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PREFACE

About a year ago, I was looking for a research subject for my Master Thesis. I really
wanted to do something with Machine Learning and Computer Vision. So, the pattern
recognition group at the faculty of EEMCS was a natural place to start looking. I remem-
ber that Jan proposed a couple of other possibilities, before arriving at the subject of
learning the scale of image features in convolutional neural networks. I must admit that
I did not immediately see why this would be important, but I liked the discussions we
had and I thought Jan would make a good supervisor. Officially however, I needed a pro-
motor from the faculty of applied sciences. It was therefore great to hear that Lucas was
also enthusiastic about the project, and that he wanted to become my promoter despite
his busy schedule. About a month later, I started the project and it has been a wonderful
and educational journey ever since.

Right from the start, I decided to containerize my code inside a light-weight Linux vir-
tual machine with Docker. This turned out to be good decision, because I have ran most
of my experiments in the cloud on high-end GPU servers inside Amazon, Microsoft or
Google data centers. By using docker containers, I could get my experiments up and run-
ning on any machine in just a couple of seconds. This has taught me a lot about Docker,
Linux and Cloud computing. I think all three are valuable skills for the future.

In the beginning progress went quite fast, and we quickly obtained our first results on
simple and small convolutional neural networks. The results looked quite alright, but
it took quite some time to fully understand all the delicate intricacies before we could
move on to more complex neural networks. This is were some of the trouble started. It
turned out the filter sizes became quite large during the training stage and that therefore
the training time was much longer than for normal neural networks. It took me several
months to re-implement the convolutional layer in the frequency domain and to speed
up the performance. Fortunately, I was not on my own in my quest to decrease training
times of neural networks. In the meantime: Amazon had upgraded their servers with
much faster GPUs, Google had released 3 newer versions of the Tensorflow framework,
and Nvidia had released a newer version of their CuDNN library (a library with GPU
primitives for neural networks on which almost all deep learning frameworks are built).
All these improvements combined, resulted in a very large overall improvement which
made it possible to train complex networks in a couple of days rather than a couple of
weeks. It is therefore only very recent that all the interesting results came in, and filled in
the empty pieces of the puzzle.

With this work, I hope that I have created a solid foundation on which other students can
continue to build. The code has been written in C++ as custom Tensorflow operation
and can be imported as self-contained module in Python. In principle this module can

ix
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be used in experiments without any modification. However if modification is needed,
one does not have to worry about checking gradients or verifying thousands of lines of
code. The unit tests will immediately reveal when the code has been broken. Further-
more, the docker image should make it super easy to reproduce or extend the work that
I have done. Everyone should be able to get an experiment up and running on his or her
machine with just a single command.

I hope you will enjoy reading this thesis.

Sten Goes
Delft, September 2017
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SUMMARY

The millions of filter weights in Convolutional Neural Networks (CNN), all have a well-
defined and analytical expression for the partial derivative to the loss function. Hence,
they can be learned with gradient based optimization. Whereas the filter weights have a
well-defined and analytical derivative, the filter size has not. The main reason for this, is
that the filter size is a discretely valued parameter instead of a continuously valued one.
The filter size is thus a fixed parameter, that needs to be selected before the optimization
(training) of the filter weights starts. There is currently no other way to optimize filter
sizes, than with an exhaustive search over multiple CNNs trained with with different fil-
ter sizes.

In this report we propose a new filter called Structured Receptive Field of which the filter
size can be optimized during the training stage. This new filter parameterizes a normal
filter as a linear combination of all 2D gaussian derivatives up to a certain order. In-
stead of learning the weights of the resulting filter directly, we learn the weights of the
linear combination and the sigma of the gaussian derivatives that implicitly define the
filter weights. Furthermore, instead of having a fixed size, the new filter has a variable
size which is determined by the value of the sigma. We truncate the filter size at 3 sig-
mas from the center (rounded upwards to the nearest integer), because at that point the
gaussian derivatives already contain ~99.7% of their total volume and the border values
are almost zero. The advantage of parameterizing normal filters in this way, is that gra-
dient descent optimization of the continuous sigma parameter which has a well-defined
derivative, can be used as a proxy for optimizing the discrete filter size which has no
well-defined derivative.

The basic idea for this parameterization comes from scale-space theory in which the
scale of image features is studied by parameterizing the features with a continuous scale
parameter. Thereby explicitly decoupling the spatial structure of image feature from the
scale at which it occurs in the image. Structured receptive fields have several compelling
advantages: they can learn bigger filters without increasing the number of learnable pa-
rameters and without increasing the complexity of the structure of the filter, their struc-
ture is solely and explicitly controlled by the truncation order of the gaussian derivatives
and the value of the learned continuous scale parameter can provide valuable insights
into the workings and the importance of subsampling layers in CNN architectures.

In this report we both provide theoretical and empirical evidence that structured recep-
tive fields can approximate any filter learned by normal CNNs. I.e. we show that struc-
tured receptive fields of order 4 can approximate the filters in all layers of a pre-trained
AlexNet. Furthermore we demonstrate empirically that structured receptive fields can
indeed learn their own filter size during training, and that this extra ability over normal

xiii



xiv SUMMARY

filters seems to give them an advantage over normal filters when used for classification
tasks. I.e. by replacing normal filters in a DenseNet architecture and keeping every-
thing else the same, a ~1% higher test accuracy was obtained on the highly competitive
CIFAR-10 benchmark dataset. It would not be wise to draw hard conclusions from a sin-
gle training run on a single dataset, but this result definitely looks promising. In future
research we hope to demonstrate that, because of their extra ability to learn their filter
size, replacing normal filters with structured receptive fields will always lead to strictly
better or equal performance.

This thesis was written in partial fulfillment of the requirements for the degree of Master
of Science in Applied Physics at Delft University of Technology. The research has been
conducted in the section quantitive imaging at the faculty of Applied Sciences, and has
been performed in close collaboration with the section pattern recognition and bioin-
formatics at the faculty of Electrical Engineering, Mathematics and Computer Science.

After installing docker, a pre-configured virtual machine can be started with one single command:
docker run -it -p 8888:8888 -p 6006:6006 stengoes/structured-receptive-fields:1.0.0-cpu

The code used in this research is also available at Github:
https://github.com/stengoes/structured-receptive-fields

https://github.com/stengoes/structured-receptive-fields


1
INTRODUCTION

1.1. BACKGROUND
The research field of Artificial Intelligence (AI) studies how machines can be made in-
telligent. A machine is said to be intelligent, if it can perform one or multiple tasks at a
performance level that is comparable or better than that of humans [1]. Computer vi-
sion is a subfield of AI, that focusses solely on building AI systems that solve visual tasks.
Some of the most fundamental visual tasks are classification (what is seen?), localization
(where is it seen?) and segmentation (which pixels belong to which objects?) [2].

For many years, researchers tried to solve these tasks by using a model driven approach.
They tried to model the algorithm for recognizing objects with a set of hand-coded rules.
For example, they would first use hand-coded algorithms to detected edges, ridges, cor-
ners and blobs [3][4][5][6]. From there they would build more sophisticated rules and al-
gorithms to classify or localize the objects of interest. Some of these rule-based systems
actually worked quite well in specifically adjusted environments such as industrial set-
tings, where illumination can be kept constant, partial occlusion and background clutter
can be avoided, and where objects usually have fixed shapes (no elastic deformations).
However, it turned out to be very hard to come up with models that would make these
algorithms work in ‘the wild’ where you do have to deal with problems such as illumina-
tion changes, elastic deformations and intraclass variation.

The big successes came when researchers started to abandon the model driven approach
and started to use a data driven approach instead. Using a data driven approach to build
an AI system is called Machine Learning. The idea is that you have a large dataset of ex-
ample images of which the correct results are annotated by a human expert. The hopes
are that a model with a low prediction error on this annotated dataset, will also perform
well on new and unseen examples that are not annotated [7, 8].

The concepts of machine learning and neural networks are explained in more detail in chapter 2 and 3.

1
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Machine learning algorithms are basically mathematical functions that contain free pa-
rameters and the best values for these parameters can be found by minimizing a loss
function over the dataset of annotated examples. The data driven approach therefore
turns the problem of designing a model into a minimization problem. Hence, we no
longer have to worry about how to design our model, but we let the data do that for us.
Machine learning is particularly useful in situations where it is hard to come up with a
model, but it is easy to collect a large dataset of annotated examples [7, 8].

Since the early beginning of AI, researchers have tried to make machine learning work
for computer vision. Only recently however, large datasets [9] have become available
(Big data) and computers have become powerful enough (GPU programming) [10, 11] to
train the very complex models that are needed to solve these difficult tasks.

For supervised machine learning, it is common to make a distinction between regres-
sion problems and classification problems. In regression problems the goal is to predict
the outcome of a continuously valued function, whereas in classification problems the
goal is to identify group membership. For example, predicting a persons age based on
an image is a regression problem and identifying an object in an image as an apple, an
orange or a banana is a classification problem. Note that regression and classification
problems are actually very similar. A classification problem can be formulated as a re-
gression problem of a decision boundary, with the additional step of checking on which
side of the decision boundary an example lies. Most machine algorithms that can solve
regression problems can thus be extended to solve classification problems as well [7, 12].

There are many different machine learning algorithms that all have slightly different
parametric formulas. Some examples are: linear and logistic regression [13, 14], re-
gression and decision trees [15], support vector machines [16], bayesian algorithms, k-
nearest neighbor algorithms [17] and Artificial Neural Networks [18, 19].

Of all those different algorithms, artificial neural networks are particularly powerful be-
cause they can learn the complex relationships that are needed to solve complex tasks.
Whereas the other machine learning algorithms make prior assumptions on the mathe-
matical form of the relationship between input and output variables (i.e. linear regres-
sion assumes a linear relationship), neural networks with a sufficient amount of neurons
can approximate any relationship without making these assumptions [20–22].

Artificial neural networks are biologically inspired by the human brain. Neuroscientists
discovered that certain brain parts can take over each others functions [23–25]. However
this does not happen automatically. Instead, when taking over functions these parts
need re-learn these functions. This caused some AI researchers and neuroscientists to
believe that the different brain parts can be modeled by exactly the same algorithm and
that this algorithm can be tuned for a particular task by changing the values of its pa-
rameters [26] 1.

1This is sometimes called the ‘one program’ hypothesis and is supported by neuroscientist Jeff Hawkins [26]
and AI researcher Andrew Ng.

https://www.youtube.com/watch?v=AY4ajbu_G3k&feature=youtu.be&t=506


1.2. PROBLEM DESCRIPTION

1

3

A Convolutional Neural Network (CNN) is a type of neural network that is specifically de-
signed to solve tasks involving image data. Whereas other machine learning algorithms
suffer from the curse of dimensionality and cannot handle the high dimensional nature
of raw images (e.g. a separate dimension for each pixel), CNNs are specifically designed
to handle raw images directly [19]. A CNN can therefore optimize the whole pipeline
from the input image to the desired output, which makes it a powerful algorithm [11].

A CNN gradually transforms the input image into the desired output via a series of math-
ematical operations of which convolution is the most important one. These mathemat-
ical operations are commonly referred to as layers and they are stacked in a feedforward
way. Meaning that the output of the previous layer is the input of the following layer.

1.2. PROBLEM DESCRIPTION
The convolutional layer is the core building block of CNNs. It takes a multi-channel
image as input and convolves it with a set of filters, each filter produces a one-channel
output image called a feature map. Convolving an image with a filter, means sliding the
filter (a small window: i.e. 5x5 pixels) over the image and computing a dot product be-
tween the underlying image and the filter weights at every location. High values of the
dot product in the feature map, indicate that input image is very similar to the filter at
that location. The feature maps of different filters indicate the presence and absence of
different image features (small patches), at spatial locations in the input image [12, 27].

The next convolutional layer can treat this stack of feature maps as a new multi-channel
input image to detect the presence or absence of more high level features. By stacking
multiple convolutional layers on top of each other, detection of high level features such
a faces can be decomposed in detection of lower level features such as mouths, eyes,
noses and ears. The detection of these features can then be decomposed in the detec-
tion of even lower level features such as oriented edges, corners, etc. In this way, CNNs
exploit the hierarchical nature of objects in images [28].

After a number of convolutional layers, it is common to make the transition to fully-
connected layers (e.g. a normal neural network) which use the detected features to clas-
sify or localize the objects in the image.

A ‘deep’ CNN typically has between 10 and 100 layers, and these layers combined con-
tain sometimes more than one million free parameters. Fortunately, both the weights
in the fully-connected layers as well as the filter weights in convolutional layers, can be
optimized with a method called gradient descent. In other words, the CNN learns which
image features it should extract from the image in order to make the classification in
the fully-connected layers work best. This optimization is possible and feasible only, be-
cause each weight has a well-defined and analytical partial derivative to the prediction
error of the CNN [29].
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Apart from these weights, there are however also parameters in the CNN architecture
that do not have a well-defined derivative to the prediction error. The reason for this,
is mainly that these parameters are discretely valued instead of continuously. Therefore
they cannot be optimized with gradient descent. A few examples of these parameters
are: the number of convolutional layers, the number of filters in each convolution layer
and the size of the convolutional filters. These parameters are called hyperparameters
and must be selected manually before the training procedure starts.

Currently filter sizes can only be optimized manually by training multiple CNNs with
different filter sizes and seeing what works best. This technique of hyperparameter opti-
mization is in literature often referred to as model (cross-) validation. However this tech-
nique is very time consuming in the case of Neural Networks, and finding the optimal set
of filter sizes is a combinatorial problem that grows exponentially with the number of fil-
ters for which the size needs to be tuned.

1.3. THE IDEA OF THIS RESEARCH
In this report we propose a new filter of which the filter size can be optimized during the
training stage. The basic idea for this new filter comes from scale-space theory in which
the scale of image features is studied by parameterizing the features with a continuous
scale parameter [30]. Thereby decoupling the spatial structure of the image feature from
the scale at which it occurs in an image.

F [x, y,c] =
X

i ∑ O, j ∑ O
i+ j ∑ O

Æi , j ,c
@i+ j

@xi@y j
G

£

x, y ; æ
§

(1.1)

The filter proposed in this report, parameterizes a normal filter as a weighted sum of
all two-dimensional gaussian derivatives up to a certain order O, see equation 1.1. The
resulting effective filter F [x, y,c] is just a normal convolutional filter, but instead of learn-
ing these filter weights directly, we learn the weights of the linear combination Æi , j ,c
and the standard deviation of the gaussian derivatives æ that implicitly define the filter
weights.

k (æ) = 2 d 3æ e+1 (1.2)

Furthermore, in contrast to normal filters that have a fixed filter size k, the proposed fil-
ter has a variable filter size k(æ) that depends on the value of sigma, see equation 1.2. The
gaussian derivatives are truncated at 3 sigmas from their center (rounded upwards to the
nearest integer), because at that point they already contain ~99.7% of their total volume.
The advantage of parameterizing normal filters in this way, is that the continuous sigma
parameter does have a well-defined derivative to the prediction error, whereas the dis-
crete filter size has not. Hence, gradient descent optimization of the sigma parameter
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Figure 1.1: An example of how a structured receptive field with one channel is constructed. The resulting
effective filter on the left hand side, is a weighted sum of gaussian derivatives on the right hand side. The spatial
structure of the filter is completely defined by the weights of the linear combination (the alphas) and the filter
size is defined by the standard deviation of the gaussian derivatives (the sigma). The structured receptive field
in this example contains all derivatives up to order 2, but this truncation order is arbitrary and can be changed
to explicitly control the complexity of the resulting filters.
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Figure 1.2: This figure illustrates the clear distinction between the role of alpha parameters and the sigma
parameter in structured receptive fields. The alpha parameters determine the spatial structure of the filter,
while the sigma determines the scale of the filter. Structured receptive fields can, in contrast to normal filters,
learn bigger filters without increasing number of learnable parameters and without increasing the complexity
of the spatial structure. The complexity of the spatial structure is controlled by the truncation order of the
gaussian derivatives.
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can be used as a proxy for optimizing the discrete filer size.

Figure 1.1 illustrates how the effective filter is build from a weighted sum of gaussian
derivatives. Because the proposed filters are structured by a set gaussian derivatives of
which is shown that they can accurately model the response of receptive fields in the vi-
sual cortex [30, 31], we will call these filters Structured Receptive Fields.

The spatial structure of the filter is determined by the weights of the linear combination
and scale is determined by the standard deviation of the gaussian derivatives. This clear
and clean distinction between the role of these parameters is illustrated in Figure 1.2.
This figure shows that the sigma parameter can change the filter size without changing
the spatial structure of the filter, and vice versa. This is a key characteristic of structured
receptive fields: in contrast to normal filters, they can learn bigger filters without in-
creasing number of learnable parameters and without increasing the complexity of the
spatial structure. The complexity of the spatial structure is controlled by the truncation
order of the gaussian derivatives. By including higher order derivatives the filters can
represent more complex structures. This is another key characteristic of structured re-
ceptive fields: in contrast to normal filters, you can explicitly control the complexity of
the spatial structure.

In this research we continue on the work of Jacobsen et al. [32] who showed that struc-
tured receptive fields are to be preferred over normal filters when only few training exam-
ples are available. However in their research, only the structure of the filters (the alpha
parameters) was learned and scales were selected manually, while in this research both
the structure and the scale will be learned. See the related work in section 1.5, for more
a detailed discussion.

1.4. RESEARCH QUESTIONS
The main research question of this report is:

Can structured receptive fields replace normal filters in any CNN architecture with an
always strictly better or equal performance in classification tasks?

This main question sets a quite ambitious goal, and we might not be able to answer it
conclusively. Therefore we divided the main question into a set of subquestions that we
should be able to answer. The goal of these subquestions is to provide a proof of concept
that demonstrates the practical potential structured receptive fields. Hence, it should at
least bring us a step closer to answering the main question.

Proof of concept
The proof of concept should answer the following subquestions:

1. Can structured receptive fields approximate all the filters that learned by normal
CNNs, despite their imposed mathematical form?
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2. It is possible to learn the feature scale (filter size) of structured receptive fields dur-
ing the training stage?

3. Does the usage of structured receptive fields provide an advantage over using nor-
mal filters, in classification tasks?

Besides a possible advantage over normal filters in classification tasks, there are extra
applications that are unique to structured receptive fields. These applications arise from
the fact that structured receptive fields, in contrast to normal filters, contain an explicit
and continuous scale parameter that is learned during the training stage. As a bonus we
will therefore, also investigate two extra use-cases of structured receptive fields.

Extra applications
The extra applications are investigated by answering the following subquestions:

1. Can the learned scale parameters be adjusted manually after the training, to change
the global scale at which the whole CNN operates? I.e. is the CNN able to classify
the same image correctly over a range of different scales while being trained on
images of a single scale only, if we select the right global scale?

2. Is it possible to use the learned scale to investigate the role of subsampling layers
in CNNs? I.e. when subsampling layers are omitted, do the structured receptive
fields learn larger feature scales for the subsequent convolutional layers and what
happens to classification accuracy?

The subquestions regarding the Proof of concept and the Extra applications will be an-
swered in chapter 5 and 6 respectively. The main question will be answered in the con-
clusion in chapter 7. The answers to all the subquestions will also be repeated there, to
give a complete overview of all the results in this research.

1.5. RELATED WORK AND HISTORICAL CONTEXT
This section will provide an overview of related work and simultaneously it will try to
place this research into historical context.

STRUCTURED RECEPTIVE FIELDS IN PREVIOUS WORK

First and foremost it should be mentioned that this research continues on the work of
Jacobsen et al. [32], who showed that structured receptive fields have the advantage over
normal filters when only few training examples are available. The fact that structured
receptive fields have some desirable properties that do not have to be learned, makes
them more powerful when the amount training data is limited. While the focus of their
research is mainly on the structure of features (in relation to small training sets), this re-
search focusses on the scale of features. More concretely, in their research the structure
of the features is learned and scales are selected manually, while in this research both
the structure and the scale will be learned.
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Figure 1.3: Atonomy of the eye, including the retina on which light gets projected (Source: National Eye Insi-
tute, NEI)

BIOLOGICAL STUDY OF THE VISUAL SYSTEM

It was shown that gaussian derivatives up to 3rd and 4th order, can accurately model the
signals to which cells in the visual cortex respond [30, 31]. Since many of the previous
work was inspired by these findings, we will give a brief overview of the workings of the
human visual system.

The components involved in the ability of living organisms to perceive and process vi-
sual information are referred to collectively as the visual system. The visual system starts
with the eye (see figure 1.3), light entering the eye passes through the cornea, pupil and
lens. The lens then refracts the light and projects it onto the retina. The retina consists
of two types of photoreceptor cells, rods and cones. The rods and cones fulfill a different
purpose. The rods are more sensitive to intensity and less to color, while the cones are
less sensitive to intensity and more to color [33]. The rods and cones are connected to
ganglion cells. Each ganglion cell covers a different region on the retina and therefore
receives light from a different spatial location. The regions covered by these ganglions
are called Receptive Fields [34].

The receptive field of a ganglion cell is organized in two concentric layers, the center
and the surround. The ganglion cell fires differently depending on whether light falls on
the center, the surround or both. The ganglion cells in the eyes are connected via other
cells to the lateral geniculate nucleus (LGN) in the brain. The LGN relays the signals of
multiple ganglions to simple and complex cells. By combining the responses of multi-
ple ganglion cells, a more complex response to a bigger receptive field is formed. The
workings of this can be seen in figure 1.4. In the 1950’s Hubel and Wiesel won a Nobel
prize for showing that these complex cells respond primarily to edges and gratings of a
particular orientation [35] 2. The edges and gratings to which complex cells respond can
be accurately modeled in terms of Gaussian derivatives up to 3rd-4th order [30, 31].

2There is an online video in which Hubel and Wiesel perform their experiment on a cat. It shows how complex
cells in the visual cortex respond to edges and gratings of a particular orientation.

https://www.youtube.com/watch?v=KE952yueVLA
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Figure 1.4: On the left we see how the firing of multiple ganglion cells combines to the firing of a complex cell.
The firing of three ganglion cells propogates through the LGN via the simple cell to the complex cell. The three
ganglion cells form the receptive field of the complex cell, and in this example the complex cell fires as result
of the detection of a horizontal edge. On the right it we see that the ganglion cell does not fire because light
falls both on the center and the surround.

SCALE-SPACE THEORY

Although never used in combination with CNNs, the idea of describing image features
in terms of gaussian derivatives of which the standard deviation serves as a continuous
scale parameter is not new. In fact a whole mathematical framework has been developed
to study the scale of features in images. This framework is called Scale-space theory and
was primarily developed in the 1980s and 1990s by Witkin [36], Koenderink [37], Linde-
berg [38] , Florack [39] and Romeny[40]. The framework aims at studying the multi-scale
nature of images. This multi-scale nature originates from the fact that the distance from
objects to the imaging apperatus (i.e. a CCD cameara, a telescope, a microscope or the
human eye) may vary. This varying distance causes the appearance of objects in the
image to change inevitably. When the distance becomes too big, small objects may dis-
appear or many small objects may merge into one bigger looking object. Scale-space
theory describes the process of imaging of a real physical space at a certain scale in a
mathematical way, hence the name Scale-space theory.

Starting from a set of desirable properties called scale-space axioms, they showed that
only convolution with gaussian kernel exhibits all of the properties needed to describe
the imaging process [30, 37]. These properties include amongst others: linearity, shift
and rotation invariance and the non-creation and non-enhancement of local extrema
as scale increases. The gaussian smoothed images form a scale-space representation, in
which the discrete spatial dimensions of the image are extended by a continuous scale
dimension. The variance of the gaussian fulfills the role of the scale dimension and is
called the scale parameter. In this representation the original image corresponds to the
scale dimension being zero. This is called the inner scale of the image and is determined
by the imaging apparatus. For example images from a microscope have a different inner
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scale, than images made with a telescope. The purpose of the scale-space representation
is that the same structures (features) can be detected at different scales if the appropri-
ate scale is selected. It has been shown that scale selection can be done automatically for
the structures that are expressed in terms of gaussian derivatives [41]. The procedure ba-
sically corresponds to the selecting the scale at which the feature response is strongest.
Some examples of these differential structures (features) are: blobs, edges, ridges and
corners. Structured receptive fields relate to these features in the sense that they are also
expressed in terms of gaussian derivatives.

FILTER SIZES IN NORMAL CNNS

As far as we are aware, this is the first time that the filter sizes are learned during the
training stage 3. In the past however, a lot of research and effort has gone into manually
selecting filter sizes. In 2014 the Visual Geometry Group (VGG) won the ImageNet com-
petition using a very deep CNN with only 3x3 filters [43]. Their main argument for using
3x3 filters only, is that a stack of multiple 3x3 filters has the same effective receptive field
as large filter while containing less parameters. For example, a stack of three 3x3 filters
contains 27 parameters and has the same effective receptive field as one 7x7 filter which
contains 49 parameters. They argued that using less parameters while still being able to
learn large effective filters, has a similar effect as regularizing large filters. This relates
to structured receptive fields, which can also increase their filter size without increasing
the number of parameters.

A TREND TO USE INCREASINGLY DEEPER CNNS

A difference with the VGG-network is that in the VGG-network the effective filter is dis-
tributed of multiple convolution layers with non-linear activation functions in between.
They showed that not only the usage of the 3x3 filters, but also the usage of these extra
non-linearities makes the network more powerful. In the years to follow, much of the re-
search has shifted from selecting optimal filter sizes towards training deeper CNNs with
only 3x3 filters. Much of this research has been devoted to fighting the vanishing gra-
dient problem 4 that comes with these deeper CNNs. Recently some groups were able
to reduce this vanishing gradient problem by introducing skip-connections from lower
to higher layers. For the sake of completeness, we will mention some of the successful
architectures: Highway [44], Residual [45], Stochastic Depth [46] and Densely Connected
Neural Networks [47]. Densely Connected Neural Networks or simply DenseNets, cur-
rently hold the state-of-the-art results on many of the benchmark datasets for classifica-

3While working on this thesis, work has been published [42] in which the filter size is also learned during
the training stage. However they use a different method in which they linearly interpolate between a virtual
border of 1 pixel and the current border of the filter. The key differences with respect to our approach is that
their filters are more like normal filters because they are non-parametric, whereas structured receptive fields
are parametric. Hence their filters do not decouple the structure from the scale, and they have no way to
control the complexity of the structure as the size of the filter increases. Furthermore, they compare their
method on different datasets and to different baseline results than this report.

4The vanishing gradient problem occurs when derivatives of the prediction error w.r.t. parameters becomes so
small that training the parameters with gradient descent takes forever. This typically happens for parameters
in the lower layers of very deep convolutional neural networks.
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tion, including the SVHN [48], ImageNet [9] CIFAR-10 and CIFAR-100 datasets [49]. In
this report, we compare the original DenseNet architecture with a DenseNet architec-
ture in which all normal filters have been replaced with structured receptive fields, on
the CIFAR-10 dataset.

GABOR WAVELETS IN CNNS

Last but not least, we should mention that gaussian derivatives are not the only basis
filters that can be used to structure filters. For example, in both [50] and [51] Gabor
Wavelets were used instead of gaussian derivatives. Gabor wavelets look a lot like gaus-
sian derivatives, because they are sinusoids that are modulated by a gaussian envelope.
The standard deviation of the gaussian could therefore also serve as a continuous scale
parameter. However like in Jacobsen et al. [32] they manually selected the scale parame-
ters and the wavelets were only used to structure the filters, and not to learn the feature
scale.

1.6. REPORT STRUCTURE
The remainder of the report is used to discuss the findings of this research.

Part I contains a comprehensive introduction to machine learning and artificial neural
networks. These chapters are highly recommended for readers that have little or no ex-
perience with machine learning. Chapter 2 explains how machine learning uses a data
driven approach to build prediction models. Chapter 3 zooms in on a particular group
of machine learning algorithms called artificial neural networks. It explains what neural
networks are, how they work and why convolutional neural networks are so particularly
useful for solving problems involving image data.

Part II describes the experimental-methods, it covers all the implementation details of
structured receptive fields. It describes how the filter size of structured receptive fields
can be learned, which differences there are compared to normal filters, and how struc-
tured receptive fields can be implemented in a convolutional layer, in a computationally
efficient manner.

The experiments and results are featured in Part III. Chapter 5 contains three Proof of
concept experiments. The first experiment investigates the ability of structured recep-
tive fields to approximate any filter learned by normal CNNs. The second experiment
questions the extra ability of structured receptive fields over normal filters, to learn their
own filter size. The third and final experiment investigates whether structured receptive
fields provide an actual advantage over normal filters, when used in classification tasks.
Chapter 6 explores two Extra applications that are unique to structured receptive fields.
The first application explores whether the learned scale parameters can be adjusted af-
ter the training stage, to change the global scale at which the CNN operates. The second
application explores whether structured receptive fields can be used to investigate the
role and the importance of subsampling layers in CNNs.
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Part IV wraps up the entire research. Chapter 7 summarizes all the results and conclu-
sions. By doing so, this chapter answers the sub- and main research questions of this
report. The importance of these answers for the scientific world are discussed in chap-
ter 8, as well as the limitations of our method. Finally, a few things are mentioned that
we would have done differently in hindsight, before we recommend the most promising
and interesting directions for future research.
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2
INTRODUCTION TO MACHINE

LEARNING

Machine learning is the subfield of computer science that
gives computers the ability to learn without being explicitly programmed.

Arthur Samuel, 1959

T HIS chapter will explain how machine learning can be used to build a prediction
model. A good prediction model can predict a quantity that is not (yet) directly ob-

servable/measurable, through a set of input quantities that are directly available. An ex-
ample is predicting the price of a house based on its square-footage, number of rooms,
number of bathrooms, etc.

This chapter starts by giving a general overview of how to build a prediction model. Sec-
tion 2.2 and 2.4 explain how a machine learning algorithm learns the relationship be-
tween the output and input variables, from a dataset of examples. The different branches
of machine learning are mentioned in section 2.3, before restricting ourselves to super-
vised learning branch only. Section 2.5 features the different algorithms that can be used
for supervised learning. We will see that Neural Networks constitute a particular group
of algorithms. The main issue with learning a relationship from a dataset of examples is
called overfitting and will be covered in section 2.7. The final section discusses the recent
popularity of Machine Learning and Neural Networks in particular. It will explain which
breakthroughs in the development of Neural Networks have led to the current hype of
Deep Learning, before explaining what Neural Networks are in the next Chapter.

15
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2.1. BUILDING A PREDICTION MODEL
The goal of building a model is to find the relationship between input and output. This
goal is reached once a relationship is found that can make accurate predictions on the
output given a specific input. In computer science such a relationship is represented as
an algorithm. In mathematics it is described by a function f (·) with input~x and output~y .
In general,~x and~y are vectors, since the problem can have multiple inputs and outputs.

f (~x) =~y (2.1)

This simple and very general equation will be the starting point for explaining what ma-
chine learning is.

In equation 2.1 the model f (~x) on the left hand side is used to predict the output ~y on
the right hand side. The model consists of two parts: the relationship f (·) and the choice
of input information ~x. Each component of the input vector holds a different piece of
information, which is called a feature. For example, if you want to forcast the price of a
house you could base your prediction on the following 3 features: square-footage, num-
ber of rooms and number of bathrooms. In that case the input would be a 3-dimensional
feature vector.

So in order to build a good model, there are two questions that need to be answered:

1. Which features do we need in~x to be able to make accurate predictions on~y ?

2. Given the information~x, what is the relationship f (·) that makes the most accurate
predictions on~y ?

The answer to the first question depends on the problem that you are trying to solve.
For problems with image data however, it is quite common to take each pixel value as a
seperate input feature and thereby incorporating every bit of information there is. Since
the focus of this research is mainly on image data, I will not elaborate any futher on how
to answer this first question. Instead, I will focus on answering the second question: how
to find the best relationship f (·) given a certain set of input features~x ?

2.2. THE MACHINE LEARNING APPROACH
The idea of machine learning is that the relationship f (·) can be learned purely by ob-
serving a large number of example input-output pairs (~x,~y). In principle it can learn this
relationship, without making assumptions on its form nor does it require explicit human
instructions or prior knowledge to find it. This defines machine learning as a form of Ar-
tificial Intelligence (AI).

2.3. BRANCHES OF MACHINE LEARNING
The examples of input-output pairs from which the machine learns the relationship,
is called a dataset. Although a dataset always contains examples of input, it does not
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necesserily contain information about the corresponding output. The field of machine
learning is subdivided into the following three branches, based on what is known about
the output:

• Supervised learning (~y is known).

• Unsupervised learning (~y is unknown).

• Reinforcement learning (~y is currently unknown, but at some moment in the fu-
ture one will be able to infer what~y should have been). 1

The division of these branches is only mentioned for the sake of completeness. In the
remainder of this report we will restricted ourselves to datasets where the corresponding
output is known. So, this research report will focus on supervised learning only!

2.4. SUPERVISED LEARNING
In supervised learning, it is common to make a distinction between regression problems
and classification problems. In regression problems the goal is to predict the outcome of
a continuous valued function, whereas in classification problems the goal is to indentify
group membership. For example, forecasting the price of a house is a regression prob-
lem and identifying a fruit as an apple, an orange or a banana is a classification problem.

Note that regression and classification problems are actually very similar. A classifica-
tion problem can be formulated as a regression problem of a decision boundary, with
the additional step of checking on which side of the decision boundary an object lies. A
decision boundary is essentially a continuous valued function (a surface) that seperates
two classes. For example, the surface of the earth is the decision boundary that seperates
points inside the earth from points outside the earth. Most machine algorithms that can
solve regression problems can thus be extended to solve classification problems as well.

But how does one solve a regression problem? How does one find the mathematical
function that best describes the relationship between a set of corresponding input-output
pairs? In general one starts by picking a family of functions. A family of functions is a
function definition that contains free parameters. For each valid set of parameter values
it defines a different function. Equation 2.2 shows for example the family of linear func-
tions. The variable x designates the function’s argument, but µ0 and µ1 are parameters
that determine which particular linear function is being considered.

fµ(x) = µ0 +µ1x (2.2)

The next step is finding the parameter values that minimize the difference between the
model prediction ~̂yi = fµ(~xi ) and the actual value ~yi of all examples in the dataset. In
literature there are many different names for the process of finding the right parameter

1An example of this is gameplay. In games it is sometimes hard to determine what the best action is. However
a few steps later in the game, it might be possible to infer whether the action was good or not.
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values. Some commonly used names are: optimizing, training, learning, fitting and re-
gressing.

The total amount by which the predictions deviate from the actual values is measured
by a loss function, which usually combines errors of all individual examples into a single
number. 2 There are many different loss functions, but the most common are the cross
entropy loss for classification problems and the mean squared error (MSE) for regression
problems. 3

So, learning a relationship simply boils down to picking the right family of functions and
finding the best values for its free parameters. In supervised learning, these parameter
values can be found by minimizing a loss function over a dataset with labeled examples.
But how does one choose the right family of functions?

2.5. DIFFERENT SUPERVISED LEARNING ALGORITHMS
This is a good moment to introduce the different supervised machine learning algo-
rithms. I will start by presenting an extensive but by no means complete list of the dif-
ferent categories and subcategories of supervised machine learning algorithms:

• Regression algorithms.

– Linear regression. 4

– Logistic regression.

• Bayesian classifiers.

– Naive bayes classifier.

– Nearest mean classifier.

– Linear discrimant analysis.

– Quadratic discrimant analysis.

– Parzens classifier.

• K-nearest neighbours algorithms.

• Decision trees.

– Random forests

• Support vector machines (SVM).

– Linear SVM.

– Non-linear SVM.

• Artificial Neural networks (ANN).

– Recurrent networks.

– Feedforward networks.

¶ Fully-connected networks.

¶ Convolutional networks.

The list might seem quite overwhelming, but it is important to realise that each of these
algorithms is fundamentally nothing more than a particular family of functions with free
parameters and that these parameters can be optimized to change the behaviour of the
algorithm. Figure 2.1 serves as an illustration of this idea.

2Almost all loss functions can be writen as a sum over the losses of the individual training examples. A loss
function of this form is required when using batch gradient descent to optimize parameters.

3Some other loss functions are the zero-one loss, the hinge loss and the Kullback–Leibler divergence.
4Linear regression is probably the simplest and most known supervised machine learning algorithm. However

people usually don’t realise that it is a machine learning algorithm.
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Figure 2.1: The same two-dimensional (x1, x2) and binary (triangle vs. circle) classification problem solved
by three different machine learning algorithms: a decision tree, logistic regression and the support vector ma-
chine. As usual in classification problems, first a decision function gµ(~x) is regressed and the final classification
is done by checking on which side of the decision boundary an object lies. The decision boundary is the line
g (~x) = 0 and the color coding of the different regions reflects how certain the classifier is that an object lying
in that region, belongs to a particular class. Geometric meaning of the free parameters is shown for the sake of
completeness. Because of the different decision functions and the fact that they are all combined with different
loss functions, each decision boundary is an optimum of a slightly different objective.

In Figure 2.1 the same two-dimensional (x1, x2) and binary (triangle vs. circle) classi-
fication problem is solved with three different machine learning algorithms. As usual
in classification problems, first a decision function gµ(~x) is regressed and the final clas-
sification fµ(~x) is done by checking on which side of the decision boundary an object
lies. Although each algorithm has a different decision function, they all contain free pa-
rameters. So a supervised machine learning algorithm is nothing more than a family of
functions with free parameters that can be optimized by minimizing a loss function over
a dataset with labeled examples.

The optimization techniques that can be used to find the optimal parameter values, are
determined by the loss function and the particular algorithm that is being used. They will
also determine whether finding a global minimum can be garuanteed or not. For exam-
ple, in the case of linear regression with a mean squared error finding a global minimum
can be garantueed. The parameter values can be computed via a closed form solution
which is known as the normal equations. In the case of the linear SVM with a hinge
loss, a global minimum can also be garantueed. The Karush–Kuhn–Tucker conditions
transform the minimization problem with constraints into a constraint free minimiza-
tion problem that can be solved with a technique called quadratic programming. So
the training of a machine learning algorithm is just an optimization problem (possibly
with contraints) and all the theory from that subfield of mathematics applies. In the next
chapter we will see that for Neural Networks a global minimum cannot be garantueed,
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and that batch gradient descent is the only feasible technique that can be used to opti-
mize parameter values.

2.6. CHOOSING THE RIGHT ALGORITHM
The choice of algorithm ultimately determines which shapes the decision boundary can
take on. In figure 2.1, it is seen that the decision boundary of a decision tree takes on
a different shape than the ones of logistic regression and the SVM. Therefore, it is diffi-
cult to say which algorithm one should use, because it depends on how the examples of
the classes are distributed in the feature space and these distributions are usually hard
to visualize because the data is very high dimensional. Algorithms with many free pa-
rameters, can form more complex shaped decision boundaries and this enables them to
seperate classes that are clustered in more complex ways. This makes them more pow-
erful than simple algorithms because they can be applied to a wider variety of problems.
However, when an overly complex algorithm is used a problem will arise that is called
overfitting. Overfitting is a problem that is inherent for the way in which a relationship
is learned in machine learning. It results from the fact that the algorithm can adapt itself
too much to the pecularities of examples in the training set, while you actually want it
to generalize well to new and unseen examples. The problem of overfitting will be ex-
plained in more detail in the next section.

2.7. MODEL PERFORMANCE AND UNDER- AND OVERFITTING
In supervised learning, the labeled dataset that is used to train the model is called a train-
ing set. Applying the trained model to this dataset is obviously of little interest, since the
answers of these examples are already known. Instead the main goal is to find a model
that generalizes well to unseen data. That means that it make accurate predictions on
unseen samples of which the answers are unknown. It is therefore very common to mea-
sure the performance of the trained model on a seperate dataset called a test set. Just like
the training set, test set examples are labeled with the right answer the only difference is
that these answers are not used for training the model parameters, but only for measur-
ing the model performance.

The main objective of maximizing the performance on the test set does not always corre-
spond well to minimizing the loss function over the training set. For complex algorithms
that have many free parameters, the performance on the training set is usually a lot bet-
ter than on the test set. In order to understand this, we will make the distinction between
learning general rules and learning specific rules. General rules apply to almost all exam-
ples in the training set and specific rules apply only to certain examples in the dataset.
These specific rules are usually unwanted, because they only cover the pecularities of
the training set and therefore make generalization to unseen samples harder.

Figure 2.2 shows the decision boundary of three algorithms that were trained using the
same dataset. Each algorithm has a different level of complexity: a different amount of
free parameters. The decision function on the left is so simple that it cannot even learn
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Figure 2.2: An example of three decision boundaries with different levels of complexity, that are trained on the
same dataset. The decision function on the left is so simple that it cannot even learn general rules, while the
decision function on the right is so complex that it can learn specific rules on top of the general rules. The
decision function in the middle is just right and probably has the best performance on new samples that are
not in the training set.

general rules, while the decision function on the right is so complex that it can learn spe-
cific rules on top of the general rules. The decision function in the middle is just right
and probably has the best performance on new and unseen samples. So when a model
is too simple it will perform badly on both the training and the test set, and when it is
too complex it will perform very good on the training set but suboptimal on the test set.
These two scenarios are respectively called underfitting and overfitting.

It is important to realize once more, that it is usually hard to visualize the data because it
is very high dimensional. So figuring out whether the algorithm is underfitting or over-
fitting really comes down to measuring and comparing the performance on the training
and test set.

2.8. THE RECENT POPULARITY OF MACHINE LEARNING
The fact that machine learning does not require human prior knowledge to find a re-
lationship, makes it very powerful in situations where this knowledge is absent 5. For
example, when you suspect a relation between input and output variables but you have
no idea how to model this relationship. The procedure for finding this relationship with
machine learning is quite straightforward:

1. Collect a dataset with input-output examples.

2. Pick a supervised machine learning algorithm and define a loss function.

3. Let the optimizer find the parameter values that minimize this loss function.

5Although prior knowledge is not required for finding the relationship, it is still very important for choosing
the right features!
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Note that this procedure does not contain any problem specific assumptions and is
therefore applicable to a wide variety of problems.

We currently live in world of Big-Data, which means that collecting a large dataset is
usually not very hard. These large datasets enable the training of more complex algo-
rithms without overfitting them on the training set. These complex algorithms are capa-
ble of solving more complex problems that had not been solved before. Some examples
of these problems are: beating humans at the game of Go, building cars that can drive
autonomously and automatic diagnosis of patients based on medical images. Recent
developments in Distributed computing, Cloud computing and Parrallel programming
on the GPU, have provided all the tools needed for training these complex algorithms in
a time efficient manner. All of the above has resulted in a recent growth in popularity of
machine learning algorithms and neural networks (Deep Learning) in particular.

The reason why neural networks are so powerful lies in the fact that they can approxi-
mate any continuous function [20]. For a classification problem this means concretely
that the decision boundary can take on any shape, while the shapes of other algorithms
are restricted to a particular set. This arguably makes neural networks the most powerful
algorithm of all machine learning algorithms: it can learn any relationship without mak-
ing assumptions on the mathematical form. 6 However this does mean that they suffer a
lot from the problem of overfitting. In the next chapter we will see what neural networks
are and how the problem of overfitting is substantially reduced for problems involving
image data, when convolutional neural networks are used.

6Keep in mind that selecting the input features is also a very crucial part of building a prediction model! For
example, it is impossible to give a very precise estimate of the price of a house, when that estimate is based
solely on the color of the front door.
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I think people need to understand that deep learning is making a lot of things,
behind-the-scenes, much better.

Geoffrey Hinton

T HIS chapter will give an introduction to a particular group of machine learning algo-
rithms called: Artificial Neural Networks. There are several types of neural networks,

but the main focus of this chapter will be on Convolutional Neural Networks. In this
chapter we will see what neural networks are, how they work and why convolutional
neural networks are so particularly useful for solving problems involving image data.

The chapter starts by describing how the working of the human brain, served as an in-
spiration to come up with artificial neural networks as a single algorithm that can be
tuned for a wide variety of different tasks. The neuron is the main building block of neu-
ral networks, and is covered in section 3.2 and 3.3. A neuron is a simple processing unit
that takes incoming signals from other neurons, processes them, and sends an outgoing
signal to other neurons. In section 3.4 we will see that different types of neural networks
can be formed by connecting neurons in different patterns. Section 3.5 features fully-
connected neural networks as a prelude to explaining convolutional neural networks in
section 3.6. We will see that fully-connected neural networks do not work well when ap-
plied directly to images, and that the local connectivity pattern of convolutional neural
networks solves these problems by exploiting the spatial structure of images. The final
sections describe the training of neural networks, before continuing to the next chapter.
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3.1. A LEARNING ALGORITHM INSPIRED BY THE HUMAN BRAIN
In the previous chapter, it was explained that supervised machine learning algorithms
are mathematical functions that contain free parameters, and that the right values for
these parameters can be found by minimizing a loss function over a dataset of labeled
examples.

There are many different types of supervised machine learning algorithms. The precise
mathematical structure of the algorithm determines which types of relationships it can
learn. I find it convienent to imagine the type of relationship as the shape of a deci-
sion boundary in a classification problem. A linear function can only produce a decision
boundaries that are straight lines. These straight lines can be rotated and translated by
changing the parameters, but it can never be transformed into an ellipse. A quadratic
function on the other hand, can produce ellipses but also a straight lines by setting the
parameters of the quadratic terms to zero. This leads to the question: is there an al-
gorithm that can learn every possible decision boundary? In other words, is there an
algorithm that can approximate every possible mathematical relationship? The answer
is yes and it is the Artificial Neural Network (ANN).

The artificial neural network is an algorithm that is biologically inspired by the human
brain. Neuroscientists discovered that after a stroke, other brain parts can take over the
functions of the lost part. However this does not happen automatically. Instead the pa-
tient needs to re-learn these functions. This caused AI researchers to believe that the
different brain parts can be modelled by exactly the same algorithm and that this algo-
rithm can be tuned for a particular task by changing the values of its parameters. They
called this algorithm the Artificial Neural Network.

3.2. A NETWORK OF NEURONS
The artificial neural network is a mathematical function that aims to describe how the
human brain processes information. The brain is a biological neural network, that con-
sists of a series of interconnected neurons. Each neuron is a simple processing unit that
takes incoming signals from other neurons, processes them, and sends an outgoing sig-
nal to other neurons. Although each individual neuron is quite simple, by connecting
trillions of these simple neurons a complex network is formed that we call the human
brain.

The next section will explain the workings of a biological neuron in more detail. It will
also explain that an artificial neuron is a mathematical description of how the biological
neuron works.

3.3. BIOLOGICAL AND ARTIFICIAL NEURONS
Figure 3.1 shows a schematic view of a biological and an artificial neuron. The biologi-
cal neuron receives incoming signals from other neurons via its Dendrites. These signals
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Figure 3.1: A schematic of a biological neuron on the left, and a schematic of an artificial neuron on the right.
The biological neuron receives incoming signals from other neurons via its Dendrites. These signals are ac-
cumulated in the Cell Body. When this accumulated signal surpasses a certain threshold, the Axon fires an
output signal. This outgoing signal flows via Synaptic connections to the Dendrites of other neurons where the
proces repeats itself. The artificial neuron is a mathematical description of how the biological neuron works.
In this schematic each node represents a neuron and the connections between them represent the synaptic
connections.

are accumulated in the Cell Body. When this accumulated signal surpasses a certain
threshold, the Axon fires an output signal. This outgoing signal flows via the Synaptic
connections to the Dendrites of other neurons, where the proces repeats itself.

The strength of the synaptic connection between the Axon and the Dendrite of the other
neuron is called a synaptic weight. It reflects how much influence the firing of the send-
ing neuron has on the receiving neuron. The free parameters in the artificial neural net-
work are supposed to represent these synaptic weights. But how these synaptic weights
are changed inside the brain and how humans learn is only poorly understood.

An artificial neuron is a mathematical description of how the biological neuron works.
Its connectivity to other artificial neurons is often depicted in schematics such as the one
in figure 3.1. In this connectivity scheme each node represents a neuron and the connec-
tions between them represent the synaptic connections. For this example, we focus on
the neuron a1. The synaptic weights corresponding to the input signals xi are denoted
by µi and the output signal is denoted by a1. The working of this artificial neuron is
described by the function in equation 3.1.

a1 =¡
√

µ0 +
n
X

i=1
µi xi

!

(3.1)

The artificial neuron takes a weighted sum of the incoming signals (including an offset
term µ0) and applies an activation function ¡(·) to it. This activation function serves the
purpose of mimicking the firing behaviour of a biological neuron. Many different kinds
of activation functions have been used in the past, but nowadays the most commonly
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used activation function is the Rectified Linear Unit (ReLU), see equation 3.2. This ac-
tivation function acts as a gate by letting positive inputs go through unmodified and
setting negative inputs to zero. The output signal of the activation function is then send
to other connected neurons, where the proces repeats itself.

¡(x) = max(0, x) (3.2)

An artificial neuron is of course only a rough description of how a biological neuron in
the brain works. For example, the relu activation function does not describe the firing
behaviour correctly. But giving a complete and correct mathematical description of the
human brain, was never the intention of the AI researchers. That job is reserved for the
field of Neuroscience. Instead studying the workings of the human brain, served as an
inspiration to come up with a single algorithm that can be tuned for a wide variety of
different tasks. From this moment on forward, we will take a purely mathematical view-
point on artificial neural networks and we will call them simply, neural networks.

In the next section we will see that we can form different types of neural networks by
connecting the neurons in different schemes.

3.4. DIFFERENT TYPES OF NEURAL NETWORKS
A neural network can be represented schematically as a directed graph in which the
nodes are the neurons and the edges are the connection between these neurons. See
figure 3.2 for an example. The direction and weights of the edges, represent the direction
in which information flows and how important that information is to the receiving neu-
ron. There are some common patterns in which neurons are usually connected. These
different patterns constitute the different types of neural networks.

It is common to make a first distinction between recurrent and feedforward connectiv-
ity. Recurrent connectivity means that the network contains cycles and feedforward con-
nectivity means that the network does not contain cycles. Recurrent neural networks are
used to analyze sequential data in a step-by-step manner. The cycles in the network, give
the network the ability to store information about the previous steps. Unlike feedforward
neural networks, recurrent neural networks can use this internal memory to process ar-
bitrary sequences of inputs. For example in natural language processing, recurrent neu-
ral networks are used to analyze full texts in a word-by-word manner. The interpretation
of the current word being analyzed, depends on all the previous words in the text. How-
ever, recurrent neural networks are only mentioned for the sake of completeness. This
research is about convolutional neural networks, which is a type of feedforward network.

In the next section we will first explain fully-connected neural networks, before moving
on to convolutional neural networks.
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Figure 3.2: A fully-connected neural network schematically visualized as a directed graph. The nodes in the
graph are the neurons and the edges represent the connections between these neurons. Except for the input
nodes, each node applies an activation function to the sum of the weighted incoming signals. The output of
this activation function is send forward to other neurons. This proces repeats itself in a feedforward manner
(layer-by-layer) through the network from left to right.

3.5. FULLY-CONNECTED NEURAL NETWORKS
A fully-connected neural network is a type of feedforward network that contains neu-
rons that are organised in hierachical layers. Figure 3.2 shows an example of a 4-layer
fully-connected neural network. We say that the neurons are fully-connected, because
every neuron in a layer connects with a certain weight to every neuron in the previous
layer. Hence the name, fully-connected neural network.

Equation 3.1 in section 3.3 decribes how to compute the output of a single neuron which
is a scalar value. However, in fully-connected neural networks it is more convenient to
represent the outputs of all neurons in the same layer as a vector. The vector represen-
tation allows us to use linear algebra to express the output of the current layer ~a(l ), in
terms of the output of the previous layer ~a(l°1), see equation 3.3.

~a(l ) = Lµ
≥

~a(l°1)
¥

=¡
≥

~µ(l )
0 +£(l )~a(l°1)

¥

(3.3)

Let M be the number of neurons in the current layer and N the number of neurons in the
previous layer. Then £(l ) is a M £N matrix in which µi j is the weight that connects the
i th neuron in the previous layer to the j th neuron in the current layer. This matrix-vector
product produces a vector which is offsetted by a bias vector ~µ(l )

0 , before the activation
function ¡(·) is applied elementwise to each component of the resulting vector.

We now have a mathematical description of a high-level building block, which is called a
fully-connected layer. The total network can be written as a composite function of these
fully-connected layers, see equation 3.4.
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~y = fµ(~x) =
≥

L(lmax ) ± . . .±L(l )
µ(l ) ± . . .±L(1)

µ(1) ±L(0)
¥

(~x)

where L(0) =~x and L(lmax ) = fµ(~x)

± stands for composition: ( f ± g )(x) = f (g (x))

(3.4)

For the purpose of illustration, we will also write out the full function for the 4-layer fully-
connected neural network in figure 3.2. See equation 3.5.

~y = fµ(~x) =¡
≥

~µ(4)
0 +£(4)¡

≥

~µ(3)
0 +£(3)¡

≥

~µ(2)
0 +£(2)¡

≥

~µ(1)
0 +£(1)~x

¥¥¥¥

(3.5)

This equation clearly demonstrates the feedforward nature of fully-connected neural
networks. The output of the previous layer is fed-forward as input for the next layer.

The layers between the input and output layers are called hidden layers. The network in
figure 3.2, consists of 3 hidden layers each containing 3 hidden neurons. However this is
just an example. A fully-connected network can have an arbitrary number of hidden lay-
ers and each hidden layer can have an arbitrary number of hidden neurons. How many
layers and how many neurons one needs, depends on the difficulty of specific problem
that one tries to solve. More layers and more neurons per layer, obviously means that
the network can learn more complicated relationships. However, bigger networks are
also more prone to overfitting and therefore require more training data or other tech-
niques/tricks that reduce the overfitting , see section 3.8.

There is a theorem that has an existential prove, that every possible relationship can be
represented by a fully-connected neural network that has a sufficient number of neurons
and layers. This theorem is called the Universal Approximation theorem and is explained
in more detail in the intermezzo below.

The Universal Approximation Theorem

In 1991 Hornik proved the universal approximation theorem [20]. This theorem
states that a fully-connected neural network with a single hidden layer con-
taining a finite number of neurons, can approximate any continuous function
under mild assumptions on the activation function. Note that this theorem
can be transferred to multi layer networks, since they are composed of multiple
single hidden layer networks. The universal approximation theorem proves
that fully-connected neural networks, can learn every possible mathematical
relationship that is continuous. We say that that fully-connected neural networks
are universal function approximators a.
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There are two remarks to be made about the universal approximation theorem:

• The theorem proves the existence of an approximation, but it does not say
how to find the associated parameter values.

• The theorem mentions convergence can be reached with a finite number
of neurons, but it does not say anything about the rate of convergence as
function of the number of neurons.

The first remark highlights why the theorem is often misused: it can trick people
into thinking that neural networks solve it all. However finding the right param-
eter values that makes the neural network generalize well to new and unseen
examples, is hard!

The second remark touches upon the ongoing discussion of shallow and wide
versus deep and narrow networks. Deep neural networks have many layers,
while wide networks have many neurons per layer. It is a long conjectured idea
that deep (and narrow) neural networks are more efficient at learning complex
relationships than shallow (and wide) neural networks. This is the reason why
often deep neural networks are used b , and why it is called Deep Learning.

aOther universal function approximators are the Taylor series and the Fourier series. However one
needs detailed information about the original function to find those approximations, while neural
networks can be trained by only using training data.

bIn the case of fully-connected neural networks, a three layer usually outperforms a two layer network
but using more than three layers rarely helps. This is in stark contrast to convolutional neural net-
works, where network depth has been found to be an extremely important. One argument for this
observation, is that images contain lots of hierarchical structure. For example: faces are made up of
eyes, which are made up of edges, etc.

Fully-connected neural networks do not work well when applied directly to images, es-
pecially when the images are large. Due to full-connectivity pattern they suffer from
the curse of dimensionality: meaning that the number of required computations does
not scale well with the number of input neurons. A reasonable size for a color image is
1,000x1,000x3 (width, height, color channels respectively). Using the pixels of this im-
age directly as input, means that a single fully-connected neuron would have 3,000,000
weights. This is already a huge number and we are only talking about a single hidden
neuron! For a reasonably sized fully-connected neural network, it will simply be impos-
sible to compute the output.

Apart from the computational infeasibility, it is clear that in the case of images, the full-
connectivity pattern is a waste of memory and computation time. Because it is not
very likely that pixels that are far apart have any statistical relationship. The fact that
these pixels are nevertheless connected, means that fully connected neural networks
will use these weights to overfit on the examples in the training set. So, even when fully-
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connected neural network are used on very small images, they will suffer a lot from over-
fitting.

In the next section we will see how a convolutional layer solves these problems, by using
a local-connectivity pattern that exploits the spatial structure of the images.

3.6. CONVOLUTIONAL NEURAL NETWORKS
A Convolutional Neural Network (CNNs) is a type of feedforward network that takes ad-
vantage of the spatial structure of its input signal, often an image. Images are spatially
structured signals, meaning that not only the particular values but also the spatial ar-
rangement of pixels contains information. For example, if all pixels of an image were
randomly shuffled one could no longer tell what is in the image. Given the importance
of this spatial arangement, it makes sense to preserve it and to exploit its properties when
building a neural network architecture.

CONVOLUTIONAL LAYERS

The main building block of a CNN is the Convolutional layer. Like it is convenient to
think of neurons in fully-connected layers as vectors, it is convenient to represent the
neurons in convolutional layers as 3-dimensional tensors with spatial dimensions: width£
height£channels. For a color image in the input layer, these channels could be the RGB
color channels.

A convolutional layer transforms a 3D input tensor into a 3D output tensor. To avoid
confusion, we refer to the output channels as featuremaps and to the input channels
simply as channels. The name ‘featuremap’ is particularly well chosen: the output val-
ues of neurons in a featuremap indicate the absence or presence of a particular image
feature at a particular spatial location in the image. Neurons in different featuremaps
detect different image features, while neurons in the same featuremap detect the same
image feature, but at different spatial locations. One could imagine an image feature as
an small image patch of which the content displays an object of interest. For example, a
nose when you want to detect faces.

Now that we have established a high-level description of how a convolutional layer works,
lets look at some low-level details. We will first focus on a single featuremap, see the left
part of figure 3.3. Each output neuron in the featuremap is connected to a local neigh-
borhood of input neurons in the input tensor. The weights of these local connections
are the same for all output neurons, and the neighborhoods of neighboring output neu-
rons partially overlap. So instead of thinking of these local connections as being static,
it more convenient to think of them as a filter which slides through the input tensor. At
each location the filter takes a weighted sum of all neurons in its neighborhood (also
a featuremap specific offset term is added and the activation function is applied). By
evaluating this filter at every possible location in the input tensor, a 2-dimensional fea-
turemap is constructed in which spatial order is preserved. The left part of figure 3.3
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Figure 3.3: Example of how a convolution layer works. The left part shows how a 5x5x3 filter slides through the
input tensor and produces an output featuremap. Each output neuron in the featuremap takes as input the
signals coming from a local neighborhood of 5x5x3=75 input neurons. A convolutional layer outputs a stack of
multiple featuremaps which are all constructed with different filter weights. This can be seen in the right part
of the figure.

shows how a 5x5x3 filter slides through the input tensor and produces an output fea-
turemap, in which each neuron takes as input the signals coming from 5x5x3=75 input
neurons. The mathematical operation in which a sliding filter computes weighted sums
of local neighborhoods, is called Convolution 1. Hence the name, convolutional layer.

There are quite a few details regarding the convolutional layer. We will briefly men-
tion them here. A convolutional layer outputs a stack of featuremaps which are all con-
structed with different filter weights, see the right part of figure 3.3. A filter only slides
along the spatial dimensions (width and height) of the input tensor, and always extends
along the full length of the input channels. This ensures that all features detected by the
previous layer, can be combined to detect new features in the current layer. For exam-
ple, if the previous layer contains featuremaps that have detected eyes, ears, mouths and
noses, then the current convolutional layer can combine these features to detect faces.

The stepsize with which the filter slides through the input tensor, is called the stride.
The stride in the horizontal and vertical direction is usually the same and almost always
equal to one. All filters in the same convolutional layer have the same size. The filter
size is usually the same in both directions and is usually an odd number to ensure that
each filter has a well-defined center pixel. Boundary collisions between the filter and the
input tensor, cause the spatial dimensions of the output tensor to shrink. It is common

1Strictly speaking it only called convolution when the filter is rotated by 180-degrees. If the filter is not rotated
it is actually called cross-correlation. For some reason, the whole community uses cross-correlation while
reffering to it as convolution.
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Figure 3.4: The various settings of a convolution layer: the filter size, the strides and the padding. It is most
common to use: strides of one, odd filter-sizes and a padding strategy that keeps the dimensions output ten-
sor equal to that of the input tensor. Usually, these settings have the same values in horizontal and vertical
direction.

to solve this problem by padding the input tensor with a boundary of zeros before doing
the filtering. See figure 3.4, for an illustration of the various settings.

In this report we will use a stride of one, unless explicitly stated otherwise. Furthermore,
we will use a padding strategy that keeps the dimensions output tensor equal to that of
the input tensor. For these particular settings, equation 3.6 describes how to compute
the value for a single output neuron at location x, y in the nth feature map.

a(l ) £x, y,n
§

=¡
√

µn
0 +

Fw°1
X

fx=0

Fh°1
X

fy=0

C°1
X

c=0
a(l°1) £x + fx , y + fy ,c

§

· £n £

fx , fy ,c
§

!

for 0 ∑ x <W, 0 ∑ y < H , 0 ∑ n < N

(3.6)

In this equation a(l°1) and a(l ) represent the 3-dimensional input and output tensor, re-
spectively. The spatial dimensions of both tensors is W £H . The input tensor contains
C channels, and the output tensor contains N feature maps. So there are N filters with a
filter size of Fw £Fh £C , each indicated by £n . The bias offset of the nth feature map is
denoted by µn

0 and ¡(·) stands for the activation function.

Summarizing all the differences with fully-connected layers. The convolutional layer
preserves spatial structure by aranging the neurons in 3-dimensional tensors. It exploits
the strong statistical dependency between nearby pixels, by connecting output neurons
only to a local neighborhood of input neurons. It also exploits the translational invariant
nature of images (shifting the pixels does not change the information content), by using
the same filter weights for every location in the same featuremap. The local-connectivity
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Figure 3.5: Example of how a pooling layer works. This example shows the max pooling layer in it most com-
mon form: a 2x2 neighborhood with a stride of two downsamples every input channel by a factor two along
both width and height. It takes a maximum over a local neighborhood of 2x2 and strides this neighborhood
with a stepsize of two. The left part shows the overall working of the pooling layer, while the right part displays
the working on an individual featuremap.

pattern greatly reduces the number of connections, and the weight sharing reduces the
number of parameters even further. These adjustments to fully-connected layers lower
the computational and memory requirements substantially, while improving the gener-
alization performance of convolutional layers.

This section explained the most important building block: the convolutional layer. In
the next section we take a look at the pooling layer, which is another commonly used
building block.

POOLING LAYERS

A pooling layer is a commonly used building block in CNNs. It reduces the spatial di-
mensions (the width and the height) of a tensor by a applying a subsampling operation
to each input channel, indepently. There are many variants of this subsampling oper-
ation but the most common variants are average and max pooling. The pooling layer
works in a similar way as the convolutional layer: it slides a local neighbordhood over
the input channel, but instead of taking a weighted sum of this local neighboorhood it
takes the maximum or the average. To produce a smaller output tensor these neigh-
borhoods are strided with a stepsize that is equal or greater than two. Summarizing the
differences with a convolutional layer: the local neighborhood covers a single channel
only and does not extend along the full length of the input channels; the local neighbor-
hoods are strided with a stepsize that is equal or greater than two; the pooling layer has
no learnable parameters and computes a statistic (the average or the maximum) instead
of a weighted sum.
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Figure 3.5 shows an illustration of how a pooling layer works. This example shows a
max pooling layer in it most common form: a 2x2 neighborhood with a stride of two
downsamples every input channel by a factor two along both width and height. In the
downsampled featuremap the maximum value of every 2x2 neighborhood in the input
tensor is preserved, while the other three activations are discarded. There are only two
commonly seen variations of the pooling layer in practice: a pooling layer with neighbor-
hood of 3x3 and a stride of two (also called overlapping pooling), and more commonly
a neighborhood of 2x2 and a stride of two. Pooling with larger sizes and strides are too
destructive. It is worth noting that there is currently also a trend to use normal convolu-
tional layers with a stride of two instead of pooling layers [52].

Although the subsampling works well in practice, it is probably one of the least under-
stood parts of CNNs. There are several motivations for using pooling layers in CNNs, but
strong empirical evidence to support these motivations has not yet been provided. The
original motivation that was given for using max pooling, is that it makes the detection of
image features invariant to small local translations [53]. Another important motivation
is that the subsampling reduces the dimensionality of the feature space, such that fully-
connected layers can be used in the final layers to do the actual classification. A certain
advantage of the subsampling is that it reduces the computational and memory load of
the subsequent layers, and therefore allows the training of deeper neural networks.

Later in this report, we will show that subsampling enables the detection of larger scale
image features in the deeper layers, without needing to use larger filters or many convo-
lutional layers. Reducing the size of the input tensor, is effectively the same as increasing
the receptive field of all subsequent convolutional filters. The effective receptive field is
also increased by using multiple consecutive convolutional layers. For instance, two 3x3
convolutional filters have the same effective receptive field as one 5x5 filter. However,
the effective receptive field scales only linearly with the number of convolutional layers,
while it scales exponentially in the case of pooling.

The pooling layers explained so far are called local pooling layers, because they pool a
statistic (the maximum or the average) over a local neighborhood. However, there are
also global pooling layers that pool a statistic over the whole feature map, thereby reduc-
ing each featuremap to a single value. Since a few years, it has become common practice
to use a global pooling layer right before the fully-connected layers at the very end of the
network.

Over the last couple of sections, we explained the fully-connected, the convolutional and
the pooling layer. In the next section we will see how these layers can be stacked to form
a whole convolutional neural network architecture.

ARCHITECTURE OF CONVOLUTIONAL NEURAL NETWORKS

The convolutional, pooling and fully-connected layers are the core building blocks of
convolutional neural networks. Like a fully-connected neural network, a CNN is a type
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of feedforward network which can be written as a composite function of these high-level
building blocks. The output of the previous layer is fed-forward as input for the next
layer, in this way a CNN gradually transforms the input image into the desired output.

The most common form of a CNN architecture stacks a few convolutional layers, fol-
lows them with local pooling layers, and repeats this pattern until the tensor has been
reduced to a small spatial size 2. At some point, it is common to use a global pooling
layer to make the transition to fully-connected layers of which there are usually only one
or two. The last fully-connected layer has no activation function. It outputs the regressed
values in the case of a regression problem, and the distances to the decision boundaries
in the case of a classification problem. A final softmax layer normalizes these distances
into proper class probabilities that sum to 1. The class that holds the heighest probabil-
ity is then selected as the predicted class.

The fully-connected layers are sometimes regarded as the actual classifier and the layers
before them as the feature extraction part. The fully-connected layers at end of the CNN
constitute a normal fully-connected neural network. Although fully-connected neural
networks do not work when applied directly to images (see section 3.5), they do work
when features have been extracted from the image. The key difference between the fea-
ture extraction in CNNs and feature extraction in other machine learning algorithms, is
that the feature extraction is learned and not handcrafted. This makes CNNs very powe-
ful, since they optimize (learn) the whole processing pipeline from the raw input till the
desired output.

So far, there has only been talked about what neural network are, and how they are com-
posed of smaller building blocks. In the next section we will see how gradient descent
optimization can be used to train the free parameters in neural networks.

3.7. TRAINING NEURAL NETWORKS
In the previous chapter we have seen that the training of a machine learning algorithm
is just an optimization problem and that all the theory from that subfield of mathemat-
ics applies. However, in the case of neural networks we are not really spoiled for choice.
The fact that neural networks often contain millions of parameters and the fact that the
datasets often consist of thousands of images, makes the usage of (quasi) second-order
optimization methods infeasible 3. Instead, it is only feasible to train neural networks
using a first-order optimization method called: Batch Stochastic Gradient Descent.

Let us first take a look at normal gradient descent. Gradient descent is an iterative op-

2This traditional stacking pattern is currently being challenged by several architectures, for example: ResNets
(Microsoft), Inception (Google) and Densenets (Facebook).

3The computation and inversion of the Hessian matrix in second-order methods, is infeasible for problems
that involve so many parameters. Quasi second-order methods that approximate the inverted Hessian like
BFGS, are unstable if not computed over the whole dataset. So, quasi second-order methods are also not
practical for large datasets.
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timizer that starts with a random parameter values and iteratively updates them until
they have converged to an optimum. An iteration starts with computing the predictions
on all examples, it then computes the error of these predictions, then it computes the
gradient of this error with respect to the parameters, and finally it updates the parame-
ters proportionally to this gradient, after which the iteration starts all over again with the
new parameter values. This is repeated until the error has converged to a stable value.
The parameter updates are proportional to the gradient of the error, since it points in the
direction of the closest local minimum.

Stochastic batch gradient is a version of gradient descent that can be used to speed up
convergence in the case of large datasets with many examples. It can only be used if the
error over the total dataset, is expressed as the sum of error on the individual examples.
Instead of computing the gradient over all examples in the dataset, it computes the gra-
dient over a small batch of examples. This batch is usually much smaller than the total
dataset. If the batch size is large enough (usually 256 examples at most), then the gradi-
ent over batch should approximately be the same as the gradient over the total dataset.
Computing the gradient over a batch instead of over the whole dataset, allows for much
more frequent parameter updates. These parameter updates have a stochastic nature.
Meaning that the error will not strictly decrease with every update, but that it will only
decrease on average. In the end this will still lead to a faster convergence, since we can
make many more parameter updates (usually three orders of magnitudes) in the same
time as normal gradient descent.

~µ = ~µ ° ¥ r~µ J (3.7)

Equation 3.7 shows the gradient descent update-rule in its plain form. The r~µ J denotes

the gradient of the error with respect to the parameters ~µ and ¥ stands for the learning
rate. The learning rate is an important setting that determines by how much a parameter
can change in a single update. Therefore the learning rate is sometimes also called the
stepsize. Using a learning rate that is too high may result in overstepping the minimum,
while using a learning rate that is too low might require a large number of iterations to
converge. It is therefore common to use a learning-rate schedule in which one starts
with a higher learning-rate and lowers it a few times during the training.

There are quite some variants on the vanilla update-rule in equation 3.7, that all aim to
speed up convergence (achieving a lower error with fewer updates). The most common
ones are Momentum, Nesterovs-momentum, AdaDelta, AdaGrad, Adam and RMSprop.
Their precise form is not relevant for the work in this report, but they all try to extrapolate
the error descent by keeping track of previous parameter updates. All of these variants
appear regularly in literature, but the most common variants are momentum, nesterovs-
momentum and adam.

Another way of speeding up convergence is called Batch Normalization [54]. Batch nor-
malization replaces the bias offset term in convolutional and fully-connected layers by
a function that normalizes all its input values (over the whole batch) to a standard nor-
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Figure 3.6: A schematic of the backpropagation algorithm for computing gradients. The forward pass first
computes the predictions ŷ and the error J

°

ŷ , y
¢

of these predictions. The backward pass propagates the error
signal in reverse order through the network. Notice how the chain rule for differentiation adds an extra partial
derivative term for every arrow in this schematic. At every layer, the error signal is used to compute the gradient
for the parameters in that layer.

mal distribution by subtracting the mean and dividing by the standard deviation. It then
multiplies the normalized values by a learnable multiplier, and adds a learnable bias
offset before outputting the signal to the activation function. The exact reason why the
normalization speeds up convergence is quite technical. Let us simplify by saying, that it
brings the partial derivative with respect to each parameter roughly in the same order of
magnitude. Because of this, batch normalization also makes the convergence less sensi-
tive to the way in which the parameters are initialized.

EFFICIENT GRADIENT COMPUTATION WITH ERROR BACKPROPAGATION

The composite structure of feedforward networks, allows for efficient computation of
the derivatives of the error with respect to the free parameters in the network. This effe-
cient computation method is called Error Backpropagation or simply Backpropagation.

The composite structure of feedforward networks, allows us to express the partial deriva-
tive of parameters in a certain layer, as a product of the partial derivatives of the deeper
layers via the chain rule for differentiation. By computing the parameter derivatives in
backwards order (from the last to first layer), we can reuse large parts of the parameter
derivatives in the deeper layers for the lower layers. This makes the backpropagation al-
gorithm very efficient.

The part that can be reused is called the error signal and it is the derivative of the error
with respect to the output of a particular layer. The error signal in the current layer is
backpropagated to a lower layer, by multiplying it with the derivative of the layer output
with respect to the layer input (chain rule). From the error signal it is only a small step
to compute the parameter derivatives. The parameter derivatives in each layer, can be
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computed by multiplying the error signal with the derivative of the layer output with re-
spect to the layer parameters (chain rule).

Figure 3.6 shows schematically how the backpropagation works in practice. The forward
pass first computes the predictions ŷ and the error J

°

ŷ , y
¢

of these predictions. The back-
ward pass propagates the error signal in reverse order through the network. Notice how
the chain rule for differentiation adds an extra partial derivative term for every arrow
in this schematic. The backpropagation algorithm is efficient, because it only needs to
compute this extra term.

3.8. TECHNIQUES AND TRICKS TO REDUCE OVERFITTING
We already mentioned a couple of times that machine learning algorithms and neural
networks in particular, suffer from the problem of overfitting. They easily achieve a very
high score on the training set and then often achieve a far lower score on the test set. If
this happens, one has fitted a decision boundary that is likely to be closer to the one on
right of figure 2.2, than the one in the middle. Fortunately, there are some techniques
and tricks that one could apply during the training stage that reduce overfitting. Since
these techniques are crucial for the succes of neural networks and because some of them
will be used in this research, we will mention them in this section.

The easiest way to reduce overfitting, is to collect more training examples. If the training
examples would cover every region of the feature space, then the decision boundary is
less likely to overfit. However, collecting more training examples is not always possible.
Fortunately, data augmentation is also a good way to reduce overfitting. Data augmen-
tation is a technique that generates new training examples from existing ones. It works
by applying random distortions to existing examples, that do not change the underlying
class label. For example, a horizontally mirrored image of a boat is still a valid image
of a boat, but it is a whole new example for a machine learning algorithm. For images
the most common distortions are: horizontal flipping, translation, rotation, scaling or a
combination of these transformations. However for problems that do not involve image
data, these distortions may not be so obvious and data augmentation might not be so
easy to apply.

Another technique to reduce overfitting, is weight regularization. It works by adding an
extra penalty to the error function for using large parameter values. This extra penalty
term dynamically restricts parameter values. Meaning that the neural network can not
use its entire representational power (large parameter values) to get every individiual
outlier predicted correctly, but it can if it gets an entire group of examples predicted cor-
rectly. This sounds great, but there is a delicate balance between the amount of param-
eter restriction and the amount of correct classification. This balance is controlled by a
hyperparameter that needs to be cross-validated.

Ensemble averaging is another powerful but expensive technique. It combines the pre-
dictions of multiple neural networks into a single prediction. For classification prob-
lems this could be seen as averaging the decision boundaries of multiple neural net-
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works. Taking the average, removes the pecularities of individual decision boundaries
while preserving the common trend. This leads to less overfitting, but evaluating a large
ensemble is very expensive at test time! Dropout is a technique, that basically moves
this time expense from the test stage to training stage. Only a single neural network is
trained, but for each training example some neurons are randomly dropped (their out-
put is set to zero) with a probability p. During the test stage the full neural network with
all neurons is used, which basically has the same effect as averaging the outcome over
multiple neural networks. However, the averaging is now implicit in the network archi-
tecture, instead of explicit over multiple architectures. It is common to apply dropout
to fully-connected layers, and sometimes to convolutional layers as well. Dropout is a
powerful technique, but the probability p is another hyperparameter that needs to be
cross-validated.

3.9. ARCHITECTURAL DESIGN CHOICES AND HYPERPARAMETERS
The weights in the fully-connected layers and the filter weights in the convolutional lay-
ers, are optimized by the gradient descent optimizer. However finding the optimal rela-
tionship also requires making specific design choices for the CNN architecture. Exam-
ples of such architectural design choices are: the number of filters, the size of the filters,
the number of convolutional layers, at which point to include subsampling layers. These
design choices are called hyperparameters. It are parameters that are set before the start
of the learning process. Hyperparameter optimization is usually not possible with gra-
dient decent, because they do not have a well-defined derivative to the error. Instead,
one has to train multiple times with different values to see what works best. Since the
search-space grows exponentially with the number of hyperparameters, selecting these
values often comes down to following heuristics 4.

In this research we propose a new type of convolutional filter of which the filter size can
be optimized during the training stage. A well-defined derivative of the error with re-
spect to the filter size, is created by imposing a mathematical structure on the filter. In
the next chapter, we will explain how this new type of convolutional filter works.

4My personal recipe is to start with a very complex network and reduce the complexity until it is just barely
capable fitting the training set perfectly. Now that you are guarantueed to have a model that is capable of
learning the relationship of interest, reduce the overfitting on the training set with techniques such as: weight
regularization, data augmentation, dropout, early stopping, etc. This will likely cause the performance on the
training set to drop and the performance on the test set to rise. Stop when the two match or when the gap is
as close as possible.
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4
STRUCTURED RECEPTIVE FIELDS

Structure is the key to a successful learning environment.

Sten Goes

T HIS chapter introduces a new type of convolutional filter called a Structured Recep-
tive Field. The filter size of a structured receptive field is, in contrast to normal CNN

filters, variable and can be learned during the training stage. This chapter describes how
the filter size of structured receptive fields can be learned, which other differences there
are compared to normal CNN filters, and how structured receptive fields can be imple-
mented in an efficient manner in a convolutional layer.

The chapter starts by explaining what structured receptive fields are and how they are
motivated by scale-space theory. In section 4.2, we will see that structured receptive
fields are parameterized filters and that the parameters implicitly define the effective
filter weights. Section 4.3 explains that one of these parameters is a continuous scale pa-
rameter, and how optimizing this parameter can serve as proxy for optimizing the filter
size. The consequences of using parametric filters instead of normal CNN filters, are dis-
cussed in section 4.4 and 4.5. We will see that the parametric model enables the learning
of the filter size, but also that the resulting filters are less universal than normal CNN fil-
ters. Section 4.6 and 4.7 discuss three equivalent but different implementations of struc-
tured receptive fields in a convolutional layer. By exploiting the mathematical structure
of structured receptive fields an implementation is obtained, that is significantly faster
than the normal implementation. The final sections feature a complete mathematical
description of structured receptive fields. We will see that structured receptive fields are
expressed in terms of gaussian derivatives, and that they can be discretized and normal-
ized in different ways. The advantages and disadvantages of the different possibilities
will be discussed, before continuing to the next chapter in which the practical potential
of structured receptive fields will be demonstrated with a proof of concept experiment.
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Figure 4.1: The construction of a 1-channel structured receptive field. The structured receptive field (left hand
side), is a weighted sum of gaussian derivatives (right hand side). In this schematic a special notation has been
used to abbreviate the notation for the gaussian derivatives. Gi , j means i th order x-derivative and j th order
y-derivative. The feature itself is completely defined by the weights of the linear combination (the alpha pa-
rameters) and the scale is defined by the standard deviation of the gaussian derivatives (the sigma parameter).
The top row displays the effective filter and gaussian basis filters as 3-dimensional surfaces, while the bottom
row shows an image in which the color intensity represents the height of these surfaces. The structured recep-
tive field in this example contains all derivatives up to and including order two, however this is just an example.
The structured receptive field can be truncated at any arbitrary order.

4.1. GAUSSIAN SCALE-SPACE
In this report we will propose a new type of filter of which the filter size can explicitly be
optimized during the training stage. The basic idea for this new filter comes from scale-
space theory in which the scale of image features is studied by parameterizing them with
a continuous scale parameter. Thereby decoupeling the image feature itself from the
scale at which it occurs in an image.

In CNNs, convolutional filters are used to detect the presence (or abscence) of image
features. In scale-space theory, a filter is parameteric function with a continuous scale
parameter. It can changes the size of the filter while keeping its spatial structure intact.
In mathematics this property is called self-similarity. There are several mathematical
functions that contain a parameter with this property, but the most important one is the
Gaussian. The gaussian can change the size of its appearance in a continuous manner,
by changing it the value of its standard deviation. Like the Gaussian Scale-Space, we will
use gaussian derivatives to describe image features.

4.2. STRUCTURED RECEPTIVE FIELDS
The filter that we propose in this report, describes an image feature as a weighted sum
of all 2-dimensional gaussian derivatives up to a certain order, see equation 4.1. In this
equation, the spatial structure of the feature is completely defined by the weights of the
linear combination (the alpha parameters) and the scale is defined by the standard de-
viation of the gaussian derivatives (the sigma parameter). Because the filters are struc-
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Figure 4.2: Four examples of a 3-channel structure receptive field with the same structure, but at different
scales. Do not get fooled by the discrete appearance of the scales in this figure. The scale is a continuously
valued parameter and for these examples it is sampled at four different values.

tured by a set gaussian derivatives of which is shown that they can accurately model
the response of receptive fields in the visual cortex [30, 31], we will call these new filters
Structured Receptive Fields.
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(4.1)

In the previous chapter we have seen that the filters in CNNs always extend along all
channels of the image on which they operate. Notice that the same is true for structured
receptive fields and that the sigma parameter and the gaussian derivatives are the same
for all channels, but that the corresponding alpha parameters are not. In other words,
the structured receptive fields share the same (gaussian) basis filters over the different
channels.

Figure 4.1 shows the construction of a 1-channel structured receptive field. Convolu-
tional filters with one or three channels can be visualized by grayscale and rgb-color
images, respectively. For other numbers of channels the way of visualizing the filter is
not so obvious. Figure 4.2 shows four examples of a 3-channel structured receptive field
with the same structure, but at different scales. It clearly demonstrates the effect that
changing the scale parameter has on the structured receptive field.

4.3. LEARNING THE FILTER SIZE
Structured receptive fields have the alphas and sigma as free parameters, whereas a nor-
mal CNN filters have a free parameter for each filter weight. A normal CNN filter is there-
fore more universal than a structured receptive field. So what is gained by imposing a
mathematical structure on the convolutional filters? The continuous scale parameter
provides us with the abilitiy to learn the size of the filter. For normal filters, the filter
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size is a fixed hyperparameter that needs to be selected before the training stage. For
structured receptive fields, the filter size is a variable that can be optimized during the
training stage.

For normal CNN filters it is not possible to optimize the filter size, because it is a discrete
valued parameter. Therefore it has no well-defined derivative to the error and cannot be
optimized with gradient descent. The sigma parameter in structured receptive fields on
the other hand, is continuously valued and has a well-defined derivative to the effective
filter and therefore to the error. The chain-rule for differentiation allows to express the
derivative of the error with respect to sigma as the product of two terms, see equation
4.2. The first term is the derivative of the error with respect to filter and is found by error-
backpropagation just like the filters in normal CNNs. The second term is the derivative
of the filter with respect to sigma and can be found by differentiating equation 4.1.

@J
@æ

= @J
@F

· @F
@æ

(4.2)

In this report, we will optimize the alphas and the sigma during the training stage. The
gaussian basis filters will be truncated at three sigmas from their center, because at that
point they already contain ~99.7% of their total volume. In this way, we can use the
optimization of the continuous sigma parameter as a proxy for optimizing the discrete
filter size.

k (æ) = 2 d 3æ e+1 (4.3)

Equation 4.3 describes the truncation procedure more formally. It shows how the dis-
crete filter size k is related to the continuous sigma. Note that there is always a well-
defined center pixel, because in this definition k is always odd. This center pixel is the
origin of the coordinate system of the gaussian basis filters and the filter size is the same
in x- and y-direction.

4.4. CONSEQUENCES FOR THE REPRESENTATIONAL POWER
An advantage of describing the filters as a linear combination of gaussian derivatives is
that it provides us with a natural way to learn filter sizes. The downside is that the set of
gaussian basis filters spans only a small subset of all possible filters that a normal CNN
filter can learn. However, this loss in universality should not be a problem, if the subset
spanned by the gaussian derivatives contains all filters that we would like to learn 1.

Fortunately, there is a good reason to believe that structured receptive fields are capa-
ble of approximating every filter that is of interest. Appendix A shows that a structured

1The fact the normal filters could learn every possible weight configuration, does not mean that they do. For
example, the learned filters in the first layer of normal CNN usually look alot like gabor and gaussian derivative
filters. So, these filters can also be learned by structured receptive fields.
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receptive field can be rewritten in such a way, that it resembles a Taylor expansion that
is modulated by a gaussian envelope. Therefore any normal filter can be approximated
in the center region by the Taylor expansion, while the gaussian envelope supresses all
the values to zero near the border. This suppression near the border should be desirable,
because it is inline with the principle of local connectivity. This principle was one of the
main motivations for using convolutional network and states that the statistical depen-
dency between pixels falls off as distance increases. Structured receptive fields capture
the essence of local connectivity, by explicitly modulating filters with a gaussian enve-
lope.

Although these arguments might seem plausible, it is still true that a normal filter (that is
large enough) can resemble any structured receptive field, while the reverse is not always
possible. The representational power of structured receptive field is therefore something
that needs a careful investigation and we will do so with an experiment in section 5.1.

4.5. REGULARIZING PROPERTIES
Structured receptive fields have two properties that could make them easier to regularize
than normal filters. The first property, is that one can explicitly limit the complexity of
the filter by truncating the linear combination at a certain order. This truncation of the
Taylor expansion should have a regularizing effect since including higher order deriva-
tives gives the filter extra ability to learn very noisy structures. The second property is
that structured receptive fields can increase their filter size without needing to add more
parameters. This should also have a regularizing effect, especially when the filters are
large [32].

4.6. THE STRUCTURED CONVOLUTIONAL LAYER
This section describes the algorithmic implementation of structured receptive fields in
convolutional layers. We will see that significant speed ups can be achieved by sharing
parts of computations between the different feature maps, and that for large filters an-
other big speedup is gained by performing the convolutions in the frequency domain.
Since these performance optimizations are only possible or relevant for structured re-
ceptive fields, we will refer to this layer as a Structured Convolutional Layer.
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In a normal convolutional layer, the computation of a single output neuron at location
x, y in the nth featuremap is given by equation 4.4 (see chapter 3). By adopting a special
notation for the cross-correlation operation, we can drop the spatial coordinates and
conveniently express the computation of the entire nth feature map a(l )[n] in terms of
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the channels of the input tensor a(l°1)[c] and the corresponding filter channels Fn[c],
see equation 4.5.
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where ? stands for cross-correlation.

(4.5)

By far the largest amount of computations are needed to evaluate the cross correlations
terms in this equation. Fortunatly, one can obtain different expressions that are equiva-
lent mathematically, but require far less computations to evaluate algorithmically. Equa-
tion 4.6 shows the expressions that describe the three different implementations that will
be investigated in this report. From top to bottom, we will call them the Normal imple-
mentation, the Fast implementation and the Faster implementation.
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where F {·} and F°1{·} denote the forward and backward

Fourier transform.

Figure 4.3 supports the following explanations of how the different implementations
work and how they achieve their speedup.

The normal implementation is shown on the right hand side of equation 4.6a. It is ob-
tained by substituting the expression for structured receptive fields (equation 4.1), into
equation 4.5. In this implementation the effective filters are computed first, then each
channel of the effective filter is correlated with the corresponding input channel after
which the results are summed to create the feature map. Apart from the step where the
effective filters are computed, this just a normal convolutional layer. Hence the name,
normal implementation.

The fast implementation is shown in equation 4.6b. It is obtained from equation 4.6a, by
using the linearity property of the cross correlation. This implementation first correlates
each input channel with every gaussian basis filter. Because the result does not depend
on a specific featuremap (no dependency on n), it can be reused in the computation
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Figure 4.3: Three different but equivalent implementations of a structured convolution layer. For the purpose
of this illustration, it is more convenient to use a 2D visualization. Therefore the depth slices of the 3D tensors
(i.e. input channels) are shown below each other. The arrows in this schematic stand for mathematical opera-
tions. An arrow with a dark blue color indicates that the operation is shared over all featuremaps. Other colors
indicate feature map specific operations. Solid arrows indicate operations that are much more expensive to
compute than the operations indicated by dashed arrows in the same schematic. So roughly speaking, one
would like to minimize the number of solid arrows.
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of other feature maps. The feature map is computed by taking a feature map specific
weighted sum of the shared intermediate channels. The fast implementation changes
the number of cross-correlations from C ·N to C ·M . Thereby it takes advantage of the
fact that the number of basis filters M is usually far lower than the number of feature
maps N .

Finally, the faster implementation is shown in equation 4.6c. It is obtained from equa-
tion 4.6b, by using the correlation theorem to perform the correlation in the frequency
domain and by using the linearity of the fourier transform to move the summation in-
side the inverse transform. This implementation first transforms each input channel
and conjugates them, then each transformed channel is elementwise multiplied by every
transformed basis filter. This intermediate result is again independent of n and therefore
can be reused in the computation of other feature maps. Next, a transformed feature
map is created by taking a feature map specific weighted sum after which it is trans-
formed back to the spatial domain by the inverse fourier transform, to arrive at the out-
put feature map.

The faster implementation reduces the number of cross-correlations to zero, but it adds
a number of fourier transforms instead. When the filters are large these fourier trans-
forms are relatively cheap to compute, compared to the cross-correlations. Hence, this
implementation will be a lot faster when the filter sizes are large. An important advan-
tage of the gaussian basis filters is that they do not have to be evaluated in the spatial
domain, before being transformed to the frequency domain. Instead they can be evalu-
ated directly in the frequency domain, because they have known analytical expressions
in both domains.

This section described the three different implementations. It explained in which sce-
narios one might be faster than the other. The next section will compare the different
implementations in a more quantative manner.

4.7. PERFORMANCE OF DIFFERENT IMPLEMENTATIONS
It is common to compare the relative performance between different algorithms, by
counting the number of elementary operations needed to evaluate the outcome. The
number of elementary operations is often expressed in terms of the relevant parame-
ters, such that one can easily compare the algorithms for different scenarios. This type
of analysis is called time-complexity analysis, since it gives a rough estimate for the run-
ning time of an algorithm.

We will count the number of multiplications needed for each implementation, and we
will express it in terms of the relevant parameters: the spatial size of the input tensor
S, the number of input channels C , the number of feature maps N , the number of ba-
sis filters M , the filter size k. With these parameters, cross-correlation of a single input
channel with a single filter channel requires S2k2 multiplications. The 2D fast fourier
transform (FFT) requires S2 logS2 multiplications. However the input tensor first needs
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Normal: C M N k2+ computing effective filters
C N S2k2 correlation with effective filters

Fast: C MS2k2+ correlation with basis filters
C M N S2 weighted sum with alphas

Faster: C (S +k)2 log(S +k)2+ fourier transform of input channels
C M(S +k)2+ multiplication with transformed basis filters
C M N (S +k)2+ weighted sum with alphas
N (S +k)2 log(S +k)2 inverse fourier transform

Table 4.1: Performance benchmarks for the different implementations for common settings of the relevant
parameters. Most of these scenarios occur in DenseNet architecture, which is the neural network architecture
that currently holds the state-of-the-art results on several datasets. The DenseNet architecture will be used for
most of the experiments in chapter 5.

S C N M k Normal Fast Faster

32 76 12 6 11 113M 62M 12M
16 148 12 6 13 78M 41M 11M
8 220 12 6 25 115M 53M 21M

32 76 12 15 11 114M 155M 29M
16 148 12 15 13 81M 102M 25M
8 220 12 15 25 130M 134M 49M

to be zero-padded to a spatial size of S+k, in order to turn the circular correlation into a
linear correlation.

The calculations below show the amount of floating point multiplications (flops) that
are needed in each implementation. Since it is not easy to compare the implementa-
tions from these expressions, we evaluated them for a few common scenarios in table
4.1. Most of these scenarios occur in the DenseNet architecture, which is the neural net-
work architecture that currently holds the state-of-the-art results on several datasets.

4.8. CREATING THE GAUSSIAN BASIS FILTERS
This section features the construction of the gaussian basis filters. Since gaussian deriva-
tives have a continuous definition, the question arises how to obtain discrete filters? The
scale-space theory for continuous signals, elegantly derived the gaussian function as the
only function satisfying all the scale-space axioms (a set of desirable properties, see sec-
tion 1.5). However images are discrete rather than continuous signals, and obtaining a
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discrete filter by simply sampling a continuous gaussian derivative will cause the result-
ing filter to no longer satisfy the scale-space axioms.

Fortunatly, scale-space theory also contains a modification for discrete signals [55]. This
modification defines discrete analogs for the continuous gaussian derivatives. These
discrete analog derivatives are defined in such a way that all scale-space properties that
hold for continuous signals transfer to the discrete signals.
They are obtained by replacing:

• the continuous gaussian kernel by a discrete analog of the gaussian kernel,

• and the derivative operators with a set of difference operators.

For convienience, we will call the discrete analog derivatives simply discrete gaussian
derivatives and the sampled continuous derivatives simply continuous gaussian deriva-
tives. The exact definition of the discrete gaussian derivatives will be given later in this
section.

Using discrete derivatives instead of continuous derivatives will be mostly theoretical, at
large scales where the grid effects can be expected to be small. However at small scales
and for high order derivatives these grid effects are not so small and the resulting dis-
cretization errors could be substantial. Hence, our main choice will be to use discrete
derivatives. Nevertheless, we will also implement the continuous derivatives as a sanity
check and we will compare both methods and their effect on learning the sigma param-
eter in section 5.2 with an experiment.

THE CONTINUOUS AND THE DISCRETE GAUSSIAN DERIVATIVES

The continuous gaussian is the Green’s function that solves the continuous time diffu-
sion equation on a continuous spatial grid. Analogously, the discrete gaussian is defined
as the Green’s function that solves the continuous time diffusion equation on a discrete
spatial grid. A Green function describes how the spatial initial solution of a partial differ-
ential equation evolves over time, by expressing solution as the convolution of the initial
solution with a time dependent Green’s function. The discrete gaussian turns out to be
an exponentially weighted modified bessel function of the first kind, in which the order
is the spatial coordinate and the argument is the variance. Equation 4.7 shows both the
continuous gaussian (left) and the discrete gaussian (right).

G(x; æ) = 1
p

2ºæ2
e°

1
2

x2

æ2 , G[x; æ] = e°æ
2

I [x; æ2] (4.7)

To avoid confusion, the continuous gaussian will be denoted with round brackets G(·)
and the discrete gaussian will be denoted with square brackets G[·]. In two dimen-
sions, both the continuous and discrete gaussian are seperable. Meaning that the 2-
dimensional gaussian can be written as the product of the two 1-dimensional gaus-
sians, and that the 2-dimensional derivatives can be written as the product of two 1-
dimensional derivatives. See equation 4.8.
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Table 4.2: The central difference coefficients of accuracy two, up to order six. For higher orders, the coefficients
can be found by the recurrence relation in equation 4.11.

order -3 -2 -1 0 1 2 3

0 1

1 - 1
2 0 1

2

2 1 -2 1

3 - 1
2 1 0 -1 1

2

4 1 -4 6 -4 1

5 - 1
2 2 - 5

2 0 5
2 -2 1

2

6 1 -6 15 -20 15 -6 1
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Equation 4.9 show that a continuous gaussian derivative of arbitrary order i can be ex-
pressed in terms of a hermite polynomial Hi (x), whereas a discrete gaussian derivative
of arbitrary order i is expressed in terms of a finite difference operator ±xi that operates
on the discrete gaussian.
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The hermite polynomials and the finite difference operators, are both defined in terms
of a recurrence relations, see equation 4.10 and 4.11.

Hi (x) = 2x Hi°1(x)°2(i °1) Hi°2(x)

H0(x) = 1

H1(x) = 2x

(4.10)

There exist two types of hermite polynomials, but these are the ‘physicists’ hermite poly-
nomials.

±x2i f [x] = (±x2 )i f [x] and ±x2i+1 f [x] = (±x2 )i±x1 f [x]

±x1 f [x] = ° 1
2 f [x °1]+ 1

2 f [x +1]

±x2 f [x] = f [x °1]°2 f [x]+ f [x +1]

(4.11)
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The finite difference operators in this equation are defined by a kernel of which the co-
efficients are the central difference coefficients of accuracy two [56]. For the purpose of
illustration, all coefficients up to order six are given in table 4.2. Normally the choice of
difference operators would be more or less arbitrary, because the derivative of a discrete
signal is not well-defined. However these operators are chosen such that all continuous
space-scale properties transfer to the discrete domain. Note that a consequence of this
choice is that: ±x1±x1 6= ±x2 and that odd and even order derivatives follow a different
recurrence relation.

The following summary contains all the expressions needed to construct the continuous
and discrete gaussian derivatives in the spatial domain. Furthermore, it also includes
the fourier transform of the discrete gaussian basis filters for direct evaluation in the fre-
quency domain in case of the ‘faster’ implementation.

Construction of the Gaussian basis filters

A summary containing all the expressions needed to construct the continuous
and discrete gaussian derivatives in the spatial or the frequency domain.

Continuous gaussian derivatives the in spatial domain
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Discrete gaussian derivatives in the spatial domain

@i+ j G[x, y ; æ]

@xi@y j
= @i G[x; æ]

@xi

@ j G[y ; æ]

@y j

@i G[x; æ]

@xi
= ±xi G[x; æ]

±x2i f [x] = (±x2 )i f [x] and ±x2i+1 f [x] = (±x2 )i±x1 f [x]

±x1 f [x] = ° 1
2 f [x °1]+ 1

2 f [x +1]

±x2 f [x] = f [x °1]°2 f [x]+ f [x +1]

G[x; æ] = e°æ
2

I [x; æ2]

@

@æ

@i G[x; æ]

@xi
= e°æ

2
±xi

°

I [x °1; æ2]°2æI [x; æ2]+ I [x +1; æ2]
¢

Discrete gaussian derivatives in the frequency domain
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±xi {p} denotes the coefficient corresponding

to the shift p (see table 4.2).
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4.9. NORMALIZATION OF THE GAUSSIAN BASIS FILTERS
This final section covers the normalization of the gaussian basis filters. The normaliza-
tion brings the magnitude of each basis filter in approximately the same range. Figure
4.4 shows that if the basis filters are not normalized, the higher order filters are dwarfed
by the by the lower order filters. Normalizing the Root Mean Square (RMS) value of each
basis filter to unity, ensures that the magnitude of each basis filter is approximately in
the same range.

For the respresentational power, the normalization constant is not important because
it can also be absorbed in the alpha parameter. Practically however, it turns out to be
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Figure 4.4: Visual comparison of normalized and unnormalized filters. For the purpose of illustration, only the
x-dimension of the filter is shown. Notice that in the case of the unnormalized filters, the higher order filters
are dwarfed by the by the lower order filters. Normalizing the RMS value of each basis filter to unity, ensures
that the magnitude of each filter is approximately in the same range. This happens to be important for learning
the alpha and sigma parameters, as we will see later in this report.

very important for learning the right values for the alpha and sigma parameters. The
gradient descent optimizer works much better, if the partial derivative of each param-
eter are in approximately the same order of magnitude. The stepsize of the parameter
update is namely proportional to the partial derivative. So if the partial derivatives have
totally different magnitudes then choosing an appropriate learning rate is impossible.
For a certain learning rate, some parameters will overstep the minimum while others
require so many steps that convergence takes forever. Normalization of the basis filters
tries to solve this problem, by bringing the alpha and sigma derivatives in the same order
of magnitude regardless of the order of the structured receptive field.

There are many different ways in which one could normalize basis filters, but the exact
method probably does not matter as long as the basis filters have the same magnitudes
after normalization. In this report we normalize each basis filter by its RMS value, see
equation 4.12. We use the RMS value, because it can be evaluated directly in the fre-
quency domain. Via parsevals relation, it is easy to show that the RMS value in the spatial
domain equals the RMS value in the frequency domain. Direct evaluation of the basis fil-
ters in the frequency domain is a necessary requirement to make full use of the ‘faster’
implementation, mentioned in section 4.6.
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(4.12)

In chapter 5, some of the experiments will be repeated without normalizing the basis
filters to investigate the effect of normalization.



III
EXPERIMENTS AND RESULTS

57





5
PROOF OF CONCEPT

A proof of concept is a realization of a certain method or idea, that aims to demonstrate
that some concept has practical potential.

Wikipedia

T HIS chapter describes three experiments, that together aim to demonstrate the prac-
tical potential of structured receptive fields. Each experiment serves its own pur-

pose. The first experiment is described in section 5.1 and its purpose is to investigate the
representational power of structured receptive fields. Structured receptive fields must
be expressed in terms of gaussian derivatives in order to be able to learn the filter size. In
this experiment we question whether structured receptive fields are able to approximate
the filters learned by normal CNNs, despite this imposed mathematical form.

The second experiment is described in section 5.2 and its purpose is to show that the
feature scale (filter size) can be learned during the training stage. In this experiment the
same network architecture is being trained twice: once on original images and once on
the same but resized images. If structured receptive fields are able to learn a meaningful
scale, then the ratio between the learned scales should be the same as the resize factor
of the images.

Section 5.3 describes the third and most important experiment. Its purpose is to demon-
strate an actual advantage when using structured receptive fields instead of normal fil-
ters. In this experiment, we resemble the network architecture that holds the state-of-
the-art results on several benchmark datasets. Ceteris paribus, we swap all normal filters
for structured receptive fields. If structured receptive fields have any advantage over nor-
mal filters, a higher classification accuracy on the test set should be observed.

59



5

60 5. PROOF OF CONCEPT

5.1. REPRESENTATIONAL POWER
We start by investigating the representational power of structured receptive fields. The
main purpose of this experiment is to see whether structured receptive fields can ap-
proximate the filters learned by normal CNNs. To this end, we download a pre-trained
AlexNet and try to approximate the filters with structured receptive fields. These approx-
imations are obtained by fitting the alphas and sigmas of the structured receptive fields
against the original AlexNet filters. Visual comparison will tell whether the structured
receptive fields are capable of approximating the original AlexNet filters.

ALEXNET
AlexNet is the network architecture that won the ImageNet competition in 2012 [11]. It is
named after Alex Krizhevsky, who designed it. The remarkable results it achieved in the
ImageNet competition (~10% higher than any other competitor), marked the beginning
of the era of CNNs. Almost all of the currently used architectures are in some way derived
from AlexNet.

AlexNet consists of five convolution layers followed by three fully connected layers. The
11x11 filters used in the first convolution layer of AlexNet are quite large by todays stan-
dards. Nowadays it is much more common to use only 3x3 filters. Large filters could in
theory display more oscillations than smaller filters and could therefore be harder to ap-
proximate with low order gaussian derivatives. The AlexNet filters were chosen with this
idea in mind that if structured receptive fields would be capable of approximating these
large filters, then chances are high that they can also approximate the smaller filters of
other architectures. Though, this is something that could be investigated further.

EXPERIMENTAL SETTINGS
For this experiment, we truncate the structured receptive fields at order 4. Meaning that
we include all gaussian derivatives up-to and including order 4. The sigmas are initial-
ized at 2.75 and the alphas are initialized uniform at random between -0.01 and 0.01. The
final results after 1000 steps of gradient descent are shown in figure 5.1. In order not to
take up all the space, we only show the first 10 filters of the first convolutional layer of the
AlexNet. The other 86 filters have similar approximations and can be found in appendix
B, together with the approximations to filters of the deeper convolutional layers.

RESULTS AND CONCLUSIONS
From the results in figure 5.1, it is clear that structured receptive fields have no trouble
in approximating most of the original AlexNet filters. It only has trouble approximating
the penultimate filter, which is understandable because it contains high frequency oscil-
lations that cannot be modeled by low order derivatives. Gaussian derivatives have the
property that with every order of derivative, an extra zero crossing is added. So, a fourth
order gaussian derivative has only 4 zero crossings, which is not enough to model the
penultimate filter. The approximation becomes better when the order of the structured
receptive field is increased to 11, see 5.2. Though, we conclude that order 4 is enough to
approximate most of the AlexNet filters.
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Original 
Alexnet Filters

Structured 
Receptive Fields

! = 2.43 ! = 3.41 ! = 3.01 ! = 3.14 ! = 3.26 ! = 3.27 ! = 2.57 ! = 2.97 ! = 2.57 ! = 3.02
Error 	10,-	 2.8 0.6 1.4 1.3 1.7 1.5 0.8 1.7 19 2.1

Figure 5.1: Structured receptive field approximations of AlexNet filters. The top row shows the first 10 filters
with spatial dimensions of 11x11, from the first convolutional layer of the AlexNet. The second row shows the
structured receptive field approximations of these AlexNet filters. This approximation was obtained by fitting
the alphas and sigma of the structured receptive field against the original AlexNet filter. The final mean squared
error after 1000 steps of gradient descent and the fitted sigma are shown in the third and fourth row. The
structured receptive fields used for this approximation, consist of all gaussian derivatives up-to and including
order 4.

Alexnet Filter Structured Receptive Fields

order = 4 order = 11

error: 19 # 	10&' error: 4.7 # 	10&'

Figure 5.2: Comparing structured receptive field approximations with different truncation orders. The image
on the left depicts the 9th AlexNet filter; the middle image shows a structured receptive field approximation
of order 4, and the image on the right is an approximation of order 11. It is clear that increasing the order
improves the approximation both visually and numerically.

It is remarkable that the structured receptive fields are capable of approximating the
AlexNet filters so well, because they only contain 46 parameters (3 channels x 15 alphas +
1 sigma) whereas the original AlexNet filters contain 363 parameters (3 channels x 11x11
filters). This shows that many of the parameters in the AlexNet are redundant, and that
the number of parameters can be reduced substantially, if the filters are expressed in
a different basis! The method of registering images against a set of basis images to re-
duce the amount of parameters needed to represent the full image, looks a lot like JPEG
compression. But difference is, that in JPEG compression the parameters can be found
exactly and efficiently by orthogonal projection.

For performance reasons, it will be needed (at least in our current implementation) that
the structured receptive fields in the same convolutional layer share the same set of gaus-
sian derivatives. This means that the structured receptive fields must have the same or-
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Original 
Alexnet Filters

Structured 
Receptive Fields

( unshared sigma )

! = 2.43 ! = 3.41 ! = 3.01 ! = 3.14 ! = 3.26 ! = 3.27 ! = 2.57 ! = 2.97 ! = 2.57 ! = 3.02

Error 	10,-	 2.8 0.6 1.4 1.3 1.7 1.5 0.8 1.7 19 2.1

Structured 
Receptive Fields

( shared sigma )

! = 2.97 ! = 2.97 ! = 2.97 ! = 2.97 ! = 2.97 ! = 2.97 ! = 2.97 ! = 2.97 ! = 2.97 ! = 2.97

Error 	10,-	 10 13 4.7 6.2 9.1 8.9 8.2 4.4 21 7.6

Figure 5.3: structured receptive field approximations of the first 10 AlexNet filters. The top row shows the
original AlexNet filters. In the middle row each approximation has its own sigma, while in the bottom row
the same sigma is shared over all approximations. As a result of sharing the sigma, the structured field must
make compromises that cause the approximation to become worse than when each approximation has its own
sigma.

der and share the same sigma. Therefore we will investigate, how the approximations
change when all structured receptive fields are restricted to have the same sigma. The
results of this can be seen in figure 5.3. A first thing to notice, is that the shared sigma
exactly matches the average of the unshared sigmas. The approximations have of course
become worse, but the drop in quality seems to be quite small. Though its influence on
the classification performance could be investigated further. Especially, since the num-
ber of compromises that need to be made as a result of sharing the sigma, grows with
the number of filters that share the same sigma. With the current hardware and imple-
mentation however, it is simply not feasible to give each filter its own sigma. Therefore
shared sigma filters will be used in the remainder of this report.

A BASIC INTUITION FOR TRAINING STRUCTURED RECEPTIVE FIELDS
Besides the main purpose of investigating the representational power, there are more
things that can be learned from this experiment. For instance, there are some issues
regarding the usage of gradient descent optimization that we can investigate. Gradient
descent optimizers are not guaranteed to find the best solution. Instead, convergence to
an optimal solution relies on the initial guess of the parameters, as well as the curvature
of the error landscape. It relies on whether there exists a path in the error landscape from
the initial guess to the optimum along which the error only descents 1. In general, it is de-
sirable for gradient descent to start from an initial guess that is close to the optimum and
to have an error landscape whose descent has the same order of magnitude in each di-
rection. Fortunately, we can influence initial guess by choosing a different initialization
scheme and we can influence the curvature of the error landscape by normalizing the

1Because parameters are updated proportional to their derivative, this descent cannot be too slow. Otherwise
it will take forever to reach the optimum. This problem is called the vanishing gradient problem and occurs
often in very deep neural networks.
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Figure 5.4: The distribution of the alphas in the structured receptive field approximations in the bottom row of
figure 5.3.

gaussian derivatives. The normalization of the basis filters brings the partial derivative
with respect to each alpha of structured receptive field in the same order of magnitude,
see section 4.9.

To find an initial guess close to the optimum, we will study the distribution of the alpha
parameters in the approximations of the shared sigma filters in figure 5.3. In figure 5.4,
we see that these alphas are approximately normally distributed around zero with a stan-
dard deviation of approximately 0.02. This knowledge can be used to initialize the alphas
in further experiments. Furthermore, it can be concluded that normalizing the basis fil-
ters is absolutely crucial for the structured receptive field approximations to converge.
In figure 5.5, we provide two examples to convince the reader that both initialization and
normalization are indeed important when using gradient descent.

The first row of this figure shows the original AlexNet filters. The second row shows the
successful structured receptive fields approximations, that were found with normalized
gaussian derivatives and alphas initialized uniform at random between -0.01 and 0.01.
The third and fourth row shows the structured receptive field approximations failing to
converge because the gaussian derivatives were not normalized or because they were
initialized too far from the global optimum. The alphas for the fourth row were initial-
ized uniform at random between -1.0 and 1.0.

5.2. LEARNING THE FEATURE SCALE
Now that a basic intuition for using structured receptive fields has been developed, it
is time to embed them into CNNs. The main goal of this experiment is to investigate
whether the feature scale can be learned during the training stage. This will be put to
the test, by training the same CNN architecture on both normal and resized versions
of images in the MNIST dataset. A comparison of learned scales on both datasets will
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Figure 5.5: Two examples of the gradient descent optimizer failing to approximate the AlexNet filters. The first
row shows the original AlexNet filters. The second row shows the successful structured receptive fields ap-
proximations, that were found with normalized gaussian derivatives and alphas initialized uniform at random
between -0.01 and 0.01. The third row shows the structured receptive field approximations failing to converge
because the gaussian derivatives were not normalized. In the fourth row, the structured receptive field approx-
imations got stuck in a local minima because they were initialized too far from the global optimum. The alphas
for the fourth row were initialized uniform at random between -1.0 and 1.0.

reveal whether structured receptive fields are capable of learning the feature scale. For
example, the feature scale learned on the 2.0x enlarged images should be twice the scale
learned on the normal images This can be understood by looking at the exponent of the

gaussian: e
°(x2+y2)

2æ2 and noting that any uniform scaling of the spatial coordinates can be
canceled by scaling the standard deviation with the same factor.

THE MNIST DATASET
The MNIST dataset was created by the National Institute of Standards and Technology
and consists of grayscale images of 28x28 pixels, each containing a single handwritten
digit. By combining two original NIST datasets, they formed a dataset that contains
60,000 training images and 10,000 testing images [57]. The MNIST dataset was selected
specifically for this experiment because all the digits appear at roughly the same scale.
We create two bilinearly upsampled versions of the original dataset (1.0x MNIST) to
which we will refer as 1.5x MNIST and 2.0x MNIST.

NETWORK ARCHITECTURE AND TRAINING
To avoid room for other explanations while keeping the results relevant, we use the
smallest possible CNN architecture that contains all the commonly used layers (except
dropout). The feature extraction part of the architecture consists of a structured con-
volution (without bias) followed by batch normalization, a relu activation function and
max pooling layer. The classification is done with a single fully connected layer (with
bias), followed by a softmax layer to convert the outcomes to proper class probabilities.
The stride and size of the max pooling operation are adjusted for each dataset, to keep
the dimensionality of the feature vector going into the fully connected layer equal for
all three datasets. For the 1.0x MNIST a stride of 2 and a size of 2x2 is used; for the 1.5x
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Table 5.1: The network architecture that is used to investigate whether structured receptive fields can learn
the feature scale. The stride and size of the max pooling operation are adjusted for each dataset, to keep the
dimensionality of the feature vector going into the fully connected layer equal for all three datasets. For the
1.0x MNIST a stride of 2 and a size of 2x2 is used; for the 1.5x MNIST a stride of 3 and a size of 3x3 is used and
for the 2.0x MNIST a stride of 4 and a size of 4x4 is used.

MNIST image

bilinear upsampling by 1.0x bilinear upsampling by 1.5x bilinear upsampling by 2.0x

1.0x MNIST 1.5x MNIST 2.0x MNIST

structured conv, order 4, filters 16

batch norm, relu

2 x 2 max pool, stride 2 3 x 3 max pool, stride 3 4 x 4 max pool, stride 4

fully-connected, softmax

MNIST a stride of 3 and a size of 3x3 is used and for the 2.0x MNIST a stride of 4 and a size
of 4x4 is used. Table 5.1 shows an overview of architecture, including the dataset specific
modifications that were made in the max pooling layer. Each architecture is trained with
stochastic gradient descent (SGD) with a mini-batch of 100 samples, for 10 epochs.

The structured convolution layer has 16 structured respective fields (filters) that share
the same sigma. By using multiple filters that share the same sigma, a single scale is
learned that is stable to different feature initializations. It is stable because the sigma
derivative is averaged over the alphas of all 16 filters. This allows us to repeat the ex-
periment multiple times and compare the scales learned on the different datasets more
easily.

RESULTS AND CONCLUSIONS
The main result of this experiment is shown in figure 5.6. It shows the development of the
scale parameters during the training stage, when trained on the normal MNIST dataset
and the resized versions: 1.5x MNIST and 2.0x MNIST. Each training run was repeated
five times to show that the results are stable to different initializations. The average of
these repetitions is plotted as a line, and colored region around it marks the range within
one standard error.

These results show that feature scales are stable to different initialization and converge
to a stable final value. However, the scales learned on the 1.5x MNIST and 2.0x MNIST
datasets, are not exactly 1.5 and 2.0 times as large as the scale learned on the 1.0x MNIST
dataset. This can be explained by the fact that sampling and resizing of continuous sig-
nal are not commutative operations. The scale-space theory describes the process of
imaging a real physical space at a certain scale. The distance from the object to the
imaging apparatus can vary continuously (rescaling), before the physical object is im-
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Figure 5.6: The development of the scale parameters during the training stage, when trained on the normal
MNIST dataset and the resized versions 1.5x MNIST and 2.0x MNIST. The training runs are repeated five times
to show that the results are stable to different initializations. The average of these repetitions is plotted as a
line, and colored region around it marks the range within one standard deviation. The gaussian basis filters
were created using the discrete derivatives. In figure 5.7 the same experiment is repeated, with the difference
that the gaussian basis filters are created using the continuous derivatives.

aged on a discrete grid of pixels (sampling). But in this experiment, the original MNIST
images were already sampled and then resized to form larger scale images. This causes
the learned scale to differ slightly from what is expected according to scale-space theory.

This explains also why the ratio between the scale learned on the 1.5x MNIST and the
2.0x MNIST does correspond: (2.0/1.5) ·æ1.5 = 2.81 ± 0.04 º æ2.0 = 2.82 ± 0.04. These
datasets both contain the same artifacts as a result of the resizing operation. This expla-
nation can also be backed up by simulations in which a continuous gaussian is sampled,
resized by a factor 1.5 and a factor 2.0, and then fitted again. The fitted sigma on the 2.0x
resized gaussian is not exactly 2.0x the original sigma, but it is (2.0/1.5)x the sigma fit-
ted on the 1.5x resized gaussian. This simulation is in agreement with the observations
in this experiment. So, we conclude that this seems to be an artifact of how the images
were created and that structured receptive fields are indeed able to learn the scale cor-
rectly during the training stage. The results of an experiment in the next chapter (section
6.1) also confirm this.

Section 4.8 mentions two different methods for creating the gaussian derivative filters:
the discrete derivatives and continuous derivatives. Theoretically, the discrete deriva-
tives should be preferred because the sampling of continuous expression for gaussian
derivatives leads to discretization errors when sigma is small. For large sigmas, the con-
tinuous derivatives converge to the discrete derivatives and both methods produce the
same basis filters. To show that this indeed the case, we repeated the experiment of fig-
ure 5.6 with the continuous derivatives. The results are shown in figure 5.7. We observe
a slightly different value and a larger spreading for the scale learned on the MNIST 1.0x
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Figure 5.7: The development of the scale parameters during the training stage, when trained on the normal
MNIST dataset (1.0x MNIST) and the resized versions 1.5x MNIST and 2.0x MNIST. The training runs are re-
peated five times to show that the results are stable to different initializations. The average of these repetitions
is plotted as a line, and colored region around it marks the range within one standard error. The gaussian ba-
sis filters were created using continuous derivatives. In figure 5.6 the same experiment is repeated, with the
difference that the gaussian basis filters are created using discrete derivatives.

(small sigma), while the value and the spreading for the scale learned on the MNIST 2.0x
(large sigma) seems to be comparable to the discrete derivatives. This provides empir-
ical evidence that is in perfect agreement with the hypothesis that discretization errors
are large for small sigmas and negligible for large sigmas. We conclude that the discrete
derivatives should indeed be preferred, especially when small sigmas are being consid-
ered, and we will use this method for the remainder of this report.

Finally, we demonstrate once more that normalization of the gaussian basis filters is of
crucial importance. Figure 5.8, shows what happens when the experiment is repeated
without normalizing the gaussian basis filters. The results clearly confirm that normal-
ization is needed to learn the optimal features and their corresponding scales.

5.3. COMPARISON WITH NORMAL FILTERS
Now that our internal validation has been completed, it is time to investigate whether
using structured receptive fields gives any advantage over using normal convolutional
filters. To this end, we resemble the architecture that currently holds the state-of-the-
art results on the CIFAR-10 and CIFAR-100 dataset, and ceteris paribus, we swap all the
normal convolutional layers with structured convolution layers. The fact that the filter
size of structured receptive fields is learned while the filter size of normal filters is fixed,
should give structured receptive fields a small advantage. The purpose of this exper-
iment, is to investigate how the classification performance of a state-of-the-art archi-
tecture is altered, when all its normal convolutional layers are replaced with structured
convolutional layers.
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Figure 5.8: This is a repetition of the experiment in figure 5.6, without normalizing the gaussian basis filters.
From this figure, it is clear that normalization of the gaussian derivatives (the basis filters) is absolutely crucial
in order to learn the correct filters.

THE CIFAR DATASETS
The Canadian Institute For Advanced Research (CIFAR) has collected two labeled datasets
of images [49] . These two CIFAR datasets consist of colored natural scene images, with
32×32 pixels each. The CIFAR-10 consists of images drawn from 10 classes and has 6000
images per class, while the CIFAR-100 images are drawn from 100 classes and consists
of 600 images per class. Both datasets consist of 60,000 images and have been split into
50,000 training images and 10,000 test images while preserving an equal amount of im-
ages of each class in each set. The ten class labels in the CIFAR-10 dataset are: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck. The CIFAR-100 contains 20 sim-
ilar classes, which are then split up into five finer classes. For example, it contains the
superclass ‘people’, which has the following 5 subclasses: baby, boy, girl, man, woman.
To preprocess the images, we subtract the channel means and divide by the channel
standard deviations, both statistics are measured on the training set only.

DENSELY CONNECTED CONVOLUTIONAL NETWORKS
The architecture that currently holds the state-of-the-art results on the CIFAR datasets
are the Densely Connected Convolutional Networks [47]. The key characteristic of DenseNets
is the usage of so called ‘dense blocks’. A dense block is a stack of normal convolution
layers, in which each convolution layer takes as input the feature maps of all previous
convolution layers in that block. In a dense block, each convolution layer is followed by
a concatenation layer, which concatenates the input and output feature maps of the pre-
ceding convolution layer. This skip-connection gives the higher conv layers access to all
previous feature maps in the dense block. This is different from traditional architectures,
in which convolution layers only take as input the feature maps of the previous layer.

The original DenseNet architecture starts with a 3x3 convolution layer with 16 filters and



5.3. COMPARISON WITH NORMAL FILTERS

5

69

Table 5.2: Overview of the structured DenseNet architecture. The key characteristic of DenseNets is usage of
a concatenation layer, which concatenates the input channels and output feature maps of the preceding conv
layer. Differences with the original architecture: there are 6 instead of 12 conv layers per dense block and all
normal conv layers (except the 1x1 conv in the transition blocks) have been replaced by structured conv layers.
The dense blocks have been summarized to get the whole overview on a single page.

Layers Output size Layer specific parameters

CIFAR image 32 x 32 x 3

structured conv 32 x 32 x 16

Dense block 1 (6 layers)

batchnorm, relu, structured conv 1, dropout 32 x 32 x 12 drop rate = 0.2

concatenate 32 x 32 x 28

...
...

...

batchnorm, relu, structured conv 6, dropout 32 x 32 x 12 drop rate = 0.2

concatenate 32 x 32 x 88

Transition block 1

batchnorm, relu, 1x1 conv, dropout 32 x 32 x 88 drop rate = 0.2

average pooling 16 x 16 x 88 size 2x2, stride 2

Dense block 2 (6 layers)

batchnorm, relu, structured conv 1, dropout 16 x 16 x 12 drop rate = 0.2

concatenate 16 x 16 x 100

...
...

...

batchnorm, relu, structured conv 6, dropout 16 x 16 x 12 drop rate = 0.2

concatenate 16 x 16 x 160

Transition block 2

batchnorm, relu, 1x1 conv, dropout 16 x 16 x 160 drop rate = 0.2

average pooling 8 x 8 x 160 size 2x2, stride 2

Dense block 3 (6 layers)

batchnorm, relu, structured conv 1, dropout 8 x 8 x 12 drop rate = 0.2

concatenate 8 x 8 x 172

...
...

...

batchnorm, relu, structured conv 6, dropout 8 x 8 x 12 drop rate = 0.2

concatenate 8 x 8 x 232

Final classifier

batchnorm, relu, global average pool 232

fully-connected, softmax 10 / 100 outputs class probabilities
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Figure 5.9: Development of the training and test set accuracy of the normal and the structured DenseNet on
the CIFAR-10 dataset. The accuracy of the structured DenseNet is consistently higher than that of the normal
DenseNet on both the training and the test set. This results in a final difference of ~1% in favor of the structured
DenseNet.

is then followed by three dense blocks of twelve 3x3 convolution layers each. In between
the dense blocks are so called ‘transition blocks’, in which the feature maps are subsam-
pled to form images that are twice as small. A transition block consists of a 1x1 convo-
lution layer followed by a 2x2 average pooling layer with a stride of 2. All convolution
layers (except the first one) are preceded by a batchnorm layer and relu activation func-
tion, and are followed by dropout layer with a drop rate of 20%. The final block does
the classification and consists of one last batchnorm layer and relu activation function,
a global average pooling layer and a fully-connected layer. The softmax layer converts
the outputs into proper class probabilities.

Because of hardware limitations, we had to reduce the number of conv layers in the
dense blocks to six, before swapping all normal conv layers (except the 1x1 conv lay-
ers in the transition blocks) with structured conv layers. Table 5.2 summarizes of the
resulting architecture, to which we will refer as ‘Structured DenseNet’. We train both the
Structured DenseNet and the Normal DenseNet (with 6 layers per dense block) on the
CIFAR-10 dataset. To eliminate room for other explanations we use the same trainings
procedure as the original paper [47]. We train with stochastic gradient descent using a
mini-batch of 64 samples, for 300 epochs. The initial learning rate is set to 0.1, and is
divided by 10 at 50% and 75% of the total number of training epochs. We use a Nes-
terov momentum of 0.9 without dampening, and a weight decay of 10°4 is applied to all
parameters except the sigma of the structured conv layer.

RESULTS AND CONCLUSIONS
Figure 5.9, shows the main result of this experiment. It shows how the training and test
accuracy of both architectures develop during the training on the CIFAR-10 dataset. We
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Table 5.3: The first row shows the baseline result for the structured DenseNet in figure 5.9, and the correspond-
ing experimental settings. In each of the subsequent rows one experimental setting has been changed with
respect to the settings of the baseline result. For easy comparison also the baseline result and the relevant ex-
perimental setting is repeated in blue. From the test accuracies, it seems that the settings as used in figure 5.9
are already optimal. This does not come as a big surprise, since these settings were optimized for the original
DenseNet architecture.

Test accuracy Order Alpha regularization Sigma regularization Dropout rate

92.04% 2 10-4 0 0.2

89.94% 1

92.04% 2

91.52% 3

90.44% 0

92.04% 10-4

88.78% 10-3

92.04% 0

91.94% 10-4

90.60% 0.0

92.04% 0.2

note that the accuracy of the structured DenseNet is consistently higher than that of the
normal DenseNet on both the training and the test set. This results in a final difference of
~1% in favor of the structured DenseNet. Now it would not be wise to draw conclusions
from on a single trainings run on one particular dataset, but this clearly demonstrates
the practical potential of structured receptive fields. 2

To eliminate room for other explanations we kept all experimental settings the same as
the original DenseNet paper. However some of these settings might be highly tuned for
normal convolution filters, and might not take into account the regularizing nature of
structured receptive fields. Therefore, we investigate the effects on the classification per-
formance of changing the some of these experimental settings. The following changes
with respect to the baseline result in figure 5.9, are investigated: removing dropout;
changing the regularization of the alpha parameters; adding regularization to the sigma
parameters and changing the truncation order of the structured receptive fields. The fi-
nal test accuracy and the corresponding experimental settings are shown in Table 5.3.

2A single trainings run takes about one week and requires a high-end server that contains multiple GPUs. We
have only limited access to this hardware and renting this hardware in the cloud for such long periods is
expensive. Hence, we were not able to investigate this potential as thoroughly as we would like to.
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Figure 5.10: Training curves of a structured DenseNet on the CIFAR-10 dataset with different experimental
settings. The top figure compares different truncation orders of the structured receptive fields; the middle
figure compares different amounts of weight decay for the alpha parameters and the bottom figure shows the
effect of removing dropout or adding weight regularization to the sigma parameters. The final test accuracy
and the corresponding experimental settings are summarized in table 5.3. From these training curves, it seems
that the baseline settings as used in figure 5.9, are already optimal.



5.3. COMPARISON WITH NORMAL FILTERS

5

73

From the test accuracies, it seems that the settings as used in figure 5.9 are already op-
timal. This does not come as a big surprise, since these settings were optimized for the
original DenseNet architecture. However, we must stress that this search was limited
to changing only one setting at a time. It could be that some settings dependent heav-
ily on each other, and that changing them both at the same time will yield a significant
improvement. However in view of time and the limited amount of computational re-
sources, we have decided not to extend the sensitivity analysis beyond a 1-dimensional
search.

For the sake of completeness, also the training curves corresponding to the results in ta-
ble 5.3 are shown in figure 5.10. The top figure compares different truncation orders of
the structured receptive fields; the middle figure compares different amounts of weight
decay for the alpha parameters; the bottom figure shows the effect of removing dropout
or adding weight regularization to the sigma parameters.





6
EXTRA APPLICATIONS

There are no such things as applied sciences, only applications of science.

Louis Pasteur

T HE previous chapter demonstrated that structured receptive fields are more or less
normal filters which can learn their own filter size and that this extra ability over

normal filters seems to give them an advantage when used in classification tasks. This
advantage over normal filters is in itself a valid application of structured receptive fields.

In this chapter however, we would like to show two extra use-cases of structured re-
ceptive fields. These applications arise from the fact that structured receptive fields, in
contrast to normal CNN filters, have an explicit and continuous scale parameter that is
learned during the training stage. Hence, these applications are unique to structured re-
ceptive fields and cannot be realized (easily) by normal filters.

Section 6.1 shows that structured receptive fields can be used to build an architecture
that is able to classify and localize/detect objects over a range of different scales, while
being trained on a single scale only. In other words, the global scale at which the CNN
operates can be changed by adjusting the scale parameters of all the structured receptive
fields.

Section 6.2 shows that the learned scale parameters of structured receptive fields can be
used to investigate the role/purpose of subsampling layers. Comparing the classification
accuracies and the learned scale parameters of an architecture that is trained both with
and without subsampling layers, reveals new insights about the role and workings of the
subsampling layer, which has been so poorly understood until now.

75
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The purpose of this chapter is not to give a detailed and thorough investigation of these
two use-cases. Instead, we will explore these applications to encourage and to give guid-
ance to further research on structured receptive fields. We believe that both these ap-
plications could easily span an entire research, if one wants to investigate these topics
thoroughly.

6.1. SELECTING THE GLOBAL OPERATION SCALE OF CNNS
Normal CNNs used for image classification can only handle input images of a single size.
The input image is first resized to the predefined size, before the CNN takes it as input
and classifies it. Normal CNN filters are therefore trained to operate at a single prede-
fined scale which, in contrast to structured receptive fields, cannot be changed explicitly.

In this experiment, an architecture is built that will be trained on images of a single pre-
defined scale, just like a normal CNN. However, it can then used to evaluate images at
different scales. This is possible because we can scale the learned sigma parameters of
all the structured receptive fields in the architecture. In other words, the global scale at
which the CNN operates can be changed by scaling all the learned sigma parameters by
the same factor. So, instead of resizing the input image to the scale of the CNN, the CNN
is rescaled to the size of the image.

NETWORK ARCHITECTURE AND TRAINING

A larger input image, does not necessarily mean that the object in the image appears at
a larger scale. The object could for example not be covering the entire image. There-
fore, the proposed architecture should be able to classify the same object regardless of
any scaling and translation. An architecture that can do this, is said to invariant to these
transformations: the output (the class label) is the same, regardless of whether any scal-
ing or translation is applied to the input image. Note that classification is by definition
invariant: it reduces input signals to the same label regardless of intra-class variability.

Although the CNN as a whole must be invariant, we argue that the feature extraction part
should be equivariant with respect to scalings and translations, because it is impossible
to determine whether features are in the right spatial configuration if they are invariant.
We argue that the invariance should be introduced no earlier than the classification lay-
ers at the very end of the CNN.

Before continuing to explain the used architecture, it is important to understand the dif-
ference between equivariance and invariance. A function is equivariant to a group of
transformations, if interchanging the order of transformation and applying the function
gives the same output, for every possible input and transformation of the group. A func-
tion is said to be invariant to a group of transformations, if the output of the function is
the same regardless of any transformation of the group being applied to the input.
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Table 6.1: Overview of the CNN architecture used in the experiment in section 6.1

Layers Output size (training) Output size (testing) Layer specific parameters

MNIST image 28 x 28 ? x ?

structured conv 28 x 28 x 16 ? x ? x 16 order 4, filters 16

batchnorm, relu 28 x 28 x 16 ? x ? x 16

structured conv 28 x 28 x 32 ? x ? x 32 order 4, filters 32

batchnorm, relu 28 x 28 x 32 ? x ? x 32

structured conv 28 x 28 x 10 ? x ? x 10 order 4, filters 10

batchnorm, relu 28 x 28 x 10 ? x ? x 10

global max pool 10 10

softmax 10 10 outputs the class probabilities

A total equivariant feature extraction requires intermediate layers that are also equiv-
ariant. Hence, we propose an architecture which is solely composed of layers that are
equivariant with respect to scaling and translation of the input image. A normal convo-
lutional layer is already equivariant to translation, but not to scaling. In order to make it
equivariant to scaling, the filters should be scaled. We note that structured convolution
layers can do this by scaling the sigma with same factor as the input image. Further-
more, pointwise operations such as relu activations and batch normalization are already
equivariant [58], but pooling layers are not!

In this experiment, a feature extraction is used that consists of three blocks of structured
conv layers with batch normalization and relu activation functions, but without pooling
layers in between. A global max pool layer is used to make the resulting feature represen-
tation invariant for classification. It reduces all final feature maps to a single value: the
maximum intensity of the feature map. The fact that this reduction works regardless of
the size of the feature map, enables the CNN to handle input images of any size. A final
softmax layer is used convert all feature map maxima into proper class probabilities. A
complete overview of the used architecture is shown in table 6.1.

The network is trained on the original MNIST dataset with stochastic gradient descent
with a mini-batch of 100 samples, for 20 epochs.

The reason for not using fully-connected layers, is that the final feature maps are not ex-
actly equivariant to the different transformations. Discretization errors because of the
continuous transformations on a discrete grid, cause the feature maps to be slightly dif-
ferent for different transformations. We already saw in the experiment in section 5.2,
that these discretization errors caused our hypothesis for the values of the learned scales
to deviate from the actual values.
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Figure 6.1: The development of the test accuracy, during the training stage for different scaled versions of the
MNIST testset. From these training curves it is clear that the proposed architecture in table 6.1 can classify
the same objects over a wide range of different scales by scaling the sigma parameters of all the structured
receptive fields in the architecture.

The maximum intensity of the final feature maps is therefore not stable under different
transformations and using fully-connected layers on top of this unstable invariant would
cause it destabilize even further. Fortunately, the argmax over all feature map maxima
is a more stable invariant. In other words, the maximum intensity of each feature map
varies for different transformations, but the highest maximum keeps occurring in the
same feature map. Therefore we let each final feature map correspond to a particular
class, and use the argmax of the feature map maxima to predict the right class. A final
softmax layer is used to convert all feature map maxima into proper class probabilities.

RESULTS AND CONCLUSIONS
The trained architecture is evaluated on the original images of the MNIST testset and on
resized versions. Before evaluation, the learned sigma of every structured convolutional
layer is multiplied with the same resize factor as the images. This global scale selection
ensures that the structured receptive fields operate at the correct scale. Figure 6.1 shows
the development of the test accuracy, during the training stage for different scaled ver-
sions of the MNIST testset.

The final accuracy of 97.40% on the original MNIST testset, does not come close to the
state-of-the-art on the MNIST dataset which is 99.77% [59], but that was never the pur-
pose of this experiment. Though, we are confident that one could easily improve the
test accuracy by either making the architecture deeper (it now only contains 12,000 pa-
rameters) or by training the network to full convergence (the test accuracy still improved
significantly over the last 5 epochs). The purpose of this experiment is to show the ar-
chitectures ability to do scale and translation invariant image classification. From the
training curves in figure 6.1, it is clear that the proposed architecture is able to do this if
the right global scale is selected.
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Scale = 1.0 Scale = 1.5 Scale = 2.0 Scale = 2.5 Scale = 3.0

y = 0 0.19% 0.01% 0.00% 0.00% 0.00% 

y = 1 0.83% 0.11% 0.02% 0.01% 0.00% 

y = 2 0.19% 0.03% 0.01% 0.00% 0.00% 

y = 3 0.06% 0.00% 0.00% 0.00% 0.00% 

y = 4 56.35% 49.25% 49.40% 41.94% 47.24% 

y = 5 0.06% 0.00% 0.00% 0.00% 0.00% 

y = 6 1.44% 0.13% 0.03% 0.01% 0.00% 

y = 7 0.12%  0.00% 0.00% 0.00% 0.00% 

y = 8 0.40% 0.02% 0.00% 0.00% 0.00% 

y = 9 40.35% 50.46% 50.54% 58.05% 52.76% 

Figure 6.2: The same handwritten digit at 5 different scales: 1.0, 1.5, 2.0, 2.5 and 3.0. Below each image are the
predicted class probabilities. The highest probability is the predicted class and is highlighted in bold. The digit
is correctly classified at the original scale (first column), but misclassified as a ‘9’ at larger scales.

The final test accuracy for the larger scale is ~1% lower than the test accuracy on the orig-
inal scale. This probably because the used invariant is not stable enough to the scaling
transformation, for all the examples in the testset. Figure 6.2 shows such an example,
with the predicted class probabilities at different scales. The class probability of the cor-
rect label is already quite close to the misclassified label at the original scale. This is
possibly because the network was not trained to full convergence. The instability due to
discretization errors in the scaling transformation, then causes the label to change from
the correct class to the wrong class at larger scales.

We conclude that the loss in performance is small and might decrease if one would train
the network architecture to full convergence. Furthermore, we note that the perfor-
mance loss was much larger when we used fully-connected layers on top of the global
max pooling layer. We suspect that the instability due to discretization errors of the scal-
ing, is blown up by the fully-connected layers. In general, we conclude that this archi-
tecture is able to classify the same object over a range different scales, if the right global
scale is selected. Although the scale selection is not done automatically, providing CNNs
with the ability to select the scale at which they operate is an important step towards
scale invariant image classification.
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In future research, one could investigate the possibility of selecting the global scale auto-
matically, instead of a manually. For example, by using a CNN that is specifically trained
to select the right scale or by using the automatic scale selection procedure described
by scale-space theory. Scale-space theory covers the automatic scale selection for image
features that are described in terms of gaussian derivatives. This should be directly ap-
plicable to structured receptive fields which are linear combinations of gaussian deriva-
tives. Furthermore, the automatic scale selection could be implemented in an efficient
manner, since selecting the scale of the first layer is enough to select the scale of the
whole CNN: the ratio between the scales of the different layers is fixed and learned dur-
ing the training stage.

LOCALIZATION AND DETECTION

Finally, we explore whether the final feature map could be used as a building block for
localization and detection tasks. The location of the maximum in the final feature map
should roughly correspond to the location of the object, while the global scale factor
should correspond roughly to the extend of the object. The omission of intermediate
pooling layers ensures that the location of the object is immediately reflected in the lo-
cation of the maximum (without needing any upscaling). Figure 6.3 shows some MNIST
examples which are scaled, translated and distorted with 80% salt-and-pepper noise.
The final feature map corresponding to the predicted class is shown next to each exam-
ple. The center of the circle corresponds to location of the maximum, and the radius
corresponds to the global scale factor. From these examples, it seems that the final fea-
ture maps look promising as building block for a new approach to localize and detect
objects. However much more research is needed, to draw hard conclusions.

In future research, one could investigate whether this method also works on more chal-
lenging datasets than MNIST.

6.2. INVESTIGATING SUBSAMPLING
Neurons in a normal CNN have an increasingly larger effective receptive field as depth
progresses. In other words, the activation of a particular neuron is a function of a larger
and larger patch of pixels in the input image, as the neuron is situated in a deeper layer of
the CNN. For example, the activation of a neuron in a 3x3 convolutional layer is a func-
tion of a 3x3 local receptive field in the input image. If another 3x3 convolutional layer is
stacked on top of this layer, the neurons of that layer would have an effective receptive
field of 5x5 in the input image. One would need approximately 16 3x3 layers to have an
effective receptive field that covers an entire 32x32 image or 128 3x3 layers to cover an
entire 256x256 image. This obviously means that one needs a lot of compute power to
compute all these layers, and that one needs large datasets to learn all the free parame-
ters associated with those layers.
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Figure 6.3: 12 examples of MNIST digits which are scaled, translated and distorted with salt-and-pepper noise.
A significant drop in the classification accuracy was observed after adding 80% salt-and-pepper noise to the
image. The bottom row shows two examples that were classified correctly before adding the salt-and-pepper
noise, but are misclassified after the noise was added.
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One way to reduce the number of needed layers and therefore also the number of learn-
able parameters, is to use subsampling layers. Historically the most commonly used
subsampling layers are average and the max pooling. However, since Springenberg, et al.
[52] showed that convolutional layers with a stride of two work just as good, there has
been a trend to use this instead. Which exact layer is used, does not matter too much
since the effect is the same. They all reduce the spatial size of the feature maps with a
factor of two and thereby increase the effective receptive field of the subsequent con-
volutional neurons in an exponential fashion. E.g. stacking N consecutive subsampling
layers reduces the spatial size of the feature maps with a factor 2°N and thereby increases
the effective receptive field with a factor 2N .

The usage of subsampling layers allows a rapid (exponential) growth of the effective re-
ceptive fields of the subsequent convolutional layers, without needing to increase the
number of learnable parameters. Structured receptive fields can be used to investigate
whether this is indeed the main function of the subsampling layers. This is possible, be-
cause the filter size of structured receptive fields is learned during the training stage and
because their filter size can be increased without increasing the number of learnable pa-
rameters.

This will be put to the test, by training an architecture containing structured convolu-
tional layers, once with subsampling layers and once without subsampling layers. If the
sole purpose of the subsampling layers is to increase the receptive field size of the subse-
quent convolutional layers without increasing the number of learnable parameters, then
the structured receptive fields should be able to compensate for the omission of the sub-
sampling layers by learning larger sigmas and therefore larger effective receptive fields.
In other words, the test accuracy of both architectures should be the same, because the
structured receptive fields can take over the role of the subsampling layers.

As a sanity check, the experiment is repeated with normal convolutional layers. Because
they cannot take over the role of the subsampling layers by adopting their filter size,
we expect a worse test accuracy in the architecture in which the subsampling has been
omitted.

THE NETWORK-IN-NETWORK ARCHITECTURE
For this experiment, the Network-in-Network (NIN) architecture will be used [60]. This
is mostly because this architecture is small enough to fit in the GPU memory, even when
subsampling is omitted. Note also that, a Densenet or Resnet would not be suitable for
such an experiment because of the complicated ways in which the effective receptive
fields depend on the skip-connections in the architecture.

The original NIN architecture contains three blocks, that the authors call: ‘multi layer
perceptron convolution blocks’ (MLPconv). Each MLPconv block consists of one spatial
convolutional layer, followed by two non-spatial 1x1 convolutional layers. According to
the authors, these blocks resemble a two-layer fully-connected neural network in a con-
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Table 6.2: An overview of the four different versions of the Network in Network architecture in one table. One
can obtain any of the four architectures by making two decisions: the architecture either uses normal or struc-
tured convolutional layers as first layer of a block and the architecture either uses a 3x3 max pooling layer in the
transition blocks to subsample the image, or it does not. Each architecture is trained on the CIFAR-10 dataset
and the development of the train and test accuracy are shown in figure 6.4. The bias terms and relu activations
after every normal or structured convolutional layer, are not shown in this table.

Layers Output size (with / without subsampling)

CIFAR-10 image 32 x 32 x 3

MLPconv block 1

5x5 conv / structured conv, order 2 32 x 32 x 192

1x1 conv 32 x 32 x 160

1x1 conv 32 x 32 x 96

Transition block 1

( 3x3 max pooling, stride 2 16 x 16 x 96 )

dropout, drop rate = 0.5 16 x 16 x 96 / 32 x 32 x 96

MLPconv block 2

5x5 conv / structured conv, order 2 16 x 16 x 192 / 32 x 32 x 192

1x1 conv 16 x 16 x 192 / 32 x 32 x 192

1x1 conv 16 x 16 x 192 / 32 x 32 x 192

Transition block 2

( 3x3 max pooling, stride 2 8 x 8 x 192 )

dropout, drop rate = 0.5 8 x 8 x 192 / 32 x 32 x 192

MLPconv block 3

3x3 conv / structured conv, order 2 8 x 8 x 192 / 32 x 32 x 192

1x1 conv 8 x 8 x 192 / 32 x 32 x 192

1x1 conv 8 x 8 x 10 / 32 x 32 x 10

Final classifier

global average pool, softmax 10
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volutional neural network, hence the name Network-in-Network. The filter sizes of the
spatial convolutional layers in these three blocks are respectively 5x5, 5x5 and 3x3, and
were optimized by the authors using a validation set. All convolutional layers are fol-
lowed by a bias term and a relu activation function. In between the MLPconv blocks are
transitions blocks in which the image is subsampled using a 3x3 max pooling layer with
a stride of 2. Also a dropout layer with a droprate of 50% is added to improve general-
ization. There are 10 final feature maps that all correspond to a particular class. A global
average pooling layer determines the average of each feature map, and the feature map
with the heighest average is the predicted class. A final softmax layer is used convert all
averages into proper class probabilities.

For this experiment we modify the original NIN architecture by swapping the spatial
convolutional layers in the MLPconv blocks for structured convolutional layers of order
2. The resulting architecture is trained once with max pooling layers, and once without
max pooling layers. As a sanity check, we also train the original architecture, once with
and once without max pooling layers . The four used architectures are summarized in
table 6.2.

The same training procedure is used as the original NIN paper. The architectures are
trained on the CIFAR-10 dataset using gradient descent for 300 epochs, with a mini-
batch of 128 samples. The CIFAR-10 images are normalized by the channel means and
standard deviations of the training set. The initial learning rate is set to 0.001, and is di-
vided by a factor 10 after 150 training epochs. We use the Adam update rule with a Ø1 of
0.9 and a Ø2 of 0.999, and a weight decay of 10°4 is applied to all parameters except the
sigmas of the structured conv layer and the bias variables.

RESULTS AND CONCLUSIONS
Figure 6.4 shows the development of the train accuracy and test accuracy for the dif-
ferent architectures. The different architectures are plotted with different colors (see
legend) and the train and test accuracy are indicated by a dashed and a solid line, re-
spectively. From this plot it is clear that the effect of removing the subsampling layers,
is a far greater for the architecture that uses normal convolutional layers than for the ar-
chitecture that uses structured convolutional layers. Indicating that the main purpose
of the subsampling layers is indeed increasing the effective receptive fields of the subse-
quent convolutional layers.

The way in which the sigma parameters of the structured convolutional layers develop,
seems to support this claim. Figure 6.5 shows the development of the sigma parameters
of the three structured convolutional layers, for both the architecture with and without
pooling layers. The value of the sigma parameter of the first convolutional layer (before
the first pooling layer) is approximately the same for both architectures, but for the other
two structured convolutional layers the values are much larger in the architecture where
the pooling layers have been omitted. This is in line with our hypothesis that structured
receptive fields can, at least partially, take over the role of subsampling layers by learning



6.2. INVESTIGATING SUBSAMPLING

6

85

0 50 100 150 200 250 300

epochs

50

60

70

80

90

100

ac
cu

ra
cy

[%
]

Structured receptive fields, with pooling

Sturctured receptive fields, without pooling

Normal filters, with pooling

Normal filters, without pooling

Figure 6.4: Development of the train accuracy and test accuracy for the different architectures. The different
architectures are plotted with different colors (see legend) and the train and test accuracy are indicated by a
dashed and solid line, respectively. From this plot it is clear that the effect of removing the subsampling layers
is a far greater for the architecture that uses normal convolutional layers, than for the architecture that uses
structured convolutional layers.
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Figure 6.5: A comparison of the sigma parameters in the structured convolutional layers, between the archi-
tecture with pooling layers and the architecture without pooling layers. The value of the sigma parameter of
the first convolutional layer (before the first pooling layer) is approximately the same for both architecture,
but for the other two structured convolutional layers the values are much larger in the architecture where the
pooling layers have been omitted. This is in line with our hypothesis that structured receptive fields can, at
least partially, take over the role of subsampling layers by learning larger sigmas and therefore larger effective
receptive fields.
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larger sigmas and therefore larger effective receptive fields.

From these results it is clear that the main purpose of the subsampling layers is to in-
crease the effective receptive fields of the subsequent convolutional layers. However,
this is most likely not the only function of subsampling layers because, although smaller
than for normal filters, the test accuracy also drops for structured receptive fields after
removing the subsampling layers.

In the process of increasing the effective receptive fields by subsampling the image, the
subsampling layers also throw away information and lower the dimensionality of the
feature representation. Our guess is that this has a regularizing effect and therefore im-
proves generalization. This hypothesis is supported by the observation that the struc-
tured architecture without pooling layers achieves a higher training accuracy more easily
than the architecture with pooling layers, but that the test accuracy for the architecture
without pooling layers is significantly lower. See the blue and yellow lines in figure 6.4.
This indicates that the architecture without pooling layers overfits more easily on the
training set than the architecture with pooling layers.

This could be investigated by training the architecture once more. This time remov-
ing the subsampling layers, and adding an operation which sets all even rows and even
columns to zero to get a similar effect as throwing away information by subsampling.
If the test accuracy becomes approximately the same as the architecture with pooling
layers, then we can conclude that subsampling layers have two important functions:
increasing the effective receptive field of all subsequent convolutional layers (without
increasing the number of learnable parameters) and acting as a structural regularizer
to improve generalization by throwing away information (subsampling effectively sets
~75% of the features to zero).

Unfortunately, there is no time left to investigate this any further. Nevertheless, we feel
that the two applications presented in this chapter show valid and interesting applica-
tions of structured receptive fields. The experiments in this chapter, serve the purpose
of giving guidance for further research. We sincerely hope that after seeing these appli-
cations, other researchers also see the potential of structured receptive fields and will
continue our work.
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7
CONCLUSIONS

The conclusion is the point where you get tired of thinking.

Arthur Bloch

T HIS chapter summarizes the results of this research and thereby tries to answer the
research questions as they were stated in the introduction of this report. The re-

search questions are repeated below to refresh the readers memory.

Main question
Can structured receptive fields replace normal filters in any CNN architecture with an

always strictly better or equal performance in classification tasks?

Proof of concept

1. Can structured receptive fields approximate all the filters that learned by normal
CNNs, despite their imposed mathematical form?

2. It is possible to learn the feature scale (filter size) of structured receptive fields dur-
ing the training stage?

3. Does the usage of structured receptive fields provide an advantage over using nor-
mal filters, in classification tasks?

Extra applications

1. Can the learned scale parameters be adjusted manually after the training, to change
the global scale at which the whole CNN operates? I.e. is the CNN able to classify
the same image correctly over a range of different scales while being trained on
images of a single scale only, if we select the right global scale?

2. Is it possible to use the learned scale to investigate the role of subsampling layers
in CNNs? I.e. when subsampling layers are omitted, do the structured receptive
fields learn larger feature scales for the subsequent convolutional layers and what
happens to classification accuracy?

89
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7.1. PROOF OF CONCEPT
The proof of concept in chapter 5, consists of three experiments that together aim to
demonstrate the practical potential of structured receptive fields. This section summa-
rizes the main results and conclusions of the proof of concept.

1. Representational power. The results in section 5.1, show that structured receptive
fields can approximate the filters of a pre-trained AlexNet architecture. Therefore it
seems plausible that they are also able to approximate the filters learned by other CNN
architectures. In the current implementation, it is needed that structured receptive fields
in the same convolutional layer share the same truncation order and sigma. Fortunately,
the quality of these approximations does not drop by a large amount when these restric-
tions are enforced. The effect on the classification performance however, can be investi-
gated further. Though this will require some serious computational power.

Furthermore we observe: that a truncation order of 4 is sufficient to approximate most
of the AlexNet filters; that the weights of the structured receptive fields range from -0.1
to 0.1 and that normalization of the gaussian derivatives is crucial for gradient descent
to converge to the correct approximations. This is useful knowledge that can be used in
following experiments. Finally, we note also that due to their mathematical structure,
structured receptive fields require less parameters than normal filters to represent the
same effective filter. This is especially true for large filters and seems to be in agreement
with the conclusion of Jacobsen et. al [32] that structured receptive fields learn better
than normal filters, when the amount of training data is limited.

2. Learning the feature scale. The results in section 5.2, show that structured receptive
fields can indeed learn a meaningful feature scale. The scale learned on the normal and
resized images of the MNIST dataset, converges to a final value that is stable to different
initializations. The fact that the scale learned on the 1.5x and 2.0x enlarged images is not
‘exactly’ 1.5x and 2.0x as large as the scale learned on the original images, is explained as
an artifact of the way in which the images were created. This artifact results from the fact
that sampling and resizing of continuous signal are not commutative operations. This
explanation is also supported by the results of a simple simulation in which a continu-
ous gaussian is sampled, resized, and fitted again. The results of the simulation are in
agreement with the observations in the experiment. Therefore, we conclude that struc-
tured receptive fields are indeed able to learn a meaningful feature scale.

Finally, we repeated the experiment once using a different method to create the gaussian
derivative filters, and once using the same method but without normalizing the gaus-
sian derivative filters. From these results it is obvious that normalization of the gaussian
derivatives is crucial to be able to learn a meaningful scale. Furthermore we see that the
discrete gaussian derivatives are to be preferred over the continuous derivatives. The
absence of discretization errors in the discrete derivatives, lead to feature scales that are
numerically more stable, especially when sigma is small. When sigma is large, the dis-
cretization errors in the continuous derivatives are negligible and both methods produce
approximately the same effective filters. Therefore both methods also learn approxi-
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mately the same feature scales.

3. Comparison with normal filters. The result in section 5.3, shows that using struc-
tured receptive fields seems to give an advantage over using normal filters. By replac-
ing normal filters in a DenseNet architecture and keeping everything else the same, a
~1% higher test accuracy was obtained on the highly competitive CIFAR10 benchmark
dataset. It would not be wise to draw conclusions from a single trainings run on one
particular dataset, but these results definitely show practical potential of structured re-
ceptive fields and this is after all, the purpose of this proof of concept.

Finally, the performed sensitivity analysis of the experimental settings shows that the
experimental settings that were used for the original densenet architecture, are also op-
timal for the structured densenet.

Final word. Let us now summarize all of the above in one single sentence. The three
experiments in this proof of concept show that structured receptive fields are more or
less normal filters (section 5.1) which can learn their own filter size (section 5.2) and that
this extra ability over normal filters seems to give them an advantage when used in clas-
sification tasks (section 5.3).

7.2. EXTRA APPLICATIONS
The applications in chapter 6 demonstrate two extra use-cases of structured receptive
fields, on top of the potential advantage that has already been demonstrated in the proof
of concept. These extra use-cases arise from the fact that structured receptive fields, in
contrast to normal CNN filters, contain an explicit scale parameter that is learned dur-
ing the training stage. Hence, these applications are unique to structured receptive fields
and cannot be realized (easily) by normal filters.

The purpose of chapter 6 is not to give a detailed and thorough investigation of the two
use-cases. Instead, the applications serve to encourage and to give guidance for future
research on structured receptive fields.

1. Selecting the global operation scale of CNNs. The results in section 6.1, show that
structured receptive fields can be used to build an architecture of which the scale of op-
eration can be changed, after the training stage. This allows the training of an architec-
ture on images at one scale, and then ‘scale up’ the CNN to evaluate images on an other
scale. The results show that, if the right global scale is selected, the proposed architecture
is able to classify examples of the MNIST test set correctly over a wide range of different
scales (1.0x, 1.5x, 2.0x, 2.5, 3.0x), while being trained only on the original training images
(scale 1.0x). Like the second experiment of the proof of concept, this experiment also
confirms the fact that structured receptive fields can learn a meaningful feature scale
during the training stage.

There is a small drop in classification accuracy (< 1%) for the test sets at larger scales, but
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just like the experiment in section 5.2, this seems to be an artifact of the way in which
images are resized. Furthermore, it could well be that this drop in performance dimin-
ishes as the network is trained to full convergence.

Additionally, we took a brief look at the final feature maps to see whether they could be
used as a building block for localization and detection tasks, since their signal is equiv-
ariant to scaling and translation.. The location of the maximum in the final feature seems
to correspond roughly to the location of the object, while the global scale factor corre-
sponds to the size of the object. The omission of intermediate pooling layers, ensures
that the object location is reflected immediately (without the need to upscale) in the lo-
cation of the maximum in the final feature map. From the examples we looked at, it
seems that the final feature maps look promising as building block for a new approach
to localize and detect objects. However more research is needed, to be able to draw hard
conclusions.

All in all, we conclude that these types of architectures with structured convolutional lay-
ers and without pooling layers, look promising for both translation and scale invariant
classification, as well as localization and detection tasks. In future research, one could
investigate the possibility of selecting the global scale automatically, instead of manually.

2. Investigating subsampling. The results in section 6.2, show that the learned scale
parameter can be used to investigate the role and importance of subsampling in CNNs.
Two versions of the Network-in-Network architecture: one with normal convolutional
layers and one with structured convolutional layers, are both trained with, and without
subsampling layers. From the drop in the test accuracy it is clear that the effect of remov-
ing the subsampling layers is far greater for the architecture that uses normal convolu-
tional layers (~28% ) than for the architecture that uses structured convolutional layers
(~2% ). Indicating that the main purpose of the subsampling layers is indeed increasing
the effective receptive fields of the neurons in the subsequent layers.

The way in which the sigma parameters of the structured convolutional layers develop,
seems to support this claim. The value of the sigma parameter of the first convolutional
layer (before the first pooling layer) is approximately the same for both the architecture
with and without subsampling layers, but for the other two structured convolutional
layers the values are roughly 1.5-2.0 times as large in the architecture where the sub-
sampling layers have been omitted. This is in line with our hypothesis that structured
receptive fields can, at least partially, take over the role of subsampling layers by learn-
ing larger sigmas and therefore larger effective receptive fields.

Increasing the effective receptive field is may not be the only function of subsampling
layers, because, although smaller than for normal filters (~28% ) the test accuracy also
drops with ~2% for structured receptive fields after removing the subsampling layers.
In the process of increasing the effective receptive fields by subsampling the image, the
subsampling layers also throw away information and lower the dimensionality of the
feature representation. Our guess is that this might have a regularizing effect and there-
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fore improves generalization.

In future research, this could be investigated by training the architecture without sub-
sampling layers once more and adding an operation which sets all even rows and even
columns to zero to get a similar effect as throwing away information by subsampling.
If the test accuracy becomes approximately the same as the architecture with pooling
layers, then we can conclude that subsampling layers have two important functions: in-
creasing the effective receptive field of all subsequent convolutional layers and acting as
a structural regularizer to improve generalization by throwing away information.

Final word. We feel that the two applications presented in chapter 6 show useful and in-
teresting applications of structured receptive fields that cannot be realized with normal
filters. The experiments serve the purpose of giving guidance for future research and we
sincerely hope that after seeing these applications, other researchers also see the poten-
tial of structured receptive fields and will continue on our work.

7.3. MAIN RESEARCH QUESTION
Now that all subquestions have been answered, the time has come to answer the main
question of this research: Does replacing normal filters with structured receptive fields al-
ways lead to better or equal performance?

Unfortunately the results in this report are not sufficient, to answer this question conclu-
sively. For a DenseNet architecture on the CIFAR10 dataset replacing normal filters with
structured receptive fields results in a ~1% better performance, but this does not guar-
antee anything for other architectures or other datasets. In order to answer the main
question conclusively, this experiment needs to be repeated on many different architec-
tures and datasets 1.

Although we cannot not predict the outcome of these experiments, the proof of concept
experiments indicate that structured receptive fields are more or less normal filters with
the extra ability to learn their own scale (filter size). Hence, it can be expected that this
extra ability will improve the performance in cases where wrong filter sizes have been
selected, while the performance might stay the same for cases in which the filter sizes
are optimal already.

However, until this has been investigated it remains nothing more than a hypothesis or
an educated guess.

1There was simply not enough time nor hardware to do this during the course of this research. So, instead we
focussed on laying down a foundation that brings us a step closer to answering the main question, and which
provides a clear roadmap for answering the main question in the (near) future.





8
DISCUSSION AND

RECOMMENDATIONS

The important thing is not to stop questioning.
Curiosity has its own reason for existing.

Albert Einstein

T HE previous chapter summarized the results and conclusions of this report. In do-
ing so, it answered the sub and main questions of this research. This chapter on the

other hand, discusses the importance and consequences of these answers for the scien-
tific world. It discusses the contribution of our work, the limitations of our method, the
things done differently in hindsight and it recommends a few promising and interesting
ways to continue this research in future.

Section 8.1 explains how this work contributes to the improvement and understanding
of CNNs, in the meanwhile it also highlights the parts of this research that could be chal-
lenged or questioned the most. The limitations of structured receptive fields are dis-
cussed in section 8.2 and section 8.3 describes the things we would have done differently
in hindsight. Finally, we will conclude this discussion by recommending the two most
promising and interesting directions for future research on structured receptive fields.
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8.1. CONTRIBUTIONS TO THE SCIENTIFIC WORLD
This section discusses the consequences of our findings for the research community. It
describes how our findings contribute to the understanding and improvement of CNNs,
how our findings should be interpreted and which parts could be questioned.

The main contribution of this research is a new idea to parameterize normal filters as
a linear combination of gaussian derivatives. Thereby decoupling the structure and the
scale of the filter: the structure is determined by the weights of the linear combination
and the truncation order of the gaussian derivatives, while the scale is determined by
the standard deviation of gaussian derivatives. The idea behind this particular parame-
terization is that the linear combination acts as a Taylor series expansion and therefore
can approximate all structures learned by normal filters, while the optimization of the
continuous scale parameter can serve as a proxy for optimizing the discrete filter size.

In this report we investigated both the ability of structured receptive fields to learn struc-
ture as well as their ability to learn scale.

First we address the ability to learn structure. In this report we give both theoretical
evidence (appendix A) and empirical evidence (section 5.1) for the fact that structured
receptive fields can approximate all filters learned by normal CNN filters. An example in
section 5.1 however, shows that the quality of the approximation depends on the trunca-
tion order of the structured receptive fields. It is especially hard for structured receptive
fields with a low truncation order to approximate normal filters that display high fre-
quency oscillations (see figure 5.2). Finally, we note that empirical evidence is provided
only for pre-trained filters of the AlexNet architecture. One could investigate whether
our claim also holds for filters of other architectures.

Next we address the unique selling point of using structured receptive fields: they pro-
vide a natural way to learn feature scale. This report contains two experiments (section
5.2 and section 6.1 ) that show that structured receptive fields can indeed learn the filter
size during the training stage. Both experiments are however performed on the MNIST
dataset, and we would deem it wise to repeat these experiments in future research on
more challenging datasets. For example, a dataset that consists of color images instead
of grayscale images.

Finally, the experiment in section 5.3 demonstrated an advantage over using normal
convolutional layers, by resembling a DenseNet architecture and replacing all the nor-
mal filters with structured receptive fields. The final result is a ~1% better test accuracy
in favor of the structured convolutional layers. We reckon that this is only a single archi-
tecture, a single dataset and a single trainings run, and therefore it would not be wise to
draw hard conclusions from this single result. Although it does demonstrate the practi-
cal potential of structured receptive fields, it is nowhere near something that we would
call empirical evidence. Therefore one would need to repeat this experiment on many
different architectures and datasets.
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Unfortunately, we must also recognize a flaw in the way that this last experiment was
conducted. The idea of this experiment was to replace normal filters with structured
receptive fields, while keeping everything else the same. We failed to keep everything
the same, because we did not regularize the structured receptive fields directly, but indi-
rectly via the alpha parameters. One can show that L2-norm regularization of the alpha
parameters is not the same as L2-norm regularization of the effective filters. For a fair
comparison we should have regularized the effective filters directly, instead.

It is likely that repeating this experiment with the correct regularization, will change the
outcome of this experiment. There are two possible outcomes: either the performance
of the structured receptive fields becomes even better in which case it strengthens our
conclusion that structured receptive fields seem to have an advantage over normal fil-
ters, or the performance becomes worse in which case we need to add to our conclusion
that structured receptive fields require only their structure (the alpha parameters) to be
regularized rather than the whole filter. The fact that filter structure and filter scale can
be regularized independently of each other, might actually be another beneficial prop-
erty of structured receptive fields. So repeating this experiment with a different form of
regularizing will be very interesting, regardless of the outcome.

8.2. LIMITATIONS OF STRUCTURED RECEPTIVE FIELDS
There is only one real limitation of structured receptive fields in terms of what they can-
not learn: structured receptive fields cannot approximate filters that contain a higher
number of oscillations than their truncation order (see figure 5.2). This is because, gaus-
sian derivatives have the same number of zero crossings as the order of their derivative.
However, we would like argue that this restriction, is both a feature and a bug. It is a
bug, because structured receptive fields cannot learn complex filter structures with a
low truncation order, but it is a feature because we probably should not want to learn
the complex structures as they are too specific and do not generalize well.

Another small limitation is that training an architecture with structured convolutional
layers, takes approximately two times longer than training the same architecture with
normal convolutional layers having 3x3 filters. This is mainly because structured recep-
tive fields tend to learn larger filter sizes than 3x3, and therefore it takes more time to
compute all the convolutions. Currently the gaussian basis filters are truncated at the
very safe margin of 3 sigmas from the center, by lowering this factor one could decrease
the filter size and speed up the training. However, one would have to investigate whether
one is allowed to lower this factor without losing classification performance.

An other possible limitation might be the fact that, in the current implementation, all
structured receptive fields in a convolutional layer share the same sigma. Therefore one
would expect that approximating hundreds of normal filters simultaneously with a sin-
gle sigma should be hard. However, the results in this report (section 5.1 and appendix
B) do not seem to indicate that this is case. Possibly, because the all normal filters have
approximately the same scale. After all, they all have the same filter size (i.e. 5x5 or 3x3).
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The experiment in section 6.1 showed that the learned scale parameters can be used to
change the scale at which the CNN operates, during the evaluation stage. This experi-
ment only worked for upscaling of the images and not for downscaling. We also tried to
downscale the MNIST test images and the scale parameters by a factor 2, but the final
test accuracy dropped from 96% to 84%. This could either be, because the MNIST im-
ages are already quite small (28x28), but it could also be a fundamental limitation since
one usually cannot lower the resolution of an image without losing information.

8.3. THINGS DONE DIFFERENTLY IN HINDSIGHT
The ‘faster implementation’ of the structured convolutional layer in section 2.5, was op-
timized for speed only. In hindsight we should also have focussed on memory consump-
tion, because in the experiment in section 5.3 we could not fit a whole densenet architec-
ture into GPU memory. Computational graphs in deep learning frameworks like Caffe,
Torch, Theano, Tensorflow, etc., keep the input of every forward operation in memory
in order to evaluate the derivative in the backward pass. For example, both the output
(forward pass) and the derivative (backward pass) of the function f (x) = x2, f 0(x) = 2x
depend on the input x. Hence, it is important to use as little memory as possible.

The ‘faster implementation’ however, uses the Fourier transform to turn convolution in
the spatial domain into element-wise multiplication in the frequency domain. There-
fore, it also turns small spatial filters (i.e. 3x3) into large frequency filters (as large as the
image). Therefore ‘the faster implementation’ requires much more memory than for in-
stance the fast implementation. This and the fact that the densenet architecture itself is
not very memory efficient (see [61]) makes that we could not fit the whole densenet in
the GPUs memory during our experiment.

In hindsight, it might have been better to go for a different implementation that does not
require so much memory. For example, an implementation that uses separable convo-
lution. One could also reduce the number of multiplications by a factor 2, by noting that
gaussian derivatives are always symmetric or anti symmetric. It is not clear whether this
all, would have led to an implementation with a better speed-memory trade-off but at
least, we would have kept it in mind if we could do it again.

8.4. RECOMMENDATIONS FOR FUTURE RESEARCH
In this section we discuss the two most promising and interesting directions for future
research on structured receptive fields. The first one, is investigating whether replacing
normal filters with structured receptive fields will always lead to strictly better or equal
performance. The second one, is using structured receptive fields to investigate and pos-
sibly take over the role of subsampling layers.

This is a good moment to realize that structured receptive fields are nothing special, in
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the sense that there is nothing that a structured receptive field can learn that a normal
filter with a correctly selected filter size, cannot. Instead it is the intractability of man-
ually tuning the optimal filter size for every convolutional layer, why using structured
receptive fields should be preferred over using normal filters.

The experiment in section 6.2 showed, for example, that for normal filters poorly se-
lected filter sizes can lead to a dramatic drop in classification performance and that this
does not happen if structured receptive fields are used. It would therefore be nice, if one
could show that the usage of structured receptive fields removes the need for an exhaus-
tive search over all the possible combinations of filter sizes and that replacing normal
filters always leads to strictly equal or better performance. In future research this hy-
pothesis can investigated, by repeating the final proof of concept experiment on many
different architectures and datasets that are commonly used. Even if structured recep-
tive fields would only equal, or marginally improve the performance of normal filters,
then they would still remove the need for this exhaustive search.

Moreover, there are also the extra applications that were briefly explored in chapter 6.
These applications are unique to structured receptive fields, and provide valuable new
insights into how CNNs, and subsampling layers in particular, work. The fact that struc-
tured receptive fields, like subsampling layers, can also increase the effective receptive
fields without increasing the number of learnable parameters, makes them very suitable
to investigate the role and the importance of the subsampling layer. In this research, we
only briefly explored the possibility of using structured receptive fields for this purpose,
but in future research this can be investigated in more detail.

It would be nice, if structured receptive fields could be used to discover the true role
of the subsampling layer. Even more interestingly, once this role has been understood
structured receptive fields might be able to take over that role and form an architecture
that very elegantly, only consists of structured receptive fields. When designing new ar-
chitectures, people would then no longer have to worry after which layer to include a
subsampling layer.

The discussion above mentions the two most interesting ways to continue the research
on structured receptive fields. We think that these directions cover important questions
of which the answers could really make an impact. Furthermore we believe that the re-
sults in this report, already hint that these directions might be successful.
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A
MATHEMATICAL PROOFS

This appendix provides mathematical proofs for some of the claims that are made in this
report.

GAUSSIAN MODULATED TAYLOR EXPANSION
This proof demonstrates that structured receptive fields can be written in the same math-
ematical form as a taylor series expansion that is modulated with a gaussian envelope.
Therefore any normal filter that is modulated by a gaussian envelope, can be approxi-
mated by setting the alpha parameters to the right values.

For convenience, the proof is given for a one dimensional structured receptive field. In
two dimensions the proof follows exactly the same lines, but it requires keeping track of
more terms.

Let f (x) be a normal filter, then its Taylor expansion around x0 is given by equation
A.1. The taylor expansion is a power series where the coefficients Øn are determined
by derivative of the normal filter in the point x = x0.

f (x) =
X

n
Øn (x °x0)n , Øn = 1

n!
d n f
d xn

Ø

Ø

Ø

x=x0
(A.1)

Next, the Taylor series is modulated with a gaussian envelope G (x; æ) and expanded
around the point x0 = 0, see the left hand side of equation A.2.

G (x; æ)
X

n
Øn xn =

X

n
Æn

@nG (x; æ)
@xn (A.2)
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We need to proof that a structured receptive field on the right hand side of equation A.2
can be written in the same mathematical form as the modulated power series on the left
hand side.

The first step is to express the gaussian derivatives in terms of physicists Hermite poly-
nomials Hn and a gaussian envelope G (x; æ).

@nG (x; æ)
@xn =

µ °1
p

2æ

∂n

Hn

µ

x
p

2æ

∂

G (x; æ) (A.3)

The physicists Hermite polynomial are defined by the following recursion relation:

Hn (x) = 2x Hn°1 (x)°2(n °1) Hn°2 (x) , H0 (x) = 1, H1 (x) = 2x (A.4)

After substituting this expression into equation A.2, we get:
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Next, the
≥

°1p
2æ

¥n
term is absorbed into the coefficient by redefining it: bn =Æn
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To proceed will use the fact that a weighted sum of polynomials is again a polynomial.
Hence, we will unroll the sum over the Hermite polynomials, collect the terms and sum
over the polynomials terms in x instead. For the purpose of illustration we unroll the
summation for the first few values of N :

N
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(A.7)

From this it clear that a polynomial of degree N has emerged. We redefine the coeffi-
cients once more (see equation A.8), and sum over the polynomial terms to arrive at the
same mathematical form as a modulated Taylor expansion, see equation A.9.
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N = 0 : ∞0 = b0
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Finally, we note that the systems of linear equations that define the ∞ coefficients are
consistent. Meaning that for any set of ∞ values there exists a set of Æ values that defines

them. Thus, also when we choose the gamma values to be equal to: ∞n = 1
n!

d n f
d xn

Ø

Ø

Ø

x=0
.

This concludes the proof that structured receptive fields can approximate any normal
filter that is modulated with a gaussian envelope. Like a normal taylor expansion, the
quality of the approximation is determined by the truncation order of the summation.
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Q.E.D.





B
NORMAL FILTER APPROXIMATIONS

This appendix contains all the structured receptive field approximations to the filters
from different layers of a pre-trained AlexNet.

Approximations to the 96 filters of the first convolutional layer are shown in the figures
B.1 and B.2. In both figures structured receptive fields of order 4 are used, but in fig-
ure B.1 every structured receptive field has its own sigma while, in figure B.2 the struc-
tured receptive field approximations all share the same sigma. The odd rows show the
original AlexNet filters and the even rows show the approximations. The sharing of the
sigma causes the quality of the approximations to drop slightly, compared to the un-
shared sigma case.

Approximations to 16 of the 256 filters, in the second convolutional layer are shown in
figure B.3. Because the number of channels is more than 3, it is no longer possible to
show each filter in a single image. Therefore, each row shows a different filter and the
columns display the different channels of the filter. The odd rows show the original
AlexNet filters and the even rows show the approximations. The structured receptive
field approximation share the same sigma.

Approximations to 16 of the 384 filters, in the third convolutional layer are shown in fig-
ure B.4. The structured receptive field approximation share the same sigma.
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Figure B.1: Structured receptive field approximations of the first convolutional layer filters (11x11x3) of the
AlexNet, with an unshared sigma. The odd rows show the original AlexNet filters and the even rows show the
approximations with structured receptive fields. The approximations are obtained using structured receptive
fields of order 4 that do not share the same sigma.
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Figure B.2: Structured receptive field approximations of the first convolutional layer filters (11x11x3) of the
AlexNet, with a shared sigma. The odd rows show the original AlexNet filters and the even rows show the ap-
proximations with structured receptive fields. The approximations are obtained using structured receptive
fields of order 4 that do share the same sigma. The sharing of the sigma causes the quality of some approxi-
mations to drop compared to the unshared sigma case, see figure B.1. The final value of the shared sigma is
2.491.
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Figure B.3: Structured receptive field approximations of the second convolutional layer filters of the AlexNet
(256 filters with dimensions 5x5x48). It is no longer possible to show the filters in a single image, because they
consists of 48 channels. Hence, each row shows a different filter and the columns display the different channels
of the filter. Because of the space, only the first 16 filters (of the 256 in total) are shown. The odd rows show
the original AlexNet filters and the even rows show the approximations with structured receptive fields. The
bottom figure is a zoomed in version of the red rectangle in the top figure. The approximations are obtained
using structured receptive fields of order 4 that do share the same sigma (final value = 1.349).
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Figure B.4: Structured receptive field approximations of the third convolutional layer filters of the AlexNet
(384 filters with dimensions 3x3x256). It is no longer possible to show the filters in a single image, because
they consists of 256 channels. Hence, each row shows a different filter and the columns display the different
channels of the filter. Because of the space, only the first 16 filters (of the 384 in total) and the first 48 channels
(of the 256 in total) are shown. The odd rows show the original AlexNet filters and the even rows show the
approximations with structured receptive fields. The approximations are obtained using structured receptive
fields of order 4 that do share the same sigma (final value = ). The bottom figure is a zoomed in version of
the red rectangle in the top figure. From this figure, it is clear that structured receptive fields approximation is
really close to the normal 3x3 filters!
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