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Abstract

This paper introduces a new algorithm that generates
candidate proposals for an object detection pipeline. We
introduce Stochastic Selective Search (SSS), a segmentation
based selective search method, which differs from previous
work in two ways. First and most importantly, SSS is much
faster than current state-of-the-art algorithms while main-
taining comparable accuracy. This is a result of our efficient
stochastic segment merging process. Other work requires
the computation of features to determine the order in which
segments are merged. We show that currently used features
from other work does not improve the results of SSS signifi-
cantly and are therefore omitted. This makes our algorithm
nearly twice as fast as the fastest prior selective search al-
gorithms. Secondly, due to the stochastic merging process
of SSS, it is not critically affected when two wrong segments
are merged during the merging process, which leads to ob-
ject proposals of higher quality. We show that SSS outper-
forms existing deterministic selective search methods while
generating the same amount of proposals in less time. Ad-
ditionally, we demonstrate the performance of our SSS al-
gorithm in a state-of-the-art object detection pipeline based
on convolutional networks.

1. Introduction
Traditional object classifiers try to label an image as be-

longing to some class. To locate an object that is part of a
larger image, object classifiers are often combined with ob-
ject proposal algorithms. Object proposal algorithms create
many subimages as proposals for possible object locations.
An object classifier processes these subimages to determine
the presence of an object in those subimages. The combina-
tion of proposing subimages as objects from an image and
classifying these proposals is called object detection.

An example of an object proposal algorithm is the slid-
ing window technique, which is used in many traditional
object detection algorithms [6, 20, 21, 9]. The sliding win-
dow technique creates object proposals by sliding a window

over the image, sampling the image at each step.
This object detection pipeline has been used for many

years with great results, however it suffers from an inher-
ently inefficient step: the large amount of object propos-
als generated by the sliding window technique. Objects are
often of different shapes and sizes across images, as a re-
sult of which using a single size does not suffice. Com-
monly, multiple different windows are used to slide over
the image using different sizes and aspect ratios. How-
ever, this still often leads to a few hundred thousand ob-
ject proposals. Until recently, object classifiers dealt with
the large number of proposals by using computationally
efficient features[6, 20, 21, 17] or cascaded classification
algorithms[20, 21]. However, the top results from the
ILSVRC2014 competition have been from convolutional
networks, which require a lot of computation per object pro-
posal. It is therefore essential for the object proposal algo-
rithm to propose as few locations as possible for classifiers
such as convolutional networks[14, 4] to work in realtime.

Instead of the exhaustive search approach of a sliding
window technique, selective search algorithms propose lo-
cations based on the contents of the image. Selective search
algorithms[3, 19, 16] generally work much alike. The first
step is to create a segmentation of the image. The generated
segments naturally follow the contours of objects and are
therefore well suited to delineate objects from one another.
In the second step, the proposal algorithm proposes multi-
ple subsets of segments as object proposals. This process
produces significantly fewer proposals than the exhaustive
sliding window technique, which allows the use of classi-
fiers otherwise unfeasible.

Previous selective search algorithms[19, 3, 7] merge seg-
ments in a deterministic manner to create what is called
a segmentation hierarchy. As a result of this hierarchy, a
wrongful merge propagates through to the rest of the hier-
archy and thus to the rest of the object proposals, which
negatively affects the quality of the proposal algorithm.

In this paper, we introduce a stochastic selective search
algorithm (SSS). Instead of creating a segmentation hierar-
chy, SSS selects a given amount of random subsets of neigh-
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Figure 1: A visualization of the different types of categories for creating
object proposals. Subspace[15, 22], prefilter[2, 5], deterministic[19, 3] and
stochastic[16].

boring segments to use as proposals. Unlike the determinis-
tic segmentation hierarchy approach of other algorithms[19,
3], our algorithm is not crucially affected when a wrong
subset of segments is selected as object proposal. Since SSS
does not compute any image features for the segments, the
algorithm is much faster than other algorithms, while main-
taining comparable accuracy.

The algorithm introduced here has the following advan-
tages: it (i) easily recovers from false merges; (ii) generates
any number of proposals, allowing “detection on a budget”;
(iii) is very efficient and easily parallelizable.

This paper first discusses the related work in section 2,
after which we introduce Stochastic Selective Search in sec-
tion 3. Section 4 evaluates SSS and compares it to other
state-of-the-art selective search algorithms and section 5
contains the final conclusions and future work.

2. Related Work
In addition to the already mentioned exhaustive search

and selective search distinction, other types of object pro-
posal algorithms exist. Some improvements over the slid-
ing window technique exists, such as using the appearance
model or using a measure of objectness for the object pro-
posals. This section discusses the different types of object
proposal algorithms. An overview of the categories dis-
cussed is shown in figure 1.

2.1. Exhaustive Search Algorithms

Objects can be of any size, aspect ratio and orientation in
an image, making the complete search space huge. Exhaus-
tive search algorithms, such as the sliding window tech-
nique, try to exhaust a constrained search space in which
the object of interest will most likely be found. This is done
by limiting the possible values of the parameters used. A
face detector for example does not require a wide variety of
aspect ratio values, however some variety in the number of
sizes checked is likely required. Although constraining the

search space helps, a large amount of proposals still need to
be processed. The reduction in number of proposals gener-
ated by selective search algorithms allows the use of compu-
tationally more expensive classifiers such as convolutional
networks. Unlike exhaustive search methods, SSS uses the
contents of the image to guide the proposal generating pro-
cess. Since the proposals of SSS are based upon segments
rather than multiple sliding windows, they provide a much
tighter fit around the objects of interest.

Improved exhaustive search algorithms. Other algo-
rithms [15, 22] use the appearance model to help guide the
sliding window technique. Using a branch and bound tech-
nique, [15] drastically reduces the search space. Although
reducing the number of proposals generated, [1] argues that
for non-linear classifiers [15] still visits over 100.000 win-
dows per image.

FI-SPOT[22] uses the most important features in the ap-
pearance model to quickly prune many of the proposed win-
dows, after which the remaining windows are checked us-
ing the full appearance model. Although an improvement
over the regular sliding window approach, this algorithm
still processes a large amount of windows. The algorithm
introduced here generates far fewer proposals. Similarly as
with the sliding window technique, the nature of segments
used in SSS allow a much tighter fit around objects com-
pared to window based approaches. In addition, the algo-
rithm introduced here does not exclude the use of [15, 22].
Both types of algorithms can be used simultaneously to help
speed up the object detection pipeline even more.

Prefilter step. A subset of exhaustive search algorithms
[5, 2, 11], such as BING[5] and Objectness[2], uses a fil-
ter step on the set of windows obtained through the slid-
ing window technique. These filters determine whether the
window is likely to contain an object of interest by measur-
ing the ‘objectness’ value of that window. If a window is
considered likely to contain an object, it becomes an object
proposal and is passed down to the rest of the object detec-
tion pipeline. Although an improvement over the traditional
sliding window technique, these algorithms still function
as exhaustive search methods and thus have a large search
space to process. SSS produces significantly fewer propos-
als and in addition, the proposals which SSS generates pro-
vide a much tighter fit around the object of interest due to
the nature of segmentation. Since [11, 5, 2] are still window
based approaches, they often fail to get a high overlap with
the object of interest. Also, as with [15, 22], these type of
algorithms do not exclude the use of SSS. SSS can be used
to propose the initial objects, after which [5, 2] could mea-
sures their ‘objectness’ value to determine which proposals
are likely to contain objects.
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2.2. Selective Search Algorithms

In contrast to exhaustive search algorithms, selective
search algorithms extract information from the image to de-
termine which parts are possible object locations. By doing
so, selective search algorithms generally propose far fewer
objects. These segmentation based selective search meth-
ods use a bottom-up approach. In the bottom-up approach,
algorithms start with an oversegmentation of the image and
use combinations of segments to obtain proposals. In a good
oversegmentation, segments do not cross the contour of ob-
jects of interest, however it is allowed for an object to be
composed of multiple segments. It is in this category of se-
lective search algorithms where most recent related work is
found.

Deterministic selective search. Algorithms like gPb[3]
and Selective Search[19] greedily keep merging neighbor-
ing segments together until only one segment remains.
This type of proposal algorithms are deterministic selective
search algorithms. Eventually, these methods create what
is called a segmentation hierarchy. Since these algorithms
[3, 19] build up a hierarchy, each object proposal is depen-
dent on the object proposals down the hierarchy which it
is composed of. An error in the early steps of the merging
process then propagates throughout the hierarchy, influenc-
ing all resulting proposals after the wrongful merge. SSS
does not suffer from this effect, since it is not building up
a segmentation hierarchy. This makes each proposal inde-
pendent from each other, limiting the effect of a wrongful
merge in the process. In addition, deterministic selective
search algorithms need image features to determine the or-
der in which segments are merged. SSS does not compute
image features to help merge segments. This makes SSS
much faster than deterministic selective search algorithms
while maintaining comparable accuracy.

Stochastic selective search. Unlike deterministic selec-
tive search algorithms, stochastic selective search algo-
rithms do not merge segments in a greedy fashion. Instead,
the algorithm introduced here and Randomized Prim’s[16]
produce a chosen amount of subsets from the set of seg-
ments. However, SSS is much faster than Randomized
Prim’s[16], since it does not require the computation of
image features for merging segments. This allows SSS to
process multiple scales at the same time as other selective
search algorithms, similarly to what is done in [19]. With-
out computing features for the segments we significantly
speed up the algorithm, while maintaining comparable ac-
curacy. Experiments comparing the use of features to guide
the process and using no features are discussed in section 4.

3. Stochastic Selective Search
As mentioned in the introduction, all segmentation based

selective search algorithms work much alike, including
Stochastic Selective Search. The first step of SSS is to
perform a segmentation using the Felz-Hutt[10] algorithm
to create an oversegmentation of the image. Based on this
oversegmentation, a graph G(V,E) is constructed that con-
nects every segment (as vertices in V ) with their connecting
neighbors (through edges in E). Then a starting segment
is selected based on the location of its center in the image
and training data from the VOC2012 dataset. This initial
segment is the first of a set of segments which compose an
object proposal. Next, a random number is uniformly gener-
ated in a chosen range to determine the amount of segments
that are added. The process of selecting a starting segment
and adding a random number of segments to generate an
object proposal is repeated n times to generate n propos-
als, where n is selected by the user. This section discusses
each of these steps in detail. An overview of the algorithm
is given below.

Algorithm 1: Stochastic Selective Search
Input : An image, segmentation parameters k and σ,

maximum proposal size ms and the number
of object proposals to generate n.

Output: A list of object proposals in the form of
bounding boxes.

1 Segment the image using [10] with parameters k and σ
2 Create a graph G = (V,E) based on the segmented

image
3 Proposals← ∅
4 for i in range [0, n] do
5 s← Location(V )
6 l← Uniform([0,ms])
7 for i in range [0, l] do
8 s← merge(s,Uniform(N(s)))
9 end

10 Append s to Proposals
11 end

Herein, G is a graph with vertices V (segments) and
edges E, N(s) returns the neighboring segments of seg-
ment s, n is the number of proposals that are generated and
ms the maximum of each proposal in number of segments
added. The Location function returns a segment of V ac-
cording to a prior distribution over locations.

Segmentation. Creating the segmentation is done using
the algorithm of [10] since it is relatively fast, provides ex-
cellent results and is easily configured. The Felz-Hutt al-
gorithm has already proven to work successfully in other
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selective search algorithms[19, 16]. To segment an im-
age, it treats every pixel as a vertex in a graph which has
edges connecting each vertex to its four direct neighbors.
The Felz-Hutt algorithms gives each edge a weight based
on the difference in pixel value for two neighboring pixels.
The edges are sorted based on their weights and processed
one at a time, processing the most similar segments first. If
the connection of an edge is lower than some threshold, the
clusters merge and any connected edges to this new cluster
has their similarity updated. The threshold in the Felz-Hutt
algorithm that determines whether two clusters should be
merged can be changed by setting a parameter k, which in
effect is proportional to the size of the segments that are
produced. A visualization of the effect of different k values
is shown in figure 2b and 2c.

The σ value is used to smooth the image before process-
ing using a Gaussian blur. By smoothing the image, edges
become less sharp, which increases similarity between pix-
els. As with k, the size of generated segments is propor-
tional to the value of σ. A visualization of the effect of
different σ values is shown in figure 2d and 2e. We found
that a value of k = 130 and σ = 1.2 worked well in our
experiments.

Generating the graph. The graph that connects segments
to one another is efficiently computed by going through ev-
ery pixel in the segmented image once, where each pixels’
value is the index of the segment it belongs to. By look-
ing at the right and lower neighboring pixel we record the
neighbors for each segment. In addition, this process allows
us to capture the bounding box of each segment, which is
used later on. Eventually, this process creates a graph G
with vertices (segments) V and edges E, connecting neigh-
boring segments to each other.

Initial segment selection. Selecting a starting segment
is done by selecting one at random with a prior probabil-
ity which favors segments in certain locations. By using
a dataset with annotated segmentations, we compute this
prior probability. We resize all annotated segmentations to
a standard size (we used 512 × 512) and average all the
masks of the segments in the training set to create the loca-
tion prior. A visualization of this prior probability is shown
in figure 3, where we used the segmentation dataset from
the VOC2012 dataset. In our case this prior probability re-
sembles that of a Gaussian distribution, but a different prior
can be trained depending on the application. To determine
the probability for a segment to be selected as starting seg-
ment, we look up the location of its center point in the prior
probability map. We then sample one segment uniformly
using these prior probabilities as weights.

(a) Input

(b) k = 50 (c) k = 200

(d) σ = 0.1 (e) σ = 1.5

Figure 2: Results of the segmentation algorithm of [10] for varying pa-
rameters. (a) Shows the input image. The rest of the images show the
segmented result for (b) k = 50 and σ = 0.5, (c) k = 200 and σ = 0.5,
(d) k = 100 and σ = 0.1 and (e) k = 100 and σ = 1.5.

Figure 3: A visualization of the location prior used to select a starting seg-
ment using the annotated segmentations from the VOC2012 segmentation
dataset.

Merging. The merging process is done by using the infor-
mation of the graph we created earlier. Each segment has a
list of connected neighbors. Using the starting segment we
uniformly select a neighboring segment and merge the two
segments together. Merging these segments means merging
their list of neighbors and updating their neighbors to notify
them of the newly merged segment. Each time a new pro-
posal is being generated a number l in the range of [0,ms] is
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uniformly generated, where ms is the maximum number of
segments that can get added. During experiments, we found
that a value of 26 for parameter ms appears to give good
results. l segments get added to the selected starting seg-
ment, resulting in a set of (l + 1) segments. This results in
an object proposal, which is one of n proposals generated.
Next, a new starting segment is selected and the process is
repeated n times.

Multiple strategies. As is done in [19], results can be im-
proved by making use of multiple strategies. A strategy in
this sense is a certain configuration of the parameters, where
multiple strategies can be used to create segments of differ-
ent sizes. One strategy may have k and σ set rather small in
order to create fine segments, while a second strategy might
set these parameters quite high to create coarser segments.
This allows SSS to check for objects in multiple scales. Us-
ing multiple scales increases the quality, but lowers the ef-
ficiency. The processing time is linear in the number of
strategies selected, a setup with 10 strategies takes approxi-
mately 10 times longer than a single strategy approach. Par-
allelization can easily be applied here, since the strategies
are completely independent. For the experiments later on
we did not use multiple strategies, since these only compli-
cate the comparison with other algorithms.

4. Experiments
This section describes the experiments we performed to

test the quality and efficiency of SSS and compare it to other
state-of-the-art algorithms.

4.1. Dataset

We use the VOC2007 dataset[8] for evaluation since
many algorithms[13] are already compared using that
dataset, which allows us to easily compare SSS with state-
of-the-art algorithms. The VOC2007 dataset contains 4952
images with one or more annotations per image. A few ex-
amples are shown in figure 4. In total there are 20 classes in
the VOC2007 dataset, such as dogs, trains, birds, bikes, etc.

4.2. Setup

Most selective search algorithm papers[16, 19] compare
the quality of the proposals on a dataset, but we argue that
an object proposal algorithm should optimize both quality
and efficiency to be a viable alternative to the sliding win-
dow approach. We measure efficiency in two ways: as the
time it takes for the algorithm to generate all proposals and
the number of proposals generated. If the object proposal
algorithm is very fast but generates far too many proposals,
the object detection pipeline as a whole still suffers and be-
comes inefficient. In addition, we measure the quality of
the proposals by computing the intersection-over-union[8]
(IoU) score. This value is computed as follows:

Figure 4: A few example images of the VOC2007 dataset with the sup-
plied annotations.

O(a, b) =
Ra ∩Rb

Ra ∪Rb
(1)

Here,O is the intersection over union score for segments
a and b, Rs is the area of the region covered by segment
s, Ra ∩ Rb is the joint area of the region covered by both
segments a and b in number of pixels and Ra ∪ Rb is the
area of the region covered by either a or b in number of
pixels. By computing the maximum IoU score for a ground
truth region with every generated proposal we compute the
best IoU score for that object. We do this for every object
of each class in a dataset and in such a way compute the
average best IoU score for every class. By computing the
mean of these class scores we obtain the mean average best
overlap (MABO) score, which is one value representing the
quality of the algorithm. While optimizing parameters we
use this MABO score.

To compare the quality of algorithms with each other,
we compute the best IoU score for all objects in the dataset
and create IoU detection rate graphs. These graphs show
on the horizontal axis the threshold in IoU score and on the
vertical axis the percentage of detections that have a higher
IoU score. The algorithms in these graphs are compared to
one another through the ‘area under graph’ (AUC) value, as
is done in [13].

In this paper we present five experiments, for which we
created three slightly modified algorithms based on the code
of SSS to ensure the difference in results is caused by a dif-
ference in theory, not in implementation quality. Firstly,
we perform a sensitivity analysis on the hyperparameters of
SSS. We do this by varying the parameters and recording
the MABO, time to process and number of bounding boxes
generated. Secondly, we compare SSS with DSS, a variant
of SSS which constructs a segmentation hierarchy in a de-
terministic manner. Thirdly, we compare SSS to two other
versions of SSS which use features (F-SSS) and weighted
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features (WF-SSS) to guide the merging process of seg-
ments. Fourthly, we compare the quality of SSS with other
algorithms using the code provided by their authors and the
evaluation framework of [13]. Lastly, we use a state-of-the-
art convolutional network[14] to test the effect of SSS in a
complete object detection pipeline.

4.3. Results

Here we present the results from the experiments in the
order as mentioned above.

Sensitivity analysis of hyperparameters. The SSS algo-
rithm uses a few parameters that influences its quality. In or-
der to optimize these values, we performed a 10-fold cross-
validation experiment on the VOC2012 training data. Each
fold evaluates the MABO score of the parameters in some
range, the best scoring value is then scored using the test
data of this fold. These scores determine which parameter
value provides the best end result. A visualization of one
fold of this experiment is shown in figure 5. This cross-
validation experiment resulted in the following optimal pa-
rameters: k = 130, σ = 1.2 and ms = 26. Since a larger
value for k and σ produce larger segments, SSS more often
creates duplicate bounding boxes. Since only the number of
unique bounding boxes is counted, the number of bounding
boxes decreases as these parameters increase.

Deterministic vs. Stochastic Selective Search. In order
to evaluate the difference between creating a deterministic
segmentation hierarchy and selecting subsets of segments
in a stochastic manner, we created a deterministic selective
search algorithm based on the code of SSS. The determinis-
tic selective search (DSS) works very similar to [19] in that
it uses the same features (color, texture, size and fill) to de-
termine the order in which the segments are merged. Since
DSS and SSS share similar code, we are well equipped to
compare the difference in efficiency and quality between a
deterministic segmentation hierarchy and stochastic selec-
tive search. A comparison of SSS and DSS is shown in
figure 6. It is clear that SSS outperforms DSS by a sig-
nificant amount at every IoU threshold, illustrating the po-
tential merits of a stochastic approach over a deterministic
approach.

Effect of using features to guide the merging of seg-
ments. Randomized Prim’s[16] uses almost identical fea-
tures as [19] to guide the merging process. However, it is
interesting to see how effective these features really are; do
features make a significant difference in guiding the process
of merging segments? To evaluate the effect of features as
weights instead of uniformly sampling a neighbor, we cre-
ated a feature based version of SSS (F-SSS). As described

in [16], we also use a logistic function to add weights per
feature. This leads to a small modification: a weighted fea-
tures SSS (WF-SSS) algorithm. An IoU graph of SSS, F-
SSS and WF-SSS is shown in figure 7 and a summary is
shown in table 1. It is shown in both table 1 and figure 7
that using features described by [19] does not significantly
improve the result on the final object proposal algorithm.
SSS scores just marginally lower than F-SSS, however it
is more than twice as fast. This is also shown in figure 8,
where we show the MABO on the horizontal axis and the
average time to process on the vertical axis. The increase
in score does not outweigh the increased time the algorithm
needs to process an image. This result suggests that using
features does not significantly improve the merging process
of segments. This is presumably caused by most objects
having widely varying segments in terms of the features that
are used. Segments from a persons face and hair have com-
pletely different features, however they belong to the same
object.

Algorithm MABO Time (s) # proposals
SSS 0.696 0.174 517

F-SSS 0.697 0.440 524
WF-SSS 0.693 0.437 551

Table 1: Results of comparison between SSS and modifications of SSS
using features (F-SSS) and weighted features (WF-SSS).

Comparison with state-of-the-art. To compare SSS to
state-of-the-art algorithms, we use the framework provided
by [13]. The result of this experiment is shown in figure
9. Computing the data for the framework of [13] amounts
to providing a set of bounding boxes (object proposals) for
each image in the VOC2007 dataset, which we did for all
algorithms but BING, Objectness and the sliding window
technique. These algorithms use the data provided by [13]
to generate the graph. The number behind the names of
the algorithms in figure 9 represent the area under the curve
(AUC) score, whereas the number between parenthesis rep-
resents the average number of object proposals used. As is
shown, both SSS and Randomized Prim’s give the best re-
sults: both obtain an AUC score of 62.9. This is no surprise,
as both methods are very similar. The main difference how-
ever is that SSS is more than twice as fast as Randomized
Prim’s, which is the result of SSS not using image features
to merge segments. A summary of this experiment is shown
in tabel 2. The increase in performance is essential if selec-
tive search algorithms are to be a viable alternative to the
sliding window approach for realtime applications. In figure
9 the sliding window approach performs very poorly. This
is caused by the number of windows the sliding window
approach is allowed to generate. The power of the sliding
window approach is that it exhausts many of the possible
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(a) Results for SSS when varying the parameter k. σ = 1.2, ms = 26, n = 1000.
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(b) Results for SSS when varying the parameter σ. k = 130, ms = 26, n = 1000.
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(c) Results for SSS when varying the maximum number of segments in a proposal. k = 130, σ = 1.2, n = 1000.

Figure 5: Results for varying the parameters of SSS: k, σ and the maximum number segments added per proposals. The number of proposals generated is
always 500. However, only the number of unique proposals are counted in the third column.
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Figure 6: IoU detection rate for deterministic selective search (DSS) and
SSS. DSS took on average 0.47s per image, while SSS took on average
0.17s. The number behind the name is the area under the curve value. The
number between parenthesis is the average number of proposals generated.

windows, but limiting the number of windows generated to
a few hundred cripples the sliding window approach signif-
icantly.

SSS in an object detection pipeline. In order to show that
SSS can improve the result of a complete object detection
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Figure 7: IoU detection rate for SSS, SSS using features (F-SSS) and
SSS using weighted features (WF-SSS). The number behind the name is
the area under the curve value. The number between parenthesis is the
average number of proposals generated.

pipeline, we combined SSS with a state-of-the-art convo-
lutional network[14] using the R-CNN model[12]. The R-
CNN model is a state of the art model which achieved 7th
place in the ILSVRC2014 competition for object detection,
with an average precision of 34.52%. In our setup, SSS gen-
erates object proposals from an image which the convolu-
tional network processes to determine the content. For this
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using features (F-SSS) and SSS using weighted features (WF-SSS).
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Figure 9: IoU detection rate graph for SSS and state-of-the-art algorithms.
The number behind the name is the area under the curve value. The number
between parenthesis is the average number of proposals generated.

Algorithm AUC Time (s) # proposals
SSS 62.9 0.174 381.2
DSS 59.4 0.450 365.5
Sel.Search[19] 61.1 0.416 363.3
Rand.Prim’s[16] 62.9 0.587 399.7
BING[5] 57.8 - 400
Objectness[5] 58.7 - 400
Sliding Window 47.8 - 309.5

Table 2: Results of comparison between SSS and state-of-the-art algo-
rithms.

experiment SSS generated on average 528 object proposals.
We used the ILSVRC2013[18] dataset, because [14] pro-
vides a pretrained model for this dataset. The output of the
detection pipeline contains 200 confidence scores per pro-
posal, one score for each object class in the dataset. Using
non-maxima supression we eliminate many of the object lo-
cations that are covered by more confident detections. The
remaining object detections are used in this experiment. To
compare with other algorithms we also experimented with
the deterministic variant of SSS (DSS) and the original Se-
lective Search[19]. All three algorithms used the same seg-
mentation parameters. In order to compare the results with
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Figure 10: Curve which shows the precision versus recall for SSS, DSS
and Selective Search[19]. All three algorithms generated around 500 ob-
ject proposals.

each other we created a recall-precision graph. Recall is
the percentage of annotated objects that have been prop-
erly detected, whereas precision is the percentage of detec-
tions which were correct. The result for this experiment is
shown in figure 10. This result illustrates that the ability of
Stochastic Selective Search to recover from merging errors
leads it to outperform deterministic selective search meth-
ods.

The convolutional network[14, 12] in our experiments
processed on average 67 object proposals per second. If we
were to use a sliding window technique which generates
a few hundred thousand proposals the detection pipeline
would be much slower. If for example 400.000 object pro-
posals are generated, the processing time would be nearly
6.000 seconds. Instead, the entire pipeline took on aver-
age about 10 seconds when using our setup with a selective
search method. The reduction in number of proposals gen-
erated by selective search methods becomes a significant
advantage in pipelines such as these.

5. Conclusions and Future Work

This paper proposed a new object proposal algorithm,
with as goal to work towards a viable alternative for the
sliding window technique. Existing state-of-the-art object
proposal algorithms, although often of high quality, are not
efficient enough with respect to processing time compared
to the sliding window technique. SSS aims to find a balance
between quality and efficiency. SSS is much faster due to its
simplicity, while it produces candidate locations of the same
quality as current state-of-the-art algorithms. In addition,
SSS is resilient to mistakes made in the merging process,
unlike its deterministic counterpart, and SSS allows the use
of “detection on a budget”. Although not as fast at gener-
ating the object proposals as the sliding window technique,
SSS produces far fewer proposals. Combined with classi-
fiers such as convolutional networks, which require a lot
of computation per object proposal, this results in a much

8



faster algorithm.

Future work. In order to increase efficiency, the segmen-
tation algorithm which is used could be improved. The
segmentation algorithm uses more than half of the time re-
quired for SSS to process an image. In addition, when creat-
ing a deterministic segmentation hierarchy, each object pro-
posal is dependent on the generated object proposals it is
composed of. SSS does not have this dependency, which
would allow the generation process to be run in parallel.

In order to obtain better quality proposals, SSS can be
combined with the appearance model of a classifier. By
adding prior knowledge about the object of interest, such
as its size, color or location in the image, SSS can be im-
proved to use a more directed search for segments matching
those descriptions. In addition it would be interesting to
see SSS combined with other work such as [15, 22, 5, 2] to
potentially improve the quality further without losing much
efficiency.
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