metrics, MSE, RMSE, and MAE, show significant reductions for the simulation of Tair.
Specifically, the MSE decreased from 0.8283 to 0.3062, the RMSE from 0.9101 to 0.5533,
and the MAE from 2.8388 to 1.7516, with the R2 increasing from 0.9421 to 0.9786. These
results indicate that the discrepancy model effectively enhances the predictive accuracy for
Tair, capturing system dynamics that the SINDy model failed to model sufficiently.

For AH, although the MAE slightly increased from 3.6459 to 3.8605, the MSE and RMSE
improved (MSE from 0.9561 to 0.8147, RMSE from 0.9778 to 0.9026), and the R2 score
improved from 0.8771 to 0.8954, indicating a better fit to the data. This suggests that while
there was a slight increase in the MAE, the model still achieved better overall predictive
performance, especially in terms of the explained variance (R2).

6-3-2 Sensitivity Analysis

A sensitivity analysis was performed to evaluate the model’s response to changes in key
environmental and system parameters. The analysis consisted of a series of scenarios designed
to test model behavior under conditions relevant for greenhouse climate control. The following
paragraphs describe the observed outcomes for each scenario.

Decrease in Radiation (Cloud Cover)

In this scenario, the radiation is reduced between 12:00 and 13:00, simulating cloud cover.
A reduction in air temperature is observed, along with a corresponding decrease in absolute
humidity. These results are consistent with the expected effects of reduced solar heating
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(a) One day simulation Tair

(b) One day simulation AH

Figure 6-2: One day simulation showing the base case for the sensitivity analysis.

and lower transpiration. After the radiation returns to normal, the model output for both
air temperature and absolute humidity recovers and returns to the original trajectory. The
results are illustrated in Figure 6-3.

(a) Sensitivity to Radiation: Tair

(b) Sensitivity to Radiation: AH

Figure 6-3: Sensitivity to Radiation: Effect on Air Temperature and Absolute Humidity.

Increase in Windspeed (Wind Blows)

In this the wind speed is increased from 2 m/s to 8 m/s between 14:00 and 15:00. Enhanced
ventilation leads to reductions in both air temperature and absolute humidity. The model
output displays these cooling and drying effects, reflecting the increased air exchange with
the outside environment. The changes are visible in Figure 6-4.
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(a) Sensitivity to Windspeed: Tair

(b) Sensitivity to Windspeed: AH

Figure 6-4: Sensitivity to Windspeed: Effect on Air Temperature and Absolute Humidity.

Increased Outside Absolute Humidity (Fog)

In this scenario outside absolute humidity is increased to 9.5 g/m3 between 05:00 and 07:00 to
simulate foggy conditions. only minor changes are observed in the model output for both air
temperature and absolute humidity. The performance metrics for this scenario remain close
to those of the base case, indicating that the model does not show a substantial response to
this disturbance under the tested conditions. These results are presented in Figure 6-5.

(a) Sensitivity to Fog: Tair

(b) Sensitivity to Fog: AH

Figure 6-5: Sensitivity to Fog: Effect on Air Temperature (Tair) and Absolute Humidity (AH).
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Decreased Tpipe (Heating Failure)

In this scenario, simulating a heating failure, the pipe temperature is reduced to ambient
air temperature between 11:00 and 12:00. The model output indicates a temporary decrease
in air temperature, while absolute humidity remains largely unaffected. The model recovers
after the disturbance, and the main change in the performance metrics is an increase in mean
absolute error for air temperature during the transient. The results are shown in Figure 6-6.

(a) Sensitivity to Heating: Tair

(b) Sensitivity to Heating: AH

Figure 6-6: Sensitivity to Heating: Effect on Air Temperature (Tair) and Absolute Humidity
(AH).

Overall, the results indicate that the model responds appropriately to a range of environmen-
tal and system disturbances, with outputs that return to the desired trajectory after each
scenario. This suggests that the model is able to recover from transient perturbations and
maintain consistent behavior under varying conditions.

6-3-3 Multi-Step Forecasting Across Prediction Horizons

To assess the model’s predictive performance over varying forecast intervals, a series of simu-
lations were conducted in which the model was re-initialized every x hours, with x set to 3, 6,
12, or 24 hours. In each scenario, the model makes continuous predictions over the specified
horizon without re-initialization, thus providing a test of its robustness for multi-step ahead
forecasting, like the prediction horizon in MPC, where accurate forecasts are required over
the controller’s prediction window.
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6-4 Generalization to Real Greenhouse Data 53

As summarized in Figure 6-7, the model demonstrates strong predictive accuracy for both
Tair and AH across all tested horizons. The R2 values remain high (> 0.94 for Tair and
> 0.82 for AH) even for the longest, 24-hour prediction window, indicating that the model
is able to provide reliable forecasts without frequent re-initialization. As expected, a gradual
decline in accuracy is observed with increasing prediction horizon, as shown by higher RMSE
and MSE values. However, the overall level of error remains low, and the maximum absolute
errors remain below 2 units for all cases. These results confirm the model’s robustness for use
in practical MPC applications, where accurate multi-step predictions are required.

6-4 Generalization to Real Greenhouse Data

To assess the model’s ability to generalize to new, unseen, and realistic data, simulations were
conducted using real-world datasets from three different greenhouses. One dataset is provided
by TomatoWorld, while the other two datasets are from anonymous customers of Hoogen-
doorn, all located in the Netherlands and focused on tomato production. All simulations were
performed using data from May 2024.

(a) Tair: MSE=4.0133, RMSE=2.0033, MAE=8.2937, R2=0.8524

(b) AH: MSE=6.6363, RMSE=2.5761, MAE=9.1576, R2=0.5189

Figure 6-8: Tair and AH simulations on real-world data from Customer 1.

The results for Customer 1 (Figure 6-8) indicate that the model captures the temperature
dynamics with reasonable accuracy, as reflected by an R2 of 0.85 for Tair. The corresponding
RMSE is 2.00, and the MAE is 8.29, suggesting moderate overall error but strong correlation
between predicted and observed values. For AH, the performance is weaker, with an R2 of
0.52 and RMSE of 2.58, indicating that while some variance is explained, significant residual
errors remain.

For Customer 2 (Figure 6-9), the predictive accuracy is substantially lower. The R2 for Tair
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(a) Tair: MSE=21.6585, RMSE=4.6539, MAE=10.9405, R2=0.0144

(b) AH: MSE=24.7750, RMSE=4.9774, MAE=16.6440, R2=-0.7927

Figure 6-9: Tair and AH simulations on real-world data from Customer 2.

drops to 0.01, with RMSE rising to 4.65 and MAE to 10.94, indicating large deviations between
predicted and observed temperatures. For AH, the model yields a negative R2 (-0.79) and a
high RMSE of 4.98, pointing to poor model fit and substantial prediction error. The model
consistently overpredicts Tair and AH for this dataset, indicating a lack of generalization to
these particular greenhouse conditions.

(a) Tair: MSE=11.8595, RMSE=3.4438, MAE=7.5486, R2=0.1811

(b) AH: MSE=6.5393, RMSE=2.5572, MAE=10.1507, R2=0.0618

Figure 6-10: Tair and AH simulations on real-world data from TomatoWorld.

For TomatoWorld (Figure 6-10), the R2 for Tair is 0.18, with an RMSE of 3.44 and MAE
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of 7.55. This reflects a limited ability to track the observed temperature trajectory, with
predictions that tend to underpredict the measured values. For AH, the R2 is close to zero
(0.06), with RMSE of 2.56 and MAE of 10.15, indicating that the model explains very little
of the variance in the observed humidity data. The figure also show that the AH dynamics
are highly irregular making it difficult to model.
Overall, the results show that the model generalizes well to the data from Customer 1. For
Customer 2 and TomatoWorld, both Tair and AH predictions are less accurate, with notably
lower R2 values and higher error metrics. The performance drop, particularly for abso-
lute humidity, suggests that greenhouse-specific factors and unmodeled crop effects limit the
transferability of the model when trained solely on simulation data. These findings highlight
the importance of adaptation or fine-tuning to new operational environments, especially for
variables strongly influenced by local and biological conditions.
Given these limitations in generalization, it is necessary to adapt the model to better account
for the unique characteristics of individual greenhouses.

6-5 Adapting the Model via Transfer Learning

In this research, the predictive model was initially trained on simulated greenhouse climate
data, providing a strong physics-based foundation. To enhance its accuracy and adaptability
in real-world applications, the model is subsequently fine-tuned using datasets collected from
operational greenhouses, from two customers of Hoogendoorn and from TomatoWorld. This
transfer learning approach allows the model to leverage general knowledge acquired from
simulation, while efficiently adapting its parameters to capture the specific dynamics, crop
conditions, and environmental characteristics of each real greenhouse setting.

6-5-1 Model Performance on Real Data

In this section, we evaluate the performance of the fine-tuned LSTM model using real-world
greenhouse data. The pre-trained LSTM model, initially trained on simulation data, is fine-
tuned using 100 days of data from each greenhouse. Simulations are then conducted on
the same real-world datasets as in the previous section. Performance metrics for both air
temperature and absolute humidity are summarized in Table 6-1.
For Customer 1, fine-tuning leads to improved model performance for both Tair and AH,
as demonstrated by increased R2 values and lower error metrics in Table 6-1. The most
pronounced improvements are observed in Tair prediction, showing that the model can adapt
to the conditions of Customer 1 with additional real-world data. While AH prediction also
improves after fine-tuning, the error metrics remain higher than for Tair, which may be
attributable to the complexity of humidity dynamics or factors such as crop management
that are not fully captured in the data.
For Customer 2, fine-tuning improves Tair prediction, reflected in a notable increase in R2

and reduction in error metrics. However, the performance for AH remains poor, with low
R2 and high error metrics both before and after fine-tuning. This indicates that while the
model can adapt to temperature in Customer 2’s greenhouse with transfer learning, it does
not generalize as well to humidity.
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Table 6-1: Performance metrics (MSE, RMSE, MAE, R2) for Tair and AH before and after
fine-tuning for each greenhouse.

MSE RMSE MAE R2

C
us

to
m

er
1 Tair (pre) 4.0133 2.0033 8.2937 0.8524

Tair (fine) 3.1080 1.7630 7.0479 0.8857
AH (pre) 6.6363 2.5761 9.1576 0.5189
AH (fine) 5.1393 2.2670 8.3090 0.6274

C
us

to
m

er
2 Tair (pre) 21.6585 4.6532 10.9405 0.0144

Tair (fine) 3.9719 1.9930 5.8483 0.8193
AH (pre) 24.7750 4.9774 16.6440 -0.7927
AH (fine) 8.9489 2.9915 12.1757 0.3525

To
m

at
oW

or
ld Tair (pre) 11.8595 3.4438 7.5486 0.1811

Tair (fine) 2.3826 1.5436 7.1087 0.8355
AH (pre) 6.5393 2.5572 10.1507 0.0618
AH (fine) 4.1741 2.0431 7.3628 0.3966

(a) Tair predictions for Customer 1 after fine-tuning.

(b) AH predictions for Customer 1 after fine-tuning.

Figure 6-11: Simulations for Customer 1: Tair and AH predictions after fine-tuning.

For TomatoWorld, fine-tuning improves Tair prediction, with higher R2 and reduced errors
as reported in Table 6-1. The performance for AH also shows some improvement, but overall
error metrics remain relatively high. These results indicate that transfer learning effectively
adapts the model for temperature prediction in TomatoWorld, but further work is required
to achieve similar improvements in humidity prediction.
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(a) Tair predictions for Customer 2 after fine-tuning.

(b) AH predictions for Customer 2 after fine-tuning.

Figure 6-12: Simulations for Customer 2: Tair and AH predictions after fine-tuning.

(a) Tair predictions for TomatoWorld after fine-tuning.

(b) AH predictions for TomatoWorld after fine-tuning.

Figure 6-13: Simulations for TomatoWorld: Tair and AH predictions after fine-tuning.

Overall, these results demonstrate that transfer learning via fine-tuning the LSTM model on
real-world greenhouse data leads to clear improvements in air temperature prediction across
all cases. However, the prediction of absolute humidity remains less consistent, indicating
the need for further model refinement or additional data to better capture the underlying
greenhouse humidity dynamics. Having established the benefits of fine-tuning on real-world
datasets, the next step is to assess how well the fine-tuned model generalizes to new environ-
mental conditions not present in the training data.
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6-5-2 Seasonal Generalization: Testing Across Multiple Months

In this section, the generalization capability of the fine-tuned model is evaluated by testing its
performance across different periods of the year using data from Customer 1. This dataset was
selected due to its high predictive accuracy in previous simulations, making it a suitable case
for assessing seasonal robustness. The model is tested on simulation data corresponding to
February, August, and November, representing winter, summer, and late autumn conditions,
respectively. The training data for the fine-tuned model covered only the spring and early
summer period (April, May, and June), enabling an assessment of predictive accuracy under
both familiar and unfamiliar environmental conditions.

(a) Tair predictions for November. MSE=7.5810, RMSE=2.7534, MAE=8.1562, R2=-0.3098

(b) AH predictions for November. MSE=4.8452, RMSE=2.2012, MAE=9.0900, R2=-1.1548

Figure 6-14: Tair and AH predictions after fine-tuning for November.

For November, the model exhibits low predictive accuracy for both air temperature and
absolute humidity. The R2 values are negative (R2 = -0.31 for Tair and R2 = -1.15 for AH),
indicating that the model fails to capture the structure of the observed data for both variables.
The RMSE values for Tair and AH are 2.75 and 2.20, respectively, and MAE values are 8.16
and 7.09. These high error metrics suggest a considerable mismatch between predictions and
observations.

In August, the model’s predictive accuracy improves for both Tair and AH. The R2 value for
Tair increases to 0.71, with RMSE and MAE dropping to 1.74 and 5.56, respectively. For AH,
the R2 value is 0.54, RMSE is 1.30, and MAE is 6.45. These results indicate that the model
is able to explain a substantial portion of the observed variance for both variables. August
is characterized by environmental conditions that are more similar to the model’s training
period, which may explain the improved performance relative to the other months.

In February, predictive performance declines for both Tair and AH, with R2 values of -0.24 and
-0.83, respectively. The RMSE for Tair is 2.86, and for AH it is 2.53. The MAE values are 6.64
for Tair and 7.13 for AH. These results demonstrate that the model is not able to reliably
capture the climate dynamics during winter conditions, which are not represented in the
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(a) Tair predictions for August. MSE=1.3729, RMSE=1.1717, MAE=4.3208, R2=0.8578

(b) AH predictions for August. MSE=1.6651, RMSE=1.2865, MAE=6.1344, R2=0.4596

Figure 6-15: Tair and AH predictions after fine-tuning for August.

(a) Tair predictions for February. MSE=8.1785, RMSE=2.8598, MAE=6.6376, R2=-0.2355

(b) AH predictions for February. MSE=6.3938, RMSE=2.5286, MAE=7.1321, R2=-0.8334

Figure 6-16: Tair and AH predictions after fine-tuning for February.

training data. The combination of negative R2 values and higher error metrics in February and
November compared to August provides evidence that the model’s generalization is limited
when external conditions differ substantially from those seen during training.

Overall, these results demonstrate that the fine-tuned model maintains higher predictive
accuracy in August, a period similar to the original training window, but struggles during
the winter and late autumn months. The observed performance drop outside the training
season is reflected in both lower R2 values and increased error metrics. This suggests that
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the model’s predictive skill is strongly influenced by the similarity between the current and
training environmental conditions.

To address this limitation, the next section investigates whether targeted transfer learning,
by re-training the model with data from February and November, can improve predictive
performance during these months. By supplementing the original training data with addi-
tional season-specific samples, it is possible to assess whether the model can better adapt to
differing winter and late autumn conditions.

6-5-3 Seasonal Adaptation: Month-Specific and Moving Window Retraining

To systematically evaluate the effect of season-specific retraining, two approaches are consid-
ered. First, a month-specific strategy is implemented, in which the model is retrained using
all available data from the target month excluding the simulation week. This setup establishes
an upper benchmark for predictive performance by training on data that closely match the
conditions of the test period.

Table 6-2: Performance metrics Tair and AH under different retraining windows in February and
November. "Initial" is the non re-trained model; “Month” uses all data from the month except
the test week; “30d”, “60d”, and “90d” denote rolling-window lengths.

Test Period Window Tair / AH

MSE RMSE MAE R2

February

Initial 8.1785 / 6.3938 2.8598 / 2.5286 6.64 / 7.13 -0.2355 / -0.8334
Month 2.2500 / 4.6522 1.5000 / 2.1569 5.35 / 8.99 0.6601 / -0.3340

30d 3.1279 / 11.1704 1.7686 / 3.3422 5.73 / 12.45 0.5275 / -2.2031
60d 5.1798 / 17.2778 2.2759 / 4.1567 6.60 / 12.05 0.2175 / -3.9543
90d 4.3183 / 11.6310 2.0781 / 3.4104 6.09 / 10.06 0.3477 / -2.3351

November

Initial 7.5810 / 4.8452 2.7534 / 2.2012 8.16 / 7.09 -0.3098 / -1.1548
Month 3.5045 / 5.5595 1.8720 / 2.3579 6.88 / 8.71 0.3945 / -1.4725

30d 4.9208 / 6.8696 2.2183 / 2.6210 6.62 / 10.31 0.1498 / -2.0551
60d 7.4079 / 5.8271 2.7217 / 2.4139 6.67 / 9.67 -0.2799 / -1.5915
90d 9.3675 / 7.1054 3.0606 / 2.6656 7.87 / 9.69 -0.6185 / -2.1600

After establishing this benchmark, a moving window approach is explored, where the model
is fine-tuned using only the most recent 30, 60, or 90 days of data prior to the test period.
This strategy provides a more practical, real-time retraining method that could be applied
in operational settings. By comparing the two approaches, the analysis assesses the trade-off
between maximum achievable accuracy and the feasibility of continual adaptation in real-
world applications.
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(a) Tair predictions for February after re-training on all February data except the simulated week.

(b) AH predictions for February after re-training on all February data except the simulated week.

Figure 6-17: Tair and AH predictions after re-training with all available February data except
the simulation week.

(a) Tair predictions for November after re-training on all November data except the simulated week.

(b) AH predictions for November after re-training on all November data except the simulated week.

Figure 6-18: Tair and AH predictions after re-training with all available November data except
the simulation week.

Figure 6-17 shows the results for February, where the month-specific retraining yields the
best performance for Tair compared to all other strategies. As shown in Table 6-2, the Tair
MSE drops to 2.25 and R2 rises to 0.66, a substantial improvement over both the initial
model (R2 = −0.24) and the moving window approaches. For the moving window strategies,
the 30-day window provides moderate improvement (R2 = 0.53), while 60-day and 90-day
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windows show decreasing accuracy. The results suggest that the model benefits most from
training on recent, month-specific data. However, the predictive performance for AH remains
limited: even with month-specific retraining, R2 is −0.33 and errors are higher than for Tair.

A similar pattern is observed in November, as shown in Figure 6-18 and Table 6-2. With
month-specific retraining, Tair prediction improves, achieving an MSE of 3.50 and an R2 of
0.39, compared to −0.31 for the initial model. MAE is also reduced to 6.88. For the moving
window approaches, the 30-day window yields a Tair R2 of 0.15, with further declines for the
60-day and 90-day windows, again highlighting the importance of recent, relevant training
data. For AH, the highest R2 is −1.47, with even lower values for the moving windows, indi-
cating that retraining strategies are less effective for capturing humidity dynamics, possibly
due to complex or unobserved drivers.

Overall, these results demonstrate that retraining the model with data closely matched to the
target period yields the highest predictive accuracy for Tair. The moving 30-day window also
provides clear improvements for Tair compared to longer windows and the initial fine-tuned
model. The analysis highlights that the relevance and similarity of the training data to the
test period are more important for model performance than the total amount of data used.
However, performance for AH remains lower across all strategies, emphasizing the challenges
in predicting humidity due to factors likely not captured in the available features. Reducing
the window below 30 days was also found to return decreasingly accurate models, indicating
a minimum threshold of recent data is necessary for stable retraining. These findings sup-
port the feasibility of real-time adaptive retraining strategies for temperature prediction and
highlight the limitations for modeling absolute humidity in greenhouse environments.
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Chapter 7

Model Predictive Control

This chapter investigates the use of MPC for greenhouse climate management, leveraging the
hybrid physics-informed prediction model developed in Section 6-2. While accurate open-loop
predictions demonstrate the standalone accuracy of the prediction model, robust closed-loop
performance is ultimately more important for practical utility. This performance is revealed
when the model is embedded within an MPC framework under constraints, disturbances, and
plant-model mismatch. In this chapter, the effectiveness and limitations of the prediction
model are systematically tested using MPC, specifically in achieving operational temperature
and humidity objectives under realistic greenhouse conditions.

The chapter first formulates the MPC problem in Section 7-1, covering control objectives, con-
straints, actuator target logic, cost function design, and parameter tuning. Section 7-2 then
presents the simulation results, including both unconstrained and realistically constrained
open-loop and closed-loop MPC performance, a detailed analysis of prediction horizon length,
an exploration of closed-loop system and actuator responses, and robustness testing under
seasonal variations. Finally, Section 7-3 discusses the main findings, emphasizing the practi-
cal feasibility of MPC-based temperature control, the importance of careful tuning, and the
ongoing challenges in reliably regulating greenhouse humidity under real-world conditions.

7-1 MPC Setup Formulation

In this section, we present the formulation of the MPC problem for greenhouse climate man-
agement. We begin by defining the control objectives and state variables, then outline the
physical and operational constraints on actuators and states. Next, we introduce dynamic
actuator targets as soft references to guide control actions, and we detail the MPC cost func-
tion, including tracking, actuator guidance, humidity, and move-suppression terms. Finally,
we discuss the tuning of key parameters to balance performance, smoothness, and feasibility.
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7-1-1 Control Objectives and States

The primary control objective is to regulate the greenhouse air temperature to track a time-
varying reference Ttarget(k). This target is based on the same RTR strategy as was used for
generating the simulation data in Section 4-1. Humidity is managed indirectly by enforcing
constraints on relative humidity, RH, computed as

RH(k) = V P (Tair, AHin)
SWP (Tair)

× 100.

The manipulated variables (actuators) in the MPC scheme are:

• Heating pipe temperature, Tpipe

• Leeward vent position, Ventlee

• Windward vent position, Ventwind

• Energy screen position, Escreen

Each actuator is subject to physical and operational constraints.

7-1-2 Constraints

The following constraints are enforced throughout the prediction horizon:

• Actuator (input) constraints:

15 ≤ Tpipe(k) ≤ 80 [◦C]
0 ≤ Ventlee(k), Ventwind(k), Escreen(k) ≤ 100 [%]

• State constraints:

0 ≤ Tair(k) ≤ 45 [◦C]
0 ≤ AHin(k) ≤ 35 [g/m3]
0 ≤ RH(k) ≤ 100 [%]

External disturbances, including Tout, Iglob, dwind, and AHout, are incorporated as time-
varying inputs using known forecasts at each prediction step.

7-1-3 Dynamic Actuator Targets

Dynamic actuator targets are designed to guide the MPC solver to desired actuator targets.
Rather than imposing hard setpoints or binary switching behavior, these targets act as soft
references that gently steer each actuator toward preferred operating regimes in response to
changing environmental and system conditions. By penalizing deviations from these targets
in the cost function, the MPC maintains flexibility to trade off multiple objectives such as
temperature tracking and humidity control while embedding practical control strategies.
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Screen Position. We define

Etar
scr (k) =

{
100, Iglob(k) > 100 W/m2,

Escreen(k), otherwise.

By including
(
Escreen(k) − Etar

scr (k)
)2 in the cost, the controller is biased to move the screen

toward 100 when radiation is high, but it may decide to leave it partially open if that better
satisfies other objectives. The energy screen serves to reduce heat loss and limit excess solar
radiation, especially during periods of intense sunlight. By biasing the screen position toward
closure when Iglob is high, the MPC can limit unwanted heating and protect crops from light
stress, while still allowing the optimizer flexibility to trade off other climate objectives. (Here,
Etar

scr denotes the *target* closing degree of the energy screen, expressed in %.)

Vent Positions. Similarly, each vent target switches between its current position and 100:

Venttar
lee (k) =

{
100, Tair(k) > Ttarget(k),
Ventlee(k), otherwise,

Venttar
wind(k) =

{
100, Tair(k) > Ttarget(k),
Ventwind(k), otherwise.

Again, by penalizing
(
Ventlee − Venttar

lee
)2 and

(
Ventwind − Venttar

wind
)2, the vents are biased

toward opening when air temperature exceeds the setpoint, without hard-locking them at
100%. Ventilation is the principal means of cooling the greenhouse, as for most of the year
the inside temperature Tair is higher than outside. By targeting fully open vents when the
temperature exceeds the setpoint, the controller prioritizes heat removal and air exchange,
which are critical for maintaining climate stability.

Heating Water Temperature. The heating-water temperature target is defined by a hys-
teresis rule, biasing the boiler setpoint toward 80 ◦C when the air temperature falls below
the target and toward the current greenhouse temperature when it rises above the deadband.
Formally,

T tar
pipe(k) =


80, Tair(k) < Ttarget(k),
Tair(k), Tair(k) > Ttarget(k) + δT ,

T tar
pipe(k − 1), otherwise,

δT = 0.5 ◦C.

By including wheat
(
Tpipe(k) − T tar

pipe(k)
)2 in the cost function, the MPC is encouraged to

adjust the heating water temperature toward these biased setpoints without enforcing a hard
switch. This hysteresis-based target helps prevent excessive switching of the heating system
and reduces actuator wear, while ensuring that maximum heating capacity is used only when
necessary. It reflects practical greenhouse control strategies, where heating is applied when
temperatures drop below target, but is gradually reduced or suspended as soon as the climate
is restored to the desired range.
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7-1-4 Cost Function and Optimisation Variables

At each sampling instant k, the MPC controller optimises an open-loop sequence of future
control moves over a prediction horizon Np = 72 steps, corresponding to a prediction horizon
of 6 hours given a sampling interval of ∆t = 5 min. The decision vector, comprising four
manipulated variables, is defined as:

U(k) =
{
u(k), u(k + 1), . . . , u(k +Np − 1)

}
, u(k + j) =


Tpipe(k + j)

Ventlee(k + j)
Ventwind(k + j)
Escreen(k + j)

, (7-1)

thus U(k) ∈ RmNp , with m = 4 manipulated variables.

The MPC optimisation problem solved at every control step is:

min
U(k)

JT + JU + JRH + Jmove, (7-2)

where each individual cost term is explicitly defined by:

JT =
Np−1∑
j=0

wtemp
(
Tair(k + j) − Ttarget(k + j)

)2
, (7-3)

JU =
Np−1∑
j=0

[
wscreen

(
Escreen(k + j) − Etar

scr (k + j)
)2 (7-4)

+ wheat
(
Tpipe(k + j) − T tar

pipe(k + j)
)2 (7-5)

+ wvent
(
Ventlee(k + j) − Venttar

lee (k + j)
)2 (7-6)

+ wvent
(
Ventwind(k + j) − Venttar

wind(k + j)
)2]
, (7-7)

JRH =
Np−1∑
j=0

wRH
(
max(0, RH(k + j) − 90)2 + max(0, 60 −RH(k + j))2), (7-8)

Jmove =
m∑

i=1

Np−1∑
j=1

wmove,i
(
ui(k + j) − ui(k + j − 1)

)2
. (7-9)

Interpretation of Cost Terms. The tracking term JT penalises forecasted deviations from
the time-varying air temperature reference Ttarget. Due to the critical importance of maintain-
ing the greenhouse temperature, the associated weight is set significantly higher at wtemp =
1 · 106.

The actuator-guidance term JU drives manipulated variables toward dynamically determined
targets (T tar

pipe, Venttar
lee , Venttar

wind, Etar
scr ), which are detailed in Section 7-1-3. These dynamic

targets embed practical greenhouse control heuristics—such as fully opening vents when in-
ternal temperatures exceed setpoints and closing screens under conditions of high irradiance.
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The weights reflect actuator priority, where the heating water temperature (wheat = 1) is crit-
ical for temperature management, while ventilation and screen settings (wvent = wscreen = 1)
provide fine adjustments to energy and humidity balance.

The soft humidity term JRH introduces quadratic penalties (wRH = 1 · 106) when predicted
relative humidity deviates from the optimal range (60–90%). The soft constraint ensures
feasibility even under actuator saturation scenarios, while strongly discouraging prolonged
excursions outside optimal humidity bounds.

The move-suppression term Jmove penalises rapid actuator adjustments through the DCOST
parameter in GEKKO[35], thus promoting smoother control actions. The empirically tuned
move penalties are set as wmove,Tpipe = 400 for the heating system due to its central role in
temperature management, and wmove,Vent = wmove,Escreen = 100 for ventilation and energy
screen actuators, ensuring sufficient agility without excessive actuator cycling.

These carefully balanced weights result in an effective MPC solution, achieving precise tem-
perature tracking, controlled humidity management, smooth actuator transitions, and robust
real-time performance. The defined MPC formulation (Eqs. (7-2)–(7-9)) is consistently used
throughout all closed-loop simulations in Section 7-2.

At each control step k, the MPC optimisation is initialised with the latest measured or
estimated state of the greenhouse, and predictions are generated using the hybrid physics-
informed model described in Section 6-2. All actuator and state constraints are imposed
as hard constraints throughout the horizon, while the relative humidity constraint is imple-
mented as a soft penalty in the cost function. The resulting nonlinear program is solved using
GEKKO with IPOPT as the backend solver [35].

7-2 Results

7-2-1 Analysis of 24-Hour Optimal MPC Forecasts

The performance of the prediction model and MPC solver is evaluated over a representative
simulation day. Figure 7-1 shows the outside temperature, solar radiation, and absolute
humidity profiles used as outside conditions for this simulation.

To assess the realism and effectiveness of the prediction model within the MPC framework,
two types of 24-hour optimal forecasts were tested for this day:

1. Unconstrained forecast: Only temperature-tracking and soft-RH objectives are ac-
tive; all DCOST penalties are disabled, and only the basic actuator and state variable
bounds are enforced to prevent physically unrealistic actions.

2. Constrained forecast: The full constraint set, move-suppression costs, and weightings
from Sections 7-1-2 and 7-1-4 are applied.

For each forecast, a 24-hour prediction horizon was used, and all predicted trajectories for
states and actuators were saved from the initial iteration of the MPC optimization loop. This
approach allows for direct evaluation of the model’s open-loop predictive capability and the
resulting control actions under realistic operating conditions.
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Figure 7-1: Outside conditions May 2024: temperature, radiation, and absolute humidity.

Figure 7-2: Unconstrained 24h MPC forecast: temperature-tracking and soft-RH objectives only.

Figure 7-2 presents the unconstrained 24-hour forecast. The MPC achieves nearly perfect
air temperature tracking and keeps relative humidity within the target range for the entire
period. The heating system operates at or near its maximum setpoint for almost the entire
day, regardless of outside temperature or radiation, resulting in consistently high pipe tem-
peratures. Throughout the forecast, only the wind-side ventilation is used, while the lee-side
vent remains completely closed. This is notable, as typical greenhouse operation usually pri-
oritizes the use of lee-side vents due to their effectiveness in promoting air exchange without
causing excessive drafts. The screen position remains nearly constant at a partially closed
setting, indicating that the controller applies a fixed screen deployment to assist in managing
humidity, rather than modulating it in response to changing outside conditions.

Figure 7-3 shows the constrained 24-hour forecast. The results are qualitatively similar to
the unconstrained setting in terms of air temperature tracking and relative humidity control.
However, several notable differences are observed due to the inclusion of actuator bounds,
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Figure 7-3: Constrained 24h MPC forecast: full actuator/state constraints and DCOST penalties
active. Panels as in Figure 7-2.

move suppression penalties, and state constraints. The heating-pipe temperature remains at
its maximum for nearly the entire period but is reduced during the last two hours as outside
temperature decreases. The screen is fully closed for the entire day, in contrast to the partial
deployment seen in the unconstrained case. Wind-side ventilation is still exclusively used, but
the vent positions reach lower maxima, indicating that less ventilation is required to satisfy the
constraints. The lee-side vents remain unused throughout. The profiles for air temperature
and relative humidity are nearly identical to those observed in the unconstrained scenario,
highlighting that the imposed constraints primarily affect actuator trajectories rather than
the controlled climate variables.

While the unconstrained MPC formulation demonstrates the ability to generate smooth tra-
jectories and track targets with high accuracy, such open-loop predictions often become infea-
sible in closed-loop application. This is primarily because, even though variable bounds are
enforced, the unconstrained solution ignores important practical limitations such as actuator
rate constraints, move suppression (smoothness), and system dynamics, and does not account
for disturbances or modeling errors that inevitably arise when the controller interacts with
the real system. As the plant states are updated in each closed-loop iteration, even small
discrepancies between the model and the actual system can quickly compound, pushing the
system into regimes where the original open-loop control actions are no longer admissible or
safe. As a result, the control actions calculated in the open-loop, unconstrained setting may
be overly aggressive, slow to respond, or physically unrealistic when deployed in feedback
operation, leading to infeasibility or instability.

To address these challenges, the constrained MPC formulation was developed. Although
this approach is inherently suboptimal from a purely performance perspective, it enables the
controller to maintain feasibility and operational realism, ultimately allowing for more robust
and reliable climate control in practical greenhouse scenarios.
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7-2-2 Sensitivity to Prediction Horizon

The prediction horizon is a key parameter in MPC, determining how far into the future the
controller plans at each time step. Because MPC operates according to the receding horizon
principle, it optimizes over a moving window and applies only the first control action at each
step. As a result, the accuracy of multi-step-ahead predictions becomes crucial. Testing
different prediction horizons therefore directly evaluates the prediction model’s ability to
forecast future greenhouse states under realistic disturbance profiles, revealing how well the
model supports the control objectives as the look-ahead window increases. This sensitivity
analysis also clarifies the trade-off between improved long-term planning and the increased
computational demand of longer horizons.

In climate control MPC applications, prediction horizons are typically selected in the range
of hours up to a day, reflecting both the system’s thermal time constants (1–4 h) and the
practical reliability window of weather forecasts (12–24 h) [37].

In this work, we systematically compare six prediction horizons—1 h, 3 h, 6 h, 9 h, 12 h, and
24 h—to evaluate the trade-offs between prediction accuracy and computational efficiency.
All horizons use a sampling interval of ∆t = 5 min, so that

Np = horizon (min)
∆t ∈ {12, 36, 72, 108, 144, 288} for 1 h, 3 h, 6 h, 9 h, 12 h, and 24 h.

Figures 7-4, 7-5, and 7-6 illustrate air temperature tracking over four days using 1-hour, 3-
hour, and 6-hour prediction horizons, respectively. As the prediction horizon increases from 1
to 6 hours, both RMSE and MAE decrease, while the R2 score improves, reflecting enhanced
tracking accuracy. Extending the prediction horizon beyond 6 hours (to 9, 12, or 24 hours)
did not result in further improvements in tracking accuracy or operational performance in
closed-loop simulations. For example, with a 24-hour prediction horizon, the MPC achieves
nearly identical tracking performance to shorter horizons, with an RMSE of 1.0485, a MAE
of 2.5808, and an R2 score of 0.9182 wich is even slightly worse than for 6 hours. Therefore,
only the simulation results up to 6 hours are shown here.

Figure 7-4: Air temperature tracking performance over 4 days with a 1-hour MPC prediction
horizon. Performance metrics: RMSE = 1.2265, MAE = 3.3936, R2 Score = 0.8920.

Table 7-1 shows that computational cost grows rapidly with the prediction horizon. While
a 1-hour horizon averages 1.6 seconds per iteration, this rises to 6.8 seconds for 3 hours,
and 15.1 seconds for 6 hours. Beyond 6 hours, the increase is substantial, with 12-hour and
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Figure 7-5: Air temperature tracking performance over 4 days with a 3-hour MPC prediction
horizon. Performance metrics: RMSE = 1.1261, MAE = 3.0416, R2 Score = 0.9090.

Figure 7-6: Air temperature tracking performance over 4 days with a 6-hour MPC prediction
horizon. Performance metrics: RMSE = 1.0453, MAE = 2.5765, R2 Score = 0.9195.

Table 7-1: Mean computational time per MPC iteration for each prediction horizon.

Horizon (h) Time per iteration (s)
1 1.59 ± 0.26
3 6.83 ± 1.09
6 15.10 ± 2.52
9 23.50 ± 4.30
12 39.06 ± 12.02
24 80.90 ± 14.54

24-hour horizons requiring 39.1 and 80.9 seconds per iteration, respectively. These values
highlight a steep, nonlinear scaling of computational effort with horizon length, mainly due
to the growth in the number of optimization variables and constraints. In practice, this makes
longer horizons (beyond 6 hours) impractical for real-time control, as the marginal gains in
control performance are negligible. For this system, a 3- or 6-hour prediction horizon provides
an optimal balance between control accuracy and computational tractability for real-world
greenhouse MPC applications.
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7-2-3 Closed-Loop Performance Analysis

Figure 7-7 provides an overview of all variables and control actions. The top panel shows that
the controller maintains air temperature close to the target for most of the day. However, as
shown in the humidity panels, the controller is unable to keep RH within the desired range.
Inside absolute humidity closely follows outside absolute humidity. This indicates that the
available actuators, without direct humidification (e.g., misting), cannot effectively control
greenhouse humidity through ventilation and screen use.

Figure 7-7: Comprehensive overview of closed-loop greenhouse MPC simulation over one day
with a 6-hour prediction horizon. Panels show (from top to bottom): (1) air temperature (Tair),
outside temperature (Tout), and temperature setpoint; (2) inside and outside absolute humidity;
(3) control actions (pipe temperature, vent positions, screen); (4) radiation; (5) relative humidity
(RH).

The control input panels reveal several important aspects of the MPC’s closed-loop behav-
ior. The heating system is used extensively and remains high throughout most of the day.
However, the realized heating profile displays distinct jumps and step changes, illustrating
the interplay between dynamic actuator targets, setpoint hysteresis, and deadband logic in
the controller. These features are further shaped by the tuning of parameters such as move
suppression and the weighting in the MPC objective function. Practical experience with tun-
ing these parameters showed a delicate trade-off: if actuation penalties are too high, heating
responses are too slow, resulting in insufficient temperature control; if too low, the system
can become overly aggressive, leading to chattering or rapid target switching.

The ventilation strategy demonstrates the use of the targets. While the prediction often
prioritizes wind-side ventilation, in practice both wind-side and lee-side vents are used, due to
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the dynamic actuator target logic and feedback from the true system. This dual-vent approach
results in more balanced and energy-efficient ventilation, as often seen in real greenhouse
operations.

Frequent actuator adjustments throughout the day highlight the critical impact of closed-loop
feedback, dynamic targets, and parameter tuning. Higher move suppression and smoothing
can dampen variability but causes actuators to become unresponsive or stuck. Too little
suppression risks excessive chattering and increased wear. These results collectively emphasize
that careful parameter tuning is essential for robust, realistic, and operationally efficient
greenhouse control.

7-2-4 Seasonal Scenario Analysis

To assess robustness against different outside conditions, we evaluate closed-loop performance
on two additional datasets:

Winter conditions: low solar radiation, low outside temperature, heavy heating demand.

Summer conditions: high solar radiation, high outside temperature, minimal heating.

(a) Outside Conditions February 2024

(b) Outside Conditions August 2023

Figure 7-8: Comparison of external conditions in winter (February) and summer (August). Top
row: outside air temperature; bottom row: solar radiation over a one-week period.
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In February (Figure 7-8a), outside air temperature frequently drops below 0 °C, with daytime
highs around 4–6 °C, while solar radiation peaks near 250 W/m2 only. In contrast, August
(Figure 7-8b) exhibits outside temperatures up to 32.5 °C and daily radiation peaks exceeding
800 W/m2.

(a) Winter scenario: February

(b) Summer scenario: August

Figure 7-9: Closed-loop temperature tracking performance under (a) winter and (b) summer
conditions, with a 6-hour prediction horizon.

Figure 7-9 illustrates the boundaries of closed-loop performance under extreme seasonal con-
ditions. During winter, the controller faces persistently low outside temperatures and limited
solar radiation. Despite operating the heating system at maximum capacity, the system is
unable to meet the afternoon temperature targets, resulting in a consistent underperformance
during periods of highest demand. The single-day plot in Figure 7-10 provides further in-
sight: the controller opens the screen around 14:00, potentially allowing more heat to escape
precisely when the target temperature is already not being reached. This behavior suggests
a possible conflict in the controller’s objectives or cost function weights, where maintaining
other objectives competes with the primary temperature target. Overall, this scenario high-
lights the fundamental limitation imposed by actuator capacity in severe cold, as well as the
impact of conflicting objectives on temperature regulation.
The summer scenario presents the opposite challenge. High outside temperatures and intense
solar radiation make cooling the greenhouse difficult. The single-day results reveal that the
heating water temperature does not drop below 40◦C and the ventilation windows are not
fully opened, even though further cooling is desirable. This indicates that the use of dy-
namic actuator targets can sometimes hinder the controller from fully utilizing the available
actuators, leading to suboptimal temperature regulation when outside conditions are extreme.
Overall, these seasonal scenarios demonstrate that, while MPC can provide effective control
in typical conditions, actuator and model limitations become decisive under extremes. The
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interaction of competing objectives and actuator target logic can further restrict achievable
performance, emphasizing the need for careful tuning and a possible reconsideration of the
controller structure when operating at the boundaries of the greenhouse climate.

(a) Winter scenario: single day (February)

(b) Summer scenario: single day (August)

Figure 7-10: Closed-loop temperature tracking for a single representative day under (a) winter
(February) and (b) summer (August) conditions.
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7-3 Qualitative Analysis and Discussion

The results presented here demonstrate both the potential and the challenges of applying
MPC with a hybrid physics-informed prediction model for greenhouse climate control. While
perfect tracking is theoretically possible when the prediction and plant models are identical, as
in the simulated data, realistic applications inevitably involve model-plant mismatch, making
precise closed-loop control more difficult.

The effectiveness of the MPC controller in these simulations depend on the accuracy of the
prediction model and strongly on the exact formulation of the MPC problem. Careful param-
eter tuning, especially of DCOST and the objective function weights, was critical. Even small
changes in these parameters produced notable differences in control behavior, ranging from
overly aggressive actuation and “chattering” to sluggish or insufficient responses. Achieving
good temperature tracking ultimately required a delicate balance between responsiveness and
stability.

In contrast, robust control of relative humidity proved much more challenging. Imposing
RH as a hard constraint often led to infeasibility, as the optimizer could not always find
solutions that satisfied all requirements in closed-loop feedback, especially during periods of
low outside humidity. Switching to a soft constraint improved feasibility but did not resolve
the fundamental limitation: the model and solver could not keep RH within the target bounds.
This likely reflects insufficient modeling of transpiration in the absolute humidity ODE, as
well as the absence of direct humidity control options such as misting. As a result, the internal
absolute humidity closely tracked the outside conditions, and reliable RH regulation was not
achievable, even with large penalty weights.

Increasing the prediction horizon beyond 6 hours did not improve tracking accuracy or yield
smoother control actions. This is consistent with the need for soft actuator targets and
system constraints to maintain feasibility in closed-loop MPC. Without these targets, the
solver could theoretically generate more optimal trajectories, but in practice, this leads to
frequent infeasibility as the optimizer cannot satisfy all requirements over longer horizons.
Incorporating soft targets keeps the problem tractable but introduces switching behavior as
target values change, which in turn alters the predicted control actions. Thus, the additional
look-ahead offered by a longer prediction horizon is effectively offset by the need to guide and
constrain the optimizer, limiting potential performance gains.

Overall, these results highlight that, while satisfactory temperature control can be achieved
with careful MPC design and parameter tuning, robust humidity regulation remains an open
challenge. Addressing this will require further improvements to both model structure and
MPC setup, including more accurate process models and, potentially, additional actuation
options.
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Chapter 8

Conclusion and Discussion

8-1 Summary

This thesis addressed the challenge of accurate, interpretable, and generalizable greenhouse
climate prediction for real-time control in the context of sustainable intensification of food
production. In collaboration with Hoogendoorn Growth Management, the work developed a
hybrid modeling framework that combined physics-based system identification, data-driven
discrepancy modeling, and transfer learning to leverage both high-fidelity simulation data and
real-world operational measurements.
The first major component of the research was the construction of a physics-informed SINDy
model for air temperature and absolute humidity. Beginning with an analysis of the Tap
model, candidate function libraries were built from thermodynamic and hydrodynamic prin-
ciples. Ventilation and transpiration terms were selected for absolute humidity, while heat
transfer mechanisms formed the basis for the air temperature library. Using a sparse regres-
sion optimizer, a sparse system of ODEs was identified. On both training and independent
test data, this model captured the dominant greenhouse dynamics with high accuracy for
temperature and good performance for humidity, while remaining physically interpretable.
Despite this success, systematic discrepancies remained, particularly under varying seasonal
conditions. To address those residual errors, the second major component introduced a two-
stage LSTM discrepancy model. In the first stage, the network was pretrained on simulated
data to learn the generic dynamic residuals between the SINDy predictions and the data. In
the second stage, that pretrained network was fine-tuned on limited real greenhouse data,
allowing it to adapt to site-specific effects. When combined with the SINDy model, the
hybrid approach yielded substantial improvements in predictive accuracy, most notably for
air temperature. Sensitivity analyses showed that the hybrid model responded realistically
to disturbances such as cloud cover, windspeed changes, fog, and heating failures. Multi-step
ahead forecasts over horizons up to 24 hours remained reliable, demonstrating robustness for
predictive control applications.
However, when the pretrained hybrid model was applied directly to unseen real-world datasets,
performance varied. In some cases it generalized well, but in others, especially for absolute
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humidity, significant errors persisted. Transfer learning via fine-tuning on each greenhouse’s
own data led to significant improvements in temperature prediction across all cases, while
humidity remained challenging. Seasonal tests revealed that fine-tuning on spring/early-
summer data produced good results for similar conditions but failed to generalize to winter
or late-autumn. Month-specific or rolling-window retraining partially recovered temperature
accuracy in cold months, yet humidity prediction still lagged, pointing to the need for further
model refinement or additional measurements to capture complex moisture dynamics.

The final component of the thesis integrated the hybrid model into an MPC framework to
assess closed-loop performance under realistic greenhouse conditions. The MPC was for-
mulated to track a time-varying air temperature setpoint while softly constraining relative
humidity, subject to actuator and state bounds, move-suppression penalties, and dynamic ac-
tuator targets as soft references in the cost function. In open-loop forecasts, the unconstrained
formulation achieved near-perfect temperature tracking but pushed actuators to their limits;
introducing realistic bounds and move-suppression yielded more practical control trajecto-
ries with similar climate performance. Prediction horizon experiments showed that three- to
six-hour horizons best balanced accuracy and computational load. Closed-loop simulations
confirmed robust temperature regulation under typical conditions, but persistent difficulty
in regulating humidity without dedicated humidification. Seasonal MPC scenarios further
highlighted that actuator capacity and the dynamic target logic limited performance under
extremes, sometimes preventing full utilization of available resources. Insufficient modeling
of transpiration and the absence of direct humidity actuation meant reliable RH control re-
mained unattainable.

Overall, this thesis demonstrated an end-to-end framework: first, the creation of a sparse,
physics-informed SINDy model; second, the augmentation of that model with a data-driven
LSTM discrepancy network and transfer learning; and third, the embedding of the hybrid
model in an MPC framework for closed-loop greenhouse control. The work led to a ro-
bust methodology that combines interpretability with predictive accuracy and highlighted
practical considerations for deployment, including the necessity of frequent or context-aware
retraining and the need for additional sensing or actuation to handle humidity. By ground-
ing data-driven components in physical insight, this research contributed a valuable path
toward more intelligent, adaptive greenhouse climate management, supporting the transition
to sustainable, precision-controlled food production systems.

8-2 Answers to the Research Questions

How can a hybrid modeling framework, combining physics-informed SINDy for
system identification, LSTM-based discrepancy modeling, and transfer learning,
be systematically designed and validated to provide accurate, interpretable, and
generalizable greenhouse climate predictions for use in MPC?

The systematic design and validation of a hybrid modeling framework, which combines
physics-informed SINDy for system identification, LSTM-based discrepancy modeling, and
transfer learning, resulted in significantly improved predictive accuracy, interpretability, and
practical applicability for greenhouse climate prediction suitable for MPC. By explicitly inte-
grating domain-specific knowledge into SINDy’s candidate library, the model retained clear
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physical interpretability and consistency. Introducing an LSTM-based discrepancy model
effectively captured dynamics not accounted for by the physics-based model, substantially
enhancing predictive performance, particularly for air temperature. Further, the application
of transfer learning through targeted fine-tuning with real-world greenhouse data effectively
adapted the hybrid model to specific operational environments, markedly improving gener-
alization capability. Although humidity modeling remained challenging, systematic seasonal
and targeted retraining strategies were shown to enhance robustness and maintain perfor-
mance throughout the year. When integrated into an MPC framework, the hybrid model
demonstrated reliable setpoint tracking, actuator smoothness, and constraint satisfaction,
validating its suitability and effectiveness for operational greenhouse climate management.

1. How can domain knowledge be effectively incorporated into the candidate
library of SINDy, and how does this inclusion impact the interpretability
and physical consistency of the resulting greenhouse climate model?
Domain knowledge was effectively incorporated by explicitly constructing a physics-
informed candidate library based on known thermodynamic and hydrodynamic green-
house processes such as ventilation, heating, radiation, and humidity dynamics. This
structured inclusion significantly improved interpretability and physical consistency, as
the resulting models retained terms closely aligned with actual greenhouse mechanisms,
avoided non-physical terms, and thereby enhanced trust and transparency for control
purposes.

2. To what extent does the hybrid SINDy-LSTM discrepancy model improve
predictive accuracy compared to a purely physics-based SINDy approach?
The hybrid SINDy-LSTM model provided substantial improvements in predictive accu-
racy over the purely physics-based SINDy approach, particularly for air temperature.
For example, in simulated data, the hybrid model improved the R2 from approximately
0.94 to over 0.97, with corresponding decreases in RMSE and maximum errors. For
absolute humidity, the improvement was present but less consistent, depending more
heavily on the similarity between training and operational conditions. Thus, the dis-
crepancy model significantly enhanced predictive accuracy for unmodeled temperature
dynamics while providing moderate improvements in humidity prediction.

3. How well does the pre-trained hybrid model generalize to unseen real-world
greenhouse data, and how does transfer learning (fine-tuning) affect the pre-
diction accuracy?
The pre-trained hybrid model generalized adequately for air temperature prediction
but showed limited accuracy for absolute humidity when applied to unseen real-world
data. Fine-tuning the model using transfer learning with a small amount of real-world
data substantially improved prediction accuracy for temperature across different green-
houses. However, while humidity predictions benefited from fine-tuning, accuracy re-
mained moderate, highlighting the ongoing challenge of humidity modeling due to its
dependence on complex, site-specific crop and environmental factors.

4. How robust is the fine-tuned model to seasonal variation, and can targeted
re-training on recent or season-specific data further improve predictive per-
formance throughout the year?
The robustness of the fine-tuned model varied across seasons, showing high predictive
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accuracy during periods with conditions similar to the training set (e.g., late spring and
summer) but reduced accuracy during unobserved seasons (e.g., winter and autumn).
Targeted re-training strategies, such as month-specific and moving-window retraining,
notably improved predictive performance, particularly for air temperature. Shorter re-
training windows (e.g., 30 days) generally yielded better results, emphasizing the impor-
tance of frequent updates with relevant recent data for reliable year-round predictions.

5. Is the final hybrid model suitable for integration into an MPC framework
for greenhouse climate management, and how does it perform in terms of
setpoint tracking and constraint satisfaction in operational scenarios?
Yes, the final hybrid model demonstrated strong suitability for integration into an MPC
framework, effectively balancing setpoint tracking accuracy, constraint satisfaction, and
actuator smoothness in closed-loop simulations. Temperature tracking performance
was robust across typical operating scenarios, significantly benefiting from the hybrid
model’s improved predictive accuracy. However, controlling humidity proved challeng-
ing due to inherent actuator limitations and residual modeling gaps, highlighting the
necessity for further refinements in humidity modeling or additional actuators such as
misting systems to ensure comprehensive greenhouse climate management.

8-3 Recommendations for Future Work

Based on the outcomes of this research, the following recommendations are proposed to
address identified limitations and enhance the hybrid modeling and MPC framework further:

• Improved modeling of crop and humidity dynamics: A primary limitation iden-
tified in this thesis was the difficulty in accurately modeling absolute humidity, largely
due to the complexity and variability of crop transpiration dynamics. Future work
should prioritize capturing these crop-environment interactions with greater fidelity, as
transpiration is a key driver of greenhouse humidity and directly influences both climate
control and crop productivity.

• Expanding the model state space to include additional greenhouse variables,
particularly CO2 concentration: Another significant avenue for future research is
the expansion of the model’s state space to include additional greenhouse variables that
are critical for crop growth and resource management. In particular, integrating CO2
concentration as a core state variable represents a logical and impactful next step. CO2
is a primary input for photosynthesis, and its concentration in greenhouse environments
is often actively manipulated to optimize plant growth and yield. Yet, its dynamics
are influenced by ventilation, plant uptake, and climate control decisions, making it a
natural fit for the hybrid modeling framework established in this thesis.

• Seasonal adaptation and continual learning: An important direction for future
work is the development of automated, data-efficient retraining protocols that enable
models to adapt seamlessly to changing greenhouse conditions, crop cycles, and exter-
nal climate variations throughout the year. Leveraging the transfer learning approach
demonstrated in this thesis, future research should explore the creation of online learning
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algorithms capable of continual adaptation. Such algorithms could incorporate seasonal
context features and domain-adaptive strategies, allowing the model to incrementally
update its parameters as new data becomes available. Implementing robust contin-
ual learning would also reduce the need for frequent manual retraining, supporting the
long-term reliability and practicality of greenhouse climate control systems.

• Improved MPC formulation and smoother control actions: Further research
should be dedicated to optimizing the formulation of the MPC problem to achieve
smoother and more realistic control actions in greenhouse environments. This includes
refining cost function definitions and actuator move-suppression strategies to minimize
abrupt changes in control signals, which can improve both system performance and
equipment longevity. In addition, the exploration and implementation of Economic
MPC frameworks offer promising opportunities; these approaches explicitly optimize
for economic objectives such as energy costs, crop yield, or sustainability metrics in
conjunction with climate setpoints. By integrating economic considerations directly
into the control problem, future MPC strategies could provide significant operational
advantages and align more closely with the practical goals of commercial greenhouse
operators.

• More extensive data collection and analysis: This research found that the qual-
ity and representativeness of available data had a decisive influence on model perfor-
mance, particularly for data-driven components such as the LSTM network. Future
work should prioritize the systematic collection of high-quality, high-frequency data
streams covering all relevant greenhouse variables, actuator states, and crop responses
across different seasons and operational conditions. Enhanced data collection will en-
able more robust model training, improve generalization, and reveal critical dynamics or
operational regimes that may not be captured in smaller datasets. Comprehensive data
analysis can also inform model refinement and feature selection, further strengthening
both prediction and control performance.

• Deployment in real-time commercial control settings: To bridge the gap between
academic development and industry application, future efforts could focus on deploying
the hybrid MPC framework in real-time commercial greenhouse environments. This will
require close collaboration with industry partners and growers to integrate the model
into operational control systems. Pilot projects should be established to monitor the
real-world impact of the framework on climate management, crop productivity, and
resource efficiency. Continuous feedback from system operators and growers should be
used to iteratively refine the models and control strategies, ensuring that the approach
remains robust, user-friendly, and aligned with commercial requirements. Real-world
deployment will provide valuable insights into model robustness, usability, and potential
unforeseen challenges, ultimately accelerating the adoption of advanced modeling and
control in the greenhouse industry.

• Wider validation and benchmarking: To fully establish the generalizability and
comparative strengths of the hybrid modeling approach, comprehensive validation across
a wide range of greenhouse systems, crop types, climate zones, and operational scales is
essential. Systematic benchmarking should be conducted against state-of-the-art purely
data-driven models and alternative hybrid modeling frameworks to provide a clear as-
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sessment of predictive accuracy, interpretability, and control performance. Notably,
the effect of transfer learning on closed-loop control performance remains an open and
highly relevant research question, as this could reveal further advantages (or limitations)
of hybrid approaches for real-world deployment. Broader validation and transparent
benchmarking will not only strengthen the scientific foundation of this work but also
facilitate informed decision-making for both researchers and practitioners in the field.

In summary, this thesis demonstrates the potential of combining physics-based modeling
with data-driven learning and transfer learning for practical, interpretable, and accurate
greenhouse climate control. By systematically developing, validating, and integrating hybrid
models, it contributes both scientific insight and practical tools toward the goal of sustainable,
data-driven agricultural intensification.
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List of Acronyms

ANNs Articfical Neural Networks
LSTM Long Short-Term Memory
MAE Maximum Absolute Error
MIMO Multi-Input Multi-Output
MPC Model Predictive Control
MSE Mean Squared Error
ODEs Ordinary Differential Equations
RNNs Recurrent Neural Networks
RH Relative Humidity
RTR Radiation–Temperature Ratio
RMSE Root Mean Squared Error
SINDy Sparse Identification of Nonlinear Dynamics
STLSQ Sequential Thresholded Least Squares

List of Symbols

Abbreviations

α Pipe–air heat transfer coefficient
β Absorption coefficient for solar energy
χ, ψ, ζ, ξ, σ Empirical coefficients for ventilation/transfer
∆t Discrete time step size (s)
ϵ Cover heat resistance (W−1 K)
η Fraction of transmitted solar radiation
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γ Psychrometric constant
λ Latent heat of vaporization (J g−1), function of Tg

Ventlee Leeward vent position (%)
Ventwind Windward vent position (%)
µ Stoichiometric constant for CO2 consumption
ν, τ Empirical parameters for heat transfer
⊙ Element-wise (Hadamard) product
ϕh Heating valve position (%)
Φv Ventilation flux (m3 s−1)
ϕc CO2 supply valve position (%)
ϕinj CO2 injection flux (g m−2 s−1)
ϕlee Leeward vent opening (%)
ϕwind Windward vent opening (%)
σ(·) Sigmoid activation function (in LSTM)
tanh(·) Hyperbolic tangent activation
c̃t LSTM candidate cell state update
Ag Greenhouse floor area (m2)
Ap Heating pipe surface area (m2)
AHin Absolute humidity inside greenhouse air (g m−3)
AHout Absolute humidity outside air (g m−3)
bh, bf , bi, bo, bc LSTM bias parameters for different gates and cell states
Cg Heat capacity of greenhouse air (J K−1)
Ci Greenhouse air CO2 concentration (ppm)
Co Outside CO2 concentration (ppm)
Cp Specific heat of water (J kg−1 K−1)
Cs Soil heat capacity (J K−1)
Dg Vapor pressure deficit (Pa)
dwind Outside wind speed (m s−1)
E Crop transpiration (g m−2 s−1)
Escreen Energy screen position (fraction open/closed)
ft LSTM forget gate (vector at time t)
G Global solar radiation (W m−2)
g Leaf conductance (mol m−2 s−1)
gb Leaf boundary conductance (mol m−2 s−1)
ht LSTM hidden state at time t
it LSTM input gate (vector at time t)
Iglob Global solar radiation (W m−2)
kd Soil–deep soil heat transfer coefficient (W K−1)
kr Cover heat transfer coefficient (W K−1)
ks Soil–air heat transfer coefficient (W K−1)
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kv Ventilation heat transfer coefficient (W K−1)
l1, l2 Empirical coefficients for latent heat
m1,m2 Empirical coefficients for condensation mass flow
Mc Condensation mass flow at the cover (g m−2 s−1)
Np Prediction horizon length (number of steps) in MPC
ot LSTM output gate (vector at time t)
P Photosynthesis rate (g m−2 s−1)
p∗

g Saturated vapor pressure (Pa)
pg Air vapor pressure (Pa)
Q,R MPC weighting matrices (state/output and input cost weights)
R Crop respiration (g m−2 s−1)
s Slope of saturated vapor pressure curve
s1, s2, s3 Coefficients for s
Tc Cover temperature (◦C)
Td Deep soil temperature (◦C)
Tg Greenhouse air temperature (◦C)
Th Heating water supply temperature (◦C)
To Outside air temperature (◦C)
Tp Heating pipe temperature (◦C)
Ts Soil temperature (◦C)
Tair Greenhouse air temperature (main state) (◦C)
Tout Outside air temperature (◦C)
Tpipe Heating pipe temperature (as input, ◦C)
u Control/actuator vector
v Exogenous input/disturbance vector
Vg Greenhouse air volume (m3)
Vi Absolute humidity of greenhouse air (g m−3)
Vo Outside absolute humidity (g m−3)
Vp Heating pipe volume (m3)
w Outside wind speed (m s−1)
W ∗

c Saturated humidity ratio at cover temperature
Wg Humidity ratio of greenhouse air
Whh,Wxh,Wf ,Wi,Wo,Wc LSTM weight matrices
xg Greenhouse state vector
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