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Abstract

Quintic Duffing oscillator is considered. Amplitude-phase relations are derived using averaging theo-
rem and perturbation methods. First The forced quintic system is studied. Stability regions are com-
pared to the general case with quintic-qubic non-linearity. Numerical results show that Perturbation
method and averaging are in agreement with each other for a range of frequency values. For first or-
der perturbation the Lindstedt-Poincaré technique is reduced to the multiple scales method. Only
when both linearities are taken into account, five solutions are present. Magnitudes of non-linearity
input plays a role in observing region of unstable solutions.
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1
Introduction

Non-linear dynamical systems are intensely studied to describe many physical phenomena. One of
these physical applications where non-linearity shows up are the nano-mechanical systems such as
Carbon nano tube (CNT) experiments. A carbon nano tube (CNT) is a stiff, bottom-up nano me-
chanical resonator with a large aspect ratio [1]. A quantum dot experiences a restoring force with
single non-linearity term known as the ’Duffing parameter’ [2] due to single-electron tunnelling. In
order to understand the physical behaviour of such systems, the Duffing equation must be studied
and the amplitude-phase relation (frequency response) must be obtained. For more details about dif-
ferent topics such as bifurcations, stable regions, numerical calculations and chaos of cubic Duffing
oscillator, the reader is advised to [3-6].

We start this thesis by reviewing the concept of linear equations and compare it to non-linear sys-
tems. Once a short review is given, the quintic Duffing equation with fifth power non-linearity is re-
viewed. First the unforced equation is investigated by defining the force and its potential. Once the
expression of the total energy is given, the Hamilton equations are formulated. Studying the poten-
tial curves shows that for some input parameters, unbounded solutions can occur. The concept local
stability is studied and stable regions are proved using Jacobi stability analyses for a given damping
magnitude. After a general investigation of the unforced system, we arrive at the core of this thesis.
The forced Duffing equation with fifth power non-linearity is studied. Several methods are used in
order to obtain the amplitude-phase relation at which useful conclusions can be drawn. the research
question is: how many solutions does a quintic non-linearity provide for a given frequency value? And
how do such solutions behave under varying input parameters.

The first method applied for the frequency response is the averaging theorem. This is done by us-
ing the Van der Pol transformation. To eliminate trigonometric secularities, The definition of averag-
ing applied. After the system is reduced to a simpler form, the transformation to polar coordinate is
made to finally obtain expressions for the amplitude and phase equation.

To compare the results obtained by averaging theorem, the Perturbation method is introduced. Per-
turbation methods are widely used in solving countless dynamical systems [7,8]. First the multiple
scales technique will be outlined and the introduced fast and low scales will be explained. an im-
proved version of the classical multiple scales method is the Lindstedt-Poincaré. Frequency response
is calculated by both techniques and is compared to the result obtained averaging. Before numeri-
cal calculation are presented, the general case of the cubic-quintic Duffing equation is investigated.
The Hamiltonian is formulated for the system containing both linearities and the frequency response
is calculated. At the end numerical calculations are presented for all cases and methods. The input
parameters are varied and useful conclusions about stability regions are made.

In the course of writing this these, I received frequent and close supervision from Prof. Ya. M. Blanter
and would like to thank him sincerely for guiding me through the process and giving comments on
my progress.
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2 1. Introduction

The numerical solutions and the corresponding graphs are obtained by the program Matlab 2018 c⃝.
The written text, formulas and figures in this paper are generated using the TEX engine typesetting
X ETEX.

K. Al-Zubi
Delft, March 2019



2
Theory

2.1. Linear and non-linear equations
The focus in this report will be on second order differential equations since the main function to solve
is the Duffing equation.

A second order differential equation has the following form:

𝑑ኼ𝑥
𝑑𝑡ኼ = 𝑓(𝑡, 𝑥,

𝑑𝑥
𝑑𝑡 ). (2.1)

Eq. (2.1) is said to be linear if it has the form

𝑓(𝑡, 𝑥, 𝑑𝑥𝑑𝑡 ) = 𝑔(𝑡) − 𝑝(𝑡)
𝑑𝑥
𝑑𝑡 − 𝑞(𝑡)𝑥, (2.2)

that is, if 𝑓 is linear in 𝑥 and ፝፱
፝፭ . A physical example of a linear differential equation is the Simple

harmonic oscillator. Such equations have analytical solutions which can be found by several common
ways.

Recall that a system of coupled linear equations has the form:

𝑥̇ = 𝐴𝑥 𝑥 ∈ ℝ፧ (2.3)

𝐴 is a 𝑛×𝑛 matrix with constant coefficients. The solution of such systems can be found by finding
the eigenvalues and the generalized eigenvectors.

A second order differential equation is in general non-linear. Linearity is property of which well-defined
solutions are known. For most non-linear equations no exact solution is known. It is the task to find
approximate methods to determine the solution.
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4 2. Theory

2.2. Duffing oscillator
The most simplified form of the Duffing’s equation is the following:

𝑥̈ + 𝛿𝑥̇ + 𝛽𝑥 + 𝛼𝑥ኽ = 𝛾cos𝜔𝑡. (2.4)

Eq. (2.4) is often used to describe driven and damped oscillators such as a beam moving under forced
vibrations. The Duffing’s equation does not guarantee a solution of the physical problem, it is rather
an approximate model.

The given numbers are the relevant parameters and each one has a physical meaning. 𝛿 controls the
amount of damping, 𝛽 measures the stiffness of the linear force, 𝛼 is the amount of non-linearity of
the restoring force (also known as the Duffing parameter), 𝛾 is the amplitude of the periodic driven
force and 𝜔 is the driven frequency.

The aim in this thesis is to solve the quintic Duffing equation. The term "quintic" stands for fifth
power 𝑥኿. There have been a lot of papers dealing with cubic non-linearity 𝑥ኽ, therefore the amplitude-
phase relation for this system are known already. Another reason is to check whether the outcomes of
such parameter are relevant for the results in the experimental model. At some point in the experi-
ment the Duffing parameter 𝑥ኽ vanishes as the gate voltage drops down. The voltage function does
explicitly depend on the the non-linear parameter and therefore it is affected by such drop. It is now
the task to see whether changing the non-linear parameter would give a total different outcome.

The quintic Duffing equation has the following form:

𝑥̈ + 𝛿𝑥̇ + 𝛽𝑥 + 𝛼𝑥኿ = 𝛾cos𝜔𝑡 (2.5)

Before Eq. (2.5) is investigated, the case where 𝛼 and 𝛽 are real numbers is studied.



3
The unforced system

In the case where damping and external force are absent (𝛿 = 𝛾 = 0) the system is reduced to:

𝑥̈ + 𝛽𝑥 + 𝛼𝑥኿ = 0. (3.1)

Eq. (3.1) represents an equation of motion. Since the dimensions are expressed in length-units ,𝛼
should have units [∼ ኻ

፦Ꮆ ] to compensate for the 𝑥኿ term.

The force as a function of displacement from equilibrium is

𝐹(𝑥) = −𝛽𝑥 − 𝛼𝑥኿. (3.2)

The parameter 𝑥 is considered to be a one dimensional model for simplicity. One can think of the
problem being three-dimensional and replace 𝑥 by the vector r = (x,y, z) and there will be no ma-
jor differences. Note that if the Duffing parameter would vanish, the force will become linear and the
system is reduced to a simple harmonic motion.

It is known from classical mechanics that the force is defined as the gradient of the potential energy

𝐹(r) = −∇𝑉(r) (3.3)

and from Eq. (3.2) Follows that the potential energy is given by the following expression:

𝑉(𝑥) = 𝛽
2𝑥

ኼ + 𝛼6𝑥
ዀ (3.4)

Rewriting Eq. (3.1) in terms of generalised coordinates to form the Hamiltonian

𝑢̇ = 𝑣 = 𝜕𝐻
𝜕𝑣 (3.5)

𝑣̇ = − 𝛽𝑢 − 𝛼𝑢኿ = −𝜕𝐻𝜕𝑢 (3.6)

Eq. (3.5) and Eq. (3.6) are known as the Hamilton’s equations, where

𝐻 = 1
2𝑣

ኼ + 𝛽2𝑢
ኼ + 𝛼6𝑢

ዀ. (3.7)

Note that (𝐻 = 𝑇 + 𝑉 = Energy) and since it does not depend explicitly on time the energy is a
conserved quantity.

For a better understanding of the physical quantities, the potential function and the associated force
are analysed. For different values of 𝛼 and 𝛽, several plots are shown in figure 1.
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6 3. The unforced system

Figure 3.1: Potential and force of the undamped system for different values of ᎎ and ᎏ

In the first case 𝛼, 𝛽 = 0 we can see the potential function is similar to that of the harmonic oscilla-
tor, except that for large values of 𝑥 the 𝑥ዀ term will dominate. For the second case we expect same
behaviour as when 𝛼 = 0, 𝛽 < 0 which does not seem interesting. The cases (c) and (d) are more
interesting, we see two additional points when 𝐹 = 0 which are different from when 𝑥 = 0. Again,
for large values of 𝑥 the potential will be dominated by the 𝑥ዀ term. The situation sketched in (c)
shows that the system is bounded while in (d) it is unbounded as solutions will diverge into ±∞. In
the next section stability will be studied in more depth.

3.1. Local stability
If a small amount of damping is present, the Hamiltonian equations becomes:

𝑢̇ = 𝑣 (3.8)

𝑣̇ = + 𝛽𝑢 − 𝛼𝑢኿ − 𝛿𝑣 𝛼, 𝛽, 𝛿 > 0 (3.9)

The considered case is (𝛼 = 1, 𝛽 = −1), for which the sign of 𝛽 became positive in Eq. (3.9). For
this two-dimensional system the equilibria must satisfy 𝑢̇ = 𝑣̇ = 0. A little calculations shows that
there are three equilibria points, one at the origin (𝑢, 𝑣) = (0, 0) and two other points at (𝑢, 𝑣) =
(±(ᎏᎎ )

Ꮃ
Ꮆ , 0). For a system with coupled differential equations one can find the critical points by find-

ing the eigenvalues. The Jacobian matrix is defined as follows

[
Ꭷ፮̇
Ꭷ፮

Ꭷ፮̇
Ꭷ፯Ꭷ፯̇

Ꭷ፮
Ꭷ፯̇
Ꭷ፯
] (3.10)

[ 0 1
−𝛽 −𝛿] (0, 0) [ 0 1

−4𝛽 −𝛿] (±Ꮆ√𝛽
𝛼 , 0).



3.1. Local stability 7

The first case at the origin, the eigenvalue equation reads:

𝜆ኼ + 𝛿𝜆 − 𝛽 = 0 (3.11)

The eigenvalue can be solved by the method of ’completing the square’ and its value is:

𝜆 = −𝛿2 ±
√𝛿ኼ + 4𝛽

2 (3.12)

When there is no damping 𝜆 is simply ±√𝛽. Two real eigenvalues with different signs, which indi-
cates that (0,0) is a saddle point. This is an additional case when 𝛿 ≠ 0. It is easy to see that √𝛿ኼ + 4𝛽 >
𝛿 which means a saddle. The second eigenvalue equation reads

𝜆ኼ + 𝛿𝜆 + 4𝛽 = 0, (3.13)

for the eigenvalues, the expression

𝜆 = −𝛿2 ±
√𝛿ኼ − 16𝛽

2 (3.14)

𝜆 is now ±2√−𝛽 when 𝛿 = 0. The nature of the critical points is a centre point since the two values
are imaginary with zero real part. If friction is present, either two real negative eigenvalues or two
imaginary with negative real part are obtained, which in both cases is asymptotically stable. Thus,
for all eigenvalues it is proven that the system (𝛼 = 1, 𝛽 < 0) is stable.





4
The forced system

There are several ways one can use to determine the frequency response of a time dependent forced
system. The technique that will be used in this thesis is called Averaging.

4.1. Averaging method
Averaging is a technique of replacing a vector field by its average to obtain periodic solutions. Given
a function 𝑓(𝑡), one can find its average using the following definition

⟨𝑓⟩ = 1
𝑇 ∫

ፓ

ኺ
𝑓(𝑡)d𝑡 (4.1)

in our case averaging is useful and reduces the number of calculation steps. By averaging over a pe-
riod of ኼ᎝Ꭶ the system becomes time-invariant and is easier to work with compared to the original sys-
tem.

It is sometimes useful to do transformations in order to simplify problem. Van der Pol transformation
is used to transform from one basis to another. One can think of The Duffing equation being spanned
by the basis(vectors) 𝑥 and 𝑥̇. This idea will be more intuitive if we plot the velocity as a function of
displacement.

Figure 4.1: Van der Pol transformation in a 2-D plane[2].

Fig. 4.1 shows the 𝑢 axis being rotated clockwise with angle frequency 𝜔 to obtain new basis vectors.
The new basis vectors (𝑢, 𝑣) can be written in terms of (𝑥, 𝑥̇) and vice versa (inverse transformation).

9



10 4. The forced system

From a geometrical point of view, it should be trivial to write down both components of (𝑢, 𝑣) just by
looking at Fig. 4.1. An alternative way is to use Rotational matrix.

Rx = u = [ cos𝜔𝑡 − sin𝜔𝑡
− sin𝜔𝑡 − cos𝜔𝑡] [

𝑥
𝑥̇] = [

𝑢
𝑣] (4.2)

To calculate the inverse transformation one should find the inverse matrix Rዅኻ. Note that the matrix
R itself is orthogonal i.e. spanned by orthonormal basis vectors. From matrix Algebra we know that
for an orthogonal matrix the inverse is equal to its hermitian transpose Rዅኻ = Rጷ.

Rጷu = x = [ cos𝜔𝑡 − sin𝜔𝑡
− sin𝜔𝑡 − cos𝜔𝑡] [

𝑢
𝑣] = [

𝑥
𝑥̇] (4.3)

The four equations become:

𝑢 = (𝑥) cos𝜔𝑡 − ( 𝑥̇𝜔) sin𝜔𝑡 (4.4)

𝑣 = −(𝑥) sin𝜔𝑡 − ( 𝑥̇𝜔) cos𝜔𝑡 (4.5)

𝑥 = (𝑢) cos𝜔𝑡 − (𝑣) sin𝜔𝑡 (4.6)
𝑥̇
𝜔 = −(𝑢) sin𝜔𝑡 − (𝑣) cos𝜔𝑡 (4.7)

Eq. (4.4) and Eq. (4.5) are spanned by the basis vectors 𝑥, ፱̇Ꭶ . Once expressions for 𝑥, ፱̇Ꭶ are calcu-
lated using Eq. (4.6) and Eq. (4.7), the acceleration 𝑥̈ can be evaluated:

𝑥̇ = (𝑢̇) cos𝜔𝑡 − (𝑢)𝜔𝑠𝑖𝑛𝜔𝑡−(𝑣̇) sin𝜔𝑡 − (𝑣)𝜔 cos𝜔 = 𝜔( − (𝑢) sin𝜔𝑡 − (𝑣) cos𝜔𝑡)
𝑥̇ = −(𝑢)𝜔sin𝜔𝑡 − (𝑣)𝜔cos𝜔𝑡 (4.8)

𝑥̈ = −(𝑢̇)𝜔 sin𝜔𝑡 − (𝑢)𝜔ኼ cos𝜔𝑡 − (𝑣̇)𝜔 cos𝜔𝑡 + (𝑣)𝜔ኼ sin𝜔𝑡 (4.9)

Note that 𝑥,𝑥̇ and 𝑥̈ are now written as a linear combination of (𝑢, 𝑣). The aim is to find a final ex-
pression with only these parameters. Filling Eq. (4.8) and Eq. (4.9) in Eq. (2.5) results in:

−(𝑢̇)𝜔 sin𝜔𝑡−(𝑢)𝜔ኼ cos𝜔𝑡 − (𝑣̇)𝜔 cos𝜔𝑡 + (𝑣)𝜔ኼ sin𝜔𝑡
+ 𝛿(−(𝑢)𝜔sin𝜔𝑡 − (𝑣)𝜔cos𝜔𝑡)
+ 𝛽((𝑢) cos𝜔𝑡 − (𝑣) sin𝜔𝑡)
+ 𝛼((𝑢 cos𝜔𝑡)኿ − 5(𝑢 cos𝜔𝑡)ኾ(𝑣 sin𝜔𝑡) + 10(𝑢 cos𝜔𝑡)ኽ(𝑣 sin𝜔𝑡)ኼ

− 10(𝑢 cos𝜔𝑡)ኼ(𝑣 sin𝜔𝑡)ኽ + 5(𝑢 cos𝜔𝑡)(𝑣 sin𝜔𝑡)ኾ − (𝑣 sin𝜔𝑡)኿) − 𝛾 cos𝜔𝑡 = 0
(4.10)

At the current stage Eq. (4.10) seems to be too complicated to rewrite in other form due to multi-
plication of higher order trigonometric functions. In order to reduce Eq. (4.10) to simpler expression
without loosing any necessary information, averaging will be applied. This is done in two steps. First
Eq. (4.10) is multiplied with sin𝜔𝑡:

𝑢̇𝜔sinኼ𝜔𝑡 = sin𝜔𝑡{ − (𝑣̇)𝜔 cos𝜔𝑡 − (𝑢)𝜔ኼ cos𝜔𝑡 + (𝑣)𝜔ኼ sin𝜔𝑡
+ 𝛿(−(𝑢)𝜔sin𝜔𝑡 − (𝑣)𝜔cos𝜔𝑡) + 𝛽((𝑢) cos𝜔𝑡 − (𝑣) sin𝜔𝑡)
+ 𝛼((𝑢 cos𝜔𝑡)኿ − 5(𝑢 cos𝜔𝑡)ኾ(𝑣 sin𝜔𝑡) + 10(𝑢 cos𝜔𝑡)ኽ(𝑣 sin𝜔𝑡)ኼ

− 10(𝑢 cos𝜔𝑡)ኼ(𝑣 sin𝜔𝑡)ኽ + 5(𝑢 cos𝜔𝑡)(𝑣 sin𝜔𝑡)ኾ − (𝑣 sin𝜔𝑡)኿) − 𝛾 cos𝜔𝑡}
(4.11)



4.1. Averaging method 11

The second step is to multiply Eq. (4.10) with cos𝜔𝑡:

𝑢̇𝜔cosኼ𝜔𝑡 = cos𝜔𝑡{ − (𝑣̇)𝜔 cos𝜔𝑡 − (𝑢)𝜔ኼ cos𝜔𝑡 + (𝑣)𝜔ኼ sin𝜔𝑡
+ 𝛿(−(𝑢)𝜔sin𝜔𝑡 − (𝑣)𝜔cos𝜔𝑡) + 𝛽((𝑢) cos𝜔𝑡 − (𝑣) sin𝜔𝑡)
+ 𝛼((𝑢 cos𝜔𝑡)኿ − 5(𝑢 cos𝜔𝑡)ኾ(𝑣 sin𝜔𝑡) + 10(𝑢 cos𝜔𝑡)ኽ(𝑣 sin𝜔𝑡)ኼ

− 10(𝑢 cos𝜔𝑡)ኼ(𝑣 sin𝜔𝑡)ኽ + 5(𝑢 cos𝜔𝑡)(𝑣 sin𝜔𝑡)ኾ − (𝑣 sin𝜔𝑡)኿) − 𝛾 cos𝜔𝑡}.
(4.12)

Now the definition(Eq. (4.1)) of averaging can be applied to Eq. (4.11) and Eq. (4.12).

⟨sinኼ𝜔𝑡⟩ = 1
𝑇 ∫

ፓ

ኺ
sinኼ𝜔𝑡d𝑡 = 1

𝑇 ∫
ፓ

ኺ

1
2dt−

1
𝑇 ∫

ፓ

ኺ

cos 2𝜔𝑡
2 dt. (4.13)

Using integration by substitution, the outcome ⟨sinኼ𝜔𝑡⟩ = ኻ
ኼ is found. For the other terms the same

integral method is used and the outcomes are the following expressions:

⟨sinኼ𝜔𝑡⟩ = ⟨cosኼ𝜔𝑡⟩ = 1
2 (4.14)

⟨sin𝜔𝑡 cos𝜔𝑡⟩ = ⟨sin𝜔𝑡 cos኿𝜔𝑡⟩ = ⟨sinኽ𝜔𝑡 cosኽ𝜔𝑡⟩ = ⟨sin኿𝜔𝑡 cos𝜔𝑡⟩ = 0 (4.15)

⟨cosኾ𝜔𝑡 sinኼ𝜔𝑡⟩ = ⟨sinኾ cosኼ𝜔𝑡⟩ = 1
16 (4.16)

⟨sinዀ𝜔𝑡⟩ = ⟨cosዀ𝜔𝑡⟩ = 5
16 (4.17)

The system is now reduced to the following expressions:

𝑢̇𝜔 =𝑣𝜔ኼ − 𝛿(𝑢)𝜔 − 𝛽𝑣 − 5𝛼8 (𝑢
ኼ + 𝑣ኼ)ኼ𝑣 (4.18)

𝑣̇𝜔 = − 𝑢𝜔ኼ − 𝛿(𝑣)𝜔 + 𝛽𝑢 + 5𝛼8 (𝑢
ኼ + 𝑣ኼ)ኼ𝑢 − 𝛾. (4.19)

The next task is to plot the amplitude-phase diagram. We introduce the polar coordinates:

𝑢(𝑡) = 𝑟(𝑡) cos𝜙(𝑡) 𝑣(𝑡) = 𝑟(𝑡) sin𝜙(𝑡). (4.20)

To rewrite the solutions in terms of polar coordinates 𝑟 = √𝑢ኼ + 𝑣ኼ and 𝜙 = arctan( ፯፮), differentia-
tion with respect to 𝑡 is applied using the chain rule:

𝑟̇ =1𝑟 [𝑢𝑢̇ + 𝑣𝑣̇] (4.21)

𝜙̇ = 1
1 + ፯Ꮄ

፮Ꮄ
( − 𝑣𝑢̇𝑢ኼ +

𝑣̇
𝑣 ). (4.22)

Evaluating Eq. (4.21) and Eq. (4.22)

𝑟̇ =1𝑟 [ − 𝛿𝜔𝑢
ኼ + Ω𝑣𝑢 − 5𝛼8 (𝑢

ኼ + 𝑣ኼ)ኼ𝑣𝑢 − Ω𝑢𝑣 − 𝛿𝜔𝑣ኼ − 5𝛼8 (𝑢
ኼ + 𝑣ኼ)ኼ𝑣𝑢 − 𝛿𝑣] (4.23)

𝜙̇ = 1
𝜔𝑟ኼ [ − Ω𝑢

ኼ − 𝛿𝜔𝑣𝑢 + 5𝛼8 (𝑢
ኼ + 𝑣ኼ)𝑢ኼ − 𝛿𝑢 − Ω𝑣ኼ + 𝛿𝜔𝑣𝑢 + 5𝛼8 (𝑢

ኼ + 𝑣ኼ)𝑣ኼ] (4.24)

gives the amplitude-phase relation:

𝑟̇ =−1𝜔 (𝛿𝜔𝑟 + 𝛾 sin𝜙) (4.25)

𝜙̇ = 1𝜔( − Ω +
5𝛼
8 𝑟

ኾ − 𝛾 cos𝜙𝑟 ) (4.26)
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where Ω = 𝜔ኼ − 𝛽.

Recall that 𝑥(𝑡) = 𝑟(𝑡) cos(𝜔𝑡 + 𝜙), this means that the solutions 𝑟(𝑡) and 𝜙(𝑡) are respectively the
amplitude and phase of the real solution. Both 𝑟(𝑡), 𝜙(𝑡) are time depended, which implies that small
changes will occur over time to both quantities. For steady-state solution, time derivatives will set
equal to zero (𝑟̇(𝑡) = 𝜙̇(𝑡) = 0). An easy trick to combine Eq. (4.25) and Eq. (4.26) is to use the
Pythagorean identity cosኼ 𝜙 + sinኼ 𝜙 = 1. This results in the following expression:

− 𝛾ኼ + 25𝛼
ኼ

64 (𝑟ኼ)኿ + 54𝛼𝛽(𝑟
ኼ)ኽ − 54𝛼𝜔

ኼ(𝑟ኼ)ኽ + (𝜔ኾ − 2𝜔ኼ𝛽 + 𝛽ኼ + 𝛿ኼ𝜔ኼ)(𝑟ኼ) = 0 (4.27)

Eq. (4.27) can be rearranged as

(𝑟ኼ)𝜔ኾ + (𝛿ኼ − 54𝛼(𝑟
ኼ)ኼ − 2𝛽)(𝑟ኼ)𝜔ኼ + [ − 𝛾ኼ + 25𝛼

ኼ

64 (𝑟ኼ)኿ + 54𝛼𝛽(𝑟
ኼ)ኽ + 𝛽ኼ𝑟ኼ] = 0 (4.28)

Note that Eq. (4.28) is a polynomial of fourth power:

𝐴𝜔ኾ + 𝐵𝜔ኼ + 𝐶 = 0 (4.29)

where

𝐴 =𝑟ኼ (4.30)

𝐵 =(𝛿ኼ − 54𝛼(𝑟
ኼ)ኼ − 2𝛽)(𝑟ኼ) (4.31)

𝐶 = − 𝛾ኼ + 25𝛼
ኼ

64 (𝑟ኼ)኿ + 54𝛼𝛽(𝑟
ኼ)ኽ + 𝛽ኼ𝑟ኼ. (4.32)

𝜔 values can be solved by completing the square, and we 4 solutions are expected:

𝜔ኼ = −𝐵 ± √𝐵ኼ − 4𝐴𝐶
2𝐴 (4.33)

alternatively as

𝜔 = ±√−𝐵 ± √𝐵
ኼ − 4𝐴𝐶

2𝐴 (4.34)

Eq. (4.28) will guarantee 4 solutions as expected. These solutions yield real values provided

𝐵ኼ − 4𝐴𝐶 ⩾ 0 (4.35)

and also

− 𝐵 ± √𝐵ኼ − 4𝐴𝐶 ⩾ 0 (4.36)

Since an expression for the frequency is obtained, it is now possible to present an amplitude-phase
diagram to analyse the region of stability and jump-ups phenomena.
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4.2. Perturbation Theorem
Perturbation methods proved to be useful in finding approximate analytical solutions for many phys-
ical applications. The general idea of such method is to write a solution which is expanded in power
series. By doing so, problems which are impossible to solve analytically become solvable. In the case
of the duffing non-linearity, this method works well and guarantees acceptable solutions compared to
the numerical solutions. the final solution has the following form:

𝑋 = 𝑋ኺ + 𝜖𝑋ኻ + 𝜖ኼ𝑋ኼ + ... =
ጼ

∑
፧዆ኺ

𝜖፧𝑋፧ (4.37)

where 𝑋ኺ is the leading term and is often an exact solution of another simpler system. For example,
a solution of the simple harmonic motion (as we’ll see), which is the simplest case when 𝛼 = 0. The
𝑋ኻ, 𝑋ኼ, .. are higher order terms and describe the deviation in the solution. 𝜖 is the perturbation pa-
rameter and has a value between 0 and 1.

There are many perturbation methods one can think of when dealing with non-linear dynamics. How-
ever, in this research only two techniques will be studied. The classical multiple scales method, the
starting point of this topic. The amplitude-phase relations for the quintic Duffing oscillator will be
calculated. The same will be done using the Lindstedt-Poincaré method and both results will be com-
pared. Both methods are used for the forced system and are based on eliminating secularities which
will become more clear.

4.2.1. Multiple scales
Consider the follwing Duffing equation with first order perturbation correction:

𝑥̈ + 𝑥 + 𝜖𝛿𝑥̇ + 𝜖𝛼𝑥኿ = 𝜖𝑓 cosΩ𝑡 (4.38)

where 𝑓 is the external applied force and 𝜖 is the small perturbation parameter. For the angular fre-
quency the notation Ω is used instead of 𝜔. Eq. (4.38) is known as "first order perturbation" equa-
tion. The nth perturbation correction stands for the power of 𝜖.

We start the multiple scale analysis by introducing the slow and the fast scales:

𝑇ኺ = 𝑡, 𝑇ኻ = 𝜖𝑡 (4.39)

where 𝑇ኺ, 𝑇ኻ are the slow and fast scales respectively. By introducing such transformation, we switch
from the time independence parameter 𝑡 to a new independent parameters 𝑇ኺ, 𝑇ኻ. Since the displace-
ment depends implicitly on time, {𝑥̇, 𝑥̈} should be recalculated using the chain rule. Calculating the
time derivatives with respect to these variables using the chain rule:

d
d𝑡 = 𝐷ኺ + 𝜖𝐷ኻ + ... (4.40)

dኼ

d𝑡ኼ = 𝐷
ኼ
ኺ + 2𝜖𝐷ኺ𝐷ኻ + ... (4.41)

where 𝐷፣፧ = Ꭷᑛ

Ꭷፓᑛᑟ
. Once the transformation is performed, the approximate solution

𝑥 = 𝑥ኺ(𝑇ኺ, 𝑇ኻ) + 𝜖𝑥ኻ(𝑇ኺ, 𝑇ኻ) + ... (4.42)

is inserted in Eq. (4.38). Equal powers of 𝜖 are collected and 𝜖 is chosen to be 1:

𝑂(𝜖ኺ) ∶ 𝐷ኼኺ𝑥ኺ + 𝑥ኺ = 0 (4.43)

𝑂(𝜖ኻ) ∶ 𝐷ኼኺ𝑥ኻ + 𝑥ኻ = −2𝐷ኺ𝐷ኻ𝑥ኺ − 𝛿𝐷ኺ𝑥ኺ − 𝛼𝑥ኺ኿ + 𝑓 cosΩ𝑇ኺ (4.44)
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From Eq. (4.43) we find the unperturbed solution:

𝑥ኺ = 𝐴𝑒።ፓᎲ + 𝑐.𝑐 = 𝑎 cos(𝑇ኺ + 𝜆) (4.45)

where ’c.c’ stands for the complex conjugate (𝐴∗𝑒ዅ።ፓᎲ). 𝐴 is the complex amplitude:

𝐴 = 𝑎
2𝑒

።᎘ . (4.46)

Note that the first(unperturbed) solution is the exact solution for the harmonic oscillator. The non-
linearity in the second solution will cause the amplitude and phase 𝑎(𝑡), 𝜆(𝑡) to change slowly over
time. The unperturbed solution is inserted in the right-hand side of Eq. (4.44). For primary reso-
nances we assume

Ω = 1 + 𝜖𝜎 (4.47)

and eliminating secular terms yield

− 2𝑖𝐷ኻ𝐴 − 𝑖𝛿𝐴 − 𝛼10𝐴ኽ𝐴∗ኼ +
𝑓
2𝑒

።᎟ፓᎳ = 0 (4.48)

Secular terms are the terms which causes unphysical behaviour of the system. Such behaviour could
be diverging and leads to unbounded growth in amplitude. By looking at Eq. (4.48), the complex
conjugates parts are eliminated as well as the additional parts of 𝑥኿ኺ .

Evaluating the complex amplitude:

− 2𝑖𝐷ኻ[
𝑎
2𝑒

።(᎟ፓᎳዅ᎐)] − 𝑖𝛿 𝑎2𝑒
።᎘ − 𝛼1032𝑎

኿𝑒።᎘ + 𝑓2𝑒
።᎘ዄ።᎐ = 0 (4.49)

where the phase is defined to be

𝛾 = 𝜎𝑇ኻ − 𝜆 (4.50)

note that 𝜆 = 𝜆(𝑡), the differentiation operator 𝐷ኻ acts on the exponential which results in the follow-
ing expression:

(𝜎 − 𝛾̇)𝑎 − 𝑖𝑎̇ − 𝑖𝛿 𝑎2 − 𝛼
10
32𝑎

኿ + 𝑓2 cos 𝛾 + 𝑖
𝑓
2 sin 𝛾 = 0 (4.51)

seperation of the real and imaginary part gives the amplitude-phase relation:

𝑎̇ = − 𝛿𝑎2 +
𝑓
2 sin 𝛾 (4.52)

𝛾̇ =𝜎 − 𝛼1032𝑎
ኾ + 𝑓

2𝑎 cos 𝛾 (4.53)

The amplitude-phase relation obtained by the multiple scales method is similar to the one obtained
by the averaging theorem except for the multiplication factor ኻ

ኼ . This additional factor is due to the
choice of the unperturbed solution. Instead of evaluating the real solution, the complex amplitude is
used 𝐴 = ፚ

ኼ𝑒
።᎘. As a result the amplitude will become ፚ

ኼ instead of 𝑎, resulting in the ኻ
ኼ difference

factor.

4.2.2. Lindstedt-Poincaré
When the classical multiple scales analysis fails to produce valid physical solutions, several techniques
can be used in order to avoid secularities (especially for strongly non-linear systems). One of the
techniques that combines the multiple scale method and the Lindstedt-Poincaré techniques and will
be outlined in the section. While the multiple scales method succeeded in producing amplitude-phase
relation in the previous section, the Lindstedt-Poincaré method will be used to compare both meth-
ods and outcomes.
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The main future of the Lindstedt-Poincaré method is to apply the time transformation

𝜏 = 𝜔𝑡 (4.54)

and expanding the frequency in 𝜖
𝜔ኼ = 1 + 𝜖𝜔ኻ. (4.55)

The leading frequency 𝜔ኺ is chosen to be one. The displacement 𝑥 will depend on 𝜏 and the transfor-
mation

𝜕𝑥
𝜕𝑡 =

𝜕𝑥
𝜕𝜏
𝜕𝜏
𝜕𝑡 , (4.56)

which will result in the following expressions:

𝑥̇(𝑡) ⟶ 𝜔𝑥̇(𝜏) (4.57)
𝑥̈(𝑡) ⟶ 𝜔ኼ𝑥̈(𝜏) (4.58)

The Duffing equation becomes

𝜔ኼ𝑥̈ + 𝑥 + 𝜔𝜖𝛿𝑥̇ + 𝜖𝛼𝑥኿ = 𝜖𝑓 cos Ω𝜔𝑇ኺ, (4.59)

where the slow and fast time scales are used

𝑇ኺ = 𝜏, 𝑇ኻ = 𝜖𝜏. (4.60)

The derivatives with respect to the new parameters are calculated

d
d𝑡 = 𝐷ኺ + 𝜖𝐷ኻ + ... (4.61)

dኼ

d𝑡ኼ = 𝐷
ኼ
ኺ + 2𝜖𝐷ኺ𝐷ኻ + ... (4.62)

and the approximate solution
𝑥 = 𝑥ኺ(𝑇ኺ, 𝑇ኻ) + 𝜖𝑥ኻ(𝑇ኺ, 𝑇ኻ) + ... (4.63)

are inserted in Eq. (4.59).

𝜔ኼ(𝐷ኼኺ + 2𝜖𝐷ኺ𝐷ኻ)[𝑥ኺ + 𝜖𝑥ኻ]+(𝜔ኼ − 𝜖𝜔ኻ)[𝑥ኺ + 𝜖𝑥ኻ] + 𝜖𝛿(𝐷ኺ + 𝜖𝐷ኻ)𝜔[𝑥ኺ + 𝜖𝑥ኻ]

+ 𝜖𝛼[𝑥ኺ + 𝜖𝑥ኻ] = 𝜖𝑓 cos
Ω
𝜔𝑇ኺ (4.64)

Collecting equal powers of 𝜖 gives the following expressions:

𝑂(𝜖ኺ) ∶ 𝜔ኼ𝐷ኼኺ𝑥ኺ + 𝜔ኼ𝑥ኺ = 0 (4.65)

𝑂(𝜖ኻ) ∶ 𝜔ኼ𝐷ኼኺ𝑥ኻ + 𝜔ኼ𝑥ኻ = −2𝜔ኼ𝐷ኺ𝐷ኻ𝑥ኺ + 𝜔ኻ𝑥ኺ − 𝛿𝜔𝐷ኺ𝑥ኺ − 𝛼𝑥ኺ኿ + 𝑓 cos
Ω
𝜔𝑇ኺ (4.66)

Again, 𝜖 is chosen to be one since the expressions are obtained. The unperturbed equation (Eq. (4.65))
is a simple harmonic model which has the solution

𝑥ኺ = 𝐴𝑒።ፓᎲ + 𝑐.𝑐 = 𝑎 cos(𝑇ኺ + 𝜆) (4.67)

𝐴 = 𝑎
2𝑒

።᎘ (4.68)

𝐴 is the complex amplitude. Filling the unperturbed solution in the right hand side Eq. (4.66) and
eliminating secularities yield

− 2𝑖𝜔ኼ𝐷ኻ𝐴 + 𝜔ኻ𝐴 − 𝑖𝜔𝛿𝐴 − 𝛼10𝐴ኽ𝐴∗ኼ +
𝑓
2𝑒

።᎟ፓᎳ = 0. (4.69)
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By investigating Eq. (4.69), it is clear that 𝜔ኻ is a complexed valued parameter. This leads to un-
physical behaviour and therefore the term 𝜔ኻ𝐴 should be eliminated as well. The next step is to eval-
uate the derivative operator 𝐷ኻ𝐴 and assuming

𝛾 = 𝜎𝑇ኻ − 𝜆, (4.70)

Eq. (4.69) becomes:

− 2𝑖𝜔ኼ𝐷ኻ[
𝑎
2𝑒

።(᎟ፓᎳዅ᎐)] − 𝑖𝛿𝜔𝑎2𝑒
።᎘ − 𝛼1032𝑎

኿𝑒።᎘ + 𝑓2𝑒
።᎘ዄ።᎐ = 0. (4.71)

The phase 𝛾 = 𝛾(𝑡) depends implicitly on the parameter 𝑇ኻ. After multiplying all terms, this results
in

(𝜎 − 𝛾̇)𝜔ኼ𝑎 − 𝑖𝜔ኼ𝑎̇ − 𝑖𝛿𝜔𝑎2 − 𝛼
10
32𝑎

኿ + 𝑓2 cos 𝛾 + 𝑖
𝑓
2 sin 𝛾 = 0. (4.72)

At the final stage, separation of real and imaginary parts will give the the amplitude-phase relation.
The following equations are obtained for both the amplitude 𝑎 and the phase 𝛾.

𝑎̇ = − 𝛿 𝑎2𝜔 +
𝑓
2𝜔ኼ sin 𝛾 (4.73)

𝛾̇ =𝜎 − 𝛼1032
𝑎ኾ
𝜔ኼ +

𝑓
2𝑎𝜔ኼ cos 𝛾 (4.74)

It turns out the value of |𝜔| = 1 according to Eq. (4.55)
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4.3. Comparison with cubic-quintic Duffing oscillator
Up to now, only the quintic (fifth power 𝛼) non-linearity is studied. By considering such case, We
assumed the cubic non-linearity (say 𝜓) is chosen to be zero. The one dimensional potential function
of a quantum dot experiencing a duffing non-linear force is a Taylor expansion of the following form:

𝑉(𝑥) = 1
2𝛽𝑥

ኼ + 14𝜓𝑥
ኾ + 16𝛼𝑥

ዀ + ... (4.75)

The aim in this section to take the potential function till the fifth power of non-linearity without ne-
glecting any other terms. The outcomes will be compared to the special case (𝜓 = 0) and conclusions
can be made on such assumption.

The duffing equation becomes:

𝑥̈ + 𝛿𝑥̇ + 𝛽𝑥 + 𝜓𝑥ኽ + 𝛼𝑥኿ = 𝛾cos𝜔𝑡 (4.76)

The Averaging method is used and the Van der Pol transformation are applied again for the change
of basis. The solving steps are therefore the same except for the additional 𝜓 term.

After applying averaging to eliminate big angles we get the following expressions spanned by the ba-
sis vectors (𝑢, 𝑣):

𝑢̇𝜔 =𝑣𝜔ኼ − 𝛿𝑢𝜔 − 𝛽𝑣 − 34𝜓(𝑢
ኼ + 𝑣ኼ)𝑣 − 5𝛼8 (𝑢

ኼ + 𝑣ኼ)ኼ𝑣 (4.77)

𝑣̇𝜔 = − 𝑢𝜔ኼ − 𝛿𝑣𝜔 + 𝛽𝑢 + 34𝜓(𝑢
ኼ + 𝑣ኼ)𝑢 + 5𝛼8 (𝑢

ኼ + 𝑣ኼ)ኼ𝑢 − 𝛾 (4.78)

rewriting the solution in polar coordinates (𝑟, 𝜙) yield:

𝑟̇ =−1𝜔 (𝛿𝜔𝑟 + 𝛾 sin𝜙) (4.79)

𝜙̇ = 1𝜔( − Ω +
3
4𝜓𝑟

ኼ + 5𝛼8 𝑟
ኾ − 𝛾 cos𝜙𝑟 ) (4.80)

for steady state solutions (𝑟̇, 𝜙̇ = (0, 0)) we obtain a polynomial expression of the form:

𝐴𝜔ኾ + 𝐵𝜔ኼ + 𝐶 (4.81)

The exact values of the coefficients are:

𝐴 =𝑟ኼ (4.82)

𝐵 =𝛿ኼ𝑟ኼ − 32𝜓𝑟
ኾ 5
4𝛼(𝑟

ዀ) − 2𝛽𝑟ኼ (4.83)

𝐶 = − 𝛾ኼ + 25𝛼
ኼ

64 𝑟ኻኺ + 54𝛼𝛽𝑟
ዀ + 𝛽ኼ𝑟ኼ + (34𝜓)

ኼ𝑟ዀ + 𝛼𝜓1516𝑟
ዂ + 𝛽𝜓32𝑟

ኾ (4.84)

Note that when 𝜓 = 0 we obtain the result for the quintic oscillator we derived earlier using the aver-
age method.
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Results and discussion

In the previous sections the expressions are derived using both averaging and perturbation method.
To gain an understanding of these expressions, numerical simulations must be performed in order
to analyse the behaviour of the dynamical system and to compare the results with the literature re-
search.

First, The amplitude-phase relation of the quintic Duffing oscillator will be plotted for several param-
eter inputs. Since 𝜔 is a polynomial of fourth power, we would expect four solutions. This is indeed
the case and can be seen form the plots.

Figure 5.1: Amplitude-phase relation, values of ᎎ ዆ ኺ,Ꭵ ዆ ኺ, ᎏ ዆ ኻ, ᎑ ዆ ኺ.ኺኻ,᎐ ዆ ኺ.ኺኻ.

Fig. 5.1 shows four solutions, each one corresponds to a line. It appears that the third and fourth so-
lution is a mirroring of the first and second one relative to the 𝑟 axis. This behaviour turns to be the
case in all plots. The focus will mainly be on 𝜔ኻ and 𝜔ኼ, therefore the other two solutions can be ne-
glected.

𝜔 = √−𝐵 ± √𝐵
ኼ − 4𝐴𝐶

2𝐴 ⩾ 0. (5.1)

This reduces Fig. 5.1 to the following plot:
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Figure 5.2: Amplitude-phase relation, only positive values of Ꭶ are shown.

In Fig. 5.2, the forced linear system is represented. The lorentzian line shape is obtained as expected.
Since non-linearity is absent, there is no distortion in the shape of the lorentzian. Output frequencies
are normalized to the resonance frequency 𝜔ኺ = √𝛽, and when 𝜔 = 𝜔ኺ the amplitude grows rapidly
and results in Resonance which is a clear observation in many systems.

Before the fifth power parameter 𝛼 is analysed, The third power (𝜓 ≠ 0, 𝛼 = 0) will be reviewed in
order to make some conclusions of the shape of the graph and to compare it to the literature. The
following figure represents the amplitude-phase relation of the cubic Duffing oscillator:

Figure 5.3: Hardening cubic Duffing oscillator. Figure 5.4: Softening cubic Duffing oscillator.

Fig. 5.3 and Fig. 5.4 represent a cubic non-linearity for respectively a hardening and softening oscil-
lator. The first remark is the distortion of the lorentzian shape due to non-linearity. Such distortion
leads to unstable solutions for different values of 𝜔. Since the non-linearity is of third power, three 𝑟
values are expected for a certain 𝜔 in some region. This can be seen by the vertical line test, which
shows 3 solutions for certain frequency value. Two solutions are stable and the third on is unstable
(saddle) for frequency region greater than 1. For both hardening and softening cases, the lorentzian
shape becomes more distorted when increasing the magnitude of 𝜓.

Moving to the case of quintic non-linearity (𝛼 ≠ 0,𝜓 = 0), one would expect a region for which five
solutions are present. The following figure shows several plots for fixed non-linearity magnitude and
increasing damping coefficient:
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Figure 5.5: Hardening quintic Duffing oscillator, vaying
damping coefficient.

Figure 5.6: Softening quintic Duffing oscillator, vaying
damping coefficient.

Both hardening and softening plots represents unexpected behaviour. Instead of five solutions, only
three are present for certain frequency region(s). In both Fig. 5.5 and Fig. 5.6, The inner graph rep-
resents the smallest damping coefficient 𝛿 = 0.01 and the outer graph represents the biggest damping
magnitude 𝛿 = 0.05. When analysing different damping values, it can be seen from the graph that for
greater damping, less unstable solutions are present. Increasing the value of 𝛼 will lead to the same
effect as when 𝜓 is increased. The lorentzian will become more distorted in general.

Figure 5.7: Fifth power (green),Third power (blue).

Comparing the quintic (green graph) to the cubic (blue graph) oscillator in Fig. 5.7, one can see big-
ger region of unstable solutions in the case of fifth non-linearity. This is the case for frequency values
approx. 1.03 ≤ 𝜔 ≤ 1.08.

Further investigation in Fig. 5.8 shows that decreasing the natural frequency 𝛽 causes more unstable
region in the output values. This is calculated by fixing the non-linearity parameter and varying the
input frequency.
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Figure 5.8: The blue line (ᎏ ዆ ኺ.ኻ) shows less unstable solutions compared to the red one (ᎏ ዆ ኻ).

In the previous cases the external force is kept constant. A small change of input force requires a big
amount of non-linearity change for compensation. In general the Damping coefficient seems to play
the most important role for increasing stability in the system.

Before the general case (𝛼, 𝛽 ≠ 0)is investigated, a comparison between the average and the perturba-
tion method will be presented. Form the calculations it was clear that both methods are in agreement
with each other. The next step of verification is by comparing their numeral outcomes. This is repre-
sented in Fig. 5.9:

Figure 5.9: Method comparison: Averaging (blue) and perturbation (green).

The two graphs are nearly identical for frequencies in the neighbourhood of 𝜔ኺ. For larger frequencies
(hardening system 𝛼 > 0), the graph obtained from averaging has larger amplitude values. For the
softening system, The results will be the same except that for smaller frequencies, larger amplitude
values are expected for the averaging graph.

At last, The quintic-cubic Duffing oscillator will be investigated. The four following cases are studied:

1. 𝛼, 𝜓 > 0

2. 𝛼, 𝜓 < 0

3. 𝛼 > 0,𝜓 < 0

4. 𝛼 < 0,𝜓 > 0
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When both non-linearities are positive case 1, the system is said to be purely hardening. To have a
better understanding consider the following figure:

Figure 5.10: Hardening system, ᎎ,Ꭵ ጻ ኺ. Figure 5.11: Softening system, ᎎ,Ꭵ ጺ ኺ.

The first two cases do not seem to provide additional useful information, since Fig. 5.10 and Fig. 5.11
behave the same way as the previous cases.

For case 3, 𝛼 is chosen to be +10 and 𝜓 = −3. The reason for different magnitudes choice will be-
come clear later. The following graph represents case 3:

Figure 5.12: Quintic-cubic Duffing oscillator, ᎎ ዆ ዄኻኺ,Ꭵ ዆ ዅኽ.

Fig. 5.12 shows remarkable behaviour. For frequencies in the neighbourhood of the natural frequency,
five solutions are present (three stable and two unstable). The system starts to behave as a softening
oscillator due to cubic non-linearity and for large 𝜔 values, the quintic non-linearity takes over and
the system becomes a hardening oscillator.

Case 4 is expected to start as a hardening system and ends as a softening one for small frequency val-
ues. Fig.15 shows the behaviour of such oscillator:
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Figure 5.13: Quintic-cubic Duffing oscillator, ᎎ ዆ ዅኻኺ,Ꭵ ዆ ዄኽ.

In general, Case 3 and 4 are always obtained except for |𝛼| ≫ |𝜓| or vice versa. However, in case 3
When (|𝜓| > |𝛼|), the softening behaviour of the system will be present for more frequency values
in the neighbourhood of the natural frequency. This happens also for case 4, where the opposite be-
haviour occurs. This behaviour is illustrated in Fig. 5.14:

Figure 5.14: 1. ᎎ ዆ ዄኻኺ,Ꭵ ዆ ዅኽ (blue) 2. ᎎ ዆ ዄኻኺ,Ꭵ ዆ ዅ኿ (red).

The additional input parameters such as damping and external force will have the same effect on the
general case (𝛼, 𝜓 > 0). Unstable solutions are always present so long non-linearity is unequal to zero.
Since all cases are presented and behaviour is discussed, conclusions can be drawn.
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Conclusion

To conclude, frequency response relation for the general case obtained by averaging is in agreement
with the literature. If the quintic non-linearity is to vanish, the system is reduced to the simplified
Duffing model with only cubic non-linearity. In the case of quintic non-linearity, the amplitude-phase
relation fails to produce five solutions for certain frequency values.

While both cases produce unstable solution, the region of unstabilty is greater for the quintic non-
linearity. This is shown by plotting both models while keeping the additional parameters such as
damping, external force fixed. Increasing damping results in less unstable solutions while increasing
the natural frequency of the system results in a bigger region of unstable solutions. Another con-
sequence of varying the natural frequency input parameter is the distortion of the lorentzian shape
line. Non-linearity is responsible for distortion the lorentzian shape. Varying input parameters by an
absence of non-linearity will always result in symmetric lorentzian curve around the resonance fre-
quency.

Perturbation methods succeeded in producing an amplitude-phase relation similar to the one ob-
tained by averaging. Comparing both method with the numerical calculations show high level of agree-
ment. For large frequency values, the curve obtained by perturbation have smaller amplitude values.
The stronger the non-linearity, the greater difference in amplitude values can be expected in the per-
turbation curve.

For first order perturbation, The Lindsedt-Poincaré technique is reduced to the classical multiple
scales method. The reason for this is due to the single non-linear parameter in the Duffing equation.
For two non-linear parameters, one expects a non zero first order frequency value, which will results
in different outcomes for both methods. Eliminating secularities is done for both unbounded terms
which will result in unphysical behaviour and for imaginary parts.

In order to observe five solutions for fifth power non-linearity, both non-linearities must be present.
Numerical calculations show that in addition to the sign of the duffing parameters, the magnitude
plays a role in maintaining a region of unstable solutions. For both positve or negative valued cubic-
quintic non-linearities, purely hardening and softening systems are observed. When the signs are op-
posite, the range in magnitude difference results in partially hardening/softening behaviour. In such
case, five (of which two unstable) solutions can be observed. If there is big difference in magnitude
values between both non-linearities, the system is reduced to either a purely hardening or softening
system which results in only three (of which one unstable) solutions. At this final stage, an answer is
given to the research question which is addressed at the beginning of this thesis.
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