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INTRODUCTION

This thesis focusses on two aspects of large deviations for Markov pro-
cesses:

« Proving large deviation principles for trajectories of Markov pro-
cesses,

 Using Hamiltonian dynamics to study trajectories that have minimal
Lagrangian cost.

Additionally, to facilitate the understanding of Markov processes on Polish
spaces in relation to functional analytic techniques:
+ The study of strongly continuous semigroups on the space of
bounded continuous functions with the strict topology.

In this chapter, we introduce the main ideas behind large deviation princi-
ples for Markov processes.

1.1 LARGE DEVIATIONS FOR MARKOV PROCESSES
1.1.1  Coin tosses and large deviations

A well known principle in the process of coin tossing is the fact that the coin
lands heads about half of the cases. This averaging principle also shows up
with card games, roulette, and various other games of chance.

This common knowledge can be made mathematically rigorous and is
called the law of large numbers. Suppose we model our sequence of coin
tosses by a collection of random variables

¥ _ 0 if the n-th coin lands tail,

1 if the n-th coin lands heads.

If the coin is fair, then the law of large numbers tells us that with probability
one

1 & 1

N X, - -

nz Z_>2
=1
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In other words, the coin lands on its head about half of the cases. To use
this principle in practice, one needs to quantify how well the law of large
numbers describes the average of these n coins if n is very large, but finite.
One method is to study the asymptotics of the probability that the average
is deviating from 0.5. In particular, one can prove that

1 n

where I () = alog2a+ (1 —a) log 2(1 — ), see e.g. Dembo and Zeitouni
[1998]. The = signs can be made precise, but for the purposes here, it
should be interpreted in the following way: the probability of the average
13" | X to be close to a decays exponentially in n with rate I(a). Note
that we have I (o) = 0 if and only if & = %, the average that we expect
from the law of large numbers.

~ e (@) (1.1.1)

A result like (1.1.1) is called a large deviation principle (LDP) with rate func-
tion I. This principle quantifies the leading order exponentially small prob-
ability of deviations from the law of large numbers behaviour. Such large
deviation principles can be proven to apply in a wide range of settings.

1.1.2  Large deviations of the average of Brownian trajectories

Another setting where a large deviation principle applies is for the trajec-
tory of averages of independent copies of Brownian motion. Consider a se-
quence of independent standard Brownian motions B; on R. For any fixed
time ¢ > 0, we know that B;(¢) has a normal distribution with variance ¢
and as a consequence we have a large deviation principle

1n
P|— Bit%
L=

where Iy (a) = %—i The interesting feature of stochastic processes is
that the distributions for different times are correlated. It can be shown that
for times t1 < to, it holds that

~ e N (@) (1.1.2)

1 o 1 ~
P [n Z;Bi(tl) Ray, X;Bi(t2) ~ ozz] ~ e M (@102) (g 1 3)
1= i=

for some function Iy, s, that we will define below. Because the value of the
Bi(t2) clearly depends on B(t1), I3, +, is not the sum of the rates for the
averages of B;(t1) and B;(t2).
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Considering the trajectory of averages { L,,(t) }+>0, where

we also have a path-space large deviation principle: Schilder’s theorem,
Schilder [1966]. This result states that for any trajectory v : [0,00) — R,
we have the following exponential decay of the probability

P{Ln(t)}i>0 = 7] = @*nfs(v)7

where

l o . 2 . . .
o) = {2 Jo A(s)?ds if  is absolutely continuous
00 otherwise.

4(s) denotes the derivative of the trajectory s — v(s), which exists almost
everywhere due to the absolute continuity of . Thus, having a large speed
for the average gives us a fast decay of probability on the exponential scale.
The law of large numbers, which states that L,,(¢) — 0 almost surely for
all ¢, is reflected in Ig as the zero trajectory has 0 cost.

From the path-space large deviation principle, we can recover the large
deviation principles for individual times via the contraction principle. Thus,
we are able to recover (1.1.2) from Schilder’s theorem:

]P)[nZBl(t)NOé]Ne N

=1

where J is given by

J(@) = inf{Is(7)[~(t) = o} .

This rate function is given by a conditional version of Ig, where we are
only interested in those trajectories that give the correct behaviour at time
t, i.e. that end in « at time ¢. In this simple setting, we can explicitly find
the minimizing trajectory 7; o, which is given by a linear function:

s% ifs <t

o ifs>t.

Vt,a(s) =
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A straightforward calculation yields

1 [t/ a\2 a?
I = — ( —) d = —,
s(ta) = 3 /0 1) YT

which equals Iy (g 4) (@) as in (1.1.2). A similar optimization procedure gives
us the large deviation rate function for (1.1.3):

1 @ 1 @
P —E B;(t1) = ,—E B;(ta) =
[n i=1 )= i ) a2]

%exp{_n<§£+m>},

The two time rate function has an interesting conditional structure. The
first term corresponds to the rate for the large deviations at time 1, whereas
the second term corresponds to the rate for large deviations at time to,
given that we were at 1 at time ¢1. This conditional structure arises from
the integral form of Ig. This integral form is in turn a consequence of the
Markov property of Brownian motion.

These properties are instances of a general principle, and even hold for
sequences of processes with mean-field interaction.

1.1.3 Mean-field interacting models: the Curie-Weiss model

The results of the sections above can be taken beyond the case of averages
of independent random variables. A notable example with weak interac-
tions is the Curie-Weiss model which is a so-called mean-field model for
the behaviour of ferromagnets. It gives a microscopic description for the
states of a collection of atoms of a ferromagnet, from which we can derive
the behaviour of a macroscopic quantity of interest: the magnetization.

We model a magnet by n atoms each having a magnetic spin o; € {—1,1}.

We define the empirical magnetization z,,(¢) := 1 3" | 5; and define a

probability distribution s, g on the microscopic state space {—1,1}" by

2718z, (0)% r—1
fn,p(do) = e€" Bzn(o) Zﬁ’nIF’n(da). (1.1.4)
%, %) measure on {—1, 1}". 5 > 0 has the interpre-
tation of the inverse temperature 3 = 7! and Z,, 3 is a normalising con-
stant. Note that for 8 = 0, i.e. infinite temperature, we have that y,, o = P,
describing non-interacting spins.

Here PP, is the product (
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We are interested in the behaviour of this magnetization z, (o) for large n,
as this is the macroscopic quantity that we can observe externally. Suppose
that 3 is small. Then the measures /i, g are close to the product measures
and we expect x,, to converge to 0, just as in the coin-flip example. For large
B, however, the spins tend to have the same value, but states with many
positive or negative spins are equally likely, so the law of large numbers
breaks down. This is reflected in the large deviation principle as

pn,5(n(0) ~ @) e,

where

11—« l-a 1+« 1+a 1, ,
1 1 - = -
5 log——+ 5 log— 2Ba C

and where C'is such that the minimum of I equals zero, see e.g. Section 3.4
in Rassoul-Agha and Seppéléinen [2015]. For 5 < 1, the rate function has a
unique minimizer at 0, reflecting the law of large numbers behaviour, and
for B > 1 there are two distinct minimizers reflecting the concentration on
microscopic configurations with a majority of positive or negative spins.

I(a) =

1.1.4 Mean-field interacting processes and the McKean-Vlasov equation

As in going from coin-flips to Schilder’s theorem, also here we can add dy-
namics to the Curie-Weiss model to study the large deviations of the trajec-
tory of the empirical magnetisation. To generalize, we consider n stochastic
processes { Yy, ;(t) }1<1<n on some subset of R%. In the Curie-Weiss model
example, these processes represent the evolution of the individual spins.
We assume that these n processes interact in such a way that the vector
(Yo, .-, Ynn) is Markovian on (R%)™ and the evolution of an individual
process depends only on the others via the average x,,(t) := n=' > Y;(t).
Then the evolution of x,(t) itself is also Markovian on some set £ C R%.
Therefore, the microscopic Markovian evolution for {Y,;},_,, induces a
macroscopic Markovian evolution .

Under suitable conditions, we can show that the trajectory of the mean
{zn(t)}+>0 converges as n — oo to the solution of a differential equation,
the so called McKean-Viasov equation. This convergence is a form of the
law of large numbers, just as in the case considered above for the averages
of Brownian motion that converge to the 0 trajectory, but here the pro-
cesses interact weakly and can be of completely different nature. The law
of large numbers shows that the macroscopic evolution becomes, in the
limit, deterministic and as such, simpler than the systems where n is finite.



INTRODUCTION

This law of large numbers is useful to study the evolution of average quan-
tities of very large interacting systems. Large deviation principles around
the McKean-Vlasov equation are proven in various contexts. These con-
texts include Schilders’s theorem, Schilder [1966] and the theory of ran-
dom perturbations of dynamical systems by Freidlin and Wentzell [1998].
A non-exhaustive collection of papers where large deviations for trajecto-
ries of spin-flip models are proven is Comets [1987], Léonard [1995] and
Dai Pra and den Hollander [1996]. In the measure valued context we have
the work by Dawson and Gartner [1987] and recently there is the work by
Feng and Kurtz [2006].

Under appropriate conditions on the processes z,, on £ C R?, we have
that

P [{zn(t)}es0 & {7(t) }iz0] = e, (1.1.5)
for v : [0,00) — E. I takes the form

Io(7(0)) + [~ L(v(s),7(s))ds if v € AC,

00 otherwise,

I(v) =

where AC denotes the set of absolutely continuous trajectories. Iy quan-
tifies the large deviations for {x,(0)},>0 alone, and £ : E x R? —
[0,00) is a Lagrangian. This Lagrangian is convex in 5(s) and satisfies
L(v(s),7(s)) = 0 along the solutions of the McKean-Vlasov equation. To
conclude, the large deviation principle quantifies how close the trajectory
{zn(t) }t>0 is to the law of large numbers limit.

As in the example that considered the averages of independent Brownian
motions, the large deviation principle for the trajectories with a rate func-
tion in Lagrangian form gives a way to study the rate function of the large
deviation principle of {x,,(¢)} for fixed ¢ > 0. By the contraction principle,
we obtain

Pz, (t) ~ a] ~ e ™t(@), (1.1.6)
where
t
) = inf, {GO)+ [ £60).36)ds). (1.17)
v(t)=a

In contrast to the case in which we studied the behaviour of averages of
Brownian motion, it is in general not possible to obtain an explicit repre-
sentation for I;. However, the representation of I; can be interpreted as an
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action minimization problem in classical mechanics. Techniques from clas-
sical mechanics can thus be used to obtain information on the rate function
I; which would be very difficult to obtain from the law of z,,(t) itself. We
find that extremals «y of (1.1.7) solve the second order Euler-Lagrange equa-
tions
d . . .
L), 7)) = Lo (v(2), 34(1), La(3(0),7(0)) = DIo((0))-
Here £, L, denote the derivative of £ with respect to the first and second
coordinate. DIy denotes the gradient of 1. Following the theory of classi-
cal mechanics, we can switch to the easier first order Hamilton equations
by doubling the dimension of the problem. We define the Hamiltonian
H(z,p) = sup (p,v) — L(z,v) (1.1.8)
vER4
and the momentum p(t) = L,(7(t),7(t)). Rewriting the Euler-Lagrange
equation, we find that (z(t), p(t)) satisfies the Hamilton equations:

H = [ Holz2) ] . B(0) = DIy((0)). (119
p —Hz(x,p)

Similar to the notation for £, H, and H, denote the derivatives of H with
respect to the first and second coordinate. The Hamilton equations can be
seen as an extension of the McKean-Vlasov equation. Suppose x(t) solves
the McKean-Vlasov equation, so £(z(t),4(t)) = 0. Then, as £ is non-
negative, it follows by the convexity of £ in the second coordinate that
p(t) == Ly(z(t),2(t)) = 0. In other words, the McKean-Vlasov equation
equals

(1) = Hy(x(t),0). (1.1.10)

The evolution of p(t) satisfies p(t) = —Hy(z(t),p(t)) = —Hz(x(t),0) =
0 as H(x,0) = 0 for all z € E. So by considering the large deviations for
the trajectories of x,,(t), we do not only find the McKean-Vlasov equation
in a natural way, but obtain a formalism that describes all optimal trajecto-
ries in the sense of (1.1.7).

1.2 USING HAMILTONIAN DYNAMICS TO STUDY OPTIMAL TRAJEC-
TORIES

We use the extension of the McKean-Vlasov equation by the Hamilton equa-
tions for two applications : for Gibbs-non-Gibbs transitions and for the
study of the entropy along the McKean-Vlasov equation.
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1.2.1 Gibbs-non-Gibbs transitions

We revisit the Curie-Weiss model where we considered the distribution

fin,(do) = e Pl 721 p, (do),

s

on {—1,1}" and where z,,(¢) = 1 37 | 0;.

A quantity that is of interest in addition to the limiting behaviour of z,,(o)
as n goes to infinity, is the limiting distribution of a single spin, given that
the average of all other spins converges.

In general, for a sequence of permutation invariant measures v, €
P({-1,1}"), we consider

Yo(doy | ay) = vy <d01

1 n
iy
i=2
given any configuration (o3, ..., 0,) such that ﬁ oo o = Q.

We say that a magnetisation a € [—1,1] is good for the sequence v, if
there is some neighbourhood A of « such that for all & € N and all se-
quences o, — &, we have that the weak limit lim,, 77 (- | a;,) exists and
is independent of the chosen sequence «,. If so, we denote this limit by
V(- &).

We call a magnetization « bad, if it is not good. Finally, we say that the
sequence v, is sequentially Gibbs if all magnetizations are good.

It is straightforward to verify that the sequence i, g of the Curie-Weiss
model is sequentially Gibbs. However, it has been shown that the Gibbs
property can be lost under the evolution of a Markov process, see Kiilske
and Le Ny [2007], Ermolaev and Kiilske [2010], Fernandez et al. [2013].
If the sequence of Markov processes satisfies a large deviation principle
for the trajectories, it was shown in Ermolaev and Kiilske [2010], den Hol-
lander et al. [2015] that a bad magnetization « corresponds to the non-
uniqueness of optimal trajectories for

o) = _nt, {1600+ [ 26636}

yeAC

v(t)=a
which in turn is equivalent to non-differentiability of I; at a. Using the first
order Hamilton equations, it becomes possible to obtain concrete informa-
tion on the existence of multiple optimal solutions, and as a consequence
information on the occurrence of bad magnetizations.
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1.2.2  Exponential decay of entropy along the McKean-Vlasov equation

As a second application, we consider the decay of entropy along solutions
of the Hamilton equations. In the general context of a Markov processes
X (t) with some stationary measure p, it is well known that the relative
entropy v — S(v|p) = [log g—;du is decreasing along the distribution
of the Markov process. To be precise, if p(t) is the law of X (¢), then t —
S(p(t) | p) is decreasing.

Now suppose this Markov process X has a generator A, then, at least for-
mally, {p(t) }+>0 solves the Kolmogorov forward equation p(t) = A*p(t). In
this setting, we say that S(- | i) is a Lyapunov function for the Kolmogorov
forward equation. To connect this framework to the McKean-Vlasov equa-
tion and large deviations, we consider large deviations of the measure val-
ued trajectories of the average of n independent copies X!, X2, ... X" of

X:

1

i<n

As n goes to infinity, the trajectories {p,(t)}+>0 converge almost surely
to the solution of the Kolmogorov forward equation, which thus coincides
with the McKean-Vlasov equation in this setting. This means, that at least
intuitively, we are back in the setting of the previous sections. Also the
relative entropy can be interpreted in this framework, namely, the relative
entropy is the large deviation rate function of {p,(0)},>0, if X (0) is dis-
tributed according to the stationary measure .

This basic principle can be explored further for systems that have mean-
field interaction. We return to the setting where {z,(t)}+>0 are Markov
processes on some subset ' C R? that satisfy a large deviation principle
for the trajectories. Suppose that Ij is the rate function of z,(0) in the
case that z,,(0) is distributed according to the stationary distribution of
the process with n particles. Then, it follows that the rate function I; at
time ¢ equals Iy and, in particular, we find that Ip(z(t)) < Iy(z(0)) for any
solution of the McKean-Vlasov equation.

In the non-interacting case, where X (t) is either a diffusion process or
a jump process, it is well known that the (modified) logarithmic Sobolev
inequality implies that the relative entropy decays exponentially along the
solutions of the Kolmogorov forward equation, see for example Bobkov and
Tetali [2006] and Bakry et al. [2014]. Studying the Hamiltonian function H
in the mean-field setting reveals a similar structure for the decay of the rate

11
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function Iy of the stationary measures along the solution of the McKean-
Vlasov equation.

1.3 INTERACTING LATTICE SPIN SYSTEMS

More sophisticated models in the study of interacting spin systems are lat-
tice systems, where the interactions are not mean-field, but, for example,
nearest neighbour. We consider the lattice Z? and on each site i € Z% there
is a spin 0; € {—1,1}. Also in this case we are interested in the average
magnetic spin, but because of spatial nature of our system, our limiting
procedure is more involved in comparison to the mean-field Curie-Weiss
model.

We define a shift operator 6; : {—1, 1}Zd — {-1, 1}Zd by (0i0); = 0itj

and define volumes A,, = [—n,n]? N Z%. Finally, we define the empirical
measure
Lu(o S do  eP({-L1}7). (13.1)
n’ i€AR

If o has a translation invariant (ergodic) distribution y, it follows by the
ergodic theorem that L, (0) — p almost surely with respect to .

As above, we can ask for large deviations around this limiting theorem. If
1 is a product measure, we find

H (Ln(U) ~ l/) ~ e_|A”‘s(V‘IJ«)’

where s is the relative entropy density
= 1

and where fi,,, vy, are the restrictions to {—1, 1} and S is the relative
entropy.

This large deviation principle also holds if we replace i by a Gibbs measure,
see Georgii [2011]. As in the mean-field setting, it has been shown that the
Gibbs property of a measure can be lost under the evolution of Markovian
dynamics. Additionally, it is expected that the emergence of bad configura-
tions in this context corresponds to non-uniqueness of optimal trajectories
of the path-space large deviation principle, see van Enter et al. [2010].

Even though we will not touch upon this particular conjecture, we pro-
vide a first step by proving the path-space large deviation principle for the
trajectories of empirical measures.
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14 FUNCTIONAL ANALYTIC THEORY IN RELATION TO PROBABIL-
ITY AND MEASURE THEORY

1.4.1 Semigroup theory in the study of Markov processes

At the core of proving weak convergence or large deviation results for a se-
quence of (Feller) Markov processes X, on a Polish space F following the
methods in Ethier and Kurtz [1986] and Feng and Kurtz [2006] lies the use
of functional analytic semigroup theory. This is based on a scheme of re-
duction steps that reduces the convergence, or large deviation question, on
the Skorokhod space to that of the finite dimensional distributions. Because
the processes are Markovian, the study of the finite dimensional distribu-
tions reduces in turn to the study of the processes at two times. For the
weak convergence question, it suffices to study the sequence of transition

operators {.S,,(t) }+>0, where S, (t) : Cp(E) — Cy(E) is defined by

Sn(t)f(z) = E[f(Xn(t) | Xn(0) = =]

By the tower property for conditional expectations, one sees that
S(t)S(r) = S(t+r),ie. S is a semigroup. For the large deviation question,
it is not the conditional expectation that is of importance, but the family of
conditional log-Laplace transforms

Valt) () = - log Su(t)e™ (o),

which also form a semigroup. Both these semigroups are defined on a pos-
sibly infinite dimensional function space. The behaviour of sequences of
such semigroups, however, is easily introduced by considered semigroups
on R.

Consider a continuous semigroup {z(t) };>0 on R, i.e. 2(t) € R, z(t)z(s) =
z(t+s) and 2(0) = 1 and ¢t +— z(t) is continuous. It follows that z(¢) must
be of the form z(t) = €% for some a € R. Note that a = %z(t)h:o.

Now suppose that we have a collection of semigroups z,(,) of the form
Za(n)(t) = et If we have a(n) — a, then for any T' > 0

lim sup |z, (t) — 2a(t)] = 0.

n—o0 t<T

In the infinite dimensional setting, we study the convergence of semi-
groups by the same principle. We will focus below only on the linear semi-
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groups { Sy (t) }+>0, as this theory is more developed than that of the non-
linear semigroups {V},(t) }+>0. We define the generators A,, of {.S,,(¢) }+>0

by

Anf = 550(0) o = i 2L

Note that A, f is not defined for all functions, but only for a subset of
Cy(Ey,) that depends on the topology in which we take the limit. We expect
these generators to play a crucial role in the determination of the limiting
behaviour of the semigroups Sy, (t). In particular, in analogy to the one-
dimensional example above, we expect that if an operator A that is the
generator of a semigroup {S(t)};>0 exists, the convergence A, f — Af
for sufficiently many f implies that S, (¢)f — S(t)f uniformly for ¢ in
compact intervals.

In the discussion above, the topologies on Cj,(E) that are considered are
intentionally left undefined. The approach described above works very well
in the setting that £ is a compact space and the topology on Cy(FE) is the
supremum norm topology. In this setting, the semigroups {5, (t) }+>0 are
strongly continuous for the norm, i.e. we have that for every ¢ > 0 the
maps Sy (t) : (Co(E), |-|) = (Cu(E), || are continuous, and additionally,
we have that ¢t — S,,(¢)f is norm continuous for all f and n. Thus, we
can use the theory of strongly continuous semigroups on Banach spaces,
and the semigroup convergence result for linear semigroups is known as
the Trotter-Kato theorem, see Engel and Nagel [2000] or Ethier and Kurtz
[1986].

The work by Feng and Kurtz [2006] shows that this approach can also be
applied to the non-linear semigroups V;,(¢) and this approach naturally
leads us to the Hamiltonian H that has featured the discussion in the earlier
sections of the introduction. Calculating the generator H,, of the semigroup
{Vi(t) }+>0, we formally find by the chain rule that

d d1 1 _

Hy,f := &Vn(t)f’tzo = aﬁlog Sn(t)ef‘tzo = Ee annenf-
Thus, if an operator H, such that H,, f — H f for sufficiently many f, exists
and if H generates a semigroup {V'(¢) };>0, then by the Crandall-Liggett
theorem we find V,,(¢)f — V (¢)f.

Various techniques to show that H determines a limiting semigroup
{V(t) }+>0 have been introduced in Feng and Kurtz [2006] and we will use
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a number of these techniques in Chapter 3 when we consider the large
deviation behaviour of mean-field interacting spin systems.

In mean-field examples with state-space 2 C RY, the operator H is often
of the form H f(z) = H(x,V f(z)) for some Hamiltonian function H :
E x R% — R. It is exactly this function that appeared before in equation
(1.1.8). In fact, using this approach one finds the function H first from the
limiting procedure H,,f — H f, after which L is defined as the Legendre
transform of H.

Using L the semigroup {V(¢) }+>0 can be rewritten using variational meth-
ods as

V(@) = inf Sy / £(3(s),4(s))ds,

'yEAC
7(0)=

which can be used to prove that the large deviation principle holds for the
trajectories with a rate function in Lagrangian form.

1.4.2  Semigroups for processes on a Polish space

For Feller processes on Polish non-compact E, the semigroups correspond-
ing to Markov processes are usually not strongly continuous for the norm,
an issue that already appears for the semigroup of conditional expectations
of a process like standard Brownian motion on R.

For processes on R, or locally compact spaces in general, we can salvage the
Banach space approach by considering the space (Co(E), |-|), the space of
functions that vanish at infinity. For non-locally compact E, however, it
is not possible to recover the Banach space approach. Various other ap-
proaches to prove results like the Trotter-Kato theorem have been intro-

duced.

For example, results have been obtained by considering a notion of conver-
gence for sequences called buc(bounded and uniformly on compacts) con-
vergence, ie. f, — f for (buc) if sup,, | fn| < oo and sup,cg |fn(z) —
f(z)| — O for all compact sets i C E. Stated in this form, (buc) con-
vergence is not a topological notion, so many of the functional analytic
techniques are not available.

An alternative modern approach to studying weak convergence of Markov
processes on Polish spaces is via the martingale problem, see for example
Ethier and Kurtz [1986] or Stroock and Varadhan [1979]. This approach
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salvages the idea of a generator by noting that for f in the domain of A4,
the process

F(Xa (1)) — F(X(0)) — / Anf (Xn(s))ds

is a martingale, which is essentially a probabilistic way of saying that
%Sn(t)f = AnSn(t)f-

Even though the idea of the martingale problem has been very effective,
the connection to functional analysis that has been useful in the compact
setting, has been lost.

1.4.3 A suitable locally convex topology for the space of bounded continuous
functions

The basic underlying reason for this disconnect is found by considering
the continuous dual space of (C,(E), |-|). The continuous dual space is the
space of all continuous linear maps of Cy(E) to R and is usually denoted
by (Cy(E), |-|). If X is compact, the Riesz representation theorem tells us
that the dual space equals the space of regular Borel measures. This is also
the case if E is locally compact and we consider (Cy(E), |-|)’. For non-
compact spaces E, however (C,(E), |-|)’ is strictly larger than the space
of regular Borel measures.

It is exactly the identification of the continuous dual space with the space
of regular Borel measures that makes functional analysis so effective to
study probability measures, and which in turn is the reason why this strong
connection fails if we consider (Cy(E), |-|) if E is non-compact.

The leading principle, thus, should be to find a locally convex topology
on Cy(E) so that the dual coincides with the space of regular Borel mea-
sures. A topology that has this property is the strict topology [, see Sen-
tilles [1972]. B has more desirable properties as it is separable, satisfies the
Stone-Weierstrass theorem and the Arzela-Ascoli theorem. In this thesis,
we will show that we also have the closed graph, inverse-, and open map-
ping theorems between two spaces of this type.

Additionally, a part of this thesis is devoted to studying (Cy(F), 3) and
semigroup theory on locally convex spaces like (Cy,(E), 8). As a result, we
find that the solution to a well posed martingale problem always gives a
strongly continuous semigroup for the strict topology, reconnecting the
probabilistic theory to the functional analytic one.
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1.5 OUTLINE OF THE THESIS

The thesis is divided into three parts:

(D An introductory part, including this introduction and Chapter 2 in-
troducing the important mathematical concepts.

(I) Large deviations of Markov processes and the applications thereof,
including Chapters 3 to 7.

(IIT) Functional analytic methods related to the study of Markov processes
on non-compact Polish spaces, including Chapters 8 to 10.

As mentioned above, in Chapter 2, we start with a mathematical introduc-
tion of the various probabilistic and functional analytic concepts

We proceed with Chapter 3, where we prove the path-space large deviation
principle for mean-field dynamics in a finite dimensional setting. The proof
relies on the verification of the uniqueness of viscosity solutions to a class
of Hamilton-Jacobi equations.

We proceed with two chapters on the applications of the mean-field results.
In Chapter 4, we study the behaviour of the entropy under the evolution
of the McKean-Vlasov equation. We give a sufficient condition for expo-
nential decay of this entropy. Additionally, we give conditions for the con-
vexity of the entropy along entropic geodesics. In Chapter 5, we use ideas
from Hamiltonian mechanics and optimal control theory to study the op-
timal trajectories for (1.1.7). We obtain rigorous and context-independent
methods to decide whether optimal trajectories arriving at a fixed point
are unique, information that is of importance in the study of mean-field
Gibbs-non-Gibbs transitions.

We proceed with two chapters on the path-space large deviations of mea-
sure valued trajectories of Markov processes. Chapter 6 studies the large
deviation behaviour of the trajectories of the empirical density of n inde-
pendent copies of a Feller process. In this setting, it is generally unclear
how to take the derivative with respect to time of the law of the process. In
analogy to the setting of diffusion processes on a manifold, we introduce a
method to find a suitable class of test functions, so that the dual space can
be used as a space of ‘speeds’. In Chapter 7, we study the large deviations of
trajectories of the empirical measure, i.e. (1.3.1) taking averages over shifts,
of lattice interacting systems. We prove the large deviation principle, but
without a Lagrangian representation of the rate function. We do however
conjecture, that the methods developed in Chapter 6 give the correct form.
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In the final three chapters, we turn to the functional analytic aspects
of semigroup theory and the strict topology. In Chapter 8, we consider
strongly continuous semigroups on locally convex spaces that include
(Cy(E), B) where E is Polish. We prove a Hille-Yosida theorem and gen-
eralize various classical results from the Banach space setting to the class
of locally convex spaces under consideration. In Chapter 9, we reconnect
the martingale problem approach with the functional analytic approach
to semigroups. In the final Chapter 10, we prove that (Cy,(E), 3) satisfies
the conclusions of the Banach-Dieudonné theorem. As a consequence, we
obtain the closed graph, inverse-, and open mapping theorems between
(Cy(E), ) and (Cy(F'), B) for separable metric spaces.
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Before introducing the definitions of the topics that will be discussed in this
thesis, we first introduce some basic notation. We denote RT™ = [0, c0).
(E, d) will denote a complete separable metric space. Often, we will con-
sider Polish spaces F, spaces such that there exists a metric d so that (E, d)
is a complete separable metric space. On F we consider the following ob-
jects:

« The Borel o-algebra B(E).

« The space of Radon measures M (FE).

« The space of probability measures P(E).

« The space of measurable functions M (E).

« The space of bounded measurable functions M;(E).

« The space of continuous and bounded functions Cy(E).

« If Eis locally compact, the space of continuous functions that vanish

at infinity Co(E).
« The Skorokhod space Dg(R™) of trajectories v : R — E, that are
right continuous and have left limits.

For any set A C E, we denote by A, A° the closure and the interior of A.
We denote by A€ the complement of A in F.
We say that (€2, F) is measurable space if ) is some arbitrary set, and F is
a o-algebra on 2. We say that (2, F,P) is a probability space if (2, F) is a
measurable space and if I is a probability measure P : 7 — [0, 1].
For a measure P on a measurable space (€21, F1) and a measurable map

7 (Qq, F1) = (Q2, F2), we write 4P for push-forward measure of P on
Fo:

TuP(A) =P(r~1(A)) VA€ F.

For any complete separable metric space (E, d), we say that X : Q — F'is
an E valued random variable if X is measurable from (€2, F) to (E, B(E)).

If we talk about a collection of E valued random variables { X, }, we will
implicitly assume the existence of a common probability space (€2, F) on
which they are defined.
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For a collection of random variables { X } < taking values in F, we write
o{X;|i € I} forthe o-algebra generated by the random variables { X };c7.

In the next few sections, we define and motivate definitions in a number
of areas. Motived by the transition semigroup of a Markov process, we
start by introducing the general theory of strongly continuous semigroups
and their generators in Section 2.1. We consider both linear and non-linear
semigroups as we will encounter non-linear semigroups in the study of the
large deviation behaviour of Markov processes. The main goal is to under-
stand the conditions under which an operator generates a semigroup. As a
tool for this question in the context of the space of continuous functions,
we introduce the theory of viscosity solutions in Section 2.2. We proceed
with some basic definitions for the study of time-homogeneous Markov
processes in Section 2.3, where we will see that linear semigroups play a
prominent role. Large deviation theory follows thereafter in Section 2.4 and
we show that strongly continuous non-linear semigroups naturally appear
in the study of large deviations for Markov processes. We conclude in Sec-
tion 2.5 with an introduction to locally convex spaces. In particular, we will
use this theory to introduce a locally convex space which is suited for the
study of Markov transition semigroups for a Markov process defined on a
non-compact Polish space.

2.1 STRONGLY CONTINUOUS SEMIGROUPS

Let (X, |-|) be a Banach space. Consider a family of continuous operators
{T'(t) }+>0 mapping X into X. To avoid confusion, note that we have not
assumed the operators to be linear.

Definition 2.1.1 (Strongly continuous semigroup). We say that {7'(t) }+>¢
is a semigroup if T(0) = 1 and T'(t)T(s) = T(t + s) for s,t > 0. We say
that {T'(t) }+>0 is strongly continuous semigroup if t — T'(t)x is continuous
for every z € X. Finally, we say that the semigroup is contractive if for all
t > 0, we have |T'(¢)| < 1.

Before introducing the generator of I, we set some notation for non-
continuous operators on X. A non-continuous operator A = (A, D(A))
is given by a domain D(A) C X and amap A : D(A) — X. Also, we will
write A for the graph of the map: A = {(z, Ax)|x € D(A)}. Finally, in

some cases we even allow for multi-valued operators.

We say that (A, D(A)) is closed if {(z, Azx)|x € D(A)} is closed in the
product space X x X with the product topology. We say that D is a core
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for (A, D(A)), if the closure of {(z, Az) |z € D} in the product space
contains {(z, Ax) |z € D(A)}.

To avoid confusion, we will denote linear semigroups by either S(¢) or
T'(t) and their linear generators by (A, D(A)). Non-linear semigroups will
be denoted by V'(¢) and their generators by (H, D(H)).

2.1.1 Generators of linear semigroups

Now consider a strongly continuous semigroup of linear operators
{T(®)}=0.

Definition 2.1.2 (The generator of a linear semigroup). Let {7'(¢)}+>0 be
a strongly continuous semigroup of linear operators on X. Denote by

T(t)x —
lim ():::1: exists} .

D(A) := {a: eX i

The generator (A, D(A)) of {T'(t)}+>poisamap A : D(A) C X — X
which maps z € D(A) to Az = limyo ¢t~ (T(t)x — ).

The generator (A, D(A)) of a strongly continuous linear semigroup on a
Banach space satisfies the following well known properties, see for exam-
ple [Engel and Nagel, 2000, Lemma II.1.3].

Lemma 2.1.3. The generator (A, D(A)) of a strongly continuous semigroup
{T'(t)}+>0 of linear operators satisfies

(a) D(A) is closed and dense in X .

(b) Forx € D(A), we have T(t)x € D(A) for everyt > 0 and LT (t)x =
T(t)Ax = AT (t)z.

(c) Forx € X andt > 0, we have fg T(s)xds € D(A).

(d) Fort > 0, we have

Tt)x—z=A tT(s)a:ds ifreX
0
= /t T(s)Axzds ifr € D(A).
0

This leads us to the following question. Given a linear operator (A4, D(A)),
is there a strongly continuous semigroup such that A is its generator? For
Markov processes, the question extends to, given an operator(A, D(A)),
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is it possible to construct a Markov process such that its transition semi-
group has A as its generator. The functional analytic question is answered
in general by the Hille-Yosida theorem. The result is stated in terms of the
resolvent of A.

Definition 2.1.4 (The resolvent). For a linear operator (A, D(A)) on a
Banach space X, denote by 0(A4) := {a € C|a — Aisbijective} the
spectrum of A. We denote by p(A) = C \ o(A) the resolvent set of A and
by R(a, A) = (o — A)~? the (functional analytic) resolvent of A.

Note that we write functional analytic resolvent. This is also the resolvent
that we will use in Chapter 8. In the other sections, we will use the proba-
bilistic resolvent, that has a slightly changed definition. It will be defined
below.

Lemma 2.1.5. Suppose that {T(t)}+>0 is a linear strongly continuous semi-
group on the Banach space X that satisfies

I7(t)] < Me*
for some M > 1 and w € R. Denote by (A, D(A)) its generator. Then we
have
(a) {a € C|Rea > w} C p(A),

(b) for o > w, we have the following integral representation
R(a, A)x = / e T (t)xdt,
0

(c) Fora > w andn > 1
M

(@ —w)™’

|R(exr, A)"] <

These properties of the operator (A, D(A)) are in fact sufficient for the
generation of a linear strongly continuous contraction semigroup.

Theorem 2.1.6 (Hille-Yosida). For a linear operator (A, D(A)) on a Banach

space X, the following are equivalent.

(a) (A, D(A)) generates a strongly continuous semigroup {T'(t)}+>0 of lin-
ear operators that satisfy | T (t)| < Me“" for some M > 1 andw € R.

(b) (A, D(A)) is closed, densely defined, and for all &« > w, we have o €
p(A). Additionally, there exist M > 1 andw € R such that foralln > 1,
we have

M

| R(a, A)"] < (a—wyn
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In case these conditions are satisfied, we have the Yosida-approximation for-
mula

T(t)xr = lim (27?, (Q,A>)nx (2.1.1)

n—oo \ t t

uniformly fort in compact intervals.

We will revisit this theorem in Chapter 8 for a special class of locally convex
spaces.

The Yosida-Approximation formula can be understood as follows. A con-
tinuous function b : RT™ — R that satisfies b(0) = 1 and b(¢)b(s) = b(t+s)
is necessarily of the form b(t) = e for some a € R. In other words, a is
the generator of the semigroup {b(t)}+>0. Using a, we have multiple ways
of constructing b(¢). One of these methods is

t\" n/n -1\ "
_pat _ 1 _ — N B
b(t) =e* = nhrglo <1 na) nhﬁm <t (t a) ) .

This formula corresponds to (2.1.1), where a is replaced by A. Different for-
mulas for approximating the exponential function yield different approxi-
mation schemes for semigroups. This particular scheme is useful as it in-
volves iterates of the continuous resolvent. If one uses, for example, the
approximation e® = 3", (at)¥k!~! one needs the powers of the possibly

non-continuous operators A* instead.

Note that the conditions simplify if we are interested only in contraction
semigroups. A contraction semigroup {7'(¢)}:>0, satisfies |T'(¢)| < 1.
Hence, the conditions for generating a contraction semigroup in Theorem
2.1.6 simplify to: (A, D(A)) is closed, densely defined, and for every o > 0
we have o € p(A) and |aR(a, A)| < 1.

Because we will mainly consider contraction semigroups in this thesis, as
these are the ones that turn up as transition semigroups of Markov opera-
tors, we focus our attention on the Hille-Yosida theorem for the contraction
case. First we define the probabilistic resolvent.

Definition 2.1.7. Let {T'(¢)};>0 be a strongly continuous linear contrac-
tion semigroup {7'(t)}+>0 with generator (A, D(A)) on a Banach space
X.For A > 0, define the (probabilistic) resolvent R(\, A) by R(\, A) =
(1 — AA)~!, which is also given by

R(\, A)z = / Xe—“fT(t)xdt.
0
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Note that R(\, A) = A"IR(A!, A). Also, note that R(\, A)x is given
by the semigroup 7'(t) evaluated at an exponential random time with ex-
pectation A, which in this case explains the necessity of the condition
|R(A, A)| < 1 in the Hille-Yosida theorem. In fact, the approximation for-
mula now reads

n
T(t)z = lim R <t, A) .
n n
which in a sense is merely a law of large numbers in disguise as n expo-
nential random variables with mean ¢/n converge almost surely to ¢ as n
goes to infinity . This insight, combined with appropriate concentration
inequalities is the basis for the extension of the Hille-Yosida theorem to a
special class of locally convex spaces in Chapter 8.

2.1.2  Generation of non-linear contractive semigroups

Similar generation questions can be asked for non-linear contraction semi-
groups and their generators. Given some non-linear operator (A, D(A))
can we construct a semigroup {7(¢) };+>¢ such that
. Tt)x —=x
lim Tt -z = Ax?

tl0 t
For non-linear operators this question turns out not to be the optimal one,
and instead we turn to our attention towards the Yosida-Approximation
characterisation of the generator in (2.1.1).
To verify conditions like in the Hille-Yosida theorem for non-linear oper-
ators, we need to verify two main conditions, for all A > 0, the resolvent
R(MA) ¢ X — X exists, and additionally, |[R(\, A)x — R(A, A)y| <

|z — y|. We introduce two definitions that cover these two issues.

Definition 2.1.8 (Dissipative operator). We say that an operator
(A, D(A)) is dissipative if for all A > 0, we have

|(z = Az) — (y — AMy)| = |z —y]
forallz,y € D(A).

Definition 2.1.9 (Range condition). We say that an operator (A, D(A))
satisfies the range condition if for all A > 0 the range of (1 — AA) is dense
in X.
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It can be shown that the closure (A, D(A)) of a dissipative operator
(A, D(A)) is itself dissipative and satisfies rg 1 — AA = rg 1 — A A. Hence,
if a non-closed operator (A, D(A)) is dissipative and satisfies the range
condition, its closure A has the property thatrg 1 — AA = X forall A > 0.
On the other hand, the map 1 — AA is injective by the dissipativity of
A. Hence, we can invert the maps and define the contraction mappings
R\ A): X — D(A).

In the linear case, we obtain the Lumer-Phillips result as a consequence of
the Hille-Yosida theorem. The result below also holds for non-linear oper-
ators and is called the Crandall-Liggett theorem.

Theorem 2.1.10 (Lumer-Phillips, Crandall-Liggett). For a densely defined,
dissipative operator (A, D(A)) on a Banach space X, the following are equiv-
alent.

(a) The closure A of A generates a contraction semigroup in the sense that
t _\"
T(t)r =lmR <, A> x
n n

uniformly fort in compact intervals.

(b) The range condition holds: rg (1 — AA) is dense in X for some(hence all)
A>0.

Note that there exists an extension of the Crandall-Liggett theorem to the
case where we consider the space X = Cy(FE) equipped with a notion of
convergence that is weaker than the norm topology, see Feng and Kurtz
[2006]. The verification of the dissipativity of an operator is often not very
hard. For operators on function spaces, this can often be checked via the
positive maximum principle.

Definition 2.1.11 (The positive maximum principle). Let E be a Polish
space. Let A : D(A) C Cy(E) — Cp(E) be some operator. We say that
A satisfies the positive maximum principle if for any two functions f, g €
D(A), we have the following:

(@) If zo is such that f(zg) — g(x0) = sup,eg{f(z)—g(z)}, then
Af(zo) — Ag(zo) < 0.

(b) If zo is such that f(xg) — g(xg) = infyer {f(z)—g(x)}, then
Af(zo) — Ag(zo) = 0.

Lemma 2.1.12. If an operator (A, D(A)) satisfies the positive maximum
principle, then it is dissipative.
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On the other hand, checking the range condition for a non-linear operator
might prove to be very hard. For function spaces, however, the theory of
viscosity solutions offers a way out, see Section 2.2.

2.1.3 Approximation of semigroups

A second natural question to be answered for abstract semigroups is the
one of approximation. Given a sequence of strongly continuous semigroups
{T’,(t)}+>0, the goal is to find conditions which imply that the sequence
converges strongly and uniformly on compact intervals to some limiting
semigroup {7'(t)}+>0. For linear semigroups, this is the content of the
Trotter-Kato approximation theorem, which we will again extend to a class
of locally convex spaces in Chapter 8. We state only a special case of the
approximation theorem.

Theorem 2.1.13 (Trotter-Kato). Let {T’,(t)}n>1¢>0 be a family of strongly

continuous linear contraction semigroups on a Banach space X . Then (a) im-

plies (b).

(a) There exists a densely defined linear operator (A, D(A)) such that
Apx — Ax for all x in a core for (A, D(A)) and such that the range
condition holds for (A, D(A)).

(b) The closure of (A, D(A)) generates a strongly continuous linear semi-
group {T'(t) }+>0 and we have

lim sup |7, (t)xr — T'(t)z| =0

TL%OOtST
forallT > 0andz € X.

As for the Hille-Yosida theorem, this result can be extended to non-linear
semigroups. More importantly, the result can be extended to convergence
of semigroups on different spaces.

This importance of this result in the field of probability is easily seen by
the functional central limit theorem, or Donsker’s theorem, which states
that a suitably rescaled continuous time random walk converges to Brow-
nian motion. Considering the semigroup analogue of this statement, this
means that the transition semigroup {Sy,(t) }+>0 of rescaled random walk
on Co(%Z) converges to the transition semigroup of Brownian motion, that
acts on Cy(R). See Trotter [1958] where Trotter motivates a result similar
to Theorem 2.1.14.



2.2 VISCOSITY SOLUTIONS

We formalise this intuitive picture for general Banach spaces. Let { X, }n>1
be a sequence of Banach spaces. For every n let ,, : X — X, be continu-
ous and linear map.

Consider a sequence of operators B, C X,, x X,,. We define the extended
limit ex — lim B,, of the sequence of operators by

{(.I',y) €EXxX | El(xn?yn) € Bn : ”nnw - xn” + ”nny - yn” - 0}'

The following theorem can be proven as in Proposition 5.5 in Feng and
Kurtz [2006] using Theorem 3.2 of Kurtz [1974].

Theorem 2.1.14. For everyn > 1 let {T,,(t) }+>0 be a strongly continuous
semigroup on a Banach space (X, |-|). For everyn > 1, letn, : X — X,
be a continuous linear map.

Then (a) implies (b).
(a) There exists a densely defined dissipative operator (A, D(A)) on X such

that A C ex — lim A,, and such that the range condition holds for
(4, D(4)).
(b) The closure of (A, D(A)) generates a strongly continuous contraction

semigroup {T'(t) }+>0 on X. Additionally, if x,, € X,, and x € X such
that |z, — npz| — 0O, then

lim sup |1, (¢t)zn, — 0T (t)x| =0

n—o0 tST
forallT > 0.

We will explore this extension only for functions spaces. First however, we
will try to get around the range condition on the operator A. This will be
achieved by using the theory of viscosity solutions.

2.2 VISCOSITY SOLUTIONS

In this section, we let E C R% be some closed set. Consider a function
F : E xR xR? — R. It is known that for many equations it is not
possible to solve

F(z,u(z), Vu(x)) =0, rek (2.2.1)
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classically. For example, consider the Eikonal equation on £ = [—1,1]
given by

/()] =1 =0,
u(—1) =wu(1) =0.

(2.2.2)

Classical solutions to this problem do not exist by Rolle’s theorem, so we
have to resort to weak solutions. Clearly, there exists infinitely many ‘so-
lutions’ that solve the Eikonal equation almost everywhere. For example,
consider u1(z) =1 — |z| and ug(z) = |x| — 1.

Definition 2.2.1. We say that u is a (viscosity) subsolution of equation
(2.2.1) if u is bounded, upper semi-continuous and if for every f € C'!(E)
and z¢ € E such that u(xo) — f(zo) = sup, u(z) — f(x), we have

F(z,u(z),Vf(z)) <0.

We say that u is a (viscosity) supersolution of equation (2.2.1) if w is bounded,
lower semi-continuous and if for every f € C'(E) and 2y € E such that
u(zo) — f(xo) = inf, u(x) — f(x), we have

F(xz,u(z),Vf(z)) > 0.

We say that w is a (viscosity) solution of equation (2.2.1) if it is both a sub
and a super solution.

Note that a solution v must be bounded and continuous, which is in con-
trast with the weak solution methods based on Sobolev spaces. This prop-
erty turns out to be of use later. In the case that F is non-compact, there
exists various other definitions of viscosity solutions in the literature. Be-
cause we will mainly focus on compact spaces, we stick to this definition.
The motivation for changing the definition is the possibility that points
xo € E such that u(zg) — f(z0) = sup, u(z) — f(z) might not exist. The
definition therefore ends up to be to weak.

Returning to the Eikonal equation, we check whether u1, ug are viscosity
solutions. Note that u; and wuy are differentiable everywhere except in x =
0. So the point of interest is x = 0.

We start with u;. Any function f € C'(—1,1) such that u;(0) — f(0) =
sup, u1(z) — f(z) satisfies f'(0) € [—1, 1] which implies that u; is a vis-
cosity subsolution to the Eikonal equation. On the other hand there exists
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no f € C'(—1,1) such that u1(0) — f(0) = inf, ui(z) — f(x), which
implies that u; is also a viscosity supersolution to the Eikonal equation.
Similarly to the argument that shows that u; is a supersolution, we find that
us is a subsolution to the Eikonal equation. However, for f € C1(—1,1)
such that uq(0) — f(0) = inf, u1(z) — f(x) and f'(0) € (—1,1), we find
|f(0)] — 1 < 0, which implies that us is not a supersolution.

In fact, one can show that u; is the unique solution to the Eikonal equation.
This fact is established via the comparison principle.

Definition 2.2.2. We say that equation (2.2.1) satisfies the comparison prin-
ciple if for a subsolution u and supersolution v we have v < v.

Note that if the comparison principle is satisfied, then a viscosity solution
is unique. In Chapter 3, we will verify the comparison principle for the
resolvent equation for some specific operators A. In these examples, the
underlying state-space will be a compact subset of R?. We will proceed now
with the discussion of the generation of semigroups under the assumption
that the comparison principle is satisfied.

2.2.1 Viscosity solutions to solve the resolvent equation

We return to the situation where our goal is to show that an operator A :
D(A) C Cy(E) — Cy(E) generates a semigroup. Recall from Theorems
2.1.10 and 2.1.14 that we need to verify the range condition. In other words,
for any fixed A > 0, we need to find for a dense set of functions h C Cy(E)
a function f € D(A) such that

(1 —NA)f = h.

An alternative approach, noted in Section 5 of Crandall et al. [1984] and
suggested as a starting point in Feng and Kurtz [2006] is to extend the
domain of the generator. The goal of this extension is to obtain an operator
that satisfies the range condition by construction. On the other hand, the
extension must be such that it also satisfies the positive maximum principle.
It turns out that viscosity solutions are especially suitable for this goal.

Pick some h € Cy(F) and A > 0 and consider

u — Au = h. (2.2.3)
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Definition 2.2.3. We say that u is a (viscosity) subsolution of equation
(2.2.3) if u is bounded, upper semi-continuous and if for every f € D(A)
and z¢ € E such that u(xo) — f(zo) = sup, u(x) — f(x), we have

u— NAf < h.

We say that u is a (viscosity) supersolution of equation (2.2.3) if w is bounded,
lower semi-continuous and if for every f € D(A) and zp € E such that
u(xo) — f(xo) = inf, u(x) — f(x), we have

u— ANAf > h.

We say that w is a (viscosity) solution of equation (2.2.3) if it is both a sub
and a super solution.

To understand the relation between viscosity solutions of (2.2.3) and the
positive maximum principle, consider a viscosity solution u to (2.2.3). This
means that u is a candidate for the, for now undefined, resolvent (1 —
AA)~!h. If this were the case, then Au = A~!(u — h). The conditions for
u being a viscosity solution, exactly turn out to show that the operator A,
defined by AU (u, A (u — h)) as a graph, satisfies the positive maximum
principle. We check condition (a) of definition 2.1.11 for the extension. Let
(f,z0) € D(A) x E be such that u(zg) — f(z9) = sup,u(z) — f(x).
Because u is a viscosity subsolution, we obtain
h(zo)

A [Au(:xo) - Af(xo)} Y [“(“'0); — Af(x0)

= u(xg) — MAf(x0) — h(zo) <0,
which proves that Au(zg) — Af(zo) < 0.

This indicates that if for every h € C,(E) and A > 0 there exists a unique
viscosity solution to (2.2.3), the extension

A= U {(u, A" (u— h)) | u — AAu = h in the viscosity sense} .
A>0,
heCy(E)

is a suitable candidate for the construction of the semigroup associated to
A. A priori, it is not clear, however, that A satisfies the positive maximum
principle, or that A is the graph of an operator. For the first issue, note
that we have only checked the positive maximum principle for pairs of
functions (f, g) where the first is a viscosity solution and the second a
classical solution. However, if one can find an explicit family of viscosity
solutions to the family of equations (2.2.3), these issues can be resolved in
a straightforward way.
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2.2.2  Approximation of semigroups

Combining the discussion of last section with Theorem 2.1.14, we obtain a
more elaborate approximation theorem on function spaces.

Let {E,, }n>1 be a sequence of compact metric spaces and let E be a com-
pact metric space. For each n, we have some continuous map n,, : £, — E.
This defines a map n,, : C(E) — C(E,) by n,f = f on,. We assume that
lim,, F,, = E, in the sense that for every x € E, there exists x,, € E,, such
that n,x, — x.

The range condition in Theorem 2.1.14 will be replaced by the comparison
principle for the resolvent equation. This replacement is very important
because the verification of the range condition is often difficult or even im-
possible. The domain of the operator might be too small to be able to solve
the resolvent equation. Even if this is the case, if the comparison principle
is satisfied, there exists at most one unique extension of the operator that
satisfies the range condition. This extension generates a semigroup via the
Crandall-Liggett theorem. The result below is a special case of [Feng and
Kurtz, 2006, Theorem 6.13].

Theorem 2.2.4. Suppose that lim,, E,, = E. For every n, let {T),}n>1
be strongly continuous semigroups on (C(E,),|-|) that have generators
A, C C(E,)xC(E,) in the sense of the Crandall-Liggett theorem 2.1.10, i.e.
{Ay}n>1 are dissipative and satisfy the range condition. Suppose for every n
that if (f,q) € Ay, then (f +¢,g) € A forallc € R.

Suppose that A C C(FE) x B(E) such that A C ex — lim A,,. Furthermore,
assume that for all0 < A < X, there exists a dense set Dy C C(E) such
that for h € Dy the comparison principle holds for

u — Au = h. (2.2.4)

Then, we have

(a) For h € D), there exits a unique viscosity solution of (2.2.4), which we
will denote by Ryh.

(b) The map R) is contractive and, hence, extends to a continuous map R) :
C(F)— C(E).
(c) The operator A, defined by

A= {(Ryh, A" H(Ryh — b)) | A > 0,1 € Cy(E)}

extends A, is dissipative and satisfies the range condition.
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(d) A generates a strongly continuous semigroup {T(t)}i>0 in the sense of
2.1.10 and

T(t)f = lim RY,,f

uniformly fort in compact intervals.

(e) For f, € C(Ey) and f € C(E) such that |n,f — fn| — 0, we have

lim sup | T () fro = T () f = 0

n— OOt
forallT > 0.

The theorem is proved using the following two lemmas. The first one gives
the existence of viscosity sub- and supersolutions to (2.2.4), the second
gives the contractiveness of the resolvent operator. The rest of the The-
orem then essentially follows from Theorem 2.1.14.

Lemma 2.2.5. Suppose that lim,, E,, = E. Suppose for every n we have
a dissipative operator A,, C C(E,) x C(E,,). Suppose for every n that if
(f,g) € Ap, then (f +¢,g) € A forallc € R.

Now consider an operator A C C(E) x B(FE) such that A C ex — lim A,,.
Pick some A > 0 and h € C(FE). Let (fn,gn) € H, and define hy,

fn — Agn. Suppose that |hy, — nuh| — 0, then f and f defined by

flz) = irlif sup {fn(z)

n>k

z € By d(z,n,(2)) < ;}

f() = sup inf {fn( )

k

1
z€ By dx,n(z) < k}
are sub, respectively super solutions to f — NAf = h. If the comparison
principle holds for this equation, then f := f = f and |nnf — fo] — 0.
Additionally, if (fo, g0) € H, then | f — fol < |h — (fo — Ago)|.

The last statement | f — fo|| < [h — (fo — Ago)| implies that the resolvent
(1 — MA)~" of the operator A U {f, \"'(f — h)} is contractive. To ob-
tain a contractive resolvent for an extension with more than one viscosity
solution, we need the following lemma.

Lemma 2.2.6. Suppose the conditions of Lemma 2.2.5 are satisfied. Suppose
that h', h? € C(E) and that there exists, fori € {1,2} functions (fi,g%) €
A, such that hl, := fi — \g! satisfy Hh}1 — nnhiH — 0. Then the unique
viscosity solutions f' to (1 — NA)f = h' satisfy Hfl — f2H < th — h2H.
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The proofs of these Lemmas can be found in Feng and Kurtz [2006]. The
existence of viscosity sub- and super-solutions in some specific cases can
also be obtained via variational methods, see Section 2.4.2.

2.3 MARKOV PROCESSES

We now turn to the theory of Markov processes, for which we follow the
notation of Ethier and Kurtz [1986]. In this thesis, we will only consider
Markov processes that take values in the Skorokhod space. To be well pre-
pared to study Markov processes, we start with some general results on the
space of probability measures and on the Skorokhod space.

2.3.1 The space of probability measures

Let (E,d) be a complete separable space. For the study of collections of
measures in P(E), we equip P (E) with the Prohorov metric

p(u,v) =1inf{e > 0| u(A) < v(A°) + ¢ for all closed sets A C E'},

where A°® is the € blow-up of E:

EEZ:{LL’GE

inf d <eb.
inf (rv,y)_E}

The Prohorov metric inherits nice properties from d.

Theorem 2.3.1 (Theorem 3.1.7, Ethier and Kurtz [1986]). If (E,d) is sep-
arable, then (P(E), p) is separable. If (E, d) is complete, then (P(E), p) is
complete.

Definition 2.3.2 (Tightness). We say that a collection of measures M C
P(E) is tight if for every € > 0 there exists a compact set K C F such
that

sup u(K°) <e.
neM

Prohorov’s celebrated theorem shows us that tightness of a family of mea-
sures is equivalent to compactness for the topology induced by the Pro-
horov metric.
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Theorem 2.3.3 (Prohorov). Let (E,d) be complete and separable and let
M C P(E) be a collection of probability measures. Then the following are
equivalent.

(a) M is tight.

(b) For every e > 0 there exists a compact set K C E such that

sup p((K°)°) <.
neM

(c) The closure of M in (P(E), p) is compact.

We say that a net 1, converges to p weakly if we have for all f € Cy(E)

that
/ Fdpa — / Fdp.

The weak topology and the Prohorov metric are nicely connected by the
following theorem.

Theorem 2.3.4 (Portmanteau). Let (E, d) be complete and separable. Then
the weak topology is metrizable by the Prohorov metric. Furthermore, let i, €
P(E) be a sequence of probability measures and let n € P(FE). The following
are equivalent.

(@) limy, 00 p(pin, 1) = 0.

(b) pp, converges to u weakly.

(c) For all closed sets A C E, we have limsup,,_, . pn(A) < p(A).
(d) For all open sets A C E, we have lim inf,,_, o pin(A) > pu(A).

We will say that a net of E' valued random variables X, converges to a ran-
dom variable X in distribution or weakly if their push-forward measures
le on E converge weakly to the push-forward p of X. We will, however,
not distinguish between these two different definitions of convergence and
use them interchangeably. For example, if we say that a family of random
variables is weakly compact, we technically mean that the family of push-
forward measures is weakly compact.

2.3.2  The Skorokhod space

For a complete separable metric space (E,d), we denote by Dg(R™) the
space of all functions z : Rt — E that are right continuous and have left
limits. We will denote by (t—) = lim,; z(r) the left limit of x at ¢.



2.3 MARKOV PROCESSES

Next, we equip Dg(R™) with a metric that will turn Dg(R™) into a com-
plete separable metric space. Denote by A’ the collection of strictly increas-
ing functions A : Rt — R™ that are also surjective. Denote by A C A’ the
set of Lipschitz continuous A € A’ such that

Als) = A®)

1
8 s—t

Y(A) := sup
s>t>0

<o

First define ¢ = d A 1, to obtain a bounded metric that is equivalent to d.
Then, define for z,y € Dg(R™)

)= ot YOV [T et A a

where

T(x7 Y, A, u) = il>1103€7(9?<t A U’)? y(A(t) A u))

The metric r inherits desirable properties from d.

Theorem 2.3.5 (Theorem 3.5.6, Ethier and Kurtz [1986]). If (E, d) is sepa-
rable, then (Dg(R™),r) is separable. If (E, d) is complete, then (Dg(R™), )
is complete.

Additionally, even though we allow for jumps in the trajectories in
Dg(R™), this does not happen to often.

Lemma 2.3.6 (Lemmas 3.5.1 and 3.7.7 Ethier and Kurtz [1986]). If x €
Dg(R™"), then x only has at most countable points of discontinuity. If X is a
process with sample paths in Dg(R™) then the complement of

D(X) = {t > 0| P[X(t) = X(t-)] = 1)
is at most countable.

The following result is the basis under the study of weak convergence of
Markov processes via their transition semigroups.

Theorem 2.3.7 (Theorem 3.7.8 Ethier and Kurtz [1986]). Let E be separable
and let { X, },>1 be processes with sample paths in Dg(R™).

(a) If X;, — X in distribution then
(Xn(t1) ..., Xulte)) = (X (1), ..., X(tk)) (2.3.1)

in distribution for all finite sets {t1, ...t} C D(X).

35



36

MATHEMATICAL INTRODUCTION

(b) If the sequence {X,} is relatively compact and there exists a dense set
D C D(X) such that (2.3.1) holds for all {t1,...,t;} C D, then X,, —
X in distribution.

For the convergence processes (b) is of interest as it implies a reduction in
difficulty.

The verification of relative compactness of a sequence of processes X, is
a technical issue, that is normally carried out in two steps. First, compact
containment is verified. This entails proving that up to a fixed time 7" > 0,
the laws of the of X,,(t), for ¢ < T and n > 1, are uniformly tight. The
second step is to verify that for each f in some dense set in Cy(FE), the
processes t — f(X,(t)) are relatively compact in Dg(R™); an issue that
is verifiable explicitly. See Sections 3.8 and 3.9 in Ethier and Kurtz [1986].

Proving that (2.3.1) holds goes well together with the structure of Markov
processes. In particular, using the Markov property (2.3.1) can be reduced
to the convergence of the distribution at time 0 and the convergence of the
transition semigroups that we will introduce in Section 2.3.3 below.

2.3.3  The semigroup of transition operators of a Feller process

A filtration F on Dg(R™")is a collection of o-algebras {F;};>0 such that
Fs C F; € B(Dg(R')) if s < t. Let X denote the coordinate process on
Dp(RY). The filtration FX = {F};50 on Dp(R") generated by X is
defined by

Fi=0{X(s)|s<t}.
We say that X is a Markov process if
P[X(t+s) € B|F| =P[X(t+s) € B|X(t)] (2.3.2)

for all s,t > 0 and B € B(F). Additionally, we say that X is strongly
Markov if

P[X(r+s) € B|FX] =P[X(r+s) € B| X(1)] (2.3.3)

forall s > 0, B € B(F) and stopping times 7, such that 7 < oo almost
surely.

We say that P(t,z, B) on Rt x E x B(E) is a time-homogeneous tran-
sition function if P(t,z,-) € P(E), P(0,x,-) = 0, P(-,+, B) is measur-
able in the first two coordinates for all B € B(F) and P(t + s,z,B) =
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[ P(s,y,B)P(t,z,dy) forall s,t > 0,z € E and B € B(E). Finally, we
say that P is a transition function for a time-homogeneous Markov process
X if

P[X(t+s) e B|F] = P(t,X(t),B)
forall s,t > 0and B € B(E).

In the case that F is compact, there is a well known functional analytic
point of view on the transition function of a Markov process. Even though
this approach can be extended to Polish spaces as we will show in Chapter
9, we restrict ourselves here to compact spaces.

Let { X (t) }+>0 be a Markov process on E whose trajectories take values in
Dg(RY). For f € My(FE), we define the semigroup {S(t) }+>0 by

S(t)f(x) = E[F(X ()] X(0) = =].

IfS(t)C(FE) C C(F),wecall X a Feller process. Clearly, S(t) is contractive
and the property that X takes values in Dg(R") combined with the fact
that E is compact, yields the fact that {S(¢)}+>¢ is a strongly continuous
semigroup on (C'(E), |-|)-

Analogously to the question posed for general semigroups, here the ques-
tion can be asked whether for a given operators (A, D(A)) one can find a
Markov process such that the transition semigroup has A as its generator.
The construction of a process via the Lumer-Phillips theorem for discrete
interacting particle systems is carried out in Liggett [1985]. The construc-
tion of diffusion semigroups can be found in Ethier and Kurtz [1986] and
Engel and Nagel [2000].

The theory of semigroups can also be applied to study approximation ques-
tions. Suppose that we have a sequence of Feller processes X,, with trajecto-
riesin Dg, (R™). We suppose that there are continuous maps 7, : E,, — E
and we suppose that lim, 7, F, = F in the sense that for every z € F,
there are x,, € E,, such that n,(z,) — .

The map 7, induces a continuous map 7, : (C(E),|-|) = (C(En),||)
by nnf(x) = f(nn,z). We find ourselves in the setting of Theorem 2.1.14
and 2.2.4. Thus, suppose that the semigroups and generators of X,, are de-
noted by {T,(¢) }+>0 and (A, D(A,)), and suppose there is some limiting
operator (A, D(A)) such that A C ex — lim A,, that generates a semi-
group {T'(t) }+>0. It follows that for f,, € C(E,) and f € C(F) such that
Innf — f] — 0, we have

lim sup |13, () fn — nT(t) f| = 0.
n—oo t<T
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Suppose X is the process on Dg(R™) with semigroup {7'(¢) };+>0 and sup-
pose that 7, X,,(0) — X (0). By repeated conditioning of our processes, the
convergence of the semigroups of conditional expectations yields the con-
vergence of the finite dimensional distributions as required in (b) of Theo-
rem 2.3.7. Moreover, the verification that the processes t — f,, (X, (t)) are
relatively compact in Dg (R ™) follows as a consequence of the convergence
ACexr—1limA,.

For non-compact spaces E the transition semigroup is in general not
strongly continuous for the norm topology on Cj(E).

Example 2.3.8. Consider standard Brownian Motion on R. The transition
functions P(t,x, ) are given in terms of their Radon-Nikodym derivative
with respect to the Lebesgue measure:

P(t,z,dy) 1 (y—a)?

= e 2t

dy V2ort
The corresponding transition semigroup {S(¢) };+> is strongly continuous
on (Cy(R), ||). On the other hand, it is not strongly continuous on Cy(E).
Consider for example the function f () = sin(z?). Because the oscillations
of the function increase as |z| — oo, we do not have |S(¢)f — f| — 0.

A different, probabilistic, approach has been proposed by Stroock and
Varadhan [1969a,b] and is based on the following observation.

Lemma 2.3.9. Let E¥ be a compact metric space and let P be a Markov
measure on Dg(R™). Denote by {S(t)}:>0 the transition semigroup and by
(A,D(A)) the generator of the process. Let f € D(A), then

My (t) == f(X (1)) = f(X(0)) —/0 Af(X(s))ds
is a mean 0 FX martingale.

Note that this result follows from Lemma 2.1.3 (d).

2.3.4 The martingale problem

The insight by Stroock and Varadhan was that the result of Lemma 2.3.9
can be taken as a starting point for the construction of a Markov process
on Polish spaces E. For more information on this approach, see Stroock
and Varadhan [1979], Ethier and Kurtz [1986].
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Definition 2.3.10 (The martingale problem). Let A : D(A) C Cy(E) —
Cy(E) be a linear operator. For (A, D(A)) and a measure v € P(E), we
say that P € P(Dg(R™")) solves the martingale problem for (A, v) if for
all f € D(A)

FX() — F(X(0)) - /0 AF(X(s))ds

is a mean 0 FX martingale under P, and if the law of X (0) under PP equals
v.

We denote the set of all solutions to the martingale problem, for varying
initial measures v, by M 4. We say that uniqueness holds for the martingale
problem if for every v € P(F) the set {P € M4 |PX(0)~! = v} is empty
or a singleton. Furthermore, we say that the martingale problem is well-
posed if this set is a singleton.

Regarding well-posedness, we have the following result [Ethier and Kurtz,
1986, Theorem 4.5.11].

Theorem 2.3.11. Let A C Cy(E) x Cy(E) and suppose that D(A) contains
an algebra that separates points and vanishes nowhere. Suppose that for each
compact K C E,e > 0andT > 0, there exists a compact K' = K'(K,e,T)
such that

P[X(t) € K' forallt <T,X(0) € K| > (1—¢)P[X(0) € K]

for all P € M 4. Additionally, assume that the martingale problem for A is
well posed. Then the solutions to the Martingale problem are strong Markov
processes corresponding to a semigroup that maps Cy(E) into C(E).

Note that unless F is compact, the result does not imply that the semigroup
is strongly continuous for the supremum norm topology. In Chapter 9, we
show that by using a suitably changed topology, the strong continuity can
also be obtained for Markov processes on Polish E.

24 LARGE DEVIATIONS

We first start with some basic definitions on the large deviation principle.
Afterwards, we will focus on large deviations for Markov processes.

Definition 2.4.1 (Rate function). We say that I : E — [0,00] is a
rate function if I is lower semi-continuous, ie. for all o € RT, the set
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{z € E|I(z) < a} is closed. We say that I is good if the level sets
{z € E|I(x) < a} are compact.

Now consider a sequence of measures (i, € P(E).

Definition 2.4.2 (Large deviation principle). We say that the sequence
{{tn }rn>1 satisfies the large deviation principle with rate function I and nor-
malisation 7, if the following inequalities hold for any set A € B(FE)

1
liminf — log pup(A) < — inf I(z),

n—oo Ty, rEA°

1
lim sup — log i, (A) < — inf I(x).

n—oo TI'n z€EA

The study of large deviations involves many concepts that are analogous to
concepts in the study of weak convergence. In a sense the large deviation
principle is an exponential version of properties (c) and (d) of the Portman-
teau theorem, 2.3.4. Note however that we assume both an upper and lower
bound for the large deviation principle as opposed to the equivalence that
holds in the case of weak convergence.

The functional form of the large deviation principle is given by Varadhan’s
lemma, see Theorem 4.3.1 in Dembo and Zeitouni [1998].

Theorem 2.4.3 (Varadhan). Suppose that the random variables Z,,, with
laws w,, € P(E) satisfy the large deviation principle with normalisation 1,
and good rate function I. Let f : E — R be continuous. Assume either the
tail condition

- 1
Qi limsup 2= log [e”‘f U1 p(zay20y | = 00,

or the following moment condition for somey > 1,

1
limsup — log E [ewnf(Z”)} < 00.

n—oo T'n

Then

lim logE [ = sup {f(z) ~ I(a)}

n—00 Ty z€E

As a corollary, we can prove large deviation principles for tilted measures.
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Corollary 2.4.4. Suppose that the sequence i, € P(E) satisfies the large
deviation principle with normalisation 1, and good rate function I. Let
f + E — R be bounded and continuous. Then the sequence of probability
measures vy, defined by

dvy,

—_n _ eran—l
dpn

n7f,
where Z,, ; is a normalising constant, satisfies the large deviation principle
with normalisation r,, and good rate function

J(x) = I(z) — f(x) — inf {I(y) = f(y)} -

yer

An inverse to Varadhan’s lemma is given by Bryc’s Theorem, see Theorem
4.4.2 in Dembo and Zeitouni [1998]. This shows that, as in the weak con-
vergence setting, the functional and probabilistic versions of the theory are
equivalent.

Also the concept of tightness has an exponential variant.

Definition 2.4.5 (Exponential tightness). We say that a family of measures
{ftn }n>1 on E is exponentially tight with rate r, if for every o < oo there
exists a compact set K, C FE such that

1
lim sup — log un (K§) < —a.

n—oo T'n

The contraction principle shows that a large deviation principle can be
pushed forward, Theorem 4.2.1 in Dembo and Zeitouni [1998].

Theorem 2.4.6 (Contraction principle). Let E, F' be Hausdorff spaces and
let f : E — F be a continuous function. Consider a good rate function
I:E —[0,00].

(a) Foreachy € F, define

I'(y) =inf {I(z)|2 € X,y = f(2)},

where we set inf () = cc. Then I’ is a good rate function on'Y'.

(b) If a sequence of probability measures 1, satisfies the large deviation prin-
ciple with rate function I on E, then the probability measures fuji, =
pin © £~ satisfy the large deviation principle on F with rate function I'.
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2.4.1 Large deviations for Markov processes

A main question in this thesis is whether the large deviation principle can
be proven for the trajectories of Markov processes. In particular, we con-
sider a sequence of Markov processes Y, on spaces F,,. We assume the
existence of some Polish space E, and connecting maps 1, : E, — E.
We define the processes X, by X,,(t) := 1, (Y, (t)). Note that the process
X, (t) is not necessarily Markov and might live in a space that is lower-
dimensional than the original processes. For example Y}, could model spin
flip dynamics on {—1,1}", whereas X,, = n~!>"._ Y, (i) models the
empirical magnetisation in [—1, 1]. -

As in the study of weak convergence of processes, the large deviation prin-
ciple on the Skorokhod space is a consequence of the large deviation prin-
ciple of the finite dimensional distributions and exponential tightness. The
following result is the large deviation analogue of Theorem 2.3.7.

Theorem 2.4.7 (Theorem 4.28 Feng and Kurtz [2006]). Suppose { Xy, }n>1 is
exponentially tight in D (R™). Suppose that for each set {t; = 0,t1,. .., 11}
the random variables { X,,(t1), ..., X;,(tx) }n>1 satisfy the large deviation
principle in E* with rate function Iy, 1,. Then {X,,}n>1 satisfy the large
deviation principle in Dg(R™) with good rate function

I(z) = sup Iy 4, (x(t1),...,z(tx)),
{t:}C

where {t;} is shorthand for all sets of the form {t1, ..., tx} and where A, is
the set of times where x is discontinuous.

As in the setting of weak convergence of Markov processes, the finite di-
mensional rate functions can be treated by conditioning.

Proposition 2.4.8 (Proposition 3.25 in Feng and Kurtz [2006]). Suppose
{Xn, Y, }n>1 is exponentially tight in the product space (Fy x Fy), where
F\, Fy are Polish. Suppose 1, € P(E1 X E3) is the law of (Xy,Y,) and
suppose that p, (dz, dy) = pn(dy | )y (dx), where p, (dy | ) is a version
of a regular conditional probability. For f € Cy(F3), denote

1
Aan(f]2) = log [ /Wy 2).

Suppose there exists a continuous function Ao(f | ) such that Ao (f|-) —
Ao(f |-) uniformly on compact sets. For x € F} andy € F>, define

L(y|lz)= sup f(y) —Aao(f|).
FECy(Fy)
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If{ Xy }n>1 satisfies the large deviation principle on F', with good rate func-
tion I, then { X,,, Y, } satisfies the large deviation principle on Fy x Fy with
good rate function I (x,y) = I1(x) + I2(y | x).

The same result holds under the condition that there exists a sequence of sets
K,, C Fy, such that

lim sup [As(f @) — Aga(f |2)] = 0 (2.4.1

n—oo J?GKn

andlim,, n~!log p, (K¢S x Fy) = —o0.

Given exponential tightness on the Skorokhod space, this proposition gives
us the means to reduce the study of a finite dimensional large deviation
problem to the study of the large deviations of the first marginal and a
semigroup approximation issue.

Denote by {S,(t)}+>0 the transition semigroups of the processes Y;, on
E,, and denote their exponential transforms by {V,,(t) }:+>0, i.e. V,,(t) =
n~'log S, (t)e™/. Note that {V},()}+>0 inherits the semigroup property
of {5y, (t)}+>0. Suppose that there exists a limiting semigroup {V (¢) }+>0
in the sense that

Jim V(8 f =V (1) ] = 0 (24.2)

forall f € Cy(FE). Note that the use of the uniform topology can be relaxed
to the topology of uniform convergence on compact sets. Given the fact
that we work with different spaces E,,, we restrict ourselves here to the
uniform topology.

To prove the large deviation principle of {X,,},>1 in Dg(R"), where
X, = mu(Yy) and E = lim, n,(E,,), we take an arbitrary finite collec-
tion of times {t; = 0,¢1,...,t;}. To apply Proposition 2.4.8, we start
by decomposing E* into F; = E*~! and F;, = E. Taking Aa,(f,") =
Vi (tg — ti—1) f, the condition in (2.4.1) follows from (2.4.2) where we have
taken K,, = (1, *(E,))* L. Because the process Y;, takes values on E,,, we
have p, (K5) = 0. Hence, the result follows if we know the large deviation
principle for the set of times {t1, ..., %1}

Iterating this process gives the large deviation principle under the condi-
tion that we have exponential tightness, the large deviation principle for
the time 0 marginal, and the existence of a limiting semigroup.

The chain rule gives us that the generator of V,,(¢) should be H, f :=
%e*”f Ane™ . As in the case of linear semigroups, the existence of a limit-
ing operator H C ex — lim H,, that generates a semigroup, is a major step
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towards the large deviation principle. The operators H,, can also be used
to obtain exponential tightness.

Theorem 2.4.9 (Corollary 4.17 Feng and Kurtz [2006]). Let E,,, E be com-
pact. Let I C Cy(E) separate points and let F' be closed under addition.
Suppose that for each A € R and f € F, there exists (fn,9n) € Hy, such
that sup,, | fn| < oo and

liTILn | fn—mnf]| =0 sup Sué) gn(z) = COX\(f) < 0.
n xekn

Then { X, }n>1 is exponentially tight.

The full large deviation principle can, thus, also be established. The follow-
ing result is a special case of Theorem 6.14 in Feng and Kurtz [2006].

Theorem 2.4.10. Suppose that { E,, },,>1 is a sequence of compact separable
metric spaces, and let F/ be a compact separable metric space. Let 0y, : oy, —
E be measurable maps. Assume that E = limy, n,,(E,,). Let Y,, be a Markov
process on E,, with generator A, and transition semigroup {Sy(t) }+>0.
Denote by H, f = e " A,e™ and let H C ex — lim H,, where D(H) is
closed under addition and dense in (C(E), |-|). Furthermore, suppose that
the comparison principle is satisfied for w — A\Hu = h for all A\ > 0 and
h e Cb(E)

Set X, = 1 (Yy) and suppose that { X,,(0) },>1 satisfies the large deviation
principle in E with good rate function Ij.

Then (H, D(H)) generates a strongly continuous semigroup {V (t) }+>0 as in
Theorem 2.2.4 such that

sup [V ()nf —nV () f =0
t<T

forallT > 0and f € C(E).

Additionally, {X,,} satisfies the large deviation principle in Dg(R™) with
good rate function I given by

k
I(z)= sup Ip(z(0)) + Z Iy, (z(t;) | 2(tiz1)
t1=0,ta,...,tx =1

and where It(y | ) = supec(py f(y) — V(1) f(2).
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Proof. That (H, D(H)) generates a semigroup {V'(¢) }+>0 and that we have
convergence of the semigroups V,, to the limiting semigroup is a conse-
quence of Theorem 2.2.4. Exponential tightness of {X,,}»>1 follows by
Theorem 2.4.9. The large deviation principle and the form of the rate func-
tion follow from Theorem 2.4.7 and Proposition 2.4.8. O

2.4.2  Variational representation of the rate function

The following non-rigorous introductory section on variational represen-
tations of the rate function only considers the large deviation behaviour
of sequences of processes {X,,(t)}+>0 that take values in a compact sub-
set E C R? We assume that all conditions for Theorem 2.4.10 are satis-
fied, but that £ C RY. Additionally, we assume that D(H) = C'(E) and
that the operator (H, D(H)) is of the form H f(x) = H(x, V f(x)), where
H : E x R — R is continuously differentiable and where p > H (x,p)is
convex for every fixed x and strictly convex for z € E°.

There are some additional technical assumptions on H that we will not
mention here. The statements given below will be made rigorous in Chap-
ter 3 below. In Chapter 6, we will prove a similar representation in a more
abstract setting.

We introduce a new semigroup, the Nisio semigroup V(t), for which we
will prove that V(t)f = V(t) f if f € C(E). The new semigroup is given
as a variational problem where one optimises a pay-off f(+(¢)), but where
a cost is paid that depends on the whole trajectory {7(s) }o<s<¢. This cost
is accumulated over time and is given by the Lagrangian. We define this
Lagrangian by taking the Legendre-Fenchel transform of H:

L(x,u) = sup {(p,u) — H(x,p)}

peERC
= sup {(Vf(z),u) - Hf(z)}
feci(E)

Because p — H(z,p) is convex and continuous, it follows by the Fenchel
Moreau theorem that also

Hf(z) = H(x,Vf(z)) = sup {(V[f(z),u) — L(z,u)}.

ucRd
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Let AC be the space of absolutely continuous trajectories in £ C R%, and
set AC, be the trajectories in AC that start in x. Using £, we define the
Nisio semigroup for measurable functions f on E:

V(t)f(x) = sup f(y / (v

’YGACI

We expect the semigroup V() to be related to V' (¢) because of the follow-
ing non-rigorous calculation. Consider a continuously differentiable func-
tion f, then

d ! :
- s 200 = [ 260
= sup (VF(3(0)),5(0)) ~ £(+(0),5(0))
YEAC,
= Sngf(w),’LL) — L(x,u)

In other words, formally the generator of {V () }:>0 equals the generator
of {V(t) }+>0 which should imply that the semigroups coincide.

A rigorous approach to proving that V(¢)f = V(t)f for f € C(FE) is
via the resolvent. By Theorem 2.2.4, we know that there exists a resolvent

operator { R(\, H)} x>0 such that for all & in a dense set D) C C(F) we
have that R(\, H)h is a viscosity solution to u — AHu = h and such that

>\ n
V(t)f:hmR<n,H> f
To connect the variational semigroup to the resolvent, we define the follow-

ing variational resolvent, using the intuition that the resolvent is related to
the behaviour of the system at an exponential random time:

R(A\)h(z) = sup. /0 b ie—”t ( / L(v ) dt.

Following the first part of the proof of Theorem 8.27 in Feng and Kurtz
[2006], we obtain the following important result.
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Lemma 2.4.11. For A > 0, we have R(A\)C(E) C C(E) and R(A\)h is a
viscosity solution of f(x) — NH (z,V f(x)) — h(z) = 0.

As a consequence of the last lemma, we see that if f(z) — AH (2, V f(s)) —
h(z) = 0 satisfies the comparison principle for all A\ > 0 and h € C(E),
then R(A\)h = R(\, H)h. Additionally, in Lemma 8.18 in Feng and Kurtz
[2006] it is proven for f € C'(FE) that

V() f(x) = lim R(n~ )" f(2),

which yields that V' (¢) f = V(¢) f. Using this identification, Feng and Kurtz
obtain the following result. Note that their result holds in a more general
setting.

Theorem 2.4.12 (Feng and Kurtz [2006], Corollary 8.29). Let the Assump-
tions for Theorem 2.4.10 be satisfied. Let E C R? be compact and let H be
of the form H f(x) = H(x,V f(z)), where H : E x R? — R is continuous
and convex in the second coordinate.

Let f(z) — AH (x, V f(z)) — h(x) = 0 satisfy the comparison principle for
every A > 0 and h € C(E).

Suppose that the sequence X,,(0) satisfies the large deviation principle with
good rate function Iy. Then, { X, },,>1 is exponentially tight in Dp(R") and
satisfies the large deviation principle with rate function I given by

Io((0)) + J5~ £(4(s),7(s))ds  ify € AC,
00 ify ¢ AC.

()=

25 LOCALLY CONVEX SPACES

Asnoted in Section 2.3.3, the space (Cy(E), |-|) is not suitable for the study
of Markov transition semigroups in the case that £ is non-compact. This
problem becomes clear on a more abstract level in the counterpart of the
Riesz representation theorem. For a compact metric space F, the continu-
ous dual space of (C'(E),|-|) is given by the space M(E) of Radon mea-
sures of bounded total variation on E. For non-compact E, however, this
identification breaks down and the dual space of (C,(E), ||) is strictly
larger than the space of Radon measures of bounded total variation.

To restore the connection of Cy,(F) with M(E) for Polish E, we need to
consider the strict topology 3, which is a weaker locally convex topology
on Cy(E).
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We will introduce some general notation from the theory of locally convex
spaces, see Kothe [1969] or Treves [1967].

Let X be some vector space. We say that p : X — R is a semi-norm if for
A€ Rand z,y € X, we have

@) p(Az) = [Alp(z),
(b) p(z+y) < p(x) +p(y).

Definition 2.5.1 (Locally convex spaces). A locally convex space (X, T)isa
vector space X, equipped with a topology 7 which is generated by a family
of semi-norms {p; };cs for some index set I. In other words, a basis for the
topology is given by the collection of sets

{r e X|pi(xo+2z)<c}, m€X,c>0,i€l.

We will always assume that 7 is Hausdorff, which is the case if

ﬂie[ ﬂc>o{$ € X |p1(a?) < C} = {O}

We say that a set A C X is convex if for all z,y € A and A such that
|A| < 1the element Ax+ (1 —\)y € A. We say that A is absolutely convex
if it is convex and if for every A € [—1,1] and z € A, we have Az € A. We
say that A is bounded if for any sequence {z,, },,>1 in A and sequence of
non-negative real numbers A, such that \,, — 0, we have that A\, z,, — 0.

We will say that (X, 7) is complete if it is complete as a uniform space. In
other words, if every Cauchy net converges. A Cauchy net {z }qc is a
net such that for every 7 continuous semi-norm p, there exists 5 € J such
that for all a1, e > (3, we have p(zq, — To,) < 1. We say that (X, 7) is
sequentially complete, if every Cauchy sequence converges.

By X* we denote the algebraic dual of X, the space of all linear maps
z* : X — R. By X’ we denote the continuous dual of X, the space of all
maps ¥’ € X* that are continuous for 7. Finally, X is the sequential dual
of X:

Xt :={f e X*|f(x,) — 0, for every sequence z,, € X converging to 0}.

For any element z* € X*, we write (z,z*) = z*(x) for the canonical
pairing between X and X™.

We say that a family & C X' is 7 equi-continuous on X if there exists a 7
continuous semi-norm p such that

sup |(z,2')| < p().
’'e6
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The dual paring of X and X’ can be used to construct topologies on both
spaces. Denote by o (X, X') the weak topology on X, which is generated
by all semi-norms p,/(z) = |(z, z")|. Note that this topology is Hausdorff
by the Hahn-Banach theorem and that it is weaker than 7. Similarly, one
can define the weak topology o (X', X) on X'. A first result on the weak
topology on X" is that (X', o(X’, X))’ = X, which symmetrises many of
the results that will follow in X and X"

Let A C X. We denote by A° C X' the polar of A, which is defined by
A ={d e X'|Vz e A: |(z,a)| <1}.

The notation for the polar is the same as for the interior of a set. These two
notions are distinct and usually it is clear from the context which of the two
is meant. Otherwise, we will explicitly state which of two notions is used.
Note that A° is absolutely convex. Similarly, we define the polar B® C X
ofaset BC X'.For A C X, we denote A°° = (A°)° for the bipolar of A
in X. The next theorem is a special case of the Fenchel-Moreau theorem in
convex analysis.

Theorem 2.5.2 (Bipolar theorem). Let A C X be weakly closed and abso-
lutely convex. Then A = A°°. In particular, if p is a T continuous semi-norm
on X, then we have

pl)= sup  [{z,2)],
w'e{z|p(z)<1}e

and the set {x | p(x) < 1}° is T equi-continuous.

Note that this implies that the polar A° of a neighbourhood A of 0 is always
equi-continuous. In fact, we have the following result.

Lemma 2.5.3. The following are equivalent.
(a) B C X' is T equi-continuous.
(b) There exists a T-neighbourhood A of 0 in X such that B C A°.

The following is a well known theorem on weak compactness of polars in
the dual space.

Theorem 2.5.4 (Bourbaki-Alaoglu). If A C X is a neighbourhood of 0 for
the topology T, then U° is compact in (X', o(X', X)).
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Combining the Bipolar and the Bourbaki-Aloaglu theorem, we see that all
T continuous semi-norms are of the form

p(z) = sup [(z,2')]
€6
for some collection & of weakly compact and absolutely convex sets in
X'. Tt is not true however, that all weakly compact and absolutely convex
sets generate a 7 continuous semi-norm in this way. This can be seen by
considering o (X, X’) in the case that (X, 7) is a Banach space.

2.5.1 Admissible topologies

To study the question of topologies generated by absolutely convex sets
in the dual, we identify the largest possible class of semi-norms. For a set
B C X', we set pp(x) := supycp|{z,2')|. Note that a set B C X' is
weakly bounded if for every x € X, we have sup,.cp[(z,2')| < oco.It
follows that pp is a semi-norm if and only if B is weakly bounded.

We say that a collection B of sets B C X' is total if the linear span of the
union of these subsets is weakly dense in X'.

Lemma 2.5.5. Suppose that B is a collection of weakly bounded subsets of
X', then the collection of semi-norms {pp } peg defined a locally convex Haus-
dorff space if and only if B is total.

Using total collections of weakly bounded subsets, we can define various
topologies on X. We single out three special cases:
« The weak topology o (X, X') where B is the collection singletons in
X'
« The Mackey topology u(X, X’), where B is the collection of all
weakly compact absolutely convex sets in X'

« The strong topology 3(X, X') where B is the collection of all weakly
bounded sets in X'.
Similarly, we can define o (X', X), u(X’, X) and 5(X’, X).

By the Bourbaki-Alaoglu theorem, we have that the topology 7 satisfies
o(X,X") C 7 C u(X, X’). Moreover, we have the following result.

Theorem 2.5.6 (Mackey-Arens). Consider the locally convex space (X, T).
The weak topology on X is the weakest locally convex topology on X such
that (X,0(X,X"))" = X', whereas the Mackey topology is the strongest
locally convex topology such that (X, u(X, X)) = X'.



2.5 LOCALLY CONVEX SPACES

We conclude this section with two general definitions.

Definition 2.5.7. We say that (X, 7) is barrelled if u(X, X') = (X, X').
We say that (X, 7) is strong Mackey if every weakly compact set in X’ is
contained in a absolutely convex weakly compact set.

Note that both properties are of the form that a topology in general stronger
than the Mackey topology, in fact, coincides with the Mackey topology.
The first property is very strong and holds for example for Banach spaces.
The second property is quite a bit weaker but occurs naturally as well. It
is particularly interesting as the notions of weak compactness and equi-
continuity coincide. This fact is for example used for the proof of Lemma
8.2.2.

2.5.2  The strict topology on the space of continuous and bounded functions

Having introduced the general terminology of locally convex spaces, we
are able to introduce a particularly interesting space for the purposes of
measure theory.

We return to the setting where (E,d) is a Polish space. For every com-
pact set K C E, define the semi-norm pg(f) = sup,cx |f(x)|.
The compact-open topology x on Cp(E) is generated by the semi-norms
{pr | K compact}. We define a new collection of semi-norms in the fol-
lowing way. Pick a non-negative sequence a,, in R such that a,, — 0. Also
pick an arbitrary sequence of compact sets K,, C E. Define

P(K),(an) () = 8UpP anprc, (). (2.5.1)

The strict topology [3, defined on Cy(E) is generated by the semi-norms
{p(Kn),(an) | K, compact,0 < a, — 0} ’

see Theorem 3.1.1 in Wiweger [1961] and Theorem 2.4 in Sentilles [1972].
Note that in the latter paper, the topology introduced here is called the
substrict topology. However, Sentilles shows in Theorem 9.1 that the strict
and the substrict topology coincide when the underlying space E is Polish.
Note that if additionally (E, d) is locally compact, then the strict topology
can also be given by the collection of semi-norms

pg(f) =114l
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where g ranges over Cy(E).

The strict topology is the ‘right’ generalisation of the norm topology on
C(FE) for compact metric E' to the more general context of Polish spaces.
We give some of the properties of 5.

Theorem 2.5.8. Let E be Polish. The locally convex space (Cy,(E), 3) satis-
fies the following properties.

(a) (Cy(E),B) is complete, strong Mackey and the continuous dual space co-
incides with the space of Radon measures on E of bounded total variation.

(b) (Cy(E), B) is separable.

(c) For any locally convex space (Y, Ty) and ( to Ty sequentially equi-
continuous family {T;}i,cr of maps T; : (Cyp(E),B) — (Y, 7v), the
family I is 3 to Ty equi-continuous.

(d) The norm bounded and 3 bounded sets coincide. Furthermore, on norm
bounded sets 5 and k coincide.

(e) Stone-Weierstrass: Let M be an algebra of functions in Cy(E). If M van-
ishes nowhere and separates points, then M is 3 dense in Cy,(E).

(f) Arzela-Ascoli: A set M C Cy(E) is B compact if and only if M is norm
bounded and M is an equi-continuous family of functions.

Proof. (a) and (c) follow from Theorems 9.1 and 8.1 in Sentilles [1972], The-
orem 7.4 in Wilansky [1981], Corollary 3.6 in Webb [1968] and Krein’s theo-
rem[Kothe, 1969, 24.5.(4)]. (b) follows from Theorem 2.1 in Summers [1972].
(d) follows by Theorems 4.7, 2.4 in Sentilles [1972] and 2.2.1 in Wiweger
[1961]. (e) is proven in Theorem 2.1 and Corollary 2.4 in Haydon [1976].
(f) follows by the Arzela-Ascoli theorem for the compact-open topology,
Theorem 8.2.10 in Engelking [1989], and (d). O

The strict topology is used in Chapter 9, where we show that if the martin-
gale problem on a Polish space is well-posed and the associated process sat-
isfies a compact containment condition, then the corresponding transition
semigroup is strongly continuous for the strict topology and the generator
of this semigroup extends the operator in the martingale problem.
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AND APPLICATIONS






LARGE DEVIATIONS FOR JUMP PROCESSES WITH
MEAN-FIELD INTERACTION

In this chapter, we consider the path-space large deviations of two mod-
els of Markov jump processes with mean-field interaction. The results pre-
sented are based on:

Richard Kraaij. Large deviations for finite state Markov jump processes
with mean-field interaction via the comparison principle for an associated
Hamilton—-Jacobi equation. Journal of Statistical Physics, 164(2):321-345,
2016b. ISSN 1572-9613. doi: 10.1007/s10955-016-1542-8.

In both examples, we have n particles or spins that evolve as a pure jump
process, where the jump rates of the individual particles depend on the em-
pirical distribution of all n particles. We prove the large deviation principle
(LDP) for the trajectory of these empirical quantities and show that the rate
function is in Lagrangian form. The first set of models that we consider are
conservative models that generalize the Ehrenfest model. In the one di-
mensional setting, this model is also known as the Moran model without
mutation or selection. For these models, the empirical quantity of interest
for large n is the empirical magnetisation. The second class of models are
jump processes of Glauber type such as Curie-Weiss spin flip dynamics. In
this case, the empirical measure is given by

1
,Un(t) = H Z 50i(t)¢

i<n

where 0;(t) € {1,...,d} is the state of the i-th spin at time ¢. Under some
appropriate conditions, the trajectory 1, (t) converges as n — oo to u(t),
the solution of a McKean-Vlasov equation, which is a generalization of the
linear Kolmogorov forward equation which would appear in the case of
independent particles.

For the second class of models, we obtain a large deviation principle for
the trajectory of these empirical measures on the space D'])({17.._’d})(R+)
of cadlag paths on £ := P({1,...,d}) of the form

P{pn(t)}izo = 7] = e~ ()

55



56

LARGE DEVIATIONS FOR MARKOV JUMP PROCESSES

where
I(3) = To(+(0)) + /0 " L0(s), 4 (s))ds

for trajectories +y that are absolutely continuous and 7() = oo otherwise.
In particular, () = 0 for the solution ~ of the limiting McKean-Vlasov
equation. The Lagrangian £ : E x R? — R* is defined as the Legendre
transform of a Hamiltonian H : E x R — R that can be obtained via a
limiting procedure

H(z,Vf(z)) = Hf(z) =lim le_”fAne”f. (3.0.1)

n n

Here A,, is the generator of the Markov process of { i, (t) }+>0. More details
on the models and definitions follow shortly in Section 3.1.

Recent applications of the path-space large deviation principle are found in
the study of mean-field Gibbs-non-Gibbs transitions, see e.g. Ermolaev and
Kiilske [2010], van Enter et al. [2010] or the microscopic origin of gradient
flow structures, see e.g. Adams et al. [2013], Mielke et al. [2014]. Other au-
thors have considered the path-space LDP in various contexts before, see
for example Freidlin and Wentzell [1998], Comets [1989], Léonard [1995],
Dai Pra and den Hollander [1996], Feng [1994], Budhiraja et al. [2011],
Borkar and Sundaresan [2012]. A comparison with these results follows
in Section 3.1.6.

The novel aspect of the results in this chapter with respect to large devia-
tions for jump processes is an approach via a class of Hamilton-Jacobi equa-
tions. In Feng and Kurtz [2006], a general strategy is proposed for the study
for large deviations of trajectories which is based on an extension of the
theory of convergence of non-linear semigroups by the theory of viscosity
solutions.As in the theory of weak convergence of Markov processes, this
program is carried out in three steps, first one proves convergence of the
generators, i.e. (3.0.1), secondly one shows that H is indeed the generator
of a semigroup. The third step is the verification of the exponential compact
containment condition, which for our compact state-spaces is immediate,
that yields, given the convergence of generators, exponential tightness on
the Skorokhod space. This final step reduces the proof of the large devi-
ation principle on the Skorokhod space to that of the finite dimensional
distributions, which can then be proven via the first two steps.

Showing that H generates a semigroup is non-trivial and follows for exam-

ple by showing that the Hamilton-Jacobi equation
f(z) = AH(z,Vf(x)) —h(x)=0 (3.0.2)
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has a unique solution f forall h € C'(F) and A > 0 in the viscosity sense. It
is exactly this problem that is the main focus of this chapter. An extra bonus
of this approach is that the conditions on the Markov processes for finite
N are weaker than in previous studies, and allow for singular behaviour in
the jump rate for a particle to move from a to b in boundary regions when
the empirical average j(a) is close to 0.

This approach via the Hamilton-Jacobi equation has been carried out in
Feng and Kurtz [2006] for Levy processes on R%, systems with multiple

time scales and for stochastic equations in infinite dimensions. In Deng et al.

[2011], the LDP for a diffusion process on (0, c0) is treated with singular
behaviour close to 0.

As a direct consequence of our large deviation principle, we obtain
a straightforward method to find Lyapunov functions for the limiting
McKean-Vlasov equation. If A, is the linear generator of the empirical
quantity of interest of the n-particle process, the operator A obtained by
Af = lim,, A, f can be represented by Af () = (Vf(1), F(u)) for some

vector field F'. If solutions to

j(t) = F(u(t)) (3.03)

are unique for a given starting point and if the empirical measures /., (0)
converges to 1(0), the empirical measures {uy(t)}+>0 converge almost
surely to a solution {x(t)}+>0 of (3.0.3). In Section 3.1.4, we will show
that if the stationary measures of A,, satisfy a large deviation principle
onP({1,...,d}) with rate function Iy, then Iy is a Lyapunov function for
(3.0.3).

This chapter is organised as follows. In Section 3.1, we introduce the models
and state our results. Additionally, we give some examples to show how to
apply the theorems. In Section 3.2, we recall the main results from Feng
and Kurtz [2006] that relate the Hamilton-Jacobi equations (3.0.2) to the
large deviation problem. Additionally, we verify conditions from Feng and
Kurtz [2006] that are necessary to obtain our large deviation result with a
rate function in Lagrangian form, in the case that we have uniqueness of
solutions to the Hamilton-Jacobi equations. Finally, in Section 3.3 we prove
uniqueness of viscosity solutions to (3.0.2).
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3.1 MAIN RESULTS
3.1.1 Two models of interacting jump processes

We do a large deviation analysis of the trajectory of the empirical magne-
tization or distribution for two models of interacting spin-flip systems. We
replace the notation of the state-space E by E; and Es. The first setting is
a d-dimensional Ehrenfest model.

Generalized Ehrenfest model in d-dimensions.

Consider d-dimensional spins ¢ = (o(1),...,0(n)) € ({—1,1}%)". For
example, we can interpret this as n individuals with d types, either being —1
or 1. For k < n, we denote the i-th coordinate of o(k) by o;(k). Set z,, =
(Tn1y- - Tnd) € Er i= [—1,1]% where z,,; = 7,,(0) = % Z’;Zl ai(j)
the empirical magnetisation in the i-th spin. For later convenience, denote
by Ei, the discrete subspace of 1 which is the image of ({—1,1}¢)"
under the map o — z,(0), i.e. B, = z,(({—1,1}%)"). The spins evolve
according to mean-field Markovian dynamics with generator A,:

d
A f(o) ZZ Lioi(j)=—1} Tt (n(0)) [f(07) = f(0)]
=1 j=1
d n
) Yoy (@n(0) [f(0) = f(0)].

i=1 j=1

The configuration o7 is obtained by flipping the i-th coordinate of the j-

th spin. The functions r?, + ril _ are non-negative and represent the jump

rate of the ¢-th spin ﬂlppmg from a —1 to 1 or vice-versa.

The empirical magnetisation z,, itself also behaves Markovian and has
generator A, : C(E;,) — C(FEi,) which satisfies A, f(z,(0)) :=
A (f o xzp,)(0) and is given by

Z{n 5o <)[f(:c+iei>—f<x>]

: +n 1;‘76’7“;_(90) [f (x— iez') —f(x)] },

where e; the vector consisting of 0’s, and a 1 in the i-th component.
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Under suitable conditions on the rates rfu 4 and rfz?_, we will derive a large
deviation principle for the trajectory {z,(t)}+>0 in the Skorokhod space

Dg, (RT) of right continuous E; valued paths that have left limits.

Systems of Glauber type with d states.

We will also study the large deviation behaviour of copies of a Markov
process on {1,...,d} that evolve under the influence of some mean-field
interaction. Here 0 = (0(1),...,0(n)) € {1,...,d}" and the empirical
distribution s is given by pin(0) = 13, 8 () Which takes values in

i<n "0

Eg,n = {M S P(EQ)

1 n
= 2N, f ce{l,.... v\,
w nz ., for some z; € { }}

i=1

Of course, this set can be seen as discrete subset of Fy := P({1,...,d}) =
{p € R pu; > 0,5, ;i = 1}. We take some n-dependent family of jump
kernels rp, : {1,...,d} x {1,...,d} x By, — R*" and define Markovian
evolutions for o by

Anf(o(1),...,0(n))

where o* is the configuration obtained from ¢ by changing the i-th coor-
dinate to b. Again, we have an effective evolution for y,,, which is governed
by the generator

Apf(p) =n Z p(a)rn(a, b, 1) [f (N —n" "0 + n_léb) - f(ﬂ)] .
a,b

As in the first model, we will prove, under suitable conditions on the jump
kernels r,, a large deviation principle in n for {1, (¢) }+>0 in the Skorokhod
space D, (R™).

3.1.2 Large deviation principles

The main results in this chapter are the two large deviation principles for
the two sets of models introduced above. To be precise, we say that the
sequence x, € D, (R™), or for the second case ji,, € D, (R™), satisfies
the large deviation principle with rate function I : D, (RT) — [0, o0] if
I is lower semi-continuous and the following two inequalities hold:
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(a) For all closed sets G C Dpg, (R™), we have

limsup - log B[{zn (1) }izo € G] < — inf 1(3).

n—»00 e

(b) For all open sets U C Dg, (R*), we have

1
. > '
lim inf ~-log P[{an(t)}i>0 € U] > — inf I(v)
For the definition of the Skorokhod topology defined on Dg, (R"), see for
example Ethier and Kurtz [1986]. We say that I is good if the level sets
I71[0, a] are compact for all @ > 0.

Carrying out the procedure in (3.0.1) for our two sets of models, we obtain,
see Lemma 3.2.1 below, operators (H,D(H)), D(H) = C'(E) that are
of the form H f(z) = H(z,Vf(z)), H : E x R? — R. These are the
Hamiltonians that appear in Theorems 3.1.1 and 3.1.3.

For a trajectory v € Dpg, (R), we say that v € AC if the trajectory is
absolutely continuous. For the d-dimensional Ehrenfest model, we have
the following result.

Theorem 3.1.1. Suppose that there exists a family of continuous functions
v, vl s By — RY, 1 <4 < d, such that

d

. 1+x; .
(@) — v (2) i

+‘ 5 rh_(x) —v" (z)| = 0.

(3.1.1)

lim sup
n—oo erl,n i=1

Suppose that for every i, the functions v'. and v’ satisfy the following.

The rate v’y is identically zero or we have the following set of conditions.

(a) v’ (x) > 0 ifz; # 1.

(b) Forz € [—1,1]% such that z; = 1, we have v’ (z) = 0 and for every such
z there exists a neighbourhood U, of z on which there exists a decomposi-
tion vi () = UiJ’T(CCZ')Ui’Z’i(SU), where vfhz,T is decreasing and where

v , 4 is continuous and satisfies Ui,Z,I(Z) # 0.

The rate v* is identically zero or we have the following set of conditions.

(@) v (x) >0 ifw; # —1.

(b) For z € [—1,1]¢ such that z; = —1, we have v’ (z) = 0 and for every
such z there exists a neighbourhood U, of z on which there exists a de-
composition v (z) = v’ _ y(z;)v’ , (), wherev!, , , isincreasing and
where v' _ , is continuous and satisfles v () # 0.
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Furthermore, suppose that {x,,(0) },,>1 satisfies the large deviation principle
on Ey with good rate function Iy. Then, {xy, }n>1 satisfies the large deviation
principle on D, (R™") with good rate function I given by

Io(v(0)) + J5~ L(v(s),¥(s))ds  ify € AC,

00 otherwise

I(vy) =

where the Lagrangian L(x,v) : By x R — R is given by the Legendre
transform L(z,v) = sup,egra(p, v) — H(x, p) of the Hamiltonian H : Ey x
R? — R, defined by

d
H(x,p) = Zvl(w) [ePi — 1] + ' (z) [e™ 2 — 1] . (3.1.2)

i=1
Remark 3.1.2. Note that the functions vi and v* do not have to be of
the form v’ (z) = 15%7% (z), v (2) = %% (z) for some bounded

functions % , r’ . This we call singular behaviour, as such a rate cannot be
obtained the large deviation principle for independent particles via Varad-
han’s lemma and the contraction principle as in Léonard [1995] or Dai Pra
and den Hollander [1996].

Theorem 3.1.3. Suppose there exists a continuous functionv : {1,...,d} x
{1,...,d} x By — R" such that foralla,b € {1,...,d}, we have

lim  sup ]u(a)rn(a, b, :u) - v(a, b, M)’ =0. (3.1.3)

n—oo HeEl,n

Suppose that for each a, b, the map p — v(a, b, ) is either identically equal

to zero or satisfies the following two properties.

(a) v(a,b, ) > 0 forall u such that u(a) > 0.

(b) Forv such that v(a) = 0, there exists a neighbourhood U,, of v on which
there exists a decomposition v(a,b, 1) = wvy,1(a,b, p(a))v,i(a,b, p1)
such that v, ; is increasing in the third coordinate and such that
vyt(a,b,-) is continuous and satisfies v, 1(a,b,v) # 0.

Additionally, suppose that {11,,(0) }»,>1 satisfies the large deviation principle
on E5 with good rate function Iy. Then, { (i, }n>1 satisfies the large deviation
principle on D, (R™) with good rate function I given by

Io(7(0)) + [5° £(v(s),7(s))ds  ify € AC

o0 otherwise,

I(v) =
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where L : By x R* — RY is the Legendre transform of H : 5 x R — R
given by

H(u,p) = Zv(a, b, 1) [epb*p“ — 1] . (3.1.4)
a,b

3.1.3  The comparison principle

The main results in this chapter are the two large deviation principles as
stated above. However, the main step in the proof of these principles is
the verification of the comparison principle for a set of Hamilton-Jacobi
equations. As this result is of independent interest, we state these results
here as well, and leave explanation on why the comparison principle is
relevant for the large deviation principles for later. We start with some
definitions.

For E equals F or Ey, let H : E x R? — R be some continuous map. For
A>0andh € C(E).Set Fyp,: Ex R xR? — Rby

F)\,h(‘r7 aap) = — )\H(x,p) - h(.fU)
We will solve the Hamilton-Jacobi equation
Fan(, £(2), V(2) = f(2) = AH(2, V(@) ~h(z) =0 =€ F,
(3.1.5)
in the viscosity sense.

Definition 3.1.4. We say that u is a (viscosity) subsolution of equation
(3.1.5) if u is bounded, upper semi-continuous and if for every f € C!(E)
and x € F such that u — f has a maximum at z, we have

Fyp(z,u(z), Vf(z)) <0.

We say that u is a (viscosity) supersolution of equation (3.1.5) if w is bounded,
lower semi-continuous and if for every f € C'(FE) and x € E such that
u — f has a minimum at x, we have

Fyp(z,u(z),Vf(x)) >0.

We say that u is a (viscosity) solution of equation (3.1.5) if it is both a sub
and a super solution.
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There are various other definitions of viscosity solutions in the literature.
This definition is the standard one for continuous H and compact state-
space E.

Definition 3.1.5. We say that equation (3.1.5) satisfies the comparison prin-
ciple if for a subsolution u and supersolution v we have u < v.

Note that if the comparison principle is satisfied, then a viscosity solution
is unique.

Theorem 3.1.6. Suppose that H : E1 x R? — R is given by (3.1.2) and that
the family of functions v’ v’ : Ey — RT, 1 <i < d, satisfy the conditions
of Theorem 3.1.1.

Then, for every A > 0 and h € C(E1), the comparison principle holds for
f(@) = A (2, V f(x)) = h(z) = 0.

Theorem 3.1.7. Suppose that H : Ey x R? — R is given by (3.1.4) and that
functionv : {1,...,d} x {1,...,d} x Fs — R satisfies the conditions of
Theorem 3.1.3.

Then, for every A > 0 and

h € C(Esy), the comparison principle holds for
f(w) = AH (1, V (1)) — h(p) = 0.

The main consequence of the comparison principle for the Hamilton-Jacobi
equations stems from the fact, as we will see below, that the operator H
generates a strongly continuous contraction semigroup on C(E).

The proof of the large deviation principle is, in a sense, a problem of semi-
group convergence. At least for linear semigroups, it is well known that
semigroup convergence can be proven via the convergence of their gener-
ators. The main issue in this approach is to prove that the limiting gener-
ator H generates a semigroup. It is exactly this issue that the comparison
principle takes care of.

Hence, the independent interest of the comparison principle comes from
the fact that we have semigroup convergence whatever the approximating
semigroups are, as long as their generators converge to /, i.e. this holds not
just for the specifically chosen approximating semigroups that we consider
in Section 3.2.
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3.1.4 A Lyapunov function for the limiting dynamics

As a corollary to the large deviation results, we show how to obtain a Lya-
punov function for the solutions of

(t) = Fa(t)), (3.1.6)

where F(x) := Hp(x,0) for a Hamiltonian as in (3.1.4) or (3.1.2). Here
H,(x,p) is interpreted as the vector of partial derivatives of H in the sec-
ond coordinate.

We will see in Example 3.1.11 that the trajectories that solve this differential
equation are the trajectories with 0 Lagrangian cost: # = F(z) if and only
if £(x, &) = 0. Additionally, the limiting operator (4, C''(E)) obtained by

sup |Anf(z) — Af(z)] =0
reEbE,NK
for all f € C1(FE) and compact sets K C E has the form by Af(z) =
(Vf(x),F(x)) for the same vector field F. This implies that the 0-cost
trajectories are solutions to the McKean-Vlasov equation (3.1.6). Solutions
to 3.1.6 are not necessarily unique, see Example 3.1.11. Uniqueness holds

for example under a one-sided Lipschitz condition: if there exists M > 0
such that (F(z) — F(y),z —y) < M|x — y|? forall x,y € E.

For non-interacting systems, it is well known that the relative entropy with
respect to the stationary measure is a Lyapunov function for solutions of
(3.1.6). The large deviation principle explains this fact and gives a method
to obtain a suitable Lyapunov function, also for interacting dynamics.

Proposition 3.1.8. Suppose the conditions for Theorem 3.1.1 or Theorem
3.1.3 are satisfied. Suppose there exists measures v, € P(E,) C P(E) that
are invariant for the dynamics generated by A,,. Furthermore, suppose that
the measures vy, satisfy the large deviation principle on E with good rate
function S.

Then S is increasing along any solution of ©(t) = F(x(t)).

Note that we do not assume that (3.1.6) has a unique solution for a given
starting point.

3.1.5 Examples

We give a series of examples to show the extent of Theorems 3.1.1 and 3.1.3.
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For the Ehrenfest model, we start with the basic case, of spins flipping under
the influence of some mean-field potential.

Example 3.1.9. Fix some continuously differentiable V' : [-1,1]¢ — R
and set for every n > l and i € {1,...,d} the rates

rhi(z) = exp {—n2_1 (V <a: + Ze> = V(yc)> } ,
o) = {2t (v (- 26) - vio) )

The limiting objects v’, and v’ are given by

i () = 1-— Li (~ViV(a), v (z) = 1+ V(@)
2 2

which already have the decomposition as required in the conditions of the

Theorem 3.1.1. For example, condition (b) for v, is satisfied by

. 1— a2 .
vi,zﬁ[(xi) = 2 27 Ul+,z,1<m) =e

ViV (z) )

For d = 1, we give two extra notable examples, the first one exhibits un-
bounded jump rates for the individual spins if the empirical magnetisation
is close to one of the boundary points. The second example shows a case
where we have multiple trajectories y with I(y) = 0 that start from xzy = 0.
Because d = 1, we drop all sub- and super-scripts i € {1,...,d} for the
these two examples.

Example 3.1.10. Consider the one-dimensional Ehrenfest model with

2 2

— AN, Tn—(T) = An.
— n—(#) = =

Set vy (x) = /1 —x,v_(x) = /1 + z. By Dini’s theorem, we have
1

Tn,-l-(x)

x

Sup ?Tn,+(a:) - 1)+(.’13> =0,
z€[—1,1]
1+2
SUp |~ (a) ~ V- (x)| = 0.
z€[—1,1]

And additionally, conditions (a) and (b) of Theorem 3.1.1 are satisfied, e.g.
1.

take v4 1 +(7) = V1 —x, vy 1 4(x) =
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Example 3.1.11. Consider the one-dimensional Ehrenfest model with
some rates 1y, 4, 7, — and functions vy () > 0,v_(z) > 0 such that
(1 — 2)ry (z) = vy(z) and 3(1 + z)ry,—(z) — v_(z) uniformly in
x € [-1,1].

Now suppose that there is a neighbourhood U of 0 on which v, v_ have
the form

1+yx x>0,
1 x <0,

vy(x) = v_(z) = 1.

Consider the family of trajectories t — v,(t), a > 0, defined by

0 fort < a,
Ya(t) :=
(t—a)? fort > a.

Let T > 0 be small enough such that v (¢) € U, and hence ~,(t) € U, for
all t < T'. A straightforward calculation yields fOT L(Va(t),Ya(t))dt = 0
for all @ > 0. So we find multiple trajectories starting at 0 that have zero
Lagrangian cost.

Indeed, note that L(z,v) = 0 is equivalent to v = H,(z,0) =
2 [vy(z) —v_(x)] = 2+/(z). This yields that trajectories that have 0 La-
grangian cost are the trajectories, at least in U, that solve

which is the well-known example of a differential equation that allows for
multiple solutions.

We end with an example for Theorem 3.1.3 and Proposition 3.1.8 in the
spirit of Example 3.1.9.

Example 3.1.12 (Glauber dynamics for the Potts-model). Fix some contin-
uously differentiable function V' : R¢ — R. Define the Gibbs measures

=V (un(o))
vp(do) == 67P®’"(d0)
Zn
on{1,...,d}", where P®" is the n-fold product measure of the uniform

measure P on {1,...,d} and where Z,, are normalizing constants.
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Let So(u| P) denote the relative entropy of u € P({1,...,d}) with re-
spect to P:

So(u| P) =) log(dp(a))u(a).

By Sanov’s theorem and Varadhan’s lemma, the empirical measures under
the laws v, satisfy a large deviation principle with rate function S(u) =
So(u|P) + V().

Fix some function 7 : {1,...,d} x {1,...,d} — R*. Set

rn(a,b, ) = r(a,b)exp {—n2"" (V (p —n"10a +n710) — V(p))}.

As n goes to infinity, we have uniform convergence of p(a)ry(a,b, 1) to

v(a,b 1) = p(a)r(a,b) exp {;vavm) - gvbvw} ,

where V,V (1) is the derivative of V' in the a-th coordinate. As in Exam-
ple 3.1.9, condition (b) of Theorem 3.1.3 is satisfied by using the obvious
decomposition.

By Proposition 3.1.8, we obtain that S(u) = So(u | P)+ V (p) is Lyapunov
function for

a(a) :Z[v(b,a,u)—v(a,b,u)] ae{l,... d}.

b

3.1.6  Discussion and comparison to the existing literature

We discuss our results in the context of the existing literature that cover
our situation. Additionally, we consider a few cases where the large devi-
ation principle(LDP) is proven for diffusion processes, because the proof
techniques could possibly be applied in this setting.

LDP: Approach via non-interacting systems, Varadhan’s lemma and
the contraction principle. In Léonard [1995], Dai Pra and den Hollander
[1996], Borkar and Sundaresan [2012], the first step towards the LDP of
the trajectory of some mean-field statistic of n interacting particles is the
LDP for non-interacting particles on some large product space obtained
via Sanov’s theorem. Varadhan’s lemma then gives the LDP in this product
space for interacting particles, after which the contraction principle gives
the LDP on the desired trajectory space. In Léonard [1995], Dai Pra and
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den Hollander [1996], the set-up is more general compared to ours in the
sense that in Léonard [1995] the behaviour of the particles depends on their
spatial location, and in Dai Pra and den Hollander [1996] the behaviour of
a particle depends on some external random variable.

On the other hand, systems as in Example 3.1.10 fall outside of the condi-
tions imposed in the three papers, if we disregard spatial dependence or
external randomness.

The approach via Varadhan’s lemma, which needs control over the size of
the perturbation, does not work, at least naively, for the situation where
the jump rate for individual particles is diverging to oo, or converging to
0, if the mean is close to the boundary, see Remark 3.1.2.

LDP: Explicit control on the probabilities. For another approach con-
sidering interacting spins that have a spatial location, see Comets [1987].
The jump rates are taken to be explicit and the large deviation princi-
ple is proven via explicit control on the Radon-Nikodym derivatives. This
method should in principle work also in the case of singular v. The ap-
proach via the generators H,, in this chapter, avoids arguments based on
explicit control. This is an advantage for processes where the functions ry,
and v are not very regular. Also in the classical Freidlin-Wentzell approach
Freidlin and Wentzell [1998] for dynamical systems with Gaussian noise
the explicit form of the Radon-Nikodym derivatives is used to prove the
LDP.

LDP: Direct comparison to a process of independent particles. The
main reference concerning large deviations for the trajectory of the empir-
ical mean for interacting diffusion processes on R? is Dawson and Gértner
[1987]. In this chapter, the large deviation principle is also first established
for non-interacting particles. An explicit rate function is obtained by show-
ing that the desired rate is in between the rate function obtained via Sanov’s
theorem and the contraction principle and the projective limit approach.
The large deviation principle for interacting particles is then obtained via
comparing the interacting process with a non-interacting process that has
a suitably chosen drift. For related approaches, see Feng [1994] for large
deviations of interacting jump processes on N, where the interaction is un-
bounded and depends on the average location of the particles. See Boualem
and Ingemar [1995] for mean-field jump processes on R%.

Again, the comparison with non-interacting processes would fail in our
setting due the singular interaction terms.
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LDP: Stochastic control. A more recent approach using stochastic control
and weak convergence methods has proposed in the context of both jump
and diffusion processes in Budhiraja et al. [2011, 2012]. A direct application
of the results in Budhiraja et al. [2011] fails for jump processes in the setting
of singular behaviour at the boundary.

LDP: Proof via operator convergence and the comparison principle.
Regarding our approach based on the comparison principle, see [Feng and
Kurtz, 2006, Section 13.3], for an approach based on the comparison princi-
ple in the setting of Dawson and Gértner [1987] and Budhiraja et al. [2012].
See Deng et al. [2011] for an example of large deviations of a diffusion pro-
cesses on (0, co) with vanishing diffusion term with singular behaviour at
the boundary. The methods to prove the comparison principle in Sections
9.2 and 9.3 in Feng and Kurtz [2006] do not apply in our setting due to the
different nature of our Hamiltonians.

LDP: Comparison of the approaches The method of obtaining exponen-
tial tightness in Feng and Kurtz [2006], and thus employed for this chapter,
is via density of the domain of the limiting generator (H, D(H)). Like in
the theory of weak convergence, functions f € D(H) in the domain of the
generator, and functions f,, € D(H,,) that converge to f uniformly, can
be used to bound the fluctuations in the Skorokhod space. This method is
similar to the approaches taken in Comets [1989], Freidlin and Wentzell
[1998], Dawson and Gértner [1987].

The approach using operator convergence is based on a variant of the pro-
jective limit theorem for the Skorokhod space proven in Feng and Kurtz
[2006] by direct calculations. Because we have exponential tightness on
the Skorokhod space, it suffices to prove the large deviation principle for
all finite dimensional distributions. This is done via the convergence of
the logarithmic moment generating functions for the finite dimensional
distributions. The Markov property reduces this to the convergence of
the logarithmic moment generating function for time 0 and convergence
of the conditional moment generating functions, that form a semigroup
V(1) f(z) = 2log E[e"fXn() | X, (0) = ]. Thus, the problem is reduced
to proving convergence of semigroups V,,(t)f — V(¢)f. As in the theory
of linear semigroups, this comes down to two steps. First one proves con-
vergence of the generators I,, — H. Then one shows that the limiting
semigroup generates a semigroup. The verification of the comparison prin-
ciple implies that the domain of the limiting operator is sufficiently large
to pin down a limiting semigroup.
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This can be compared to the same problem for linear semigroups and the
martingale problem. If the domain of a limiting linear generator is too small,
multiple solutions to the martingale problem can be found, giving rise to
multiple semigroups, see Chapter 12 in Stroock and Varadhan [1979] or
Section 4.5 in Ethier and Kurtz [1986].

The convergence of V,,(¢) f(z) — V(t) f(z) uniformly in = corresponds to
having sufficient control on the Doob-h transforms corresponding to the
change of measures

dPf,

B (%) = exp (s (X))

where [P, ; is the measure corresponding to the process X,, started in x at
time 0. An argument based on the projective limit theorem and control on
the Doob h-transforms for independent particles is also used in Dawson
and Gértner [1987], whereas the methods in Comets [1989], Freidlin and
Wentzell [1998] are based on direct calculation of the probabilities being
close to a target trajectories.

Large deviations for large excursions in large time. A notable second
area of comparison is the study of large excursions in large time in the
context of queuing systems, see e.g. Dupuis et al. [1990], Dupuis and Ellis
[1995], Atar and Dupuis [1999] and references therein. Here, it is shown
that the rate functions themselves, varying in space and time, are solutions
to a Hamilton-Jacobi equation. As in our setting, one of the main problems
is the verification of the comparison principle. The notable difficulty in
these papers is a discontinuity of the Hamiltonian at the boundary, but in
their interior the rates are uniformly bounded away from infinity and zero.

Lyapunov functions. In Budhiraja et al. [2015a,b], Lyapunov functions
are obtained for the McKean-Vlasov equation corresponding to interact-
ing Markov processes in a setting similar to the setting of Theorem 3.1.3.
Their discussion goes much beyond Proposition 3.1.8, which is perhaps best
compared to Theorem 4.3 in Budhiraja et al. [2015b]. However, the proof
of Proposition 3.1.8 is interesting in its own right, as it gives an intuitive
explanation for finding a relative entropy as a Lyapunov functional and is
not based on explicit calculations. In particular, the proof of Proposition
3.1.8 in principle works for any setting where the path-space large devia-
tion principle holds.
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3.2 LARGE DEVIATION PRINCIPLE VIA AN ASSOCIATED HAMILTON-
JACOBI EQUATION

In this section, we will summarize the main results of Feng and Kurtz [2006].
Additionally, we will verify the main conditions of their results, except for
the comparison principle of an associated Hamilton-Jacobi equation. This
verification needs to be done for each individual model separately and this
is the main contribution of this chapter. We verify the comparison principle
for our two models in Section 3.3.

3.2.1 Operator convergence

Let I, and E denote either of the spaces E,, 1, F1 or I, 2, Ea. Furthermore,
denote by C'(E) the continuous functions on E and by C*( E) the functions
that are continuously differentiable on a neighbourhood of E in R%.

Assume that for each n € N, we have a jump process X, on F,, gener-
ated by a bounded infinitesimal generator A,,. For the two examples, this
process is either z,, or 1,,. We denote by {5, (t) }+>¢ the transition semi-
groups Sy () f(y) = E[f(Xn(t)) | X0n(0) = y] on C(E,,). Define for each

n the exponential semigroup
1 1
Val)f(4) i= - log Sult)e™ (y) = - Tog E [ | X, (0) = ] .

As in the theory of weak convergence, given that the processes X,, sat-
isfy a exponential compact containment condition on the Skorokhod space,
which in this setting is immediate, Feng and Kurtz [2006] show that the ex-
istence of a strongly continuous limiting semigroup {V (¢) }+>0 on C(E) in
the sense that for all f € C'(E) and T' > 0, we have

lim sup sup |V (¢)f(z) — V,(t)f(z)| =0, (3.2.1)

N=00t<T xcE,

allows us to study the large deviation behaviour of the process X,,. We
will consider this question from the point of view of the generators H,, of
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{Vi(t) }+>0, where H,, f is defined by the norm limit of t~1(V,,(¢) f — f) as
t | 0. Note that H,, f = n~te™ " A, e™f, which for our first model yields

For our second model, we have

H,f(p) = Z pi(a)rn(a, b, ) {en(f(u—nfléa-‘rn*léb)—f(u)) B 1] .

a,b=1

In particular, Feng and Kurtz show that, as in the theory of weak conver-
gence of Markov processes, the existence of a limiting operator (H, D(H)),
such that for all f € D(H)

lim sup |Hf(z) — Hyf(x)] =0, (3.2.2)

n—00 ]}EE’n

for which one can show that (H, D(H)) generates a semigroup {V () }+>0
on C(F) via the Crandall-Liggett theorem, Crandall and Liggett [1971],
then (3.2.1) holds.

Lemma 3.2.1. For either of our two models, assuming (3.1.1) or (3.1.3), we
find that H,f — Hf, as in (3.2.2) holds for f € C'(E), where H f is given
by H f(x) := H(z,V f(x)) and where H(z, p) is defined in (3.1.2) or (3.1.4).

The proof of the lemma is straightforward using the assumptions and the
fact that f is continuously differentiable.

Thus, the problem is reduced to proving that (H, C'(E)) generates a semi-
group. The verification of the conditions of the Crandall-Liggett theorem
is in general very hard, or even impossible. Two conditions need to be veri-
fied, the first is the dissipativity of H, which can be checked via the positive
maximum principle. The second condition is the range condition: one needs
to show that for A > 0, the range of (1 — AH) is dense in C'(E). In other
words, for A > 0 and sufficiently many fixed h € C'(E), we need to solve
f— MHf = hwith f € C'(E). An alternative is to solve this equation in
the viscosity sense. If a viscosity solution exists and is unique, we denote it
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by R(\)h. Using these solutions, we can extend the domain of the operator
(H,C'(E)) by adding all pairs of the form (R(A\)h, A\~ (R(A\)h — h)) to
the graph of H to obtain an operator H that satisfies the conditions for
the Crandall-Liggett theorem. This is part of the content of Theorem 3.2.2
stated below.

As a remark, note that any concept of weak solutions could be used to
extend the operator. However, viscosity solutions are special in the sense
that the extended operator remains dissipative.

The next result is a direct corollary of Theorem 6.14 in Feng and Kurtz
[2006].

Theorem 3.2.2. For either of our two models, assume that (3.1.1) or (3.1.3)

holds. Additionally, assume that the comparison principle is satisfied for
(3.1.5) forall A > 0 and h € C(E).

Then, the operator

= {(R()\)h, AL RO)h — h)) )h c C(E)}

A>0

generates a semigroup {V (t) }+>0 as in the Crandall-Liggett theorem and we
have (3.2.1).

Additionally, suppose that {X,,(0)} satisfies the large deviation principle on
E with good rate function Iy. Then X, satisfies the large deviation principle
on Dg(R™) with good rate function I given by

I(y) = Io(y(0)) +sup  sup > Ty, (v(te) | Y(teo1)),
m O=tg<t1<-<tm el

where Is(y | z) == supsccp) f(y) — V(s)f(2).

Note that to prove Theorem 6.14 in Feng and Kurtz [2006], one needs to
check that viscosity sub- and super-solutions to (3.1.5) exist. Feng and Kurtz
construct these sub- and super-solutions explicitly, using the approximat-
ing operators H,, see the proof of Lemma 6.9 in Feng and Kurtz [2006].

Proof. We check the conditions for Theorem 6.14 in Feng and Kurtz [2006].
In our models, the maps 7, : £, — FE are simply the embedding maps.
Condition (a) is satisfied as all our generators A,, are bounded. The condi-
tions for convergence of the generators follow by Lemma 3.2.1. O
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The additional assumptions in Theorems 3.1.1 and 3.1.3 are there to make
sure we are able to verify the comparison principle. This is the major con-
tribution of the chapter and will be carried out in Section 3.3.

The final steps to obtain Theorems 3.1.1 and 3.1.3 are to obtain the rate
function as the integral over a Lagrangian. Also this is based on results in
Chapter 8 of Feng and Kurtz [2006].

3.2.2 Variational semigroups

In this section, we introduce the Nisio semigroup V (t), of which we will
show that it equals V(¢) on C'(E). This semigroup is given as a varia-
tional problem where one optimises a pay-off f((¢)) that depends on
the state v(¢) € E, but where a cost is paid that depends on the whole
trajectory {7(s)}o<s<¢. The cost is accumulated over time and is given
by a ‘Lagrangian’. Given the continuous and convex operator H f(z) =
H(x,V f(x)), we define this Lagrangian by taking the Legendre-Fenchel
transform:

L(x,u) = SélRlzl{@, u) — H(z,p)} -

As p — H(z,p) is convex and continuous, it follows by the Fenchel -
Moreau theorem that also

Hf(x) = H(z,V f(z)) = sup {{Vf(z),u) = L(z,u)}.

ueRd

Using £, we define the Nisio semigroup for measurable functions f on E:

V(t)f(z) = 'yseufc fly / L(vy (s))ds. (3.2.3)
7(0)=

To be able to apply the results from Chapter 8 in Feng and Kurtz [2006], we
need to verify Conditions 8.9 and 8.11 of Feng and Kurtz [2006].

For the semigroup to be well behaved, we need to verify Condition 8.9
in Feng and Kurtz [2006]. In particular, this condition implies Proposition
8.13 in Feng and Kurtz [2006] that ensures that the Nisio semigroup is in
fact a semigroup on the upper semi-continuous functions that are bounded
above. Additionally, it implies that all absolutely continuous trajectories up
to time 7', that have uniformly bounded Lagrangian cost, are a compact set
in Dg([0,T]).
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Lemma 3.2.3. For the Hamiltonians in (3.1.2) and (3.1.4), Condition 8.9 in
Feng and Kurtz [2006] is satisfied.

Proof. For (1)take U = R? and set Af(x,v) = (Vf(x),v). Considering
Definition 8.1 in Feng and Kurtz [2006], if v € AC, then

F(1() — F(1(0)) = /0 AF(1(5),4(s))ds

by definition of A. In Definition 8.1, however, relaxed controls are con-
sidered, i.e. instead of a fixed speed 5(s), one considers a measure A €
M(R? x RT), such that A(R? x [0,t]) =t for all ¢ > 0 and

F(1(1)) — F(2(0) = /D AF(2(s), v)A(dv, ds).

These relaxed controls are then used to define the Nisio semigroup in equa-
tion (8.10). Note however, that by convexity of H in the second coordinate,
also £ is convex in the second coordinate. It follows that a deterministic
control A\(dv,dt) = d,(dv)dt is always the control with the smallest
cost by Jensen’s inequality. We conclude that we can restrict the definition
(8.10) to curves in AC. This motivates our changed definition in equation
(3.2.3).

For this chapter, it suffices to set I' = E x RY, so that (2) is satisfied. By
compactness of F, (4) is clear.

We are left to prove (3) and (5). For (3), note that £ is lower semi-continuous
by construction. We also have to prove compactness of the level sets. By
lower semi-continuity, it is sufficient to show that the level sets {£ < ¢}
are contained in a compact set.

Set N := Myep {p € R¢ ‘ H(x,p) < 1}. First, we show that N has non-
empty interior, i.e. there is some ¢ > 0 such that the open ball B(0, ) of
radius € around 0 is contained in . Suppose not, then there exists x,, and
pr, such that p, — 0 and for all n: H(x,,p,) = 1. By compactness of F
and continuity of H, we find a value H(z,0) = 1, which contradicts our
definitions of H, where H(y,0) =0 forally € E.

Let (z,v) € {£ < c}, then
(p,v) < L(z,v) + H(z,p) <c+1

forall p € B(0,e) C N. It follows that v is contained in some bounded
ball in R?. It follows that {£ < c} is contained in some compact set by the
Heine-Borel theorem.
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Finally, (5) can be proven as Lemma 10.21 in Feng and Kurtz [2006] or as
in Lemma 6.4.19. O

The last property necessary for the equality of V'(¢) f and V(¢) f on C(E)
is the verification of Condition 8.11 in Feng and Kurtz [2006]. This condi-
tion is key to proving that a variational resolvent, see equation (8.22), is
a viscosity super-solution to (3.1.5). As the variational resolvent is also a
sub-solution to (3.1.5) by Young’s inequality, the variational resolvent is a
viscosity solution to this equation. If viscosity solutions are unique, this
yields, after an approximation argument that V' (¢) = V(¢).

Lemma 3.2.4. Condition 8.11 in Feng and Kurtz [2006] is satisfied. In other
words, for all g € C*(E) and xg € E, there exists a trajectory v € AC such
that v(0) = xo and for all T > 0:

T T
/OHQ(V(t))dtZ/O (Vg(y(1), 7)) = L(v(8),¥())dt.  (3.2.4)

Proof. Fix T > 0,9 € CY(E) and 29 € E. We introduce a vector field
F9:E — R% by

F9(x) := Hp(z, Vg(z)),

where H,,(x, p) is the vector of partial derivatives of H in the second coor-
dinate. Note that in our examples, H is continuously differentiable in the
p-coordinates. For example, for the d = 1 case of Theorem 3.1.1, we obtain

F(2) := 204 (2)e*V %) — 2u_(z)e V90,

As FY is a continuous vector field, we can find a local solution 79(¢) in E
to the differential equation

by an extended version of Peano’s theorem Crandall [1972]. The result in
Crandall [1972] is local, however, the length of the interval on which the
solution is constructed depends inversely on the norm of the vector field,
see his equation (2). As our vector fields are globally bounded in size, we
can iterate the construction in Crandall [1972] to obtain a global existence
result, such that 49(t) = F9(y(t)) for almost all times in [0, 00).
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We conclude that on a subset of full measure of [0, 7'] that

L2(8),57() = L(v (1), F(77(1)))

= sup (p, F9(79(t))) — H(*(t), p)
pERI

= Sgﬂ@(p, Hy(79(t), Vg(9(t)))) — H(?(t),p).

By differentiating the final expression with respect to p, we find that the
supremum is taken for p = Vg(~9(¢)). In other words, we find

L(v(t),47(1))
= (Vg(¥?(1)), Hp(v9(t), Vg(?(t)))) — H(79(t), Vg(?(t)))
= (Vg(y9(1)),¥°(t)) — Hg(r* (1))

By integrating over time, the zero set does not contribute to the integral,
we find (3.2.4). O

(v
(v

The following result follows from Corollary 8.29 in Feng and Kurtz [2006].

Theorem 3.2.5. For either of our two models, assume that (3.1.1) or (3.1.3)
holds. Assume that the comparison principle is satisfied for (3.1.5) for all A >
0 and h € C(E). Finally, suppose that { X,,(0)} satisfies the large deviation
principle on E with good rate function I.

Then, we have V(t)f = V(t)f forall f € C(E) andt > 0. Also, X,,
satisfies the large deviation principle on Dg(R™) with good rate function T
given by

Ity o= Io(v(0)) + Jo~ L((s),¥(s))ds ify € AC,
o0 ify ¢ AC.

Proof. We check the conditions for Corollary 8.29 in Feng and Kurtz [2006].
Note that in our setting H = H. Therefore, condition (a) of Corollary 8.29
is trivially satisfied. Furthermore, we have to check the conditions for The-
orems 6.14 and 8.27. For the first theorem, these conditions were checked
already in the proof of our Theorem 3.2.2. For Theorem 8.27, we need to
check Conditions 8.9, 8.10 and 8.11 in Feng and Kurtz [2006]. As H1 = 0,
Condition 8.10 follows from 8.11. 8.9 and 8.11 have been verified in Lemmas
3.2.3 and 3.2.4. ]
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The last theorem shows us that we have Theorems 3.1.1 and 3.1.3 if we can
verify the comparison principle, i.e. Theorems 3.1.6 and 3.1.7. This will be
done in the section below.

Proof of Theorems 3.1.1 and 3.1.3. The comparison principles for equation
(3.1.5) are verified in Theorems 3.1.6 and 3.1.7. The two theorems now fol-
low from Theorem 3.2.5. O

Proof of Proposition 3.1.8. We give the proof for the system considered in
Theorem 3.1.1. Fix ¢ > 0 and some starting point z. Let () be any solu-
tion of () = F(x(t)) with 2(0) = x¢. We show that S(x(t)) < S(z0).

Let X,,(0) be distributed as v,. Then it follows by Theorem 3.1.1 that the
large deviation principle holds for { X, },>0 on Dg(R™).

As vy, is invariant for the Markov process generated by A,, also the
sequence { X, (t)},>0 satisfies the large deviation principle on E with
good rate function S. Combining these two facts, the Contraction princi-
ple[Dembo and Zeitouni, 1998, Theorem 4.2.1] yields

S(x(t)) = inf E d
)= _nt SGO)+ [

v /0 L(x(s), i(s))ds = S(x(0)).

Note that £(z(s),z(s)) = 0 for all s as was shown in Example 3.1.11. [J

3.3 THE COMPARISON PRINCIPLE

We proceed with checking the comparison principle for equations of the
type f(x) — AH(x,V f(x)) — h(z) = 0. In other words, for subsolutions
u and supersolutions v we need to check that v < v. We start with some
known results. First of all, we give the main tool to construct sequences x,,
and y,, that converge to a maximising point z € E such that u(z) —v(z) =
sup,/cp u(z") — v(z’). This result can be found for example as Proposition
3.7 in Crandall et al. [1992].

Lemma 3.3.1. Let E be a compact subset of RY, let u be upper semi-
continuous, v lower semi-continuous and let U : E%2 — R be a lower semi-
continuous function such that ¥(x,y) = 0 if and only if x = y. For a > 0,
let xo, Yo € E such that

U(l’a) - v(ya) - O‘\I/(xon ya) - xsgl/lepE {'LL(.T) - U(y) - odlII(x, y)} :
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Then the following hold
(i) limgy—00 @¥ (20, Yo) = 0.
(ii) All limit points of (x4, Yya) are of the form (z, z) and for these limit
points we have u(z) — v(z) = sup,cp {u(z) —v(z)}.

We say that U : E? — R is a good penalization function if ¥(z,y) = 0
if and only if © = y, it is continuously differentiable in both components
and if (V¥(-,y))(x) = —(V¥(z,-))(y) for all z,y € E. The next two
results can be found as Lemma 9.3 in Feng and Kurtz [2006]. We will give
the proofs of these results for completeness.

Proposition 3.3.2. Let (H,D(H)) be an operator such that D(H) =
CY(E) of the form H f(x) = H(x,Vf(z)). Let u be a subsolution and v
a supersolution to f(x) — AH (z,V f(z)) — h(z) = 0, for some A > 0 and
h € C(FE). Let U be a good penalization function and let ., Yo satisfy

U(:Ua) - U(ya) - all’(xa,ya) = Sup {u(x) - U(y) - O‘\Ij(xay)}'
zyek

Suppose that

liminf H (2o, «(V¥(-,9a))(%a)) = H (Yo, a(VE(-, ya))(2a)) <0,

a—0o0

then u < v. In other words, f(x) — AH (x,V f(x)) — h(x) = 0O satisfies the

comparison principle.

Proof. Fix A > 0 and h € C(E). Let u be a subsolution and v a supersolu-
tion to

f(z) — AH(z,V f(z)) — h(z) = 0. (3.3.1)

We argue by contradiction and assume that § := sup,cp u(z) — v(z) > 0.
For a > 0, let x4, yo be such that

w(Ta) = v(ya) — a¥(za, Ya) = sup {u(z) —v(y) —a¥(z,y)}.
el
Thus Lemma 3.3.1 yields a¥(x,, yo) — 0 and for any limit point z of the
sequence Z,, we have u(z) — v(z) = sup,cpu(xz) —v(z) =0 > 0.1t
follows that for « large enough, u(za) — v(ya) > 3.

For every a > 0, the map ®! () := v(ya) + a¥(z,ys) is in C*(E) and
u(x) — @} (x) has a maximum at . On the other hand, ®2 (y) := u(x,) —
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a¥(z4,y) is also in C*(E) and v(y) — ®2(y) has a minimum at y,. As u
is a sub- and v a super solution to (3.3.1), we have

u(za) — h(7a)
A

'U(ya) - h(ya))
A

< H(Ta, o(VI(-,ya))(2a))

> H(Ya, —(V¥(2a;))(ya))
= H(Ya, «(VU(-,ya))(2a)),

where the last equality follows as VU is a good penalization function. It fol-
lows that for « large enough, we have
g U(.’L‘a) — U(ya)
— < ) PAe)
O<on = A
w(xe) — h(ze)  v(Ya) — h(Ya 1
- W) “Zha)_ ve) Zhe) | L) — iya)

(3.3.2)

A A A
< H(@a, a(VU(,4a))(#a) = H(Ya, a(VY (-, ya))(2a))
+ 5 (hlza) = h(ya).

As h is continuous, we obtain limg—00 h(24) — h(ya) = 0. Together with
the assumption of the proposition, we find that the liminf as @« — oo
of the third line in (3.3.2) is bounded above by 0, which contradicts the
assumption that § > 0. O

The next lemma gives additional control on the sequences x4, ¥4.

Lemma 3.3.3. Let (H,D(H)) be an operator such that D(H) = C*(E) of
the form H f(x) = H(z,V f(x)). Let u be a subsolution and v a supersolu-
tion to f(xz) — AH(x,V f(z)) — h(z) = 0, for some e > 0 and h € C(E).
Let W be a good penalization function and let x,, y, satisfy

U(:Ea) - U(ya) - a‘l’(xa,ya) = sup {’LL(:L‘) - U(y) - Oé‘l’(:L‘,y)} :
ryelk

Then we have that

Sng (Yo, A(VU(, ya))(Ta)) < 0. (333)

Proof. Fix A > 0, h € C(F) and let u and v be sub- and super-solutions
to f(z) — AH(z, f(x)) — h(x) = 0. Let ¥ be a good penalization function
and let x4, y, satisfy

U(l’a) - v(ya) - O‘\I/(xon ya) - xsgl/lepE {'LL(.T) - U(Z/) - odlII(x, y)} :
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As 1, is such that

v(¥a) = (o) = V(T ya)) = nfv(y) — (u(za) = ¥(za,y)),

and v is a super-solution, we obtain

U(:l/a) - h(ya)

H (Yo, —a(V¥(2a; ) (Ya)) < 5

As ¥ is a good penalization function, we have —(V¥(zq,))(ya) =
(VU(-,9Yq))(xq). The boundedness of v and h imply

[v = Al

(U(ya) - h(ya)) < 2

< 00

>| =

Sng (ya, O‘(V\II('> ya))(xa)) <

3.3.1 One-dimensional Ehrenfest model

To single out the important aspects of the proof of the comparison principle
for equation (3.1.5), we start by proving it for the d = 1 case of Theorem
3.1.1.

Proposition 3.3.4. Let E = [—1,1] and let
H(z,p) = vy(x) [e2p — 1} +v_(x) [e_2p — 1] ,

where vy, v_ are continuous and satisfy the following properties:
(a) vi(x) = 0 for all x or v, satisfies the following properties:
(i) vy(z) >0 forx # 1.
(ii) v4 (1) = 0 and there exists a neighbourhood Uy of 1 on which there

exists a decomposition vy (x) = v t(x)vy +(x) such that vy ; is
decreasing and where v 1 is continuous and satisfies vy +(1) # 0.

(b) v_(x) = 0 for all x or v_ satisfies the following properties:
(i) v_(x) >0 forz # —1.
(ii) v4(—1) = 0 and there exists a neighbourhood U_; of 1 on which

there exists a decompositionv_(x) = v_ ;(x)v_ 1(x) such thatv_ ;
is increasing and where v_ y is continuous and satisfiesv_ 3(—1) #

0.

Let \ > 0 and h € C(E). Then the comparison principle holds for f(x) —
AH (z,V f(x)) — h(x) = 0.
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Proof. Fix A > 0, h € C'(E) and pick a sub- and super-solutions v and v to
f(z)—=AH(z,V f(z)) — h(z) = 0. We check the condition for Proposition
3.3.2. We take the good penalization function ¥(z,y) = 27 (x — y)? and
let x4, yqo satisfy

(6% (6%
Sloa = val? = sup {u(z) - v(y) - Slo —y}.

U(Jja) - U(yoz) - 9 CE
x?y

We need to prove that
liminf H(zq, a(xa — Ya)) — H (Yo, (0 — Ya)) < 0. (3.3.4)

a—00
By Lemma 3.3.1, we know that a|z, — ya|> — 0 as @ — oo and any limit
point of (4, Ya) is of the form (z, z) for some z such that u(z) — v(z) =
max,cpu(z’) — v(z'). Restrict « to the sequence @ € N and extract a
subsequence, which we will also denote by «, such that & — oo x,, and y,
converge to some z. The rest of the proof depends on whether z = —1, 2z =
lorze (—1,1).

First suppose that z € (—1,1). By Lemma 3.3.3, we have
SUp vy (yo) |23 (Fa=¥a) 1] +v_(Ya) [e_Qa(xa_ya) — 1| < o0.
e}

As e€ — 1 > —1, we see that the lim sup of both terms of the sum individ-
ually are bounded as well. Using that y, — z € (—1, 1), and the fact that
v+, v_ are bounded away from 0 on a closed interval around z, we obtain
from the first term that sup,, a(z, — yo) < 00 and from the second that
sup,, @(Ya—rq) < 00. We conclude that a(x, —y, ) is abounded sequence.
Therefore, there exists a subsequence (k) such that a(k) (T ) — Ya(k))
converges to some pg. We find that
liminf H(zq, a(xo — Ya)) — H Yo, ¥(Ta — Ya))

a—r 00

< lim H(zo ) U Tak) = Yak)) — HYak)s A Tak) = Yak)))
= H(z,po) — H(z,p0) = 0.

We proceed with the proof in the case that x,,y, — 2z = —1. The case
where z = 1 is proven similarly. Again by Lemma 3.3.3, we obtain the
bounds

sup v (Ya) [620‘(%‘*1’0‘) - 1} < 00,
(03

sup v—(Ya) [B_Q‘X(Ia_ya) —1] <oo. (33.5)
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As v, is bounded away from 0 near —1, we obtain by the left hand bound
that sup, (2o — Ya) < 00. As in the proof above, it follows that if
a|To — Yo is bounded, we are done. This leaves the case where there exists
a subsequence of «, denoted by a(k), such that a(k) (Yo (r) — Ta(r)) — 00
Then clearly, ¢>*(®)(Fa(t)~¥a(t)) — 1 is bounded and contains a converging
subsequence. We obtain as in the proof where z € (—1, 1) that

liani}io%fH(:Ea’ Oé($a — ya)) - H(yon O‘(xa - ya))
= Hminf (v} (za) — v (ya)] |27 —1]
+ [0 (2a) = v-(ya)] |20 77) 1]

< liggi;}f [v_(aza(k)) — U_(ya(k))] {626“(]“)(%(16)_%(16)) — 1} .
Note that as (k) (Yo (k) =Ta(k)) — 00, Wwehave yo k) > Tok) > —1, which
implies v_ (Y ()) > 0. Also for k sufficiently large, Yo (), Tar) € U-1.
Thus, we can write

[0 (Zag)) — V= Yaw))] {eza(k)(ya“ﬂ*%(’“)) — 1}
V-1 (Tagk)) V- 1 (Tak)) ] 20 (k) (Yo (1)~ ex (1))

— — 1l v_ Yo e o Ya(k) = Ta(k)) _ 1.
['U—,T@a(k)) V- 1 (Ya(k)) (i) [

By the bound in (3.3.5), and the obvious lower bound, we see that the non-
negative sequence

Uk = U—(ya(k:)) |:€2a(k)(ya(k)_ra(k)) _ 1i|

contains a converging subsequence ug — ¢. AS Yo () > To(k) and v ; is
increasing;:
v_i(x v_t(x
lim sup +(Zar)) V-1 (Tagr))
k U—,T(ya( )) ,i(ya( )

k)

As a consequence, we obtaln

. U—(xa(k)) :| 2a(k)( _
liminf | ———— — 1| v_(y, e20(F)(Ya()—Zak) _ |
k [U— (Ya(r)) Waw) [ }

< (hm sup [U—,T(l"a(k)) U_’i($a(k)) — 1}) <lim inf ukr> <0.
k v+ (Ya(k)) V-1 Ya(k)) K
This concludes the proof of (3.3.4) for the case that z = —1. O
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3.3.2  Multi-dimensional Ehrenfest model

Proof of Theorem 3.1.6. Let u be a subsolution and v a supersolution to
f(z) — AH(x,V f(z)) — h(z) = 0. As in the proof of Proposition 3.3.4,
we check the condition for Proposition 3.3.2. Again, for o € N let x4, yq
satisfy

o «
w(wa) = () = 5170 = yal = sup {u(z) —v(y) - Sl -y},
2 zyelE 2

and without loss of generality let z be such that z, y, — 2.

Denote with x,; and y,; the i-th coordinate of z, respectively y,. We
prove

liminf H(zq, (o — Ya)) — H Yo, ¥(Ta — Ya))

a—0o0

— i $ i o a(Ta,i—Ya,i) _
_110611_1>1£f i {[v+(ma) V' (Ya)] [e Y 1]

R i | )

by constructing a subsequence «(n) — oo such that the first term in the
sum converges to 0. From this sequence, we find a subsequence such that
the second term converges to zero, and so on.

Therefore, we will assume that we have a sequence «(n) — oo for which
the first i — 1 terms of the difference of the two Hamiltonians vanishes and
prove that we can find a subsequence for which the i-th term

[V (0) — v (ya)] [ea(xa,i—ya,i) B 1]
+ [vﬂ(ma) — Ui(ya)] [ea(ya,r%,i) ~1] 336

vanishes. This follows directly as in the proof of Proposition 3.3.4, arguing
depending on the situation z; € (—=1,1), z; = —1or z; = —1. d

3.3.3 Mean field Markov jump processes on a finite state space

The proof of Theorem 3.1.7 follows along the lines of the proofs of Propo-
sition 3.3.4 and Theorem 3.1.6. The proof however needs one important
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adaptation because of the appearance of the difference p, — p, in the expo-
nents of the Hamiltonian.

Naively copying the proofs using the penalization function ¥(u,v) =
% >, (1(a) — v(a))? one obtains by Lemma 3.3.3 , for suitable sequences
Lo and v, that

sup U(CL, b’ Va) ea((.‘"a(b)—Va(b))—(#a(a)—Va(a))) -1

One sees that the control on the sequences a(v,(a) — pa(a)) obtained
from this bound is not very good, due to the compensating term (14 (b) —
Va (b))-

The proof can be suitably adapted using a different penalization function.
Forz € R,letz~ := xAOandz™ = 2V0. Define U (u,v) = 3 ", ((u(a)—
v(a))7)? = 33, ((v(a) — p(a)) )% Clearly, ¥ is differentiable in both
components and satisfies (V¥ (-, v))(u) = —(V¥(u, -))(v). Finally, using
the factthat ), pu(i) = >, (i) = 1, we find that U(u, v) = 0 implies that
i = v. We conclude that U is a good penalization function.

The bound obtained from Lemma 3.3.3 using this ¥ yields

sup v(a, b, vg) [ e ) ~(ra(@—va@) ) _ 1] < o,

«

We see that if (1q(b) — va(b))” — (tala) —ve(a))” — oo it must be
because a(vy(a) — pa(a)) — oo. This puts us in the position to use the
techniques from the previous proofs.

Proof of Theorem 3.1.7. Set W(p,v) = 23" ((u(a) — v(a))™)?, as above.
We already noted that ¥ is a good penalization function.

Let u be a subsolution and v be a supersolution to f(p) — AH (1, Vf (1)) —
h(w) = 0. For v € N, pick p and v, such that

u(pa) = v(Va) = ¥ (pa, va) = sup, {u(p) —v(v) —a¥(u,v)}

Furthermore, assume without loss of generality that uq, v, — z for some
z such that u(z) — v(z) = sup,/cg u(z’) — v(2’). By Proposition 3.3.2, we
need to bound

H(pta, o(VE(-,va))(tta)) — H Vo, a(VO(pa, ) (Ha))
= Z (a,b, o) —v(a,b,vy)]

X[ a( (1 (b)~va (b))~ (1a <a>%<a>>‘)_1]. (3.3.7)
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As in the proof of Theorem 3.1.6, we will show that each term in the sum
above can be bounded above by 0 separately. So pick some ordering of
the ordered pairs (7,7), 7,5 € {1,...,n} and assume that we have some
sequence « such that the lim inf,,_, o of the first £ terms in equation (3.3.7)
are bounded above by 0. Suppose that (4, 7) is the pair corresponding to the
k + 1-th term of the sum in (3.3.7).

Clearly, if v(i, j, w) = 0 for all 7 then we are done. Therefore, we assume
that v (7, j, ) # 0 for all 7 such that (i) > 0.

In the case that p, v, — 7, where 7*(i) > 0, we know by Lemma 3.3.3,
using that v(i, j, -) is bounded away from 0 on a neighbourhood of 7*, that

sup e (o () ~ra ()" =(ha(@—va(D))7) _ | < 0.

«

Picking a subsequence a(n) such that this term above converges and using
that m — v(4, 7, ) is uniformly continuous, we see

lim inf [v(i, j, ) — v(i, J, va)] X
{ea(wa(j)—uau)r—<ua<z’>—ua<z‘)>*) _ 1]
= nh%rgo [U(i,j, Ha(m)) — v(i, J, ya(n))] X
[eam)((ua<n><j>—ua<n><j>)—(um)(i)—ua(n)(i))) _ 1} _0

For the second case, suppose that (4(7), 74 (i) — 0. By Lemma 3.3.3, we
get

sup v(i, j, V) [6a(<uau>—uao>r—(ua(z’)—uau))*) _ 1} <o, (33.8)

First of all, if sup, & (1a(j) — va(4))” — (Ha(i) — va(i))”) < oo, then
the argument given above also takes care of this situation. So suppose that
this supremum is infinite. Clearly, the contribution (14 (j) — va(j))” is
negative, which implies that sup,, a (v4(i) — p1a(i))T = oco. This means
that we can assume without loss of generality that

a (Vo (i) = pa(i)) = 00, vali) > pali). (3.3.9)
We rewrite the term a = 4, b = j in equation (3.3.7) as

[U(Wﬂa) _ 1} 0(i.4,a) [ (000D =GO 1]
U(Zvja Voc)
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The right hand side is bounded above by (3.3.8) and bounded below by —1,
so we take a subsequence of a, also denoted by «, such that the right hand
side converges. Also note that for « large enough the right hand side is
non-negative. Therefore, it suffices to show that

hm mf U(Z? ]7 /J’OL)

— <1
a—0o0 VU Za]aya)

)

which follows as in the proof of Proposition 3.3.4. O
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EXPONENTIAL DECAY OF ENTROPY AND ENTROPIC
INTERPOLATIONS

In Chapter 3, we considered Markov processes x,, with generators A,, that
take values in some closed convex set F,, C R In particular, we saw in
Proposition 3.1.8 that the rate function S’ of the stationary measures of
the processes A,, is a Lyapunov function for the McKean-Vlasov equation
& = Hy(x,0).

In this chapter, we study the decay of this rate function, or entropy, S along
the flow of the McKean-Vlasov equation in more detail and in a more gen-
eral context. We will give conditions for exponential decay

S(x(t)) < e S((0))

and verify these conditions for Glauber dynamics on the Curie-Weiss model
and for the Wright-Fisher diffusion model with parent-independent muta-
tions.

Afterwards, we extend the definition of entropic-interpolations introduced
by Léonard [2013]. Léonard considers entropic interpolations for the mea-
sure valued flow of a Markov-process and are defined via a ( f, g) transform,
which is essentially an extension of the classical Doob-h transform.

Noting, however, as in our introduction, that the flow of laws of a Markov
process can be seen as the solution to the Kolmogorov forward equation
and thus, as the minimal cost trajectory of a path-space large deviation
principle, the entropic interpolation can also be seen as a trajectory that
connects two points with minimal Lagrangian cost.

This is our starting point, and we give conditions for the convexity of the
entropy along an entropic interpolation. This concept is well known in the
theory of displacement interpolations, see von Renesse and Sturm [2005],
Chapter 16 in Villani [2009] or Chapter 9 in Bakry et al. [2014], and can
be used to study the curvature of the underlying space. Because displace-
ment interpolations are not suited to study processes on discrete spaces, a
different kind of interpolation is needed.

A powerful interpolation method for discrete spaces is introduced in Erbar
and Maas [2012], but this definition is not directly suitable for the dynamics
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obtained from interacting systems. Here, we make a first step for entropic
interpolations in this general setting.

4.1 LARGE DEVIATIONS AND THE MCKEAN-VLASOV EQUATION

For clarity, we state the setting for the results in this chapter. Given a closed
subset E of RY, we assume the existence of a sequence of measures P,, €
P(Dg(RT)) so that the large deviation principle holds for the trajectories:

Pn [{z(t)}ez0 ~ {7(t) }ez0] = ™. (4.1.1)

We assume that the rate function u : D (RT) — [0, oo] has compact level
sets and has the form

() uo((0)) + [ L£(7(s),5(s))ds if v is absolutely continuous
u(y) =
00 otherwise,

where the Lagrangian £ : E x R? — [0,00) is lower semi-continuous
and for each z € E, v — L(x,v) is convex. We define the Hamiltonian
H as H(x,p) = inf,(p,v) — L(z,v). Such large deviation principles are
obtained in various contexts, notably in Chapter 3 and Chapter 5, but also
more generally for Freidlin-Wentzell theory Freidlin and Wentzell [1998],
for Levy processes Feng and Kurtz [2006], for other interacting jump pro-
cesses Dupuis et al. [2016] or for the Wright-Fisher model for population
dynamics Dawson and Feng [1998].

In the setting that the measures P, correspond to Markov processes for
which there exists stationary measures p, that satisfy the large devia-
tion principle with rate function S, this S is a Lyapunov function for the
McKean-Vlasov equation & = Hp(z,0). Here H,, denotes the vector of
derivatives of H in the second coordinate. To be precise, it was found in
Chapter 3, but also in Roeck et al. [2006] that S(x(t)) < S(x(0)) for any
t>0.

In this chapter, we analyse the decay of the entropy S along the flow of
the McKean-Vlasov equation in more detail. We will give conditions for
exponential decay

S(x(t)) < e S (x(0)).
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Afterwards, we will extend the definition of entropic-interpolations intro-
duced in Léonard [2013] and give conditions for the convexity of the en-
tropy along these entropic interpolations.

The standing assumption on H and S for the results in this paper are the
following.

Assumption 4.1.1. We assume that the continuous Hamiltonian H : E X
R? — R satisfies

H(a) H is twice continuously differentiable,

H(b) for every x € F, the map p — H(x,p) is convex and for every z in
the interior of E, the map p — H(z, p) is strictly convex.

There exists a continuous function S : E — [0, co) such that

S(a) S is twice continuously differentiable on the interior of F,

S(b) for z € E°, we have H(z, DS(x)) = 0,

S(c) S is a Lyapunov function for the McKean-Vlasov equation: if ()
solves @(t) = Hp(x(t),0) then S(x(t)) < S(x(s)) forall0 < s <t.

Remark 4.1.2. The assumption that S is twice continuously differentiable
can be relaxed to once continuously differentiable in various situations.

The following three results verify that in the setting where P,, are Marko-
vian, the stationary measures satisfy the large deviation principle with rate
function S and where S is differentiable on the interior of F, the conditions
on S of the assumption above are satisfied.

The proof of Proposition 3.1.8 generalizes and we obtain the following re-
sult.

Proposition 4.1.3. Suppose the measures Py, correspond to Markov processes
for which there exists stationary measures [, that satisfy the large deviation
principle with rate function S.

Let {x(t) }+>0 be a solution to the McKean-Vlasov equation & = H,(x,0),
then S(x(t)) < S(z(s)) forall0 < s < t.

In the following proposition we show that S is a solution to H f = 0 in the
viscosity sense.

Lemma 4.1.4. Suppose the measures IP,, correspond to Markov processes for
which there exists stationary measures [, that satisfy the large deviation
principle with rate function S. Then S is a viscosity solution to HS = 0.
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Proof. By a standard argument using dynamic programming, cf. Theorem
6.4.5 in Cannarsa and Sinestrari [2004], we find that for any function wuy,
the function

ua) = inf wa((0)+ [ £61(3).3(3))as

V(==

is a viscosity solution of

d

au(m, t)+ H(x,Vu(z,t)) =0.

on E x (0,7T). In the case that uyg = S is the large deviation rate function
of the stationary measures, it follows that u(-,¢) = S for all ¢ > 0 by the

contraction principle. As a direct consequence, we find that S is a viscosity
solution of H(z,VS(x)) =0on E. O

Viscosity solutions have the property that the equation is satisfied at any
point where the viscosity solution is differentiable. This gives the following
lemma.

Lemma 4.1.5. Suppose the measures P,, correspond to Markov processes for
which there exists stationary measures (i, that satisfy the large deviation
principle with rate function S. Then if = is in the interior of E and is such
that S is differentiable at x, then H(x, DS(z)) = 0.

4.2 EXPONENTIAL DECAY OF ENTROPY

We start by studying the decay of S along the solutions of the McKean-
Vlasov equation. Motivated by the analogous quantities in the theory of
(modified) logarithmic Sobolev inequalities, we define the concept of infor-
mation.

Definition 4.2.1. Let H and S satisfy Assumption 4.1.1. We define the
information I : E — R* by

I(x) = =(DS(x), Hp(,0)).

We say that H satisfies a entropy-information inequality (EII) with constant
a > 0ifforall z € E:

aS(x) < I(x).
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Note that as I(z) = —%h:oS(:z:(t)) for the solution z(¢) to the McKean-
Vlasov equation with z(0) = =, it follows that I(x) > 0 by Proposition
4.1.3.

This entropy-information inequality is a naturally connected to similar in-
equalities present in the literature.

In the setting of the measure-valued flow generated by the Kolmogorov for-
ward equation of a diffusion operator, the derivative of the entropy along
the flow is called the Fisher information. Thus, the entropy information in-
equality is analogous to the log-Sobolev inequality, we refer to Section 5.2
in Bakry et al. [2014].

For the measure valued flow generated by the Kolmogorov forward equa-
tion of a Markov jump process, the entropy-information inequality coin-
cides with the modified logarithmic Sobolev inequality. See for example
Caputo et al. [2009] where this inequality is connected to the decay of en-
tropy along the Kolmogorov forward equation of jump processes.

Lemma 4.2.2. Let H and S satisfy Assumption 4.1.1. Let x(t) solve the
McKean-Vlasov equation: & = H,(x,0). Then H satisfies (EIl)-«v if and only

if
S(z(t)) < e *8(x(0)).
Proof. By (EIl)-a, we have

;tS( (1)) = (DS(2(1)), Hp(x(t),0)) = —I(x) < —aS(z(t)).

It follows by Gronwall’s inequality that
S(x(t)) < e S(2(0)).
The reverse implication follows by differentiation. O]

It is well known that control on the second derivative of the entropy along
solutions of the McKean-Vlasov equation yields stronger control on the
decay of the entropy, see for example Lemma 2.1 in Caputo et al. [2009].
The second derivative of the entropy of S gives:

d? d
25(@(t) = 2 (DS(x(1)), Hy(x(1), 0))

= (D*S(x(t)) Hy(x(t), 0), Hp(x(t),0))
+ (DS ((t)), Hpe (x(1),0) Hp(2(2),0)).  (4.2.1)
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We obtain the following result, giving an inequality that implies (EII)-« if
there is only one attracting stationary point.

Lemma 4.2.3. Let H and S satisfy Assumption 4.1.1. Let {x(t)}+>0 be a
solution to the McKean-Vlasov equation & = Hp(z,0). Then the following
two statements are equivalent.

(a) Forallx € E, we have

al(z) < (DS(z), Hpe(2,0)Hy(x,0)) + (D?S(z)Hy(z,0), Hy(x,0)).
(4.2.2)

(b) For all solutions {x(t)}+>0 of the McKean-Vlasov equation, we have

Csalt) 2 e LSOm0, and  I((1)) < e T(x(0)

Suppose that S is bounded from below and that (4.2.2) is satisfied. Let
Soo = limy_,00 S(x(t)), (which exists as S is decreasing along solutions
of the McKean-Vlasov equation), then

S(2(t)) — Seo < e (S(x(0)) — Sao) - (4.2.3)

Remark 4.2.4. If S(x) is convex, D?S(z) is a positive operator. Thus, a
weaker criterion for the exponential decay of entropy is given by

al(x) < (DS(x), Hpp(z,0)Hy(x,0)). (4.2.4)

Proof of Lemma 4.2.3. By (4.2.1), we note that (4.2.2) can be rewritten as

S16(0) < —al(a(t)

As in the proof of Lemma 4.2.3, we obtain the first claim of the lemma.
We proceed with the proof of (4.2.3). First, we integrate from ¢ to 7' the
inequality

d

0 S S(w(t)) = —al(a(t)) > L I((1),

which yields
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As T — oo, we find by the first claim of the Lemma that I(z(7")) — 0.
Additionally, as S' is decreasing along the solutions of the McKean-Vlasov
equation S(z(7")) — Soc. We conclude that

a[S(z(t)) = Soo] < I(x(t)).
The claim follows as in the proof of Lemma 4.2.2. O]

We give a one-dimensional example where (4.2.2) is satisfied and a sec-
ond multi-dimensional example where we verify (4.2.4). The first case is
related to the large deviations of the trajectories of the magnetization of
a Curie-Weiss model under a Glauber-dynamics evolution with potential
Vix) = —%5JE2, see Example 3.1.9 in Chapter 3. The second is related to
the large deviation behaviour of a d-dimensional Wright-Fisher model with
mutations with vanishing diffusion coefficient.

Proposition 4.2.5 (Interacting jump processes on two states). Let > 0
and consider the Hamiltonian H : [—1,1] x R — R defined by

H(z,p) = 1-z ; T epe [62p — 1] + 71;‘%67590 [6721) — 1] )

Note that it has an entropy functional S(x) = I—T:E log(1—z) + H_Tx log(1+
T) — %53;2 with gradient DS(x) = %log % iy

If B < 1, then (H, S) satisfy (EII) with constant 4(1 — 3).

Proof. First of all, note that D2S(z) = ﬁ — [3. Because < 1, we

find that S is convex. We first consider (4.2.4). An elementary computation
yields

H,(x,0) = 2sinh(Sz) — 2x cosh(fx)
H,y(z,0) = —2[1 — f] cosh(Bx) — 2z sinh(Bx).

Because Hp;(x,0) < —2(1 — f3), we obtain
(DS(2), Hy (2, 0)Hy (1, 0)) > 2(1 — )1 (z). (125)

We proceed with the second part or the right hand side of (4.2.2). By as-
sumption (a), S is strictly convex. In particular, there is a unique stationary
point z;, = 0 where DS(0) = 0. By the first part of the proof, we know
that solutions to the McKean-Vlasov equation converge to this stationary
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point. Thus I(x) = 0 if and only if z = 0. In particular, this implies that
H,(x,0) < 0forz > 0and H,(x,0) > 0 for z < 0, and thus

—xH,(x,0) > 0. (4.2.6)
Without loss of generality, we consider > 0 and prove that

—~2(1 — B)DS(z)Hy(z,0) < Hy(z,0)>D*S(x).
For x > 0, H,(x,0) < 0, so it suffices to prove that

2(1 — B)DS(x) < —Hy(x,0)D*S ().
If x = 0, both sides of the inequality equal 0 as DS(0) = H,(0,0) = 0.

Thus, it suffices to prove that the derivatives are ordered in the same way:
2(1 — B)D*S(z) < —Hpy(z,0)D*S(x) — Hp(z,0) DS ()
20Hy(x,0)
(1—22)2"°
Hence, the claim is proven as —xH,(x,0) > 0 by (4.2.6). We conclude that
the second part yields

(DS (), Hya (2, 0)Hy(z,0)) > 2[1 — AI(x). (427)

= —Hpu(2,0)D*S(z)

We conclude from (4.2.5) and (4.2.7) that we have a entropy-information
inequality with constant 4(1 — 3). O

It should be noted that in principle the proof can be generalized to a
more involved structure for the potential. More conditions need to be
posed and the conclusions need to be changed appropriately. For exam-
ple, we can consider a potential that includes an external magnetic field:
Vi(z) = f%BmQ — hz. The first part of the proof above can be carried out
without any changes. However, the second part of the proof above breaks
down as the stationary point for the dynamics is not equal to 0. So even
though the first part yields a constant 2(1 — 3), the second part yields a
constant that is strictly less than 2(1 — f3).

Example 4.2.6 (Wright Fisher model with mutation). For £ = {z €
R?|z; > 0, x; = 1}. In Dawson and Feng [1998] the large deviations of
the trajectories of the Wright-Fisher model are considered, and the Hamil-
tonian corresponding to this LDP is given by

d
1
H(z,p) =5 > @ildiy —apwi + Y | D @it — widij | pi
i

i=1 \ j#i
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where ¢;; represents the mutation rate from j to 7. In the case that the
mutation rates are parent independent: g;; = % Wi > 0, for ¢ # j, the sta-
tionary measures of the associated Wright-Fisher processes with vanishing
diffusion coefficient have entropy S(z) given by

Z Hi log

Proposition 4.2.7. Consider H and S from Example 4.2.6 in the setting
that q;; = %,ui > 0. Define u = ), pii. Then H and S satisfy (4.2.2) and the
entropy-information inequality with constant %,u.

pa;

In the proof below, we will only verify (4.2.4) as opposed to the jump pro-
cess example above. The constant obtained here, is thus, not optimal. In
Theorem 4.4.3 below, we consider the setting of two species and improve
the (EII) bound by a factor that depends on the difference between p; and

2.

Proof. For the verification of (4.2.2) with constant % 1t we observe that x —
S(x) is convex, so it suffices to verify (4.2.4). Thus, we calculate the vector
H,(x,0) and matrix Hp,(x,0). We find

Hy,(z,0) leﬂj — T

lséj
1 1
=5 (L =)y —2j(p = 1y)) = 5 (w5 — z5n),
0 for i # j,
Hpmcj (56,0) = 1 ) )
—op fori=j.
We find that

1
ZHP«L,% ('T’O)Hpj (z,0) = _Q:LLH 1‘(3370)7
J

and as a consequence
(DS(z), Hpa(z,0)Hp(x,0)) :—*MDS( ) Hp(,0)) = %Mf(fv)-

O
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43 ENTROPIC INTERPOLATIONS

In this section, we will consider entropic interpolations, which we define as
the optimal trajectories of the Lagrangian system, conditioned on a starting
and end point.

In the setting where the Hamiltonian corresponds to the large deviation be-
haviour of the trajectories of the empirical density of independent copies
of a process, i.e. Chapter 6, this definition is formally equivalent to the one
introduced in Léonard [2013]. Léonard defines an entropic interpolation
between 7 and v in time T in terms of an (f, g) transform. Using the con-
nection of the (f, g) transform to solutions of the Schrédinger problem in
[Léonard, 2014, Theorem 3.3], this transform corresponds to the trajectory
of measures {y(t) }o<t<7, where pu(t) := Qj is the law of X () under Q*,
and where Q* minimizes

inf {S(Q|P) |Qp = 7, Qr = v},

where S(-|-) is the relative entropy. This minimization problem can be
re-expressed in terms of the path-space large deviation problem of the
trajectory of the empirical distribution of independent copies. This re-
formulation of the minimization problem generalizes to interacting sys-
tems and motivates the following definition.

Definition 4.3.1. We say that an absolutely continuous trajectory v*
[0,7] — E is an entropic interpolation between x and y in time 7" if

7*(0) = 2, 7*(T) = y and

T
| e <s>,fy*<s>>ds= vlenjc / £(y(s),4(5))ds.

0)=z,y(T)=y

We will make the following assumption in this Section, which is necessary
in the case that S is not differentiable on the boundary of E. In the setting
of one-dimensional reversible processes, we will show that this assumption
is always satisfied.

Assumption 4.3.2. For the results in this section, we only consider en-
tropic interpolations 7y : [0,7] — E such that for ¢ € (0,T) the trajectory
is in the interior of E.

Consider the Hamilton equations:

H _ | Hplx.p) ] (4.3.1)
]5 —Hx(a:,p)
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Lemma 4.3.3. Let H and S satisfy Assumption 4.1.1 and let = be an en-
tropic interpolation satisfying Assumption 4.3.2. Fort € (0,T), set p(t) =
L, (x(t),(t)). Then (x(t),p(t)) is twice continuously differentiable and
solves the Hamilton equations fort € (0,T).

Proof. This result follows as in Theorems 6.2.8 and 6.3.3 in Cannarsa and
Sinestrari [2004] as we can work in the interior of F due to Assumption
432. i

The two components of the Hamilton equations take over the role of equa-
tions (14) and (15) in Léonard [2013]. The connection between the first com-
ponent and the Hamilton equations is immediate, whereas for the second
component, (15) in Léonard [2013] describes the evolution of f, whereas
the second component of the Hamilton equations describes the evolution
of p(t) = Vf(x(t)) along the trajectory of the first variable.

Note that the solution z(t) to the McKean-Vlasov equation is always an
entropic interpolation between z(0) and z(t) in time ¢ for any time ¢ > 0.
This corresponds to a solution of the Hamilton equations in which p(t) = 0
forallt > 0.

To study the entropic interpolations, we introduce the adjoint Hamiltonian.

4.3.1 The adjoint Hamiltonian

Definition 4.3.4. Let H and S satisfy Assumption 4.1.1. We define the
adjoint H* of H with respect to S for x € E° by

H*(x,p) = H(z, DS(x) — p).

The motivation to call H* the adjoint Hamiltonian comes from Lemma
4.3.9, where we relate H* to the reversal of time. Note that H** = H.

Definition 4.3.5. If H is a Hamiltonian with entropy S, we say that H is
reversible with respect to S'if H* = H.

Note that this corresponds to the picture introduced in Lemma 4.1.4. If H is
the Hamiltonian corresponding to a sequence of reversible processes, and
S is the corresponding entropy of the stationary and reversible measures,
then H will be reversible with respect to .S.

Remark 4.3.6. Even tough it holds for most one-dimensional examples
in this paper that H = H™, a non reversible one-dimensional example is
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obtained by considering the large deviation behaviour of the average of n
independent Levy processes on R with generator

Af(2) = 30"(@) — (o DF (@) + fo+ 1) - ),

which corresponds to a Hamiltonian of the form

1
H(z,p) = 5p" = (@ + 1)p + " = 1.

For reversible one-dimensional Hamiltonians, we give conditions under
which Assumption 4.3.2 is satisfied.

Proposition 4.3.7. Suppose E = [a,b] and H and S satisfy Assumption
4.1.1 and suppose that:

(a) H=H".

(b) Hp(a,0) > 0 and Hy(b,0) < 0.

(c) The maps x +— L(x,0) and x — S(x) are decreasing on an open neigh-
bourhood U,, of a and increasing on an open neighbourhood Uy, of b.

(d) We have

= —s@ ~ = B sm-s0)

Then all entropic interpolations {x(t)}o<i<T satisfy x(t) € E° fort €
(0,7).

As the proof of this proposition is independent of the rest of the results, we
postpone the proof until Section 4.5.

Lemma 4.3.8. We have the following properties

(a) Hy(z,p) = —Hp(z, DS(z) — p),

(b) Hy,(z,p) = Hy(z, DS(z) — p),

(¢) Hi(x,p) = Ha(x, DS(x) — p) + Hy(, DS(x) — p) DS (x),

(d) Hp.(x,p) = —Hpa(z, DS(z) — p) — Hpp(z, DS(2) —p)D*S(x).

Proof. These properties are immediately verified using the definition of H*.
O

We now relate the adjoint Hamiltonian to the reversal of time.
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Lemma 4.3.9. Let H and S satisfy Assumption 4.1.1. Fix some timeT' > 0.
The curve (x(t), p(t))o<t<T solves the Hamilton equations for H if and only
if (2" (), 5" (D)o<rr i= (2(T — 1), DS(2(T — 1)) — p(T — t)Jo<scr solves
the Hamilton equations for H*.

Proof. Let (x(t), p(t))o<t<T solve the Hamilton equations. First note that
H;(:L‘(, ])0) = —H,(x,DS(x) — p) by definition. We look at the derivative
of x*(¢):

d ... d
5 (t) = ax(T —t)
=—z(T —t)

= —Hy(z(T = 1),p(T — 1))
= H}(x(T — ), DS(x(T — t)) — p(T — t))
= H, (z7(t), p"(¢))-

Secondly, we consider the derivative of p*(t):

()= Sp(T -1
= —H(T -1
= H(e(T ~ 1),p(T ~ 1)
= H(a(T 1), DS(a(T — ) ~ p(T ~ 1)
= H3 (0, 5°(1)

So indeed (x*(t),p*(t))o<t<T solve the Hamilton equations for H*. The
second implication of the lemma follows from the first one and the fact
that H** = H. O

4.3.2 The evolution of entropy along an entropic interpolations

Analogous to the definition of £, we define £* to be the Lagrangian corre-
sponding to H*, i.e. for v ¢ OF, we set L*(x,v) = sup,(p,v) — H*(x, p).

Lemma 4.3.10. Let H and S satisfy Assumption 4.1.1 and let~y : [0,T] —
E be an absolutely continuous trajectory and let t be a time at which y is
differentiable and y(t) € E°. Define the time-backward trajectory v*(s) :=
(T — s). Then we have

d

°0@) = LOy(@),7@)) = LT =), 77(T — 1))
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In particular, if H = H*, it follows that

c?tS( (t) = L(v(1),¥()) — L(v(t), —7(¢)).

Proof. Set p = L,(y(¢t),%(t)) and p* = DS(v(t)) — p. We obtain

S 5(+(1) = DS( (1))
= pH, (1)) ~ H(:(1). )
~ [l ~ DS((0) Hyr(0). ) ~ H((2), )]
= £(:(1),5(1)) ~ (DS((E) ~ ) 3 (3(2), DS(1(1)) )
+ H (1), DS (1)) — p(1)

), D
= L(v(1),7(t)) = p"Hy(Y" (T = 1),p") + H*(4"(T — 1), p")
= L{y(t),7(t)) = L (y(T = t),7*(T - 1)),

where we have used in the last line that

V(T —t) = =4(t) = —Hp(y(t),p) = H, (" (T — 1), p").

O]

Because an entropic interpolation {z(t) }o<:<7 gives rise to a twice contin-
uously differentiable trajectory (z, p) that solves the Hamilton equations,
we see that for this trajectory Lemma 4.3.10 holds for all times at which the
trajectory is in the interior of £. We use this to study the behaviour of the
entropy along the interpolation.

Because the entropy along an arbitrary entropic interpolation is not ex-
pected to decrease, we directly study the second derivative of the entropy
S along an entropic interpolation {x(t) } [0, satisfying Assumption 4.3.2.
In Lemma 4.3.10, we saw that the first derivative of S contains a part involv-
ing £ and a part involving L£*. We first consider the part involving £. Note
that for an entropic interpolation %H (z(t),p(t)) = 0 by the Hamilton
equations. For ¢ € (0,7'), we have

jtﬁ( (1),(8)) = < (p(8), Hyl(t), p(t))) — H(a(t), p(0))
)
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Set *(t) := x(T — t) and p*(t) = DS(x(T —t)) — p(T" — t). For the
derivative of the second term, we obtain similarly that
d * * . %k
(L@ (T 0, (T — 1))
d

- mﬁ*(m*(T —1),#"(T = 1))

= (T = ) Hp, (7(T — 1), p"(T = 1))
—p (T = ) Hpp(«"(T = ), p"(T = 1)) Hy (2" (T = 1), p*(T — 1))
— Hy (27(T = 1), p"(T = ) Hpy («"(T = ), p"(T = 1)).
Definition 4.3.11. Let H and S satisfy Assumption 4.1.1. We say that H

and H* satisfy the a-entropy-convexity inequality if for all z € E and
p € R, we have

a((p, Hp(x,p)) — H(z,p)] + o [(p*, Hy(x,p")) — H' (z,p")]
< (p, Hpa(z,p)Hp(, p)) — (p, Hpp(z, p) Hu (2, p))

— (Ho(,p), Hp(x, p)) + (p*, Hyp (2, p") Hp (3, p%))

— (", Hpy (@, p")Hy (2, p")) — (Hyp(x,p"), Hy (2, p%)),

where p* = DS(x) —p.If H = H*, we say that H satisfies the a-entropy-
convexity inequality if

al(p, Hy(x,p)) — H(x,p)] < (p, Hpe (2, p) Hp (2, p))
— (0, Hpp(2,p) Ha(,p)) — (Ha(2,p), Hp(2,p)), (43.4)

forall z € F and p € R%.

(4.3.3)

It is immediate that if H = H* (4.3.4) implies that H and H* satisfy the
a-entropy-convexity inequality. The following lemma connects the entropy

convexity inequalities with the entropy-information inequality in the case
that H = H*.

Lemma 4.3.12. Let H and S satisfy Assumption 4.1.1. Furthermore, suppose
that H = H*. If H satisfies the a-entropy convexity inequality, then H
satisfies inequality (4.2.2) in Lemma 4.2.3 and if there is only one stationary
point xs for the McKean-Vlasov equation where S(xs) = 0 then (EIl)-« is
satisfied.

Proof. Because it holds that H = H*, (4.3.4) is also satisfied for H*. Tak-
ing p = DS(x) and using the identities from Lemma 4.3.8 to rewrite all
quantities involving H* in terms of H yields (4.2.2). O
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For T > 0 let
s(T—t) ifg<t
Gr(s.t) = = ifs <
HLZ9) if s > t.

A direct computation for a function ¢ € C([0,77]) that is twice continu-
ously differentiable on (0, 7") that

T—1

t T
¢@:fr¢@+Twm—A¢@&@ww

Combining (4.3.2) and (4.3.3) with the definition of the entropy convexity
inequality, we have the following result.

Theorem 4.3.13. Let H and S satisfy Assumption 4.1.1. Additionally, let H
and H* together with S satisfy the a-entropy convexity inequality. Consider
an entropic interpolation {x(t) }o<¢<7 satisfying Assumption 4.3.2. Then we
have that

T—1 t

S(a(t) <~ 5(@(0)) + 7S ((T))

T
— 04/0 [L(z(s),2(s)) + L (z*(T — s),&"(T — s))] Gr(s,t)ds.

In particular, if o > 0, we have convexity of the entropy along entropic inter-
polations satisfying Assumption 4.3.2.

Remark 4.3.14. The integral term on the right hand side of the proposi-
tion is somewhat hard to interpret. It would be of interest to see whether
this integral term can be bounded from below by some (non-symmetric)
distance d. If so, this proposition can serve as starting point for the study
of a-convexity of the entropy along entropic interpolations:

S(a) < Tt (@(0) + £5@) — 0 D a(0),a(1).
This is analogous to the setting of optimal transport, where under bounds
on the curvature of the underlying space, the entropy is o convex with
respect to the Wasserstein distance along displacement interpolations, see
von Renesse and Sturm [2005] or Chapter 16 in Villani [2009]. Also see
Erbar and Maas [2012] for related inequalities for the space of measures on
a discrete space.
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44 ENTROPIC INTERPOLATIONS: EXAMPLES

We verify the conditions for Assumptions 4.1.1 and 4.3.2 for three examples
in which H = H* and prove the entropy-convexity inequality.

4.4.1 Entropic interpolations corresponding to the Ornstein-Uhlenbeck pro-
cess

We verify the conditions for Assumptions 4.1.1 and 4.3.2 for three examples.

4.4.2 The generalized Ornstein-Uhlenbeck process

An example where we can easily verify an o entropy convexity inequality is
for the Hamiltonian corresponding to the generalized Ornstein-Uhlenbeck
process. Let V : RY — [0, 00) be some twice continuously differentiable
convex function. Consider the following sequence of processes:

dX,(t) = —VV (X, (t))dt + \}ﬁdW(t).

The Freidlin-Wentzell large deviation principle of the trajectories of these
processes gives an operator

1 2
H(z,p) = 5> v = piVi(®),
where Vj; is the derivative of V in the i-th coordinate. The associated en-
tropy S is given by S(z) = 2V (x)

Theorem 4.4.1. Consider H and S introduced above. Then we have the
entropy-convexity inequality with the largest constant oo € R such that the
matrix

VVV —al

is non-negative definite. Consequently, the conclusions of Theorem 4.3.13 hold
for the entropy S(x) = 2V (z).

Clearly, in this setting Assumption 4.3.2 is satisfied. Thus this result holds
for all entropic interpolations.
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Proof. It is immediate to verify that H = H*, so we only check the entropy-
convexity inequality for H. On one hand, we have pH,(z,p) — H(z,p) =
% >, 2, whereas on the other

ppr(x,p)Hp(x,p) - ppr(x,p)Hm(x,p) - Hp(x,p)Hw(x,p)

=Y piVij(z)p;
1,7

443 One-dimensional Wright-Fisher model

We return to the setting of Example 4.2.6, but now we only consider the
one-dimensional example. In particular, we choose our state-space to be
equal to F = [0, 1] and H is given by

La(@)w? — b(a)p,

H(J},p) = 9

where

5 (o — (L))

The entropy S reduces in this setting to

a(z) = z(1 — ), b(x) =

M1 12
S(x) = p1log ———— + palog —
) u(l =) px

Lemma 4.4.2. Let py, po > 0 and g = py + po. Then assumption 4.3.2 is
satisfied:

(a) H=H*,

(b) Hy(x,0) > 0 and Hy(x,1) <0,

(c) the maps x +— L(x,0) and x — S(x) are decreasing on an open neigh-
bourhood Uy of 0 and increasing on an open neighbourhood U; of 1,

(d) we have

lim L(x,0) — £(0,0) _ ~
20 S(x) —S(0)

lim L(x,0) — L£(1,0) _ ~
a1 S(x)—5S(1) '

As a consequence, Assumption 4.3.2 is satisfied for this model.
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Proof. Using that DS(z) = ?((;)), it is straightforward to verify that H =
H*. We have Hp(z,0) = —b(x), so that H,(0,0) > 0 and H,(1,0) < 0 by
the positivity of p; and po.

As DS(x) = ?((f)), we find that

_ 1b(x)?
~ 2a(z)’

L(x,0) = —H(z, %DS(x))

Differentiating this with respect to z yields

d
2££($, 0) = ()7

To verify the third claim for £, we need to know the sign of this derivative.
As the denominator is non-negative, we calculate the numerator(recall that

po= 1+ p2):
1

2a()b(@)V(z) = a'(2)b(x)* = 7 [op — o] (10 = 2p0) 7+ g1

Thus the claim in (c) for £ follows as this quantity is negative for x close
to 0 and positive for x close to 1. The statement for S is clear.

We verify (d) only for the left-hand boundary. The claim follows if we can
show that L £(z,0) diverges to —oc faster than DS(z) diverges to —oc.

Note that
2a(x)b (z) — o' (z)b(x)
a(z)

As DS(x) < 0 for x close to 0, we have to show that

d
2£L’(:c, 0) = DS(x)

20()¥/(z) — ' (@)b(x) _ zn — wpz + i
a(x) 2z(1 — x)

diverges to oo as x | 0. This, however, is immediate from the % term in the
denominator and the positive o term in the numerator. O

In this one-dimensional setting, we improve the constant of the entropy-
information inequality of Proposition 4.2.7 and extend it to the entropy-
convexity inequality.
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Theorem 4.4.3 (Wright-Fisher model with positive mutation rates for two
species). Let p1, p2 > 0 and let yp = py + po. Let H be the Hamiltonian
given by

1
H(z,p) = Sa(x)p” = b(=)p,
where

b(z) = T (1 —2)p2

a(z) = z(1 —z), 5 ,

and where S is given by

M1 M2
S(z) = p1log ———— + pg log —.
u(l— ) p
Then H satisfies the entropy-convexity inequality and the conclusions of The-
orem 4.3.13 with respect to S with constant

1 1

1
a:§M+§\/M2—(M1—M2)2:§M+m

for all entropic interpolations. Additionally, this constant is optimal for the
entropy-convexity inequality.

Proof. To start, we find

pHy (2, p) ~ H(z,p) = Sa(e)p*.

A second tedious, but straightforward, calculation yields

pHpe (v, p) Hy(x, p) — pHpp(w, p) He (2, p) — Hy(z,p) Hp(w, p)

- a(a;)b'(x)—%a’(a:)b(x) P2

Using the definitions of a and b, we conclude that we need to find the largest
o for which

2a(x — o2) < (1 — o) + s

is satisfied for all z € [—1, 1]. As p11, 2 > 0, there is at least some o > 0
for which this inequality is satisfied. To find the largest a > 0 for which
this is the case, the minimum of

folx) = 2az® + (1 — p2 — 20)x + po
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for z € [0, 1] should equal 0. As f, is convex for & > 0, the derivative in
z of f, is increasing. As f,(0), fo(1) > 0, & must be such that f/(0) < 0
and f! (1) > 0. We conclude that 2o > |u1 — p2|. The location of the
minimum of f,, is found at

1 — o

a:mm(a) - 2 4«

Evaluating the parabola in its minimum and putting this equal to 0 gives
an equation for the value of a:

(11 — p2 — 20)* — 8app = 0
which is equivalent to solving

40® — dpor+ (1 — p2)* = 0.

Both zeros are non-negative, but an elementary computation shows that
the smallest solution is smaller than %|M1 — p2|. We conclude that the
largest suitable v equals

1

1 1
a=§u+5\/u2—(u1—uz)2=§u+\/M-

4.44 Glauber dynamics for the Curie-Weiss model

The final result of this chapter is the extension of Proposition 4.2.5 to the
setting of entropy-convexity.

We introduce two auxiliary functions that turn up in the analysis at various
points. Define

G1(x) := cosh(fBz) — zsinh(fx),
Go(x) := sinh(fBz) —  cosh(fx),

and note that the Hamiltonian can be rewritten in terms of G; and G5 as
H(z,p) = [cosh(2p) — 1] G1(z) + sinh(2p)Ga(x).

The following lemma follows from the definitions of G} and Ga.

Lemma 4.4.4. For 3 € [0, 1] the functions G1,G3 : [—1,1] — R have the
following properties
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(a) G is even, positive, increasing for x < 0 and decreasing for x > 0,

(b) Gg is odd, positive for x < 0, negative for x > 0 and decreasing.

We start out by verifying Assumption 4.3.2.

Lemma 4.4.5. Assumption 4.3.2 is satisfied:

(a) H=H*,

(b) Hy(—1,0) >0, H,(1,0) >0,

(c) the maps x — L(x,0) and x — S(x) are decreasing on an open neigh-

bourhood U_; of —1 and increasing on an open neighbourhood Uy of
1,

(d) we have
lim ( ) £(=1,0) = 00
lim ( ) 5(1,0) ~
o1 S(x) - S(1) '

As a consequence Assumption 4.3.2 is satisfied for this model.

Proof. The (a) follows from a direct computation. For (b), note that
H,(x,0) = 2Gy(x). By Lemma 4.4.4, we find H,(—1,0) = G2(—1) > 0
and Hy(1,0) = G2(1) >0

Claim (c) for .S is clear and for L it is immediate from
1
L(z,0) = —inf H(z,p) = —H, (:L‘, 2DS(:E)>
P

—V1—22+4+Gi(x)

The square root has diverging derivative for x close to the boundary,
whereas the second term is continuously differentiable on [—1, 1], thus we
obtain the result.

We only verify (d) for the left boundary. In particular, it is sufficient to
show that -1 £(,0) diverges to —oo faster that D'S(x) diverges to —oc as
x J —1. In particular, close to —1, we have

4 r(2,0) = —a(a)

dz +ci(x), DS(z) = %10g(1+x)+02(1;)’

1
vitz
where ¢y, ¢ are functions that are bounded on a neighbourhood of —1 and
where «a is a function close to —1 for z close to —1. The result follows from
the asymptotic behaviour of \/;r% and log(1 + x) close to —1. O
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We proceed with the main result for this model.

Theorem 4.4.6 (Curie-Weiss jump process on two states). Consider the
Hamiltonian H : [—1,1] x R — R defined in Proposition 4.2.5 by

H(z,p) = 1-z ; T epe [€2p — 1] + 7142*.%67533 [6721) — 1]

for B < 1. Then H satisfies the entropy-convexity inequality with respect
to the relative entropy S(z) = 5% log(1 — z) + $2 log(1 + z) — 3822
with constant 4(1 — () and thus the conclusions of Theorem 4.3.13 hold with
constant 4(1 — ) for all entropic interpolations.

As noted above H = H* in this case, so we only have to consider the
4(1 — () entropy-convexity inequality for H. The proof is based on the
basic inequality that (1 — 8)p < (1 — 8) sinh(p) for p > 0, and thus does
not immediately generalize for 5 > 1.

Proof of Theorem 4.4.6. Based on the constant obtained in 4.2.5, we will
prove

a[(p, Hp(x,p)) — H(x,p)] < (p, Hpa (2, p) Hp(, p))
— (0, Hpp(2,p) Ha (2, p)) — (Ha(2,p), Hp(2,p)),

for « = 4(1 — (). Note that for p = 0 all terms equal 0. Because the
state-space for p is one-dimensional and the problem is symmetric under
flipping (x, p) to (—x, —p), it suffices to prove that the derivatives in p, for
p > 0 for every fixed x of the functions on the left and right hand side are
ordered with the same constant o = 4(1 — ):

apHyp(x,p) < pHpep(x, p)Hy(z, p)
- pHPPP(x7p)Hx(x7p) - 2pr(x,p)Hx(x,p)

Our argument will be based on the basic inequality that 2p < sinh(2p) for
p > 0. In particular, as Hy,(z,p) > 0 by the strict convexity of H in the
momentum variable this implies that

4(1 = B)pHpp(x,p) < 2(1 — B) sinh(2p) Hyp(x, p).

Thus, it suffices to prove for p > 0 and all « that

0< pprp(:C,p)Hp(:C,p) - pprp(SC,p)Hz(x,p)
— 2Hyp(2,p) (Ha(x,p) + (1 — B)sinh(2p)) . (4.4.1)
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To do this, we study the Hamiltonian in terms of G| and G as
H(z,p) = [cosh(2p) — 1] G1(z) + sinh(2p)Ga(x).
This representation immediately yields that
Hyp(z,p) = 4cosh(2p)Gi(x) + 4sinh(2p)Ga(x),
which in turn implies that
Hyep(w,p) = 4Ho(x,p) + 4G ().

Because H,,p,(z,p) = 4H,(x,p), we conclude that the first two terms of
the right hand side of (4.4.1) equal

pprP(xvp)Hp(xvp) - pprp(a:,p)Hx(x,p)
= 4pG'y(v) Hp(, p).

The last term of (4.4.1) can be rewritten as

— 2Hpp(w,p) ((cosh(2p) — 1)G(z) + sinh(2p) (G4(z) + 1 — B))
= —2Hyy(z, p)(cosh(2p) — 1)Gi ()
+ sinh(2p) Hyp(z, p) [(1 — 8)(cosh(Bz) — 1) + B sinh(Bz)] .

Rewriting these last two equations, we have to prove for all z and p > 0
that

0 < 8 [psinh(2p) — cosh?(2p) + cosh(2p)] G1(z)G (x) (4.4.2)
+ 8 [pcosh(2p) + sinh(2p) cosh(2p) — sinh(2p)] G} (z)Ga(x)
+ 2Hpp(x, p) sinh(2p) [(1 — B)(cosh(Bx) — 1) 4 fa sinh(Bz)] .
This will be proven in two steps, first we prove this inequality for z > 0
and all p > 0, and afterwards we consider the case that x < 0 and p > 0.
Case 1: x > 0. It can immediately be seen that the third line in (4.4.2) is
bounded below by 0. For the first line, we show that

p — psinh(2p) — cosh?(2p) + cosh(2p)
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is non-positive for p > 0. First note that 2p < sinh(2p), and thus
psinh(2p) — cosh?(2p) + cosh(2p)

1
< 5 sinh?(2p) — cosh?(2p) + cosh(2p)

1 1
=-5"3 cosh?(2p) + cosh(2p)

1
—i(cosh(Qp) —1)?
<0.

G1(z)G(z) < 0 for x > 0 by Lemma 4.4.4, which implies that also the
first term of (4.4.2) is non-negative.

We proceed with the second term. The map

p cosh(2p) + sinh(2p) cosh(2p) — sinh(2p)

is non-negative for p > 0 as cosh(2p) > 1. Additionally, by Lemma 4.4.4,

the product G’ (x)G2(x) is non-negative.
We conclude that (4.4.2) holds for p > 0 and = > 0.

Case 2: x < (. The non-negativity for lines 2 and 3 of the right-hand side
in (4.4.2) still hold, but we need to show that these lines compensate line

1, that is now negative due to the positivity of the product G1(z)G’ ().

In particular, we will show that line three of the right hand side of (4.4.2)
compensates the first term. Note that

0> (1—B)(cosh(Bz) —1) + Bz sinh(Bz) = —G4H(z) — (1—B), (4.4.3)

so that the third term of (4.4.2) equals

2H,(,p) sinh(2p) [(1 — B) (cosh(Bz) — 1) + Bz sinh(Ba))
= —2Hyp(w, p) sinh(2p) [Ga(w) + (1 - )]
= —8cosh(2p) sinh(2p)G1(z) [G5(z) + (1 — B)]
— 8sinh?(2p)Ga(x) [Gh(x) + (1 - ﬁ)]
By equation (4.4.3) and Lemma 4.4.4 the term in the last line is non-negative

if x < 0. Thus, we can use the term in line three to compensate the first
term in (4.4.2). In particular, we have to show that

0 < —8cosh(2p) sinh(2p)G1 () [G5(z) + (1 — B)]
+ 8 [psinh(2p) — cosh?(2p) + cosh(2p)] G1(z)G(z).
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for z < 0 and p > 0. We divide by 8G1(x) > 0 and show

0 < — cosh(2p) sinh(2p) [G/Q(I) + (1 - 5)]
+ [p sinh(2p) — cosh?(2p) + cosh(QP)] G ().

Below, we will prove that G| (z) + G5(x) + (1 — 8) < 0 for z < 0. Using
this inequality, we find

— cosh(2p) sinh(2p) [GY(z) + (1 — B)]
+ [p sinh(2p) — cosh?(2p) + cosh(2p)] G (x)
> [cosh(2p) sinh(2p) + psinh(2p) — cosh(2p)(cosh(2p) — 1)] G ().

Because Gj(z) > 0 for z < 0 and psinh(2p) > 0 and sinh(2p) >
cosh(2p) — 1, we find that this term is non-negative.

We are left to prove that G/ (x) + G5 (z) + (1 — ) < 0 for x < 0. First, we
calculate

G(xz) = (B — 1)sinh(Bz) — Bz cosh(Bx),
GY(x) = (B — 1) cosh(Bz) — B sinh(Bz).
We conclude that

G1(2) + Gy(z) + (1 = B)
= (8 — 1) [sinh(Bz) + cosh(Bx) — 1]
— Bz [cosh(Bz) + sinh(Bz)],
which yields that G (z) + G4(z) + (1 — 5) < 0 for z < 0.

We conclude that (4.4.2) holds for all z € [—1,1] and p > 0. This implies
(4.4.1) and thus the entropy-convexity inequality with constant 4(1 — ).
O]

4.5 ENTROPIC INTERPOLATIONS REMAIN IN THE INTERIOR

To conclude this chapter, we prove Proposition 4.3.7. We need some addi-
tional results.

To prove that an interpolation {z(s) } s¢[o,¢ from @ to b remains in the inte-
rior, we argue by contradiction. Suppose that z that hits the boundary for
some s € (0,t), then we find a cheaper trajectory that also connects a to b.
To do this, we use the evolution of the entropy S along the interpolation.

We start out with a technical regularity result.
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Lemma 4.5.1. Lety : [0,t] — [—1,1] be absolutely continuous and such
that

/0 L(v(s),7(s))ds < 0.

Then s — S(7(s)) is absolutely continuous.

Note that this result is non-trivial. A result of Fichtenholz, see Exercise
5.8.61 in Bogachev [2007], shows that if DS(z) — oo or DS(z) — oo for
x close to the boundary, there exists an absolutely continuous trajectory =y
taking values in [a, b] such that s — S(~(s)) is not absolutely continuous.

Proof. The proof is somewhat technical and needs the definition of Lusin’s
property (N). We say that a function F' : (X, A, u) — (Y, B, v) between to
measure spaces satisfies (N) if v(F(A)) = 0 for all A € A with u(A) = 0.

Pick y that satisfies the assumptions of the lemma. Because y and .S are
continuous, s — S((t)) is continuous. y is absolutely continuous, so it
satisfies property (N). As S is continuously differentiable on (a, b) it is ab-
solutely continuous on (a, b). Because S is decreasing in a neighbourhood
of a and increasing in a neighbourhood of b, the absolute continuity of S on
[a, b] follows by the monotone convergence theorem. We conclude that .S
satisfies (N). Clearly the composition s — S(y(s)) of functions that satisfy
(N) also satisfies (N).

To prove that s — S(7(s)) is absolutely continuous, we use Exercise 5.8.57
of Bogachev [2007] that states that a continuous function f : [«, 5] —
R with property (N) is absolutely continuous if there exists a Lebesgue
integrable function g such that f'(x) < g(z) at almost every point where
f'(x) exists.

We show that we can find such a function g for f(x) := S(y(s)), using the
assumption that the Lagrangian cost of the trajectory is finite.

First of all, 7y is differentiable at almost every time. Thus, for almost every
time s for which y(s) € (a,b), the map f is differentiable. For such s, we
have by Lemma 4.3.10 that

L5(1(9)) < £1(5),4(5).

Because S has its maxima at the boundary, a time s for which y(z) €
{—1,1} and f is differentiable, must satisfy f'(s) =0 < L(~(s),7(s)).
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Thus, for almost every time s for which s — S(y(s)), we have
45(v(s)) < L(7(s),7(s)). By the assumption of the lemma and Exer-
cise 5.8.57 of Bogachev [2007], we conclude that s — S(7(s)) is absolutely
continuous. O

Our second auxiliary result is a decomposition for £, which is a result also
obtained in Mielke et al. [2014]. The decomposition there is given in terms
of ¥, ¥* and the decomposition is used to interpret the solution of the
McKean-Vlasov equation as the flow that optimizes an entropy-dissipation
inequality. Here we give a different interpretation of this decomposition.
We first introduce a tilted Hamiltonian H[x] : E° x R — R by

1 1
H(z|(y,p) = H(y,p + 5DS(2)) = H(y, 5 DS(x)). (4.5.1)
It follows that x is a stationary point of the McKean-Vlasov dynamics as-
sociated to H|[z], i.e. H[x],(x,0) = 0.

It can then be shown that £(z, v) can be decomposed into a cost for making
x the stationary point, the cost for having speed v under the tilted dynamics
and a correction term: the increase of entropy along the flow.

Lemma 4.5.2. Forx € (a,b) and v € R, we have the decomposition
1
L(z,v) = L(z,0) + L]z](z,v) + §<DS($),’0>,

where L[z]|(y,v) is defined as the Legendre transform of p — Hz|(y,p), as
defined in (4.5.1).

Furthermore, for x € (a,b), we have Llz]|(z,v) = L[z](x,—v). Finally,
for any absolutely continuous trajectory v : [0,t] — [a,b] that has finite
Lagrangian cost, we have

/0 L(v(5),7(s)) = L{(s), =¥(s))ds = S(v(¢)) = S(7(0))-

Proof. Because H is smooth and has super-linear growth in p for x €
(=1,1), we find that L(z,v) = sup, {pv — H(z,p) = p*v — H(z,p")},
where p* = L, (x, v). Thus, rewriting, we find

L) = 0'0) — Hiz.p")
— "~ 3DS(@)) — Hlel (.57 - 3 DS(@))

— H(z, %DS(&?)) + %<DS($),’U>.
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Now note that the supremum over p in L[z|(z,v) =
sup, {pv — H[z](w,p)} is attained at p* — $DS(z). Also, note that
L(z,0) = H(z, $DS(z)). Hence, the first claim of the lemma is proven.

For the second claim, note that s — S(y(s)) is absolutely continuous by
Lemma 4.5.1. For times s that v(s) € (a, b), the derivative of s — S(7y(s))
is given by Lemma 4.3.10, using that H = H*. For almost all times s such
that v(s) ¢ (a,b), s — S(v(s)) is differentiable as the map is absolutely
continuous. For these times the derivative must be 0 as S has its (strict)
maxima on the boundary. Clearly £(y(s),0) = L(~(s), —0). Thus, the
second claim follows by integration. O

We conclude this section by proving that all entropic interpolations remain
in the interior of F.

Proof of Proposition 4.3.7. Fix t > 0 and «, 3 € E. Let 7 be an optimal
trajectory such that v(0) = a to y(t) = 5.

The strategy of the proof is as follows. We argue by contradiction. First we
assume that there exists an interval [¢o, t1] C [0, t] on which the trajectory
is on the boundary of E. Then, we construct a new trajectory, which is
on the boundary for the times ¢y and ¢, but not for s € (to,t1), which
has lower cost. This contradicts the assumption that our trajectory was
optimal. As a second step, we assume there is an isolated time t* € (0, t)
for which the trajectory is on the boundary. In this setting, we construct a
compatible trajectory that remains in the interior for an interval (¢_, ¢ ) >
t* with lower cost, again contradicting the assumption that our trajectory
was optimal.

These two contradictions show that an optimal trajectory can not be on
the boundary for a time s € (0, t).

First assume that there exists an interval [tg,t1], to # ¢1 such that the
optimal trajectory ~y satisfies y(s) = a for s € [tg, t1]. The argument for
the boundary b is similar. We construct v* that has a lower cost to obtain a
contradiction. Fix some € > 0 small enough such that ¢ < %(tl —tp) and

such that the solution of & = H),(z, 0) started at 2y = a does not leave U,.

Note any solution {z () };>0 of the McKean-Vlasov equation & = H,(z,0)
satisfies z(t) € (a, b) for t > 0 by assumption (b) of the Proposition.

Define v, : [to,t1] = E as 7.(0) = a, Y(s) = Hp(1:(s),0) for s < e
and 7. (s) = 7(e) =: z(e) for s € [¢, 1]. Additionally, we set 7. to be the

117



118

EXPONENTIAL DECAY OF ENTROPY AND ENTROPIC INTERPOLATIONS

time-reversed trajectory on the second half of the interval: 7. (tg + s) =
Vet — s).

Splitting [0,¢] into the two symmetric parts, applying the final part of
Lemma 4.5.2 on the non-stationary part of v, we find

/£'Ye 'Ya d3—2/["75 'Ya ))d
+ (t2 — t1 — 26)L(2(€),0) + (S(=1) — S(2(¢))) -

Now the first term on the right-hand side is 0 as - (s) = H,(7:(s),0) for
s < g, thus

/ L£(1e(5),52()) — £(1(5),3(s))ds
— (12— 1) (£(2(€), 0) — £(a,0)) — 2L(2(2, 0)) + S(a) — 5(=(2)).

The middle term on the right hand is non-negative. That the first and the
third term combined are non-negative for small € follows from assumption
(d) of the proposition.

Thus, we have contradicted the assumption that there exists an interval
[to, t1], to # t1 such that v satisfies (s) = a for s € [tg, t1].

Now suppose there exists t* € (0,¢) such that v(t*) = a. We show that
this leads to a contradiction. Fix z > a. Then the set B, := v !([a, 2)) is
open in [0, 7). Because an open set in R is the countable disjoint union of
open intervals by the Lindel6f lemma, there are three possibilities:

@) t* € (t—.t4), (t—,t4) C Byt t4 ¢ B,

(b) t* € (t_,1], (t_,1] C B.,t_ ¢ B.,

(c) t* €0,t4),]0,t4) C B,,t+ ¢ B,.

Clearly, if (b) happens for all z > a, then [t*,t] C 7~ !(a) which contradicts
the conclusion of the first part of the proof. A similar contradiction occurs

for (c). Note that in case of (a), we have that v(t_) = ~(t;) = z by the
continuity of v.

Thus, we can choose z > a close enough to a, such that (a) is satisfied
and such that [a,z) C U,. Again we construct a cheaper trajectory v*.
As noted above, there are 0 < {_ < t* < ¢4 < t such that we have
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v(t-) = v(ty) = zand a < v(s) < zfort_ < s < t;. Consider the
trajectory

1) fors ¢ [, t4],
z fors e [t_,t4].

V2(8) =

Using Lemma 4.5.2, integrating over time in [t_, ¢, ], we find

128

/t : L(7:(s),72(s))ds = L(z,0)ds (4.5.2)

t_

and

ty ty

L(y(s),7(s))ds = [ Ly(9)](v(s),7(s)) + L{7(s), 0)ds.

t— t_

Because the first term of the integrand on the right is non-negative, and
second term in the integrand is bounded from below by the integrand on
the right in (4.5.2) by condition (c) of the proposition, we find that 7, has
a lower cost than v, contradicting the assumption that v was optimal.

We conclude that an optimal trajectory can only attain a boundary point
at its initial or final time. O
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GIBBS-NON-GIBBS TRANSITIONS

The results in this chapter are work in progress jointly with Christof Kiilske
and Frank Redig.

5.1 LARGE DEVIATIONS FOR INTERACTING DIFFUSION PROCESSES

In this chapter, we consider n mean-field interacting diffusion processes
(Bi(t),...,By(t)) on R. Define the mean X, (t) = 13" Bi(t) and
consider a potential V, : R — R defined by V,(z) = t2? — Laz? + C,,
where C, is a constant such that the minimum of V, is 0, with gradient
F, : R — R given by F,(z) = 2% — az. Then the evolution of the pro-

cesses is given by
1 .
de(t) = _§Fa(Xn(t)) + dWZ@))

where W are independent standard Brownian motions. As a consequence,
the evolution of the mean is given by

4X, () = ~5 Fu(Xa(0) + =dW (0

where W is a standard Brownian motion. Note that the solution to this
stochastic differential equation exists due to Theorem 3.21 and Corollary
3.39 in Pardoux and Riscanu [2014]. By varying the constant a, the poten-
tial V,, changes from a single-well for a < 0 to a double-well for a > 0.
Motivated by the analogies of the Hamiltonian flow corresponding to the
large deviations of this problem and the Hamiltonian flow for Glauber dy-
namics, we can view the a < 0 as a high temperature case and a > O as a
low temperature case.

The non-Lipschitz character of F}, poses problems when directly applying
the large deviation results in the literature. The drift —%Fa(az), however, is
one-sided Lipschitz:

1 1

(@ =0) (~3Fule) = 3Ra)) < (@V O - )
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Thus, we can prove the following theorem as in Deng et al. [2011].

Theorem 5.1.1. If X,,(0) satisfies the large deviation principle with rate
function Iy, then the sequence of the trajectories { X, (t) }+>0 satisfies the large
deviation principle on Dg(R™) with good rate function

Io() + Jo~ £((s),4(s))ds ify € AC,

o0 otherwise,

I(y) =

where L(z,v) = v+ S F,(z)|?

Sketch of proof. The processes X,,(t) have generators

1

Anf(2) = 5 1"(2) = SFale) ' (2),

with a domain that includes the compactly supported twice continuously
differentiable functions C2(R). Define H,,f = n~'e ™ A,e"/, and note
that H, f(z) = 5 f"(z) + 3(f'(z))* — 1 Fu(2) f'(z) for f € CZ(R?). We
define H f(z) = 5(f'(z))? — 3 Fa() f'(z) and immediately obtain that for
f € C?(R%) we have lim,, oo |Hnf — Hf| = 0.

Based on Proposition 3.3.2 in Chapter 3, our goal is to prove the comparison
principle for viscosity subsolutions u and supersolutions v of f —AH f = h
for fixed A > 0 and h € Cy(R).

Consider the good distance function ¥(z, y) = |z—y|? and suppose there
exist Zq, Yo that satisfy

U($a) - U(ya) - aq](xomya) = sup {u(x) - U(y) - a\Il(aj,y)} :
ryel

Writing as before H f(z) = H(x, f'(z)), where H(z,p) = 4p? — $pFa (),

we would need to prove that

liminf H (24, «(VY(-,¥a))(Za)) — H (Ya, (VI (-, y4))(z4)) < 0.

a—r o0

But this is immediate as

H (2, (VY (-, Ya))(2a)) = H (Yo, «(VE (-, ya)) (2a))

< (50 = ya)(— 5 Fala) + 3Falya)) < (@V 0)a¥ (7 o)

which converges to 0 by Lemma 3.3.1.
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The problem with the argument above is that due to non-compactness of R
it is not clear that the points z,, y,, exist. Thus, we need to make an adjust-
ment to the test-function U that makes sure the optima are attained. For
sub-solutions, we need to add a function that grows to infinity for || — co
and for super-solutions, we need to add a function that grows to —oo. This
can be carried out as in Deng et al. [2011]. Verification of the conditions in
Chapter 8 of Feng and Kurtz [2006] follows as in Deng et al. [2011] or as in
Chapter 3. O

5.2 OPTIMAL TRAJECTORIES

In the study of Gibbs-non-Gibbs transitions, it was shown in Ermolaev and
Kiilske [2010], den Hollander et al. [2015] that a bad magnetization o € R
corresponds to the non-uniqueness of optimal trajectories for

sziﬂ{mwm+AcM$wm®} (5.2.1)

yeAC
Y(t)=a

which in turn is equivalent to non-differentiability of I; at c. In this chap-
ter, we will not focus on the probabilistic aspects of the Gibbs-non-Gibbs
transitions, but we will use the Hamilton equations to obtain concrete in-
formation on the optimal solutions of (5.2.1), and as a consequence on the
occurrence of bad magnetizations.

Define the semigroup 7; : Cp(R) — Cp(R) by
th(x)zgg}a{c{ /E d}.
§(t)==

Fix some continuously differentiable function uy. We say that { € (CV);,
if the curve is an optimiser for the variational problem:

u(t.a) = Truole) = w€(O) + [ £E().Es. 622

In particular, note that if u is the rate function of X,,(0), then u(t, -) is the
rate function of X, (¢) by the contraction principle.

We say that a absolutely continuous curve ¢ is an extremal to (C'V); ,, if for
any absolutely continuous perturbation p that satisfies p(¢t) = 0, we have

dig‘sz[)uo(g( ) +ep(0 /ﬁ s) +ep(s),£(s) +ep(s))ds = 0.
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By Theorems 6.2.4 and 6.2.8 in Cannarsa and Sinestrari [2004], an extremal
& for (C'V);, is twice continuously differentiable and solves the Euler-
Lagrange equation. In other words, t — L, (&(t),£(t)) is absolutely con-
tinuous and

Finally, £ also satisfies the transversality condition

£,(£(0),£(0)) = Dug(£(0)).

Remark 5.2.1. Note that a function 6 as in Cannarsa and Sinestrari [2004]
that works globally can not be found due to the unboundedness of F},. Note
however, that we can find such a function locally. The global property, how-
ever, is only necessary to construct optimizers in Theorem 6.1.2. In our
context, however, optimizers exist due to the goodness of the rate func-
tion, which we obtained via different methods. Functions ¢ that satisfy all
bounds locally suffice for all other theorems from Cannarsa and Sinestrari
[2004] by Remark 6.2.7.

Consider the Hamilton equations for the Hamiltonian H(x,p) = %p -
1 .
§pF a(T):

The Euler-Lagrange equations can be recast in terms of Hamilton’s equa-
tions.

p— %Fa(ff)

LE ) (5.2.3)

Theorem 5.2.2 (Theorem 6.3.3 Cannarsa and Sinestrari [2004]). Let ug €
CY(R) and let & € C? be an extremal of (C'V )y, and set

1(s) := Lu(£(5),£(s)), s €[0,1].

Then 1(0) = Duy(£(0)) and the pair (§,n) satisfies the Hamilton equations
(5.2.3).

Conversely, any C? solution (£,7) of the Hamilton equations that satisfy
&(t) = x andn(0) = Duo(£(0)), yields an extremal £(t) for (C'V )z

To rigorously study the solutions of the Hamilton equations and the con-
nection to the gradient of x — w(¢,z), we introduce some definitions.
These definitions and results are taken from Chapters 2 and 3 in Cannarsa
and Sinestrari [2004].
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5.2.1 Semi-concavity and generalized differentials

Let  be some convex subset of R?. We say that a function f € C(f) is
semi-concave if there exists ¢ > 0 such that the function f(z) — §|z|? is
concave. f is locally semi-concave if f is semi-concave on every bounded,
closed and convex subset of ). A locally semi-concave function is locally
Lipschitz continuous by Theorem 2.1.7 in Cannarsa and Sinestrari [2004].

For any z € (2, denote by

o) = @ | i s L) — 4(2) = p(y — @)
o d | iy i U¥) — (@) — p(y — )
D u(:c)—{pG]R ly_mf y— 2] ZO},

the (Fréchet) superdifferential and subdifferential. Both sets are closed and
convex, but are possibly empty. u is differentiable at x if and only if D" u(x)
and D~ u(x) are both non-empty, and in this case we have {Du(x)} =
D%u(x) = D~ u(x), see Proposition 3.1.5 in Cannarsa and Sinestrari
[2004]

Let f be locally Lipschitz. A vector p € R? is called a reachable gradient of
f at z if there exists a sequence x,, C R\ {x} such that f is differentiable
at =, for all n and x,, — z and Df(x,) — p. The set of all reachable
gradients is denoted by D*u(x).

Let f be a locally semi-concave function. Then D f(z) is a singleton if
and only if f is differentiable at x by Proposition 3.3.4 in Cannarsa and
Sinestrari [2004]. For a locally semi-concave function we have D' f(x) =
coD* f(x), where coA denotes the closed convex hull of A C R, see Theo-
rem 3.3.6 in Cannarsa and Sinestrari [2004].

Theorem 5.2.3 (Theorem 6.4.3 and Corollary 6.4.4 Cannarsa and Sinestrari
[2004]). Suppose ug € C(R). Then for anyt > 0, the function x — u(t, x)
defined in (5.2.2) is locally semi-concave on R. Also, the function (t,z) —
u(t, x) is locally semi-concave on (0, 00) x R

The optimization problem in the value function can be restricted to solu-
tions of the Hamilton equations.

Theorem 5.2.4 (Theorem 6.4.6 Cannarsa and Sinestrari [2004]). Let ug €
CH(R). For & € AC setn(s) = L,(£(s),£(s)) and denote

Hip ={E € AC|E() =z, (£(5),n(s)) solves (5.2.3),1m(0) € Dug(£(0))}
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The function x — u(t, z) is given by the minimal selection

éth,z

otteo) = it fuoleo) + [ £le(s).é(o)as

Theorem 5.2.5 (Theorem 6.4.8 Cannarsa and Sinestrari [2004]). Consider
(x,t). Let & be a minimizer for (C'V');, and denote 1(s) = L,((s),£(s))

for all s. Then we have

n(t) € D¥u(t, (1))
n(s) = Du(s,&(s)) s € (0,t).

The gradients are taken in the space variable only.

Theorem 5.2.6 (Theorem 6.4.9 Cannarsa and Sinestrari [2004]). Lett > 0
and x € R. The map that associates with any (pt, pg) € D*u(t, x) the arc
obtained by solving (5.2.3) with the terminal conditions

§(t) =
U(t) = Pz,

provides a one-to-one correspondence between D*u(t, x) and the set of mini-

mizers of (CV') .

Note that this implies by Theorem 3.3.6 and Proposition 3.3.4 in Cannarsa
and Sinestrari [2004] that there is a unique minimizer for (C'V;,) if and
only if w is differentiable in (¢, z).

For a semi-concave function f, denote by I'; the graph of the reachable
super-gradient of f:

I'y:={(z,p) eRxR|pe D*f(x)}.
Note that for a continuously differentiable function f it holds that I'y =
{(z,Df(z)) |z € R},

Corollary 5.2.7. Denote by @ the diffeomorphism that maps each (z,p)
to its image (x(s),p(s)) under the Hamiltonian flow. Ifug € C*(R) then
I‘u(s) C (I)S(Fuo)’

Proof. Consider (r,p) € T'ys). It follows that (x, p) € D*(u(s))(z), where
we take the reachable gradient only in the x coordinate. By the definition
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of the reachable gradient, it follows that D*(u(s))(x) C D*u(s, ), where
the latter is the reachable gradient in time and space.

Thus, it follows by Theorem 5.2.6, that we can find a trajectory
(&(r),n(r))o<r<s that solves the Hamilton equations with terminal condi-
tions £(s) = x and n(s) = p. Additionally, we know that this trajectory is a
minimizer of (C'V ;). By Theorem 4.2.2, this trajectory must satisfy the ini-
tial conditions 7(0) = Dug(£(0)). We conclude that (z,p) € ®4(I"y,). O

Therefore, we will study the Hamiltonian flow applied to I';,,, which will
yield information on the gradient of u(t).

Lemma 5.2.8. The graph of DV, (z) = F,(x) is stationary for the Hamil-
tonian flow.

Proof. Note that H(x, F,(z)) = 0 and that the Hamiltonian trajectories
have constant energy. O

Below, we give two examples of the Hamiltonian vector-field. The first ex-

ample is a low-temperature flow, the second example is a high-temperature

flow.

Hamiltonian flow for a = 1, with stationary curve, and stationary points.
1

0.5

-0.5
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Hamiltonian flow for a = 0, with stationary curve, and stationary point.

1 T
// 7 —> > —> el /
P Y,
051" //1/'// . |
//}’/’1 y > >
8, 0 -
xf D
| PR R 4
—05| \ //beb//»‘///
4\ o ¥
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-15 -1 -0.5 0 0.5 1 1.5
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5.3 UNIQUENESS OF OPTIMAL TRAJECTORIES FOR HIGH TEMPERA-
TURE STARTING POINT

In this section we consider a general Hamiltonian H and quadrants in the
position momentum plain that satisfy z > x; and p > 0 for some station-
ary point z, of the McKean-Vlasov equation & = Hp,(x,0).

Assumption 5.3.1. H:R xR — Ris twice continuously differentiable
and convex in p for every x. Let x4 be a stationary point for the McKean-
Vlasov equation & = H,(x,0). We assume that for any fixed p > 0, the
map = — —H,(x, p) is non-decreasing for z > .

We start with an auxiliary lemma.

Lemma 5.3.2. Let H be a Hamiltonian and let x4 be a stationary point for

& = H,(x,p) satisfying Assumption 5.3.1. Then the quadrant x > x5, p > 0
is preserved under the Hamiltonian flow.

Remark 5.3.3. By symmetry, we can prove that the quadrant z < zg,p <
0 is preserved under the Hamiltonian flow by flipping the state-space

(-’B,p) = (—.%', _p)
The appropriate assumption for this case is that

T _E[x(x7p)
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is increasing for x < x5 and p < 0.

Proof of Lemma 5.3.2. Because x; is a stationary point for the Hamiltonian
flow: s = ﬁp(x 5,0) it follows by the convexity of H in the p coordinate
that H,(xs,p) > 0 for p > 0. Thus a solution (z(t), p(t) of the Hamilton
equations starting at (x5, p) for some p > 0 satisfies £(0) > 0.

Additionally, solutions of the Hamilton equations that start with p(0) = 0
will have p(t) = 0 for all t > 0 as H(x,0) = 0 for all z € R. This implies
that solutions can never cross the p = 0 axis. These two statements yield
that H is quadrant preserving. O

Lemma 5.3.4. Consider the Hamiltonian H (z,p) = $p* — pF,(z). The
map x — Hy(x,p) is non-decreasing for x > 0 all p > 0 and for x < 0 and
p <0.

Proof. This follows immediately from

1
—Hy(x,p) = 5?(3332 —a).

Lemma 5.3.5. Let H and x, satisfy Assumption 5.3.1.

Consider x5 < z1 < zg such that 0 < Dug(z1) < Dug(z2). Then we have
forallt > 0 that X (t,21) < X(t,22) and P(t,z1) < P(t, 22).

Proof. Consider two solutions (X (¢, z1), P(t, z1)), (X (t, 22), P(t, 22)) to
the Hamilton equations for H that satisfy the assumptions of the lemma.
We prove the result by contradiction. Suppose for some time
T > 0, we have X(T,z1) > X(T,z2). Then let t; =
inf {t > 0| X(¢,21) > X(t,22)}. Note that t; > 0. It follows that
X(tl, 2’1) = X(tl, 22) and X(tl, 21) > X(tl, 2’2). This implies that

Hy(X (t1,21), P(t1,21)) > Hp(X(t1, 22), P(t1, 22))

which, in turn implies that P(¢1, z1) > P(t1, 22). Because the image under
the flow is a diffeomorphism, we obtain that P(¢1,21) > P(t1, 22). Hence,
there must have been a time 0 < ¢y < t; such that P(tg, z1) = P(to, 22)
and P(to, Zl) 2 P(to, 2’2).

Via Hamilton’s equations, we find H,(X(to,z1),P(to,z1)) <
H,(X(to, z2), P(to, 22)). Because P(tg,z1) = P(tg,z2) we find by
Assumption 5.3.1 that X (¢g,21)) > X(to, 22). This contradicts the fact
that tg < 5. ]
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Corollary 5.3.6. Consider the Hamiltonian H(xz,p) = 3p*—3pF,(z). Sup-
pose our starting rate function Iy is given by Vy, forb < 0 (high-temperature),
then Iy = TV}, is continuously differentiable for allt > 0. Additionally, this
is equivalent to the uniqueness of the minimizer of

e) = Tia) = uf, {Vi(e)+ [ £(6(6)é(spas}

W=z

for every fixedx € R andt > 0.

Proof. Fix t > 0. Note that the graph of the curve = — ug(x) := Fp(z) =
Vi (x) is contained in the quadrants > 0,p > Oand z < 0,p < 0.
Additionally, z; = 0 is a stationary point for & = H,(z,0).

By Lemma 5.3.2 these two quadrants are preserved under the Hamiltonian
flow. By Corollary 5.2.7, we have I', ;) € ®:I',(q).

Arguing separately for these two quadrants, it follows by Lemma 5.3.5,
{p|(z,p) € &I, ()} is a singleton for all x € R. We conclude that u(t) is
continuously differentiable by Proposition 3.3.4 in Cannarsa and Sinestrari
[2004]. Additionally, this means that minimizers are unique by Theorem
5.2.6. O

Even though the methods in this chapter are not immediately applicable
to Glauber dynamics for the Curie-Weiss model due to the fact that the re-
sults in Cannarsa and Sinestrari [2004] work only for open sets, preliminary
results based on Proposition 4.3.7 and Lemma 4.4.5 show that issues due to
the boundary can be resolved in an ad-hoc manner in the one-dimensional
case. We state an analogue of Lemma 5.3.4 for this setting.

Lemma 5.3.7. We consider H : [—1,1] x R of the Glauber type:

H(z,p) = 71;:665:” [e2p — 1] + i1te ;xefﬂ‘r [672}7 — 1] )

Suppose that § < 1, then x — —H.(x,p) is non-decreasing for x > 0 if
p > 0 is fixed and for non-decreasing for x < 0 ifp < 0.

Proof. We only prove the first claim as the second one is proven analo-
gously. We rewrite H (z, p) as

H(z,p) = 2sinh(Bx + p) sinh(p) — 2z cosh(Bz + p) sinh(p).
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We conclude that

—H,(x,p) = 2[1 — p] cosh(Bz + p) sinh(p)
— 2z sinh(Bz + p) sinh(p).

Thus, it follows that both terms of x — —H(x,p) are non-decreasing
individually. O

54 MAXWELL CONSTRUCTION OF NON-GIBBSIAN POINTS

We have seen above that in the case of a starting rate function with a
minimum for = 0 and which is convex, we obtain differentiability in a
straightforward way. In the more involved case that the starting rate func-
tion is not convex, we do not expect the push-forward Cy; = ®;C under
the Hamiltonian flow

b= %Fa (1')

)
P —H,(x,p) 3PF;(z)

to correspond to the graph of a function. In fact, this can be proven by
combining the identification in Theorem 5.2.6 between optimal trajectories
to elements in the reachable supergradient of u, with the results obtained
in Ermolaev and Kiilske [2010], den Hollander et al. [2015].

Y

Thus, a more elaborate approach is needed in this more general setting. Be-
cause the Hamilton equations have unique solutions, the graph C; can not
intersect itself. This means that C; consists of finitely many pieces which
can be represented as graphs of functions. This allows to give a Maxwell-
construction for those points at which the time-evolved rate function is not
C'. We will show that the function u; can be reconstructed as follows.

(a) For any branch of the derivative, expressible as a graph of a function
Duj, v = 1,...,k, we construct corresponding branches of the func-
tion uj}, up to constants C".

(b) We, adjust the constants in such a way that the branches of these func-
tions when put together form a continuous curve.

(c) Take the lower envelope of that curve.

(d) Add a constant such that the minimal value of the resulting function is
0 to obtain the time-evolved rate-function.

From this construction we can identify the discontinuity points of the

resulting time-evolved rate function by a graphical construction which
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only looks at sizes of overhangs which result from time-evolution. Indeed,
the points where different branches come together in a non-differentiable
way, are given in terms of an "equal-area under the overhang of Du"-
requirement.

5.4.1 The construction

We carry out the construction introduced above, based on the method of
characteristics. Consider the set of Hamilton equations

X = Hy(X,P)

P=—H,(X,P)
with starting conditions

X(0) ==

P(0) = Vup(z)

and denote the z dependent family of solutions by (X (¢, 2), P(t, 2)). Fi-
nally, we solve

U=—H(X,P)+ PH,X,P) U(0,2) = ug(z) (5.4.1)

and set U(t, z) to be the solution based on (X (t, z), P(t, z)). Note that U
equals

L(X,X) = sup {pX — H(X,p)}
P
= sup {pH,(X, P) — H(X,p)} = PHy(X, P) — H(X, P),
P
in other words, U measures the Lagrangian cost along the solution of the

Hamiltonian flow. By Theorem 5.2.4, we have

u(x,t) = . X%?E):x U(t, z). (5.4.2)

The branches of the derivative that we will be using for the Maxwell
construction are exactly branches of P(t,z), and their integrals will
be branches of U(t,z). Recall that z — (X (t,2),P(t,z)) are z
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(X (t,2),U(t,2)) are two parametrized curves from R to R?. Thus, us-
ing the inverse function in appropriate domains, we can re-express these
curves implicitly as branches of functions =z +— P(t,z(z)) and =
U(t,z(x)), where x + z(x) is an appropriate branch of inverse function
of z — X(t, 2).

The next technical lemma is crucial to be able to apply the inverse function
theorem.

Lemma 5.4.1. Foranyt > 0 and z € R, we have
U,(t,z) = P(t,2) X,(t, 2).

Note in particular, that this means that if the x variable does not change
under varying z, then the value function remains the same.

For parts where x does vary; i.e. where we want to interpret it as one of

the candidate functions for the Maxwell construction; we have %U (t,z) =

)[é ((i;)) = P(t, z) which is the desired property. Indeed, the graph of P is

the derivative of the candidate value function.

Proof. In the proof, the dependence of X, P, U on (¢, z) will be suppressed
in the notation. As above, U means %U. Starting from (5.4.1), differentiat-
ing with respect to z, we see

U, = —H,(X,P)X, — Hy(X, P)P,
+ P,H,(X, P) + PH,,(X, P)X, + PH,,(X, P)P,
— —H,(X,P)X. + PH,,(X,P)X, + PH,,(X, P)P,
= —H,(X,P)X.+ PX,

= PX, + PX..
This indeed equals the time derivative of ¢ — P(t,2)X,(t, z). Because
U.(0,z) = P(0,z) and X, (0, z) = 1, the lemma is proven. O
Consider the parametrized curve v (z) =  ®y(z,Dug(z)) =

(X (t,2), P(t,2)) in R?, so that
Cy = 0,Cyp = {(z)|z € R}

To split the set (X (¢, 2), P(t, z)) into branches that can be interpreted as
functions, we need to cut apart the set at the points where the tangent is
vertical.
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Let V := {(0,v) |v € R}. Define z; = inf{z | Dv(z) € V}, which is
the first moment the curve ~;(z) has a vertical gradient. This is the first
point z where an overhang can be created, and where X, (¢,z) = 0. Put
z{ =inf {z > 21| D(2) ¢ V'}. Note that z] # z; only if the curve -, has
constant first coordinate for z € [z1, 2{], i.e. 7 has a vertical slope on the
interval [z, 2]].

For n > 2, iteratively define points of vertical gradient by

zn =inf {z > 2% | | Dy(2) € V}
zp =1inf{z > 2 | Dy(z) ¢ V}.

Define for all n the projections of v;(z,) on the horizontal axis: x,, :=
7z (Vt(2n)). We then define a collection of intervals Iy := (—o0, x1 ],

[-Tnyxn+1] ifz, < Tpy1
I, :=

[wn—l—l, xn] if Tn > Tp41-

On the intervals I,,, we first define the continuous branches of the set C;
with the properties

(@) wy: I, —» R,

(b) wn(X(t,2)) = P(t,2) for z € [}, zny1].

Then construct a collection of functions v,, such that

@) v, : I, = R,

(b) v (X(t,2)) =Ul(t, 2) for z € [z}, zn41].

The next two results show that the functions v,, and w,, have the desired
properties.

Proposition 5.4.2. For every n, the function v, is differentiable on I,, and
has derivative
d

—up(x) = wp(z).

dx
In other words, we have

%vn(X(t,z)) = P(t,z) = wo(X(t, 2)), z € [z}, Znt1]-
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Proof. We prove the second statement, as it implies the first. On the interval
(2%, Zn+1), the function z — X, (t, z) is non-zero and has fixed sign, so by
the chain rule and the inverse function theorem, we obtain

_ Dvp(X(t, 2)) U.(

t,2)
Dyvn(X(t,2)) = X.(t2)  X.(t2)

= P(t,z) = wy(X(t, 2)).

The third equality is a consequence of Lemma 5.4.1. O

The next result is a second consequence of Lemma 5.4.1.

Lemma 5.4.3. We have for all n that v, (2p41) = Unt1(Tnt1)-

Proof. First recall that x, = 7, (ve(2r)) = 72(7e(25)). For z € [z1, zi11),
we have Dv;(z) € V which is equivalent to saying that X, (¢, z) = 0. By
Lemma 5.4.1 it follows that U (t, z) = 0.

It follows that v, (z,,) = U(t, zn) = U(t, 2%) = vpg1(2n). O

Combining (5.4.2) and the definition of the functions v,,, we obtain the fol-
lowing result.

Theorem 5.4.4 (Maxwell-construction). Fort > 0, we find that

u(t,z) = inf wv,(x). (5.4.3)

n:x€l,

5.5 THE LIMIT OF THE RATE FUNCTION WITH TIME GOING TO IN-
FINITY

The Maxwell-construction tells us that the rate function is obtained by in-
tegrating the area under the ‘graph’ of (X (¢, z), P(t, z)). Even though the
approach is work in progress, graphical analysis of the Maxwell construc-
tion allows one to reproduce results like in Ermolaev and Kiilske [2010].
The use of this construction to rigorously prove similar results is work
in progress. Below we consider the simpler limiting behaviour of the rate
function when time goes to infinity. In Section 5.6, we comment on the rate
function for a finite time.

Recall that V,(z) = %:LA — %ch + C., where C. = v/14¢? is the constant
such that the minimum of V, equals 0. Note that F,(z) = 2% — cx and that
Ve has either one minimum at 0 if ¢ < 0, or two minima z, — = —y/c and

Teq =+/cifc > 0.
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The dynamics of our problem was defined in terms of the Hamiltonian
H(z,p) = 4p* — ipF,(z), and we start with rate function V;(z) at time
0.

We obtain the following result on the limiting rate function.

Theorem 5.5.1. Let a be the parameter of the dynamics, and b parameter of
the rate function. Suppose that it does not hold that [b > 0 and a > b]. Then
if ug = Vj, we find that

tliglo U(t, .%') = Voo(x)a z €R,
where Voo =V, ifa < 0 and
Va() forz ¢ [—va,d]
Va(z) AV(0)  forz € [=V/a,/al,

ifa > 0.1Ifb > 0 and a > b, then we conjecture this result to be true.

Vool(z) =

In the case that b > 0 and a > b, note that the solutions of V,(z) = V;(0)
in the region (—+/a, \/a) are given by +£v/a — b.
If b = a, the curve Fy, = F, which is stationary under the Hamiltonian flow

and there is nothing to prove: Vi, = V, = V},. The argument is divided into
four cases:

(a) Cooling down from high temperature: b < 0 and a > b.
(b) Heating up a high temperature starting profile: b < 0 and a < b.
(c) Heating up a low temperature profile: b > 0 and b > a.

(d) Cooling down a low temperature profile with a low temperature dy-
namics: b > 0 and a > b.

We will prove (a)-(c) and argue why we expect the stated result to be true
for (d).
Proof of (a), b < 0, a > b. Fix some y € R. We show that u(t,y) — Voo ().

Fix some t > 0, and denote by C; = ®,F}, the image of the graph (z, Fy,(z))
under the Hamiltonian flow. Because we have a high temperature starting
profile, C; is the graph of a function by Corollary 5.3.6, we denote this
function by v' : R — R. In particular, we obtain that Du(t, ) = v(-).

We will show that v* converges uniformly on compacts to the function

Fo(z)v0 forxz>0
F,(x) A0 forz <0,

v>¥(z) =
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so that the result of Theorem 5.5.1 for this setting follows by integration.

We consider the branch y + v'(y) for y > 0. The other part fol-
lows by symmetry. Fix some ¥;nq,; > 0 and consider y € [0, Ymaqz]- Let
{z(s), p(s) }o<s<t, ©(t) = y be the unique optimal trajectory for

atte) = anf, {0+ [ £iels).é6as}

ECAC

)=y
By Theorem 5.2.2, there exists yg > 0 such that (z(0), p(0)) = (yo, F1(v0))
As a consequence of b < 0, a > b, we have that the energy of this curve
equals £ = H(yo, Vi(y0)) > 0. Re-expressing the Hamilton equations in
space-energy coordinates, we find that

1
i(s) = 5\/Fa(:c(s))2 +8F > V2E.
This implies that

ZZZMZ °F,

and as H(y,p(t)) = E by the conservation of energy along the Hamilto-
nian flow:

0< 1) (olt) — Fuly) < 2 < Ve

-2 2t T 22
Because p(t) > 0V F,(x) by the condition that E' > 0, p(t) must be close
to the largest zero of the function z — H(y,z) = 32(z — F,(y)). As a
function of y > 0, this largest zero is given by the function v>°.

(5.5.1)

Thus equation (5.5.1) gives us a uniform bound on the difference between v’

and v™ in the interval [0, ¥,42]. We conclude that v! — v>° uniformly on
compacts and thus u(¢, -) — Vi (-) point-wise and uniformly on compacts.

O]

Proof of (b), b < 0, a < b. In this case, both curves x — F,(z), Fy(x) are
in the upper right and lower left quadrants. In contrast to the proof above,
we have that H(z, Fy(z)) < 0 for all . However, we still have that the
set Cy = ®,Fy, is the graph of a function by Corollary 5.3.6 As before, we
denote this function by v' : R — R. Additionally, we have the equality
Du(t, ) = v'(-).

We will show that v' — F,, point-wise, as this proves the claim in this par-
ticular setting. Again we argue only for the part of the curve where y > 0,
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as the two regions are symmetric. Fix y > 0 and ¢ > 0. Then there is a
unique trajectory {x:(s), pt(s) bo<s<t, z(t) = y that solves the Hamilton
equations and such that (z+(0),p:(0)) = (v, Fy(y¢)). Using the Hamil-
ton equation for the momentum, we find pi(s) = —Hy(z(s),pi(s)) =
spe(s)(e(s)? — a) > —3api(s). Gronwall's lemma vyields p(t) >
e_%“tpt(()). Because the energy of the curve is negative, we find that
Pi(t) < Faly) and thus that Fi(yr) = pi(0) < e2*'Fi(y).

Fy is a strictly increasing function, which gives the upper bound y; <
Fb_l(e%atFa(y)) =: Cty. And as such a lower bound on the energy of
the curve:

1 1 1
0> H(y, pe(0)) > H(yt, §Fb(yt)) = —gFa(yt)Q > _gFa(Ct,y)2-

Note that as ¢ — oo, we have C;, | 0, so the energy of the optimizing
trajectory gets pushed to 0 from below. We obtain that any limit point of
pt(t) as t — oo must equal 0 or Fy,(y). The first however, is not possible
as we now explain.

The evolution of the Hamiltonian flow for a fixed time 7" is a diffeomor-
phism, and on the horizontal axis the McKean-Vlasov dynamics converges
to the equilibrium point 0, i.e. # = H,(x,0) < 0 for x > 0. This implies
that if p.(t) is very close to 0, the starting point (x+(0), p;(0)) must satisfy
x¢(0) > y which contradicts the fact that (x:(0), p:(0)) = (v, Fyp(yo)). O

We proceed with the preparations of the proof of (c), where we start with a
low temperature starting profile. In this case, we are not able to use Corol-
lary 5.3.6. Instead, we work with the Maxwell-construction.

We sketch the strategy of the proof. First note that the starting curve z —
Fy () satisfies Fy(2) > 0 for z € (—/b,0) and Fy(x) < 0 for z € (0, VD).
We first consider the part of the graph (z, Fj(z)) for z € (—v/b,0). As
in the proof of (a), we re-parametrize the Hamilton equations in terms of
space and energy. Thus, we re-parametrize (z,p) as

z(z,p) =
p* 1

— — —pF,
5 2p a($>

We solve for p to re-express the Hamilton equations in terms of x and E.
We can only do in a one-to-one manner in restricted regions. Note

E(x,p) = H(z,p) =

1 1
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For the proof of (c), we consider the setting where £ > 0 and p > 0, thus
we have to choose

1 1
p= §Fa(:n) + ZFa(ﬂv)2 +2E.

We conclude that the Hamilton equations get transformed to

1 .
i=\|{Fal@)?+2E,  E=0.

Again let z € (—v/b,0) and let (X (¢, 2), P(t, z)) be the solution to the
Hamilton equations with X (0,z) = z and P(0,2) = [}(z). Because the
corresponding energies are non-negative, we see that X (¢, z) > V2E.In
particular, for large enough times, we have X (¢, z) > 0. The same thing
happens for trajectories starting with z € (0, —v/b), so we see that an
overhang is created. We conclude that we need multiple branches of the
Maxwell construction for our analysis.

We refine our analysis. First, we transform our curve Fjy(x) for x €
[—/b, 0] to the corresponding energies F : [—v/b, 0] — [0, 00):

(a —b)

1 1
E(x) = 3 (23 —bx)? - 3 (23 —bx)(2® —azx) = (z* —b2?) (5.5.2)
which takes its maximum E, 4, at some point 4z € [—V/b, 0]. Note that
the function is increasing for x < x4, and decreasing for x > Zp44.-

Fix some Ymar > 0, we study u(t, x) for z € [0, Ymaz) and large times.
In general, it is hard to study the exact structure of the push forward of
the curve (z, Fy(x)) under the time evolution of the Hamiltonian vector
field. However, combining the fact that X (¢,z) > v2FE and the form of
the energy curve in (5.5.2), it is clear that if we choose ¢ large enough, the
only Hamiltonian trajectories that contribute to the Maxwell construction
for x € [0, Ymaz] must have started in either the region close to 0, or the
region close to —/b.

First, we prove alemma that we will use to study the evolution of the Hamil-
tonian flow for curves that have started close to —v/b.

Lemma 5.5.2. Forz € R let (X (t, z), P(t, z)) be the solution to the Hamil-
ton equations with X (0, z) = z and assume that . Suppose that

(a) z1 < 22,
(b) P(0,z21),P(0,z) >0,
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(c) 0 < H(z1, Fy(21)) < H(z2, Fp(22)).
Then X (t,z1) < X(t, z2) forallt > 0.

Proof. Set E; = H(z;, Fy(z:)),1 € {1,2}.

Suppose that the claim is false. Then there exists ¢y such that z =
X(to,z1) = X(to, 22) and X (to,21) > X(to, 22). But this implies, using
the Hamilton equations in terms of energy(using the correct representa-
tion implied by (b)), that \/4 Fy (2)2 + 2B > /1 F,(x)? + 2, which is
in contradiction with F; < FEs. ]

By (5.5.2), we see that x — FE(z) is increasing for —Vb < 2 < Zpaa, so this
lemma tells us that for large times, we get exactly one contributing function
to the Maxwell construction on the interval [0, Ypqa] C [X (¢, —V), Ymaz)s
that originates from points that start close to —/b.

We proceed by considering curves that start close to 0. A priori we cannot
immediately use Lemma 5.5.2, as the energies x — FE(x) are decreasing
for Ty <z <0.

By linearising the curve Fj(x) close to 0 and linearising the Hamiltonian
vector field around 0, we see that for large times, the evolution tilts the
starting curve from having a negative slope first to one with a vertical slope
and then to one that has a positive slope. Using Lemma 5.5.2 from this
specific moment onward, we see that curves starting close to 0 contribute
can be expressed as a unique branch of the Maxwell-construction.

To make this argument rigorous, we need that the linearisation of the
Hamiltonian flow can be achieved in a C'' manner. Otherwise, we are not
able to establish the conditions for Lemma 5.5.2.

First, we start by linearising the Hamiltonian vector field around (0, 0).
Consider the Hamilton equations:

H _ Hp(w,p))] _ [p— 3 (a? —af'«")] .

—H,(z,p L (322 — a)
We linearise around (0, 0) and obtain a linear ordinary differential equation

Ml

= A
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This linearised local system is solved by

e el
m(t) 0 ez [p

Locally, the curve x — Fj(x) looks like a line with slope —b. The time ¢

at which the line with this slope becomes vertical is given by the solution
1

of e27% = ¢yb.

To use this idea in a rigorous proof of Lemma 5.5.4 below, we need C!
regularity which is provided by Theorem 5 in Sell [1985].

Lemma 5.5.3. Fixt* > tg. Denote by F' := O« the diffeomorphism gener-
ated by the Hamiltonian flow corresponding to the image of the flow at time
t*. Denote by G = et the image under the flow of the linearised system.

Then there are open neighbourhoods Uy, Us of (0,0) and a C' diffeomor-
phism H : Uy — Us, H(0) = 0, such that F = H™'GH

Proof. In the terminology of Sell [1985], the matrix A satisfies the strong
Sternberg condition of order 2 and the 2-smoothness of A is 1. Thus the
lemma follows from Theorem 5 in Sell [1985]. O

Using this C'! diffeomorphism between the image of the Hamiltonian flow
and the linearised system, we obtain the following lemma.

Lemma 5.5.4. Forz € R let (X (¢, 2), P(t, z)) be the solution to the Hamil-
ton equations with X (0, z) = z and P(0, z) = F(2).
There exists xg satisfying Tmaz < xo < 0 such that for allt > ty, where t

is the solution ofe%“lt = tb, it holds that for all xy < z1 < z2 < 0, we have
X(t, 21) > X(t, 22).

Proof. By the analysis preceding Lemma 5.5.3, we saw that the line tangent
to © — Fp(x) becomes vertical at the solution ¢y of €29 = tb under the
linearised equation (i, p) = A(xz,p). Because the map H is a C* diffeo-
morphism by Lemma 5.5.3, it follows that for a fixed t* > ¢, the slope of
the image of (z, F;(x)) under the Hamiltonian flow at the point (0, 0) is
positive.

Because Fj(r) is continuously differentiable in x, we obtain by the C!
property of H, the existence of a ¢ < 0 (and g > ZTmqaz), such that for
xo < 21 < z3 < 0, we have that X (t*,z1) > X(t*, 22). By Lemma 5.5.2,
this ordering remains true for all times ¢ > ¢*. O
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Proof of Theorem 5.5.1 (c):b > 0,b > a. We study the behaviour of the
curve © +— Fj(x) under the Hamiltonian flow for x > —+/b, which is
sufficient by symmetry.

First of all, dynamics of the curve 2 — Fj(z) for x > /b can be treated
completely as in the proof of (b). To summarize: over the course of time
this curve converges point-wise to the curve z — F(z), for x > v/a Vv 0.

Next, we study the part of the graph (2, Fy(2)) where z € [V}, 0], and
thus Fy(z) > 0. The part z € [0,v/b] has similar behaviour. To study the
trajectories starting with z € [—/b, 0], we use Lemma’s 5.5.4 and 5.5.2 and
the methods from the proof of (a).

As before, denote for z € R let (X (¢,z2), P(t, z)) be the solution to the
Hamilton equations with X (0, z) = z and P(0, z) = Fp(z).

Fix some ¥4, > 0. We show that the time evolved graph of (z, Fy(z)) for
z € [~V/b, 0], gives rise to two branches above the interval [—v/D, Ymaz] in
the Maxwell construction for sufficiently large times t.

Fix ¢ > 0 and fix a time ¢ such that tv/2¢ > —vb+ Ymaz and t > g, where
to was introduced in Lemma 5.5.4.

The solutions to the Hamilton equations satisfy X > v/2E. Thus, for any
z such that H(z, Fy(z)) > €, we obtain that X (¢, z) satisfies

X(t7z) > z+1ly QH(Z’Fb(Z)) > Z+t\/% > Z+ymax+\/6 = Ymaz-

In particular, these z do not contribute to a branch of the Maxwell con-
struction above the interval [—v/D, ¥maz]. That leaves two sub-intervals
of [—/b,0] where z is such that H(z, Fj(z)) < e. Because t > t, the
time evolution of the graphs of z — Fj(z) over these two sub-intervals
are again graphs by Lemma’s 5.5.2 and 5.5.4. In particular, the part where
the energy increases for increasing z becomes a graph over the interval
[X(t, —V/D), Ymae] and the part where the energy decreases becomes a
graph over the interval [0, ¥mqz]. Note that as ¢ — oo, we have that
X(t,—Vb) = VaVo.

We conclude by connecting the analysis of the time-evolved graph with
the Maxwell-construction to conclude the proof. In particular, for ¢ large
as above, the argument above gives two contributions to the Maxwell
construction on the interval [0, ;4. ]. Because the problem is symmetric
around 0, there is also one contribution with curves starting in the [0, v/]
region. We conclude that there are three contributions to the push-forward
of the graph of (z, F},(2)) that are of interest for the Maxwell construction
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on the interval [0, y,q5]. For the first and third contribution , we consider

it on an extended interval, as this will be of use for the integration of this

curve.

(1) wy : [X(t,=VD), Ymaz] — [0,00), wi(X(t,—vb)) = 0 and wy(x)
uniformly close to the function obtained by taking the largest zero of
p+— H(z,p), ie. the function hy (z) := 0V Fy(x).

(2) w2 : [0, Ymaz] — [0,00), w2(0) = 0, and wa(x) uniformly close to
hi(x) =0V Fy(x)

(3) w3 : [0, Ymaz V X (t,VD)] — (—00,0], w3(X (t,v/b)) = 0 and w3(z) is
uniformly close to the smallest zero of p — H(x, p), i.e. the function
h_(x):=0A Fy(x).

Because we are not using all values of z € R to construct these

three branches of the push-forward, we can-not immediately use the

Maxwell-construction. However, each of the three branches contains a

point where we know the value of z — U(t, z). In particular, we know

that U(t, —v/b) = U(t,V/b) = 0, as these points start with U (0, —v/b) =

U(0,vb) = 0 and follow the zero cost trajectory. Additionally, we know

that U(¢,0) = V4(0), as this curves start at U(0,0) = V;(0) and is station-

ary with zero Lagrangian cost.

We conclude, by integration that v1, vo, v3 are uniformly close to the fol-
lowing three functions.

(a) For z € [X(t, —V/D), Ymaz| the function vy is uniformly close to

Va(x) ifz <0
Va(0) ifo<z<+vaVv0
Va(0) + [Je5 Falg)dg ifz > —Va VO0.

(b) For = € [0, Ymaz] the function vy is uniformly close to

Va(0) ifo<z<+vaVvo0
Va(0) + f&mFa(q)dq ifz>—vaVO0.

(c) For x € [0,¥Ymaz V X (t,V/b)] the function v3 is uniformly close to
z — Vy(z).

In particular, by Theorem 5.4.4, the function  +— wu(t,z) is given by

u(t,z) = vi(z) A va(x) A wvs(z). If a < 0 all three functions are uni-

formly close to V,(x) on the interval [0, Ymqz), Whereas if a < 0 and ¢ is
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sufficiently large v3 is the smallest. We conclude that u(¢,-) — V,(-) as
t — oo uniformly on compact sets. O

The final case of the proof of Theorem 5.5.1 is the case where we cool down
a low-temperature starting profile.

Argument for the conjecture (d):b > 0,a > b. We show that u(t,-) con-
verges to the function

Va(x) forz ¢ [~/a, /al

Voolz) = (5.5.3)

Vo(z) AL(0) for z € [—+/a, /a,

uniformly on compact sets. As before, we only consider the part x > 0. In
this setting, the part of the curve that starts out in the quadrant x > 0,p >
0 remains there under the Hamiltonian flow. The part where x > 0 and
p < 0 remains in the bounded region where H(z,p) < 0 as the energy is
preserved.

The evolution under the Hamiltonian flow of the curve (z, Fy(2)), for z
such that F}(z) > 0, behaves as in the proof of part (a). In particular, the
curve converges to x — Fy(z), which takes care of the region = ¢ [0, v/a]
of (5.5.3).

Thus, we are left with the region where z > 0 and Fj(z) < 0. This part of
the curve lies in a region where the Hamiltonian flow is rotating around
a stationary point, see the graphs on page 127. Suppose that F,,;, is the
minimal energy in this region. Then the area where + > 0, p < 0 and
Epin < H(z,p) < 0 allows for global action-angle coordinates by Theo-
rem 2.2 in Duistermaat [1980]. In these coordinates, the Hamiltonian vector
field is non-zero only in the angle coordinates.

Thus, for very large times, we find a branch wy : [0, Z1 maz], T1,maz <
v/a of the push-forward of the graph (z, F},(z)) that is uniformly close to
x — 0. Additionally, we find a branch wsy : [22 min, X(t\/g)], Z2.min > 0
uniformly close to z +— F(x). Note that X (¢t,v/b) — y/aast — co. Asin
the proof of (c), we know that U(t,0) = Iy(b) and U(t, V) = 0 as these
are zero cost trajectories. We conclude that the integrated curves v; and vy
satisfy

(@) For z € [0, 1 maq) the function v; is uniformly close to  +— I(0).
(b) For € [x2,min, X (t,V/b)] the function vy is uniformly close to V, (z).

We conjecture that the other branches of the push-forward of the graph
(z, Fy(2)) are sub-optimal. Namely; the trajectories corresponding to these
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branches have oscillated at least once around the = value of the stationary
point of the Hamiltonian vector field, whereas the trajectories correspond-
ing to the branches wy, wy start close to an equilibrium point and move in
a ‘straight’ line towards their end point.

If this argument is accepted, we find that u(¢,-) = vi(x) A v2(x), which
was our conjecture. O

5.6 THE RATE FUNCTION FOR A FINITE TIME

The methods in the proof of Theorem 5.5.1 can be heuristically used to
obtain information on the differentiability of the rate function for a finite
time. Note that by Corollary 5.3.6, we have the differentiability of the rate
function at time ¢ if we start with a starting curve Fy, b < 0.

Thus, we restrict ourselves to the analogues of (c) and (d) of Theorem 5.5.1
above.

Even though we do not spell out these results here in full detail. We con-
jecture on their form. Recall that we say that z is a bad point at time ¢ if
there are at least two distinct optimal trajectories of

£ AC

u(t) = inf {%(€(O>)+ / £<s<s>,é<s>>ds}.
E(t)=x

Regarding the case where we heat up a low temperature profile, we have
the following conjecture.

Conjecture 5.6.1. Let a be the parameter of the dynamics, and b parameter
of the initial rate function: ug = V4. Suppose that b > 0 and b > a.

There are times 0 < tg < t*, where t* is the solution of e%“t = bt, such

that:

(a) Fort € [0, %) there is no bad point.

(b) For t € [to,t*) there are exactly two bad points zpq(t) > 0 and
—Tpad(t).

(c) Fort > t* there is a unique bad point xp,q = 0.

Ast T t*, we have xpqq(t) — 0.

Note that (a) follows immediately from the fact the Hamiltonian flow is
smooth that the starting curve Fj has a locally bounded derivative. Also (c)
of the conjecture can be proven with the methods of the proof of Theorem
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5.5.1 (c). The remaining question is whether ¢; and t* are equal. This seems
to be a model dependent issue. It should be noted that for Glauber dynamics
on the Curie-Weiss model, the results in Ermolaev and Kiilske [2010] imply
to # t*.

In the setting where we cool down a low temperature profile, we have the
following conjecture, based on the argument for (d) of Theorem 5.5.1.

Conjecture 5.6.2. Let a be the parameter of the dynamics, and b parameter
of the initial rate function: uwg = V4. Suppose that b > 0 and a > b.

There is a time 0 < ¢* such that:
(a) Fort < t* there is no bad point.
(b) For t > t* there are exactly two bad points zp.q(t) € (0,+/a) and

_xbad(t) € (_\/aa 0)
Ast — 00, we have xpeq(t) — Tpaq(00), where zpqq(00) = va — b is the
solution of V,(z) = V;(0) in the interval (0, \/a).

We give a short summary of the (partially proven) conjectures. Let b the pa-
rameter of the starting position and let a be the parameter of the dynamics.
We say that a magnetization x is Gibbs at time ¢ if u(t, -) is differentiable
at x and we say that x is bad if this is not the case. We find

(@) b <0,a € R (high temperature starting configuration): All x are Gibbs
for all times ¢ > 0.

(b) b < 0,a < b(low temperature starting configuration that is heated up)
There are two times tg < t* such that all « are Gibbs for t < tg. For
t € [to,t*) there are two bad magnetization xp,q(t) and —xpqq(t). For
t > t*, 0 is a pad point, and additionally, xp.q(t) — 0 as ¢ 1 t*.

() b < 0,a > b (low temperature starting configuration that is cooled
down) There is a time 0 < t*, such that all z are Gibbs for t < tg,
and there are two bad magnetizations Zp.q(t) and —xp,q(t) for ¢ > t*.
Furthermore, we have p,4(t) — vVa — bast — oc.

Note that the general picture coincides with the results in Ermolaev and
Kiilske [2010].



THE LARGE DEVIATION PRINCIPLE FOR THE
TRAJECTORY OF THE EMPIRICAL DISTRIBUTION OF A
FELLER PROCESS

In this chapter, we reproduce results proved in:

Richard Kraaij. Large deviations of the trajectory of empirical distributions
of Feller processes on locally compact spaces. preprint; ArXiv:1401.2802,
2014.

In particular, we give a proof of the large deviation principle for trajecto-
ries of empirical averages of independent copies of Feller processes on some
space E without explicitly specifying the structure of the underlying pro-
cess. Additionally, we express the rate function in terms of a Lagrangian.

The independence assumption implies that the large deviation principle
can be proven via Sanov’s theorem and the contraction principle. Also,
we can explicitly give the limiting non-linear semigroup V (¢) on E as
log S(t)e/ where S(t) is the semigroup of conditional expectations of the
Markov process. This approach avoids the difficult problem of constructing
a semigroup which we encountered in Chapter 3.

To obtain a Lagrangian form of the rate function, the main technical chal-
lenge is to show that V'(¢) equals a Nisio semigroup V (t). The definition of
the Nisio-semigroup as in Section 2.4.2 poses us with two problems. First,
we need a context-independent way to define absolutely continuous trajec-
tories of measures, and secondly, we need a way to define a Lagrangian. To
this end, we assume the existence of a suitable topology on a core of the
generator (A, D(A)) of the Feller process. The equality of V'(¢) and V(¢) is
then proven using resolvent approximation arguments and Doob-h trans-
form techniques.

The rest of the chapter is organised as follows. We start out in Section 6.1
with the preliminaries and state the two main theorems. Theorem 6.1.1
gives, under the condition that the processes solves the martingale prob-
lem, the large deviation principle. Under the condition that there exists a
suitable core for the generator of the process, Theorem 6.1.8 gives the de-
composition of the rate function.
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In Section 6.2, we prove Theorem 6.1.1 using Sanov’s theorem for large
deviations on the Skorokhod space and the contraction principle. We show
that the rate function is given by a rate for the initial law, and a second term
that is given as the supremum over sums of conditional large deviation rate
functions. The Legendre transforms of such conditional rate functions is
given in terms of the non-linear semigroup V'(t). Additionally, we give a
short introduction to the Doob-h transform, which we will use to study the
non-linear semigroup

In Sections 6.3 and 6.4, we prove Theorem 6.1.8. In the first section, we
study the Hamiltonian, Lagrangian and a family of ‘controlled’ generators.
Finally, in Section 6.4, we introduce the Nisio semigroup V(¢) in terms of
absolutely continuous trajectories and the Lagrangian, and show that it
equals the non-linear semigroup V'(¢).

In Section 6.5, we give three examples where Theorem 6.1.8 applies. We
start with a Markov jump process. After that, we check the conditions for
spatially extended interacting particle systems of the type that are found
in Liggett [1985]. Lastly, we check the conditions for a class of diffusion
processes and show that, at least if the process is time-homogeneous and
the diffusion and drift coefficients are sufficiently smooth, we recover the
result for averages of independent and time-homogeneous processes by
Dawson and Gértner [1987].

6.1 PRELIMINARIES AND MAIN RESULTS

We follow the notation as in Chapter 2. As before, (E, d) is a complete sepa-
rable metric space and on E' we have a time-homogeneous Markov process
{X(t)},>o given by a path space measure P on Dg(R™). Let X1, X2, ...

be independent copies of X and let P the measure that governs these pro-

cesses. We look at behaviour of the sequence L,, := {Lf(t)} .
t>

1 n
X(t) .__ )
L= =% dixiens
=1

under the law P. L,, takes values in Dp () (R™), the Skorokhod space of
paths taking values in P(E). We also consider C'p(g)(R") the space of
continuous paths on P(E) with the topology inherited from Dp g (R™).



6.1 PRELIMINARIES AND MAIN RESULTS

By S(v| 1) we denote the relative entropy of v with respect to v:

log &dy ifv << p,
S uy = 4 5

00 otherwise.

In Section 6.2, we obtain the following preliminary result.

Theorem 6.1.1. Let X, represented by the measure P on Dg(R™) solve the
martingale problem for (A, D(A)) with starting measure Py. Then, the se-
quence Ly, satisfies the large deviation principle with good rate function I,
which is given forv = {v(t)},5 € Dp(g)(R") by

k
S@(0) |Po) +sup > Ir,—t,_, (v(ts) [ v(ti1))
_ {ti} =1
I(v) = . .
ifv € Cpgp)(RT),
o0 otherwise,

where {t;} is a finite sequence of times: 0 =ty < t; < --- < ty. Fors < t,
we have

Li(va|v1) = sup {(f,v2) = (V()f,v1)}, (6.1.1)
feCy(E)

where V() f(z) = logE [e/(X®) | X (0) = z].

For further results, we introduce some additional notation. For a locally
convex space (X, 7), we write X’ for its continuous dual space and £(X, T)
for the space of linear and continuous maps from (X', 7) to itself. Also, for
x € X and 2’ € X', we write (x,2') := 2/(x) € R for the natural pairing
between x and z’. For two locally convex spaces X', ) and a continuous
linear operator T : X — Y, we write T" : )/ — X” for the adjoint of
T, which is uniquely defined by (x,7’(y")) = (Tx,y’), see for example
Treves [Treves, 1967, Chapter 19]. For a neighbourhood N of 0 in X, we
define the polar of N° C X’ by

Ne:={ue X ||(z,u)| < 1foreveryz € N'}. (6.1.2)

We say that a locally convex space X is barrelled if every barrel is a neigh-
bourhood of 0. A set S is a barrel if it is convex, balanced, absorbing and
closed. S is balanced if we have the following: if z € Sanda € R, |o| < 1
then ax € S. S is absorbing if for every x € X there exists a 7 > 0 such
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that if || > r then z € aS. We give some background and basic results
on barrelled spaces in Appendix 6.7.

To rewrite the rate function obtained in Theorem 6.1.1, we restrict to lo-
cally compact metric spaces (E,d) and we consider the situation where
S(t)f(z) = E[f(X(t))| X(0) = z] is a strongly continuous semigroup
on the space (Co(F), |-|) of continuous functions that vanish at infinity
equipped with the supremum norm. To be precise: for every ¢ > 0 the
map S(t) : (Co(E),||) — (Co(E),||) is continuous, and for every
f € Co(F), the trajectory t — S(t) f is continuous in (Co(E), |-|)-

Let (A, D(A)) be the generator of the semigroup S(t). It is a well known
result that X solves the martingale problem for (A, D(A)) [Ethier and
Kurtz, 1986, Proposition 4.1.7], so the above result holds for the process
{X )}z

Our goal is to rewrite [ as

I(v) = S(v(0)|Po) + /0 L(v(s),v(s))ds

for a trajectory v of probability measures that is absolutely continuous in
some sense. Thus our first problem is to define differentiation in a context
for which no suitable structure on E or P(E) is known. Therefore, we will
have to tailor the definition of differentiation to the process itself. Suppose
that () is the law of X (¢) under P. Then we know that ¢ — u(t) =
S(t)'11(0) is a weakly continuous trajectory in P(F), so can ask whether
for f € D(A) the trajectory t — (f, u(t)) is differentiable as a function
from R™ — R:

S (D) = £ (S0, 1(O) = (SOAF, u(0)) = (A, w(t)- 619

So our candidate for /i(t) would be A’j(t), which is a problematic because
(A, D(A)) could be unbounded. To overcome this, and other problems, we
introduce two sets of conditions on (A, D(A)).

Recall that D is a core for (A, D(A)) if for every f € D(A), we can find a
sequence f,, € D such that f,, — fand Af,, — Af.

Condition 6.1.2. There exists a core D C D(A) dense in (C(E), |-|) that
satisfies

(a) D isan algebra, ie.if f,g € D then fg € D,
(b) if f € D and ¢ : R — R a smooth function on the closure of range of

f,thenpo f — ¢(0) € D,
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In the case that E is compact, Cy(E) = C(FE), then (b) can be replaced by
() if f € D and ¢ : R — R a smooth function on the range of f, then
pofeD.
Note if a dense subspace D C D(A) satisfies S(t)D C D, then D is a core
for (A, D(A)) [Ethier and Kurtz, 1986, Proposition 1.3.3].
Under Condition 6.1.2, we define the operator H : D — Cy(E) and for
every g € D the operator A9 : D — Cy(E) by
Hf =efAel,
AVf =e 9A(fe) — (e 9Ae9)f.
If E is non-compact, these definitions needs some care as e/ ¢ Cy(E). This
can be solved by looking at the one-point compactification of E, see Section
6.3.1. In Section 6.3, we will show that {V'(¢)}+>0 turns out to be a non-
linear semigroup on Cy(E) which has H as its generator. The operators

AY are generators of Markov processes with law Q9 on Dg(]0, t]) that are
obtained from P by

7 t
i%i(X) = exp {g(X(t)) —g(X(0)) — /0 Hg(X(s))ds} , (6.1.4)

where P; and Qf are the measures P and Q7 restricted to times up to ¢, see
Theorem 4.2 in Palmowski and Rolski [2002].

Condition 6.1.3 (Conditions on the core). D satisfies Condition 6.1.2 and

there exists a topology 7p on D such that

(a) (D, 7p) is a separable barrelled locally convex Hausdorff space.

(b) The topology 7p is finer than the sup norm topology restricted to D.

(¢) The mapsexp—1:(D,7p) = (D,7p) and x : (D,7p) x (D, 7p) —
(D, 7p), defined by f ++ ef — 1, respectively (f, g) — fg are continu-
ous.

(d) We have S(t)D C D, V(t)D C D and the semigroups {S(t) }+>0 and
{V (t) }+>0 restricted to D are strongly continuous for (D, 7p).

() Themap A : (D, 7p) — (Co(E), ||) is continuous.

(f) There exists a barrel N/ C D such that

sup [Hf] <1,
feN
and for every ¢ > 0

sup |Hf] < co.
feN
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Conditions (a) to (e) are related to the differentiation of the trajectories of
measures that will turn up in our large deviation problem. Condition (a)
implies that (D, 7p) is well behaved as a locally convex space and, among
other things, makes sure that we are able to define the Gelfand integral,
see Appendix 6.7. Condition (b) implies that (M (E), wk) is continuously
embedded in (D', wk*), so that every weakly continuous trajectory of mea-
sures can in fact be seen as a weak” continuous trajectory in D’. Important
is this light is that the conditions in (d) on {S(t) }+>0 imply that ¢ — S(¢)'u
is weak* continuous in D’ for all measures p € P(E). (e) implies that we
take the adjoint of A : (D, 7p) — (Co(E),|-|), so that we obtain a weak
to weak” continuous map A’ : M(E) — D’. Returning to (6.1.3), we now
have a good definition for fi(t) := A’u(t) € D’. Furthermore, we can also
differentiate trajectories of measures that are obtained from X via a tilt-
ing procedure, e.g. (6.1.4), by Lemma 6.1.5 below. Condition (f) is the main
technical condition on H which implies for example the compactness of the
level sets of L. Using these compactness arguments, we are able to rewrite

1.

Remark 6.1.4. Condition (d) is removed in the latest version of Kraaij
[2014]. The condition is used to prove one of the inequalities that imply
that V () equals V(¢), see Proposition 6.4.10. In Kraaij [2014], a new proof
is given in which this inequality is obtained via an approximation of the
Doob-h transform by Markov processes that have generators that are piece-
wise constant in time.

The removal of this condition increases the set of examples to which the
main result can be applied. For example, we can relax the conditions on the
diffusion process in Section 6.5.3. Additionally, it can be used for diffusion
processes on compact manifolds or Lévy processes on R,

The following lemma is a consequence of Condition 6.1.3 (c) and (e) and
the proof is elementary.

Lemma 6.1.5. Let (D, 7p) satisfy Condition 6.1.3, then the maps A
(D,7p) x (D,7p) = (Co(E), []) given by ®(g, f) = A?f and the op-
erator H : (D, mp) — (Co(E), |-|) are continuous.

Remark 6.1.6. The results of this chapter also hold in the case that Con-

dition 6.1.3 (c) fails as long as the conclusions of Lemma 6.1.5 hold. In all
examples that we consider in Section 6.5 (c) is satisfied.

For the next definition we will need the Gelfand or weak”* integral, which is
introduced in Appendix 6.7, but the rigorous construction of this integral
can be skipped on the first reading.
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Definition 6.1.7. Define D — AC, or if there is no chance of confu-
sion, AC, the space of absolutely continuous paths in Cp(g) (RT). A path
v € Cp(p)(RT) is called absolutely continuous if there exists a (D', wk*)
measurable curve s — u(s) in D’ with the following properties:

(i) forevery f € Dandt >0 fg [(f,u(s))|ds < oo,

(ii) foreveryt > 0,v(t) —v(0) = fg u(s)ds as a D’ Gelfand integral.
We denote ©(s) := u(s). Furthermore, we will denote .AC,, for the space of
absolutely continuous trajectories starting at g, and AC” for trajectories
that are only considered up to time 7. Similarly, we define ACE.

A direct consequence of property (ii) is that for almost every time ¢t > 0
and all f € D the limit

o Lot B) = (S v()

h—0 h

exists and is equal to (f, v(¢)). This justifies the notation u(s) = v(s).

Using these definitions, we are able to sharpen Theorem 6.1.1. In Section
6.3, we study the semigroup V' (¢) and its generator H. Also, we give a
number of properties of the level sets of the Lagrangian £, defined in the
theorem below. The proof of the theorem is given in Section 6.4.

Theorem 6.1.8. Let (E,d) be locally compact. Let (A, D(A)) have a core
D equipped with a topology Tp such that (D, Tp) satisfies Condition 6.1.3.
Then, the rate function in Theorem 6.1.1 can be rewritten as

S@(0)[Po) + [y~ L(v(s),2(s))ds  ifv € ACy ()

00 otherwise,

I(v) =

where L : P(E) x D" — [0, 00] is given by
L(p, u) == sup {(f,u) = (Hf,p)} .
feb

Remark 6.1.9. If we restrict ourselves to [0, 7] instead of R*, then we
obtain

IT({V(S)}ogng)
_ JHW(O)|Bo) + Jo LW(s),v(s))ds ifv e ACT,

00 otherwise,

by applying the contraction principle.
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6.2 THE LARGE DEVIATION PRINCIPLE VIA SANOV’S THEOREM AND
OPTIMAL TRAJECTORIES

Let (E,d) is a complete separable metric space. We start by proving the
large deviation principle for a general class of processes via Sanov’s theo-
rem and the contraction principle. This will lead to the proof of Theorem
6.1.1.

Define for every ¢ the map m; : Dp(R") — E by m:(x) := x(t). By Propo-
sition II.7.1 in Ethier and Kurtz, 7; is a measurable map. Complementary
to m;, we introduce the map 7;_. For every path x € Dg(R™), the value
x(t—) := limgy x(s) is well defined, which makes it possible to define
m— : Dp(RY) — E by m_(x) := x(t—). Because m_ is the point-wise
limit of the measurable maps m; , for ¢,, < ¢, t,, 1 ¢, also m;_ is measurable.
Let P be a probability measure on Dg(R™), and let X = (X (¢));>0 be the
process with law P. Define y(t) = Po7; ! and p(t—) = P o 7, ! the laws
of X (t) and X (t—). Also define the map ¢ : P(Dg(R*)) — P(E)E" by
setting ¢(P) = (u(t))¢>0 and finally define the maps ¢; : P(Dg(RT)) —
P(E) by setting ¢¢(P) = u(t).

Lemma 6.2.1. ¢ is a map from P(Dp(R™)) to Dp(g)(RT).
Proof. First, we prove that if s | ¢ then pu(s) — p(t) weakly. Because the

paths of X are right-continuous, we have X (s) — X (¢). Hence, we have
a.s. convergence, which in turn implies that u(s) — u(t) weakly.

If s 1 ¢, then we need to show that limy 4(t) exists, but as above X (s) —
X (t—), hence, the weak limit limg 1¢(s) is equal to p(t—). O

We would like to prove that ¢ and {¢;},~ are continuous maps, but this
is not always true as can be seen from the following example.

Example 6.2.2. Pick two distinct points ey, e3 in E. Define
er fort<1+4+1/n
eg fort>14+1/n

er fort<1—1/n
eg fort>1-1/n
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and let P" € P(Dg(R")) be defined by P"* = %530;{ + %533;. Clearly, the

sequence P converges weakly to P = &3 where Z(t) is equal to e; for
t<landesfort > 1.

If we look at the images ¢(P™) = (u™(t));>0 and ¢(P) = (fi(t))¢>0, then
we obtain

Je, fort<1—1/n
p(t) = 306, + 300, forl—1/n<t<1+1/n
e, for1+1/n<t,
de; fort <1
) ="
de, fort>1.

Clearly, 11" (1) — 36, + 306c,, which is not equal to (1) or fi(1—). We
obtain that both ¢ and ¢; are not continuous. Obviously, it follows that ¢;
for t > 0 are not continuous either.

So problems arise when the time marginals of the limiting measure PP are
discontinuous in time. However, this is the only thing that can happen.

Proposition 6.2.3. ¢ : P(Dg(R")) — Dp(g)(R") is continuous at mea-
sures P for which it holds that for everyt > 0: P[X () = X (t—)] = 1.

A similar statement for the finite dimensional projections ¢, can be found
in Ethier and Kurtz [Ethier and Kurtz, 1986, Theorem 3.7.8].

Proof. Let P* P € P(Dg(R")) such that P* — P weakly and P such
that for every ¢t P[X (¢t) = X (t—)] = 1. By the Skorokhod representation
Theorem [Ethier and Kurtz, 1986, Theorem 3.1.9], we can find a probability
space (£, F, P) and Dg(R™) valued random variables YY" distributed
as X" and X under P”, P such that Y — Y P a.s.

Let {tn}nzo be a sequence converging to £ > 0. Define the sets
A={Y(t)=Y(-)},
B :={d(Y"(tn),Y(t)) Nd(Y"(tn),Y (t—)) — 0}.

By the assumption that P[X () = X (t—)] = 1, itfollows that P[A] = 1. By
Proposition 3.6.5 in Ethier and Kurtz [1986], and the fact that Y" — Y P
a.s. it follows that P[B]| = 1. Combining these statements yields

P[Y"(t,) - Y(t)] > PIAnB] =1,
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which implies that p"(¢,,) — p(t). Because pu(t) = u(t—) by assumption,
Proposition 3.6.5 in Ethier and Kurtz yields the final result. O

6.2.1 Large deviations for measures on the Skorokhod space

Suppose that we have a process X on Dg(R™) and a corresponding mea-
sure P € P(Dg(R™)). Then Sanov’s theorem, Theorem 6.2.10 in Dembo
and Zeitouni [1998], gives us the large deviation behaviour of the empirical
distribution LX of independent copies of the process X: X', X2 .. .:

1
Lﬁ = ;Z(S{Xz} S P(DE(R+))

i=1
Theorem 6.2.4 (Sanov). The empirical measures L;\ satisfy the large devi-

ation principle on P(Dg(R™)) with respect to the weak topology with the
good and convex rate function

dQ . d
I*(Q) = S(Q | P) ::/d(]glog d%d[?.

We are interested in obtaining a large deviation principle on Dp(g) (RT).
In Proposition 6.2.3, we saw that we have a map ¢ that is continuous on a
part of its domain. Hence, we we are in the position to use the contraction
principle.

Theorem 6.2.5. Suppose that P satisfies P[X (t) = X (t—)] = 1 for every
t > 0, then the large deviation principle holds for

1 n
X(t) S .
(L” >t20 (n ;5)( (t)>t
on Dpg)(RT) with rate function

I(()e=0) = inf{S(Q|P)|Q € P(Dp(RT)),6(Q) = (v(t))1>0}
and I is finite only on Cp(g)(RT).

>0

Proof. The measures Q for which it holds that I(Q) < oo satisfy Q << P
hence it follows that for every t: Q[ X (t) = X (t—)] = 1. This yields that
¢ is continuous at Q by Proposition 6.2.3.

By the contraction principle, Theorem 4.2.1 and remark (c) after Theorem
4.2.1 in Dembo and Zeitouni Dembo and Zeitouni [1998], we obtain the

large deviation principle on Dp(g) (RT) with I as given in the theorem.
O
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6.2.2  The large deviation principle for Markov processes

Although Theorem 6.2.5 can be applied to a wide range of (time-
inhomogeneous) processes, we explore its consequences for time-
homogeneous Markov processes. Recall the definition of a solution to the
martingale problem preceding Theorem 6.1.1.

Lemma 6.2.6. Suppose that the process X with corresponding measure P on
Dg(R™) solves the martingale problem for (A, D(A)) with starting measure
Py. Then, it holds that for every t > 0 P[X(t) = X(t—)] = 1. Hence,
the large deviation principle holds for {Lf(t)}tzg on Dp(gy(RY) with rate
function

I((e)e=0) = inf{S(Q|P) |Q € P(DE(R")), $(Q) = (v())>0}
and I is finite only on Cp(g)(R™T).
Proof. To apply Theorem 6.2.5, we need to check that P[X (¢) = X (t—)] =

1 for every ¢ > 0, but this follows by Theorem 4.3.12 in Ethier and Kurtz
[1986]. O

Using this result, Theorem 6.1.1 follows without much effort.

Proof of Theorem 6.1.1. The large deviation principle follows by Lemma
6.2.6. This lemma also gives that the rate function is co on the complement
of CP(E) (R+).

To obtain the rate function as a supremum over rate functions for finite
dimensional problems

supgy, gy 10,11, te](¥(0), v(t1) . . ., v(tg))
I(V) = ifve CP(E)(RJr)’
00 otherwise,

we use Theorem 4.13 and Theorem 4.30 in Feng and Kurtz [2006]. Proposi-
tion 6.6.3 gives us the final decomposition of the rate function. d

6.2.3  The semigroup V (t) and the Doob-h transform

Before we turn to the proof of Theorem 6.1.8, we start with rewriting V' () f
in terms of the Doob transform. We have the following useful variant of
Lemma 2.19 in Seppéldinen [1993].
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Lemma 6.2.7. Leth € C(E) and lett > 0. Set

S(@Q[P) ifQo =Py,

00 otherwise.

S7(Q) =

Then,

(VOB = s {{hQ)=S*@},

QeP(De(RT))

where (Q; denotes the time t marginal of Q. The supremum is attained by the
measure Q" defined by

dQ" B eh(X(1)) .

dP (e", P,)

h(X(8))—(V (t)h,Po)

Proof. Let Py; € P(E?) be the restriction of P to the time 0 and time ¢
marginals. As before, we denote by Py the time 0 marginal of P and for a
measure v € P(E?) we denote by v respectively v; the restriction to the
first marginal and second marginal. Set

P if g =P
SiP’()(V) _ S(V| O,t) Iy 05

00 otherwise.

By Lemma 2.19 in Seppaldinen [1993] and convex duality, we obtain

(VO Po) = sup {{hyv) = 7))
veP(E?)

By the contraction principle, we have
S(v|Pos) = inf {S(Q|P)|Q € P(Dp(RY)) : Qoe =v},

which implies that

Vha = s {(1hQ) - 5@

QeP(Dg(RT))
Now we show that the supremum is achieved for Q" defined by

dQ" eh(X(1))

_ - — JX®)=(V(O)hPo)
dP <€h, Pt)

=€ .
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Note that Qg = Py. Therefore, we obtain that

h
(h, QL) — SF(Q") = (h, Q) - / log 5-dQ"

= (h, Q) — (h,Q}) + (V(t)h, Po) = (V(t)h, Py).
O

The optimising measure Q" defined in the lemma above has the form of
a Doob-h transform, see Doob [Doob, 1984, page 566] or Jamison [1975],
Follmer and Gantert [1997]. We study the law of Q". For s < ¢, define
h(s) = V(t — s)h, or M) = S(t — 5)e.

The transition probabilities of the Markov process described by Q" up
to time ¢ can be written down as a semigroup of transition operators
{ShOt (rys }O<r<s<t’ where S"04(r, 5) : C(E) — C(F) is defined by
SO (r 5) f(2) := Q[f(X(s))| X(r) = z]. The following result is ob-
tained by a straightforward calculation.

Lemma 6.2.8. The semigroup of transition probabilities of Qf defined by

Q" ) _ O - von
d]P) <eh7Pt> ’

is given by
Sh[O,t}(T’ S)f(.’E) _ e—h(T) (J;)S(T, S) (feh(s)) (35)

To use this representation of Q" to obtain a Lagrangian representation of
the rate function, we first study the properties of the operators A9, H and
L.

6.3 A STUDY OF THE OPERATORS V (t), H, L aND AY.
6.3.1 The semigroup V (t) and the generator H

We return to the situation that (E, d) is a locally compact metric space, so
that we can use semigroup theory to rewrite the rate function.

First suppose that E is non-compact. Let E2 = E U {A} be the one-
point compactification. By Lemma 4.3.2 in Ethier and Kurtz [1986], S (t)
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extends to a strongly continuous contraction semigroup on (C'(E®), ||-|)
by setting S (t) f = f(A)+S(t)(f — f(A)). Therefore, we can argue
using the semigroup on the compact space £, and then obtain the result
in Theorem 6.1.8 on F by Theorem 4.11 in Feng and Kurtz Feng and Kurtz
[2006].

From this point onward, we assume that (F,d) is compact and that the
transition semigroup {S(¢)}+>0 is strongly continuous on C(E). Let A :
D(A) C C(E) — C(F) be the associated infinitesimal generator.

We examine V (t) f (z) = log S(t)ef (z) = logE [e/X®) | X (0) = 2], f €
C(E), which was defined in Theorem 6.1.1. It is an elementary calculation
to check that {V'(¢) }+>0 is a strongly continuous contraction semigroup on
C(E).
As in the linear case, we calculate the generator of V:
Hf = lim vinsr -7
t40 t

defined for f € D(H ), where

D(H) := {f € C’(E)’Elg €eC(E): ltii%l

L)

We start with an extension of the chain rule to Banach spaces. The proof
is rather standard and is left to the reader.

Lemma 6.3.1. Let f € D(A) and let ¢ : f(E) — R be differentiable on
f(E) and let ¢’ be Lipschitz continuous. Then it holds that

d
C oS0 im0 = & (F)AT,
which should be interpreted as

o AS(BF) = 6(f)

t—0 t

= ¢'(NAf
with respect to the sup norm.

A direct consequence is that we can calculate the generator H of V'(¢) on
a subset of its domain.

Corollary 6.3.2. For f € C(E) such that e/ € D(A), we have f € D(H)
and

Hf =e TA().
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In order to proceed, we need Condition 6.1.2. We see that Corollary 6.3.2
gives us that if f € D, then f € D(H) and Hf = e~/ Ae/.

We will use this operator (H, D), under Condition 6.1.3, to construct a
new Nisio semigroup {V (¢)}+>0 on C(P(FE)). This semigroup will be in-
troduced in Section 6.4.2, and there we will show that for u € P(F) and
f € C(E), we have V(1)[f)(s) = (V(t)f, ), where [f] € C(P(E)) is
the function defined by [f](x) = (f, u)-

We start with some results on V' (¢) f and H that will be useful for prov-
ing the equality V(¢)[f](n) = (V(t)f,p). For f € C(E),let J(\)f :=
(L =M= [5° A~Le 271G (t) fdt. Using J(N), we set R(\)f =
log J(\)el.

We constructed the semigroup V' (¢) from the linear semigroup S(¢), and
the operator R(\) from the linear resolvent J(\). One would therefore
hope that R(\) equals (1 — AH)~!. This is not the case, but we do have

the following two results, which we will need for the proof of Lemma 6.4.8
and Proposition 6.4.10.

Lemma 6.3.3. For f € C(E), we have R(\)f € D(H) and (1 —
NH)RO)S > f.

Proof. J(\) maps C(E) bijectively on D(A), therefore, e#MNf = J(\)ef €
D(A). Thus by Corollary 6.3.2, we have that R(\) f € D(H).

Let x € E, we prove (1 — AH) R(\)f(z) > f(x). We prove that the fol-
lowing quantity is larger than 0:

(1= XH) RO 1) ~ f(a)
€f T
— RO)f(@) ~ fla) ~ A

of () — @)
— RO fa) - fia) - T

This is equivalent to showing that
TNl (z) log (J()\)ef (x)) — @) TN (@) — TN () + /@
is positive, which follows from the fact that for every ¢ € R, the function

defined for non-negative y, given by y — ylogy — (¢ + 1)y + € is non-
negative. U
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Note that the fact that the function y — ylogy — (¢ + 1)y + €° has a
unique point where it hits 0. This means that (1 — AH)R(X\) f(z) = f(x)
only if E[e/(X7) | Xy = 2] = e/(®), where 7 is an exponential random
variable with mean A independent of the process X. This can not be true
in general.

Even though R(\) does not invert (1 — AH ), it does approximate the semi-
group in a way that the resolvents of H would as well.

Lemma 6.3.4. Forevery f € C(E), we have thatlim, ., R (n™!) [nt] f=
V(t)f.

Proof. By definition, we have R (n_l) [nt] f=logJ (n_l) ") ¢ For lin-
ear semigroups, we know that the resolvents approximate the semigroup:
J (1) ntler (t)ef, see for example Corollary 1.6.8 in Ethier and Kurtz
[1986]. Therefore, by uniform continuity of the logarithm on [e~ I/l el/l),
we obtain the final result by applying the logarithm. O

6.3.2  Operator duality for H

Additionally to the operator H, we introduce operators A9 that serve as
generators of tilted Markov processes obtained from X (¢) by the change
of measure given in (6.1.4). We also introduce an operator L, that will serve
as a precursor to our final Lagrangian L.

Definition 6.3.5. Under Condition 6.1.2, define the following operators
for f,g € D:

Hf =efAel,
A9f = IA(fe?) — (e Ae)
Lg= A% — Hg.

H will be called the Hamiltonian and L the (pre-)Lagrangian in analogy to
the Lagrangian and Hamiltonian of classical mechanics. AY is a generator
itself, see for example Palmowski and Rolski Palmowski and Rolski [2002].
This is also illustrated by the next two examples.

We calculate H and A9 in the case of a Markov jump process and a standard
Brownian motion.

Example 6.3.6. Let £ be a finite set and let { X (¢)},-, be generated by

Af(x) = r(z,y) [f(y) — f(@)],

Y
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where r is some transition kernel. A calculations shows that

Hf(@) =Y r(a,y) /0@ 1],

y

A9f(@) = 3 1, y)e? 9@ [f(y) — f(a)].

Y

Example 6.3.7. Let £ = R, and let {X(¢)},-, be a standard Brownian
motion, for which the generator A is given for f € C°(R), i.e. smooth
and compactly supported functions, by Af(z) = % f”(z). H and AY are
given by

1
Al f(x) = 5 1"(2) + ['(@)g' ().
In both examples, it is seen that A9 is also a generator of a Markov process.

More importantly, however, L and H are operator duals.

Lemma 6.3.8. Under Condition 6.1.2, we have for f € D that

(Hf, ) =sup {(A9f,u) — (Lg, 1)}, (6.3.1)
geD

and equality holds for g = f. Furthermore, forg € D and pu € P(E) it holds
that

<Lga :u> = sup {<Agf7 ,U,> - <Hf7 /’L>} ’ (632)
febD
with equality for f = g.

Proof. For A > 0,let Ay := A~!(J(\) — 1) be the Yosida approximant of
A. Tt is well known that A) is bounded and is given by

Apf(x) = A1 / ax(z.dy) [f () — ()],

where ¢ (x, -) is the law of the process generated by A after an exponential
random time with mean \.

Now define H ), Ai and L) in terms of A). Because A) is bounded, it fol-
lows by Lemma 5.7 in Feng and Kurtz [2006] that

Hyf(x) > A f(x) — Lyg(x),
Hyf(z) = Al f(x) — Lyf().
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Therefore, it follows by Yosida approximation [Ethier and Kurtz, 1986,
Lemma 1.2.4] that

Hf(x) = sup {A7f(x) — Lg(x)}.
geD

The first statement now follows by integration. The variational statement
for L is obtained similarly. O

6.3.3 The Lagrangian and a variational expression for the Hamiltonian

The Lagrangian in the previous section is still an operator acting on func-
tions. Here we embed this object in a new Lagrangian L that is a function of
place and speed. Also, we introduce a map p that transforms ‘momentum’
into speed.

Definition 6.3.9. Let (D, 7p) satisfy Condition 6.1.3. Define the La-
grangian £ : P(E) x D' — [0, 0] by

L(p,u) = ;ggﬂﬂ u) — (Hf, )}

Also, define the map p : P(E) x D — D' by p(p, g) = (A9) (u).

L can be considered as an extension of L. Pick u € P(E) and g € D, then

L(p, p(p,9)) = ;gg (e, 9)) — (Hf, 1)}

= sup {(A9f, u) — (Hf, 1)} (6.3.3)
feD

= (Lg, 1),
where the last equality follows by (6.3.2).

Lemma 6.3.10. (u,u) — L(u, ) is convex and lower semi-continuous with
respect to the weak and weak™ topologies.

Proof. L is lower semi-continuous, because it is the supremum over con-
tinuous functions. Convexity of £ follows by the linearity of u — (f, u)
and p — (H f, p). O

It turns out that the space D' is to large for practical purposes. In particular,
it is not immediately clear that D’ with the weak topology is separable. In
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the proof of Proposition 6.4.2, we need to integrate over D’ and because we
want to employ an extended version of the Prohorov theorem that needs
separability, we will construct a more regular subspace of D’ that contains
all relevant ‘speeds’.

Recall the set A introduced in Condition 6.1.3 (f) and the definition of a
polar in (6.1.2). Define U C D’ by

U= JnN° (6.3.4)

neN

We equip U with the weak* topology inherited from D’. The importance
of U follows from the following lemma, which shows that we can restrict
the set of allowed ‘speeds’ to U.

Lemma 6.3.11. Let u € P(E). Ifu ¢ U, then L(p,u) = oo. Furthermore,
forp € P(E) and g € N, we have p(p, g) € U.

Proof. Foru ¢ U = |J,, nN°, we can find functions f,, € N, such that

|{fn, u)| > n.The inequality |{fp, u)| < L(p, w)+{(H fpn, u)V{H(—fn), 1),
yields that £(u, u) > n — 1 for every n, which implies that £(u, u) = oc.

The second statement follows from the first, equation (6.3.3), and the fact
that Lg is bounded. O

As can be seen from (6.3.3), £ is an extension of L. As expected, H can also
be obtained by a Fenchel-Legendre transform of L.

Lemma 6.3.12. The variational expression for H in (6.3.1) extends to

(Hf, ) = sup {(f,u) = L(p,u)}

ueD’

= sup {<f7 u> - [’(N)u)} :

uelU

Proof. First of all, note the equality of the two variational expressions on
the right had side, as L(u,u) = oo if u ¢ U. We give two proofs of the
first equality.

First of all, Holders inequality tells us that f — (V' (¢) f, ) is convex. There-
fore, H f is the norm, and thus, point-wise limit of convex functions which
implies that f — (H f, u) is convex. The result follows directly from the
fact that the double Fenchel-Legendre transform of the convex lower semi-
continuous function f — (H f, u) is f — (H f, pu) by the Fenchel-Moreau
theorem[Dembo and Zeitouni, 1998, Lemma 4.5.8].
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The second approach is more direct. By Definition 6.3.9 of £, we obtain
that for every f € D, u € P(E),u € D": (Hf,u) > (f,u) — L(1, ).

We now show that we in fact have equality. By (6.3.3), we know that
L(p, p(p,9)) = (Lg, ). Hence, by the second item in Lemma 6.3.8, we
obtain

(Hf,u) = (AT f, 1) — (LS, p)

which concludes the proof. O

(6.3.5)

The latter approach in the proof of Lemma 6.3.12, gives us even more in-
formation.

Proposition 6.3.13. Let u € P(E) and define I',, to be the weak™ closed
convex hull of {p(11,9) € U |g € D}.Ifu ¢ T',,, then L(p,u) = oo.

Proof. Fix p € P(E ). Define £ = Lifuel, and set £ = oo for u §Z

~

It is clear that £ is also convex and lower semi-continuous. Because L>
it follows by Lemma 6.3.12 that (H f, ) > sup,, {( U }

As in (6.3.5), we obtain

(Hf,p) = (AT f,p) — (Lf, )
= <f7 p(/J,, f)) - [’(H7p(:ua f))
= (f.p(p, £)) — L1, p(pss £)),

which shows that (H f, u) = sup, {(f, u) — ﬁ(u,u)} In other words,

the double Fenchel-Legendre transform of the convex and lower semi-
continuous function £ is £. This implies that they are equal. t

6.3.4 The Doob-h transform in terms of tilted generators

We connect the operators introduced in the last few sections to the dis-
cussion on the Doob-transform in Section 6.2.3. There, we considered a
measure Q" € P(Dg(RT)), defined by

dQh (X (1)

A7 o €T R(X ()~ (V()h.Eo)
dP <€h‘, Pt> ’
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and in Lemma 6.2.8, we observed that if we define h(s) = V(¢ — s)h for
s < t, then the transition operators of Q7 for times r < s < t are given by

Sh[oﬂ(r, ) f(@) = ) (x)S(r,s) (feh(s)> (x).

It is straightforward to check that (r,s) + S™0H(r s)f is continuous
forall f € C(E) and (r,s) € {(+',s')|0 < 1’ < &' < t}. We can say
more even. The next lemma shows that the tilted generators of the previous
section turn up in the study of this semigroup. After that, we will show that
H(Q" | P) can be given in terms of an integral over the Lagrangian £. We
start with two definitions.

Let C([0,t], D) be be space of trajectories {g(s)}scpp> 9(s) € D
such that s — ¢(s) is continuous with respect to 7p. Furthermore, let
C1([0,t], D) C C(]0,t], D) be those trajectories for which there exists a
trajectory {9g(s)}scjo, in C([0,t], C(E)) such that for all s € [0,], we
have

lim =0.
r—0

g9(s+7) —9g(s)

— dg(s)

Now suppose that h € D, then Condition 6.1.2 (b) and (c) imply that h(s) =
V(t — s)h € D for all s € [0,]. In this case, we can find the trajectory of
generators of the semigroup S0,

Proposition 6.3.14. Fixt > 0 and suppose that h € D. For every s € [0, ]
and f € D, we have

h[0,t] _
Lo SM0U(s s 1) f — f

r—0 r

_ Ah(s) 1.

If f € C*([0,t], D), then we have for every s € [0,t] that

i SO (s s+ 1) f (s 1) = [(s)

r—0 T

=AM f(s) + 0f (s).

Proof. We start with the proof of the first statement. Let f € D and s €
[0, t], we prove the result for » > 0, the proof of the other side is similar.
Clearly,

SHOU (s, s +7)f — f

r

— AR f

lim
r—0

‘_0
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if and only if
h[0,t] _
lim 6h s S (57 s+ r)f f - Ah(s)f H =0.
r—0 T
Therefore, we will prove the latter. We see
R0, _
() [S 0(s, s +1)f = f ey
r
_ Gh(s) [eh(s)s(r) (fehet) —f ABO) f
r

h(s+r)\ _ Sh(s)
_ S(T) (fe J; ) € / _A <f€h(s)) + fAeh(S)

- SO U = SO G | ) (raeh0)

.
S(T) (feh(S)) - feh(S) _A (feh(s))
+ fAE) — S ( fAeh(S)> .

_|_

r

The last two lines converge to 0 as | 0. We consider the term in line four.
First note that S(r) is a contraction, thus it suffices to look at

+ Aeh)

; [ eh(s+r) _ gh(s)

r

but by the definition of h(s) and h(s 4 r), this equals

—s5—r)eh — — 5)el
_f[S(t Je! — St —s)

— AS(t — 5)e
- S(t—s)e

which converges to 0 in norm as 7 |, 0.
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For the proof of the second statement, let { f(s')}s<; € C([0,1], D), then
we have for s € [0, ¢] that

Sh[O,t} -
(5,5 + 7‘)7{(5 +r)—f(s) <Ah(8)f(x) + 3f(3)>
_ 80 s 5+ 1)f () = £8) _ gnee)
T
+ SO (s, 5+ 1) f(s + 1) = SO (s, 54 7) f(s)

,
— SO (s, 5 +7)0f(s)
+ S0t (s, s+ )Df(s) — Of (s).
The first term converges to 0 as shown in the first part of the proof.
The second term converges to 0 as S"(*!(s,s 4 ) is contractive for

all » > 0 and the definition of Jf(s). The last term converges to 0 as
{SHO (| s") Yo<r'<s'<t is strongly continuous. O

The next corollary follows directly from the second statement of proposi-
tion.

Corollary 6.3.15. Let f € C1([0,t], D) and s € [0, 1], then

MY (s) = f(s)(X(s)) )(X(0))

— f(0
- / AP £(r)(X (1) + OF () (X (r))dr

is a mean 0 martingale for Q".

Proposition 6.3.16. Fix t > 0 and suppose h € D. Define Q" ¢
P(Dg(RT)) by the change of measure

d@h eh(X ()
dP (el Py)

= eh(X(t))7<V(t)h’P0> ,
Then, we have
t
SwﬂmzAﬁmawmm

where for every s € R, y(s) is the law of X (s) under Q" and where(s) =
(AM) ((s)).
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Proof. Because S(Q"|P) = flog th we study h(t)(X(t)) —
h(0)(X(0)). Recall that Oh(s) = —Hh( ) by Corollary 6.3.2 and Lemma
6.3.1:

h(t)(X (1)) — h(0)(X(0))
= h(t)(X(t)) — h(0)(X(0))

_ /0 Ah(s)h(s)(X(s))+ah(S) (X(s))ds
i / Ah<s>h(s)(X(s))+agf’)(X(s))ds
M) / AP (s)(X (s)) — Hh(s)(X (s))ds

where s — M"(s) is a mean 0 Q" martingale by Corollary 6.3.15. There-
fore, using Lemma 6.3.8 in line 3, we see that

s - [ Ly

_ / / AP R(5)(X (5)) — HR(s)(X (s))dsdQ" (X)

/ / Lh(s)(X(s))dsdQ"(X).

By Lemma 6.1.5, the operator L : (D, 7p) — (C(E),|-|), given by Lg =
A9g — H g is continuous. Because s — h(s) = V(t — s)h is continuous in
(D, 1p) by Condition 6.1.3 (d), we see that s — Lh(s) is norm continuous.
Therefore, Fubini’s theorem gives us

S(@"|P) = //Lh $))dQ" (X)ds

/0 (Lh(s),7(s))ds

- / £(4(5).4(s))ds
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6.4 PROOF OF THE MAIN THEOREM

We proceed with the proof of Theorem 6.1.8. We start with two crucial com-
pactness results which are necessary for the Nisio semigroup, introduced
in Section 6.4.2, to be well behaved.

6.4.1 Compactness of the space of paths with bounded Lagrangian cost

We start with proving the compactness of the level sets of L.
Proposition 6.4.1. For each C' > 0, the set

{(,u) € P(E) x U [ L(1,u) <C}
is compact with respect to the weak topology on P(E) and the weak™ topology
onU.

Proof. First of all, as £ is lower semi-continuous {(v,u) € P(E) X
U|L(v,u) < C} is closed. We show that it is contained in a compact
set.

Pick the neighbourhood of 0 AV that was given in Condition 6.1.3 (f), so
that sup s |H f| < 1. Because (f,u) < L(p,u) + (H f, j1), we obtain

[(fiw)| < L(v,u) + (Hf,v) V(H(=f),v).
AS a consequence,
{(v,u) € P(E) x U| L(v,u) < C} C P(E) x |C + 1N°

Because (D', wk*) is Hausdorff and a locally convex space, the closure of
this set is compact in (D, wk*) by the Bourbaki-Aloaglu theorem[Treves,
1967, Propositions 32.7 and 32.8], [Robertson and Robertson, 1973, Theo-
rem IIL6]. ]

We now state an essential ingredient of the proof of Theorem 6.1.8.

Proposition 6.4.2. For each M > 0, and time T > 0,

T
K= {1 e o (0.7 | e AC. [ £luto.ite)as < e}
is a compact subset of Cpg)([0,T1).

We postpone the lengthy proof of the proposition to Sections 6.4.4 and 6.4.5
and focus on proving Theorem 6.1.8 first.
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6.4.2 The Nisio semigroup

Definition 6.4.3. The Nisio semigroup V mapping upper semi-
continuous functions on P(E) to upper semi-continuous functions on

P(FE) is defined by

VG = s {Gwt) - [ L0 vas

veAC,

For a function f € C(FE), we denote with [f] the weakly continuous func-
tion on P(E) defined by [f](1) = (f, pt). Our goal in this section is to show

that V(£)[f]() = (V(t)f, 1)

Note that as a direct consequence of Proposition 6.4.2, if G is a bounded
continuous function, than the supremum is actually attained by a curve
starting at 4 in Ké\l |- For example, this is the case if G = [g].forg € C(E).

We need one small result, that is essential for the analysis. In particular, it
is used for the proof of Lemma 6.4.8.

Lemma 6.4.4. For each ;i € P(E) and f € D, there exists v € AC,, such
that for everyt > 0

/<f,v(s)>ds=/ (Hf,v(s)) + L(v(s),(s))ds.
0 0

In particular by taking f = 0, we find that there is a path with zero cost.
This in turn yields V (¢)0 = 0, where 0 is the function defined by 0(u) = 0
forall p € P(E).

Proof. Let v(s) be the path obtained by the time projections of the Markov
process started at ;« generated by the operator A7, see for example Theorem
4.2 in Palmowski and Rolski [2002]. This gives us a path such that v(s) =

(A7) (v(s)) = p(v(s), /).

By (6.3.5) on page 166, it follows that

(Hfv(s)) = ({f;p(v(s), [)) = L(v(s), p(v(s), [))

for every s, implying that

/XHLW®Ms=/<uww»—£@@»mgnﬁ.
0 0
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The semigroup {V () }+>0 enjoys good continuity properties.

Lemma 6.4.5. For everyt > 0, V() is contractive, i.e. for bounded and
upper semi-continuous functions F', GG, we have

IV F = V(G| < [F-df.

The proof of this lemma is straightforward. The next result can be proven
using Proposition 6.4.2 as Lemma 8.16 in Feng and Kurtz [2006].

Lemma 6.4.6. For every f € C(E) and p € P(E), we have that t +—
V(t)[f](u) is continuous.

We proceed with the preparations of Proposition 6.4.10 where we will prove
that (V(¢)f, ) = V(t)[f](n) for f € C(F) and pp € P(E).

6.2.7, then Proposition 6.3.16

The inequality (V' (¢) f, u) < V(¢)[f](1) is based on the Doob-h transform
method and in particular on Lemma 6.2.7 and Proposition 6.3.16. The other
inequality is based on approximation arguments. In the next definition, we

introduce the resolvent R(\) of the Nisio semigroup. Based on Lemma
6.3.3, we show that R(\)[f](p) < [R(X)f](1) which by approximation

yields V(£)[f](1) < (V(£)f, ).

Definition 6.4.7. Let G be upper semi-continuous and bounded and let
A > 0. Define the resolvent R(\) by

RONG() = s /0 b e [G(u(s)) - /O Sﬁ(u(r),z'/(r))dr} ds.

Lemma 6.4.8. For g € D, we have R(\)[(1 — AH)g| = [g]. As a conse-
quence, we have for f € C(FE) and pn € P(E) that

RN[f](w) < [ROA) f1(1)- (6.4.1)

Proof. The first statement follows along the lines of the proof of Lemma
8.19 in Feng and Kurtz [2006]. Summarising, the inequality R(\)[(1 —
AH)g] < [g] follows by integration by parts and Young’s inequality:

(9,u) < (Hg,p) + L(p,u), pePE),ueD,geC(E).

The second inequality, R(A\)[(1 — AH)g| > [g], follows by integration by
parts and Lemma 6.4.4, which gives us a trajectory for which equality is
attained for all times in Young’s inequality.
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For the second statement, first note that if ' > G, then R(\)F > R(\)G.
Therefore, we obtain by Lemma 6.3.3 that

RA)[f1(1) < R = AH)RA) fl(1) = (RA) f, 1)
O

The next lemma relies on Lemma 6.4.6 and follows exactly as Lemma 8.18
in Feng and Kurtz [2006].

Lemma 6.4.9. Fort >0, f € D and y € P(E), we have

lim R(n)!"[f](n) = V(&)[f]()-

n—oo

We are now able to prove the important result that identifies the Nisio
semigroup with {V'(¢) }+>o0.

Proposition 6.4.10. Fort > 0, f € C(FE) and € P(E), we have
VOUI) = VO, ).

Proof. By repeatedly using (6.4.1), we obtain
R(n~)[f](n) < (R 1, 1),

which implies by Lemmas 6.3.4 and 6.4.9 that
VO <V, ). (6.4.2)

For the second inequality, we first pick f € D. Let P € P(Dg(R") be
the Markov measure started from p € P(E) with transition semigroup
{S(t)}+>0. By Lemma 6.2.7, we have

(VOf. 1) =sup(£,Q) = 5@ = (£,Q) - S@|P).
If we denote by 7(s) the law of Q/ at time s, then Proposition 6.3.16 yields

W@ﬁm—mwm—écwﬁwmmngmm»

This inequality, together with (6.4.2), yields (V(¢)f, u) = V(¢)[f](n) for
f € D. The result for f € C(F) follows by the continuity of f — V(t)f
and the continuity of f — V() f given by Lemma 6.4.5. O
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6.4.3 The Lagrangian form of the rate function

In this section, we show that I; can be re-expressed using the Nisio semi-
group.

Lemma 6.4.11. Under the Condition 6.1.3, it holds that

Ii(p | po) = inf /E ))ds.

1/6 C,i0

The proof is a classical proof using convex duality.

Proof. For a fixed measure py € P(FE), consider the function L,
P(E) — oo defined by

Lo (per) : 1161.,{11({; / L(v ))ds
v

v(t)=

Our goal is to prove that I (p1 | po) = Ly, (p1) by showing that both are
the Fenchel-Legendre transform of (V'(t)g, p1). First, we will prove that
IL,,, is convex and has compact level sets. This last result implies the lower
semi-continuity.

Step 1. The convexity of I, follows directly from the convexity of £ and
the fact that AC is convex. So we are left to prove compactness of the level
sets. Pick a sequence p" in the set {1 | L, (1) < c¢}. We know by definition
of IL,,, and Proposition 6.4.2 that there are 1" € /CC {10} Such that v"(0) =

b0, V" (£) = " and

/5 n(s))ds < c.

Again by Proposition 6.4.2, we obtain that the sequence »" has a converg-
ing subsequence v"* with limit »* such that

/E (s))ds <.

Denote with p* := v*(t), then we know that v (t) — p* and L, (1*) <
¢, which implies that L, () has compact level sets and is lower semi-
continuous.
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Step 2. Now that we know that I, is convex and lower semi-continuous,
we are able to prove that L, (-) = I¢(- | po).

L, (+) is lower semi-continuous on P (E) with respect to the weak topol-
ogy, so extending its domain of definition to M (FE) by setting it equal to
oo outside P(E) does not change the fact that it is lower semi-continuous.

Because the dual of (M(F), weak) is C(F) by the Riesz representation
theorem and [Conway, 2007, Theorem V.1.3], we obtain by Lemma 4.5.8 in
Dembo and Zeitouni [1998] that the Fenchel-Legendre transform of

sup {(g, 1) = Lo 4n1)}
Tl {<97”<t>> - / ﬁ<v<s>»ﬂ<s>>ds} = V(1)[g) (o)

satisfies Ly, (1) = supgecmy {(9, 1) — V(¢)[g](10)}. Therefore, by
Proposition 6.4.10, we see

Lyo(p) = sup {{g,p1) = (V(t)g, po)} - (6.4.3)
g€Co(E)

On the other hand, by Theorem 6.1.1,

Ii(pr | po) = sup  {(g, 1) — (V(t)g, po)} - (6.4.4)
g€Co(E)

The combination of equations (6.4.3) and (6.4.4), i.e. both are the Legendre-
Fenchel transform of (V'(t)g, i), yields that

I =L f L(v ))ds.
0 =Tyli) = S, [

We proceed with the final lemma before the proof of Theorem 6.1.8.

Lemma 6.4.12. The function J : Cp(g)(RT) — [0, 00|, given by

S(u(0) | Po) + [~ L(u(s), fu(s))ds  if u € AC,

s otherwise,

J (1) =

has compact level sets in Cp(gy(RY).
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Proof. Clearly, {J < M} C N K1,. So, pick a sequence ™ € {J < M}.
Forn = 1, we can construct a converging subsequence y"** in IC}W seenasa
subset of Cp(g) ([0, 1]). From this subsequence, we can extract yet another
subsequence that has the same property on [0, 2. By a diagonal argument,
this yields a converging subsequence in Cp(p) (RT). By the lower semi-
continuity of H(- |Py) and L this yields that the limitisin {J < M}. O

Proof of Theorem 6.1.8. By using the contraction principle from the space

Cpm) (RY) = [[P(B)
R+

using the identity map, we find that the rate function in Theorem 6.1.1 coin-
cides with the rate function which would have been found via the Dawson-
Gértner theorem [Dembo and Zeitouni, 1998, Theorem 4.6.1] for the large
deviation problem on [ [+ P(E).

In this context, we can apply Lemma 4.6.5 Dembo and Zeitouni [1998] to
find that if we have a good rate function J on [ [+ P(E) that satisfies

L0, 81, ..o ] (n(0), p(ta), -, p(te))
= inf {J(v) [v(0) = p(0),v(t;) = p(ti)}, (6.4.5)

then it holds that I = J. The candidate

H(p(0) [Po) + { Jy~ L{p(s), fu(s))ds} if o € ACy,,

o0 otherwise,

J(p) =

clearly satisfies (6.4.5). By Lemma 6.4.12, we know that J is a good rate
function on Cp () (R™) and therefore also on [+ P(E). O

6.4.4 Preparations for the proof of Proposition 6.4.2

We say that a topological space is Souslin if it is the continuous image of a
complete separable metric space. For the proof of Proposition 6.4.2, we will
need the generalisation of one of the implications of the Prohorov theorem.

Theorem 6.4.13 (Prohorov). Let KC be a subset of the Borel measures on a
completely regular Souslin space S that is uniformly bounded with respect
to the total variation norm. If IC is a tight family of measures, then K has a
compact and sequentially compact closure with respect to the weak topology

onP(S).
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The Prohorov theorem is given in [Bogachev, 2007, Theorem 8.6.7] and its
specialisation to completely regular Souslin spaces follows from [Bogachev,
2007, Corollary 6.7.8 and Theorem 7.4.3]

Remark 6.4.14. The other implication of the ordinary Prohorov theorem
does not necessarily hold in this generality [Bogachev, 2007, Proposition
8.10.19].

We will use the Prohorov theorem for measures on the product space
(P(E) x U x [0,T]), where the first two spaces are equipped with the
weak” topology, and the last space with its standard topology.

Lemma 6.4.15. The space (P(E) x U x [0,T1]) is completely regular and
Souslin.

Proof. We start with proving that (P(E) x U x [0, T) is completely regular.
By Lemma [Koéthe, 1969, 15.2.(3)] (D', wk*) is completely regular, therefore,
the subspace (U, wk*) is completely regular. This yields the result as taking
products preserves complete regularity.

By Condition 6.1.3 (a) and Lemma 6.7.6, we obtain that (U, wk*) is Souslin.
Clearly, (P(E),wk) and [0,7] are Souslin, so that the product space
(P(E) x U x [0,T]) is Souslin by Lemma 6.6.5 in Bogachev Bogachev
[2007]. O

Suppose that we have a weakly converging net of measures on (P(FE) x
U x [0,T)). By definition, integrals of continuous and bounded functions
with respect to this net of measures converges in R. The next lemmas are
aimed to extend this property to continuous functions, that are unbounded,
but linear on U.

Definition 6.4.16. For the neighbourhood N, we define the Minkowski
functional on U

lull == inf {c > 0]u € cN°} .

We have the following elementary results.

Lemma 6.4.17. |-\, is a normon U, {u| |u| < 1} = N°. Furthermore,
foru € U, we have

(fiu)
sup =
fecN ”UH/\/
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We use this lemma to find functions ¢ of the type given in the following

lemma, which is an analogue of the de la Vallée-Poussin lemma [Bogachev,
2007, Theorem 4.5.9].

Lemma 6.4.18. For a net of measures ™ bounded in total variation norm,
that weakly converges to a measure w, and a measurable function f, suppose
that there exists a non-negative non-decreasing function ¢ : R™ — Rt which
satisfies

lim 6(r) =

I
r—oo T

for which it holds that sup,, [ ¢(|f|)dr® < M < oc, then it holds that
sup/ |fldm® < 0.
Also, we obtain that uniformly in o

dn | [ gane~ [ te(pan
where Yo (f) = (f vV -C)AC.

-0, (6.4.6)

Proof. Fix e > 0 and pick C'(¢) big enough such that for r > C'(¢) we have
@ > % Then, we obtain that

€
sup/ f|d7r°‘§sup/ o(|fNdn® < —M <e.
|f\zc‘ a M Jjpzc (15D M

«

As a consequence, we see

sup/ |fldm® < C(e) sup |77y + € < 00.
o «

The second statement follows by the observation that

07

sup [ |f = Yo(P)]dr" < sup /M fldre.

O]

Lemma 6.4.19. Under Condition 6.1.3 (f) that states that for every ¢ > 0:
[(e) = supseon |[Hf| < oo, there exists a non-decreasing function

¢ : Rt — RT, such that lim, @ = 00 and such that ¢(|(f,u)|) <
d(|ul ) < L(p,w) forevery f € N,u € U and i € P(E).
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The proof of this lemma is inspired by the proof of Lemma 10.21 in Feng
and Kurtz [2006].

Proof. For u # 0in U, Lemma 6.4.17 yields

L),y (i) (Y T

> s —
luly — reen Ululy luly [l e

for every ¢ > 0. This directly yields for every ¢ > 0

L r
lim inf (1, w) > lim inf c— (c) =c,
r—00 ueP(B)u:fuly2r |uly T rocoueP(B)uifuly>r July
which implies
L
lim in in (1, w) =
r—=00 ueP(B) u: fuly2r  |uly
Consequently, the function
L
o(r)=r inf in M,
neP(B) u: fulp=r |ul
satisfies the claims in the lemma. ]

6.4.5 Proof of Proposition 6.4.2

We now have the tools for the proof of Proposition 6.4.2. Essentially, the
proof follows the approach as in [Feng and Kurtz, 2006, Proposition 8.13].
We give it for clarity and completeness as there are some notable differ-
ences. First of all, we work with absolutely continuous paths, instead of
paths that satisfy a relaxed control equation. Second, the possible ‘speeds’
that we allow are elements of the completely regular Souslin subset U of a
locally convex space instead of a metric space.

Proof of Proposition 6.4.2. Pick a sequence pu" € Kﬂ. Because P(E) is com-
pact, we assume that ;" (0) — po. Define the occupation measures 7" on

P(E)xUx[0,T) CP(E)xU x[0,T] by

WO 0.0) = [ e (). (5)ds.



6.4 PROOF OF THE MAIN THEOREM

Proposition 6.4.1 tells us that 7™ is tight in P (P(E) x U x [0,T]) by con-
sidering the following calculation:

O™ {(,u,t) € P(E) x U x [0,T]| L{p,u) < C}°

/ﬁu, "(dp x du x ds)

In other words

A () € P(E) x U x [0,T]| £, ) < C}° < % (647)
and because C' is arbitrary, we can choose it big enough such that this prob-
ability is smaller then any € > 0 uniformly in n. This implies by Theorem
6.4.13 that 7" contains a weakly converging subsequence. Therefore, we
assume without loss of generality that, there exists 7 € P(K x U x [0, 7))
such that 7" — 7 weakly.

We now show that 7 gives us a new path s ~ pu(s) in K7, Recall that
forc > 07Y.(g9) = (gANc)V —c. Soforafixed f € D,u — YT.((f,u))
is a bounded and continuous function. For an arbitrary ¢ < 7T, the set
m(P(E) x U x {t}) is a set of measure 0, so the function (u,s) —
Igs<y Ye((f,u)) is a bounded Borel measurable functions that is contin-
uous 7 almost everywhere.

Hence, by the weak convergence of 7" to 7 and Corollary 8.4.2 in Bogachev
Bogachev [2007], we obtain for every ¢ > 0 that

/ Y((f,u)) 7" (dpxduxds) — Y((f,u) m(dpuxduxds).
{s<t} {s<t}

By the Portmanteau theorem and the lower semi-continuity of £, we obtain
that

/E Ly U d,uxduxds)<hm1nf/£ p,u) T (dpxduxds) < M.

Because ¢(|(f,u)|) < L(u, u) by Lemma 6.4.19, and the fact that ¢ satisfies
the conditions of Lemma 6.4.18, we use the result in (6.4.6) to obtain that

sup — 0,

n

/{ <t}<f, u) — Ye((f,u)) 7" (dp x du x ds)
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as ¢ — oo. This also follows for the limiting measure 7:

— 0.

|/ (f,u) = Yco((f,u)) m(dp x du x ds)
{s<t}

Thus, by first sending c and then n to infinity, we get

/ (fyu) 7" (dp x du x ds) —/ (f,u) m(dp x du x ds)
{s<t}

{s<t}

<

/{ <t}(f, uy — Ye((fyu)) 7™ (dp x du x ds)

_'_

/{ o Y((f,u) (7" —m) (dp x du x ds)

+

/{ o Y((f,u) — (f,u) m(dp x du x ds)

— 0.
(6.4.8)

Fix some 0 < ¢ < T and pick a sequence 0 < ¢, < T that converges to ¢.
Because " (t,,) is a sequence in the compact set P(E) it has a converging
subsequence with limit v. By Lemmas 6.4.18, 6.4.19, and the Dominated
convergence theorem, we have

lim [ 1{sbetweent, and t}|(f,u)|7"(dp x du x ds) — 0,

n—oo

which implies, using (6.4.8), that

<f,]/> - <f’,UJ0>
= lim(f, " (tn)) — (f, 1" (0))

= h};n/ I{s < t}(f,u)m"(dp x du x ds)
— / 1{s between t,, and ¢} (f, u)7" (dp x du x ds)
_ /]l{s < O(F, uym(dp x du x ds).

Because D is dense in C(FE), this uniquely determines v, and for every
sequence s, — t, one gets u"(s,) — v weakly. Therefore, we will denote
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p(t) := v. This way, we can construct y(t) for a countable dense subset
J of [0,7] and pu(t) is continuous on J. As a consequence, 4(t) extends
continuously to [0, t| and satisfies

UM@»—aﬂm>=/i@qmﬁwwwuxduxw>

for every f € D. This implies that for any sequence s,, — ¢, we have
p(sn) — p(t), which yields that {4"(t) } ;< converges to {1(t) }g<i<p
in Cyp(z2)((0, 7)) o o

We proceed with extracting the speed of the trajectory s — p(s) from the
measure 7. Let 7 be the measure 7 restricted to U x [0, T]. By Corollary

10.4.6 in Bogachev Bogachev [2007], we can write 7(du x ds) as Ag(du)ds.

For Lebesgue almost every s, we know that [ |(f, u)|As(du) < oo, so we
can define the Gelfand integral 4(s) = [uAs(du), see Theorem 6.7.4. We
show that (s) = fi(s). First, by the measurability of s — A, also s — @ is
measurable. Second, by Jensen’s inequality in the first line, and the lower
semi-continuity of £ in the third,

T
| s atsplas
0

< [ 1 ln(dp x du x ds)

<THAVIHEDD + [ Ll un(dp x dux ds)

< T(IH S|V IH(-£)])

+ lirr}linf/ﬁ(,u, w)m (dp x du x ds)

< TS|V [H(=f)]) + M.

Last,
(o)) — (fou(0)) = / Lyycny (o um(dpe x du x ds)

= / ]L{sgt}<f7 u)fr(du X du X dS)

_ /Ot/<f, upAs(du)ds

~ [ rats)as

t
0
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This means that y € ACT and /i = .

We still need to show that p € Kﬂ. By the construction of the
path s +— u(s), it is clear that we have w(dy x du x ds) =
Lgs<1101,05)3 (dp) As(du)ds. This shows, using the convexity of £ in the
second line, and lower semi-continuity of £ in the third line, that

T
| ) its)as = [ £aw1is < T, @) (@uas
< [ £lpu)us < 75,00 (N (du)ds

T
< lim inf / L™ (s), f7(s))ds
n 0
<M

So indeed K}, is compact in Cp (g (RT). O

6.5 EXAMPLES

We give a number of examples on which Theorem 6.1.8 can be applied.
First of all, we begin with a Markov jump process on a compact metric
space. After that, interacting particle systems are considered, see Liggett
[1985]. In that case, we also prove a representation theorem for D’. Finally,
we consider diffusion processes.

6.5.1 Markov pure jump process

On a compact metric space (F,d), we have a Markov process X (t) with
associated semigroup S(t) : C(E) — C(F) generated by the bounded

generator

Af(a) = / r(a,db) [f(b) — f(a)],

where for every a r(a, -) is some non-negative measure, which is weakly
continuous in a, satisfying |r|_., = sup, r(a, E) < co. We work with the
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space (D, 7p) = (C(E),|-|). In this case, the generators A9 and operator
H are given by

A?f(a) = / r(a, db)e?®=9@) [£(b) — f(a)],
Hf(a) = /r(a,db) [ef(b)—f(a) 1l
Lemma 6.5.1. Conditions 6.1.2 and 6.1.3 are satisfied.

Proof. Take D = C(E), which clearly satisfies Conditions 6.1.2 (a) and (b’).

Conditions 6.1.3 (a)-(c), (e) are clear. For (d), we only need to prove that
t — V() f is continuous for every f € C'(E). So take a sequence t,, € R™
converging to t € RT. Then S(t,)ef — S(t)e! by the strong continuity
of {S(t) }+>0. Because f is bounded, the functions S(t,)e satisfy eI/ <
S(ty)el (x) < elflforallz € E.On [e~I/1 el/1] the logarithm is uniformly
continuous, which implies that |V (¢,) f — V (¢) f| — 0.

Finally, (f) is satisfied by taking N’ = {g € C(E)]| |g| < %log(”r”*l +
1)} O

6.5.2 Interacting particle systems

Let W be a compact metric space and let S be a countable set. Define
(E = W¥,d), the product space with d a metric that is compatible with
the topology, on which we will define a Markov process {7(t)},~. Exam-
ples are the exclusion process, the contact process, etcetera. We follow the
construction in Liggett Liggett [1985].

For A a finite subset of S and ¢ € W let ¢y (7, d¢) be the rate at which
the system makes a transformation from configuration 7 to 7¢ which is

defined by

¢ ne ifxé¢A,
Nz =
G ifz e A
Put c¢p = sup{ca(n, W) |n € E}, the maximal total variation of ca (7, -).
We assume that cp (7, d() is weakly continuous in the first variable. We

define for finite A C Sandu € S:

ca(u) = sup {fea(n, d¢) — ea(h, dQ)|ry [ ny = 7y fory # uj,
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where ||, refers to the total variation norm. This measures the amount
that  — ca (7, -) depends on the coordinate 7,,. Furthermore, let y(z, u) =
> A5z ca(u) for u # z and y(z, z) = 0 for all z.

For f € C(E), define

Ag(z) =sup{|f(n) — (O] fory #z: ny = (y}

the variation of f at x € S. For a function in C'(FE) let D(f) = {z €
S|Ag(x) > 0} be the dependence set of f and define the space of local
functions by

{f € DIID(f)| < oo}

and the space of test functions by

D= {f € Cy(E)

1A= Aglx) < oo} , (6.5.1)

eSS

which is the closure of the space of local functions with respect to the |||
semi-norm.

For functions f € D, define the formal generator A to be
Afn) =Y [ extn.do) [1n) = 1] (652)
A

Theorem 1.3.9 in Liggett [1985] shows that the closure of A generates
a Feller semigroup {S(¢)}:>0. Using this semigroup a Markov process

(n(t))e=0 is constructed such that S(t) f(n) = E[f(n(t)) | n(0) = 7).
Theorem 6.5.2 (Liggett 1.3.9). Assume that

sup Z cp < 00, (6.5.3)

T Asa

and

M := sup Z Z ca(u) = sup 27(:1:, u) < 00. (6.5.4)

TES ASz utz z€S T,

Finally, define the quantity

e=inf inf Y fea (m,{¢]¢(u) = m(u)})

offu Asu
m (w)#n2(u)
+ ca (m2, {C¢(w) = m(u)})].

Then, we have the following:
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(a) The closure of A of A generates a strongly continuous positive contraction
semigroup S(t).

(b) D is a core for A.

(c) If f € D, then S(t)f € D forallt > 0 and

IS £l < e =Y 7.

To make the notation a bit easier, we do not distinguish between A and A.
A calculation gives the expressions for AYf and H f for f,g € D.

w0500 =% [ eatnagrenn- [f<n<> ~ i)
Z/CA n, dC eg 1]

Remark 6.5.3. It is also possible to consider interacting particle systems
where a bounded operator is added to A, without changing the core D. For
example, one can consider

Ao f(n) )+ Z ci(n) [f(0in) — f(n)]

where 0; is a shift: (6;7); = 1;45,and ), || < oo.
This includes processes like the environment process seen from a random
walker in a dynamic random environment and the tagged particle process.

Our first goal is to equip D with a topology 7p. The semi-norm |[|-|| de-
fined on D will be our starting point for 7p as (6.5.3) implies |Af| <
Sup, - ase O || f]l- Note that ||1]| = 0, so ||-|| alone can not define a topol-
ogy. We do have the following result.

Lemma 6.5.4. Let C be the space of constant functions and let |-, be the
norm on the quotient space C(E) /C. For f € D, we have that2| f[ o < | f|.

Proof. 1t is sufficient to prove the statement for local functions, because
every f € D can be approximated by local f,, for which it holds that
I fnll = W71 and | £l = 1 £1-

Suppose that f is a local function and let D(f) = {z1, ..., x,}. Now pick
the function f’ € D such that f = f’ + ¢ for some ¢ € R, such that the
range of f’is containedin [0, 2 | f[o]. Pick n and ¢ such that f'(n) = 2| f|
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and f'(¢) = 0.For 0 < k < ndefine Ay, = {x1,..., )} andlet { be equal
to ¢ on Ay, and equal to 7 off Ag. Then it holds that

n—1 n
20 flo =100 =F(%) =Y f(&) — F(&s+1) <> Ap(zi) = I £l
k=0 k=1

O
The Lemma shows that one additional semi-norm is sufficient to topologise
D. Let 7p be the topology induced by ||, := ||| + |-]-
Lemma 6.5.5. (D, 7p) is a separable Banach space.
Proof. We start by proving that (D, |-| ;) is a Banach space, by using the

following characterisation of completeness [Conway, 2007, Exercise I11.4.2].
D is complete if and only if, for every sequence f,, € D such that

j{:”fﬁ”D < 0

the sum 25:1 fn converges in D.

So suppose that ) . | fn|p < oo, then > |f| < oc. Therefore, > fn €
C(E) as (C(E),|-|) is a Banach space. We need to show that ) f, € D.
By the definition of D, we need to check whether ||>", f,| < oco. But this
follows from

S dall < ST < S Wl < o0

So (D, || p) is a Banach space and thus barrelled [Treves, 1967, Corollary
2 of Proposition 33.2].

We now prove separability of (D, || ). For a finite box A C S, w € WA,
and 7 € W9, define

N forx €A
nawpe(z) = .
w, forx € A°

Then define the local function fy € D by fa(n) = f(nawae). Because f
is uniformly continuous, these local functions approximate f with respect
to |-, as can be seen from the following computation.

If = falp =D Ap(@)+1f = fal = 0.

rEAC
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For a fixed and finite region A C S, the norm |-|, restricted to the local
functions depending on coordinates in A is equivalent to the sup norm.
Therefore, this set of local functions is separable. By taking a sequence of
finite regions A,, — S. We obtain that the set of local functions is separable.
By the argument above, every function in D can be approximated by local
functions in the ||-|| semi-norm, so indeed (D, |-|,) is separable. O

Proposition 6.5.6. (D, |-| ;) satisfies Conditions 6.1.2 and 6.1.3.

Proof. Conditions 6.1.3 (a) and (b) follow from Lemma 6.5.5. Conditions
6.1.2 and 6.1.3 (c) follows from a number of straightforward calculations
using the semi-norm ||-|.

By Theorem 6.5.2 (a) and (c), we obtain that S(¢) € £(D, 7p). An elemen-
tary calculation shows that for every f € D and x € S, we have that
t — Ag()s() is continuous. This implies, by using the Dominated con-
vergence theorem and Theorem 6.5.2(c) that ¢ — S(t) f is continuous for
II-Il. We conclude that {S(¢)}+>0 is a strongly continuous semigroup for

(D, 7p).

Because S(t)D C D, Condition 6.1.2 (b’) implies that also V(¢)D C D.
For a sequence of functions g, that are uniformly bounded away from 0,
we have that if |g, — g|, — 0, then also |log g, — log g|, — 0. Together
with the continuity of f — e/ by Condition 6.1.3 (c), we obtain the desired
continuity properties of V'(t) from the properties of S(t).

Condition 6.1.3 (e) is a direct consequence of Assumption (6.5.3) in The-
orem 6.5.2. For (f), fix f € D, then the function o +— €% defined on
[— £, £]] is Lipschitz continuous, with Lipschitz constant el/l. This
means that [¢® — 1| < |a|el/l. Applying this to | H f|, we obtain

ARl DY
A

[ eatna0) 1) - )] ‘

< el fllsup D ea
T Az
Using that for z > 0 ze® < €%, (f) is satisfied by taking

N = {f €D ' 171 < 5 los (sngcA) }

A>x
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Proposition 6.5.6 implies that Theorem 6.1.8 holds for interacting particle
systems where the derivative of the trajectory ¢ — () lies in D'.

Because we can always choose A in Condition 6.1.3 such that it contains all
constant functions, we can restrict our attention to (D/C)’, where C is the
space of constant functions. This is reasonable, because the only derivatives
of a path of probability measures that we will find satisfy (1, u) = 0. In the
next section, we give a representation theorem for (D /C)’.

6.5.2.1 A representation theorem for (D/C), |-|)

We identify the dual of D/C the space of equivalence classes D/C C
C(E)/C, where C := {cl|c € R}. Additionally, we equip D/C with the
norm |- ||, which is equivalent to the quotient norm |-[ 5 o = || + ||| as
Il < Ilp,q < 3 Il by Lemma 6.5.4.

We consider the dual of D/C, which is equipped with the operator norm

R
lod = swp =W

The goal of the following discussion is to identify both this dual space and
its norm. First of all, the dual (D/C)’ can be seen as a subspace of function-
als on D that are constant on the equivalence classes f + C. Therefore,

)
loll = sup S

for « such that (1, a) = 0.

We introduce some notation. For A C S, let Ep = o(nz|xz € A).
Furthermore, II is the space of additive set functions a on the algebra
€a = Up;ja|<00 €n, for which it holds that a(E) = 0. Note that the o-
algebra & is given by o (&,).

For a € II and a finite subset A C S, we denote the restriction of « to
En by Py and we set P := P(,y. Also, we define the function |af; =
sup,, | Pra|py taking values in [0, oo].

Definition 6.5.7. Let II be the set
.= {aef[‘||a||n<oo}.

It follows that IT is a vector space and that |-|; is a norm on II. The follow-
ing technical lemma enables us to show that (II, |-| ) is a Banach space.
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Lemma 6.5.8. For a finite set T C S: | Prnoe|py < Al o]y

Proof. Pick a local function f with dependence set D(f) = {z1,...,zn},
sup, f(n) = 2[f|q and inf; f(n) = 0. Pick ¢ such that f(¢) = 0, and
define for k < n the sets Ay, = {x1,...,2x}. For n € E, let n(k) be equal

to ¢ on Ay, and equal to 1 outside Ay. Furthermore, let fx(n) = f(nk).

Then it follows that

[ raa= [ 1ot - futmdata)

n—1
-y / Fe(m) = fesi(m)da(n)
k=0

Ap(zg1) | Prysr | oy (6.5.5)

n—1

<SPy
k=0

<n|flely-

The bound obtained in line three of (6.5.5) is stronger then necessary, for
this lemma, but we will use it again for the proof of Theorem 6.5.10. [

Lemma 6.5.9. (IL, |-|;) is a Banach space.

Proof. We apply exercise [11.4.2 in Conway Conway [2007] that states that
that (I, ||| ;;) is complete if we can show for an arbitrary sequence (o, )nen

in IT such that ) |, | < oo, that the partial sums ), «,, converge in
IL.

So pick a sequence «, in IT such that ) o, |;; < oo. Furthermore, take
a sequence of finite sets A, that is increasing to S. By Lemma 6.5.8, we see
that

Do IPanly < 1Ak lanly < oo
n n

The space of measures on &y, of bounded variation is a Banach space.
Hence, oy, := Y, Pa, oy exists and is a measure of bounded variation on
&, - Furthermore, it is easy to see that this leads to a consistent sequence
in k, so there exists a additive set function « on |J AtJA|<oo Ep, which, if
restricted to finite regions, is a measure of bounded variation.
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It follows that

’oz — Zivzl akHH — 0, because
TV

N o)
P, (a — Zan> P, < Z an>
n=1 n=N+1
(o)
< 3 lauly = 0.

n=N-+1

TV

O]

We are now able to prove a representation theorem for ((D/C)’, |||

?heorem 6.5.10. ((D/C),I-) = (L 35[lg). hence [lof =
5 SUPy ||P:v04||Tv-

Proof. First, we show that (D/C)" can be seen as a space of set func-
tions. Take a finite set Ag C S, then restricted the space Dy, = {f €
D|D(f) C Ao} «vis a continuous and linear function.

The space D, with the topology induced by ||-|| is isomorphic to C'(TW40)
with the topology induced by |-|

o> as
20 < I < 2[Aol [ -

Therefore, by the Riesz representation theorem, Theorem 7.10.4 in Bo-
gachev [2007], it follows that for f € Dy, a(f) = (f, &a,) where éy,
is a measure of bounded variation on £, such that &, (E) = 0. This can
be done consistently for every finite set A C S, which implies that & can
be seen as a set function on | J AsJA|<oo &\ for which the restriction to finite
regions is a measure of bounded variation.

We proceed by showing that [|af > 3sup, |Pra|sy. For z € S, let

C(W1#}) be the set of continuous functions on W, but seen as local func-
tions in D which depend only on the coordinate 7.

lof = sup K00 5 g 10

= p
feb 1T = jeogreny I
O | B [ X |
reconen 21flo  jecure 217lo

1 .
= 5 IPadly

This means that the function ® : (B/C)" — 1I, mapping « to &, is well
defined, injective and continuous. So, we identify « and &.
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For the other inequality note that by continuity we can restrict the supre-
mum to local functions:

(f, o)
lafl = sup :
f local |||f|||

For local functions f, the result in (6.5.5) yields:

[(f,e) _ IFll 3 supg [Pealry 1
< = o sup | Praf gy -

171 171 27, 0 Y
This means that @ is an isometry with respect to ||| and 1 |- ;. We show
that it is also surjective. Pick a local function f, then clearly a(f) is well

defined, because « restricted to 81)( f) is ameasure of bounded variation. By

the calculation above we see that |(f,a)| < 3 || f|| sup,, | Pxt|1 - Hence, o
defines a bounded linear functional on the local functions. Thus, it extends
by continuity to a continuous linear functional on D/C. O

6.5.3 Diffusion processes on R4

We now show that our result partly reproduces the Dawson and Gartner
theorem Dawson and Gértner [1987]. First of all, we prove the result for a
time-homogeneous case, but more importantly, we need to assume more
regularity on the diffusion and drift terms.

Let Ci'(R?) be the space of m times continuously differentiable functions,
for which all derivatives up to order m are in Cp(R?).

For every = € RY, let {0; ;(x)}; j be non-negative definite matrices, o; j(x)
continuous in x. Denote with a; j(z) = oy j(x)o; ;(x)T. For each i, let
b; € C(RY). Define for every f € C°(R?) the infinitesimal operator

Af(z) = % S i ()00 £ () + 3 bi(@) 0 (2).
i i

Denote with

CM(RY) :

{f € Cy(RY) ] Dof € Cy(RY) if |o| < m} :
CIM(RY) :

{1 e a®Y) | D*f € Co®?iffa] <m},
and equip C¢"(RY) with the norm

£l =" DI

0<|a|<m
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Using the methods obtained to prove Theorem 8.2.5 in Ethier and Kurtz
[1986], we obtain the following theorem.

Theorem 6.5.11. If 0;;,b; € CP(RY), then the closure of A gener-
ates a strongly continuous contraction semigroup on Co(R?). Additionally,

S(t)CéRd) C CZ(R?) and the restriction of S(t) to C3(R?) is strongly con-
tinuous for |-

We calculate A9f and H f for f,g € D = C2(R?). Again, the calculation
of AY gives us a new generator with a changed drift.

49f(x) +Z“w 124510 5 )0, 1)

*fZam )0;0; f ()

ah + Qi
#32 o) + T ©) pr9(2) | 0:f(2).
H f introduces a quadratic term:

Hf(x) = Zaw 9; f(x). (6.5.6)

As a corollary to Theorem 6.5.11, we obtain the next result.

Corollary 6.5.12. (C2(RY), |||, satisfies Condition 6.1.3.

Proof. Conditions (a) to (e) are straightforward to check. For (f), we put

_ {f € C3(RY

for all 2 € R?, we have dsup |b;(z)|[0; f (x)]

z?]

2
+ 5 sup s ()] (1960, £ )|+ 1067 2) 10,7 )]) < 1} .

Clearly, N is closed, convex and balanced. We prove that AV is absorbing,
which follows by showing that A contains aball { f € CZ(R?) | | f|, < ¢}
for some c.
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Let @ = sup; ; sup,cga |a; ()| and b = sup, sup,cga |b;(z)|. Pick ¢ > 0
such that

?a(c +c¢) +dbc < 1.

This choice implies that
{F e CGB®RY 171, < ¢} SN N C2(Ka).

We obtain that N is a barrel and by construction of N and the form
of H, see (6.5.6), that sup ey |Hf| < 1. Also, for ¢ > 1, we obtain
supeen [ Hf| < 2 0

A similar approach would give the result for D = S the space of rapidly
decreasing smooth functions with its Fréchet space topology. This would
need the extension for separable barrelled spaces in Condition 6.1.3. Note
that S is separable by the discussion following Proposition A.9 in Treves
[1967] and barrelled by Corollary 1 of Proposition 33.2 in Treves [1967]

6.5.4 The Dawson and Gdrtner theorem

As a consequence of the discussion above, we re-obtain a time-
homogeneous and smooth version of Theorem 4.5 by Dawson and Gértner
Dawson and Gértner [1987].

Let (z1,...,74) be the Euclidean coordinates. For f € CZ(R%), define
(V) = > j—1d ai,j(-)%fj. Then it follows from (6.5.6) that (H f, u) =

(Af, 1)+ 5(IVFIP, ).

We introduce two new spaces,

D, :={s €D =C3®") |(VIP.u) #0}
T, = {a c C2(RYY

lal, < oo},
where [-| , is defined on C2(R?) by

laf, == sup M.
H feD, <‘Vf|2,/./,>

The next proposition shows the connection between Theorem 6.1.8 and
Theorem 4.5 by Dawson and Gértner Dawson and Gértner [1987].
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Proposition 6.5.13. If L(p,«) < oo, then o € T, and L(p,a) =
3la— Ay .- As a consequence for a trajectory v € AC

= . 1o ,
/0 E(V(s),l/(s))ds:2/0 Ji(s) = Aw(s)] -

Proof. Pick pu € P(RY) and a € CZ(R?) such that £(, ) < oc. Define
& = o — A’ . Consider

ﬁ(/%a) = Sup {<f,0[>—<Hf,,U,>}
feCE(R)

= s {(fa) - arm - 50V 0R 0 )

fEC2(RY)

= s {tra) - jvirm )

FECE(RY)

. 1
~ o sup{0<f,a>—622<lvf|2,u>} (65.7)
fEC2(RY) c€R

By assumption, the supremum in the equation above is finite. Then if f €
Dy, it must be that (f, &) = 0. Therefore, these f yield 0 as an argument
in the supremum.

For a given f € D, optimising over c yields ¢ = % Therefore, we
can rewrite (6.5.7) as
|<f7 CAV> |2 1 /
L(p,a) =0V = sup =—la—Ayu| .
2 s, (IVFIPm) 2 ” I

O]

6.6 APPENDIX: DECOMPOSITION OF THE RATE FUNCTION ON PROD-
UCT SPACES

In this appendix, (E, d) is a complete separable metric space.

Suppose P is the law of a Markov process on Dg(R™). Suppose that
X(0) ”.Lf(tk))

the sequence (L, satisfies the large deviation principle on
P(E)**1. The following lemma is a multidimensional version of exercise

6.2.26 of Dembo and Zeitouni [1998].
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Lemma 6.6.1. The large deviation rate function I[0,t1,...,ty] of the LDP
of the sequences (LnX(O), . .Lg(tk)) on P(E)**1 is given by
I[O,tl, ce ,tk](Vo, ceey Vk)
k
= s 3 (fiu) —logE [fXOM A
fo,- fECH(E) 550
(6.6.1)

Also, we can restrict to a smaller class of functions, see [Dembo and
Zeitouni, 1998, Definition 4.4.7 and exercise 4.4.14].

Corollary 6.6.2. The supremum over Cy,(E) in (6.6.1) can be restricted to
any class of functions M that separates points and is closed under taking
point-wise minima. In particular, this holds for Co(E) if E is locally compact.
Denote with V (s, t) f(z) = log Ex (s)—s [ef(X(t))} and put

Ly (1 | o) = sup (f, 1) — (V(t1,t2) f, v0)-
feM

Clearly, if X is a time-homogeneous process, we can simplify to V (t—s) :=
V(s,t) and Iy,—¢, := I, t,. The following proposition can be verified in a
straightforward way, see for example Lemma 4.7 in Dawson and Gartner
[1987].

Proposition 6.6.3. Let M C Cy(FE) be a set of functions that separates
points, and which is closed under taking point-wise minima. Denote with
V(s,t)f(x) = log Ex(s)=s [ef(X(t))} and let M be such that for everyt > 0:
V(t)M C M. Define

It 4o (V1 | vo) = sup (f,v1) — (V(t1,t2) f, v0).
feM

Then, it holds that

k
I [O,tl, ... ,tk] (1/0, ceey l/k) = Io(V()) + thi—l,ti(yi ’ Vi—l)-
=1
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6.7 APPENDIX: SOUSLIN SPACES, BARRELLED SPACES, AND
GELFAND INTEGRATION

6.7.1 Barrelled spaces and Gelfand integration

Definition 6.7.1. A locally convex space &’ is called barrelled if every bar-
rel is a neighbourhood of 0. A set S is a barrel if it is convex, balanced,
absorbing and closed. S is balanced if we have the following: if x € S and
a € R, |a| < 1then ax € S. S is absorbing if for every € X’ there exists
ar > 0 such that if |a| > r then z € aS.

For example, Banach, Fréchet and LF(limit Fréchet) spaces are barrelled
[Treves, 1967, Chapter 33]. The space of Schwartz functions is Fréchet and
the space C2°(R%) with is usual topology is LF.

The importance of barrelled spaces follows from the fact that the closed
graph theorem holds for them [Carreras and Bonet, 1987, Proposition
7.1.11], [Robertson and Robertson, 1973, Theorem VL7].

Theorem 6.7.2 (Closed graph theorem). Let X’ be a barrelled locally convex
space, and let F' be a Fréchet space. Suppose that T : F — X is a linear
operator with closed graph in F' X X, then T is continuous.

The closed graph theorem is of importance for integration of functions with
values the dual of a barrelled space. Let (€2, F, i) be a complete and finite
measure space, and let X’ be a barrelled space with continuous dual X”’. We
equip X’ with o(X’, X), the weak* topology.

Definition 6.7.3. A function f : Q — X’ is called weak* measurable if
the scalar function

w = (2, f(w))

is F measurable for every x € X. Such a function f is called Gelfand or
weak* integrable if (z, f) € L1(Q, F, ) for every z € X.

For Gelfand integrable functions, we obtain, using the Closed graph theo-
rem, the following result [Diestel and Uhl, 1977, pages 52-53].

Theorem 6.7.4. Let X' be a barrelled space and (2, F, i) a complete and
finite measure space. For every measurable set A € F and Gelfand integrable
function f : Q — X', there exists a unique 2’y € X' such that

(2, 2%y) = /A (o, f(w))pl(dw)
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forallz € X. This element 2, will be denoted by [, fdy.

6.7.2  Souslin spaces

Definition 6.7.5. A space (Y, 7y ) is called Souslin, if Y = f(X) for some
complete separable metric space (X, 7x) and some continuous function
[:(X,7x) = (Y, 7).

For more background on Souslin spaces, see Chapters 6 and 7 in Bogachev
[2007].

Lemma 6.7.6. Let (X, T) be a separable barrelled locally convex Hausdorff
space and T a barrel in (X, 7). Then (|, nT°, wk*) C (X', wk*) is a
Souslin space.

In particular, as the unit ball in a Banach space B is a barrel, the dual
(B, wk*) of separable Banach space is Souslin.

Proof. Because (X, 7) is barrelled, T" is a neighbourhood of 0. Consequen-
tially, 7° is an equi-continuous set in (X', wk*) by 21.3.(1) in Kéthe [1969].
By the Bourbaki-Alaoglu theorem, 20.9.(4) Kéthe [1969], this set is weak”
compact.

Furthermore, by 39.4.(7) in K6the [1979], T° is metrisable. (7°, wk*) is com-
pact and metric, which implies that it is complete separable metric and as
a consequence Souslin. We can do the same for nN° for every n € N,
so we obtain that (|J,, nAV°, wk*) is Souslin [Bogachev, 2007, Theorem
6.6.6]. O
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LARGE DEVIATIONS ON THE PROCESS LEVEL

This Chapter is based on work jointly with Frank Redig.

In Chapter 3, we considered large deviations for the empirical magnetiza-
tion of a mean-field spin-flip model. The main example in this chapter is a
nearest-neighbour spin-flip model on the lattice Z¢. To obtain a path-space
large deviation principle to study the evolution of the magnetization, it is
not sufficient to only consider the evolution of the magnetization as this
evolution is not autonomous.

Therefore, to study the behaviour for large n, one replaces the empirical
magnetization by the empirical measures. In the limit, these empirical mea-
sures satisfy a autonomous equation, which makes this evolution a suitable
object to study. The main result in this chapter is a large deviation princi-
ple for the trajectories of the empirical measure around the autonomous
equation.

We first consider the much studied fixed time issue, see for example Georgii
[2011] or Pfister [2002].

7.1 FIXED TIME PROCESS LEVEL LARGE DEVIATIONS

Let W be a compact metric space and denote with F the product space ¥ =
WZ' In examples, W will be a finite set (interacting particle systems), or
W = I"™, for some bounded interval I, or more generally a compact finite
dimensional manifold (interacting diffusions). Elements of £ are denoted
by Greek letters 7, o, £. For a configuration € E and i € Z%, 1; denotes
evaluation of 7 in 7. On E we have translations defined by (6;1); = 7i+;.
We set Py(E) to be the set of translation invariant measures, i.e. measures
p such that j106; = pufor all i € Z?. We say that . € Py(E) is ergodic if it
is an extreme element of the convex set Py(E). In other words, y is ergodic
if and only if we have that y = cvy + (1 — ¢)vg for vy, 9 € Py(F) and
¢ € (0,1), then u = 11 = v5. We denote the set of all ergodic measures by
Pe(E).
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Let A, C Z% be the box defined by A,, := Z? N [—n, n]¢ and for A C Z7,
let B4 be the o-algebra generated by the variables 7;, for ¢ € A. Denote
with B,, := By,

For o € E, consider the empirical measures L, (), defined by

1
Ln(a) = |T Z 691'0

a i€An

We are interesting in the large deviation behaviour of the sequence L, (o)
in the setting that o has an ergodic distribution 1 € Py(FE). If u is an
ergodic measure, it follows by the Ergodic theorem that the sequence L,, (o)
converges weakly p almost surely to pu. Thus, compared to earlier chapters
of this thesis, the large deviations of L,, are around the ergodic limit instead
of the usual law of large numbers.

Instead of studying L,,, one can also study the large deviation behaviour of
averages of shifts of a periodization of . As noted in Chapter 6 of Rassoul-
Agha and Seppéilainen [2015], this sequence of objects and L,,(0) and are
equivalent on an exponential scale, so their large deviation behaviour is
the same.

To describe the rate function and conditions to obtain the large deviation
principle, we introduce some more notation. As in Chapter 6, we denote
the relative entropy S(v | ), for two measures u, v € P(E), by

log ¥dy ifv << p
Sl = ) B
o0 otherwise.

We will denote by Sy, (v | 1) = Sp (v | fin), Wwhere iy, vy, are the measures
1 and v restricted to B,,.

Because L, is obtained by ‘dividing out’ translations, and if the measure
v satisfies the natural condition of asymptotic decoupledness, to be in-
troduced below, it is to be expected that the corresponding rate function
should be the entropy density.

Definition 7.1.1. Let X = XZ° for some Polish space X. Fix v, u €
Py (X). If the limit

1
lim ——Sn(v|p)

n—oo |An’

exists, we call it the relative entropy density and denote this limit by s(v | p).
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Definition 7.1.2. Let X = X% for some Polish space X. A probability
measure y € P(X) is called asymptotically decoupled (AD) if there exists
sequences d(n), ¢(n) such that

lim c(n) =0, lim

n—oo |Ay,| n—oo n

d(n)

=0 (7.1.1)

and for all i € Z% A € Fiip, and B € Flivn
n(A)pu(B) # 0:

nd(m)) such that

The first line respectively second line refer to AD from below respectively
AD from above.

Note that the class of asymptotically decoupled measures includes the class
of Gibbs measures. In [Pfister, 2002, Proposition 3.2] it is shown that the
large deviation principle can be proven for measures satisfying the AD

property.

Proposition 7.1.3. Let X = Xz for some Polish space X . Let i € Py(X)
be asymptotically decoupled. Then the limit

1
n—o0 ‘An|

s(wlp) = lim —=—Sn(v|p)

exists for all v € Py(FE). Additionally, the function v — s(v|p) is lower
semi-continuous with respect to the weak topology and has weakly compact
level sets.

For an asymptotically decoupled measure p, we extend s(-|p) to P(E)
setting s(v | ) = oo for v € P(E) \ Pp(F). With this extension, Pfister
obtained the large deviation principle for L.

Theorem 7.1.4 (Theorem 3.3 in Pfister [2002]). Let u be asymptotically
decoupled. Then the sequence { L, } ,>1 satisfies the large deviation principle
on P(E) with normalization |A,,| and rate function v — s(v | ).
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7.2 TRANSLATION INVARIANT DYNAMICS

We now introduce dynamics. In particular, we consider a translation invari-
ant Feller process {o(t) }+>0 on E, having a transition semigroup {S(¢) }+>0
on C(E). As before, we write (A, D(A)) for the generator of S(t). To aid
the exposition and to stress the translation invariance of A, we will assume
that there exists some ‘source’ generator (A, D(Ap)) with D(A) C D(Ayp)
such that

A= Z 0_; Aob;.
€74

The main non-trivial setting where our results hold is in the context of
spin-flip dynamics. On the other hand, for product dynamics, the results
also hold for diffusion processes.

Example 7.2.1 (Spin-flip system). We consider a spin-flip system on
{—1,1}%". As in Chapter 6, let D be the set of functions with bounded

triple norm ||-||. For f € D, we consider a generator of the type
Af(e) = 3 cilo) [f(e") = f(o)].
iezd

We will assume that ¢; is continuous in ¢ and that ¢; only depends on a
finite set of coordinates close to i. The configuration ¢* is defined by

i Joi ifg#d
—o; ifj =i.
The spin-flip process generated by this generator is translation invariant

if ¢;(0) = co(f—;0) and in this case, we have A = ) . 0_;Af; with Ay
given by

Aof (o) = co(0) [f(") = f(0)] -

Example 7.2.2 (Diffusion processes on a torus). Set E := (R/Z)Zd. In
this context, let D be the space of functions f that only depend on a finite
set of coordinates D(f), and that are twice continuously differentiable for
coordinates in D(f). We consider the product dynamics defined by the
generator A with source generator Ay given by
d2
Aof(2) = —f(z), [feD,

)
dxj

where x is the 0 coordinate of z € F.



7.3 MAIN RESULTS

Below, we will prove, under some conditions, the large deviation principle
for { L }n>0, where Ly, := {Ly(t) }t>0 € Dp(g)(R") and where Ly, (t) :=

ﬁ ZieAn 59i0'(t)'

The representation of the rate function will be of the form as in Theorem
2.4.10. To do this, we will construct a limiting semigroup V (¢). Because this
semigroup should correspond to dynamics on Py(E), it should act on the
dual of My(E). A variational representation of V'(¢), as in other Chapters
of this thesis has not been obtained yet. Some ideas on this problem are
mentioned in Section 7.5.

Denote by Cy(F) the space C'(E)/Z, where
T = {f € C(B)||(f,1)] = 0 forall € Py(E)}.

In Section 7.6.2, we explore some properties of this space. Importantly, the
quotient norm ||, turns (Cy(E), |-|,) into a Banach space and Lemma
7.6.2 characterises the norm on Cy(E) by

116 ::;relgﬂf—gllz sup [(f, u)].

REPy(E)

By construction, the continuous dual space of (Cy(E), |-|,) equals Py(E).

7.3 MAIN RESULTS
7.3.1 The large deviation principle and some consequences

Denote by rt(o' d¢) the kernel of the Markov process generated by S(t),
ie. S(t = [ f(n)r(o,dn). We introduce a notion of asymptotically
decoupledness for Markov processes. This notion will allow us to obtain
the large deviation principle at later times.

Assumption 7.3.1. The Markov process {o(t)}+>0 is called uniformly
asymptotically decoupled(UAD) if for every time ¢ there exist two se-
quences {ct(n) }n>0 and {di(n)},>0 satisfying (7.1.1) such that for every
measure 4 € P(EF) that is asymptotically decoupled with sequences
{cu(n)}n>0 and {d,(n) }n>0, the measure

pE @A, dond)i= [ udon,.. do)ri(o,d0)

is asymptotically decoupled with sequences {c,(n) + c/(n)}n>0 and
{du(n) + di(n) }n>o.
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Clearly, the assumption above is satisfied for product dynamics as in Ex-
ample 7.2.2. By cluster expansion methods this assumption can be verified
for interacting systems as in Le Ny and Redig [2004]. In that paper, trans-
lation invariant nearest-neighbour spin-flip dynamics as in Example 7.2.1
are considered. Starting with a measure p € Py(F) that is asymptotically
decoupled, it is shown that the law of the process at a later time is also
AD. The same proof, without any changes, also works for any starting law
that is AD. Additionally the same proof, with minor changes, gives the AD
property law of the process at two or, finitely many, times.

The proof of the result in Le Ny and Redig [2004] relies on the property
that the rate of any spin flip is bounded away from 0. Thus, it is unclear
whether such an result can be proven for a translation invariant exclusion
process.

Define

1

= log S(t)eXiean £ (7.3.1)

Va(t) f
These V,,(t) f have the interpretation of conditional log-Laplace transforms.
This semigroup can be rewritten in terms of the semigroup in Chapter 6.
Denote by

V(t)f =log S(t)e feC(E)
Hf =e 7/ Aef f:ef e D(A),

the semigroup and Hamiltonian that were used in Chapter 6.

Adapting the approach of Pfister [2002], we use our conditional AD prop-
erty to show that as n — oo the conditional Log-Laplace transforms con-
verge. By a projective limit theorem argument, we obtain the large devia-
tion result on [ [,.g P(E). A stochastic Lyapunov technique based on the
generators H,, f = ﬁH(ZieAn fo8;) of the semigroups V,,(t) is used to
prove exponential tightness of L, in Dp, () (RT). We start with this result
first.

Lemma 7.3.2. Let D be a core for (A, D(A)). Suppose that for every A € R
and f € D, we have eXlfn ¢ D(A), where f, = \T1n|zieAn f ob;.
Furthermore, suppose that

CA, f) = sup [Ha(Af)] < o0

Then Ly, is exponentially tight in Dp(gy(R").
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This result is based on Theorem 4.4 in Feng and Kurtz [2006] of which the
conditions are verified below. Exponential tightness, together with conver-
gence of the conditional log-Laplace transforms yields the large deviation
principle with a representation of the rate function as in Theorem 2.4.10.

Theorem 7.3.3. Suppose that we have a translation invariant Markov pro-
cess with the UAD property.

Then we have that for every f € C(E), the sequence V,,(t) f defined in(7.3.1)
has a limit V (t) f in Cy, uniformly fort in compact intervals.

Additionally, suppose that the initial law of the Markov process is Py is asymp-
totically decoupled and that the conditions for Lemma 7.3.2 are satisfied. Then
the large deviation principle holds for { Ly, },,>0 with normalization |A,| on
Dp(g)(RT) and the rate function is given by

I(V)ZS{UI})S 0) | Po) thftl () [ (timn),

t;

where {t;} runs over collections of ordered times 0 = ty < t1 < --- < tg
and where

Iy(v|p) = Sl;p{<f, v) = (V) )}

As a corollary, we obtain the semigroup property for {V () }+>o0.

Corollary 7.3.4. The collection of operators {V (t)}+>0 forms a semigroup
onCy, i.e. V(s)V(t) =V (s+t) and V(0) =

Note that both structural conditions of Theorem 7.3.3 can be checked in

the example of invariant spin-flip dynamics, see Example 7.2.1, where Ef =
{-1, I}Zd and where for f € D

Af(o) =Y ci(0) [f(o") = f(0)]
iezd
and
(a) Translation invariance: for all i € Z%, it holds that ¢;(0) = co(_;0).

In this setting, the verification of the conditions for Lemma 7.3.2 are
straightforward. The UAD property can be verified via cluster expansion
methods, following Le Ny and Redig [2004], under the additional condi-
tions that
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(b) Nearest neighbour interaction: ¢y only depends on D.,, = {j €
Z||jl <1}
(c) Strict positivity:

0 < minc¢p(o) < maxcy(o) < oo.
g g

7.4 PROOFS OF THE RESULTS IN SECTION 7.3.1

We start with the proof of Lemma 7.3.2.

Proof of Lemma 7.3.2. To simplify notation, set f,, = ﬁ > ien, f o0
Theorem 4.4 in Feng and Kurtz [2006], shows, using the compactness of
P(E), that the sequence L,, is exponentially tight in Dp(gy(R™) if for
every f € D, D closed under addition and separating points in P(F), the
sequence of trajectories t — (f, L, (t)) = fn(o(t)) is exponentially tight
in DR(R+)

To do this, we use Theorem 4.1, (b) to (a), combined with Remark 4.2 in
Feng and Kurtz [2006]. We use the notation of Feng and Kurtz [2006]. On
R the metric 7 is simply the Euclidean distance, and as we are considering
trajectories in [— | f||, | f]] € R, it is not necessary to replace the metric r
by g=1rAL

For every T' > 0, pick 5 = 1 and let v,(0,\,T) = |A,|0C(A, f).
Yn (9, A, T') satisfies the condition in equation (4.2) of Feng and Kurtz [2006].
Because the condition in equation (4.3) follows from equation (4.6), we
prove the latter.

eMAnlfn € D(A) which implies by Lemma 4.3.2 in Ethier and Kurtz [1986]
that

e {4 o10) = [ IO (5)s
is a martingale. This implies that
E [e\/\nIA(fn(U(HU))ffn(O(t))) ’ ;t]
< eulAnllHR (A

< F [e\/\nIA(fn(0(t+U))ffn(o(t))*ff+" |An| Ha(Af)((s))ds)

d

< e’yn (57>‘7T)

— )

which proves equation (4.6) in Feng and Kurtz [2006]. O
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7.4.1 The large deviation principle and decomposition of the relative entropy
density

Provided that the starting distribution is AD, we have the AD property
for the finite dimensional distributions of the Markov process {o () }+>0
in P(E*) for any k by Assumption 7.3.1. This yields by Theorem 7.1.4 in
Pfister [2002] that we have the large deviation principle for the sequence

n— Ln(O, t1,... ,tk) = ‘A | Z 59 ;0(0) X 59 g(tl) e X 5‘9i0'(tk)
€A,

in P(E**1) for some sequence of times ¢y = 0 < t; < --- < t. Let
[0.ty....1,, € P(E*T1) be the distribution of the process ¢ — o (t) restricted
to the times #o, . . . , t;. The rate function of this large deviation principle is
given by the relative entropy density

. 1
$(Vo,ty,.ty, | MOy, ty,) = 1M /TSn(Vo,tl,...,tk | oty i )-
n n

We will decompose this relative entropy density in k& + 1 terms, one for
every time component. We start with & = 1. Fix some time ¢; and some
measure v, € P(E?). Denote by 1 and p the time 0 marginals of v ¢,
and (¢, . Define

Do, (do,d¢) = /50 ® S (t1)0,(d6,d¢) vo(do) € P(E?)

the measure vy composed with the Markovian evolution S’(¢1). In other
words, 7 ¢, is the measure of which the first marginal coincides with 1,
and which has regular conditional probabilities given the first coordinate
that coincide with those of the Markov process. The application of Lemma
7.6.1, applied for F the o-algebra generated by all variables for the first
time coordinate, yields for an arbitrary n € N that

SV o) = Su(vo | o) + / 57 (0, ) | 7o ()0(do)
Su(vor, | 70) = Snlv0] 10) / 57 (0,) | 7o ()0(do)

/ S ( V| re())ro(do),
where 17 (o, -) is the regular conditional probability of v given F. Note
that because of the Markov property, this regular conditional probability
equals (o, -) and only depends on the first coordinate.
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Combining the two statements yields

Sn(vo,ty | Ho,t,) = Sn(vo | o) + Sn(vo.6 | P04,

When divided by |A,|, the first two terms converge as n — oo by the AD
property of 119 and pg ¢, , which implies that

S(Voh |:u07t1) = S(VO | HO) + S(Voyh | DOJH)' (7.4.1)

We will iterate this procedure in the next lemma. Fix some k and times
to=0<ty, - <tpand gy, ¢ € P(E**1). Denote by Vo,t,...tp_1 the
restriction of 94, 4, to the first p coordinates. As above, we compose the

measures 1o ¢, ¢, , With Markovian evolutions of time ¢, — t,_1:

D0,t1,...tp(A60, - - -, dGp_1,d()

_ / Sy s X Sty — ty_1)6, 1 (db0, ..., A6y, dC)

X Vot ity (dog, ..., dop_1).
Note that Dy, ..+, € P(EPT!).
Lemma 7.4.1. We have
k
5(V0,t1,ty | MOy, t) = S(V0 | o) + Z 5(V0,t1 oty | P01, ty)-
p=1

Proof. We reconsider the argument that led to (7.4.1). We have k + 1
marginals now, and we start by decomposing the times into {0} and
{t1,...,t}, this yields

S(Voﬂfl,---ﬂfk ’:U*O,th---,tk) = S(VO ’:U*O) + 8<V07t17---7tk ’ﬁo)v

where 7 is the measure vy composed with the Markovian evolution for
the remaining k coordinates. The same step can be repeated for relative
entropy density on the right, now decomposing the time marginals into
{0,t1} and {t2, ..., tx} and so on.
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Let Voy¢y,..t, € P(Ep+1) be the measure v, .. ¢, composed with the
Markovian evolution for the remaining coordinates. This yields inductively
that

S(Vo,tl,...,tk ’ ,UO,tl,...,tk)
= s(vo | no) + s(Voty,...t, | V0)

= s(vo | po) + h(vou [Po4,) + s(Woty,..ty, [ Poty)

=

s(vo | po) + g 5(V0,t1 oty | P01, tp)-
p=1

Note that we have used 24,1, = V0,,,...t,—1 for the last equality.  [J

By the contraction principle, Theorem 2.4.6, we obtain the large deviations
behaviour of sequences (L,,(0), L, (t1), .., Ln(ty)) € P(E) 1, where
L,(t) = ﬁ ZieAn 89,5(t)» which has the rate function Iny, ... ¢, defined

for (707 <o 7/775}@) € P(E)k+1 by

Toty,.t (V0,5 78) = inf h(Vo.ty,...ty, | 1Ot 1)
veP(EFT)

Vpe{0,....k} : vp=p
where v, is the restriction of v to the p-th coordinate.

To study the contracted rate function, we turn our attention to Section 7.4.2
and the approximating conditional pressures V,,(t) f defined by

Va(t)f(o) =

eican foai(a(t))] ,
!A |

The convergence of this sequence in Cy follows by abstract arguments de-
veloped in Section 7.4.2 below.

If we set Y(0)(do,dog) = 0, ® S'(t)ds(dor,dos), then by Assumption
7.3.1 and the translation invariance of the process, Condition 7.4.4 is sat-
isfied and the convergence of V,,(t) f to V (¢) f in Cy follows by Theorem
7.4.10.

The next lemma will show that the sum in Lemma 7.4.1 simplifies.
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Lemma 7.4.2. The set of empirical measures (Ly(0), Ly, (t1), ..., Ln(tx))
satisfies the large deviation principle on P(E)**+! with rate function

k
s(v0 [ 10) + D g1 Zty—ty 1 (Vi [ 71, 1)

IO,tl,...,tk (’YO? e 7’715}@) = l.f")’o, cey Yt S P@(E)
00 otherwise
where
(71 |70) = sup (f,71) — (V(£) f,70)-
f€Cqy

Proof. Lemma 7.4.1 gives

Ioty,..tr, (Y05 -y V)

k
= inf s(vo | no) + S(V0ty ity | D0t1, t)-
sl £ 3 s [P )
VpE{O,,k:} : th =Yp p=
Taking apart the last term gives
Loty i (Y05 -+ 5 k)
k—1
= inf { (v + s(V] )
V'E'P(Ek) ( 0|:u0) Z_; ( 0,t1,~..,tp| O,tl,...,tp)
Vpe{0,....k—1} v, =vp p=
+ inf s(v|vg. }
veP(Ek+) Wl70,..1)

—q,/ —
V0,1 =V Ve =k

If we apply Lemma 7.4.13, with X = Ek,y = FE, u = 1y, .4 and

Y(oo,...,0k-1) = To,_,, We see that this last term equals
sup (f, ) — (p(f), V). (7.4.2)
feC(E)

Now note that as f € C(E), we have p(f) = V(tx — tx—1)f, and that
V(tx, — tx—1)f is an equivalence class of functions on the ¢;_; marginal.
Hence, (7.4.2) equals

sup (f, k) — (V(te — th—1) f Yr—1)-
fec(k)

Repeating this step inductively yields the final result. O
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Lemma 7.4.2 is the final ingredient for the proof of Theorem 7.3.3, which
is now straightforward.

Proof of Theorem 7.3.3. The large deviation statement follows from
Lemma’s 7.3.2 and 7.4.2 and Theorem 4.28 in Feng and Kurtz [2006]. [

For the proof of Corollary 7.3.4, we first show that Py(FE) has a well be-
haved dense subset.

Lemma 7.4.3. The translation invariant ergodic AD measures are weakly

dense in Py(E).

This lemma can be proven as in Lemma 6.9 in Rassoul-Agha and Seppalai-
nen [2015], where it is shown that the ergodic translation invariant mea-
sures are dense in Pyp(FE). Lemma 7.4.3 follows by observing that the ap-
proximating measures in the proof of Lemma 6.9 in Rassoul-Agha and Sep-
paldinen [2015] are AD.

Proof of Corollary 7.3.4. As a direct consequence of Theorem 7.3.3, the con-
traction principle yields for any s,¢ > 0 and measures p, v € P(E) that

It+s(V ‘ M) = AG%%}&E) {It(V ‘ >‘) + Is(/\ ‘ /1')} : (7-4-3)

Let f € Cy(F). We first prove that V(£)V(s)f(n) = V(s + t)f(p) for
an asymptotically decoupled measure p. By Holders inequality V,,(t) f is
convex in f, which implies that also V' (¢) f is convex in f. We also know
that f — V(t)f is continuous in Cy(E) by Theorem 7.4.10. This implies
that the double Legendre-Fenchel transform of V' (¢)f is V(¢) f, in other
words:

V) fym) = sup {{f,v) — L(v|p)}. (7.4.4)
vEPy(E)

Therefore, we have, using equation (7.4.3), that
V(t+s)f(p)= sap sup {(f,v) — L[N = L(A|p)}
VEPQ(E) )\EP(.)(E)

= sup {(V(s)f,\) — L(Ap)}
AEP(E)

= V@OVs)fm
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In other words, we have

V(t+5)f(p) =VE)(V(s)f) ) (7.4.5)

for all asymptotically decoupled pi. Because the AD measures are dense in
Po(E) by Lemma 7.4.3, we obtain that V (¢)V (s)f = V(t + s) f. O

7.4.2 Existence of the conditional pressure density and the relation to the
relative entropy density

In Section 7.4.1, we used that the limit of

Va(t)F(0) = i logEy [eDienn S0l 0)]
|Anl

exists as n — 00. A priori it is not clear that for a given o this limit ex-

ists, even if the measure S(¢)'d, is AD. This is the case because S(t)'d, is

in general not translation invariant, which implies that the standard argu-

ment based on the work by Pfister [2002] does not apply.

However, if we consider the sequence V,,(¢) f in the quotient space Cy, we
are able to the standard argument in an adapted way.

This section can be read independently of the other sections as we will
consider the conditional pressure density and conditional relative entropy
density on arbitrary spaces with a product structure.

Let X,Y be two Polish spaces and define the product spaces X =
X Zd,y = Y2 Suppose we are given a measurable map T : X —
P(X x ) that satisfies the following condition.

Condition 7.4.4. The map T has the following two properties.

(@) 7 — Y(n) is continuous for the topology on X" to the weak topology
on P(X x ).

(b) Foralln € X and i € Z%, we have Y(0;1) = Y(n) o ;. Additionally,
we have that the projection of Y (7)) on X equals d,,.

(¢) T(n) is asymptotically decoupled with sequences {c(n)},>0 and
{d(n) }n>0 that do not depend on 7.

For € P(X x Y)and f € C(X x ), define

1 .
pu(f ‘ M) = m logE, |:€ZieAn f 91} _
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Clearly, if T does not depend onn € X, then it is well known that p,,(f) =
pn(f 1Y (n)) converges in some appropriate sense, see for example Pfister
[2002]. Note that by (a) of the condition above, we have for f € C(X x ))
that the function n — p,,(f | T(n)) is an element of C'(X').

We will show that under Condition 7.4.4 (b) and (c) that the sequence
pn(f Y (-)) converges in Cg(X).

Remark 7.4.5. Note that if we replace Condition 7.4.4 (a) by merely as-
suming measurability of the map, Proposition 7.4.7 holds also if the space
of continuous functions is replaced by the space of bounded and measur-
able functions.

We start with an auxiliary lemma that has a straightforward proof.

Lemma 7.4.6. Let (B, |-|) be some Banach space. Let {zy}n>1 be a se-
quence in B that satisfies |y, — | < Cnm, wWhere {Cnm tmn>1 satisfies
limy, 00 limy, 00 €n,m = 0. Then, the sequence x,, converges.

Proposition 7.4.7. Let { satisfy Condition 7.4.4 and let f € C(X x )).
Then the sequence n. — pp(f | Y(+)) converges in Cy(X).

Proof. Let f be F, measurable. Given some fixed m and large n, we intro-
duce a decomposition of A,, into smaller boxes of size A,, and corridors
between the translates of A, to exploit the asymptotically decoupledness
of T(n). We adapt the approach as in Pfister [2002], which is the canonical
way to prove show the existence of the pressure.

Define ' = 7/(m) := (ww For n > m + r + 1/, there exists a unique

maximal k = k(n, m) such that
2n+1=k[2(m+r+7)+1] +7 (7.4.6)

where 0 < j < 2(m-+r+7r")41. We split up the box A, into k? translates of
the box A, +,+,/, and the complement of these boxes in A,,. Now, we split
up the boxes of size A, 1,1, into a smaller box located exactly in the center
of the box of size A, ,1,, which is a shift of A,,,, and a boundary of width
r 4 7. These small boxes are denoted with A!, ... ,Akd, their centers by
Z1,...,xs and the complement of these boxes in A,, is denoted by AR
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This decomposition yields

pu(f 1T (0))

1 - »
= m log]ET(n) _GZiEA" f 01i|

o )
o |Zh0 Tiens fotiia* “fq

1 d ARI+1
= logET( 625:122‘.5/\(1 foei:| +| ™ |||f||

1

|Ak:d+1|
<
~ A

log { 40 T] By [ Ziear £20] 171

i A

kle(m+71)  |Ay 1
Z |

log |, > ieaa fob;
Al A £ og By [eFiene /]

d
‘Ak +1‘

|An|
de

I £
|Akd+1‘

07 is the shift such that the box A7 is centred at the origin. Note that we
have only used AD from above in the fourth line.

Ifl (7.4.7)

Using AD from below, we obtain that
pu(f[Y(n) >
de(m IAmI
FmaaE R el Z (F 10O ))) -

d
|Ak +1‘

I£1-

(7.4.8)
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Because k% Zgil pm(f1X(6%(n))) 1

lower bounds

, we get as upper and

kd

|Am|kd q
Pal(f 1) < SE T kdz (F17(6°(m))

kdc(m+r) ]Ak + il
|An| |An|
Kl

d
pulF 1 T(m) > 'Am"“ Z (f 1 T(0(m)

- k:dc(m + r) B | AR+ 0l
|An| |An| ’

Because Y is translation invariant, integration with respect to a translation
invariant measure simplifies the sum. Consequentially, we obtain

[pn(F 1)) = pm(F )
[ A [Fe?

< |ee(FITC)) = =Pl FITC))
’ n‘ 0
\Am|kd
1 Ipm(f|T(:
ke(m + ) ]Akd+1\ 0l
T A |An|
c(m+r) |Akd+1|
< +2 I£1-
| Am| [An|
By Lemma 7.4.6, we are done if we can show that the constants
clm+r) ]Ade]
cnm(f) = If] (7.4.10)
| A |An|

satisfy 1imy, o0 limy, o0 €nm (f) = 0. By definition of asymptotically de-
coupledness, the first component of ¢, ,,,(f) converges to 0 as m goes to
infinity. This means that we are left to prove that

Akd+1
lim lim ’ |

=0. (7.4.17)
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. . . . . k4 A . . .
This statement is equivalent to lim,, lim, = 1, which in turn is
n

k(gﬁ—gl) = 1. By equation (7.4.6), this yields the

equivalent to lim,, lim,
equivalence to showing

o 2k(r )+
limlim ——%—= =

0.
m n 2n+1

Because j only depends on m, the term involving j converges taking n to
infinity to 0. Finally, the definition of 7’ and k imply

_ _ 2k(r+1) ] . k@r+dm+r))
= lim lim —— = lim lim
m—oon—oo 2n + 1 M—00 N—00 2n+1
2r+d(m+r)

= lim

m—o00 2m + 1

= 0.

O]

Lemma 7.4.8. Let T satisfy Condition 7.4.4. For everyt > 0 and f,g €
C(X x))

[Pn(F1TC) = pu(g [T < 1F =gl

If f, g are local, we have

Ip(f) —p(@lg < 1f —gly-

Proof. Let f,g € C(X x )). We examine the approximating sequences
Pn(f [T (n)) and pn(g | T(n)).

L log {ET(W) [ffZieAn foel} } - log {ET(W) [eZiEAn goai] }

[Anl _ Al
1 Err(n) e icAn fo‘)i]
= log = ~
| TL| ET(W) eZiGAn go z:|
B 1 log ET(W) :ezie/\n gob; eZieAn (f—g)o@l}
|An| ET(n) [eZiGAn go@i]
~ L By ) _ezi“n 9°9ie|An\<f—9’Ln(U)>}
A

) [ez’“” go@i:|
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where o is a random variable distributed as Y (7). In the last line one recog-
nises a tilted measure. This means that

‘|A1n’ log {Er(n) |:€Zi€An fooi] } _ |A1n! log {ET(n) [ezmn g09¢:| }

< sup[(f — g, Ln(0))].

This proves the first statement. If f, g are local, the approach that was given
in Lemma 7.6.2, we get that

limsupsup |p,(f | T(1)) — pnlg | T(n))]

n—oo N

<limsupsup [(f — g, Ln(o))| = [{f =g, ) < |f —9ls,

n—oo e

where v is a specific weak limit point of a converging subsequence of
L,(0,) and where o, is the configuration that maximises sup, |{f —
g, Ly (0))]- In other words,

T [pn(f100) = pulg | XDl
< timsup [pn (£ 1 10) = palg | TO) < 11 = gl

Taking limits, we see [p(f) — p(9)]s < |/ — glo- O

The results of the lemma show that f +— p(f) can be considered as a
continuous and contractive map from the image of the local functions in
Cyp(X x V) to Cy(X). This implies that f +— p(f) can be extended as a
continuous and contractive map from Cy(X x V) to Cyp(X).

Definition 7.4.9. Define f — p(f) for f € Cy(X x )) by the continuous
extension of p( f) for local functions f.

Theorem 7.4.10. Let Y satisfy Condition 7.4.4. The map f — p(f) is con-
tractive if considered as a map from Cy(X x )) to Cyp(X), i.e. for f,g €
Cy(X x Y), we have

Ip(f) =p(9)lg < [f =gl

Also, for every f € C(X x )Y), we have

[pa(F170()) = (g = 0
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Proof. The contractivity property follows directly from the definition and
Lemma 7.4.8. We prove the second statement. Let f € Cyp(X X)), repre-
sented by some function in C' (X’ x ) that we will also denote by f and let
fr be local functions that approximate the representant of f in norm. We
obtain

Ip(f) = pu(F1XC)) g
<Ip(f) = p(fr)lg + Ip(fr) = pu(fr I T())lg

+ (£ 1TC)) = pa(F X))
<\|f = fellg + Ip(fr) = o (Fr 1T())g

+ (£ 1T()) = pa(f 1Y)
< If = £l +lp(fr) = pu(fr 1T + 1 = f1-

The second statement follows by sending first r and then n to infinity. [

Suppose that we have a translation invariant measure p € P(X x ) that
is asymptotically decoupled. Furthermore, suppose that the regular condi-
tional probability of u given the first coordinate is given by Y'(-), where T
satisfies Condition 7.4.4.

Pick some translation invariant measure v € P(X x ))) and denote by
vp and pg the restrictions of v and p to the X component. Denote 1y ®
Y (dmr, dnz) := [ T(d¢)(dni, dn2)vo(dC). The argument that led to (7.4.1)

gives
s(vlp) =s(vo|po) +s(v|v®X). (7.4.12)

It is well known that the relative entropy is given by the Legendre trans-
form of the pressure. Our next step is to show that the conditional relative
entropy density is given by the Legendre transform of the conditional pres-
sure density.

Proposition 7.4.11. Let Y satisfy Condition 7.4.4 and definev = 1y ® 1.
Then we have that

swlv)=sup  {{f,v) = (p(f);v0)} -

JECH(XXY)

The proof of this lemma is based on the following error bound.
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Lemma 7.4.12. Let Y satisfy Condition 7.4.4. There exists sequences

{b1(m)}m>1 and {ba(m)}m>1, bi(m) T 1, ba(m) | O such that for every
f e C(X x V) that satisfies D(f) C Ay, for some m, we have

for every p € Py(X).

Proof of Proposition 7.4.11. Let f be Fa,, measurable. Define the Fy,, .,
measurable function f = > ..\ f o 6;. This yields by Lemma 2.19 Sep-
paldinen [1993] that

Suem(v]7) > (Fov) - / log(e!, T(n))vo(dn),

which implies

|A1n|Sn+m<u\ﬁ) > (fv) - / pu(f [T (0))ro(dn).

Taking the limit n to infinity yields
S(V|I;) 2> sup <f7V> - <p(f)7i)>

flocal

Because the local functions are dense in C'(X x ))), and p is continuous,
we obtain that the supremum can actually be taken over all f € C'(X x )),

On the other hand, by Lemma 7.4.12, we see
f Y
suplg,) ~ 6).7) = () = 0 (1) 9)
> o {4 = o) [ rogte! Ta)n(an) | - tatm)

By taking the supremum over all such f € Fj,,, Lemma 2.19 in Seppalai-
nen [1993] gives us

- b1(m) v -
supla, ) = p(a).) = MV, (o) bl
1 log by (m)

=—5n(V|P) —
| Am| “12) A

Taking the limit m to infinity, we obtain

sup {{g,1) — (plg), 7} = s(v ).



222

LARGE DEVIATIONS ON THE PROCESS LEVEL

We proceed with the proof of our auxiliary lemma.

Proof of Lemma 7.4.12. Consider the sequence nj, = k(m + [ =5 d(m )D The
box Ay, can be split up into k¢ boxes of size A,,, and equally 51zed corridors

of size 2 (@1 in between them. Let x1, ..., x;a be the centers of these
boxes.

By Holders inequality and the fact that Y () is asymptotically decoupled
from above to obtain, we obtain

Py, (f | T(0))
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Using that Y(0;n7) = Y(n) o 0;, integration with respect to p € Py(X)
yields

IN

Ap, | — |AFHY 1

(o (F 1)) < ] A osBro [eIAmIf] )
L cm)
(m + [152])
which implies the result by taking n to infinity. m

Important for the large deviations question introduced in the introduction,
is how the relative entropy density on P(X x )’) behaves under the con-
traction to the product space P(X) x P()). Consider vy € Py(X) and
71 € Py()). Recall that vy is the restriction of v to the first coordinate. Let
v1 be the restriction of v to the second coordinate. Define the quantity

I(v0,7) =  inf .
(v0,71) vert sy s(v | )
Yo=70,V1=71
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Lemma 7.4.13. Let j1 € Py(X x V) be AD. Let Y be the regular conditional
probability of i given the X coordinate. Suppose that T satisfies Condition
7.4.4.

For vy € Pg(X) and 1 € Py(Y). Define ¥ 1(d€,d¢) = Y(n)(d€)yo(dn).
Then we have

I(vo, =s + inf s(v|¥0.1)-
(70,71) = s(70 | o) ety (v ]90,1)
Yo="0,V1=71

and for the right hand part, it holds that

Iyix(nlyw) = inf s(v[j1)= sup {{f,m) — (p(f),0)}-
VI vEPy (X %) fecy)
Yo="0,V1="1
Proof. The first statement is clear from equation (7.4.12). Note that f —
p(f) is continuous and convex on Cy(X x }), so the second statement fol-
lows as in the proof of the second statement of Lemma 2.19 in Seppaldinen
[1993]. O

7.5 CONJECTURE: A VARIATIONAL EXPRESSION FOR THE RATE
FUNCTION

We have seen that the non-linear semigroup often has a second represen-
tation as a variational semigroup. This representation is an important step
to obtain a variational representation of the large deviation rate function.
Even though there is no proof of this representation at the moment, in
the setting of a one-dimensional nearest-neighbour spin flip model a con-
jecture on the form of this semigroup can be made, following the general
structure seen in this thesis.

7.5.1 The conjecture

As in Chapter 6, we will need a number of conditions.

Condition 7.5.1. D is a core for (A, D(A)) that satisfies
(a) D isan algebra, ie.if f,g € D then fg € D.

(b) If f € D and ¢ : R — R a smooth function on the range of f, then
pofeD.
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By property (b), D can be used as a domain of definition of Hf = e~/ Ae/,
the generator of the semigroup {V(t)}+>0. Similar to the connection be-
tween V() and V (¢), there is a clear connection between H and H. Recall
that H,, f = ﬁH (Zle A, fo Qi). By definition, the finite volume approx-
imations of the semigroup {V (t)}+>0 on C(E) satisfy

1€AR

Vn (t)f =

which implies for f € D that

Vn(t)f - ‘T1n| ZieAn fob;
t

lim
t—0

- an

‘:0.

In the space Cpy, this yields

i V2O = f _o
t—0 t

- an

0

Therefore, we expect that if {V(¢)}+>0 is strongly continuous and H f :=
lim,, H,f exists in Cy, this limit is the generator of the semigroup
{V(t) }+>0. We start with a condition, which allows the identification of
the limit lim,, H,, f.

Condition 7.5.2. Let Condition 7.5.1 be satisfied. For every f € D, the
net, based on the finite subsets A C Z< ordered by set-inclusion, defined

by
A= Hyf:=e 2iea foeiAerxeA fob;

is a bounded Cauchy net in C'(E). We denote the limit by H f and write
formally

Hf —e EiGZd foe'LAOeZiezd fob; .

Note that this condition implies the conditions for Lemma 7.3.2 which
yields exponential tightness of the sequence L,,. Using the condition, we
can prove the following proposition.

Proposition 7.5.3. Let Condition 7.5.2 be satisfied. For f € D, we have
sup,, |[Hnf| < oo and H,f — Hf in Cy. Additionally, if f,g € D and
f=9ginCy, then Hf = Hg.
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As in Proposition 6.4.10 in Chapter 6, the aim is to use the Hamiltonian of
the semigroup to write down a variational semigroup that hopefully equals
the semigroup V' (¢). To write down this variation semigroup in terms of
a Lagrangian, we need additional properties of D. However, as there is no
rigorous proof yet, we restrict ourselves to what representation is to be
expected.

As in Chapter 6, we assume that the topology 7p is finer then the |-| topol-
ogy restricted to D and that H : (D,7p) — (C(E),|-|) is continuous.
Finally, we set Dy := (D /7).

Definition 7.5.4. Define the Lagrangian L : Py(E) x D} — RT by

L(p,u) = sup {(f,u) = (Hf )}

f€Dy

Clearly, £ is lower semi-continuous and convex. Additionally, Furthermore,
it is straightforward to establish properties like Proposition 6.3.13 in Chap-
ter 6, i.e. to find a set U such that £ = oo for directions outside U. Because
f — (Hf,p) is convex and continuous, the double Legendre-Fenchel
transform of f — (H f, u) is coincides with f +— (H f, ). We state the
result as a lemma.

Lemma 7.5.5. For yu € Py(E) and f € D, we have

(Hf, >—Sup{<f7 u) — L, u)} -

We now introduce a set of paths in Cp, g (RT) that are absolutely contin-
uous in a suitable way.

Definition 7.5.6. Define Dy — AC?, or if there is no chance of confu-
sion, ACY, the space of absolutely continuous paths in Cpy(E) (RT). A path
v € Cp,(g)(R™) is absolutely continuous if there exists a (D}, wk*) mea-
surable curve s — u(s) in D} with the following properties:

(i) for every f € Dgandt >0 fg |(f,u(s))|ds < oo,
(ii) for everyt >0, v(t fo s)ds as a Dy Gelfand integral.

We denote /() := u(s ) Furthermore, we will denote .ACZ , for the space of
absolutely continuous trajectories starting at /o, and AC%7 for trajectories

that are only considered up to time 7". Similarly, we define ACZ;)T.

We have introduced sufficient notation to define the Nisio variational semi-
group.
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Definition 7.5.7. The Nisio semigroup V mapping upper semi-
continuous functions on Py(E) to upper semi-continuous functions on
Py(E) is defined by

VG = swp {600) - [ Lo o6}

I/E.ACﬂ

For a function f € Cy(FE), we denote [f] for the function in C(Py(E)),
defined by [f](u) = (f, u). As in Chapter 6, we would like to show that

f
VO ) = V() 1)

This, however, is not proven yet. Given a proof of this statement, we would
obtain the following result as in Chapter 6.

Conjecture 7.5.8. The rate function I from Theorem 7.3.3 can be rewritten
as

Io(v(0) + fo~ £(v(s),7(s))ds  if v € AC?,

00 otherwise.

I(v) =

7.5.2  Motivation for the conjecture

We give an argument similar to that in Chapter 6, based on two inequalities:

V() [f() < V() f, 1, (7.5.1)
V() [f1() > (V(t)f, 1, (7.5.2)
forall f € C(F) and t > 0. Denote
1

Ra(N)f

where 7 is an exponential stopping time with expectation A. The proof
that V,,(t) f converges to V(¢)f in Cy also works to prove that R, (\)f
converges as n — o0. Denote this limit by R(\)f. In particular, the ar-
gument in Le Ny and Redig [2004] to obtain the AD property for the law
of a nearest-neighbour spin-flip Markov process at some later time can be
adapted to obtain the AD property at some exponential random time.

For the one-dimensional spin flip context the results of Redig and Wang
[2010] state that under the evolution of time, exponentially decaying trans-
lation invariant potentials get mapped into exponentially decaying transla-
tion invariant potentials. As translation invariant exponentially decaying
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potentials can be naturally mapped into Dy, rewriting the definitions into
what they mean in our context, this gives a class of functions D), in Dy
such that V' (t)Degp € Degp.

The subspace D, comes naturally equipped with a collection of semi-
norms that are stronger than the norm on Dy. If additionally, the map V (¢)
is continuous from D), to De,), with respect to this norm, this yields regu-
larity that we can use for approximation arguments below. In fact, we need
a similar statement for the resolvent.

Conjecture 7.5.9. For a one-dimensional nearest-neighbour spin flip
model, we have that

Ry(Nf = RN, Va@)f = V(E@)f
in Degp.

Arguments in favour of (7.5.1). Because Lemma 6.4.9 also holds in this con-
text: fort > 0, f € D and u € Py(E), we have

lim R(n)"™[£](n) = V(&)[f](1),

n—o0

the inequality in (7.5.1) follows if we can prove the following two claims:
@ (L—AH)RA)f = f

b) R(;)"f=V@®f.

For (a), note that (1 — AH,,)R,(\)f > f can be proven for all f and all
n > 1 as in Lemma 6.3.3. The Hamiltonians H,, : D — C(FE) can be

shown to be uniformly continuous in n. Thus, the inequality carries over
to the limit by Conjecture 7.5.9 for all f € Dcg,,.

For (b), we rewrite R (%)k f=V(t)f as

(0 - var-n (1 ()
+ (Rn (1) s- Vn(t)f> FlOF VD).

The first and third term of the right-hand side converge in Cp to 0 as n —
0o. Thus, we need to prove that the middle term converges uniformly in n
as k goes to infinity.
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Motivated by the arguments based on the bound obtained in (7.4.9), we
rewrite the middle term as

w9 v () 103
+ (Rm (1) s- Vm(t)f) (V] = Va(0)).

By choosing a sufficiently large m, the Cyp norms of the first and third term

on the right-hand side are small. Thus R, (%)k f — Vi(t) f converges to 0
as k — oo uniformly in n. O

Arguments in favour of (7.5.2). In Theorem 7.3.3, we saw that the semi-
groups

1

= —log S(t)eiean 1o,
|An]

Va(t)f
converge in Cy to the limiting semigroup V' (t) f. In Chapter 6, we obtained
an explicit expression for V,,(¢) f in terms of a Doob-h transform.

Denote by f, = > ;cx fob;and f,(s) = V(¢ —s) f,,. Denote by Q'™ the
measure on Dg(RT) defined by

dQ/m _
X) = e/ (X@®)=Fn(s)(X(0))
Denote by 11, (s) the law of Q7" at time s. For a translation invariant mea-

sure 4, we obtain from Corollary 6.3.16 and the proof of Proposition 6.4.10
that

(Va (@) f, )

= ‘A1n|<fnyﬂn(s)> - /0 ’Aln‘ <Af"fn7,uzn(8)> — <an’ Mn<3)>d3

The measures (i, (s) are not translation invariant as the processes gener-
ated by A(%) are not translation invariant. However, the laws should be
close to translation invariant measures because for every g the function
AF(5) g converges to some object A" g where A" is a translation invariant
generator.

In the setting that p,(s) would be translation invariant, operator dual-
ity techniques as used in Chapter 6, would give that the integrand equals
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L(pn(s), fin(s)), where L is the Lagrangian introduced in Definition 7.5.4.
Also, for a translation invariant measure ., (s), we would have

1
m<f7’b7 ,U,n(S)> = <f7 Mn(s)>
Thus, we can conclude that

VO)[fI(k) = (V) f, 1)
O

7.6 APPENDIX: ENTROPY DECOMPOSITION AND QUOTIENT SPACES
7.6.1 Entropy decomposition

Consider a Polish space X equipped with its Borel o-algebra Bx. Given
a countably generated sub-o-algebra F of Bx and a measure u € P(X),
there is a map x € X +— p’ (x,-) € P(E) with the properties that

(a) * — p’ (x, B) is F measurable for every B € By.

(b) If B € F then pu” (z, B) = 1p(x).

(©) W(AnB) = [, u” (z, B)u(z) for A € F and B € By.
This map is called a regular conditional probability of n given F.
We state Lemma 4.4.7 from Deuschel and Stroock [1989].

Lemma 7.6.1. Let X be a Polish space and let F be a countably gener-
ated sub-c-algebra of Bx. Given u,v € P(X), let x +— u’ (x,-) and
x + v (x,-) be regular conditional probabilities of j1 and v given F. Then
x v S (x,-) | u” (x,-)) is F measurable and

ﬂﬂm=SWﬂwﬁﬁAﬂf®JMQ%ﬁwww (7.6.1)

where |1x, Vr are the restrictions of p and v to F.

7.6.2 The quotient space of functions

A Markov semigroup {S(t) }+>0 naturally acts on the space C'(E). We are
interested, however, in how the system behaves after dividing out all trans-
lations. Therefore, we must also consider the quotient space of C'(E). Recall
that (Cy(E),||) := (C(E)/Z,||y) is the quotient space where

= {f € C(E)||{f.1)] = 0 for all 11 € Py(E)}.
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The quotient norm is defined by

= inf | f —
[£lo = Inf1f =gl

The next lemma gives a second representation of the quotient norm.

Lemma 7.6.2. It holds that

Iflg =" sup [(f, -

HEPy(E)

This implies that elements of C'(E) /Z can on one hand be viewed as classes
with a representant in C'(E), e.g. the class of fo(c) := 0¢ contains f;(c) :=
o; and fa(o) = ﬁ > ica 0 for all A C Z finite. On the other hand,
elements of C'(E)/Z can be viewed as a linear subspace of C(P(FE)), and
in that view we have that if |F,, — F|, — 0 means F,, (1) — F(1) — 0,
uniformly in the choice of 11 € Py(FE).

Proof of Lemma 7.6.2. Pick f € C(E), then

—inf |f —
[£lp = Inf | f =gl

>inf sup |(f,p) — (g, m)| = sup [{f, ).
9€T e Py(E) REPy(E)

For the other inequality, define for every n > 0 and i € A,, the function

Gin = |An|7H(f— fo0;),and the sum g,, = > iexn,izo 9i- Clearly, g € T
and g, € 7.

inf |f — g| <liminf |f — g,| = liminf
geT n n

1
|An’ Z fob;

€A

Let [ be the value of this lim inf. Pick a subsequence nj, and configurations
o € E such that | = limy, [(f, Ly, (0k))|- Because E is a compact space,
the sequence {L,, (o))} is relatively compact. Pick a converging subse-
quence, and let v be its limit. It is clear that v is translation invariant. As a
consequence, we obtain that

inf |f—gl <l=[{f,)| < sup [{f,m]-
g€t HEPy (E)
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The next lemma can be found without proof as Proposition 2.34 in Enter
et al. [1993]. We repeat the result here, and prove it for completeness.

Lemma 7.6.3. T is equal to the closure of the linear span of functions of the
type f — 0;f, wherei € Z%, f € C(E).

For a closed subspace Y C X, denote with
Yit={y*eX* : (y,y*) =0forally € Y},
the annihilator of Y.

Proof. Denote with

S :=span{f —0,f i € Z%, f € Cy(E)}.

Suppose that S # Z. By the Hahn-Banach theorem, it follows that there
exists ;1 € Mg(E), such that u € S+, u ¢ T+.

Because y € S, we see that (f o 6;, 1) = (f, u) for every i € Z¢ and
f € Cy(E). However, this implies that . = 0; for every i € Z4, so y is
translation invariant. It is easy to check that the Hahn-Jordan decomposi-
tion into " and p~ is such that u™ and p~ are translation invariant, see
the construction in [Bogachev, 2007, Theorem 3.1.1.].

Using that (f,v) = 0 for all translation invariant probability measures,
we obtain the same result for 4+ and p~, which implies that (f, ) = 0
for all f € Z.1t follows that ;1 € Z+, which is a contradiction. Therefore
S=1I O
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FUNCTIONAL ANALYTIC METHODS FOR
PROBABILITY ON POLISH SPACES






STRONGLY CONTINUOUS AND LOCALLY
EQUI-CONTINUOUS SEMIGROUPS ON LOCALLY
CONVEX SPACES

The study of Markov processes on complete separable metric spaces (F, d)
naturally leads to transition semigroups on Cj(E) that are not strongly
continuous with respect to the norm. Often, these semigroups turn out to
be strongly continuous with respect to the weaker locally convex strict
topology and in Chapter 9 we will prove that the transition semigroup of
the solution to a well-posed martingale problem is continuous for the strict
topology.

This naturally leads to the study of strongly continuous semigroups on
more general locally convex spaces. This chapter, with the exception of
the Trotter-Kato approximation results and its corollaries, is based on

Richard Kraaij. Strongly continuous and locally equi-continuous semi-
groups on locally convex spaces. Semigroup Forum, 92(1):158-185, 2016a.
ISSN 1432-2137. doi: 10.1007/s00233-015-9689-1,

in which such a class of semigroups is considered. We immediately note
that the results in this chapter and Chapter 9 serve as a starting point for
the extension of the results in Chapter 6 to the setting of Polish spaces.

We start out with some historical context. The theory of equi-continuous
semigroups is developed analogously to the Banach space situation for ex-
ample in Yosida [1978]. When characterising the operators that generate
a semigroup, the more general context of locally equi-continuous semi-
groups introduces new technical challenges. Notably, the integral represen-
tation of the resolvent is not necessarily available. To solve this problem
Komura [1968], Ouchi [1973], Dembart [1974] have studied various gen-
eralised resolvents. More recently, Albanese and Kithnemund [2002] also
study asymptotic pseudo-resolvents and give a Trotter-Kato approximation
result and the Lie-Trotter product formula.

A different approach is used in recent papers where a subclass of locally
convex spaces (X, 7) is considered for which the ordinary representation

of the resolvent can be obtained. Essentially, these spaces are also equipped
with a norm |-| such (X, |-|) is Banach and such that the dual (X, 7)’
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is norming for (X, |-|). Bi-continuous semigroups have been studied in
Kithnemund [2003], Albanese and Mangino [2004], Farkas [2004], in which
the Hille-Yosida, Trotter Approximation theorem and perturbation results
have been shown. Bi-continuity has the drawback, however, that it is a
non-topological notion. Kunze [2009, 2011] studies semigroups of which
he assumes that the resolvent can be given in integral form. His notions
are topological, and he gives a Hille-Yosida theorem for equi-continuous
semigroups.

In Section 8.2, we start with some minor results for locally convex spaces
(X, ) that are strong Mackey. These spaces are of interest, because a
strongly continuous semigroup on a strong Mackey space is automatically
locally equi-continuous, which extends a result by Komura [1968] for bar-
relled spaces.

From that point onward, we will consider sequentially complete locally
convex spaces (X, 7) that are additionally equipped with an ‘auxiliary’
norm. We assume that the norm topology is finer than 7, but that the norm
and 7 bounded sets coincide. In Section 8.3, we define N\ as the set of 7 con-
tinuous semi-norms that are bounded by the norm. We say that the space
satisfies Convexity Condition C if \V is closed under taking countable con-
vex combinations. This property allows the generalisation of a number of
results in the Banach space theory. First of all, strong continuity of a semi-
group on a space satisfying Condition C implies the exponential bounded-
ness of the semigroup. Second, in Section 8.4, we show that the resolvent
can be expressed in integral form. Third, in Section 8.5, we give a straight-
forward proof of the Hille-Yosida theorem for strongly continuous and lo-
cally equi-continuous semigroups. Finally, in Sections 8.7 and 8.6, we prove
the Trotter-Kato theorem and the Chernoff and Trotter product formulas.

The strength of spaces that satisfy Condition C and the set \V is that results
from the Banach space theory generalise by replacing the norm by semi-
norms from N. Technical difficulties arising from working with the set
N instead of the norm are overcome by the probabilistic techniques of
stochastic domination and Chernoft’s bound, see Appendix 8.10.

In Section 8.8, we consider 7 bi-continuous semigroups. We show that if the
so called mixed topology v = (|| , 7), introduced by Wiweger [1961], has
good sequential properties, bi-continuity of a semigroup for 7 is equivalent
to strong continuity and local equi-continuity for ~.

In Section 8.9, we show that the spaces (Cy(E), 5) and (B(9), /3), where
FE is a Polish space, $) a Hilbert space and where 3 is their respective strict
topology, are strong Mackey and satisfy Condition C. This implies that our
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results can be applied to Markov transition semigroups on Cy(E) and quan-
tum dynamical semigroups on B(5)).

8.1 PRELIMINARIES

We recall some notation. Let (X, 7) be a locally convex space. We call the
family of operators {7'(t) }+>0 a semigroup if T'(0) = 1 and T'(¢)T(s) =
T(t + s) for s,t > 0. A family of (X, 7) continuous operators {7'(¢) }+>0
is called a strongly continuous semigroup if t — T'(t)z is continuous and
weakly continuous if t — (T'(t)x, ') is continuous for every x € X and
re X'

We call {T'(t) }+>0 a locally equi-continuous family if for every ¢ > 0 and
continuous semi-norm p, there exists a continuous semi-norm ¢ such that
sups<; p(T'(s)z) < q(x) for every x € X.

Furthermore, we call {T'(t) }+>0 a quasi equi-continuous family if there ex-
ists w € R such that for every continuous semi-norm p, there exists a
continuous semi-norm ¢ such that sup,~y e “'p(T(s)x) < q(z) for ev-
ery z € X. Finally, we abbreviate strongly continuous and locally equi-
continuous semigroup to SCLE semigroup.

We use the following notation for duals and topologies. X * is the algebraic
dual of X and X’ is the continuous dual of (X, 7). Finally, X is the se-
quential dual of X:

Xt =
{f € X*| f(zn) — 0, for every sequence z,, € X converging to 0}.

We write (X, 0(X, X)), (X, u(X,X"), (X, B(X, X)), for X equipped
with the weak, Mackey or strong topology. Similarly, we define the weak,
Mackey and strong topologies on X'. For any topology 7, we use 71 to
denote the strongest locally convex topology having the same convergent
sequences as 7, Webb [1968].

8.2 STRONG MACKEY SPACES: CONNECTING STRONG CONTINUITY
AND LOCAL EQUI-CONTINUITY

We start with a small exposition on a subclass of locally convex spaces that
imply nice ‘local’ properties of semigroups.
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[Komura, 1968, Proposition 1.1] showed that on a barrelled space a strongly
continuous semigroup is automatically locally equi-continuous. This fact
is proven for the smaller class of Banach spaces in [Engel and Nagel, 2000,
Proposition 1.5.3], where they use the strong continuity of {T'(¢)};>¢ at
t = 0 and the Banach Steinhaus theorem.

This approach disregards the fact that {7'(¢) }+> is strongly continuous for
all ¢ > 0 and [Kunze, 2009, Lemma 3.8] used this property to show that, in
the case that every weakly compact subset of the dual is equi-continuous,
strong continuity implies local equi-continuity.

Definition 8.2.1. We say that a locally convex space (X, 7) is strong
Mackey if all (X', X') compact sets in X’ are equi-continuous.

Following the proof of Lemma 3.8 in Kunze [2009], we obtain the following
result.

Lemma 8.2.2. Ifa semigroup {T'(t) }+>0 of continuous operators on a strong
Mackey space is strongly continuous, then the semigroup is locally equi-
continuous.

Proof. Fix T' > 0. It follows from 39.3.(4) in Kothe [1979] that {T'(¢) }+<1
is equi-continuous if the set

T/(U) = {T'(t)a' |t < T.a' € U}

is equi-continuous in X’ for every equi-continuous set U C X". So pick an
equi-continuous set U in X'. First of all, note that we can replace U by its
o(X', X) closure, because the o (X', X) closure of an equi-continuous set
is equi-continuous. We show that 7’ (U) is relatively compact, so that the
fact that (X, 7) is of type A implies that 7'(U) is equi-continuous.

Pick a net & — T"(to) fta, where to, < T and po € U. The interval [0, T
is compact, and because U is closed and equi-continuous it is o (X', X)
compact by the Bourbaki-Alaoglu theorem [K&the, 1969, 20.9.(4)], which
implies that we can restrict ourselves to a net « such that t, — %y for
some tg < T"and po — po weakly, where pg € U.

We show that T" (¢, ) e — T (to) po weakly. For every x € X, we have

(T (o), pa) — (T(t0), po)|
< ’<T(ta)$, Ma> - <T(t0)xnu'a>’ + |<T(t0)x,,ua> - <T(t0)1‘, M0>‘
(8.2.1)
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The second term converges to 0, because o, — po in (X', 0(X’, X))
and the first term goes to zero because the set U is equi-continuous and
{T'(t) }+>0 is strongly continuous. O

We start with a proposition that gives sufficient conditions for a space to
be strong Mackey.

Proposition 8.2.3. Any of the following properties implies that (X, T) is
strong Mackey.

(a) (X,T) is barrelled.
(b) (X, ) is sequentially complete and bornological.

(c) The space (X, T) is sequentially complete, Mackey and the continuous
dual X' of X is equal to the sequential dual X+ of X.

A space for which X+ = X’ is called a Mazur spaceWilansky [1981], or
weakly semi bornologicalBeatty and Schaefer [1996]. Note that a Mackey
Mazur space satisfies 7 = 7 by Corollary 7.6 in Wilansky [1981]. On the
other hand, a space such that 7" = 7 is Mazur.

Proof. By [Kothe, 1969, 21.2.(2)], the topology of a barrelled space coincides
with the strong topology 3(X, X’), in other words, all weakly bounded,
and thus all weakly compact, sets are equi-continuous.

Statement (b) follows from (a) as a sequentially complete bornological
space is barrelled, see 28.1.(2) in Kothe [1969].

We now prove (c). The sequential completeness of (X,7) and X' = X+
imply that (X', u(X’, X)) is complete by Corollary 3.6 in Webb [1968].

Let K C X’ be o(X’, X) compact. By Krein’s theorem [Kéthe, 1969,
24.4.(4)], the completeness of (X', u(X’, X)) implies that the absolutely
convex cover of K is also o(X’, X) compact. By the fact that 7 is the
Mackey topology, every absolutely convex compact set in (X', o(X’, X))
is equi-continuous [Ko6the, 1969, 21.4.(1)]. This implies that K is also equi-
continuous. U

As an application of Lemma 8.2.2, we have the following proposition, which
states that strong continuity is determined by local properties of the semi-

group.

Proposition 8.2.4. A semigroup {T'(t)}+>0 of continuous operators on a
strong Mackey space is strongly continuous if and only if the following two
statements hold
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(i) There is a dense subset D C X such that limy_,o T'(t)x = x for every
z € D.

(ii) {T(t)}+>0 is locally equi-continuous.

In the Banach space setting, strong continuity of the semigroup is equiva-
lent to strong continuity at ¢t = 0, see Proposition 1.5.3 in Engel and Nagel
[2000]. In the more general situation, this equivalence does not hold, see
Example 5.2 in Kunze [2009].

Proof. Suppose that {T'(t) }+>0 is strongly continuous. (i) follows immedi-
ately and (ii) follows from Lemma 8.2.2.

For the converse, suppose that we have (i) and (ii) for the semigroup
{T'(t)}+>0. First, we show that lim; |y 7T'(t)z = z for every x € X. Pick
some x € X and let z, be an approximating net in D and let p be a con-
tinuous semi-norm and fix € > 0. We have

p(T(t)r —x) <p(T(t)x —T(t)za) +p(T(t)xa — o) + p(Ta — ).

Choose « large enough such that the first and third term are smaller than
¢/3. This can be done independently of ¢, for ¢ in compact intervals, by the
local equi-continuity of {7'(t) }+>0. Now let ¢ be small enough such that the
middle term is smaller than £/3.

We proceed with the proving the strong continuity of {T'(¢) }+>¢. The pre-
vious result clearly gives us limg; T'(s)z = T'(t)x for every z € X, so we
are left to show that limgy, T'(s)x = T'(t).

Forh > 0andz € X,wehave T(t—h)x—T(t)x = T(t—h) (x — T(h)x),
so the result follows by the right strong continuity and the local equi-
continuity of the semigroup {7'(¢) }+>0. O

A second consequence of Lemma 8.2.2, for quasi complete spaces, follows
from Proposition 1 in Albanese et al. [2012].

Proposition 8.2.5. Suppose that we have a semigroup of continuous opera-
tors {T(t) }+>0 on a quasi complete strong Mackey space. Then the semigroup
is strongly continuous if and only if it is weakly continuous and locally equi-
continuous.

Proposition 8.2.6. Suppose that (X, (X, X")) and (X', u(X', X)) are
quasi-complete and let {T'(t) }+>0 be a SCLE semigroup. Then, the dual semi-
group {T"(t) }+>0 is SCLE for the Mackey topology (X', X') on X'.
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Proof. Clearly, the dual semigroup is strongly continuous for o(X’, X).
Therefore, {T"(t) }+>0 is strongly continuous for p(X’, X) if we can show
that it is locally equi-continuous.

Pick a o(X,X’) compact set K C X and fix ty > 0. We need to
prove that U = {T'(t)f| f € K,t <tp} is weakly compact. Pick a net
go = T(ta)fa € U, fort, < tgand f, € K. Pick a subnet 5 C «
such that f3 — f and tg — t. We show that T'(tg) f3 converges to T'(¢) f.
Fix p € X'.

[(T'(tg) fp, ) — (T () f, )l
< [(T'(tp) 5, u) (T(te)f, ) = (L(ta) fo ) — (T @) f )
< (5, T (tg)p) — (f, T'(tg))| = {T(ts) f ) — (T(E) f, )] -

The first term on the right hand side converges to 0 by the local equi-
continuity of {7'(t) }+>0. The second term clearly also converges to 0. The
result follows by Proposition 8.2.5. O

As in the Banach space situation, it would be nice to have some condition
that implies that the semigroup, suitably rescaled is globally bounded. We
directly run into major restrictions.

Example 8.2.7. Consider C2°(R) the space of test functions, equipped
with its topology as a countable strict inductive limit of Fréchet spaces.
This space is complete [Treves, 1967, Theorem 13.1], Mackey [Treves, 1967,
Propositions 34.4 and 36.6] and C°(R)" = C°(R)’ as a consequence of
[Treves, 1967, Corollary 13.1.1].

Define the semigroup {7'(t) }+>0 by setting (T'(t)f) (s) = f(t + s). This
semigroup is strongly continuous, however, even if exponentially rescaled,
it can never be globally bounded by 19.4.(4) Kéthe [1969].

So even if (X, 7) is strong Mackey, we can have semigroups that have
undesirable properties. This issue is serious. For example, in the above
example, formally writing the resolvent corresponding to the semigroup
in its integral form, yields a function which is not in C2°(R). One can
work around this problem, see for example Dembart [1974], Komura [1968],
Ouchi [1973] which were already mentioned in the introduction.

However, motivated by the study of Markov processes, where the resolvent
informally corresponds to evaluating the semigroup at an exponential ran-
dom time, we would like to work in a framework in which the ordinary
integral representation for the resolvent holds.
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8.3 A SUITABLE STRUCTURE OF BOUNDED SETS

In this section, we shift our attention to another type of locally convex
spaces. As a first major consequence, we are able to show in Corollary
8.3.7 an analogue of the exponential boundedness of a strongly continuous
semigroup on a Banach space. This indicates that we may be able to mimic
major parts of the Banach space theory.

Suppose that (X, 7) is a locally convex space, and suppose that X can be
equipped with a norm ||, such that 7 is weaker than the norm topology. It
follows that bounded sets for the norm are bounded sets for 7. This means
that if we have a 7-continuous semi-norm p, then there exists some M > 0
such that sup,,|,<i p(¥) < M. Therefore, p(x) < M |z| for every z, i.e.
every T-continuous semi-norm is dominated by a constant times the norm.

Definition 8.3.1. Let (X, 7) be equipped with a norm |-| such that 7
is weaker than the norm topology. Denote by N the 7-continuous semi-
norms that satisfy p(-) < |-|. We say that \V is countably convex if for any
sequence p,, of semi-norms in A and «,, > 0 such that Yonom =1, we
have that p(-) := > anpn(-) € N.

We start with exploring the situation where 7 and |-| have the same
bounded sets.

Condition (Boundedness condition B). A locally convex space (X, 7) also
equipped with a norm |-|, denoted by (X, 7, |-|), satisfies Condition B if

(a) T is weaker than the norm topology.

(b) Both topologies have the same bounded sets.

Remark 8.3.2. Suppose that (X, 7) is a locally convex space, and suppose
that |-| is a norm on X such that the norm topology is stronger than 7, but
such that the norm topology has less bounded sets than 7.

In this case, it is useful to consider the mixed topology v = ~(||-| , 7), in-
troduced in Wiweger [1961]. In Section 8.8, we study the relation of bi-
continuous semigroups for 7 with SCLE semigroups for ~.

We introduce some notation. We write X, := (X, |-|)’ and X := (X, 7).
Also, we denote B, := {2’ € X/ | |2'|' < 1}, where |-|' is the operator
norm on X . Finally, we set B, = B,, N X_. We start with a well known
theorem that will aid our exposition.

Theorem 8.3.3 (Bipolar Theorem). Let (X, 7) be a locally convex space
and let |-| be a norm on X. Let p be a T lower semi-continuous semi-norm
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such that p < |-||. Then there exists a absolutely convex weakly bounded set
S = {p < 1}° C B; such that

p(x) = sup [(z,2)|.
r’'eS

Furthermore, p is continuous if and only if G is an equi-continuous set.

Proof. The result follows from 20.8.(5) and 21.3.(1) in K6the [1969]. The fact
that & C B, is a consequence of p € N. O

Lemma 8.3.4. Let (X, 7) be sequentially complete locally convex space, and
|| @ norm on X such that the norm topology is stronger than . Then the
following are equivalent.

(a) The norm bounded sets equal the T bounded sets.
(b) ||| is T lower semi-continuous.
(c) The norm can be expressed as |z| = supcp_|(z,2")].

In all cases, the topology generated by |-|| is the 5(X, X.) topology and is
Banach. The norm can equivalently be written as

|z]| = sup p(z). (8.3.1)
peN

Proof. We start with the proof of (a) to (b). Define the 3(X, X!) continuous
norm ||z|| := sup,cp_|(x,2’)|. Note that ||-|| < |-| by construction. It
follows that the |-| topology is stronger than the ||| topology, which is in
turn stronger than 7. The bounded sets of the two extremal topologies are
the same, so the |-| and the ||| bounded sets coincide. Thus, there is some
¢ > 1such that -] < |-| < ¢]-||- But this means that |-| is 3(X, X])
continuous, and thus 7 lower semi-continuous.

Now assume (b), we prove (a). Because 7 is weaker than the norm topol-
ogy, it follows that the norm topology has less bounded sets. On the
other hand, as the norm is 7 lower semi-continuous, it is continuous for
the strong topology 3(X, X.). Therefore, the strong topology has less
bounded sets than the norm topology. Because (X, 7) is sequentially com-
plete, the Banach-Mackey theorem, 20.11.(3) in Kéthe [1969] shows that
the strongly bounded sets and the 7 bounded sets coincide, which implies
(a).

(c) clearly implies (b) and (b) implies (c) by the Bipolar theorem.

(X, 7) is Banach by 18.4.(4) in Kothe [1969]. O
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The usefulness of A/ becomes clear from the next three results. Intuitively,
the next two lemmas tell us that in the study of semigroups on these locally
convex spaces the collection A replaces the role that the norm plays for
semigroups on Banach spaces.

Lemma 8.3.5. Let (X, 7,||) satisfy Condition B. Let I be some index set

and let (Ty)acr be (X, 7T) to (X, T) continuous operators. Then the following

are equivalent

(a) The family {Ty}ncr is T-equi-continuous and sup,cg |Ton| < M.

(b) Foreveryp € N, thereisq € N such that sup,c; p(Tox) < Mq(z) for
allx € X.

Furthermore, if the family {T,}oc1 is T-equi-continuous, then there exists
M > 0 such that these properties hold.

Proof. The implication (b) to (a) follows from (8.3.1). For the proof of
(a) to (b), fix some semi-norm p € N. Because the family {7}, }qcs
is T-equi-continuous, there is some continuous semi-norm § such that
supae; P(Taz) < §(z). This implies that ¢(x) = M !sup,c;p(Taz)
is 7-continuous. We conclude that ¢ € A by noting that

1 1
q(z) = 37 Sléfl)p(Ta-T) < s | Toz| < |z -
(0% (0%

If the family {7, }aer is T-equi-continuous, it is 7-equi-bounded which
implies that there is some M > 0 such thatsup,c; |To| < M by Condition
B. O

In particular, we have the following result.

Lemma 8.3.6. Let (X, 7, |:|) satisfy Condition B and {T'(t)}+>0 be a semi-
group of continuous operators. Then the following are equivalent.

(a) {T'(t)}+>0 is locally equi-continuous.

(b) For everyt > 0 there exists M > 1, such that for every p € N there
exists ¢ € N such that forallx € X

sgl?p(T(S)l‘) < Mg(x).

As a corollary, we obtain an exponential growth bound.
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Corollary 8.3.7. Let (X, ,||) satisfy Condition B. For a locally equi-
continuous semigroup {T'(t)}+>0, there is M > 1 and w € R such that
foreveryT > 0 and everyp € N thereis aq € N such that for allx € X

sup e “Ip(T(t)a) < Mg(x).

Proof. Pick M > 1 such that for every p € N there exists ¢ € N such that

supp(T'(t)x) < Mq(x) (8.3.2)
t<1

for every x € X. Without loss of generality, we can always choose ¢ € N
to dominate p. We use this property to construct an increasing sequence of
semi-norms in N.

Fix some p € A and pick gy > p such that it satisfies the property in equa-
tion (8.3.2). Inductively, let ¢, +1 € N be a semi-norm such that ¢, 1 > ¢,
and sup;<q ¢n+1(T(t)x) < Mg, (z). Now let t > 0. Expresst = s +n
where n € N and 0 < s < 1, then it follows that

p(T(t)x) < Mgo(T(n)) < - < M™ gy (z) < Me' 8 Mgy (2).

Setting w = log M, we obtain sup, < e~ “*p(T(t)x) < Mgy (z) for every
r e X.

This last result inspires the following definition, which is clearly analogous
to the situation for semigroups in Banach spaces.

Definition 8.3.8. We say that a semigroup on a space (X, 7, |-|) that sat-
isfies Condition B is of type (M,w), M > 1 andw € R, if for every p € N/
and T > 0 there exists ¢ € N such that

sup e~ “'p(T'(t)x) < Mq(x)
t<T

for all x € X. We say that it is of type (M, w)* if

sup e “'p(T(t)z) < M(x).

Furthermore, we define the growth bound wy of {T'(t) }+>0 by

wp := inf {w € R|3IM > 1 such that {T'(t) }+>0 is of type (M,w)} .
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It follows that if a semigroup is of type (M, w) for some M and w, then it
is locally equi-continuous. Furthermore, if it is of type (M, w)* it is quasi
equi-continuous.

Condition (Convexity condition C). A locally convex space (X, 7) also
equipped with a norm |-|, denoted by (X, 7, |-|), satisfies Condition C if

(a) (X,7) is sequentially complete.

(b) 7 is weaker than the norm topology.
(c) Both topologies have the same bounded sets.
(d) N is countably convex.

We give some conditions that imply that A/ is countably convex. Inter-
estingly, the same spaces that are strong Mackey, if equipped with a suit-
able norm, also turn out to satisfy Condition C. The countable convexity
is equivalent to property (L), see Theorem 2.2 in Saxon and Sanchez Ruiz
[1997].

We say that a space (X, 7) is transseparable if for every open neighbour-
hood U of 0, there is a countable subset A C X suchthat A + U = X.
Note that a separable space is transseparable.

Proposition 8.3.9. Let (X, 7) be a sequentially complete locally convex

space that is also equipped with some norm |-| such that T is weaker than

the norm topology and such that both topologies have the same bounded sets.

The set N is countably convex if either of the following hold

(@ 7 =1,

(b) (X, 1) is Mackey and (X.,0(X_, X)) is locally complete.

(c) (X, ) is transseparable and (X, 0(X_, X)) is sequentially complete.

(d) T equals the weak topology o(X, X.) and (X.,0(X., X)) is locally
complete.

Furthermore, (b) holds for all three classes of spaces mentioned in Proposition
8.2.3.

Note that 7% = 7 is satisfied if 7 is sequential. This holds for example if
(X, 7) is Banach or Fréchet. Local completeness of (X, (X, X)) is im-
plied by sequential completeness of (X, o(X”, X)) [Carreras and Bonet,
1987, Corollary 5.1.8]. If (X, o(X., X)) is locally complete, then (X, 7) is
called dual locally complete, Saxon and Sanchez Ruiz [1997].
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Proof of Proposition 8.3.9. Pick p, € N and a;, > 0, such that >~ «a, = 1.
Define p(-) = >, anpn(-). First of all, it is clear that p is a semi-norm.
Thus, we need to show that p is 7 continuous.

Suppose that 7 = 7. By Theorem 7.4 in Wilansky [1981] a sequentially
continuous semi-norm is continuous. Thus it is enough to show sequen-
tial continuity of p. This follows directly from the dominated convergence
theorem, as every p,, is continuous and p,(-) < ||.

For the proof of (b), (c) and (d), we need the explicit form of the semi-norms
in \ given in Theorem 8.3.3. Recall that B, := {2/ € (X,7)| |2'| < 1}.
If ¢ € N, then there is an absolutely convex closed and equi-continuous
set & C B such that

q(-) = sup |(-, ).

€6

We proceed with the proof of (b). The sequence of semi-norms p,, are all
of the type described above. So let &,, be the equi-continuous subset of B,
that corresponds to p,. Define the set

{7113202(1,141 u; € 6; }

The dual local completeness of (E, 7) shows that these limits exists by The-
orem 2.3 in Saxon and Sanchez Ruiz [1997]. Under the stronger assumption
that (X.,o(X”, X)) is sequentially complete this is obvious.

To finish the proof of case (b), we prove two statements. The first one is
that p(z) = sup,.cg |(x, z")|, the second is that & is 7 equi-continuous.
Together these statements imply that p is 7 continuous.

We start with the first statement. For every z € X, there are z], € &,, such
that p,, (z) = (x, 2},) by construction. Therefore,

Zanmx Zanx ) = sup |(z,2")].

z’'e6

On the other hand,

[ee]
sup [(z,¢')| = sup [(z, ) any))]
y/€6 ynEGn n=1
n>1
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Combining these statements, we see that p(z) = sup,/cg |(z,2')].

We prove the equi-continuity of &. Consider &,, equipped with the
restriction of the o(X., X) topology. Define the product space P :=
[, 6, and equip it with the product topology. Because every closed
equi-continuous set is o(X”, X) compact by the Bourbaki-Alaoglu theo-
rem [Ko6the, 1969, 20.9.(4)], P is also compact.

Let ¢ : P — & be the map defined by ¢({z7, }n>1) = >, anay,. Clearly,
¢ is surjective. We prove that ¢ is continuous. Let 8 — {Jflg,n}nzl be a
net converging to {z,},>1 in P. Fixe > 0 and f € X. Now let N be
large enough such that ) _ v a, < mg and pick Sy such that for every
B> Bowehave ) (f 2, — 7)) < %6. Then, it follows for 3 > /3
that

|o({as 1 tnz1) — d({z), Inz1)]
< Z an’<f, x,/B,n - xfn>| + Z Oén|<f,l'/,37n - x;’b>‘

n<N n>N
1 /
<let S anlflap, -l
n>N
1 1
< e+ 2|fl e
2 an
= &"7

where we use in line four that all zj; , and 27, are elements of B;. As a
consequence, &, as the continuous image of a compact set, is (X2, X)
compact. & is also absolutely convex, as it is the image under an affine
map of an absolutely convex set. Because (X, 7) is Mackey, this yields that
G is equi-continuous, which in turn implies that p is 7 continuous.

The proof of (d) follows immediately from the proof of (b) as the set G is a
singleton and is thus weakly equi-continuous for trivial reasons.

The proof of (c) follows along the lines of the proof of (b). The proof changes
slightly as we can not use that a o(X/, X) compact set is equi-continuous.
We replace this by using transseparability. We adapt the proof of (b).

Because (X, 7) is transseparable, the o(X/, X) topology restricted to &,
is metrisable by Lemma 1 in Pfister [1976]. This implies that the product
space P :=[[° | &,, with the product topology 7T is metrisable.

By 34.11.(2) in Ko6the [1979], we obtain that &, as the continuous image
of a metrisable compact set, is metrisable. The equi-continuity of & now

follows from corollaries of Kalton’s closed graph theorem, see Theorem 2.4
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and Theorem 2.6 in Kalton [1971] or 34.11.(6) and 34.11.(9) in K&the [1979].
Note that we need the weak sequential completeness of the dual space for
the closed graph theorem.

We show that that the spaces mentioned in Proposition 8.2.3 satisfy (b). If
(X, 7) is Mackey and X’ = X, then 7" = 7 by Theorem 7.4 and Corol-
lary 7.5 in Wilansky [1981]. A sequentially complete bornological space
is barrelled, so to complete the proof, we only need to consider barrelled
spaces. The topology of a barrelled space coincides with the strong topol-
ogy, therefore a weak Cauchy sequence in X is equi-continuous and thus
has a weak limit [Treves, 1967, Proposition 32.4]. O

8.4 INFINITESIMAL PROPERTIES OF SEMIGROUPS

We now start with studying the infinitesimal properties of a semigroup. Be-
sides the local equi-continuity which we assumed for all results in previous
section, we will now also assume strong continuity.

We directly state the following weaker form of Proposition 8.2.4 for later

reference.

Lemma 8.4.1. Let {T'(t)}+>0 be a locally equi-continuous semigroup on a
locally convex space (X, 7). Then the following are equivalent.

(a) {T'(t)}+>0 is strongly continuous.
(b) There is a dense subset D C X such thatlim o T'(t)x = x forallz € X.

The generator (A, D(A)) of a SCLE semigroup {7'(¢) }+>0 on a locally con-
vex space (X, 7) is the linear operator defined by

T _
M e Ji LT —
tl0 t

for z in the set

D(A) := {a: eX i

T(t)x —
lim ():;7:1: exists} .

We say that (A, D(A)) is closed if {(z, Ax)|x € D(A)} is closed in the
product space X x X with the product topology. We say that D is a core
for (A, D(A)), if the closure of {(x, Az) |z € D} in the product space is
{(z,Az) |x € D(A)}. We say that the operator (B, D(B)) is closable, if
the closure of the graph of B is the graph of an operator. We will denote
this operator by (B, D(B)) and call B the closure of B.
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As in the Banach space setting, see Lemma 2.1.3, the generator (A, D(A))
satisfies the following well known properties. The proofs can be found for
example as Propositions 1.2, 1.3 and 1.4 in Komura [1968].

Lemma 8.4.2. Let (X,7) be a locally convex space. For the generator
(A, D(A)) of a SCLE semigroup {T'(t) }+>0, we have

(a) D(A) is closed and dense in X.

(b) Forx € D(A), we have T (t)x € D(A) for everyt > 0 and %T(t)a: =
T(t)Ax = AT (t)x.

(c) Forx € X andt > 0, we have fg T(s)xds € D(A).

(d) Fort > 0, we have

t
T(t)x—w—A/ T(s)xzds ifreX
0

= /t T(s)Axds ifr € D(A).
0

The integral in (d) should be understood as a 7 Riemann integral. This is
possible due to the strong continuity and the local-equi continuity of the
semigroup. The proof of the next useful result follows by the obvious gen-
eralisation of the proofs of Propositions II.1.7 and II.1.8 in Engel and Nagel
[2000].

Proposition 8.4.3. Let (X, 7, |-|) satisfy Condition C. Let {T(t)}+>0 be a
SCLE semigroup with generator (A, D(A)). If D C D(A) is dense in (X, T)
and if D is invariant under the semigroup, then D is a core for (A, D(A)).
Consequentially, D(A®) is dense in (X, T).

We will now introduce the resolvent of A. The notation in this section is
slightly different to the notation in the rest of the Thesis. This is because the
literature on semigroup theory has a different definition for the resolvent
as the literature on Markov processes.

Define the resolvent set of (A,D(A)) by p(A) =
{A € C|1 — M is bijective} and for A €  p(A) the resolvent
R\, A) = (1 - A)~L

Proposition 8.4.4. Let (X, 7, |-|) satisfy Condition C. Let {T(t)}+>0 be a
SCLE semigroup with growth bound wy.

(a) If X\ € C is such that the improper Riemann-integral

R(\)z = /0 h e MT(t)xdt
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exists for everyx € X, then A € p(A) and R(\, A) = R(\).

(b) Suppose that the semigroup is of type (M,w). We have for every A € C
such that Re A > w and x € X that

RNz = /OOO e MT(t)x dt

exists as an improper Riemann integral. Furthermore, A € p(A).
(c) IfRe A > wy, then X € p(A).

Proof. The proof of the first item is standard. We give the proof of (b) for
completeness. Let A be such that Re A > w. First, for every a > 0 the inte-
gral Ry(\)x := ;' e MT(¢)xdt exists as a 7 Riemann integral by the local
equi-continuity of {7'(¢) }+>0 and the sequential completeness of (X, 7).

The sequence n — R, (\)x is a 7 Cauchy sequence for every z € X,
because for every semi-norm p € A and m > n € N there exists a semi-
norm g € N such that

p(Bon(N)z — Ba(N)) < p ( /n " e‘“T(t)xdt)

<p (/ e_t()‘_w)e_‘”tT(t):vdt>

< Mq(:c) / e—t(Re)\—w)dt

n

ef)\m _ ef)\n
<M|z| —=———.
<Mzl —f 5=
Therefore, n — R, (\)x converges by the sequential completeness of
(X, 7). (c) follows directly from (a) and (b). O

We have shown that if Re A > wy, then A € p(A). We can say a lot more.
Theorem 8.4.5. Let (X, T, |-|) satisfy Condition C. Let {T(t) }+>0 be a SCLE

semigroup of growth bound wy. For A > wq, R(\, A) is a T continuous linear
map. Furthermore, if {T'(t) }+>0 is of type (M,w), then there exists for every
Ao > wo and semi-normp € N a semi-norm q € N such that
sup sup (ReX —w)"p ((nR(nA))"x) < Mq(z) (8.4.1)
ReA>Xg n>0
foreveryx € X If{T(t)}s>0 is of type (M, w)*, then the last statement can
be strengthened to

sup sup (ReX —w)"p ((nR(nX))" z) < Mq(x).
ReA>wn>0
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The proof of the proposition directly yields the following corollary.

Corollary 8.4.6. Let (X, T, |-|) satisfy Condition C. Let I be some index
set. Let {T,(t) }+>0,acr be a collection of SCLE semigroups with generators
(Aw, D(A,)) that satisfy the following stability condition. Suppose there is
some M > 1 such that for every T > 0 and p € N there exists g € N such
that

sup e “'p (T (t)z) < Mq () (8.4.2)
t<T

forall z € X. Then, we have

sup sup sup(Re) —w)"p((nR(n\, Ay))" z) < Mq(x)
ael ReA>X\g n>0

foreveryx € X.

For the proof of Theorem 8.4.5, we will make use of Chernoff’s bound and
the probabilistic concept of stochastic domination. A short explanation and
some basic results are given in Appendix 8.10.

Proof of Theorem 8.4.5. In the proof, we will write [s] for the smallest in-
teger n > s. Clearly, the 7 continuity of R(\, A) follows directly from
the result in equation (8.4.1), so we will start to prove (8.4.1). Without loss
of generality, we can rescale and prove the result for a semigroup of type

(M, 0).

Let Ao > 0. Fix some semi-norm p € N. By the local equi-continuity of
{T'(t)}+>0, we can find semi-norms ¢, € N, increasing in n, such that
supg<, P(T'(8)z) < Mgn(z).

By iterating the representation of the resolvent given in Proposition 8.4.4,
we see

© (nRe nsnfl
(nRe AR(nA))" z = /0 %e_S”AT(S)de,

which implies

R A ngn— 1
p((nRe AR(nN))" x) < M/ (n 2_ ) 6_SnRe)\Q[s1 (x)ds

for every € X. On the right hand side, we have the semi-norm

* (nRe )\)nsnfl —snRe A
dnRe X ‘= N

(n—1)! grs1ds
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in N by the countable convexity of N and the fact that we integrate with
respect to a probability measure. We denote this measure on [0, 00) by
(nRe \)ms™ !

(n—1)!
and with B, re a random variable with this distribution. As a conse-
quence, we have the following equivalent definitions:

tnRex(ds) = —snReAds,

dn,Re\ = A q[s] ,UJn,Re/\(dS) =E |:q’—Bn,Re)\-‘i| :

To show equi-continuity of (nRe )" R(An)", we need to find one semi-
norm g € N that dominates all Gn,Rex forn > 0 and Re A > Ag. Because
s = q[s](z) is an increasing and bounded function for every x € X, the
result follows from Lemma 8.10.2, if we can find a random variable Y that
stochastically dominates all 53;, e x-

In other words, we need to find a random variable that dominates the tail of
the distribution of all B), re . To study the tails, we use Chernoff’s bound,
Proposition 8.10.4.

Let g(s,a,p) := 6?‘22)_1 e P s > 0, a, > 0 be the density
with respect to the Lebesgue measure of a Gamma(«, 3) random vari-
able. Thus, we see that B, rcy has a Gamma(n,nRe\) distribution.
A Gamma(n,nRe \) random variable, can be obtained as the n-fold
convolution of Gamma(1l,nRe A\) random variables, i.e. exponential ran-
dom variables with parameter nRe A. Probabilistically, this means that a
Gamma(n,nRe \) can be written as the sum of n independent exponential
random variables with parameter nRe A. An exponential random variable
n that is Exp(3) distributed has the property that %77 is Exp(n[3) distributed.
Therefore, we obtain that B, pe ) = % Yoy XiRex Where {X; g}i>1 are
independent copies of an Exp(/3) random variable X 3.

This implies that we are in a position to use a Chernoff bound to control
the tail probabilities of the B), re ». An elementary calculation shows that
for 0 < § < (Re \), we have E[e/Xrer] = Rle{ii 7- Evaluating the infimum
in Chernoff’s bound yields for ¢ > (Re \) ™! that

]P)[Bn Re) > C] < e*ﬂ(CRe)\flflogcRe)\)'

Define the non-negative function
¢: (A" 00) X [A, 00) = [0, 00)

¢, ) = ca — 1 —log car
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so that for ¢ > )\al and A such that Re A > A\ we have
P[By, Rey > ¢ < e "P(GReY), (8.4.3)

We use this result to find a random variable that stochastically dominates
all B, e for n € N and Re A > \g. Define the random variable Y on
[Ag !, 00) by setting P[Y > ¢] = exp{—a(c, \o)}.

First note that for fixed ¢ > A\; ! the function o ¢(c, @) is increasing.
Also note that ¢ > 0. Therefore, it follows by (8.4.3) that for A such that
ReAd > Xpgand c > )\0_1, we have

]P)[BTL,RGA > C} < e—n(b(c,Re)\) S 6_¢(CuRe)‘) S 6_¢(C’>‘0) — P[Y > C]‘

For 0 < ¢ < Ay L, P[Y > ¢] = 1 by definition, so clearly P[B,, ey > | <
P[Y" > ¢|. Combining these two statements gives Y > B, e forn > 1
and A such that Re A > \¢. This implies by Lemma 8.10.2 that

p((nRe AR(X)" 2) < E [g7p, . ,1(2)] <E gy (2)] = ().

By the countable convexity of NV, ¢ is continuous and in A/, which proves
the second statement of the theorem.

The strengthening to the case where the semigroup is of type (M, w)* is
obvious, as it is sufficient to consider just one semi-norm ¢ € N for every

peN. O

8.5 GENERATION RESULTS

The goal of this section is to prove a Hille-Yosida result for locally equi-
continuous semigroups. First, we start with a basic generation result for
the semigroup generated by a continuous linear operator.

Lemma 8.5.1. Let (X, T, |-|) satisfy Condition C. Suppose we have some
T continuous and linear operator G : X — X. Then G generates a SCLE
semigroup defined by

thGky:

S(t)z = (8.5.1)

Proof. First, we show that the infinite sum in equation (8.5.1) is well defined.
Because 7 is weaker than the norm-topology, it is sufficient to prove that
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the sum exists as a norm limit. By Condition C and Lemma 8.3.4, (X, |-|)
is a Banach space. Therefore, we need to show for some fixed ¢ > 0 and
z € X that the sequence y, = > ;_, £ G £ is Cauchy for |-|. Note that as
G is T continuous, it is also norm contlnuous Suppose that n > m, then
we have

e
lyn — ym| < Z EHGII |z|

m<k<n

< = Z !GH

k>m
which can be made arbitrarily small by choosing m large.

We proceed with showing that the 7 continuous operators Sy, (¢) : X — X
defined for z € X by S, (t)x = >} _, i G £ are equi-continuous. As in
the proof of Lemma 8.3.5, the fact that G i 1s T continuous implies that for
every p € N, there exists ¢ € A such that p(Gz) < |G| g(z) forallz € X.
Use this method to construct for a given p € N an increasing sequence of
semi-norms ¢, € N, qo := p, such that ¢,(Gz) < |G| gnt1(x) for every
n > 0and z € X. As a consequence, we obtain

n thk
p(Su(t)z) = p (Z ) Z k,p (GFa)

k=0
< Z HP(G%)

k>0
G|tk _
< 61 Y (I k”' ). 16 g, ()
k>0 )
< etHGllqt(x)’

where

k
gi(@) =y (”G;C”!t) e G g ()

k>0

is a continuous semi-norm in A by Condition C (d). The semi-norm ¢; is
independent of n which implies that {S,,(¢) }»>1 is 7 equi-continuous. It
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follows that S(t) is 7 continuous: pick a net x, in X that converges to
x € X with respect to 7. Let p € N, then

p(S(t)za — S(t)x)

<p(S(t)za — Sn(t)za) +p (Sn(t)za — Sp(t)x)
+p (Sn(t)r — S(t)a)
<p(S(t)re — Sn(t)xa) + gt (xa — ) +p (Sp(t)x — S(t)za) -

By first choosing o, and then n large enough, we see p (S(t)xo — S(t)x) —
0.

By stochastic domination of Poisson random variables, Lemmas 8.10.2 and
8.10.3, it follows that for ¢t < T, we have that

sup e 1%lp(S(1)z) < sup gi(z) = qr().
t<T t<T

To prove strong continuity, it suffices to check that lim; | S(t)x = « for
every * € X by Lemma 8.4.1. To that end again consider p € N, we see

thk
p(St)x —z) =p - Zk,p - )
k>0 k>0

Note that the first order term vanishes. Therefore, the Dominated conver-
gence theorem implies that the limitis O as ¢ | 0. t

In the proof of the Hille-Yosida theorem on Banach spaces, the semigroup
is constructed as the limit of semigroups generated by the Yosida approxi-
mants. In the locally convex context, we need to take special care of equi-
continuity of the approximating semigroups.

Suppose we would like to generate a locally equi-continuous semigroup
et for some operator operator (A, D(A)).

The next lemma will yield joint local equi-continuity of the semigroups gen-
erated by the Yosida approximants by taking H,, = nR(n, A). We prove a
more general version, as it will also be used for the proof of Theorem 8.7.1.

We write [z] for the smallest integer n such that n > z.
Lemma 8.5.2. Let (X, 7) satisfy Condition C and let I be some index set.

Furthermore, let ¢ : I — R be some function. Let { Hy }oc1 be a family of
operators in L(X, ) such that for everyp € N there exists ¢ € N such that

sup sup p(Hyz) < q(x) (8.5.2)
o€l K< [6(a)]
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for all z € X. Then, the semigroups e'(#(®)Ha=¢(2)) gre jointly locally equi-
continuous.

Proof. By Lemma 8.5.1, we can define the semigroups S,(t) :=
P Ha=0(2)) We see that

Sa(t)l' — Z (td)(&))kz}lé:xe—tqb(oz)7

k!
k>0

which intuitively corresponds to taking the expectation of k +—+ H¥z under
the law of a Poisson random variable with parameter t¢(«). We exploit
this point of view, to show equi-continuity of the family {S,(¢) }i<7,acr
for some arbitrary fixed time 7" > 0.

For ;v > 0, let the random variable Z,, have a Poisson(11) distribution and for

t>0anda € Ilet By, := [[Z(;‘(”C(YO)‘% |. In other words, the random variable

B+ is obtained from Z;y(4) as follows: 0 is mapped to 0, and the values

{lo(a) ] + k}f(:al) are mapped to [ + 1. Fix some « and let n = [¢(«)]. Fix
a semi-norm p € N, and use equation (8.5.2), to construct an increasing

sequence of semi-norms in N: gy = p, q1, . .. such that every pair ¢, q;11
satisfies the relation in (8.5.2). As a consequence, we obtain
p(Sa (t))
(tp(e))* H, T —to(a)
<p{ D
k>0
n nl+k
—té(a) (nt) —té(a) nl+k
< p(z)e —}-Zzi(nl_'_kj)!e p(HY ™z
1>0 k=1 (8.5.3)
4 S e
< go(z)e ") + Qi+1()
1>0 k= 1 nl + k)!

= P[Ba = 0lgo(z) + Y P[Bay =+ gii1(x)
>0

=E [qBa,t (l‘)] .

We see that, as in the proof of the second property in Theorem 8.4.5, we
are done if we can find a random variable Y that stochastically dominates
all Bysforao € Tandt < T.
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Again for some fixed o, we calculate the tail probabilities of B, ; in the
case that t > 0. If ¢ = 0, all tail probabilities are 0. Recall that we write
n = [¢(«)]. By definition and Lemma 8.10.3,

1 1
P[Baﬂg > k] =P |:Zt¢>(o¢) > k:| <P I:Znt > ]{::| .
n n

Because Z,,; is Poisson(nt) distributed, we can write it as Zpy = Y ;" | X;
where {X;};>0 are independent and Poisson(t) distributed. This implies
that we can apply Chernoff’s bound to %ng, see Proposition 8.10.4. First
of all, for all § € R, we have E [¢?*] = exp{t(e’ — 1)}. Evaluating the
infimum in Chernoff’s bound for k > [T'], T > t yields

1
P[Ba; > k] <P [st > k} < o—(klog k—k+t)
n

Define the function
¢+ [[T],00) x (0,T] — [0, 00)

[
a
a,b)»—)alogg—a—i—b,

so that for k > [T'], T' > t, we have P[By: > k| < e~ ne(kt),
We define a new random variable Y on {n € N|n > [T]} by putting
PlY = [T]] =1 — e ?UT1D) and for k > [T]: P[Y > k] = e ¢*T) or
stated equivalently P[Y = k + 1] = e~ ¢(®71) — ¢=@(k+1.1) In other words,
we construct Y so that the tail variables agree with e ~#(*7),

For k < [T'], we have by definition that P[Y" > k| > P[B,+ > k| as the
probability on the left is 1. For k > [T'], an elementary computation shows
that for t < T the function ¢ (t) := ¢(k, t) is decreasing in ¢. This implies
that

P[Ba > k] < ek < gm0kt) < om0 (k1) — ply > k],

In other words, as a was arbitrary, we see Y = B, ; for all « € I and
0 < t < T. For the remaining cases, where t = 0, the result is clear as
B, = 0 with probability 1. By Lemma 8.10.2 and equation (8.5.3), we
obtain that

p(Sa(t)) <E[gs,,(2)] < Elay(z)] =: q(=).

For the second inequality, we use that Y stochastically dominates X, ¢
forall « € I and ¢t < T. The semi-norm ¢(z) is in A/ by the count-
able convexity of V. We conclude that the family {S, (¢) }+<7.qcr is equi-
continuous. O
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Lemma 8.5.3. Let (X, 7, |-|) satisfy Condition C. Let (A, D(A)) be a closed,
densely defined operator such that there exists an w € R such that (w,00) C
p(A) and such that for every \g > w and semi-norm p € N, there is a
continuous semi-norm q such that supys,, p((A — w)R(A)z) < q(z) for
everyx € X. As A — oo, we have

(@) AR(\)xz — x foreveryzx € X,
(b) NMAR(N)z = AR(\)Ax — Ax for every x € D(A).

The lemma can be proven as in the Banach space case [Engel and Nagel,
2000, Lemma II.3.4]. We have now developed enough machinery to prove
a Hille-Yosida type theorem which resembles the equivalence between (a)
and (b) of Theorem 16 in Kithnemund [2003].

Theorem 8.5.4. Let (X, 7, |-|) satisfy Condition C. For a linear operator

(A, D(A)) on (X, T), the following are equivalent.

(a) (A, D(A)) generates a SCLE semigroup of type (M, w).

(b) (A, D(A)) is closed, densely defined and there existsw € R and M > 1
such that for every A\ > w one has A € p(A) and for every semi-norm
p € N and \g > w there exists a semi-norm q¢ € N such that for all
x € X one has

sup sup p ((n(A —w)R(n\))" z) < Mq(x). (8.5.4)
n>1 >\

(c) (A, D(A)) is closed, densely defined and there existsw € R and M > 1
such that for every \ € C satisfying Re A > w, one has A € p(A) and
for every semi-normp € N and \g > w there exists a semi-norm q € N
such that forallz € X andn € N

sup sup p((n(ReX —w)R(n\))"z) < Mq(z).

n>1ReA>)Xg
Remark 8.5.5. We will refer to the estimate in equation (8.5.4) as the Hille-
Yosida estimate.

By a simplification of the arguments, or arguing as in Section IX.7 in Yosida
[1978], we can also give a necessary and sufficient condition for the gen-
eration of a quasi equi-continuous semigroup of type (M, w)*, which cor-
responds with the result obtained in Theorem 8.4.5. Theorem 3.5 in Kunze
[2009] states a similar result.

Suppose we have a semigroup of type (M,w) and let w’ > w. Equation
(8.5.4) yields

sup sup p ((n(A — W' )R(nA))" ) < Mq(x) (8.5.5)
n>1 A>w’
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which implies that the semigroup is of type (M,w’)*. We state this as a
corollary.

Corollary 8.5.6. Suppose that (X, ,|-|) satisfies Condition C. If a semi-
group is of type (M, w), then it is of type (M,w’)* forallw’ > w.

As Equation (8.5.4) implies (8.5.5), it is sufficient, for the construction of
a semigroup, to use the weaker result as in Kunze [2009]. However, one
obtains that the semigroup is of type (M, w’) for w’ > w, which does not
give any control if the semigroup is rescaled by e **. A semigroup that is
of type (M’,w’) for all W > w is not necessarily of type (M,w) for any
M > M’ as is shown in Example 1.5.7(ii) in Engel and Nagel [2000].

The proof of the Hille-Yosida theorem stated here, however, gives explicit
control on the semigroup rescaled by e~ via the construction in Lemma
8.5.2 and gives a result as strong as the equivalence of (a) and (b) of Theorem
16 in Kithnemund [2003].

Proof of Theorem 8.5.4. (a) to (c) is the content of Theorem 8.4.5 and (c) to
(b) is clear. So we need to prove (b) to (a).

First note that we can always assume that w = 0 by a suitable rescaling.
We start by proving the result for w = 0 and M = 1. We follow the lines
of the proof of the Hille-Yosida theorem for Banach spaces in [Engel and
Nagel, 2000, Theorem I1.3.5].

Define for every n € N\ {0} the Yosida approximants
A, :=nAR(n) =n*R(n) — nl.

These operators commute and for every n A, satisfies the condition in
Lemma 8.5.1. Furthermore, we can apply Lemma 8.5.2 to the operators
H, = nR(n). Note that Equation (8.5.2) is satisfied as a consequence of
Equation (8.5.4), as the latter implies

sup sup p (()\k:R()\k))kx) < q(z)
k Ae{% |n>k}

for all z, which in turn can be rewritten to

sup sup p ((nR(n))kx) < q(x)
n k<n
for all x € X. Hence, we obtain that the operators A,, generate jointly
locally equi-continuous strongly continuous commuting semigroups ¢ —
T, (t) of type (1,0). We show that there exists a limiting semigroup.
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Let x € D(A) and t > 0, the fundamental theorem of calculus applied to
s = Tin(t — )Ty (s)x for s < t, yields

To(t)x — Tp(t)x = /0 Tt —s) (Ap — Am) Th(s)xds

_ /0 Tt — $)Ta(s) (An — Ay ds.

By Lemma 8.5.2, we obtain that for every semi-norm p € N there exists
q € N such that

p(To(t)x — T (t)x) < tq(Anz — Amx). (8.5.6)

Hence, for z € D(A) the sequence n — T}, (s)z is T-Cauchy uniformly for
s < t by Lemma 8.5.3 (b). The joint local equi-continuity of {7, (¢) }+>0.n>1
implies that this property extends to all x € X.

Define the point-wise limit of this sequence by T'(s)x := lim,, T, (s)x. This
directly yields that the family {7°(s)}s<; is equi-continuous, because it is
contained in the closure of an equi-continuous set of operators, Proposition
32.4 in Treves [1967]. Consequently, this shows that {T'(¢) };>0 is a locally
equi-continuous set of operators of type (1,0).

The family of operators {7'(¢) }+>0 is a semigroup, because it is the point-
wise limit of the semigroups {T5,(t) }+>0. We show that it is strongly con-
tinuous by using Lemma 8.4.1. Let p € N and x € D(A), then for every
n:

p(T(t)xr —z) < p(T(t)x — Tn(t)x) + p(Tn(t)x — x).

Because p(T'(t)x — T,,(t)z) — 0, uniformly for ¢t < 1, we can first choose
n large to make the first term on the right hand side small, and then ¢ small,
to make the second term on the right hand side small.

We still need to prove that the semigroup {7'(t)}:>0 has generator
(A,D(A)). Denote with (B, D(B)) the generator of {T'(t)}s>0. For z €
D(A), we have for a continuous semi-norm p that

p(T022 ) <p (02 Tult)

T, (t)x —
+p(<f$Aw>+mmwAm,
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for some continuous semi-norm q. By repeating the argument that led to
(8.5.6), we can rewrite the first term on the second line to obtain

, (T(t)a: —a Ax)

t
T,(t)x — x

Sq(Aw—Aanp( ,

— Anx> + p(Apx — Ax).

By first choosing n large and then ¢ small, we see that x € D(B) and
Bx = Az. In other words, (B, D(B)) extends (A, D(A)).

For A > 0, we know that A € p(A4),so A — A : D(A) — X is bijective.
Because B generates a semigroup of type (1, 0), we also have that A\ — B :
D(B) — X is bijective. But B extends A, which implies that (4, D(A4)) =
(B,D(B))

We extend the result for general M > 1. The strategy is to define a
norm on X that is equivalent to |-| for which the semigroup that we
want to construct is (1, 0) bounded. Equations (8.3.1) and (8.5.4) imply that
|" R()" < M. Define

|z, := sup " R(u)" x|
n>0

and then define ||z|| := sup,.q |z|,. This norm has the property that
lz| < |z < M |z| and [[AR(N)|| < 1 for every A > 0, see the proof
of Theorem I1.3.8 in Engel and Nagel [2000]. Use this norm to define a new
set of continuous semi-norms as in Definition 8.3.1 by

N* :={p|pisaTt continuous semi-norm such that p(-) < ||-| }.

As a consequence of [[AR(A)|| < 1 and the 7 continuity of AR(\), we
obtain that for every p € N* there exists ¢ € N'* such that p(AR(\)z) <
q(x) for every x € X. Likewise, we obtain for every Ao > 0 that for every
p € N* there exists ¢ € N* such that

sup supp (AR(A))2) < o(a).
A>Ag n>1

This means that we can use the first part of the proof to construct a SCLE
semigroup {7(¢) };>( that has bound (1, 0) with respect to N'*.

Let T' > 0. Pick a semi-norm p € N It follows that p € N'*, so there exists
a q € N such that sup, p(T'(t)x) < q(z) forall x € X.
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Because ||-|| < M ||, it follows that N'* is a subset of M N which implies
that § := ﬁq € N. We obtain sup,< p(T'(t)x) < Mq(z) forall z € X.

In other words, A generates a SCLE semigroup {T'(¢) }+>¢ of type (1, 0).

O

8.6 APPROXIMATION RESULTS

Our next goal is to prove the Trotter-Kato-Approximation theorems. We
follow the approach taken in Engel and Nagel [2000], and specify where
the methods need to be adapted to the setting of locally convex setting. We
start by introducing pseudo-resolvents and state a number of well known
results.

8.6.1 Pseudo-resolvents

Let A C C, and consider operators J(\) € L£(X,7) for A € A. The family
{J(A) }aen is called a pseudo-resolvent if it satisfies the resolvent equation

JA) = T (1) = (= A)J(AN)J (1) (8.6.1)
for A\, i € A. We give a number of basic results for pseudo-resolvents.

Proposition 8.6.1. Let (X, 7, |-|) satisfy Condition C. Let {T},(t) }+>0,neN
be SCLE semigroups with generators (A, D(A,,)). Suppose the following sta-
bility condition is satisfied. For every T > 0 and p € N there existsq € N
such that

supp (T, (t)x) < q(x) forallz € X.
t<T

Assume that for some Aoy > 0 the limit lim,,_,~, R(Xo, Ay,)x exists for every
x € X. Then, the limit R(\)x := lim,, R(\, A,)x exists for all \ > 0 and
defines a pseudo-resolvent that satisfies the Hille-Yosida estimate in equation
(8.5.4) with with M = 1 and w = 0.

Proof. The existence of the limit R(\)x := lim,, R(\, A, )z for all A such
that ReA > 0 follows as in the proof of Proposition III.4.4 in Engel
and Nagel [2000]. The result of Corollary 8.4.6 and the convergence of
R(A, Ap)z to R()) yields directly that R(\) satisfies the Hille-Yosida esti-
mate, equation (8.5.4). O
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The next three results also follow as in the Banach space case and do not
need the assumption that (X, 7, |-|) satisfies Condition C. For proofs see
Section Il.4.a in Engel and Nagel [2000].

Lemma 8.6.2. Let {J(A\)| A € A} be a pseudo-resolvent on (X, ). For

A € A, we have J(N)J(u) = J(u)J(N), ker J(A) = ker J(u), and

rg J(A) =rgJ ().

Proposition 8.6.3. Let {J(\) | A € A} be a pseudo-resolvent. The following

are equivalent:

(a) ker J(Xg) = {0} andrg J(Ng) = X for some X\ € A,

(b) ker J(\) = {0} andrg J(N\) = X forall X € A,

(c) there exists a closed densely defined operator (A, D(A)) such that A C
pr(A) and J(A) = R(\, A).

The next corollary follows as Corollary II1.4.7 in Engel and Nagel [2000].

Corollary 8.6.4. Let {J(\) |\ € A} be a pseudo-resolvent. If there is an
unbounded sequence {\,}n>1 C A such that lim, A\, J(A\,)x = z for all
x € X, then {J(\)| X € A} is the resolvent of a closed densely defined
operator (A, D(A)).

In particular, this holds if the range of J(\) is dense and if there is some
M > 1 such that for everyp € N there is g € N such that

sup p (Anj()‘n)x) < Mgq (x)

n>1

forallz € X.

8.6.2 The Trotter-Kato theorems

For the proof of the first Trotter-Kato theorem, we will need the following
result

Lemma 8.6.5. Let (X,7,|-|) satisfy Condition C. Let {T(t)};>0 and
{S(t)}+>0 be SCLE semigroups on (X, T) with generators (A, D(A)) and
(B, D(B)) with growth bounds w4, wp. Suppose that D(A) N'D(B) is dense
inX.Forr € X and A > w4 V wp, we have

RO\ A)[T(t) — S() RO\, Bz

- /O "Ts) (RO A) — RO, B)] S(t — s)ads.
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Note that the lemma can be proven without the assumption that D(A) N
D(B) is dense in X as in Lemma 3.3 in Albanese and Mangino [2004]. The
next proof under this slightly stronger assumption is faster.

Proof. For v € D(A) N'D(B), we have
—S()] R(\, B)x
/ / Mot [T (a + £)S(b) — T(a)S(b + t)] adadb

/ / / MeHOT (0 + s) [A — B]S(b+t — s)zdadbds
/ / / MaF)T(a + 5) [\ = B] S(b+t — s)zdadbds

/ / / MaFIT(a + 5) A — A] S(b+ t — s)zdadbds
- /0 T(s) [RO\ A) — RO\ B S(t — s)ads.

Theorem 8.6.6 (First Trotter-Kato Theorem). Let (X, 7, |-|) satisfy Condi-
tion C. Let {T'(t) }+>0 and {T,(t) }+>0, n > 1 be SCLE semigroups on (X, T)
with generators (A, D(A)) and (A,, D(Ay,)), and assume that there exist
M > 1,w € R such that for everyp € N and T > 0, there exists ¢ € N
such that

O]

fgge_”t p(T(t)e) vV supp(Tu(t)e)| < My(x)

forallz € X. Let D be a core for (A, D(A)). Consider the following state-
ments

(a) D C D(A,,) foralln > 1 and Apx — Ax forallx € D.

(b) For each x € D there exists x,, € D(A,,) such that x,, — x and Ax,, —
Ax.

(c) R(\, Ap)x — RN\, A)x forallx € X some \ > w.
(d) T(t)x — T (t)x for allx € X uniformly fort in compact intervals.
The implications (a) = (b) < (c) < (d) hold.

Proof. Without loss of generality, we rescale and assume that w = 0.
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The implication (a) to (b) is clear. The proof from (b) to (c) follows as in the
Banach space case, the proof of Theorem II1.4.8 in Engel and Nagel [2000],
as the family { R(\, Ap,) }n>0 U{R(\, A)} is equi-continuous by Corollary
8.4.6. Also the implication from (c) to (b) follows as in the Banach space
case. For the proof of (c) to (d), the Banach space proof can be adapted by
simply replacing the norm by semi-norms from N

For the proof from (c) to (d) we follow the strategy of Albanese and
Mangino [2004]. Fix some T' > 0. Let z € D(A42%). Set v1 = (A — A)z
and 2o = (A — A)z; = (A — A)22. We obtain

p (Tn(t)x - T(t)m) <p (Tn(t) (R()‘) A) - R()\, An)) xl)
+ b (R()‘a An) (Tn(t) - T(t)) xl) (8-6-2)
+p((R(N\,Ay) — RN A) T(t)a) .

The first term converges to 0 uniformly in ¢ < 7" as n goes to infinity by
the uniform local equi-continuity of the semigroups {7}, }»>0.

To show that the third term of equation (8.6.2) converges to 0 uni-
formly for ¢ < T, first note that 7,(¢) and T(t) are jointly lo-
cally equi-continuous, which implies by Corollary 8.4.6 that the family
{R(\, Ap) }n>0 U {R(X, A)} is equi-continuous. Let ¢ be the semi-norm
in \V such that sup,, p (R(\, An)y) Vo (R(A, A)y) < q(y) forally € X.
Fix € > 0. Because [0, 7| is compact and ¢ — T'(t)z; is T continuous, the
set K = {T'(t)z1|t € [0,T]} is T compact. This compactness implies that
we can find y1,...,y, € K suchthat K C Ui<i{y|q(y —vi) < e}

Pick y € K. By the construction above, there is some ¢ such that
q(y — yi) < e.Let N be large enough such that for n > N, we have
p (RN, An)y; — R(X\, A)y;) < e. Therefore, forn > N,

b (R()‘v An)y - R()‘a A)y) < p (R()‘> An)y - R()‘> An)yz)
+p (R(A, An)yi — R(A, A)yi)
+p (R(A, A)yi — R(A, A)y)
<2q(w—y)+e
< 3e.

The choice of € > 0 was arbitrary, which implies that the third term of
equation (8.6.2) converges to 0.
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By Lemma 8.6.5 and the joint local equi-continuity of {7},(¢) }+>0.nen, we
get the following bound on the second term of equation (8.6.2):

p(R(A, An) (Tn(t) = T'(t)) 1)

< /O p(Tu(s) [RO\, An) — RO\, A)| T(t — )22) ds
< [ 0RO A = ROAN TG - )2 .

As in the argument for the third term, the integrand converges to 0 uni-
formly. This implies that the second term of equation (8.6.2) converges to
0 uniformly for ¢ < 7T

We conclude that p (T},(t)x — T'(t)x) — 0 for € D(A?). D(A?) is dense
in (X, 7) by Proposition 8.4.3, which together with the joint local equi-
continuity of {7}, },,>0 and T, yields the final result. O

Theorem 8.6.7 (Second Trotter-Kato Theorem). Let (X, 7, |-|) satisfy Con-
dition C. Let {T},(t) }+>0, n > 1 be SCLE semigroups on (X, T) with genera-
tors (Apn, D(Ay,)), and assume that there exist M > 1, w € R such that for
everyp € N and T > 0, there exists ¢ € N such that

supsup e “'p(T,(t)x) < Mq(x) (8.6.3)
t<T n
forall z € X. For some \g > w consider the following statements.

(a) There exits a densely defined operator (A, D(A)) such that A,x — Ax
forall x in a core D of (A, D(A)) and such that the range rg(Ag — A) is

dense in X.

(b) The operators R(\o, Ay), n > 1 converge strongly to a continuous oper-
ator R with dense range.

(c) The semigroups {T),(t)}+>0, n > 1 converge strongly, and uniformly for
t in compact intervals to a SCLE semigroup {T'(t) }+>0, with generator B
such that R = R(\o, B).

The implications (a) = (b) < (c) hold. In particular, if (a) holds, then B = A.

Proof. We prove the theorem for w = 0.

The proof of (a) to (b) follows as in the Banach space case, see the proof
of Theorem II1.4.9 in Engel and Nagel [2000], by using that the family
{R(Xo, Ap) }n>0 is equi-continuous by Corollary 8.4.6. The implication (c)
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to (b) follows by Theorem 8.6.6. We prove (b) to (c). Proposition 8.6.1 gives
us that

R(AN)z :=lim R(\, Ap)z, for A >0

is a pseudo-resolvent for which the Hille-Yosida estimate holds. By the as-
sumption on the range of R and Lemma 8.6.2, R(\) has dense range for all
A > 0. As a consequence, Corollary 8.6.4 shows there is a closed operator
(B, D(B)) such that R(\) = R(\, B). The Hille-Yosida theorem, Theorem
8.5.4 implies that (B, D(B)) generates a semigroup {7'(t)}+>0. The final
result now follows from the first Trotter-Kato theorem.

The proof that A = B follows again as in the Banach space case. O

8.7 CONSEQUENCES OF THE TROTTER-KATO THEOREM

Theorem 8.7.1 (Chernoff product formula). Let (X, 7, |-|) satisfy Condi-
tion C. Consider a function V : RT™ — L(X, 7) satisfying V (0) = I. Suppose
that there exists M > 1 and w € R such that for everyp € N and T > 0,
there exists ¢ € N such that

sup sup e~ M™“p (V (;)m l‘) < Mq(z) (8.7.1)

t<T m>1
forallz € X. Assume that Az := limy % exists for allx € D, where
D and (Ao — A)D are dense in X for some \g > w. Then the closure A of
A generates a SCLE semigroup {T'(t) }+>0 of type (M,w), which is obtained
by T(t)z = lim, V (L)" 2z for allz € X and uniformly for t in compact
intervals.

If the supremum overt < T in equation (8.7.1) can be extended to a supre-
mum overt > 0, then {T'(t) }+>0 is of type (M, w)*.

Proof. Clearly, the theorem follows by rescaling by the result for w = 0.
We start with the case M = 1 and use this to obtain the general result
afterwards. For s > 0 define the continuous operators

so that Asx — Ax as s — 0 for x € D. Every A, generates a SCLE
semigroup {75(¢)}+>0 by Lemma 8.5.1. We show that these semigroups
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satisfy the stability condition, equation (8.6.3), of Theorem 8.6.7, for which
we use Lemma 8.5.2. Set I = (0,1], Hy = V(s) and ¢(s) = 1.

Equation (8.7.1), for T" = 2, implies for M = 1 and w = 0 that

sup sup p (V(s)"x) < q(x),
<2 mS%

by making the substitution s = £ This yields

sup sup p(V(s)"z) < q().
s<1 m<[g(s)]

Therefore, Lemma 8.5.2 yields the joint equi-continuity of the semigroups
{et4s} 50 for s < 1.

The second Trotter-Kato theorem, Theorem 8.6.7, gives a semigroup
{T'(t) }+>0 with generator A. Furthermore, we have foreveryp € N, T > 0
and z € X that

limsup p (T(t)x — etAsx) =0,
s10 ¢<T

which directly implies
. tAy
lim supp (T(t)x —e ﬁa:) =0 (8.7.2)

n—o0 tST

forevery p € N, T > 0and z € X. On the other hand, we have for p € N
that
(e (] ) e ()]
n n
ey (2]
t
<Vnl||V (n) Tr—x

)

1
=/ 4]
where we have used Lemma IIL.5.1 from Engel and Nagel [2000] in line
A t X

three. The sequence is bounded, so we obtain

p(Ha- v ()] ) =0
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for every x € D, uniformly for 0 < ¢t < T'. Because V' (0) = 1, this extends
to t = 0. Together with equation (8.7.2), this yields for every p € A and
x € D that

o (e[ ()] ) -

The local equi-continuity of {7'(¢) }+>0 and equation (8.7.1) extend the re-
sulttoall z € X.

We now extend the result to the case where M > 1. By (8.3.1) on page 243,
Equation (8.7.1) implies that

t m
V(i) sm
m
Define the norm
t m
Vv (> T
m

and let N'* be the 7 continuous semi-norms that are bounded by ||-||. We
clearly have |z| < ||z|| < M |z|, and more importantly, ||V (¢)| < 1 for
all ¢ > 0. This implies by Lemma 8.3.5 on 244 for ||-|| and A'* that for every
p € N* there exists ¢ € N* such that

Sup sup p <V (t> :L’) < q(x).
t<T m>1 m

This implies by the argument above, that the semigroup {7'(¢)}+>0 is of
type (1,0) for N*. We obtain the result for N instead of N* by noting
that |z| < ||| < M |z| implies N' € N* € MN. So for T > 0 and
p € N C N*, we find ¢ € N* such that

supp (T'(t)z) < q(z)
t<T

sup sup
m>1t>0

= sup sup |V (t)"z|,
m>0 t>0

Izl = ] v sup sup
m>1 >0

for all z € X. However, as N* C MN, there exists some ¢’ € N such that
q = M¢', which concludes the proof. O

Theorem 8.7.2 (Trotter product formula). Let (X, 7,|-|) satisfy Condi-
tion C. Let {T'(t)}+>0 and {S(t)}+>0 be SCLE semigroups with generators
(A,D(A)) and (B, D(B)). Suppose that there is M > 1 and w € R such
that for allp € N and T > 0 there exists ¢ € N such that

supsup e “ip ([T (E) S (g)r x) < Mq(x). (8.7.3)

t<T n>1 n n



8.8 RELATING BI-CONTINUOUS SEMIGROUPS TO SCLE SEMIGROUPS

Consider A+B on D = D(A)ND(B) and suppose that D and (A\g—A—B)D
are dense in X for some \g > w. Then A + B generates a SCLE semigroup
{U(t)}+>0 of type (M, w) given by the Trotter product formula

U(t)z = lim [T (3> S (f)]na:

n—o00 n n

forall x € X, with uniform convergence fort in compact intervals.

If the supremum overt < T' in equation (8.7.3) can be extended to a supre-
mum overt > 0, then {U (t) }+>0 is of type (M, w)*.

Proof. Define V' (t) := T'(t)S(t) for ¢t > 0. Using the local equi-continuity
of {T'(t) }+>0, we obtain that lim; % = (A4 B)x for x € D. There-
fore, the result follows from Theorem 8.7.1. O

8.8 RELATING BI-CONTINUOUS SEMIGROUPS TO SCLE SEMIGROUPS

Bi-continuous semigroups were introduced by Kithnemund [2003] to study
semigroups on Banach spaces that are strongly continuous with respect
to a weaker locally convex topology 7 and where 7 has good sequential
properties on norm bounded sets. We will consider the mixed topology v :=
¥(|-| , 7), introduced by Wiweger [1961], also see Cooper [1987], which
is the strongest locally convex topology that coincides with 7 on norm
bounded sets. We will show that if v satisfies v = +, then bi-continuity
of a semigroup for 7 is equivalent to being SCLE for ~.

We start with the assumptions underlying bi-continuous semigroups.
Condition 8.8.1. Let (X |-|) be a Banach space with continuous dual X/,
and dual unit ball B,,. Let 7 be another, coarser, locally convex topology on

X, with continuous dual X! and dual unit ball B, = B,, N X that has the
following two properties.

(a) The space (X, 7) is sequentially complete on norm bounded sets.
(b) X7 is norming for (X, |-|), ie. |z| = supycp_|(z,2")].
An operator family {7'(¢) }+>0 of norm continuous operators on X is called

locally bi-continuous if for any ¢y > 0 and for any norm bounded sequence
{zn }n>0 that converges to x in X with respect to 7, we have

7— lim T(t)(zp, —x) =0
n—oo

uniformly for ¢ < t¢y. Kithnemund [2003] then introduces bi-continuous
semigroups.
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Definition 8.8.2. A semigroup {7'(¢)}+>0 of norm continuous operators
on X is called a bi-continuous semigroup of type (M, w) if it satisfies the
following properties.

(@) {T'(t)}+>0 is 7 strongly continuous.
(b) {T'(t)}+>0 is locally bi-continuous as an operator family.
(c) The semigroup is exponentially bounded: |T'(t)| < Me“! for all t > 0.

We will compare bi-continuous semigroups for 7 to SCLE semigroups for
mixed topology v := (||| , 7).

Proposition 8.8.3. Let (X, 7,|-|) satisfy Condition 8.8.1. Then, v is se-
quentially complete, has the same bounded sets as the norm topology and
(X,7, |-]) satisfies Condition C.

For the proof of countable convexity of A/, we introduce some notation.
Pick some locally convex space (Y, 7Y ). Pick an absolutely convex absorb-
ing subset A of Y. Define TX to be the finest locally convex topology on
Y that coincides with 77 on A. We say that (Y, 7Y) satisfies property (L)
if 77 = 7'}4/ for any absolutely convex absorbing subset A, see Saxon and
Sanchez Ruiz [1997].

Proof of Proposition 8.8.3. By Condition 8.8.1, 7 and |-| satisfy properties
(n), (0) and (d) in Wiweger [1961]. Thus, it follows by the Corollary of 2.4.1
in Wiweger [1961] that the 7 bounded sets equal the norm bounded sets.

By 2.2.1 in Wiweger [1961], v coincides with 7 on norm bounded sets,
which implies that ~ is sequentially complete.

We are left to prove that V is countably convex, which is equivalent to prov-
ing that y satisfies property (L) by [Saxon and Sanchez Ruiz, 1997, Theorem
2.2].

Pick an arbitrary absolutely convex absorbing set A C X. Denote by B
the unit ball for |-|. We start by showing that there exists A > 0 such that
AB C A.Because A is absorbing, we find by Theorem 8-4-12 in Wilansky
[1978] that A° is bounded. By Lemma 8.3.4 on page 243, the norm topology
is Banach and equal to the strong topology 8(X, (X,~)’). Therefore, The-
orem 20.11.8 in Kothe [1969] implies that A° is also bounded for the dual
norm. That it, there exists a « > 0 such that A° C aB°, which implies
a B C A%,

The strong closure of A is a barrel, and as the norm topology equals the
strong topology, The semi-norm defined by p4(z) := infyso{x € AA} is
strongly continuous. Thus 27 'a 1B C A.
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Hence, we can assume that there exists A > 0 such that A\B C A. Then
the finest locally convex topology coinciding with v on A, denoted by 4,
is weaker then the finest locally convex topology v)\p coinciding on AB
with ~y. In other words, v C v4 C ~,p. But 7 is the mixed topology, and
hence the strongest locally convex topology that coincides with 7 on norm
bounded sets, which implies that v = v, p, yielding v4 = 7. O

The definition of bi-continuous semigroups is given using the convergence
of sequences. Therefore, we expect a connection to SCLE semigroups if
7=

Theorem 8.8.4. Let (X, 7, |-|) satisfy Condition 8.8.1 and let -y be such that
vt =~.{T(t) }+>0 is bi-continuous for T if and only if it is SCLE for ~.

This theorem is an extension of Theorem 3.4 in Farkas [2011], which proves
the next result for the strict topology on X = C}(E) for a Polish space FE,
see also Section 8.9.1.

Proof. Let {T'(t)}+>0 be bi-continuous for 7. Fix tg > 0. Because
supy<y, [T(t)] < oo, it follows from 2.2.1 in Wiweger [1961] and the 7
strong continuity of {7'(¢) }+>( that the semigroup is also y strongly con-
tinuous.

Because a v converging sequence is norm bounded, it converges for 7. Thus
{T'(t) }+<t, is sequentially equi-continuous for -y by the local bi-continuity
of {T'(t) }+>0. It follows that for a y continuous semi-norm p there exists a
sequentially continuous semi-norm ¢ such that

supp (T'(t)z) < g¢(x)

t<to
for all z € X. However, using that y© = ~ and Theorem 7.4 in Wilan-
sky [1981], ¢ is «y continuous. In other words, {T'(¢) }+>¢ is locally equi-
continuous.

Now let Let {T'(t)}+>0 be SCLE for 7. The semigroup is exponentially
bounded by Corollary 8.3.7. Thus, 2.2.1 in Wiweger [1961] implies that
t — T(t)x is T continuous for every z € X and that {T'(¢)}¢>0 is 7 lo-
cally bi-continuous. O

8.9 THE STRICT TOPOLOGY

We give two examples where a strict topology can be defined. In both cases,
this topology is strongly Mackey and satisfies Condition C.
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For the first example, let E be a Polish space. We will define the strict topol-
ogy 8 on Cy(E) which is a particularly nice topology as the continuous
dual of (Cy(E), B) is the space of Radon measures on F of finite total vari-
ation. Therefore, this topology is useful for, for example, the study of tran-
sition semigroups of Markov processes.

For the second example, we take a Hilbert space $) and consider the strict
topology (5 on B($)), the space of bounded operators on §). The dual of
(B($), 8) is the space of normal linear functionals, which are at the ba-
sis of non-commutative measure theory, see Takesaki [1979], Kadison and
Ringrose [1986], Bratelli and Robinson [1979]. As a consequence, the space
(B($), B) is suitable for the study of quantum dynamical semigroups.

8.9.1 Definition and basic properties of the strict topology on Cy(E)

Recall the strict topology 8 introduced in Section 2.5.2. Let E' be a Polish
space. We repeat the construction of 3.

For every compact set K C F, define the semi-norm pg(f) :=
sup,cx | f(x)]. Pick a non-negative sequence a,, in R such that a,, — 0
and pick an arbitrary sequence of compact sets K,, C E. Define

P(Kn),(an)(f) = sup anpK, (f). (8.9.1)

The strict topology 5 = 7(|‘|, ) defined on Cy(E) is generated by the

semi-norms

{D()(an) | K compact, a, > 0,a, — 0}

Obviously, Cy(E) can also equipped with the sup norm topology. In this
situation, the set A/ contains all semi-norms of the type given in Equation
(8.9.1) such that sup,, a,, < 1.

Sentilles [1972] studied the strict topology and gives, amongst many others,
the following results.

Theorem 8.9.1. The space (Cy,(E), 3) is complete, Mackey, satisfies 57 = 3
and 8 = p(Cy(E), M(E)).

Additionally, we have that 3 has the same bounded sets as the norm topology
and that the norm topology equals 5(Cy(E), M(FE)).

Proof. Most of these properties have been stated before in Theorem 2.5.8.

Equality of the norm and the strong topology follows from Lemma 8.3.4.
O
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The next result follows directly from Propositions 8.2.3 and 8.3.9.

Corollary 8.9.2. The locally convex space (C,(E), B) together with the sup
norm is strong Mackey and satisfies Condition C.

Note that (d) implies that f, LA f if and only if sup,, | f»| < co and f, =
f- This reminds us somewhat of the bounded and pointwise convergence
concept defined on M, (E).

8.9.2  Definition and properties of the bounded pointwise topology on My(E)

A second definition of convergence of functions that is often used in the
study of generators of Markov processes is the notion bounded point-
wise(bp) on M, (E), where E is Polish. We say that f,, — f bounded and
pointwise if

(@) supy, | fn] < oo,

(b) fn(z) — f(x) forall x € E.

Clearly, this notion of convergence is well suited in the context of measure
theory because of the dominated convergence theorem.

We will show that this type of convergence can be embedded into the weak
topology o(My(E), M(E)) and show that this topology is related to the
strict topology.

Lemma 8.9.3. The space o(M,(E), M(E)) is sequentially complete, the
supremum norm topology equals 3(My(E), M(E)) and weakly bounded
sets equal norm bounded sets.

Finally, (My(E), o0 (My(E), M(E))) satisfies Convexity condition C.

Proof. We start by proving the sequential completeness of
(My(E),o(My(E), M(E))). Suppose we have a Cauchy sequence
fn that is not norm bounded.

Without loss of generality we can find z,, € E such that | f,,(z,)| > n. We
can also assume that all z,, are distinct, because if some point y appears
infinitely often in the sequence {z,, },>1, we see that f,(y) diverges.
Now consider the map ¢ : My(E) — [*°, defined by ¢(f) = {f(zn)}n>1.
We show that this map is continuous from o(My(E), M(E)) to o (I, 1%).
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For any sequence a = {a, },>1 in [}, we define a measure p1, € M(E) by
setting

p(A) = Z anlizy,eca}-

It follows that (¢(f),a) = (f, pa) which implies the continuity of ¢. Be-
cause [*° = (I, |-])’, the norm and weakly bounded sets coincide in [>
by the Principle of Uniform boundedness, see for example Theorem V.1.10
in Conway [2007]. Because ¢( f,,) is Cauchy in (I°°,o(1°°,1')), it is norm
bounded, which contradicts the fact that | f,, ()| > n.

We conclude that sup,, | fn| < cc.Clearly, as f,,(x) is Cauchy for all z € E,
we can define a pointwise limit f € M;,(E). By the dominated convergence
theorem we obtain (f,, ) — (f,p) for all p € M(E). In other words,
(My(E),o(My(E), M(E)) is sequentially complete.

For the second and the third claim, note that |f| = sup,cg [(f,0z)].
therefore |-| is lower semi-continuous for o (M (E), M(E)). It follows by
Lemma 8.3.4 that the norm topology equals 3(M;(FE), M(FE)) and that the
norm and o (M;(E), M(E)) bounded sets coincide.

Convexity property C follows from Proposition 8.3.9 (d). O

We proceed with the result that connects bp convergence to weak conver-
gence. This Lemma can also be found as Proposition 3.1 in the Appendix
of Ethier and Kurtz [1986].

Lemma 8.9.4. Consider the weak topology o(My(E), M(E)). A sequence
fn in My(E) converges weakly to f € My(FE) if and only if f, L4 f

Proof. Clearly, by the dominated convergence theorem, if f, @) f, then
fn — f for o(My(E), M(E)). On the other hand, if f,, — f for
o(My(E), M(E)), then we obtain f,(z) — f(z) for all = by consider-
ing the Dirac measures §, € M(FE). Boundedness follows from Lemma
8.9.3. O

As a final question, we consider the relation between M;(E) and Cy(E).
First note that M (F) is a weakly sequentially closed subspace of the
o(Cy(E), M(E)) completion of Cy(E) by a theorem of Grothendieck,
21.2.(2) Kéthe [1969].

Not every element in Mj(E) can be weakly approximated by a sequence
of elements from C}(E) as can be seen from the indicator function of Q.
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However, writing Q = {q1,qo,...}, it is clear we can approximate the
function fr = 1y, . 4.} by a sequence of continuous functions for the
weak topology. Additionally, f;, — 1g for the weak topology.

This raises the question whether M;(E) is the smallest sequentially closed
subspace of the weak completion of Cj,(F) that is sequentially closed. In
some sense, the following result is the functional analytic counterpart of
the fact that the smallest o algebra containing all closed balls is the Borel
o algebra.

Proposition 8.9.5. The space My,(F) is the smallest sequentially closed sub-
space in the o (Cy(E), M(E)) completion of Cy,(E).

Proof. If E is metric, let B, (z) be the closed metric ball of radius r centred
at x. Clearly, the sequence of functions

faly) = (1 =nd(y, By(z))) V0
decreases pointwise to 1p (). Therefore, the sequence converges in the
o(My(E), M(E)) topology.
The result follows by a monotone class argument, see Theorem 4.3 in the
Appendix of Ethier and Kurtz [1986]. d

8.9.3 Definition and basic properties of the strict topology on B(H)

Let $) be a Hilbert space and let (B($)), |-|) be the Banach space of bounded
linear operators on §). Furthermore, let C($)) and 7 ($)) be the subspace of
compact and trace class operators on §). Note that B($)) = 7 (9) = K($)”
as Banach spaces by Theorems I1.1.6 and II.1.8 in Takesaki [1979].

We define four additional topologies on B($).

(a) The strong™ (operator) topology generated by the semi-norms {p¢ | £ €

9}, where pe(A) := /| A¢J* + | A=¢|%.

(b) The ultraweak (operator) topology generated by the family of semi-
norms {pr | T € T($)}, where pr(A) := | Tr(AT)]|.

(c) The ultrastrong™ (operator) topology generated by the family of semi-
norms {pr|T € T($),T > 0}, where pp(A) := /Tr(TA*A).

(d) The strict topology ( defined by the set of semi-norms pp(A) := |AB)|
and gp(A) := |BA| for compact operators B € K(9).

The ultraweak topology is the weak topology of the dual pair (B(5)), T ($))
and also the ultrastrong* topology is a topology of this pair, see for example
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[Takesaki, 1979, Lemma II.2.4]. The strict topology is the Mackey topology
of this dual pair by Theorem 3.9 in Busby [1968] and Corollary 2.8 in Taylor
[1970].

The linear functionals on B($)) that are continuous with respect to any
topology of the dual pair (B($)),7($)) are called normal, to distinguish
them from the larger class of linear functionals on B($)) that are continu-
ous for the norm, see also the reference that were mentioned before Take-
saki [1979], Kadison and Ringrose [1986], Bratelli and Robinson [1979]. The
distinction between the two classes of functionals is analogous to the dif-
ference between Radon measures on Cy(F), E non-compact and Polish,
and the linear functionals on C(E) that are norm continuous.

Proposition 8.9.6. The space (B($)),3) is complete, strong Mackey,
the bounded sets equal the operator norm bounded sets, and

(T($),0(T(9),B($)) is sequentially complete.

Proof. Proposition 3.6 in Busby [1968] gives completeness. The principle
of uniform boundedness gives equality of the bounded sets. To show that
B is strong Mackey, we need to verify that the absolutely convex hull
of a o(T($),B(H)) compact set is also compact. This follows directly
from Krein’s theorem, 24.5.(4) in Koéthe [1969] as the Mackey topology
w(T(9),B($)) is the Banach topology generated by the Trace norm. The
final statement follows from Corollary IIL.5.2 in Takesaki [1979]. O

Corollary 8.9.7. The space (B($)), 3) together with the operator norm is
strong Mackey and satisfies Condition C.

If ) is separable, we additionally have the following result.

Proposition 8.9.8. If§) is separable, then (B(), 3) is separable and f =
B

Proof. Suppose ) is separable. Then IC($)) is norm separable by Lemma 1 in
Goldberg [1959] which implies that it is separable for 8. By Proposition 3.5
in Busby [1968], K($)) is § dense in B($)), which implies the first statement.

By Theorem IL2.6 and Proposition I1.2.7 in Takesaki [1979]
(B($), ultrastrong*) is Mazur. Consider the topology (ultrastrong*)*.
By Theorem 7.5 in Wilansky [1981], (ultrastrong*)" is a topology of the
dual pair (B($)), T ($)), hence must be coarser than the strict topology.
By Theorem IIL.5.7 in Takesaki [1979] the strict topology coincides on
bounded sets with the ultrastrong® topology. Hence, both have the
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same convergent sequences, which implies that (ultrastrong*)™ is finer
than the strict topology. Therefore, they coincide. This also implies that

Bt =5 D

Let {P,;}+>0 be a strongly continuous semigroup on $). The semigroup
{T'(t) }+>0 defined on B(H) by T'(t)A = P*(t)AP(t) is a basic example in
the study of quantum dynamical semigroups, which are normally defined
to be merely continuous for the ultraweak topology Fagnola [1999].

Proposition 8.9.9. The semigroup {T'(t)}+>0 is a SCLE semigroup for the
strict topology.

It is of interest to see whether more quantum dynamical semigroups are
in fact continuous for the strict topology. This, however, goes beyond the
scope of this thesis.

Proof. Fix A € B($)). The strong continuity of { P(¢) }+>o implies the opera-
tor strong™ continuity of ¢t — T'(t) A. Therefore, the trajectory t — T'(t) A
is locally bounded for the strong™ topology, and hence, by the principle
of uniform boundedness for the norm topology. Because the strict topol-
ogy coincides with the strong” topology on bounded sets [Takesaki, 1979,
Lemma I1.2.5 and Theorem II1.5.7] ¢ — T'(t)A is continuous for the strict
topology. The semigroup is locally equi-continuous by Lemma 8.2.2. [

8.10 APPENDIX: STOCHASTIC DOMINATION AND THE CHERNOFF
BOUND

In this appendix, we recall the definition of stochastic domination [Lindvall,
1992, Section IV.1] and give a number of useful results.

Definition 8.10.1. Suppose that we have two random variables n; and 72
taking values in R. We say that 7; stochastically dominates 72, denoted by
n = ne if for every r € R we have P[n; > r] > P[ne > r].

Lemma 8.10.2. For two real valued random variables 11, n2, we have that
m = 12 if and only if for every bounded and increasing function ¢, we have

E[¢(m)] = Elo(n2)].

We say that a random variable 7 is Poisson(7y) distributed, v > 0, denoted
by n ~ Poisson(7y) if P[n = k| = %6_7.
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Lemma 8.10.3. Ifn; ~ Poisson(y1) and ny ~ Poisson(7y2) and v1 > 7o,
thenny = 1.

Using the theory of couplings [Lindvall, 1992, Section IV.2], a proof follows
directly from the fact that if 7v; > ~9, then 1 is in distribution equal to
N2 + (, where ¢ ~ Poisson(vy; — 72).

The next result, introduced by Chernoff [1952], is useful in the context of
stochastic domination.

Proposition 8.10.4. Let X be a random variable on R for which there ex-
ists 09 > 0, such that for § < 0o, the Laplace transform E[e?X] exists. Let
{Xi}i>1 be independent and distributed as X. Then for ¢ > E[X], we have

1 < : 0X
P[n;Xi>C] <exp{—n0<1§1<f€0{ct9—logJE[e ]}}

We give a proof for completeness.

Proof. For all 0 < 6 < 6y, we have
1 n
P [n ZXZ > c] =P [6921':1 Xi S enGc]

i=1
< exp {— (nﬂc —logE [eg i X’} ) } ,

where we used Markov’s inequality in line 2. Because the X; are indepen-
dent, log E [66 2 Xl} =nlogE [eeX], which yields the final result. [



MARTINGALE PROBLEM AND THE TRANSITION
SEMIGROUP

Equipped with the knowledge of Chapter 8, we consider the setting of the
martingale problem of Section 2.3.4. In particular, we will establish that,
under a compact containment condition, the transition semigroup of the
solution of a well-posed martingale problem gives rise to a strongly con-
tinuous and locally equi-continuous semigroup on the space of bounded
continuous functions equipped with the strict topology.

9.1 PRELIMINARIES

We shortly recall some notions. We work with a complete separable metric
space (F,d).

Definition 9.1.1 (The martingale problem). Let A : D(A) C Cy(E) —
Cy(E) be a linear operator. For (A4, D(A)) and a measure v € P(E), we
say that P € P(Dg(R™")) solves the martingale problem for (A, v) if for
all f € D(A)

My(t) = F(X() — F(X(0)) - / AF(X(s))ds

is a mean 0 FX = {FX},>¢ martingale under P, and if PX (0)~! = v.

We denote the set of all solutions to the martingale problem, for varying
initial measures v, by M 4. We say that uniqueness holds for the martingale
problem if for every v € P(E) the set {P € M4 |PX(0)~! = v} is empty
or a singleton. Furthermore, we say that the martingale problem is well-
posed if this set is a singleton.

Additionally, we will consider restricted martingale problem. Let I' C M 4
and denote

r,={Pel|PX(0)'=v}.

We write I';, for I'5,. We say that the I'-restricted martingale problem is
well posed if I',, is a singleton for all v € P(E).
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An example of where this latter construction occurs is in the construction
of measure valued diffusion processes. See for example Section IL.5 Perkins
[2002] or Chapter 1 in Etheridge [2000], where I is of the form

D:={PecMy|VfeDA):< My >=¢st)},

where < M > denotes the quadratic variation process of My and where
{#7(t)} sep(a) is some collection of increasing deterministic function.

The construction of solutions to the martingale problem can often be done
via approximating processes. Classically, uniqueness for the martingale
problem is proven via duality. Costantini and Kurtz [2015], however, intro-
duced a method based on viscosity solutions. In the light of other results
based on viscosity solutions in this thesis, we will sketch shortly how this
works in the case that I' = M 4.

For A > 0 and h € Cy(E), consider the equation
f(z) = AAf(x) — h(z) = 0. (9.1.1)

For a function h € Cy(E), A > 0 and P € P(Dg(R™)) define
> 1 -1
R(\, h,P) :=EF [ / Xe_A 'h(X(t))dt] ,
0

and use this to define for h € Cy(E) and x € E and A > 0
RT(A)h(x) = sup R(\, h,P)
Pel,
R™(Mh(z) = inf R(M, h,P).
Pel’'y

The following lemma is Lemma 3.5 in Costantini and Kurtz [2015].

Lemma 9.1.2. For A\ > 0 and h € C,(E), Rt (\)h is a viscosity subsolution
to (9.1.1) and R~ (\)h is a viscosity supersolution to (9.1.1).

Clearly, if the comparison principle is satisfied for h € Cyp(F) and A > 0,
we obtain RT(A\)h = R~ (\)h. In fact, if this holds for sufficiently many
h € Cy(E) then we obtain uniqueness for martingale problem.

Theorem 9.1.3 (Theorem 3.7 in Costantini and Kurtz [2015]). Let D C
Cy(E) be [3 dense. If the comparison principle holds for f — NAf —h =0
forall A > 0 and h € D, then uniqueness holds for the martingale problem.
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Note that the results in Costantini and Kurtz [2015] also hold for alter-
native definitions of viscosity solutions. The important meta-statement is
that any definition of viscosity solution such that Rt (\)h and R~ (\)h are
viscosity sub- and supersolutions to (9.1.1), for which one can also show
the comparison principle, suffices to prove uniqueness to the martingale
problem.

9.2 THE TRANSITION SEMIGROUP IS STRONGLY CONTINUOUS AND
LOCALLY EQUI-CONTINUOUS WITH RESPECT TO THE STRICT
TOPOLOGY

In the setting that uniqueness holds for the martingale problem, e.g. if the
comparison principle holds as above, we obtain a strengthened version of
Theorem 4.5.11, Ethier and Kurtz [1986].

Theorem 9.2.1. Let A C Cy(E) x Cy(E) and let T be a set of solutions to
the martingale problem for A. Suppose that the closed convex hull of D(A)
is B dense in Cy(E). Suppose that for allv € P(E) T, # () and that for all
compact K C P(E),e > 0 and T > 0, there exists a compact set K' =
K'(K,e,T) such that for all P € T, we have

P[X(t) € K' forallt <T,X(0) € K| > (1-¢)P[X(0) € K]. (9.2.1)

Suppose in addition that uniqueness holds for the I'-martingale problem for
A, then the solutions correspond to strong Markov processes with a 3-SCLE
semigroup {S(t) }+>0 on Cp(E) defined by S(t) f(x) = E[f(X(t)) | X (0) =
In particular, this holds if there is a  dense set D C Cy(FE) such that the
comparison principle is satisfied for f — AAf —h = 0 forall A\ > 0 and
heD.

Proof of Theorem 9.2.1. The proof that the solutions are strong Markov and
correspond to a semigroup

S(t)f(x) = E[f(X(1)) [ X(0) = 2]

that maps C(E) into Cy(E) follows as in the proof of (b) and (c) of The-
orem 4.5.11 Ethier and Kurtz [1986]. We are left to show that {S(t) };>0 is
SCLE for 3, which we do in Lemma 9.2.2 and Proposition 9.2.3. O

Lemma 9.2.2. Let {S(t)}+>0 be the semigroup introduced in Theorem 9.2.1.
The family {S(t)}+>0 is locally equi-continuous for (3.
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Proof. Fix T' > 0. We will prove that {S(t) };<7 is 8 equi-continuous by
using Theorem 2.5.8 (c) and (d). Pick a sequence f,, converging to f with
respect to (3. It follows that sup,, | f,| < oo, which directly implies that
sup,, sup;< [S(t) fu] < oo.

We also know that f,, — f uniformly on compact sets. We prove that this
implies the same for S(t) f,, and S(¢) f uniformly in t < T". Fix ¢ > 0 and
a compact set K C F, and let K be the set introduced in Equation (9.2.1)
for T'. Then we obtain that

sup sup |S(t)f(x) — S(t) fn(2)]

t<T zeK

< sup sup E, | f(X(t)) — fn(X(1))]
t<T zeK

< sup sup Ep | (f(X (1)) = fa(X () 1 xyery
t<T zeK

+ (f(X(t)) - fn(X(t)>) ]l{X(t)eR'C}

< sup sup |f(y) = fu(y)| +sup | fn — fle.
t<T yek n

As n — oo this quantity is bounded by sup,, | f, — f| € as f,, converges to
f uniformly on compacts. As € was arbitrary, we are done. O

Proposition 9.2.3. Let {S(t)}+>0 be the semigroup introduced in Theorem
9.2.1. Then {S(t) }+>0 is 3 strongly continuous.

For the proof, we recall one definition from Section 8.2. We say that a semi-
group is weakly continuous if for all f € Cp(FE) and p € M(E) the trajec-
tory ¢ — (S(¢) f, 1) is continuous in R.

Proof of Proposition 9.2.3. First, recall that (Cy(E),3) is strong Mackey
and complete. By Lemma 9.2.2 the semigroup {S(¢)}+>0 is locally equi-
continuous. Therefore, Proposition 8.2.5 implies that we only need to prove
weak continuity. So let f € Cy(F) and p € M(E). Write u as the Hahn-
Jordan decomposition: = ¢t — ¢~ p~, where ¢, ¢” > 0 such that
ptoum € P(E).

We show that ¢ — (S(¢)f,u) is continuous, by showing that ¢ —
(S(t)f,pt) and t — (S(t)f, ) are continuous. Clearly, it suffices to
do this for either of the two.

Let P be the unique measure in I, +. It follows by Theorem 4.3.12 in Ethier
and Kurtz [1986] that P[X (t) = X (t—)] = 1 forallt > 0,s0t — X (t) is
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continuous [P almost surely. Fix some ¢t > 0, we show that our trajectory is
continuous for this specific {.

[(S@)f, 1) = (S(t+h) f,u*)| S EP|F(X () — FX(t+ D))

By the almost sure convergence of X (¢t + h) — X(t) as h — 0, and
the boundedness of f, we obtain by the dominated convergence theorem
that this difference converges to 0 as h — 0. As ¢t > 0 was arbitrary, the
trajectory is continuous for all ¢ > 0. Continuity at O follows by the fact
that all trajectories in D (R™) are continuous at 0. O
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A BANACH-DIEUDONNE THEOREM FOR THE SPACE
OF BOUNDED CONTINUOUS FUNCTIONS

The identification of the strict topology on the space of bounded continu-
ous functions as the correct space in relation to measure theory in Section
8.9.1 and Chapter 9 causes the question to arise which properties of the
space (Cp(X),|-|) carry over to (Cy(X), ) if we replace a compact met-
ric space X by a Polish space X. A list of properties for which this is the
case has been given in Theorem 2.5.8.

Specific to the theory of Banach spaces, i.e. when X is compact, are the
closed graph, inverse- and open mapping theorems. Given that measure
theory, i.e. the study of the continuous dual of (Cy(X), 8) is in some sense
not dependent on the fact that X is compact, leads to the conjecture that
these results can be obtained for non-compact Polish X as well. These re-
sults have been obtained in:

Richard Kraaij. A Banach-Dieudonné theorem for the space of bounded
continuous functions on a separable metric space with the strict topology.
Topology and its Applications, 2016c. ISSN 0166-8641. doi: 10.1016/j.topol.
2016.06.003.

10.1 INTRODUCTION AND RESULTS

Let (E,t) be a locally convex space. Denote by E’ the continuous dual
space of (E,t) and denote by o = o(F’, F') the weak topology on E’. We
consider the following additional topologies on E’:

« of, the finest topology coinciding with ¢ on all ¢t-equi-continuous
sets in F'.

. ¢!/, the finest locally convex topology coinciding with ¢ on all ¢-
equi-continuous sets in F’.

« t° the polar topology of ¢ defined on E’. t° is defined in the following
way. Let N be the collection of all ¢ pre-compact sets in E. A pre-
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compact set, is a set that is compact in the completion of (F, t). Then
the topology t° on F’ is generated by all semi-norms of the type

py(p) :=sup[(fim)| N eN.
fenN

The Banach-Dieudonné theorem for locally convex spaces is the following,
see Theorems 21.10.1 and 21.9.8 in K6the [1969].

Theorem 10.1.1 (Banach-Dieudonné). Let (F,t) be a metrizable locally
convex space, then the topologies o/ and t° on (E,t)’ coincide. If (E, t) is
complete, these topologies also coincide with o'

The Banach-Dieudonné theorem is of interest in combination with the
closed graph theorem. For the discussion of closed graph theorems, we
need some additional definitions. Considering a locally convex space (E, t),
we say that

(a) E’ satisfies the Krein-Smulian property if every of closed absolutely
convex subset of E’ is o closed;

(b) (E,t)isa Ptak spaceif every o/ closed linear subspace of E' is o closed;

(c) (E,t) is a infra Ptak space if every o dense o/ closed linear subspace
of F’ equals F'.

Infra-Ptak spaces are sometimes also called B, complete and Ptk spaces
are also known as B complete or fully complete. Finally, Theorem 1 of Kel-
ley [1958] shows that the Krein-Smulian property for E’ is equivalent to
hypercompleteness of E: the completeness of the space of absolutely convex
closed neighbourhoods of 0 in (F,t) equipped with the Hausdorff unifor-
mity.

Clearly, we have that E/ hypercomplete implies F Ptak implies F infra Ptak.
Additionally, if E is a infra Ptk space, then it is complete by 34.2.1 in Kéthe
[1979]. See also Chapter 7 in Carreras and Bonet [1987] for more properties
of Ptak spaces.

We have the following straightforward result, using that the absolutely con-
vex closed sets agree for all locally convex topologies that give the same
dual.

Proposition 10.1.2. Ifo'/ and o/ coincide on E', then E is hypercomplete.

Theorem 10.1.3 (Closed graph theorem, cf. 34.6.9 in Kéthe [1979]). Every
closed linear map of a barrelled space E to an infra-Ptik space F' is continu-
ous.
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Because Banach and Fréchet spaces are metrizable, they are infra-Ptak
space by Theorem 10.1.1 and Proposition 10.1.2. Additionally, they are both
barrelled spaces, which implies that the closed graph theorem holds for
closed linear maps from a Fréchet space to a Fréchet space. As a conse-
quence, also the inverse and open mapping theorems hold.

In this chapter, we study the space of bounded and continuous functions
on a separable metric space X equipped with the strict topology . For the
definition and a study of the properties of 3, see Sentilles [1972]. Note that
this setting is slightly more general than in previous chapters where we
considered spaces that were metrizable by a complete separable metric. A
difference is that for the strict topology on a separably metrizable space,
the dual space equals the space M (X) of T-additive Borel measures on
X. A Borel measure (i is called 7-additive if for any increasing net {Uy, }
of open sets, we have

lim [ (Ua) =[] (UaUa) -

As in the previous chapter, if X is metrizable by a complete separable met-
ric, the space of 7 additive Borel measures equals the space of Radon mea-
sures.

The space (Cy(X), ) is not barrelled unless X is compact, Theorem 4.8 of
Sentilles [1972] so Theorem 10.1.3 does not apply for this class of spaces.
Thus, the following closed graph theorem by Kalton is of interest, as it puts
more restrictions on the spaces serving as a range, relaxing the conditions
on the spaces allowed as a domain.

Theorem 10.1.4 (Kalton’s closed graph theorem, Theorem 2.4 in Kalton
[1971], Theorem 34.11.6 in Kothe [1979]). Every closed linear map from a
Mackey space E with weakly sequentially complete dual E' into a transsep-
arable infra-Ptak space F' is continuous.

Remark 10.1.5. Note that this result is normally stated for separable infra-
Ptak space F'. In the proof of Kalton’s closed graph theorem 34.11.6 in K6the
[1979], separability is only used to obtain that weakly compact sets of the
dual E’ are metrizable. For this transseparability suffices by Lemma 1 in
Pfister [1976].

A class of spaces, more general than the class of Fréchet spaces, satisfying
the conditions for both the range and the domain space in Kalton’s closed
graph theorem, would be an interesting class of spaces to study. In this
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chapter, we show that (Cy,(X), 8), for a separable metric space X belongs
to this class. In particular, the main result in this chapter is that (C(X), )
satisfies the conclusions of the Banach-Dieudonné theorem.

First, we introduce an auxiliary result and the definition of a k-space, which
are relevant in view of the defining properties of .

Proposition 10.1.6. (Cy(X), /3) is a strong Mackey space. In other words, (3
is a Mackey topology and the weakly compact sets in M (X)) and the weakly
closed [ equi-continuous sets coincide.

Proof. This follows by Theorem 5.6 in Sentilles [1972], Corollary 6.3.5 and
Proposition 7.2.2(iv) in Bogachev [2007]. O

We say that a topological space (Y, t) is a k-space ifa set A C Y is t-closed
if and only if AN K is t-closed for all ¢-compact sets K C Y. The strongest
topology on Y coinciding on ¢-compact sets with the original topology ¢ is
denoted by kt and is called the k-ification of ¢. The closed sets of kt are the
sets AinY such that AN K is t-closed in Y for all t-compact sets K C Y.

We see that for a strong Mackey space E, 0/ = ko on E'.

Theorem 10.1.7. Let X be a separably metrizable space. Consider the space
(Cy(X), B), where 3 is the strict topology. Then '/, o/, ko and B° coincide
on M, (X).

In the process of proving the theorem, we will obtain various auxiliary
results, we will mention a result that is relevant in view of Kalton’s closed
graph theorem.

Lemma 10.1.8. Let X be a separably metrizable space. Then (Cy,(X), /) is
transseparable.

Additionally, we have the following known result, Theorem 8.7.1 in Bo-
gachev [2007].

Lemma 10.1.9. Let X be separably metrizable, then the dual M (X) of
(Cy(X), B) is weakly sequentially complete.

We immediately note that a second proof of this lemma can be given using
the theory of Mazur spaces.

Remark 10.1.10 (Second proof). 3 is the Mackey topology on (Cy,(X), )
by Proposition 10.1.6, we find M, (X) is weakly sequentially complete by
Theorem 8.1 in Sentilles [1972], Theorem 7.4 in Wilansky [1981] and Propo-
sitions 4.3 and 4.4 in Webb [1968].
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As a consequence of Theorem 10.1.7 and Lemma’s 10.1.8 and 10.1.9,
(Cy(X), B) satisfies both the conditions to serve as a range, and as a do-
main in Kalton’s closed graph theorem. We have the following important
corollaries.

Corollary 10.1.11 (Closed graph theorem). Let X, Y be separably metriz-
able spaces, then a closed linear map from (Cy(X), 8) to (Cp(Y'), ) is con-

tinuous.

Corollary 10.1.12 (Inverse mapping theorem). Let X,Y be separably
metrizable spaces. Let T : (Cy(X),5) — (Cp(Y), ) be a bijective con-
tinuous linear map. Then T~ : (Cy(Y), B) — (Cy(X), B) is continuous.

Corollary 10.1.13 (Open mapping theorem). Let X, Y be separably metriz-
able spaces. Let T : (Cy(X),8) — (Cup(Y),3) be a surjective continuous
linear map. Then T is open.

10.2 IDENTIFYING THE FINEST TOPOLOGY COINCIDING WITH 0 ON
ALL 3 EQUI-CONTINUOUS SETS

Denote by M, 4 (X)) the subset of non-negative 7-additive Borel mea-
sures on X and denote by o the restriction of o to M, 4 (X ). Consider
the map

q: M7—7+(X) X MT7+(X) — MT(X)
q(p,v) =p—v.
Note that by the Hahn-Jordan theorem the map ¢ is surjective.

Definition 10.2.1. Let 7 denote the quotient topology on M . ( X) of the
map g with respectto o X o4 on M, 4 (X) x M, 4 (X).

The next few lemma’s will provide some key properties of 7, which will
lead to the proof that 7 = o /.

Lemma 10.2.2. (M (X)), T) is a k-space.

Proof. First of all, the topology o is metrizable by Theorem 8.3.2 in Bo-
gachev [2007]. This implies that 0’3_ is metrizable. Metrizable spaces are
k-spaces by Theorem 3.3.20 in Engelking [1989]. Thus (M, (X)), T) is
the quotient of a k-space which implies that (M (X ), T) is a k-space by
Theorem 3.3.23 in Engelking [1989]. O
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Lemma 10.2.3. The topology T is stronger than o. Both topologies have the
same compact sets and on the compact sets the topologies agree.

Proof. For f € Cy(X), denote by iy : M,(X) — R the map defined
by is(p) = [ fdu. Because T is the final topology under the map g, iy is
continuous if and only if ifoq : MT +( ) x M; 1 (X) — Ris continuous.
This, however, is clear as i ¢ o ¢(p, ) = [ fd(u — v) and the definition of
the weak topology on M, 4 (X).

o is the weakest topology making all i; continuous, which implies that

ocCT.

For the second statement, note first that as o C 7, the first has more com-
pact sets. Thus, suppose that K C M, (X) is 0 compact. By Proposition
10.1.6 K is B equi-continuous, so by Theorem 6.1 (c) in Sentilles [1972],
K C K — Ky, where K1, Ko C M 4 (X) and where K7, K3 are o and
hence o compact. It follows that ¢( K7, K2) is 7 compact. Because K is a
closed subset of (K, K2), itis 7 compact. We conclude that the o and T
compact sets coincide.

Let K be a 7 and o compact set. The identity map i : K — K is T to o
continuous, so it maps compacts to compacts. Because all closed sets are
compact, ¢ is homeomorphic, which implies that o and 7 coincide on the
compact sets. O

Proposition 10.2.4. 7T is the k-ification of 0. In other words, T is the finest

topology that coincides with o on all o compact sets. In particular, we find
that T = o/.

Proof. By Lemma 10.2.2, T is a k-space. By Lemma 10.2.3 the compact sets
for o and T coincide. It follows that 7 = ko = o, O

We prove an additional lemma that will yield transseparability of
(Cy(X), B), before moving on to the study of the quotient topology 7.

Lemma 10.2.5. The o, or equivalently, T compact sets in M,(X) are
metrizable.

Proof. Let K be a o compact set in M (X). In the proof of Lemma 10.2.3,
we saw that K C ¢(Ki, K2), where K, Ko are compact sets of the
metrizable space M (X). Because ¢ is a continuous map, we find that
q(K1, K2) and hence K is metrizable by Lemma 1.2 in Kalton [1971] or
34.11.2 in Ko6the [1979]. O
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Proof of Lemma 10.1.8. The o compact sets are metrizable by Lemma 10.2.5,
which implies that (Cy(X), ) is transseparable by Lemma 1 in Pfister
[1976]. O

10.2.1 (M, (X),T) is a locally convex space.

This section will focus on proving that the topology 7 on M, (X) turns
M (X) into alocally convex space. Given the identification 7 = ko = of
obtained in Propositions 10.1.6 and 10.2.4, this is the main ingredient for
the proof of Theorem 10.1.7. Indeed, for a general locally convex space
the topology o/ is in general not a vector space topology, cf. Section 2 in
Komura [1964].

Proposition 10.2.6. (M (X),T) is a locally convex space.

The proof of the proposition relies on two lemma’s.

Lemma 10.2.7. The map q : (M, +(X)?,02) = (M,(X),T) is an open
map.

Proof. Before we start proving that the map ¢ is open, we start with two
auxiliary steps.

Step 1. We first prove that the map & : (M2 | (X) x M;(X),0% x o) —
(M2(X),0?), defined by ©(u, v, p) = (11 + p, v + p) is open.

It suffices to show that (V) is open for V' in a basis for 02 x o by Theorem
1.1.14 in Engelking [1989]. Hence, choose A and B be open for o4 and
C open for 0. Set U := ®(A x B x (). Choose (u,v) € U. We prove
that there exists an open neighbourhood of (x4, ) contained in U. Because
(u,v) e U =dB(Ax BxC),wefind ugp € A,y € B and pg € C such
that u = po + po and v = vy + po.

Because o is the topology of a topological vector space, the sets 1o +C and
v+ C are open for 0. Thus, the set H := (19+C) x (v9+C') is open for o2.
By construction (u,v) € H, and additionally, H C U = &(A x B x ().

We conclude that & is an open map.

Step 2. Denote G := @1 (M, 1 (X)?) and by @, : G — M, (X)? the
restriction of & to the inverse image of M ; (X)2.If we equip G with the
subspace topology inherited from (M2 | (X) x M;(X),0% x 0), the map
@, is open by Proposition 2.1.4 in Engelking [1989] and the openness of ®.

Step 3: The proof that q is open.
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Let V be an arbitrary open set in (M, (X)?, 02 ). As a consequence, V x
M (X) is open in (MZ , (X) x M,(X),0% x o). By definition of the
subspace topology, (V x M.(X)) N G is open for the subspace topology
on G. By the openness of ®,, we conclude that V := @,.((V x M, (X))NG)
is open in (M, 4 (X)?,0%).

Because @, ((V x M, (X))NG) = &(V x M, (X)) N M, 4+ (X)?, we find
that

14

v) € MT7+(X)2|HPEM7—(X) c(w—p,v—p) eV}

{(,v)
{(p,v) e M (X)?|FpE MA(X): (n+pv+p) EV}.

Thus, we see that V = ¢~ (¢(V)). Because V is open and ¢ is a quotient
map, we obtain that ¢(V') is open. O

Lemma 10.2.8. The mapq” : (M, (X)*,0%) = (M (X)?, T?), defined
as the product of q times q, i.e.

20,4 = 4 =) — (,F -+ —
(v v,y ) = = vy —vy),
is an open map. As a consequence, T2 is the quotient topology of ai under
2
q°.

Proof. By Proposition 2.3.29 in Engelking [1989] the product of open sur-
jective maps is open. Thus, ¢? is open as a consequence of Lemma 10.2.7.
An open surjective map is always a quotient map by Corollary 2.4.8 in En-

gelking [1989]. O

Proof of Proposition 10.2.6. We start by proving that (M,(X) X
M(X),T?) = (M (X),T) defined by +(v1,12) = 11 + o is
continuous. Consider the following spaces and maps:

(MT(X) X MT(X)77-2)

—— (M;(X),T)

¢ q

(Mr (X)), 0%) (Mr1(X)%,0%)

+2

q and + are the quotient and sum maps defined above. ¢*> was introduced
in Lemma 10.2.8 and +5 is defined as

o vy v vy) = (v vy ).
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Note that the diagram commutes, i.e. g o +2 = + 0 ¢°.

Fix an open set U in (M, (X),T), we prove that +~1(U) is T2 open in
M (X)x M- (X).By construction, q is continuous. Also, +3 is continuous
as it is the restriction of the addition map on a locally convex space. We
obtain that V := +5 (¢~ 1(U)) = (¢*)"}(+~1(U)) is o'} open. By Lemma
10.2.8 ¢? is a quotient map, which implies that +~(U) is 7?2 open. We
conclude that + : (M(X)?,7?) — (M,(X),T) is continuous.

We proceed by proving that the scalar multiplication map m : (M, (X) x
R, 7 xt) = (M(X),T) defined by m(u, ) = as is continuous. Here,
t denotes the usual topology on R. Consider the following diagram:

(M (X), T)

(MA(X) xR, T xt)
qx 1 q

(MT,+(X)2 X Rvo--%— X t) TQ’ (MT(X)zvo-—Qf—)

Here, I : R — R denotes the identity map and mg : M, (X)? x R —
M2 (X) is defined by

(—apg, —apy) ifa <0
ma(p, p2, @) g (0,0) ifoo=0
(apr, cpia) ifa > 0.

Note that, using this definition of mg, the diagram above commutes. It is
straightforward to verify that my is a ai X t to Ui continuous map as
o is the restriction of the topology of a topological vector space. By the
Whitehead theorem, Theorem 3.3.7 in Engelking [1989], the map ¢ x [ is
a quotient map. We obtain, as above, that m is continuous.

The continuity of + and m yield that (M, (X)), T) is a topological vector
space. To prove that the space is locally convex, we prove that 7 has a basis
of open convex sets for 0.

Let U C M, (X) be open and such that 0 € U, we prove that there is an
open convex subset Uy C U such that 0 € Uj.

Because ¢ : (M, +(X)?%,0%) — (M,(X),T) is continuous, the set
q ' (U) is 0% open. Additionally, ¢~ (U) contains (0, 0). By construction
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of o, there exists a 0% open set V. C M, (X)? that contains (0,0) and
such that

VM, (X)=q HU).

Because (M, (X)?2,0?) is locally convex, we can find a 02 open convex
neighbourhood Vp C V of 0. By Lemma 10.2.7 g is open, additionally it is
linear on its domain, thus we find that

Up:=qVoNn M, (X)) CU

is T open and convex. By construction, Uy contains 0.
We conclude that (M (X)), T) is a locally convex space. O

10.2.2  The proof of Theorem 10.1.7 and its corollaries

We finalize with the proof of our main result and its consequences.

Proof of Theorem 10.1.7. We already noted that ko = o/ by Proposition
10.1.6.

By Proposition 10.2.4, we find 7 = /. By Proposition 10.2.6 7 is locally
convex. Because o'/ is the strongest locally convex topology coinciding
with o on all weakly compact sets, we conclude by Proposition 10.2.6 that
olf = o,

By Proposition 10.1.2 the space (Cy(X),3) is hypercomplete, and thus,
complete. It follows by 21.9.8 in Kéthe [1969] that o'/ = j°. O

Proof of Corollary 10.1.11. By Theorem 10.1.7 and 10.1.2, we obtain that
(Cy(Y), B) is an infra-Ptak space. By Lemma 10.1.8 (Cy,(X), 3) is transsep-
arable and by Lemma 10.1.9 M (X)) is weakly sequentially complete.

The result, thus, follows from Kalton’s closed graph theorem 10.1.4. O

Proof of Corollary 10.1.12. Let X,Y be separably metrizable spaces. Let 1" :
(Cp(X), 8) = (Cp(Y), B) be a bijective continuous linear map. We prove
that 71 : (Cy(Y), B) — (Cy(X), B) is continuous.

The graph of a continuous map is always closed. Therefore, the graph of
T~ is also closed. The result follows now from the closed graph theorem.

O]
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Proof of Corollary 10.1.13. Let X, Y be separably metrizable spaces. Let T" :
(Cp(X), B) = (Cu(Y), B) be a surjective continuous linear map. We prove
that 7' is open.

First, note that the quotient map 7 : (Cyp(X), 8) — (Cp(X)/ker T, Br) is
open, where (3 is the quotient topology obtained from 3, see 15.4.2 Kéthe
[1969]. The map T factors into T} o m, where T}; is a bijective continuous

linear map from (Cy(X)/ker T, ) to (Cp(Y), ).

We show that T’; is an open map. We can apply the inverse mapping theo-
rem to T} as (Cy(X)/ker T, Br) is a Ptak space by 34.3.2 in K6the [1979].
Additionally, it is transseparable as it is the uniformly continuous image
of a transseparable space. It follows that 7)-! is continuous and that T} is
open.

We find that the composition T' = T}; o 7 is open as it is the composition
of two open maps. O
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SUMMARY

This thesis is dedicated to the study of large deviations of trajectories of
Markov processes and functional analytic methods that facilitate the study
of the associated semigroups of a Markov process.

In the first chapters, we focus on large deviation principles for the tra-
jectories of averages of mean-field interacting Markov processes and ap-
plications thereof. In Chapter 3, we consider variants of Glauber dynam-
ics for the Curie-Weiss model. As an example, we consider n processes
(at(t),...,0™(t)) on {—1,1} that interact via their mean. Denote x,,(t) =
L5 <, 0" (t). If the mean z,,(0) satisfies the large deviation principle

P [*’Bn(O) ~ a] ~ e_nlﬂ(a)a

for some rate function I, then we prove under appropriate conditions that
the same holds for the whole trajectory of averages. In particular, we prove
that

P [{zn(t) }z0 ~ {7(t) bizo] & e ™0,

for v : [0,00) — [—1, 1]. I takes the form

Io(7(0)) + [~ L(v(s),4(s))ds  if v € AC,

o0 otherwise,

I(y) =

where £ : [-1,1] x R — [0,00] is some non-negative lower semi-
continuous function and AC is the space of absolutely continuous trajecto-
ries in [—1, 1].

We use this large deviation framework to in Chapter 4 to find a natural
Lyapunov function for the associated McKean-Vlasov dynamics and study
the exponential decay of this Lyapunov function.

In Chapter 5, we use the associated Hamilton equations to study the trajec-
tories that optimize

hfa) = inf, H(0) + [ £6(5)4(5)ds

y(t)=a
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which is of importance in the study of Gibbs-non-Gibbs transitions.

In Chapter 6, we prove the large deviation principle with a rate function in
Lagrangian form for the trajectories of the empirical distribution

1
~> dxi

i<n

of independent copies X', X2, ... of a Feller process X that takes its val-
ues in a locally compact metric space.

In Chapter 7, we consider a translation invariant Markov process o(t) on
{=1,1}%" that evolves by spin-flip dynamics. Set A,, = Z N [—n, n]?. In
this setting, we prove the large deviation principle for trajectories of the
empirical measure

1
m Z 59¢a(t)a

1€EAR

where 0; is the operation that shifts a configuration (6;1); = 1;+;. We do
not prove a Lagrangian representation for the rate function, but make a
conjecture on such a form.

In Chapter 8, we consider strongly continuous and locally equi-continuous
semigroups on a special class of locally convex spaces. We prove a Hille-
Yosida and Trotter-Kato approximation theorem. We show that this theory
can be applied to the strict topology on the space of bounded continuous
functions on a Polish space.

In Chapter 9, we show that the transition semigroup of a Markov process
on a Polish space that is the solution to a well-posed martingale process is
strongly continuous and locally equicontinuous for the strict topology on
the space of bounded and continuous functions.

Finally, we show in Chapter 10 that the strict topology on the space of
bounded and continuous functions on a separable metric space satisfies the
conclusion of the Banach-Dieudonné theorem. In particular, this implies
that the closed graph, open mapping and inverse mapping theorems hold
for maps between spaces of this kind.



SAMENVATTING (DUTCH SUMMARY)

Dit proefschrift bestudeert de grote afwijkingen van trajecten van
Markovprocessen en de functionaal analytische methoden die gebruikt
worden voor de studie van de semigroepen die corresponderen met een
Markovproces.

In de eerste hoofdstukken behandelen we de grote afwijkening van de tra-
jecten van gemiddeldes van ‘mean-field” interagerende Markov processen
en kijken naar de toepassingen van de resultaten. In hoofdstuk 3 bestud-
eren we varianten van Glauber dynamica voor het Curie-Weiss model. Als
voorbeeld bekijken we n processen (o'(t),...,0"(t)) op {—1,1} die in-
terageren via hun gemiddelde. We schrijven z,,(t) = 1 >, o%(t) voor
het gemiddelde van deze variabelen. Als het gemiddelde z,,(0) van de vari-
abelen op tijd 0 aan het grote afwijkingen principe voldoet, i.e.,

P [2,(0) ~ a] &~ e ™o(@),

voor een gegeven rate’ functie I, dan bewijzen we, onder geschikte voor-
waarden, dat ook het hele traject van de gemiddeldes aan het grote afwi-
jkingen principe voldoet. In het bijzonder bewijzen we dat

P [{zn(t) }z0 ~ {7(t) hizo] & e 0,

waar 7 : [0,00) — [—1, 1]. De rate functie / is van de vorm

Io((0)) + fy~ £(v(s),¥(s))ds  if v € AC,

o0 otherwise,

I(y) =

waar L : [—1,1] x R — [0, 00) een beneden half-continue functie is.

We gebruiken het grote afwijkingen principe in hoofdstuk 4 om een natu-
urlijke Lyapunov functie te vinden voor de geassocieerde McKean-Vlasov
dynamica. We geven condities waaronder deze Lyapunov functie exponen-
tieel snel afvalt onder deze dynamica.

In hoofdstuk 5 gebuiken we de Hamilton vergelijkingen om trajecten te
bestuderen die optimal zijn in de volgende variationele uitdrukking:

yeAC
y(t)=a

I(a) = inf Io(~(0)) + / L0v(s). 4(s))ds. *)
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Deze optimale trajecten zijn van belang in de studie van Gibbs-niet-Gibbs
overgangen in de zin dat ‘slechte’ configuraties a, i.e. essentié discontinu-
iteiten van de conditionele waarschijnlijkheden, overeenkomen met het
bestaan van meerdere optimale trajecten in (x).

In hoofdstuk 6 bewijzen we het grote afwijkingen principe met een rate-
functie in Lagrangiaanse vorm voor de trajecten van de empirische dis-
tributie

1
~> 0xi

i<n

van onafhankelijke kopieén X!, X2, ... van een Feller proces X dat zijn
waarden aanneemt in een locaal compacte metrische ruimte.

In hoofdstuk 7 bestuderen we een translatie invariant proces o(t) op
{-1, 1}Zd dat evolueert onder de invloed van spin-flip dynamica. We
definiéren A,, = Z¢ N [-n,n]% In deze context bewijzen we het grote
afwijkingen principe voor de trajecten van de emprische maat

1
A > So0(t)-

1€AR

Hier is 6; de operatie die een configuratie n € {—1, 1}Zd i plaatsen op-
schuift: (6;n); = 1;+;. We bewijzen geen Lagrangiaanse representatie van
de rate functie, maar formuleren een vermoeden over wat deze represenatie
zou moeten zijn.

In hoofdstuk 8 bestuderen we sterk continue en locaal equicontinue semi-
groepen op een speciale classe van locaal convexe ruimten. We bewijzen
in deze context een Hille-Yosida en Trotter-Katto approximatiestelling. We
laten zien dat deze theorie gebruikt kan worden voor de strikte topologie
op de ruimte van begrensde continue functies op een Poolse ruimte.

In hoofdstuk 9 laten we zien dat de semigroep van conditionele waarschi-
jnlijkheden van een Markovproces op een Poolse ruimte dat de oplossing
is van een martingaal probleem sterk continu en locaal equicontinu is op
de ruimte van continue begrensde functies.

Tot slot bewijzen we in hoofdstuk 10 dat de strikte topologie op de ruimte
van continue begrensde functies op een separabele metrische ruimte vol-
doet aan de conclusies van de Banach-Dieudonné stelling. Als gevolg
verkrijgen we dat de gesloten graaf, open afbeelding en inverse afbeeld-
ing stelling gelden voor lineare afbeeldingen tussen ruimtes van dit type.
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