Applying Core-Guided Techniques to
Constraint Programming

Cesar van der Poel






Applying Core-Guided Techniques to
Constraint Programming

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

Cesar van der Poel
born in Heemskerk, the Netherlands

] (©)
TUDelft S

Department of Software Technology Supported by the NWO/OCW,
Faculty EEMCS, Delft University of Technology as part of the Quantum Software
Delft, the Netherlands Consortium programme
www.ewi.tudelft.nl (project number 024.003.037 / 3368)


www.ewi.tudelft.nl

©2025 Cesar van der Poel. All rights reserved.



Applying Core-Guided Techniques to
Constraint Programming

Author: Cesar van der Poel
Student id: 4964780
Email: C.B.vanderPoel-1@student.tudelft.nl

Abstract

Core-guided search has been prevalent in the field of Maximum Satisfiability
(MaxSAT), largely due to the application of additional techniques that improve per-
formance. With core-guided search being recently applied to Constraint Programming
(CP), the question emerges whether such additional techniques can be applied to CP
as well. In this thesis, four such features are implemented: weight-aware core extrac-
tion (WCE), which extracts multiple disjoint cores, reducing core size and overhead
to improve efficiency; stratification, which extracts high-weighing cores first, allow-
ing it to give better estimates and often to require fewer cores to be found; hardening,
which prunes suboptimal parts of the search space, guiding search closer to the opti-
mal solution; and partitioning, which divides the terms in the objective function into
disjoint, strongly intra-related groups, thereby causing smaller cores to be found ef-
ficiently. With the exception of hardening - which is used in conjunction with either
WCE or stratification - these are individually combined with the four approaches used
to apply core-guided search to CP. This evaluation results in an in-depth analysis on
which features combine well with which approaches, and why, as well as the individual
strengths of the approaches and features.

We observed that the variable-based approach generally perform better than the
slice-based approach, with coefficient elimination increasing this difference. Hardened
WCE has the largest positive effect, especially in the slice-based approach; it causes
speedups in all four base approaches, resulting in an overall performance increase in
three of those. The variable-based coefficient eliminating variant without additional
features was able to solve the most instances; all additional features decreased perfor-
mance. The current implementation of partitioning was able to improve on some key
metrics, but decreased overall performance in all four cases.

Other important conclusions are that no solver strictly outperformed any other,
advocating that different solvers are best suited for different problems. Secondly, the
order of assumptions has been proven to cause significant changes in the performance
of solvers. Finally, we concluded that considering relaxations generally helps prove
unsatisfiability.
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Chapter 1

Introduction

Constraint Programming, or CP, is a valuable approach in computer science. It can be used
to efficiently solve a wide range of problems, many of which are hard to solve using other
methods - such as scheduling problems [20] [25]]. The wide range of (global) constraints and
available solvers are prime examples of reasons why this field is so versatile and impactful.

The solvers used for CP generally perform either of two approaches; local search [22] or
linear search [23]]. In the related field of MaxSAT, a different technique exists, called Core-
Guided Search. It has for years proven to be effective and efficient [[17] [24] [30]; solvers ap-
plying this technique are competitive and often outperforming linear or local search solvers
in competitions, such as the MaxSAT Evaluation [34]]. Recent research [18]] has shown that
core-guided search can also be applied to CP, with promising results.

Many competitive core-guided MaxSAT solvers make use of several additional func-
tionalities to improve their efficiency. The solver used in [18] uses four such features in
CP, of which only one is extensively evaluated. As such, it is unclear what effect the other
features have on the performance of the solver. Additionally, much more features exist
in MaxSAT, some of which may be valuable in CP as well; more research is needed to
determine which ones can improve the performance of core-guided CP solvers.

In this thesis, we examine four techniques used in recent core-guided MaxSAT solvers;
three of these have already been implemented in the solver from [18]. These features are
implemented in a core-guided CP solver, and are individually evaluated on a large set of
problems. This allows us to investigate the effect of these features, and to determine to what
extent they are valuable additions to the core-guided CP paradigm. The main contributions
compared to [18] are an individual evaluation for each of the features, and an increase in
the number of instances used in the evaluation; as well as the implementation of a fourth
feature: partitioning, based on [31]].

This thesis is structured as follows. In several base techniques are discussed;
an understanding of these techniques is required to better understand the information and
ideas provided in this thesis. An in-depth description of the features implemented during
this thesis is given by After this, the approaches used to evaluate these features
and the experimental setup are described in|chapter 4] The results of this evaluation, as well
as the conclusions drawn from them, are described in and briefly summarised in

Finally, future research directions are laid out in[chapter 7]

1






Chapter 2

Preliminaries

To provide a basic understanding of the original techniques, as well as the field they are
applied them to, this section describes the most important concepts used in this thesis.

SAT and MaxSAT are described in[section 2.1} a rudimentary knowledge of these topics
is required to understand the most important notions of core-guided search. Additionally,
this knowledge is important in grasping the concepts of additional features discussed in
Core-guided search is the root of the research performed here, as well as con-
straint programming. As such, it is important that these concepts are properly understood;
they are extensively explained in [section 2.2|and [section 2.3| respectively. After this, Lazy
Clause Generation (LCG) is covered in as this technique helps explain some of
the topics covered later. Finally, the application of core-guided search to CP as it has been
done previously is addressed in This provides the cornerstones of the research
performed in this thesis, and therefore is vital to cover thoroughly.

2.1 SAT and (Partial) MaxSAT

We define a boolean variable x; as a variable that can take on values O and 1. A literal / ; is
either a boolean variable xi, or its negated counterpart —xy; — is the boolean not operator,
inverting the assignment. These literals /; are combined into clauses ¢; =} VI, V...V,

where V is the boolean or operator. A clause may also be given as a set ¢; = {I, 1}, ..., 1! }.
These clauses ¢; are in turn combined into a formula S = ¢{ Acy A ... Ac,y, Where A is the
boolean and operator; this formula may again be given as a set S = {cy, ¢z, ..., ¢,y }. Formally,
this results in the following identity:

s=Na=NA{Vi
cieS cieS I;EC,'
We define set Vars(S) as the set of all boolean variables x; that are used in S, or formally:
Vars(S) ={xx | Jc; €S : xx € ¢; V—xy € ¢}

3



2. PRELIMINARIES

Consider a mapping V : Vars(S) — {0, 1}, which we refer to as an assignment. Based on
such a mapping, we can derive a value for each literal l; and in turn for each clause c; and
formula S. We extend the definition of this mapping to include these derived values:

V(—x) =V ()

= Avie)= A [ Vv

ci€eS cieS li-EC[

Finally, we define V to be the set of all possible assignments V.
The Boolean Satisfiability problem, abbreviated SAT, is the problem of determining
whether there exists an assignment V, such that it satisfies a given propositional formula S:

Wev:vEs) =1

As a simple example, consider the XOR problem. The XOR problem has two variables and
requires exactly one of these to be true. This formula could be expressed as follows:

Vars(S) = {x1,x2}

S= {{X],Xz} , {—\xl,—\)cz}} = (X] \/XZ) A (—OC] V —OCQ)

There are 4 possible assignments V; € V.

Vi= {(xlao)a (x2a0)}; Vo= {(xl’o)’ ()Q, 1)}; V3= {(xlv 1)7 (x%o)}; Va= {(xla 1)a ()Cz, 1)}

Vi(S) = (0VO)A(=0V—-0) =0A(1V1)=0A1=0
Va(S) = (0OVI)A(=0V-1)=TA(1VO)=1A1=1
Vs(S) = (1VO)A(=1V=0)=1AOV])=1A1=1
Va(S) = (1VI)A(=1V=1)=1A(0V0) =1A0=0

Since V; and V3 result in satisfaction, S is satisfiable. These satisfying assignments are often
called solutions. Most implementations proof whether such a solution V exists by finding
one, which can subsequently be returned as output. If multiple solutions exist, different
solvers may return different ones, based on their inner workings.

Partial MaxSAT, often referred to as MaXSATE] [29], is a generalisation of SAT. Rather
than a single set of clauses S, this variation makes use of two sets of clauses: the hard clauses
Cy, corresponding to S; and soft clauses Cs, which define an objective (or cost) function.
Without loss of generality, we assume all clauses ¢; € Cs to be unit clauses, i.e. consisting
of a single literal. We also assume C; and Cj, to be disjoint, i.e. C; N Cy = 0. In most cases,
the objective function is defined as a weighted sum of the satisfied (or, depending on the
problem, violated) clauses, where each soft clause ¢; € C; corresponds to a weight w;. The
goal of MaxSAT is to find an optimal solution, i.e. an assignment which has the highest (or

"MaxSAT originally refers to the problem where all clauses are “soft” [21]]. However, the literature gener-
ally uses this term to refer to Partial MaxSAT, as is done in this thesis.
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2.1. SAT and (Partial) MaxSAT

lowest) objective value, among all assignments that fully satisfy the hard clauses Cy. In this
thesis, we consider problems which minimise the total weight of violated clauses.

Consider a MaxSAT problem {Cj,,Cy, W}, where W is the set of weights w; associated
with clauses ¢; € Cs, and the set of possible assignments V. Formally, the goal of MaxSAT
is to find assignment V,,; € V, such that the total weight of violated clauses c; € C is
minimised, while all hard clauses C;, are satisfied:

Vopr = argminq Y wiV(=¢;) s.1.V(Cp) = 1
veV cieCS

For convenience, assignments are henceforth given as a set of variables X. Given such
a set X, the mapping of variables is the following:

1 x
Vi = {O xZ;(

2.1.1 Incremental SAT solving [36]

When provided with a set of multiple, similar SAT problem instances which need to be
solved iteratively, it is generally beneficial to reuse some of the search steps and calculations
done by the solver in a previous iteration. This idea was first introduced in SATIRE [36]].
Though originally created for solving several distinct yet similar problems, the practice of
reusing learned clauses and the search tree has also proven beneficial in MaxSAT. Many
solvers use (parts of) this approach.

2.1.2 Assumption interface [14]

A technique often used in incremental SAT solving, as well as core-guided search, is the
Assumption interface. Through assumptions, the values of certain variables are assigned
at the start of the search procesﬂ thus limiting the search space of the solver. This can
be used to enable or disable certain clauses at will: by modifying c; to ¢; V r;, assumptions
on r; determine whether the clauses is enabled. Alternatively, assumptions may be used
to find mutually exclusive assignments: if a problem is unsatisfiable under a given set of
assumptions, these assumptions may conflict with one another. Such conflicting subsets are
referred to as cores, and are vital in core-guided search, as described in the next section.

A set of assumptions is equivalent to a partial assignment. Since this may contain unas-
signed variables, the aforementioned set notation used for full assignments is not sufficient.
As such, the previously defined notation is extended to include negated variables where
needed - indicating that the variable is assigned 0. Given a partial assignment X, this results
in the following mapping:

1 xeX
V(x)=4¢0 xeX

unassigned otherwise

2A minor note for assumptions in CP is that they assign variables through boolean literals, which are
discussed later. Such assumptions can, and often do, take on the form (x < n), rather than (x = n).



2. PRELIMINARIES

2.2 Core-Guided Search [17]

Core-Guided Search is an approach originally developed for solving MaxSAT problems. It
is based largely on the notion of a Minimum Unsatisfiable Subset, or MUS [26[]. Given a
set of clauses C, a MUS Cyys C C is an unsatisfiable set of clauses, such that Cyys\{c;} is
satisfiable for any ¢; € Cyys. Given a MaxSAT problem {C,,C;}, there may exist MUSes
Cyus C Cp UCs; since Cy, needs to be satisfied in all solutions, we generally concern our-
selves with K = Cyys N Cs. Such a x is called a core.

A solver applying core-guided search makes use of assumptions enforcing that the ob-
jective value obj = [}, its lower bound. These assumptions initially correspond to C, being
fully satisfied. If the problem has no solution under these assumptions, the solver extracts a
(small) core «; as mentioned before, ¥ contains the soft clauses of a MUS, meaning kU Cj,
is unsatisfiable. This core k of conflicting soft clauses can be formally defined as follows:

K C Cys.t. fV Ve € (C,UK) : V() =1

Or, equivalently:
KCCss.t.VV 3c € (CoUK) : V(c)=0 2.1

By its definition, we can see that kU Cj, contains a MUS. As the assumptions in K are
necessary conditions for obj = I,y ;, this core also serves as a proof that obj > I,y ;.

After a core has been found, core-guided search reformulates the problem. This results
in an updated lower bound, and a correspondingly updated set of assumptions. The exact
reformulation approach depends on the used solver, but as an example, the approach from
[[177]] is described. This approach uses relaxation variables, in combination with hard cardi-
nality constraints of which the bounds do not change. Note that other solvers might have
soft cardinality constraints [30]], or not use cardinality constraints at all [5]; for the sake of
this example and the corresponding explanation, these cases are not considered.

Given a core K, each (soft) clause ¢; € k is replaced by ¢} <> ¢; Ur;, where r; is a newly
created relaxation variable; after all n = |x| clauses have been replaced, and as such n relax-
ation variables have been created, a cardinality constraint is added to the problem to enforce
that (at most) one of these variables can be assigned 1: r; 4+, 4 ... +r, < 1. This allows
the solver to assign a single V(r;) = 1, in turn allowing V(¢;) = 0 s.t. ¢; € x. Intuitively,
this changes the problem from Cj, Uk to C, Uk\{¢;}; when combining this information with
the definition of a MUS and we see that this new problem is satisfiable if
corresponds to at most one MUS.

Found cores may be non-minimal, i.e. contain several elements that are not present in
the MUS corresponding to the core. Some algorithms have specific approaches to handle
these, and even cores corresponding to multiple MUSes, as discussed in [26] and [3]] re-
spectively. However, such a specific approach is not required to ensure that such cores are
handled correctly. For example, consider a non-minimal core corresponding to two disjoint
MUSes k¥ = KII\/IUS U K%lU g sk Klll/lU sN KIZVIUS = 0; after reformulation, the solver can assign
V(r;) = 1 only once due to the cardinality constraint, thereby causing Vj #i : V(r;) =0.
Without loss of generality, we assume c; € K}VIUS, resulting in Vc; € Klzl/[US : V(cj) =0. This
means the assumptions causing KJZWU ¢ are effectively unchanged, which eventually results in
another core being found, containing these assumptions.

6



2.2. Core-Guided Search [[17]

As an example, consider a minimisation problem, with associated objective function:

§={C, G} = {{(=a),(=b),(=e)}, {(aVbVe)}}

obj= Y 1xV(=c;)=V(a)+V(b)+V(c)
¢i€Cy

The initial assumptions are {—a, —b, =c}. Due to the hard clause, a core containing all three
assumptions is found: x = {(—a), (=b),(—c)}. The problem is modified by adding CNF
encodings of {(d' <> (maVr,)), (b < (=bVrp)),(c" <> (mcVre)),(ra+rp+r. < 1)} to
Cy, and replacing the set of soft clauses by C, = {(d’),(d'),(c")}. After this, the solver is
run again with new assumptions {(a'), ('), (c’)}, which allow three solutions to be found:
X1 ={(a),(ra) }; X2 = {(D),(rp) }; X3 = {(c), (rc)}. These are all optimal, with obj = 1.

Note that using a larger bound for the cardinality constraint can cause non-optimal so-
lutions to be found before optimal ones, as is obvious when modifying the example: if
rq+rp+r. <2 isused instead, several non-optimal solutions are found alongside the opti-
mal ones, such as X{ = {(a), (b), (ra), (1)}

As previously mentioned, MaxSAT instances may have weights w; € W associated with
the soft clauses. These weights may be very diverse, meaning that the elements of core K
may have different weights associated with them as well. Let us define the set of weights
associated with elements from the core, W* = {w; € W|c; € x}, for convenience. In cases

where W* contains several unique values, the smallest weight wy,;, = mian’ is selected,
w'ew

after which all weights w; € W¥ are lowered by this value [[1]]. As a result, soft clauses c¢;

with associated weight w; = w,,;,, have no weight left, while those with higher weights still

have a residual, non-zero weight. The relaxation and substitution of soft clauses is mostly

done as in unweighted MaxSAT, but the soft clauses with residual weight are kept in their

original form as well. Consider the weighted version of our earlier example:

S= {Wachch} = {{3,4,5},{(—\61), (—b), (_'C)}U{(a\/bvc)}}
obj=3V(a)+4V(b)+5V(c)

After core x = {(—a),(—b),(—c)} is found, the assumptions (—b),(—c) remain; the soft
clauses and associated weights are now C; = {(d'), (b'), (), (=b),(—c)},W ={3,3,3,1,2}.
Note that keeping the assumptions with residual weight active prevents the solver from
finding suboptimal solutions X, = {(b), (rp) }; X3 = {(c¢), (r.)}; these solutions have obj = 4
and obj = 5 respectively. The optimal solution is X; = {(a), (r,)} with obj = 3, which is
not prevented under the current assumptions.

Conceptually, core-guided search quite intuitively reaches the optimal solution to a
MaxSAT problem instance. It assumes an ideal situation and adjusts these assumptions
once proven wrong, by a core. These adjustments are as small as possible, while still being
effective. The first solution found is clearly optimal, as all assignments with lower cost have
been proven unsatisfiable by said cores.

Several core-guided algorithms have been developed, including OLL [30] and PM1
[17]. Their general workings are largely similar, though their details are often unique. To
provide a more concrete example of such an algorithm, the pseudocode for the unweighted

7



2. PRELIMINARIES

RC2 algorithm - one of the variations of the OLL algorithm - is denoted in
This prevalent core-guided algorithm is described in [24]]. It works as follows:

1. Initialize the cost to 0 and the set of cardinality constraints to the empty set.
2. Check satisfiability of Cp, U C;, resulting in either solution V' or core K.

 If V was found, report optimality with the current cost and said assignment. The
infeasibility of solutions with lower costs has been proven by producing corre-
sponding cores, meaning that the current solution has the lowest cost among all
solutions.

* If an empty core Kk = @ was found, C; contains a MUS. Report unsatisfiability.

* If a non-empty core k¥ was found, continue to the next step.
3. Increase the cost by 1; K is proof that the current lower bound in infeasible.

4. Initialize a set of new relaxation variables as the empty set; this will be used to create
the new cardinality constraint.

5. Consider all elements of Kk one by one.

* If this is a cardinality constraint, add (a variable corresponding to) its negation to
the set of new relaxation variables. After this, increase the bound of the original
cardinality constraint by 1.

¢ Otherwise, add a (new) relaxation variable to this clause. Convert the clause
into a hard clause, and add the relaxation variable to the set of new relaxation
variables.

6. Create a cardinality constraint which enforces that only a single element of the set of
new relaxation variables can be set to 1. Add this new constraint to the soft clauses
and to the set of cardinality constraints. The new constraint consists of relaxation
variables, which directly correspond to the relaxation of a soft clause, and negated
cardinality constraints, which are true if and only if the previous bounds are violated
- corresponding to a single additional relaxation for that cardinality constraint. Both
options correspond to the increase of 1 to the cost.

7. Repeat from step 2.

2.3 Constraint Programming

A Constraint Satisfaction Problem, or CSP, consists of a set of variables X with corre-
sponding domains D, and a set of constraints C [[16]. In this thesis, we assume all do-
mains D(x;) s.t. x; € X to be continuous integer ranges, i.e. D(x;) = [lj,u;] C Z where
I <n<u; < ne€ D(x) st ncZ. Note that this means that |D(x;)| = u; —; + 1. The
constraints C; € C define relations over (subsets of) X. This relation may be either satisfied



2.3. Constraint Programming

Algorithm 1 The RC2 Algorithm, adapted from [24]

Require: A MaxSAT Formula S = {Cy,C;}

1: cards 0 {Set of cardinality constraints}
2: obj <+ 0
3: while True do
4:  (isSat,x,V) + Solve(Cy,Cy) {Retrieve core k C C; or assignment V' }
5. ifisSat then
6: return (obj,V) {Return first satisfying assignment}
7. elseif x = 0 then
8 return (oo, null) {Report unsatisfiability }
9: else
10: obj < obj+1 {Conflicting soft clauses were found; resolve this}
11: newRelax < 0
12: for ¢; € xdo
13: if ¢; € cards then
14: newRelax <— newRelax\U{—c;}
15: Cs + Cs \ {ci} {Remove old clause}
16: cards < cards \ {c;}
17: rhs(c;) < rhs(c;) +1 {Increase right hand side}
18: Cs + CyU{ci} {Insert adapted clause}
19: cards <+ cardsU{c;}
20: else
21: Cs < Cs \ {ci}
22: ¢ c;U{ri} {Add (unique) relaxation literal }
23: Cp+— CpUc; {Make relaxed clause hard}
24: newRelax < newRelax\U{r;}
25: end if
26: nc < encode ( Yy n< 1) {New cardinality constraint}
ri€newRelax
27: Cs < C;U{nc}
28: cards < cardsU {nc}
29: end for
30:  endif

31: end while




2. PRELIMINARIES

or violated, depending on the values taken on by the variables x; € X. Such constraints C;
can take on many forms, most commonly linear inequalities and global constraints [33]].
Global constraints are one of the distinguishing features of CSPs and are used to model and
propagate complex relations efficiently.

The goal of a CSP is to find a mapping V : X — Z, which satisfies all constraints and
domain memberships. Formally, V is subject to the following conditions: [16]

Vx; € X : V(x,-) € @(x,')

VYC; € C - C,'(X|@,V) =1

For convenience, we define V as the set of all assignments satisfying the first condition.

A CSP might be extended into a Constraint Optimisation Problem (COP) by supplying
a function f : V — Z, which defines the cost of assignment. The goal of a COP is to
find the optimal assignment V,,,, = argmin{f(V) st. VG eC : G(X|D,)V)= 1}. In this

vev
thesis, we assume f to be a weighted sum of (a subset of) the variables - this is the case for

most COPs in practiceﬂ Without loss of generality, we additionally assume the COP to be
a minimisation problem, as has implicitly been done in the definition above.

Constraint Programming (CP) is a paradigm used to solve CSPs and COPs. It models
constraints C; € C through corresponding propagators p;. Propagators remove values which,
given the current domains D and a partial assignment V), are known to violate C;:

D = pi(@‘vpartial)
Vx; € X @ D'(x;) C D(x;)
Vv € (@(xj) \ @/(xj)) 2 Gi(X|D, Voarsiat U{vj}) = 0

In other words, given D and V,41jq, the values removed by a propagator cannot be part of
a solution to the CSP or COP.
As an example, consider the following inequality, partial assignment and domains:

C = (x1 +2xp +3x3 < 10)

Vparlial = {(XZ = 2)}
Q)(xl) = [0’ 10]7 @()C3) = [174]

The propagator corresponding to C; enforces D' (x3) = [1,2] and 2'(x;) = [0, 3], since as-
signing x3 > 3 violates C; for any valid value of x|, and x > 4 does so for both remaining
values of x3. These changed domains may trigger new propagators, associated with other
constraints, to update D as well. A solver keeps track of which propagators have been trig-
gered using a queue, adding newly triggered propagators to the back. This allows the solver
to process the propagators in the order they are triggered.

3When this is not the case, we can define f(V) = 1%V (0bj), where obj is a variable that corresponds to
the original non-linear cost.

10



2.3. Constraint Programming

During the solving process, a situation may occur in which no propagator can change
the domains based on the current information. This phenomenon is called a fixpoint. When
this occurs, the solver selects a variable and divides its domain into disjoint parts, creating
separate branches. In doing so, the solver also divides the search space, considering its
disjoint parts in the individual branches. By selecting such a part, the solver enforces the
constraints defining it, which possibly results in several new propagations. We refer to this
procedure of division and selection as a decision.

By repeating the process of propagations and decisions, the solver will eventually reach
either a solution - where all constraints are satisfied and all variables are assigned - or a
conflict - where a propagations result in a variable having an empty domain, or (equiva-
lently) in a constraint being violated. A solution may either be returned to the end user, or
used to guide the remainder of the search process. A conflict on the other hand, proves that
the current branch contains no solutions, in response to which the solver moves on to the
next branch. Such a conflict may also be used for learning, which prevents the solver from
making similar mistakes later in the search process.

As an example, consider a problem with C; = (x; +x; < 10) and C; = (x; —x3 > 5),
alongside several other constraints. For the sake of the example, we assume propagations
based on x; to be non-trivial. At the first fixpoint, the solver limits x; > 3, resulting in x; <7.
At the next fixpoint, the solver limits x3 > 3, resulting in x; > 8. These two conditions on
the domain of x; together allow no valid assignments. The explanation of this conflict can
be expressed in the following ways:

(x2 > 3)A(x3 >3) — false

(r>3)— (x3<2)

This conflict proves the current branch has no solutions, and as such the solver continues to
the next branch, which sets x3 < 2 due to the conﬂicﬂ

Even though global constraints can be decomposed into simpler constraints, their prop-
agators are often more powerful than those of their decompositions combined. Take for ex-
ample the constraint alldifferent(xy,...,x,); this constraint can naively be decomposed
into %(n — 1) constraints of the form x; # x; s.t. 1 <i < j <n. With n =3 and domains
x1 €{1,2}; x2 € {1,2}; x3 € {1,2,3}, the naive decomposition cannot infer additional in-
formation; however, the propagator of the alldifferent constraint can infer x3 = 3, using the
techniques described in [35]. The ability to create such additional inferences is the reason
global constraints are a powerful and versatile tool in CP.

Note that a SAT instance can be mapped to a CSP. Given a SAT formula S, we substitute
all —x; by 1 — x¢, and use the following definitions:

X =Vars(S)

Vx; € X @ D(x;) =[0,1]

4Note that this is no longer a decision; the conflict has taught the solver to infer it from the previous
decision. As such, if a conflict is found in this branch, the previous decision (x > 3) is reverted.
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C=XYlI>1|ceS

l; €ci

The result is a valid CSP. A MaxSAT instance can similarly be mapped to a COP.

2.4 Lazy Clause Generation [15]

Lazy clause generation, often abbreviated LCG, is an approach that combines the reason-
ing possible in CP with the learning capabilities of SAT. In order to properly describe its
functions, it is first vital to understand how CP problems can be expressed in SAT. An inte-
ger variable x can be expressed using a set of boolean variables (x < i) for integers i in its
domain. This approach also requires a set of consistency constraints (x <i—1) — (x <i).
In some formulations, variables (x = i) and constraints (x =1i) <> (x < i) A—(x <i—1) are
also included. These representations are essential when learning new clauses.

During the search process, the CP solver updates domains based on inference. These
updates are additionally encoded into clauses using the encoding above, and the resulting
clauses are provided to a module which performs SAT reasoning - and, as a result, learn-
ing. This learning function may be able to perform additional unit propagations, which can
update the domains in ways the CP solver may not have been able to discover.

Additionally, when a conflict is encountered, the SAT solver can use the provided and
newly learned clauses to explain this conflict. Such an explanation is vital in guiding the
search process. Such explanations can also serve different purposes: the cores used in core-
guided search are explanations consisting only of assumptions.

2.4.1 Lifting explanations

An extracted explanation in CP can sometimes be tightened, or lifted, as it is called in [18]].
This concept was introduced in [32] and is based on the idea that the explanations use the
current domain, while the propagator can reason on larger domains. If the conflict occurs
after one or several decisions, as have been described before, the domains of variables may
have been artificially limited. The true reason for the conflict may result in a stricter conflict
than the one encountered, while this stricter explanation may be more useful later in the
search process. An example of this can be found in [18]:

2x+3y+4z <27
(x>5)AN(y>4)N(z>5)— false
Based on the constraint, the following, stricter explanation can be derived:
(x> -2)A(y>4)A(z>5) — false

If x > 0, the new clause is shorter, since (x > —2) is always true and can be left out. Oth-
erwise, it may cause additional inferences in cases where the old clause could not. This
stricter explanation is referred to as a lifted explanation. To avoid confusion, the original
explanation may be referred to as an unlifted explanation.
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2.5 Core-Guided Search in Constraint Programming

Based on the competitive results achieved by core-guided search in MaxSAT, Gange et
al [18]] investigated the efficacy of this approach on CP problems. A total of four differ-
ent schemes were devised to process the extracted cores; the unique combinations of two
proposed reformulation approaches and two proposed weight handling approaches. These
approaches are discussed in the following paragraphs, and pseudocode for all four combi-
nations is provided in This pseudocode is explained at the end of this section.

Reformulation approaches

Slice-based reformulation The slice-based reformulation approach makes use of (bi-
nary) slices of integer variables, denoted as follows:

' 0 x<j
(Lwa;:maX(Oamin(xvi)_j): x—j j<x<i
i—j i<x

[x]1; = TlxT5
[l Th = (=)

Slice-based reformulation works by slicing off the lowest values of variables present in
a core; this is done by iteratively applying the following identity to those variables:

[ Tjmy = Tl Tjmy + x5 = (e = ) + T,
Slices corresponding to a single value (HXJU_I, for some j) are used, as the assumptions
fix the variable to this single value. The second part of the identity is referred to as the
remainder: [|x|] ;; these are not affected by reformulations’} Note that any variable can be
interpreted as a remainder, as the following equivalence holds for x € [, u,]:

x= [T, + L

At every iteration, assumptions fix the variables in the objective function to their lower
bound - which can be mapped to 0 using the identity above. As a result, any core K contains
assumptions of the form ([|x|], < 0). The corresponding slices [|x]]""" are combined
into a reformulation term oy, which has a lower bound corresponding to a single relaxation.
This bound can again be trivially converted into a bias on the objective value.

As an example, consider the following (unweighted) minimisation problem:
obj=a+b+c+d+est.

a,b,c,d,e e N

SExcept for the fact that they become progressively smaller.
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at+b+c>1

This results in the following core and resulting reformulation:
k={(a<0),(b<0),(c<0)}
o= [lalTo+ 16 To+Tlellos ox > 1
obj=T[la]l;+[1b]], +[le]Ti +d+e+[loc]]; +1

Rerunning the CP solver with this reformulated objective results in an optimal solution.

Note that this approach most closely resembles core-guided search in MaxSAT: the
integer variables in the objective function are decomposed into a list of boolean variables
(variables (x > n) = [|x]]},_,), which are handled in the same way as boolean variables in
a MaxSAT problem.

Variable-based reformulation As mentioned earlier in this section, propagators can
lift explanations - such as cores - to find tighter bounds. Since this property cannot be ex-
ploited by the slice-based approach, [[18] proposes an alternative reformulation approach,
based on variables. The reformulation terms are a combination of several variables, with
its lower bound being a single relaxation higher than the sum of lower bounds of its con-
stituents. Lifted cores can at times modify the lower bound more strongly, decreasing the
search space further.

Considering the same example as before:

obj=a+b+c+d+es.t.
a,b,c,d,e € N
a+b+c>1
This results in the following:
k={(a<0),(b<0),(c<0)}
oxk=a+b+c;oc>1
obj=o0c+d+e

Rerunning the CP solver with this reformulated objective results in an optimal solution.
To show an example of core lifting, we modify the linear constraint:

a+b+c>3

The core k = {(a <0), (b <0),(c <0)} can now be lifted using this constraint, resulting in
an increased lower bound on the new variable:

oxk=a+b+c;0>3

obj=oc+d+e

This results in an optimal solution after only a single core is extracted, while slice-based
reformulation would require additional cores.
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Weight handling approaches

Weight Splitting Weight Splitting in CP is a direct translation of the MaxSAT ap-
proach to handling weights. It finds the minimum weight wy,;, associated with an ele-
ment in the core, and decreases the weights associated with all elements by this value:
Vei € K @ W= w; — Wpin. After reformulation, the weight wy, is associated with refor-

mulation term o, which has a lower bound of /,, = 1+ ) I. This 1 corresponds to the
xexK

previously mentioned single relaxation.
As an example, consider a minimisation problem with obj = 2x + 3y 4 5z, for which
core k= {(x <0),(y<0),(z<0)} is found. This results in the following:

Wnin = min(wz, wy,w;) =2

ox=x+y+z;0>1
obj =y+3z+20¢

Notice that, if remainders are generated due to a slice-based approach being used, these
remainders retain the original weight:

oc=[1x/To+ ) To+TlelTp s 0 > 1

obj = [1y]1o+3Tz)To+20c+2T[x]1, +3 (L)1, +5(l2]1,

Which, after converting non-zero lower bounds to bias terms, results in:

obj=Tly|To+3TlzTo+2lox]Ty +2 1x]T; +3[yJT; +5(|z)T, +2

A drawback of this approach occurs in problems with many diverse weights, where
many terms with small residual weights remain in the objective function. These residual
weights may also appear in cores, causing the new reformulation variables to have low
weights as well. These low weights cause the lower bound increase from each core to be
minor, thereby requiring many cores to be extracted before a given lower bound - such as
the optimal value - is reached.

Coefficient Elimination Coefficient Elimination aims to reduce the number of vari-
ables in the objective function more effectively, by incorporating the weights into the re-
formulation term ok. This has several implications. First of all, the domain of ox may be
non-continuous. Additionally, the lower bound increase of o is no longer exactly 1, but is
instead wy,;,. Furthermore, oy has weight w,_ = 1.

As an example, consider again the problem from before, with 0bj = 2x + 3y + 5z and
core k = {(x <0),(y <0),(z<0)}. For a variable-based reformulation approach, this
results in the following:

0k =2x+3y+5z; 0 >2

obj = o
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In the slice-based paradigm, the following reformulation is done instead:
o =2T[x[To+3 ] To+5T12]Tp s ox =2

obj=ox+2[[x|]; +3[y]1 +5TLz]1,

Or, equivalently, after converting lower bounds to bias:

obj=[lox| Ty +2[[x|Ty +3 [Ty +5T1z]1, +2

In the slice-based case, we indeed see a non-continuous domain: o, € {2,3,5,7,8,10}, i.e.
ox & {4,6,9}, despite these values being between the bounds [, = 2,u,,_ = 10.

A drawback of this approach is that reformulation variables oy occur in cores more of-
ten, since residual terms are no longer present. This means that if a certain high-weighing
term forms multiple cores, weight splitting would be able to keep these partially disjoint;
in coefficient elimination, these all depend on one another. This results in more complex
relations between the assumptions and the original variables, increasing overhead and com-
putational power required. Additionally, the non-continuous domains may cause many unit
cores with weight 1 to occur, requiring relatively many iterations to increase the lower bound
by a relatively small amount. However, it does not suffer from low residual weights, and
may be able to effectively handle weights that are close, but not equal, to one another.

Pseudocode The pseudocode given in [algorithm 2| specifically describes the handling of
a core X, which we assume to be provided as input. Additionally, we assume the objective

function f(V) = Y V(x;)*w; to be provided, where the weights w; can be considered (and
xieX
modified) separately from their variables.

In we have made use of two auxiliary functions whose inner workings are
not important. Firstly, CREATEVARIABLE returns a newly created variable, of which the
value is enforced to be equal to that of the argument (through a hard constraint). Secondly,
SETLOWERBOUND overwrites the inferred lower bound of the variable supplied as its first
argument, enforcing it to be its second argument.

One should note that, in the slice-based approach, all variables can be adapted to have
lower bound 0 using the equivalence x = [[x] ] i, T Lx. This knowledge has not explicitly
been used in the pseudocode, nor in its explanation. Additionally, it should be noted that
the value of wy,;, is calculated before any branch is entered, and is used in all branches. w;;,
is the minimum weight associated with a variable x; s.z. (x; < ;) € K, and is the fraction of
the weight incorporated into the reformulation variable.

Slice-based weight splitting

1. Use the slices Hx,-ﬂéj“, where (x; <[;) € K, to define a new reformulation variable
o; the value of this variable is equal to the sum of the values of these slices. It has a
lower bound of 1, corresponding to a single relaxation. Note that a slice is the inverse
of an assumptions, and thus oy corresponds to the number of violated assumptions in
K: Hx,-HZH = >h+1)=-(<L)
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Lower the weight of all slices used in ox by wy,;,. Those with residual weight remain
in the objective function. The remainders also remain present, with original weight.

. Replace the objective function f(X) with its reformulated version; remove the ele-

ments represented by oy, retain the slices and remainders as described before, and
add the reformulation variable. Note that the lower bound of o, has been lowered to
0 by introducing a bias.

Slice-based coefficient elimination

1.

Use the slices Hxiﬂﬁjﬂ, where (x; <[;) € K, to define a new reformulation variable
o; the value of this variable is equal to the weighted sum of the values of these slices.
It has a lower bound of w,,;,; any single relaxation will incur its associated weight,

which is at least w,;;,,. Note that the remainders are to remain in the objective function.

Replace the objective function f(X) with its reformulated version; remove the el-
ements represented by oy, retain the remainders as described before, and add the
reformulation variable. Note that the lower bound of o« has been lowered to 0 by
introducing a bias.

Variable-based weight splitting

1.

Define a new reformulation variable oy, the value of which is equal to the sum of
the values of the variables represented in k. This variable has a lower bound that is
1 above the sum of the lower bounds of its components, corresponding to a single
relaxation.

. Lower the weights of all variables used in ¥ by w,,;,. Those with residual weight

remain in the objective function.

. Replace the objective function f(X) with its reformulated version; remove the ele-

ments represented by oy, retain the variables with residual weight as described before,
and add the reformulation variable.

Variable-based weight splitting

1.

Define a new reformulation variable oy, the value of which is equal to the weighted
sum of the values of the variables represented in k. This variable has a lower bound
that is wy,;,, above the sum of the lower bounds of its components; any single relaxed
element will incur its associated weight, which is at least wy,;;,.

. Replace the objective function f(X) with its reformulated version; remove the ele-

ments represented in the core, and add the reformulation variable.
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Algorithm 2 Pseudocode for all 4 combinations of the proposed approaches in this section;
adapted from textual descriptions in [[18]

Require: A (possibly lifted) core k¥ whose elements are of the form (x; < /;), and a linear
objective function f(X), which defines a weight w; for every objective variable x;

l: Wyin ¢ min w;
(xigl,’)GK

2: if slice-based weight splitting is used then

(X,‘Sl,‘)GK
4: SETLOWERBOUND (0, 1)

s ores— Y (wimwu) [l 17+ X wis[lxi]1, 4
(x,*gl,')EK (X,’Sl,’)GK

3:  o0x < CREATEVARIABLE| ¥ Hx,ﬂg“)

a

FX)—fX)—{ X wikx; | +res+wmin* [[ox]]] + Wmin
(xigl,’)GK

7: else if slice-based coefficient elimination is used then

8: 0+ CREATEVARIABLE [ Y wi*[|x]]7"
(xi<l)ex l

9:  SETLOWERBOUND (0, Wiin)

100 res+ Y w,-*Hx,-ﬂliH
(x,-Sl,-)EK

+ Wiin

Wmnin

(Xigli)GK
12: else if variable-based weight splitting is used then

11 f(X)<—f(X)—( Y wi*xi>+res+HoKﬂ

13:  0x + CREATEVARIABLE Y x
(x,«gl,«)elc

14.  SETLOWERBOUND | 0,14+ ¥
(x,»gl;)ek
150 res< Y (Wi—Wpin)Xi
(x,'ﬁl,')el(

16: f(X)%f(X)_( Y Wi*-xi>+res+wmin*01(

(xi<li)ex
17: else if variable-based coefficient elimination is used then

18:  0x + CREATEVARIABLE Y wixx;
(x,-gl,-)elc

19:  SETLOWERBOUND | ox,Wyin+ Y  wixl;
(X,'Sl,’)EK

20: f(X)(—f(X)—( y w,-*xi> + o0k

(xigl,«)elc
21: end if
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Chapter 3

Core-Guided techniques in CP

Over the years, various MaxSAT solvers applying core-guided search have been developed
and evaluated, often applying additional techniques. This is seen, for example, in the yearly
MaxSAT Evaluation [34]. Many of these techniques have significantly improved the perfor-
mance the solver applying them, raising the question if these same features can also improve
the performance of solvers in CP.

This section describes several of such features, which have been selected for imple-
mentation in a CP solver, Pumpkin [11]. Note that only a limited number of features was
selected, based on expected effectiveness. These techniques are WCE, explained in

Stratification, explained in Hardening, explained in and
finally Partitioning, explained in

For each feature, the corresponding section first describes how it functions in core-
guided search for MaxSAT. This knowledge is then used to explain how it can be applied
to CP. After this, the effects of the reformulation and weight handling approaches, as de-
scribed in are discussed where applicable. Finally, any additional important
implementation details are mentioned, if applicable.

The Geas solver [18] The first three features described in this section have been pre-
viously implemented in CP, as part of the Geas solver [18]. However, in this paper, the
features were not evaluated individually. One of the goals of this thesis is to perform this in-
dividual, comparative evaluation. Geas also implemented a technique called Core-Boosting
[7]; this technique has been evaluated in [18]], and as such has been left out of this thesis.

3.1 Weight-Aware Core Extraction (WCE) [6]

Weight-aware Core Extraction, or WCE, is an approach seen in numerous solvers from the
yearly MaxSAT Evaluation [34]]. It is referred to as Independent Core Extraction in [18ﬂ
Since WCE is the more prevalent name in MaxSAT, this thesis refers to the feature as such.

IThe phrasing in [18] seems to imply that for slice-based variants, WCE is adapted to remove the slices
entirely rather than split the weight, in the case of weight splitting. In our implementation, we also apply weight
splitting (when specified) in the slice-based case, rather than only in the variable-based case.
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In MaxSAT WCE is a technique where multiple cores are extracted before a reformula-
tion is performed. A solver applying WCE postpones the addition of cardinality constraints
until several cores have been found, while still performing the associated relaxations. The
effect is that the extracted cores are independent, and that a relaxed version of the problem
is considered during much of the solving process. Once the considered relaxation becomes
satisfiable, no more independent cores can be extracted, and the cardinality constraints are
finally added to the problem - which returns to an unrelaxed version this way. Note that this
step generates an intermediate solution, which may be returned to the user if desired, or if
the time limit is reached.

The postponing of cardinality constraints allows all derived soft clauses ((d'), (¥'), (¢)
in previous examples) to be trivially satisfiable through the relaxation variables; all corre-
sponding relaxation variables can be assigned 1 without issue. This prevents the derived soft
clauses from occurring in cores until later in the search process. The eventual effect is that
the relations between these derived variables and the original variables are less complex,
which in turn reduces overhead.

Note that postponing cardinality constraints is one example of how WCE can be per-
formed. If cardinality constraints are soft, these can be encoded immediately, while only
enforcing the bound later. Alternatively, the assumptions which enforce that the derived soft
clauses are satisfied may be left out.

Disjoint Core Extraction [12]] or DCE is a variation of WCE. It applies a similar ap-
proach, but operates on unweighted MaxSAT instances. For the remainder of this thesis,
DCE is considered a special case of WCE, and not be mentioned explicitly.

InCP WCE in CP is quite similar to WCE in MaxSAT: once a core is found, the relaxation
proceeds as normal, but no assumptions are placed on the reformulation variable - as in
MaxSAT, this means no constraints are placed on the values of the associated variables.
Once an intermediate solution is found, all reformulations are completed by adding the
previously omitted assumptions.

Effect of reformulation approach A slice-based approach is likely to result in the ex-
traction of many cores before allowing a solution to exist, as each core removes relatively
little terms from the objective function: the constraint x4+ y > 5 alone already causes three
disjoint cores before the first reformulation. Note also that many slice-based cores would
be heavily intertwined, which is partially prevented by WCE: again looking at constraint
x+y > 5, we see that of the five cores needed to resolve it, four can realistically contain
the previous reformulation Variableﬂ As such, WCE would cause less complex relations
between the assumptions and the original variables. Additionally, the remainders causes
the considered relaxations to remain close to the original problem, presumably resulting in
good intermediate solutions.

2Both cores {(x < 1),(y < 1)} and {(x < 1), (0x < 1)} s.t. 0 = [|x|15 + [Ly] 1§ correspond to a MUS;
either may be found, and it may even be the case that both appear in a non-minimal core. Similar situations
occur for higher values, and codependency of the reformulation variables is, to some extent, guaranteed.
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A variable-based approach is likely to extract far fewer cores, which are individually
more informative. The total amount of information discovered before reformulation is ex-
pected to decrease, as entire variables are removed from consideration when appearing in
a core. Consider for example a toy problem with constraints (a+b > 1) A (a+ ¢ > 8); if
the core {(a =0),(b = 0)} is processed first, variable a cannot form cores with ¢ until the
reformulation is performed; something that was possible in the slice-based approach. This
can result in more derived terms being present in subsequent cores, which in turn causes
more complex relations between the input variables and objective function. Additionally,
the variable-based approach is expected to provide worse intermediate solutions, since it
lacks remainders and thus results in a much more relaxed problem.

The variable-based approach is expected to benefit from applying WCE, though pre-
sumably less so than the slice-based approach. In both approaches, WCE is expected to
decrease complexity of the relations between original and reformulation variables, causing
a significant speedup.

Effect of weight handling approach When using weight splitting, a single variable can
appear in several independent cores; after appearing once, it may have residual weight,
allowing additional cores containing it to be extracted. Additionally, we expect that the
assumptions corresponding to these terms cause the relaxations to more closely resemble
the original problem, which may contribute to better intermediate solutions. These factors
are expected to improve the solver to a notable extent.

Coefficient elimination allows slightly fewer cores to be extracted, as each variable can
only occur in a single core. This may decreases the total amount of information found before
areformulation occurs. Additionally, since the terms are fully removed, the problem is more
strongly relaxed after each core, thereby resulting in slightly worse intermediate solutions.
However, WCE is still expected find several cores between reformulations, resulting in a
moderate speedup.

While both weight splitting and coefficient elimination are expected to benefit from
WCE, weight splitting is likely to be much more suitable for this approach.

Implementation All found cores are processed normally. However, when the assump-
tions are updated, the new assumption (o < I, ) is held back. Both the variable o, and the
bound /,, are stored until a solution is found. When satisfiability is reported, these unadded
assumptions are added to complete the reformulation. Note that /[, may have changed in
the meantime; this is accounted for by comparing the stored lower bound to the current one,
and updating the problem if necessary.

3.2 Stratification [2]

Similar to WCE, this technique is used by numerous solvers in numerous years of the
MaxSAT evaluation [34], and has been implemented for CP in the Geas Solver [18]].
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In MaxSAT Stratification is a technique which aims to extract high-weighing cores first,
thereby causing the lower bound on the objective value to increase faster. This is done by
splitting the objective variables into strata, based on the absolute value of their weight. Such
a stratum may contain any number of variables; if many variables have the same weight w;,
the associated stratum will be large, but if a variable has unique weight w, it will be the sole
representative of its stratum. The strata are added from largest to smallest associated weight,
advancing when no more cores can be found using the currently added variables. Note that
intermediate solutions are found before a new stratum is added, as this is the logical result
of checking satisfiability after removing all cores. Like in WCE, this allows the solver to
return the best solution so far if a time limit is reached.

Note that stratification enforces a (partial) precedence on the cores; one that allows the
lower bound to be more rapidly increased, presumably resulting in the optimal solution
being reached faster. As an example, consider the following problem, where we assume
that the solver considers constraints in order:

obj=10a+10b+c

S=(bVec)A(aVb)

Without stratification, two cores are discovered; k| = {b,c} of weight 1, and «, = {a,b} of
weight 9. When stratification is active, the first iteration considers only a, b as soft clauses,
resulting in the discovery of k| = {a,b} with weight 10. After this, the optimal solution
is discovered - having required fewer cores than the stratified approach. Though more
complex, such situations may also occur in many real-life MaxSAT problems.

In CP Stratification in CP functions in nearly exactly the same way as in MaxSAT; the
objective function is split up by weight, and the strata resulting from this are added from
largest to smallest corresponding weight, proceeding whenever satisfiability is detected.
This allows cores with high weight to be found earlier in the process, possibly resulting in
fewer cores being needed to solve the problem.

However, because of the increased domain sizes, the implications of stratification are
fundamentally different in CP: in MaxSAT, violating a single soft clause with weight 1 has
a much lower effect than violating a soft clause with weight 10. In CP however, a variable
with weight 1 may still have a very large domain; if it is assigned a large value, its effect
may be much larger than that of other variables, such as a variable with weight 10 that is
assigned a low value. Strata may thus functionally be less disjoint, making it likely that, in
general, CP benefits less strongly from stratification.

Effect of reformulation approach The slice-based approach is expected to benefit from
stratification. It effectively increases the weight associated with the early cores, while the
slice-based character allows for cases where a low-weighing variable conflicts with a high-
weighing remainder - the core may not need to contain reformulation variables in such
cases.

Stratification is likely to improve the variable-based approach as well, though slightly
less than the slice-based variant. This is mainly because of the latter case; a low-weighing
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variable may conflict with the reformulation variable, since the remainder is incorporated
in it. The former case, however, is still likely to improve performance.

Both reformulation approaches are expected to experience a moderate benefit from strat-
ification, though the slice-based approach presumably benefits slightly more.

Effect of weight handling approach Stratification with weight splitting results in some
high-weighing cores being found, but may cause low residual weights to appear earlier
in the solving process. These low residual weights could diminish the effectiveness of
stratification slightly. However, this effect is expected to be much smaller than in cases
where these lower weights are already present from the start; meaning stratification will
still have a positive effect.

Whether coefficient elimination benefits from stratification depends on how strongly
the values of reformulation variables can be inferred. The residual weights discussed before
do not occur; instead, all reformulation variables have weight 1, which would intuitively
decrease the effect of stratification. However, the domain of said variable may often be non-
continuous, especially in earlier strata; if the values in said domain can be correctly inferred,
the lower bound on the objective function may still rapidly increase. If such inferences
cannot be done effectively, stratification loses most of its effect. Since the implementation
will exclusively make use of continuous domain encodings, the effect is expected to be
small.

Weight splitting is likely to improve due to stratification, but some problems may ex-
perience only little benefit. The benefit coefficient elimination experiences will presumably
be low because of the reformulation variables with weight 1.

Implementation Stratification is straightforward to implement. The objective variables
are divided into several sets, based on their weights; one set is created for each unique
absolute weight, which contains all variables associated with that weight. The assumptions
corresponding to the first of these sets are added at the start of the process; the assumptions
corresponding to the other sets are iteratively added, in order, whenever the solver detects
satisfiability. As with WCE, the stored lower bounds of future strata may change throughout
this process; these are also checked, and appropriately handled.

3.3 Hardening [2]

Hardening is the third of the three features used in the Geas Solver [[18] as well as in this
thesis. As with WCE and stratification, it has often been used in solvers submitted to the
MaxSAT Evaluation [34].

In MaxSAT Hardening prunes parts of the search space, based on the upper and lower
bounds u.,lo,; On the objective value. The upper bound is generally determined by inter-
mediate solutions found during search; these provide a value much lower than the inferred
upper bound, and it is a given that the optimal solution has at most the same objective value.
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As such, hardening is generally combined with WCE or stratification, which both produce
intermediate solutions. Note that any technique producing intermediate solutions suffices.

Hardening compares the upper bound u,,; to the weights w; € W of soft clauses c; € C;.
Once it detects that uyy,; — l,p; < Wy, it hardens c; from a soft clause to a hard clause. This
is done because violating c¢; causes the objective value to be at least [,,; + w;; this thus
exceeds u,p,j, meaning that any solution doing so is worse than the current solution, and as
such automatically proven not to be optimal.

In CP In CP, hardening can generally not fix variables to a given value, but it can ef-
fectively limit the domains of certain variables through inference. Consider for example a
problem with 0bj = 5a+ 2b and initial domains a,b € [0, 100], for which a solution with
f(V) =30 has been found. This hardens (0bj <30) — (5a+2b < 30), limiting the domains
to a € [0,6];b € [0, 15]. These bounds on a and b can also be directly enforced.

As previously stated, hardening depends on tight upper bounds, generally provided by
intermediate solutions. This is no less true in CP than in MaxSAT.

Effect of reformulation and weight handling approaches For all combinations of re-
formulation and weight handling approaches, the hardened bounds are applied directly to
the original objective variables, as well as to the reformulation variables. The direct ap-
plication to the objective variables is likely to have an equal effect in all cases. However,
the effectiveness of the application to reformulation variables depends on the underlying
approaches.

In the slice-based approach, the hardening of reformulation variables is unlikely to have
a large impact, due to the limited domains. In the variable-based approach, the domains
are larger, making impact more likely. Among these, coefficient elimination is likely to
experience a bigger impact than weight splitting, as the domains are often slightly larger -
depending on the weights of the variables.

Implementation Whenever an intermediate solution is reported, its corresponding objec-
tive value is compared to that of the best solution found so far. If it is better, the upper bound
on the objective value is tightened to this new value by adding the corresponding constraint.
Additionally, this new upper bound u,; is used to calculate the interval uy; — l,5;, which
is then compared to the sizes of the scaled domains of individual variables. This is done
for both original variables and reformulation variables, limiting the domain of variable x if
Wy k (Uy — Iy) > uopj — lopj. For example, if variable x has weight w, = 10, with upper and
lower bound u,; = 50,1,,; = 0, we know that x < u(,hj/wx = % =5,and thusx <[, +5. We
know this regardless of the other terms in the objective function, and we know this is true
even if the current residual weight of x is lower than w,. To incorporate this knowledge into
the solver, we add a constraint encoding the literal (x </, +5), thereby limiting its domain.
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3.4 Partitioning

Partitioning [31] is a technique introduced by Open-WBO [27]]. Contrary to the other tech-
niques used in this thesis, this technique is used by only a very limited number of solvers -
several variants of Open-WBO. Despite this, the solvers applying it have proven effective,
making it a suitable candidate to implement in CP.

In MaxSAT Based on the input problem, a graph representation is created. This graph is
partitioned by applying the Louvain community-finding algorithm [8]]. For each partition
Yk s.t. Y N Cs # 0, core-guided search is performed. During this search, the solver does
not consider soft clauses that are not in the partition; i.e. it considers the relaxed problem
{Cn, Yk N Cy}, rather than the full problem {C;,,C,}. As such, all y; correspond to different
relaxations, considering disjoint sets of soft clauses - since each clause can only occur in
a single partition. Once all y; have been solved to optimality, one or several merges are
performed. These merges result in new, larger partitions, which may contain additional
cores, and thus need to be optimised further. These solving and merging steps are repeated
until a single partition remains, representing the entire problem.

Intuitively, partitioning divides the problem into several relaxed versions, all of which
consider a much smaller set of soft clauses. The community-finding algorithm ensures that
elements within such a set are relatively closely related, while being less closely related to
the elements of other sets. These conditions theoretically cause relatively many cores to be
found within partitions, with these cores being more likely to be minimal - the assumptions
from other partitions are not present, and thus cannot interfere. Additionally, these cores
may be found more efficiently due to the search space being less constrained. The impor-
tance of small cores is emphasised in [4)]. Merging allows increasingly larger cores to be
found, as more assumptions are combined, while ensuring that cores are always found as
early as possible. Note that, this way, the largest cores are postponed until relatively late in
the search process.

The graph representation used for partitioning may be either a resolution-based graph
(RES, as used in practice by the Open-WBO solvers), or a clause-variable incidence graph
(CVIG, as is used in our CP implementation). Additionally, the merging may be done in a
sequential (not used) or balanced (used both by Open-WBO and in our CP implementation)
fashion. Both approaches for both elements are extensively described in [31]]; only the
CVIG representation and the balanced merging variant are briefly described here. In [31],
the various approaches are evaluated, showing that the balanced merging scheme performs
better with both graph representation. Furthermore, it is shown that the RES representation
is more effective than the CVIG representation.

CVIG representation In a CVIG, both clauses and variables are represented by ver-
tices in the graph. Edges exist between a variable vertex v; and a clause vertex c; if and
only if v; € ¢c;. The weight of such an edge is proportional to \%/I Note that no edges

3 As can be read in [31], the weight is larger if v; occurs in one (or several) soft clauses. However, this
element is not present in the RES variant, nor is it explained in the text, and as such has been left out of our
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exist between two variable vertices, nor between two clause vertices, resulting in a bipartite
graph. A clause vertex representing c¢; has |c;| edges, and a variable vertex representing v;
has |[{c;y € Cy|vi € cr}| edges.

Balanced merging scheme In a balanced merging scheme, the number of partitions
is approximately halved every iteration. At the start of the process, the connection strengths
d;; are calculated for each pair of partitions v;,y;. Given w(u,v), which returns the weight
of edge (u,v), or 0 if no such edge exists, we define d;; as follows:

dij = Z Zw(u,v)

ucyivey;

Note that these only need to be calculated from scratch once, as d;; = d;; +d for v, = y; Uk
(subject to v;,7Y;, Yk being disjoint partitions). Once all d;; are known, the pair of partitions
with the strongest connection is selected, merged, and removed from consideration. These
steps are repeated until either one or zero partitions remain; if one remains, it is left un-
changed, as if it were merged with an empty partition. The newly merged partitions, along
with the possibly remaining unmerged partition, are used in the next iteration. Solving and
merging alternate until the final partition is solved to optimality.

In CP In order to apply partitioning to CP, a reasonable weighted graph representation
needs to be defined for input problems. According to [31]], the RES representation performs
better than its alternative; however, this representation is much harder to define for CP
problems than for SAT problems. As such, the CVIG representation is used. The weighing
scheme for the edges is loosely based on the CVIG weighing scheme from [31]].

The community-finding algorithm can be directly reused, as this operates independently
of the input problem; it operates directly on the weighted graph. The implementation from
[[19]] has been used to this end. The merging approach is also mostly problem independent,
and thus the balanced merging scheme can be directly applied.

Graph representation weighing scheme In CP, several types of constraints exist,
which need to be considered separately by the weighing scheme. We consider two distinct

types: linear inequalities, which are of the form¢; = Y r§ «x; Onforsome e {<,=,>}
Vi€

and n € {0, I}EI; and global constraints, which we assume to model arbitrarily complex
relationships on unweighted variables. Any constraint that is not a linear inequality is con-
sidered a global constraint in this weighing scheme.

In [31], the weight of an edge conceptually corresponds to the contribution of v; to c;,
and as such a weight proportional to coefficient rlj seems appropriate for linear constraints.
To ensure all edges have positive weight, the absolute value |rlj | is used. Notice that, to
accurately represent the influence, these coefficients need to be normalised. Cases where

version of partitioning.
4Note that in many cases, the values of r; need to be normalised to achieve this form.
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; . . il 7 . .
ci= Y ryxv; < nst.n 2 0 can be normalised by defining ry =+, which results in
Vi€
.y , .
c;= Y r; *v; < | -as mentioned before. In cases where ¢; = ¥ ri*v; < 0, n cannot
Vi€EC; ViEC;
. . il . . . . il i
be used as normalisation factor; as such, m = Y, ]r’j\ is used instead, resulting in 7} = ..
Vi€
This definition is based on the intuition that all variables combined exert an influence of 1.

Using these definitions, the weight function for linear constraints can be defined as follows:

]
j
T

Wlinear(xia Cj) =

No factors comparable to rlj " exist for global constraints. Since the propagators for
global constraints are relatively strong, we assume the variables in such a constraint to be
quite closely related; although an increase in the degrees of freedom causes this relation to
become weaker as more variables are considered. To model this, we use a weight near -
but not equal to - 1, which exponentially decreases with the number of variables used in
the global constraint. 0.9 has been chosen for this purpose. This results in the following
weighing function:

Welobal (xi, Cj) = 09‘C/‘

A special case to consider is that of reified constraints. The effect of the reification
variable does not depend on the weights or number of other variables, and is very large.
Reification variables directly correspond to the truth value of the constraint itself, giving
it complete control rather than influence. As such, the weight of the edge between these
two vertices should be 1. This value exceeds the weights of all global and most linear
constraints, thereby strongly increasing the probability of the constraint and variable being
part of the same community.

A more suitable weighted graph representation may exist, and a qualitative evaluation
of different representations could provide valuable insights. However, such an evaluation is
outside the scope of this thesis, and presents a possible topic for future research.

Example To better understand the described partitioning approach, we consider the
following problem. This problem is fully solved by a slice-based weight splitting solver
applying partitioning, to illustrate both partitioning and its effects on solving.

obj=3a+4b+c+12d+e+Tf
c1:5a+b>10
cr:b+2e<5
c3 :alldif ferent(b,c,d)
cq:3c—4d <2e

cs:de+7f>7
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After normalisation of the weights, The problem is as follows:

obj=3a+4b+c+12d+e+7f

1
Ca4+—b>1
a~|—10b

1 2
bt Ze<l
5015

¢y :alldif ferent(b,c,d)

1 4 2
cyizc——-d—=e<0

ﬁﬁ
of

Figure 3.1: A graph representation of an example problem. The edge weights correspond to
the normalised weights in linear constraints, or to 0.9/ = 0.93 = 0.729 for the three edges
incident to the node representing global constraint c3.

oI Wi

The partitioning algorithm from [8] will not be iterated in this thesis, but results in the
following partitions of soft constraints: v; = {a},v2» = {b,c,d},y3 = {e, f}.

When considering partition y;, the solver only finds unit core k] = {(a = 0)} before a
solution is found. 7y, produces three cores: k2 = {(b =0),(c =0)}, k3 = {(d = 0)} and

={(b=0),(c=1),(d = 1)}, after which it becomes satisfiable. y; becomes satisfiable
after two cores: K3 = {(e=0),(f=0)} and &3 = {(e =1),(f =0)}.

During the merging phase, we greedily select ¥,,7Y3 to be merged into new partition 7y,
since dp3 = é+% = % >dip = 1—10 > dj3 =0. This leaves y; unmerged. After this, partitions
vs and Y4 are again solved to optimality, both producing a solution before encountering any
cores. These two partitions are subsequently merged into Ys, which represents the entire
problem. s produces a single core, k; = {(a = 1),(f = 0)}, after which a solution with
cost 22 is found. This is the optimal solution.

This example shows that most cores are already found in the relaxed problems repre-
sented by the individual partitions, presumably allowing for more efficient search. A second
effect, not shown in this example, is that large cores are found later in the search process,
since only then all elements are considered at once.
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Effect of reformulation approach Although the variable-based approach is expected to
experience a performance increase, it may not be the most suitable approach. There may be
cases in which a non-partitioned approach finds a single core containing multiple overlap-
ping MUSes, after which unit cores resolve the conflicts efficiently; the partitioned approach
may find the individual MUSes in separate partitions, causing a later core to depend on the
resulting reformulation variables. This slightly increases overhead.

The slice-based approach suffers less from the aforementioned problem, due to remain-
ders being present. As such, the slice-based approach is expected to benefit from the more
efficient search and smaller cores resulting from partitioning, with no noteworthy down-
sides.

Overall, both reformulation approaches are expected to experience a performance in-
crease, though the slice-based approach is presumably more suitable for partitioning.

Effect of weight handling approach Weight splitting is likely to cause terms with resid-
ual weights to remain in the objective functions of partitions. After a merge, these terms
can appear in new cores, instead of a reformulation variable. This keeps overhead low and
can increase performance.

While coefficient elimination is still likely to experience a speedup, the aforementioned
benefit is absent; after a merge, many of the new cores are likely to depend on one or
multiple reformulation variables, slightly increasing overhead over time. Note that this
overhead is still expected to be lower than in cases where partitioning is not applied.

Both weight handling approaches are expected to benefit from partitioning, though
weight splitting appears to be a more suitable paradigm to apply partitioning to.
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Chapter 4

Experimental setup

In order to determine the effectiveness of the features implemented in the solver, an exten-
sive evaluation is required, in which the different versions of the solver are compared to
one another on a set of benchmark problems. This evaluation shows which features have
an effect on the efficiency of the solver, and whether that effect is positive or negative. In
order to draw more general conclusions, several different metrics are used in the evalua-
tion; this allows us to draw conclusions even in cases where the overall effectiveness of the
solver is unchanged, as well as explain the performance changes. This section describes the
workflow and resources used to perform said evaluation.

The implemented features allow for different possible configurations of the solver. Not
all of these combinations are evaluated, as this is an intractable amount; the ones that are
evaluated are described in[section 4.1l These variants are all run on the same set of bench-
marks, detailed in [section 4.2] The Gourd-Test framework [9] is used to set up and execute
the runs necessary to perform the evaluation. In relevant details of its setup
are provided. Several of the metrics needed to perform the evaluation are not provided by
Gourd-Test, and are implemented to be monitored by Pumpkin itself. These metrics are
described extensively in The raw data points are processed into a more man-
ageable output by a script, as explained in

The experiments are run on the DelftBlue supercomputer [13], with 16 gigabytes of
memory for each run, and a timeout of 10 minutes enforced by the scheduler. DelftBlue
makes use of Intel Xeon E5-6448Y 32C 2.1GHz processors. Pumpkin is single-threaded.

Unfortunately, results from DelftBlue are not perfectly consistent; repeated experiments
have shows that the exact same setup can lead to different amounts of time being taken. Note
that this only affects the time, not the other metrics; the code execution itself is unaffected.
For the sake of this thesis, we assume this effect to be minor.

4.1 Solver variants

A total of four different features have been implemented in Pumpkin over the course of this

thesis; as mentioned in [chapter 3] these are WCE (section 3.1)), Stratification (section 3.2)),
Hardening (section 3.3) and Partitioning (section 3.4). The different reformulation and
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weight handling approaches seen in provide four base variants, to which these
features can be added. The features are mostly considered individually, with a single ex-
ception: since hardening needs intermediate solutions to take effect, this feature must be
combined with another which generates these. To this end, hardening is combined with
both WCE and stratification. Note that the effect of hardening largely depends on the qual-
ity of the intermediate solutions, and as such the differences between these two variants may
be significant.

In total, twenty-four variants of the solver are considered; six for each combination of a
reformulation approach and a weight handling approach. The six variants for a given base
solver are:

¢ No additional features

* WCE

Stratification

* Hardening using WCE

Hardening using stratification
* Partitioning

The code is available at [10]. The release Core-guided pumpkin: vi.1.0 contains the
version of the code used during the evaluation of twenty of these twenty-four variants, but
lacks partitioning. The finalisation of partitioning resulted in release Core-guided pumpkin:
v1.1.1, which contains the version of the code used during the evaluation of the final four
variants, those applying partitioning.

4.2 Benchmark files

In order to evaluate the solver, a set of benchmark problems is required. The MiniZinc
Challenge Benchmarks repository [28]] is used as a source for such problems. Benchmarks
from this challenge provide a large range of suitable problems, and a (limited) selection has
previously been used in [18]]. In this thesis, a larger set of problems is used, including more
recent problems.

Not all benchmark problems found on [28]] are suitable; some problem families are
CSPs, while core-guided search specifically performs optimisation - thus requiring COPs.
For each of the COP families, a total of ten problem instances are randomly selected by the
bash shuf command. This process has resulted in a total of 782 instances. These instances
are flattened and given as input to the different variants of the solver. The flattened files files
have been included in [10].

Note that the flattener normalises all files to have a single objective variable. In most
cases, the constraint defining this variable can be easily extracted. If no such constraint
exists, or the constraint is not a linear weighted sum, core-guided search is performed on
this single variable - thereby effectively performing lower-bounding linear search. These
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cases can still be valuable, as they help ascertain whether core-guided search is suitable for
this type of problems - making it a good general purpose solver. These problem families are
explicitly considered in[section 5.11]

In addition to specific consideration in the case of a single objective variable, several
quantities are extracted from the input files, to see how these influence the performance of
each solver. The following features are extracted to this end:

* Number of objective variables

* Number of unique weights associated with objective variables
* Number of variables

* Number of constraints

These metrics roughly indicate the size of the problem, and the size of the objective function.
They help determine which solver variants are most effective on very large instances, which
suffer from a large number of unique weights, and which experience a performance decrease
when dealing with a larger objective function.

4.3 Gourd-Test framework

Gourd-Test [9] is an evaluation suite for CP solvers, designed with Pumpkin [11] in mind.
This framework is thus suitable to evaluate the core-guided version of Pumpkin as well.

Gourd-Test receives a list of solver executables and their respective arguments, along-
side a list of input files. It schedules a run for every combination of a solver and an input
file - either to be run as soon as the resources are available, or through a scheduler on a
supercomputer. All associated outputs are stored in separate files to allow later in-depth
analysis of each run.

The Gourd-Test framework is able to provide the following data points:

» Exit status - There are several possible ways in which a run can end. It may either
reach optimality or prove unsatisfiability, if the run is successful; it may also exceed
its time or memory limits, and be unable to solve the problem appropriately. Gourd
reports whether a run was successful, and what the reason for failure was, if any.

We expect solver variants with additional features to result in successful runs more
often than the base variants. This because we expect them to be more efficient, mainly
in terms of time taken, thereby presumably reaching optimality in cases where base
variants experience a timeout.

* Time taken - Most problems cannot be solved instantly, and thus take some time
before the correct result can be returned. The time taken before proving optimality or
unsatisfiability is a useful metric, defining the efficiency of a solver on the most basic
level. The faster a solver is, the better it must be at finding cores, and subsequently
solutions.
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Solvers with additional functionalities are expected to take less time than solvers
without additional functionalities. However, the amount of time saved depends heav-
ily on several factors; some features may perform better, or worse, depending on
the reformulation and weight handling approaches, and depending on the underlying
problem instance. Different solvers are expected to experience different amounts of
speedup, though it is hard to predict a priori which ones benefit to which extent.

Based on these data points, the solvers can be roughly compared to one another, and
early conclusions about the implemented features can be drawn. For example, a significant
speedup, or lower number of timeouts, would already allow us to draw conclusions on which
features are effective, and which are not.

4.4 Collection of additional data

While the data points described above allow for a simple evaluation, a more detailed one is
desirable. As such, several additional data points are collected for every solver-input com-
bination that ran successfully. These additional measurements allow stronger conclusions
to be drawn on the various techniques, the reformulation and weight handling approaches,
and on core-guided search for CP in general.

The following general data points are extracted:

* Objective value - In order to verify correctness of the solver variants, the optimal
objective values found are collected and compared. These are not used further in the
evaluation, but only serve as an additional verification.

* Number of lower bound steps - During the search process, the lower bound on
the problem is constantly updated. Although the lower bound eventually reaches
the optimal objective value, information can be retrieved from the number of steps;
this corresponds roughly to the number of cores extracted. If fewer steps are taken
to reach the optimal solution, this means fewer cores were processed to solve the
problem, indicating that the cores were of higher quality. Additionally, this smaller
number of cores may indicate less search, and thus explain improvements on the time
taken.

The number of steps is expected to decrease mainly for stratified approaches, which
specifically focus on extracting high-weighing cores. Stratification also causes re-
laxations to be considered most of the time, which causes fewer assumptions to be
present and thus increases the chances of cores being minimal - preventing non-
minimal cores with unnecessary low-weighing element. WCE and partitioning are
also likely to slightly decrease the number of steps due to the second factor, but to
a lesser extent than stratification. For consistency across variants, we only count the
lower bound step if it is induced by a core; if this would not be done, WCE, stratifica-
tion and partitioning would experience an increase in the number of steps, resulting
from potential lower bound increases after adding new information.
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* Lower bound step size - As with the number of lower bound steps, the step size
roughly indicates the quality of the found cores. These metrics are expected to very
strongly correlate, though they may be interesting to look at separately.

This number is expected to most strongly increase in stratified approaches, and to a
lesser extent in WCE and partitioning. The reason for this is the same as the one for
the decrease in number of steps.

» Average Size of Cores - [4] emphasises the importance of small cores. In the general
case, cores that are smaller cause the search space to be smaller (on average), which
in turn results in the solver requiring less time to search itﬂ As such, a decrease in this
number may be the reason for a decrease in time taken. Additionally, this number can
serve as a predictor of performance on instances larger than those in this evaluation;
the lower the average core size, the smaller the overhead, and thus the more efficient
the search is expected to be.

This metric is expected to be mostly affected by partitioning, since this technique
specifically aims to group highly interconnected objective variables, in order to find
smaller cores. WCE and stratification are also expected to improve this metric, due
to the increased chance of minimal cores mentioned before. Note that this metric
may be biased in cases where many unit cores are found, as occurs especially in the
variable-based approach, and potentially in coefficient eliminating approaches.

* Time Spent on each Task - All additional features in this thesis require some amount
of computational resources when applied. The total time taken provides some in-
formation on overall efficiency, but a comparison of the time spent on one of the
additional features and that spent traversing the search space may provide new in-
sights. Even if the overall time increases, it might be the case that the search time
decreases, meaning the additional feature has a large positive effect. In these cases,
a more efficient implementation is worth pursuing, as this can significantly improve
the performance.

Most additional features are expected to be relatively efficient, with the exception of
partitioning. Especially on larger instances, the time spent generating the partitions is
expected to increase sharply, but result in a sharp decrease in search time. The other
features are unlikely to consume a significant amount of time themselves, though they
are expected to decrease the search time.

* Number of Visited Nodes - During search, many nodes of the search tree are visited,
and many other nodes are pruned. The number of visited nodes is strongly related to
the number of propagations done by the solver, and can as such be used as an indicator
of the quality of the constraints and variables used, as well as the clauses learned
based on these factors. A lower number of visited nodes corresponds to stronger

ITo see why this is the case, consider two reformulation variables 011< =x1 +x2; 0% =x;+x3+...+x10.
When assuming oL = 1, only two partial assignments are possible: {(x; = 1), (x2 =0)} and {(x; =0), (xp =1)}.
When assuming 0% = 1 on the other hand, ten partial assignments are possible, thereby creating more branches

to be searched.
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inferences; this indicates the solver can better extract valuable information from the
problem, presumably making it more effective.

Especially hardening is expected to decrease this number, as it efficiently decreases
domains of certain variables whenever a solution is found. The other three features
commonly consider relaxations, thereby prompting an increase, though their positive
effects might outweigh this number - especially in the case of WCE, where relaxations
are often relatively close to the original problem throughout the entire process.

Additionally, the following feature-specific data points are extracted:

* WCE: Number of cores before reformulation - WCE is able to extract multiple,
disjoint cores before a reformulation occurs. This number of cores between reformu-
lations is a good quantifier of the effect WCE has. An average of one core per re-
formulation indicates no effect at al higher values signify a larger (positive) effect.
This average is used to determine the efficacy of WCE in the different approaches.

* Stratification: Slope of lower bound steps - The goal of stratification is to discover
cores with high weight earlier than cores with low weight. To measure this, the
slope of the step sizes - which are already monitored - is calculated using a linear
regression mode A non-stratified approach presumably results in a slope near 0,
while a stratified approach is expected to have a strongly negative slope. A steeper
(negative) slope indicates a larger success.

e Hardening: Unhardened fraction of domain - When a (suboptimal) solution is
found, hardening adds constraints to limit variable domains appropriately. In order
to quantify this effect, the fraction of the domain that remains is calculated (the un-
hardened, or “soft” fraction), using the product of these fractions as a final value. A
smaller fraction indicates a more effective hardening step. This value is, of course, 1
in non-hardened approaches.

« Partitioning: Slope of core sizes - Partitioning allows large cores to be discovered
only quite late in the solving process, by splitting the objective variables into small
sets. The effect of this is quantified by calculating the slope of the core sizes, as was
done for the lower bound steps. This slope is likely to be near O for non-partitioned
instances, and increasingly positive in cases where partitioning is more effective.

4.5 Aggregation of evaluation results

The results of every unique run, i.e. every unique solver-instance combination, are com-
bined into a single file to facilitate its analysis. Based on this file, several graphics are
created; these are described in this section, and used in

2This even indicates a negative effect; the search time is partially spent finding solutions instead of cores.
3Note that the model fits a function of form ax + b, where only a is presented; the bias term is desired, as
the early steps are expected to be very large (and thus far from 0), slowly decreasing over time.
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Based on the times taken to reach a correct conclusion, a cactus plot can be created; such
a plot visualises the elapsed time (Y-axis) as a function of number of instances which have
been correctly solved (X-axis). This plot helps to directly compare the performance of the
(twenty-four) variants of the core-guided solver, as well as compare their performance to a
baseline solver. We expect this plot to show a notable variation between the solvers, based
on which we can conclude what variants perform the best, and which perform worse. This
divergence is expected to be bigger than that in [18]], since the variants used here are more
heterogenous; a solver with no additional features is likely to be significantly slower than
one with additional features. Additionally, the different reformulation and weight handling
approaches are expected to cause a notable divergence among solvers with the same features
(or lack thereof), causing even more diversity. The baseline solver is expected to perform
slightly better than most, though not all, core-guided solvers; [[18] suggests comparable
performance, a result most likely applicable to our research as well. An additional factor
might present itself in the selected instances, as certain problem families are presumably
less suitable for core-guided search, as described briefly in

The remaining data points are shown in two different types of table. The first type of
table shows the exit statuses returned by the different solvers. This allows us to perform
a quantitative comparison of the solver variants, and compare these to the baseline solver.
Based on this, we can quantify the positive or negative effects of the additional features on
the most basic level: the number of solved instances.

The second type of table shows the mean of the collected data points, for some set of
core-guided solver variants, aggregated over those problem instances which were solved by
all variants in the table. This allows an easy comparison between the different approaches
and techniques, on key metrics which are expected to improve (or deteriorate) for their
specific configuration. These comparisons allow us to draw more qualitative conclusions
on the different features, as well as on the different approaches used for reformulation and
for weight handling. The expected results from these tables have been previously described
in[section 4.4|and [section 4.3 where the used data points are described.

Finally, the input file metrics and solver performance can be combined into a box plot.
This plot shows whether solvers are, on average, better at solving larger or smaller problems,
and problems with a larger or smaller objective function. The data points collected for this

purpose are described in
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Chapter 5

Results

This chapter contains the results from the experiments described in as well as
their corresponding conclusions. First, the cactus plots are used to derive some general
conclusions in Secondly, tables are used to arrive at more precise conclusions
about various solver variants; we consider the base variants (section 5.2)), the performance
of each individual feature over all four base variants for WCE, for
stratification, for hardening, for partitioning), and the performance
of the four base variants over all features for slice-based weight splitting,
for slice-based coefficient elimination, for variable-based weight split-
ting, and [section 5.10]for variable-based coefficient elimination). Finally, we look at several
file characteristics and their effect on the solver. This is done by first looking at files with
single-variable objective functions in after which other factors and files are
considered in

Most tables used in the following sections are modified fragments of avail-
able in the appendix. In these tables, the solvers are denoted by a string of two to five
letters. The linear search solver is denoted “lin”; the core-guided variants of the solver are
denoted by characters representing their reformulation (first letter, “s” for slice-based and
“v” for variable-based) and weight handling (second letter, “e” for coefficient elimination
and “s” for weight splitting) approaches, as well as additional features (after the dash; “s”
for stratification, “w” for WCE and “h” for hardening). Data from the full table may be ref-
erenced throughout this chapter, in cases where it lightly supports a conclusion, but is not
fully relevant otherwise. In order to draw stronger conclusions, the tables in this chapter use
data over only the problem instances which were solved by all solvers in the table, causing

values to differ slightly from those in[Table A.1]

Note that the time spent on each task is mentioned in Several tasks were
identified for this purpose, of which only two are represented in a number of tables - the
other tasks either took approximately constant time in each case, or took too little time to
draw relevant conclusions on. The tasks represented in the table are the time spent traversing
the search space - the “solver time” - and the time spent executing additional features - the
“special time”. The latter is only relevant in the case of partitioning, where most cases still
spend less than one second on it.
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(a) The plot at normal scale, showing comparable
performance for all solvers.

(b) An enlarged fragment, highlighting the individual
differences.

Figure 5.1: A cactus plot, showing the time taken (Y-axis) as a function of the number of
instances solved before this time (X-axis). In this plot, an instance is considered solved if
either optimality or unsatisfiability was proven. Most core-guided solver variants perform
comparable to one another. We can clearly see that variable-based variants outperform slice-
based variants. Linear search performs comparable to the better core-guided variants. Most
variants experience a speedup from additional features, but some suffer from decreased per-
formance when features are added. A vertical dotted line has been added to (b) to visually
compare between these results, and those later presented in [Figure 5.2{(b).

In [Figure 5.1f(a), it is clear to see that most variants of the core-guided solver perform
somewhat comparable to one another, and to the linear search solver. When enlarging a part
of the plot in[Figure 5.1(b), some general conclusions can be drawn.

The first and foremost observation from is the fact that several of the better
performing solvers exceed the linear search solver. This shows that core-guided search
is indeed a competitive solving paradigm, even when few additional features are used to
improve performance - a promising result for the future of core-guided search in CP.

A second observation is the fact that, quite consistently, slice-based variants perform
worse than variable-based variants. This is in line with the conclusions from [18]]; sim-
ilar to the fact that between the two slice-based variant, weight splitting performs better
on average. However, it stands out that this effect seems to be inverted for the variable-
based variants; in [[18]], variable-based weight splitting outperforms variable-based coeffi-
cient elimination, while seems to show the opposite. A closer look shows that
additional features can decrease this difference; it stands to reason that these features com-
bined, as in [[18]], cause the weight splitting variant to outperform the coefficient eliminating
variant. The four approaches are compared to one another in and individually
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5.1. General conclusions

discussed in the context of additional features in[section 5.7] through

Thirdly, we see that most of the used features are beneficial to the core-guided solver
variants, with two notable exceptions. This is thus largely in line with our expectations.
We see a significant performance improvement for three of the variants when WCE is ap-
plied, which is increased further when hardening is added. Stratification, even when com-
bined with hardening, seems to contribute only minor performance improvements to these
variants. As the first of the two mentioned exceptions, partitioning decreases performance
nearly consistently; contrary to our expectations. Secondly, the variable-based coefficient
eliminating variant seems to experience a performance decrease from all features, to some
extent. These findings indicate that features are not always beneficial. The additional fea-
tures are further discussed in through

An additional fact to note is the fact that intersections occur in These occur
when one variant is more effective on smaller instances, while the other variant outperforms
it on larger instances. A prime example of this is the variable-based coefficient eliminating
variant; this variant is relatively slow (compared to its variants with additional features) on
the first 350 instances, but is eventually able to solve more instances than any other variant.
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(a) The plot at normal scale, showing that the ‘all-VBS* (b) An enlarged fragment, highlighting the individual
solver exceeds all others, by a margin. differences between the other VBSs.

Figure 5.2: A cactus plot showing several virtual best solvers (VBSs) and the linear search
solver. It stands out “all-VBS” exceeds all others, including “core-VBS”, by a margin; this
shows that the linear search solver solves different types of problems than the core-guided
solver variants. The VBSs for different features are further apart than those for different
reformulation and weight handling approaches, indicating that the features have a larger
effect on which instances can be solved. A vertical dotted line has been added to (b), at the

same location as the one in b).

To provide a different perspective on these results, Virtual Best Solvers (VBSs) have
been generated over a total of twelve sets of solvers. These are plotted in Four
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VBSs are shown for the combinations of reformulation and weight handling approaches,
and six VBSs are shown for the used (combinations of) additional features. These ten VBSs
adhere to the same naming scheme as used for the regular solvers, using “VBS” in place
of the varying properties; with the exception of “VBS-base”, representing the VBS over
variants with no additional features. Additionally, a VBS is shown over all core-guided
variants (“core-VBS”), and one over all solvers used in this evaluation (“all-VBS”). For
comparison, the linear search solver is also shown.

The first observation from [Figure 5.2)is the fact that “all-VBS” exceeds all other (virtual
best) solvers, including “core-VBS”, by a margin. This shows that the sets of instances
solved by the linear search solver and core-guided variants have a relatively large symmetric
difference. This advocates that different types of problems are best solved by different
types of solvers. Note again that “all-VBS” is the VBS over a single linear search solver
and “core-VBS”, meaning that the entire discrepancy is caused by one solver; other VBSs
are relatively closer to each of their constituents. This conclusion is covered further in
section 5.11} in the context of specific input files.

A close look at [Figure 5.2(b) shows that all VBSs, except “VBS-p”, outperform all
actual solvers. This indicates that the components of the VBSs solve quite diverse sets
of problems. As such, we can conclude that the used reformulation and weight handling
approaches, as well as the used features, affect which problem instances are solved. Since
the feature-based VBSs are much farther apart than those based on reformulation and weight
handling approaches, we can also conclude that the set of solved instances depends more
strongly on the used features.

5.2 Base variants

’ Solver H Ss se Vs ve lin
# Solved 347 345 357 366 359
# Timed out 400 399 385 378 385
# Out of RAM 24 27 29 27 23
# Proven UNSAT || 11 11 11 11 15

Table 5.1: A comparison of the four variants with no additional features, including the linear
search solver, in terms of reasons for termination. The best value in each column is marked
by a bold font. Note that in the first and fourth columns, this is the largest value, while in
the second and third columns, it is the smallest.

From|[Table 5.1 we can confirm the earlier conclusion that slice-based variants perform
worse than variable-based variants. It is worth noting that the same eleven instances were
proven unsatisfiable by all four core-guided variants.

Looking at [Table 5.2 we see that variable-based variants perform better because of the
relatively low average size of cores. We have previously briefly explained the importance
of small cores in (see also [4]). Slice-based variants cause remainders to be
present in the objective function, thereby using more assumptions and thus allowing larger
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Solver H SS se Vs ve

# of LB steps 107.9 191.3 107.4 188.5
LB step size 10.8 1.10 10.8 1.15
Core size 8.72 6.29 6.02 3.68
Total time (s) 31.3 38.5 24.8 27.7
Solver time (s) 30.2 37.1 24.0 26.9
# of nodes 72k 75k 60k 61k

Table 5.2: The data points describing the optimisation process of the four base variants. For
each metric, except for the number of nodes, the best value has been made bold; this may
be either the largest or the smallest value, depending on the metric. The number of nodes
has been excluded, as changes to it are not necessarily improvements, nor deteriorations.
Data from 334 instances was used; this is the number of instances solved to optimality by
all variants in this table.

cores to be found. Additionally, certain relations are harder to efficiently extract in slice-
based Variantsﬂ In turn, the resulting reformulation variables may allow for more unique
assignments; this increases the number of decisions, and thus the number of nodes to be
searched.

Note that the average core sizes from the coefficient eliminating variants are signifi-
cantly lower than their weight splitting counterparts, while the time taken increases. This is
because these variants produce variables with non-continuous domains, which may produce
many unit cores when encoded as continuous domains - as is done in our core-guided solver.
Choosing to encode these variables using sparse domains may improve performance when
relatively little elements are in the domain - as inference can be done more efficiently - but
may decrease performance when many elements are present - since the domain representa-
tion then takes up more space. The effect extends to the number of lower bound steps and
lower bound step size; these unit cores increase the bound by only 1.

Another important factor to note in the coefficient eliminating variants is the perfor-
mance: the variable-based variant performs better, while the slice-based variant performs
worse than their respective weight splitting counterparts. This is because the workings of
coefficient elimination combine particularly well with variable-based reformulations, while
combining badly with slice-based reformulations. Despite possibly creating variables with
non-continuous domains, variable-based coefficient elimination can directly model cases
where a fixed set of variables is responsible for several separate MUSes - something that is
more complex for all other variants. Meanwhile, slice-based coefficient elimination can in-
troduce very sparse domains; the slice-based approach is specifically bad at handling these,
since each value corresponds to a slice, even if the variable cannot be assigned the repre-
sented value. This strongly increases overhead.

When instead considering weight splitting, we see that those variants often cause re-
formulation variables to have weight higher than one, allowing them to increase the lower

IConsider the relation a+b+ ¢ > n. A variable-based approach would find a single multi-valued core,
while the slice-based approach require n» multi-valued cores.
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bound by more than one when appearing in a core. In coefficient elimination, the increase
is often only one; this is due to reformulation variables, which have weight one, appearing
in cores. As a result, solver variants applying weight splitting experience a larger step size,
and consequently smaller number of steps.

A different observation from [Table 5.1]is that core-guided solvers seem to be worse in
proving unsatisfiability than the linear search solver. This is most likely due to the assump-
tions constraining the search space, requiring many cores - with the resulting additional
overhead - to be found before the proof of unsatisfiability can be found. Note that this could
be largely mitigated by performing an initial feasibility check before placing any assump-
tions, something which is currently not done. Adding this would increase performance on
unsatisfiable instances, at the cost of a slight performance decrease.

Strengths and weaknesses In order to better understand which core-guided approaches
are suitable for what problem instances, we have analysed the problem instances which
were solved by one variant, but not by the other. The findings of these comparisons have
been summarised below.

Reformulation approach The most evident benefit slice-based reformulations of-
fer over variable-based reformulations is the possibility of remainders appearing in cores,
which would otherwise require reformulation variables. This can significantly reduce over-
head in certain cases, especially if the effect occurs multiple times on the same (original)
variables - requiring multiple codependent reformulation variables in a variable-based re-
formulation approach.

Besides this effect, the main difference in performance is due to the advantage of the
variable-based approach, and is the result of the way each approach handles the occurrence
of multiple MUSes on the same set of variables. In the variable-based case, these variables
are simply combined into a single new variable - especially if they have equal weights, or if
coefficient elimination is active. In the slice-based case, this can be much less straightfor-
ward, as different combinations of values are encoded by different variables. As an example,
consider a+ b > 2 where w, = wp, = 1:

ox, = [la)To+ 16110 3 0x, = [al 1T+ [16]17 + [Low, J 1T

Depending on the bound, whether the cores are minimal, and other factors, subsequent
cores may become increasingly more complex. Also note that this effect may be amplified
by coefficient elimination, as the non-continuous domains can cause several slices to appear
which correspond to infeasible values.

Weight handling approach Weight splitting is especially effective when the weights
of variables share a divisor. In such cases, all reformulation variables have a multiple of
this divisor as weight, instead of 1 - as introduced by coefficient elimination. Coefficient
elimination would additionally cause sparse domainﬂ in this type of problem, thereby often

2 As mentioned, an alternative approach would be to encode the domains of coefficient elimination variables
sparsely; however, this could cause domain encodings to become overly large in some cases.
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requiring additional time to find the meaningless unit cores introduced by these domains. Of
course, an alternative approach for these cases would be to divide all weights beforehand,
thereby mitigating this effect.

Coefficient elimination exceeds weight splitting if the weights of objective variables are
close, but not equal. In such cases, weight splitting introduces terms with low (residual)
weight. These low-weighing terms cause the lower bound to increase relatively slowly,
and prevent the cores found to utilize large splits of the weights of the other variables.
Coefficient elimination may need to spent some additional time on the aforementioned cores
due to non-continuous domains; however, these do not introduce additional overhead, and
may thus be more effective in the long run.

In addition to these effects, we saw in[Figure 5.1|that coefficient elimination outperforms
weight splitting in the variable-based context, while being surpassed by it in the slice-based
context. As briefly mentioned, this is in part because its combination with the variable-based
approach allows it to capture multiple MUSes effectively. On the other hand, the slice-
based approach generates reformulation variables with strongly non-continuous domains
when combined with coefficient elimination; as mentioned, this causes many slices which
do not directly correspond to a valid value, incurring additional overhead as these need to
be handled in some way.

A different factor occasionally affecting performance, both positively and negatively for
both approaches, is the order of assumptions. This can affect the cores that are found, as well
as their order. On one hand, weight splitting causes variables with residual weight to remain
in the list of assumptions, which causes them - and, as a result, the propagators they trigger
- to be processed earlier than the new assumptionﬂ If the found core was non-minimal,
these residual assumptions may still result in the (harder to find) minimal core. In other
cases, these assumptions are considered before those of the reformulation variables, and
may thus cause additional cores using only original variables, decreasing overhead. On the
other hand, coefficient elimination removes all assumptions associated with a core, making
sure early cores are functionally more independent by not sharing elements. Additionally,
this prevents low residual weights from appearing in cores, thereby possibly affecting the
lower bound step size of these cores.

5.3 WCE

From [lable 5.3] we observe that all solvers except variable-based coefficient elimination
are able to solve more instances when equipped with WCE. Additionally, we see that all
solvers were able to prove unsatisfiability for three additional instances - which are again
the same instances for each of the four variants. Note that the instances which no longer ran
out of memory in variable-based weight splitting were not solved; they instead resulted in
timeouts. To explain these observations, we look at[Table 5.4]

In we see that WCE extracts the most disjoint cores in slice-based coeffi-
cient elimination, followed by slice-based weight splitting. This is to be expected, due to

3This depends on the implementation details. Solvers using a set or map of assumptions, rather than a list,
may experience this effect differently, as there may not be a set order in which the assumptions are considered.

45



5. RESULTS

Solver H SS ‘ SS-w ‘ N ‘ Se-w ‘ \&} ‘ VS-W ‘ ve ‘ ve-w ‘
# Solved 347 350 |345 [348 [357 [360 |366 | 360
# Timed out 400 | 394 (399 [394 [385 |384 |378 |38I

# Out of RAM 24 24 27 26 29 24 27 27
# Proven UNSAT || 11 14 11 14 11 14 11 14

Table 5.3: A comparison of the variants applying WCE to their base variants, in terms of
reasons for termination. The largest relative improvements have been marked by a bold font.
Note that the white columns are base variants, and the gray columns are variants applying
WCE.

Solver H SS ‘ SS-W ‘ se ‘ se-w ‘ Vs ‘ VS-W ‘ ve ‘ ve-w ‘
# of LB steps 773 | 73.1 163.1 | 153.6 | 76.8 | 69.9 160.2 | 152.7
LB step size 11.1 114 1.08 1.44 11.1 13.3 1.14 | 2.49
Core size 8.55 8.07 | 6.21 585 [ 585 |579 |3.62 | 3.66
Total time (s) 23.8 204 | 308 | 243 17.3 17.8 | 21.2 | 21.1
Solver time (s) 23.0 19.6 | 29.7 | 23.3 16.5 17.0 | 203 | 20.2

# of WCE cores - 212 | - 49.2 | - 524 | - 4.09

# of nodes 56k 74k 59k 82k 49k 60k 49k 147k

Table 5.4: A comparison of the variants applying WCE to their base variants, showing
several important metrics. The largest relative improvements have been marked by a bold
font, where applicable. Note that the white columns are the base variants, and the gray
columns are the variants applying WCE. Data from 323 problem instances was used; this
was the number of instances solved to optimality by all variants in this table.

remainders being present, and the fact that relatively little information is removed at once;
only single slices are removed, while the variable-based approach remove entire variables
at once. Note again that coefficient elimination causes non-continuous domains, which can
generate relatively many slices; if these appear in small, non-unit cores, they can amplify
the number of independent cores compared to weight splitting. The smaller cores result-
ing from WCE can utilize their weight slightly better, as reformulation variables with low
weights are absent from the assumptions, and thus from the cores. This can increase the
lower bound step size and consequently decrease the required number of steps.

The described removal of assumptions causes cores to be disjoint and (on average)
smaller, decreasing overhead. Additionally, this relaxes the problem, which expands the
search space, and in turn increases the chance of finding a proof of unsatisfiability; this
causes an increase in instances proven unsatisfiable. The increased freedom has a less pos-
itive impact on the instances solved to optimality, as observed in the variable-based coeffi-
cient eliminating solver: the removed assumptions heavily expand the search space, causing
a spike in the number of nodes, which can in some cases not be traversed within the time
limit. This has been verified using the raw data; most of the instances which timed out due
to WCE being enabled were able to remove most, if not all, variables before an intermediate
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solution is found.

Our expectation that the slice-based approach would benefit more from WCE than the
variable-based approach seems to be correct; however, the expectation that the variable-
based approach would still benefit is partially wrong. Furthermore, we expected weight
splitting to be able to extract more cores than coefficient elimination; this is the case in the
variable-based variants, but slice-based variants show the opposite.

Strengths and weaknesses WCE can significantly improve performance by preventing
cores containing reformulation variables from being found until later in the search process.
This reduces overhead by causing reformulation variables to be as independent of one an-
other as possible. Additionally, the removal of assumptions over time increases the chance
of finding minimal cores - especially ones that would normally contain an (unnecessary)
reformulation variable; this can reduce overhead even further. Additionally, these smaller
cores may have higher weighing elements, or lack low-weighing reformulation variables,
thereby aiding the lower bound increase. A separate though less prominent factor affecting
the performance of WCE is the fact that, in some cases, the solver is able to increase the
bound of the delayed assumption. This can save some time, as the corresponding unit cores
do not need to be extracted and handled separately, and are guaranteed to not be part of
other, non-minimal cores.

Instead of these improvements, WCE may also be detrimental; by relaxing the assump-
tions, the search space increases. This means that more nodes need to be searched, taking
more time. One example of this is when large cores are found, resulting in many assump-
tions being removed at once, thus relaxing the problem much further than helpful; another
example is when feasible solutions are very scarce, as the time needed to find a solution to
the relaxed problem is high compared to the time normally taken to extract additional cores,
in a restricted search space. A similar situation can also occur with cores being present, as
these can also be hard to find in the expanded search space.

Finally, a specific problem type worth mentioning is that with an objective function of
the form N xx+ M xy with N >> M. There are several cases in which performance on
such a file improves due to WCE, but also several cases in which performance decreases. In
some cases, the application of WCE prevents the aforementioned effect where reformulation
variables immediately appear in new cores, reducing overhead and thus speeding up the
process. However, there are cases in which a solver is able to find many of such cores
without WCE, meaning WCE only contributes the negative impact of the expanded search
space.

5.4 Stratification

In we see that only the variable-based weight splitting variant was able to solve
strictly more instances due to stratification. Most variants ran out of time on several in-
stances for which they previously ran out of memory, and in the variable-based weight
splitting case even for two instances it had previously solved. It should be noted that all
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Solver H SS ‘ SS-S ‘ N ‘ Se-S ‘ \&} ‘ VS-S ‘ ve ‘ ve-S ‘
# Solved 347 | 347 345 [345 [357 [363 |366 | 364
# Timed out 400 397 [399 [402 |385 |380 |378 |383

# Out of RAM 24 24 27 24 29 25 27 24
# Proven UNSAT || 11 14 11 11 11 14 11 11

Table 5.5: A comparison of the stratified variants to their base variants, in terms of reasons
for termination. The largest relative improvements have been marked by a bold font. Note
that the white columns are the base variants, and the gray columns are the variants applying
stratification.

Solver H SsS ‘ SS-S \ se ‘ se-s \ Vs ‘ VS-S \ ve ‘ ve-s ‘
# of LB steps 94.8 | 87.9 180.0 | 130.9 | 94.3 87.4 177.2 | 132.3
LB step size 11.0 16.4 1.11 12.2 11.0 16.4 1.17 12.2
LB step slope -045 | -18.7 | -0.15 | -18.1 | -0.46 | -18.7 | -0.15 | -18.1
Core size 8.75 8.04 | 629 | 6.21 6.03 562 |3.66 | 3.62
Total time (s) 274 | 258 | 350 |[293 |215 |219 |253 |23.7
Solver time (s) 26.3 | 248 | 335 |281 |206 | 21.1 244 | 22.8

# of nodes 63k 148k | 66k 149k | 56k 140k | 56k 141k

Table 5.6: A comparison of the stratified variants to their base variants, showing several
important metrics. The largest relative improvements have been marked by a bold font,
where applicable. Note that the white columns are the base variants, and the gray columns
are the variants applying stratification. Data from 327 problem instances was used; this was
the number of instances solved to optimality by all variants in this table.

solvers were, due to stratification, able to prove unsatisfiability on threeﬁ additional in-
stances; however, the coefficient eliminating solvers reached timeouts on another threeE]
unsatisfiable instances. The other observed changes are explained by looking at[Table 5.6

We clearly see that, in[Table 5.6] the lower bound slope became strongly negative for all
four stratified variants variants, indicating that stratification had a large effect. This effect
mainly manifests in an increased lower bound step size - and associated decreased number
of steps - and, to a lesser extent, in smaller cores. Additionally, the number of nodes in-
creased significantly due to relaxations being considered. The changes are approximately
equal in size for all variants, with the exception that the lower bound step size increased
much more for the coefficient eliminating variants. This last factor is because it may now
be able to find unit cores on original objective variables, instead of finding these after refor-
mulation; this allows the solver to increase the lower bound by the original weight, rather
than by 1.

The aforementioned larger step size and smaller core size are mostly because stratified
solvers are able to find small cores consisting of only high-weighing variables, instead of

4These were the same three instances across all four solvers.
SThese were again the same three instances for both solvers.
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the larger (non-minimal) cores found by non-stratified solvers, containing low-weighing el-
ements as well. This affects mainly variable-based weight splitting, causing a performance
increase. It should be noted that the effect is also present in the slice-based variant; the time
taken decreased. However, the performance increase is not enough to make a difference on
the larger instances. Besides this effect, stratification also considers a relaxation from the
start, which only becomes less relaxed when new solutions are found. In the case of unsat-
isfiable instances, this can be a large benefit, as fewer assumptions are present to prevent
the proof of unsatisfiability from being found.

Despite the described benefits, a performance improvement is small or even absent in
three of the variants. For the variants applying coefficient elimination, this is due to the
reformulation variables. In the first few strata, when the variables of most problems still
have high weights, coefficient elimination can already introduce variables with weight 1.
These low weights can quickly diminish all positive effects introduced by stratification. In
fact, the appearance of these terms caused three timeouts on instances that were otherwise
proven unsatisfiable. Additionally, the fact that the problem is relaxed can also cause an
increase in search time, due to the additional nodes needing to be searched. This effect has
also been covered in the node increase is clearly observed in and
the associated time increase is the reason for the additional timeouts of the variable-based
coefficient elimination solver in

Our expectation concerning stratification were largely incorrect. The coefficient elim-
inating variants experienced no positive (slice-based) or even a negative (variable-based)
effect, while we expected these to benefit more than the (somewhat successful) weight
splitting variants. It is also incorrect that slice-based variants experience a larger benefit; the
advantages over variable-based variants are not strong enough to counteract the additional
overhead incurred at other points of the solving process.

Strengths and weaknesses Most of the performance decrease introduced by stratification
is either because the search space is too unrestricted, or because it is restricted in an ineffec-
tive way. An example of the first case is when the initial stratum contains only one variable,
causing the solver traverse a large part of the search space before finding either a solution
or unit core. An example of the second case is when the solver takes a long time to find a
solution under the current assumptions, while the addition of the next stratum would allow
it to very easily extract one or several cores, after which a (different) solution can be found
more easily. A less prominent reason for stratification decreasing performance, mostly in
coefficient elimination, is the existence of reformulation variables (or residual terms) with
a low weight.

On the other hand, stratification can also increase performance; this happens because in
these cases, different - often smaller - cores are found. These cores lack elements with a low
weight, thus causing the lower bound to increase by a larger amount than if all strata had
been present. This effect is mostly present in the variable-based weight splitting variant, as
this variant has no remainders with original weights late in the process, nor does it introduce
reformulation variables with low weight early in the process.

One additional factor that should be noted is that several instances experienced a perfor-
mance change despite stratification not modifying the instance in any meaningful way. The
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reason for this is an implementation detail, which changes the ordering of Variableﬂ when
stratification is active. This could have either a positive, negative or insignificant effect.

5.5 Hardening

Since hardening requires intermediate solutions, it can only be considered in the context of
an additional feature that generates those. As such, we have combined it with both WCE
and stratification. In order to draw general conclusions based on both variants of hardening,
these first need to be inspected individually.

5.5.1 WCE-based hardening

’ Solver H SS-W ‘ ss-wh ‘ se-w ‘ se-wh ‘ VS-w ‘ vs-wh ‘ ve-w ‘ ve-wh ‘
# Solved 350 | 355 348 | 355 360 | 362 360 | 357
# Timed out 394 | 389 394 | 387 384 | 383 381 384
# Out of RAM 24 24 26 26 24 24 27 27
# Proven UNSAT || 14 14 14 14 14 13 14 14

Table 5.7: A comparison of the variants applying hardened WCE to their non-hardening
variants, in terms of reasons for termination. The largest relative improvements have been
marked by a bold font, if any improvement was present. Note that the gray columns are the
variants applying hardening, and the white columns are the variants applying only WCE.

Solver H SS-W ‘ ss-wh ‘ se-w ‘ se-wh ] VS-W ‘ vs-wh ] ve-w ‘ ve-wh ‘
# of LB steps 75.7 | 75.5 1482 | 144.6 | 72.8 | 67.4 148.8 | 140.4
LB step size 11.6 11.6 1.52 1.84 13.8 14.0 2.63 | 4.03
Core size 794 | 7.79 5.75 5.35 5.69 | 5.65 3.52 | 345
Total time (s) 22.1 19.4 26.9 | 23.5 19.6 19.4 244 | 21.8
Solver time (s) 21.3 18.6 259 | 22.6 18.8 18.7 235 | 21.0
#0of WCE cores || 23.8 | 26.6 453 | 50.3 5.04 | 5.06 4.07 | 4.06
Soft fraction - 0.74 - 0.74 - 0.67 - 0.66
# of nodes 61k 62k 70k 66k 74k 74k 162k | 151k

Table 5.8: A comparison of the variants applying hardened WCE to their non-hardening
variants. The largest relative improvements have been marked by a bold font, where ap-
plicable. Note that the gray columns are the variants applying hardening, and the white
columns are the variants applying only WCE. Data from 332 problem instances was used;
this was the number of instances solved to optimality by all variants in this table.

The main differences in [Table 5.7| are in the first two rows; the latter two show (almost)
no differences. The slice-based variants experience a notable improvement; the variable-

The original list of variables is traversed from back to front, while building the stratum from front to back.
This thus inverts the order of assumptions.
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based variants change less, with the weight splitting variant experiencing an increase, and
the coefficient eliminating variant experiencing a decrease in performance.

According to the changes in slice-based variants are in part caused because
hardening allows even more disjoint cores to be extracted through WCE. This effect is
hardly present in variable-based variants, as cores remove a larger amount of information
(as mentioned in[section 5.3), often leaving too little information for the effect to occur. The
extraction of additional cores is possible because the intermediate solutions normally found
are pruned, as they have a higher objective value than the best solution so far. This may
result in no solutions being present in the search space at that point, thereby causing the
solver to exhaust the search space further before re-adding information. This effect occurs
in approximately one hundred instances, for each of the four variants. As a result, the core
sizes decrease, and the lower bound steps change slightly - the smaller cores have a lower
chance of of containing a small weight, thereby increasing step size and decreasing number
of steps.

The pruning of intermediate solutions is also the main reason for the performance de-
crease of the variable-base coefficient eliminating solver. In fact, this performance decrease
is present in all four variants, though it is obscured by a larger performance increase in three
of the variants. The aforementioned further exhaustion may result in an increase in the num-
ber of nodes - as opposed to the decrease that is expected when parts of the search space
are pruned. The additional cores may be relatively hard to discover, meaning much search
is done before they are found, in turn resulting in the aforementioned node increase, and a
corresponding increase in time taken. This conclusion conflicts with the data in
however, the effect is observed in manually investigated instances. For each of the four
variants, approximately five instances resulted in a timeout due to intermediate solutions
being pruned directly.

Despite these effects of hardening, also shows that hardening affected the
variable-based approach more strongly than the slice-based approach. This is because of the
hardening of reformulation variables. The domains of slice-based reformulation variables
are often too limited to be hardened, while variable-based reformulation variables can have
much larger domains - especially when combined with coefficient elimination.

5.5.2 Stratification-based hardening

According to the stratified variants experience a relatively minor performance
change from hardening. This can be easily explained by looking at the idea behind stratifi-
cation: high-weighing variables, which are most affected by hardening, are considered first,
and the associated assumptions are never fully removed.

The fact that high-weighing variables are considered first also generally causes inter-
mediate solutions to become progressively better; only approximately ten solved instances
used intermediate solutions which would be pruned by hardening, for each of the four vari-
ants. This means that the first effect of hardening as mentioned insubsection 5.5.1|is much
less prevalent, resulting in a minimal number of cases where the search space is exhausted
further due to hardeninﬂ Increases in the number of nodes are thus much less common,

"The effect is not absent; a single instances resulted in timeouts for all four hardening variants, while being
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Solver H S-S \ ss-sh \ se-s \ se-sh \ VS-S \ vs-sh \ ve-s \ ve-sh ‘
# Solved 347 349 345 343 363 362 364 363
# Timed out 397 396 402 404 380 383 383 384

# Out of RAM 24 23 24 24 25 23 24 24
# Proven UNSAT || 14 14 11 11 14 14 11 11

Table 5.9: A comparison of the variants applying hardened stratification to their non-
hardening variants, in terms of reasons for termination. The largest relative improvements
have been marked by a bold font, if any improvement was present. Note that the gray
columns are the variants applying hardening, and the white columns are the variants apply-
ing only stratification.

Solver H $S-S \ ss-sh \ se-s \ se-sh \ VS-S \ vs-sh \ ve-s \ ve-sh ‘
# of LB steps 86.8 | 86.0 | 130.2 | 129.6 | 86.3 | 85.1 131.4 | 131.6
LB step size 16.9 172 | 127 | 13.0 | 169 172 | 127 | 13.0
LB step slope -18.1 | -17.8 | -17.5 | -17.3 | -18.1 | -17.8 | -17.5 | -17.3
Core size 724 | 720 | 6.03 |5.67 |512 | 490 | 354 | 340
Total time (s) 341 | 343 | 366 |389 |283 |27.9 |29.7 | 284
Solver time (s) 329 331 |353 |37.6 |272 |27.0 | 288 |273
Soft fraction - 0.78 | - 0.78 | - 0.77 | - 0.76

# of nodes 162k | 141k | 163k | 149k | 151k | 125k | 152k | 130k

Table 5.10: A comparison of the variants applying hardened stratification to their non-
hardening variants. The largest relative improvements have been marked by a bold font,
where applicable. Note that the gray columns are the variants applying hardening, and
the white columns are the variants applying only stratification. Data from 338 problem
instances was used; this was the number of instances solved to optimality by all variants in
this table.

while parts of domains are still pruned often. These factors combined result in a more struc-
tural decrease on this metric - as observed in Additionally, in the small number
of cases in which additional cores could be extracted, these cores were smaller; they were
discovered before the addition of the new stratum, meaning fewer terms were available to
appear in the core. This caused a minor decrease in average core size. As the new stratum
was not yet added, these smaller cores also contained fewer low-weighing terms, resulting
in a minor increase in lower bound step size, and associated decrease in number of steps.

Besides the decreased number of nodes and smaller cores, a notable effect of harden-
ing is that the new constraints change which conflicts are found. In a small number of
instances, this resulted in a noteworthy effect visible in However, this effect is
not unequivocally positive or negative, and relatively minor.

solved by the non-hardening variants.
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5.5.3 Hardening overall

We have seen that hardening is able to improve slice-based variants with WCE quite well,
but otherwise has relatively little effect. This is most likely because slice-based WCE gen-
erates relatively tight intermediate solutions, which amplify the effect of the underlying
WCE. The remainders prevent the search space from becoming unnecessarily large, while
the small amount of information extracted with each core allows for a high rate of inde-
pendency. Stratification experiences little effect from hardening, We have also seen that the
additional constraints from hardening can cause additional inferences, which may be either
positive or negative - depending on the problem and approach.

The reason hardening was less effective than expected for most of the solvers is twofold:
for WCE, hardening may cause the search space to be exhausted further by pruning subop-
timal solutions, thereby increasing search time; for stratification, hardening has little effect
at all, since both focus mainly on high-weighing variables.

Strengths and weaknesses By pruning the domains of variables, hardening is able to
cause a notable speedup in several cases. However, there are also many cases in which
search space expansions have a strong negative effect, or in which other, less suitable con-
flicts are found. Overall, the effect of hardening depends on many different factors of the
input problem as well as the solver.

5.6 Partitioning

] Solver H ss \ SS-p \ se \ se-p ] Vs \ VS-p \ ve \ ve-p ‘
# Solved 347 338 345 335 357 346 366 350
# Timed out 400 407 399 411 385 398 378 396

# Out of RAM 24 24 27 24 29 25 27 24
# Proven UNSAT || 11 13 11 12 11 13 11 12

Table 5.11: A comparison of the variants applying partitioning to their base variants, in
terms of reasons for termination. The largest relative improvements have been marked by a
bold font, if any improvement was present. Note that the white columns are base variants,
and the gray columns are variants applying partitioning.

At first glance, [Table 5.11| shows a relatively strong decrease in number of solved in-
stances, accompanied by an increase in the number of instances that timed out. Several
cases that previously ran out of memory now ran out of time first, further increasing this
number. The number of instances proven to be unsatisfiable does show a positive impact
from partitioning; similar to WCE and stratification, this is the effect of considering a re-
laxation, namely a single partition. For these instances, a similar effect occurs as seen in
stratification: the same two instances were additionally proven unsatisfiable by all four vari-
ants, and both coefficient eliminating variants encounter an additional timeout - again on the
same instance for both variants.
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Solver H $s \ $S-p \ se \ se-p \ Vs \ VS-p \ ve \ ve-p ‘
# of LB steps 924 | 862 | 179.6 | 141.3 | 919 | 86.7 | 176.5 | 139.6
LB step size 114 | 164 |1.12 | 123 | 114 | 168 | 1.18 | 124
Core size 726 | 639 | 596 |528 |494 | 456 | 349 | 3.09
Core size slope -0.44 | -0.15 | -0.51 | -0.17 | -0.71 | -0.37 | -0.79 | -0.45
Total time (s) 203 | 233 | 262 | 259 |169 |22.0 |19.0 | 223
Solver time (s) 199 | 215 |254 |24.0 | 164 | 202 | 18.6 | 20.6

# of nodes 57k | 96k | 59k | 99k | 49k 88k | 50k 86k

Table 5.12: A comparison of the variants applying partitioning to their base variants, show-
ing several important metrics. The largest relative improvements have been marked by a
bold font, where applicable. Note that the white columns are the base variants, and the gray
columns are the variants applying partitioning. Data from 314 problem instances was used;
this was the number of instances solved to optimality by all variants in this table.

Although the effect of partitioning seems somewhat negative, shows that
its application improves some of the key metrics: cores are slightly smaller, which - as
seen before - leads to an increase in lower bound step size and associated decrease in num-
ber of lower bound steps. Additionally, more unit cores on original variables are found,
strongly impacting the initial step sizes in coefficient eliminating variants. We also see that
the core size slope is less negative than without partitioning, indicating somewhat smaller
cores being found early in the process. A closer inspection of individual files shows that
these positive effects warranted a notable speedup in several (smaller) instances; this is also

visible from intersections in [Figure 5.1|(b).

Besides these positive effects, shows that the overall performance decreased.
The reason is that each partition is solved individually, while representing a strong relax-
ation. As such, a large search space needs to be traversed, which may take a long time - as
described in [section 5.4] and [section 5.3] It may even be the case that a partition contains
only a single variable, requiring much search to be done before any usable information is
discovered. Furthermore, there are cases in which the initial partitions contain little or no
cores, meaning a lot of the early processing time is spent finding solutions; note that these
solutions need to be different for most partitions, as all have different and disjoint objective
variables.

An additional factor to consider is the amount of time taken by the creation of the
partitions. In many cases, this was a relatively small amount; of the solved instances, only
a single case was found to exceed one minute (taking 80 seconds), and a total of nine cases
exceeded one second. Several of the unsolved instances took a longer time; six instances
resulted in a timeout, and an additional seven exceeded one minute. Of the six instances that
timed out, only two were solved by any (non-partitioning) variant. Of the seven exceeding
one minute, three (taking 7, 5.5 and 5 minutes) resulted in timeouts while non-partitioning
variants found a solution. A more efficient approach of creating the partitions may thus
slightly improve performance, but even after this the variants would still perform worse
than most others, and the overall speedup would be insignificant in most cases.

54



5.7. Slice-based weight splitting variants

Contrary to our expectations, partitioning decreased performance for all four variants.
We did not consider the performance decrease incurred by the increased freedom and result-
ing large search space. Note that, as previously mentioned in[section 3.4] the used weighing
scheme may not be sufficiently suitable; a more appropriate one may improve performance.

Strengths and weaknesses The performance decrease caused by partitioning is in large
part due to the found partitions containing little information, as briefly mentioned. This
can manifest in two different ways: either the search space is restricted too little, thereby
causing the solver to take a lot of time traversing it; or the variables in a single partition do
not occur in cores together, meaning a merging step is required before multi-valued cores
can be discovered - while solving the individual partitions may still be non-trivial and time-
consuming, especially due to the conflicting assumptions requiring unique solutions. In
both cases, we argue the partitions are unsuitable for the problem used to create them.

Despite the aforementioned effects, partitioning is able to increase performance for sev-
eral instances. In these cases, partitioning operates mostly as hypothesized; many small
(unit) cores are extracted at the start, and larger cores can be extracted after a merge. There
was also a small number of cases where all cores were found within the original partitions,
before any merge took place. In these cases, the partitions are much more suitable than
most other cases, where partitions contained no cores or were much smaller or larger than
expected. The fact that some problem instances result in suitable partitions while others
result in unsuitable partitions is most likely due to the weighing scheme not representing
the different types of relations accurately. The weighing scheme used is a modified version
of one designed for MaxSAT, where relations are much more monotonous than in CP, and
variables have domains with a fixed size of two, rather than a size specified by the input.
Because of this, the same constraint can have very different effects in different problems.
If a more appropriate weighing scheme were to be designed, partitioning could provide a
valuable tool for core-guided CP solvers in the future. Such a weighing scheme could in-
corporate domain sizes, more accurately model global constraints, and take into account the
signs as well as the weights in a linear inequality,

5.7 Slice-based weight splitting variants

] Solver H Ss \ SS-W \ ss-wh \ $S-S ss-sh Ss-p
# Solved 347 350 355 347 349 338
# Timed out 400 394 389 397 396 407
# Out of RAM 24 24 24 24 23 24
# Proven UNSAT || 11 14 14 14 14 13

Table 5.13: A comparison of the slice-based weight splitting variants, in terms of reasons
for termination. The best value in each column is made bold. Note that in the first and fourth
columns, this is the largest value, while in the second and third columns, it is the smallest.
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Solver H ss SS-W ss-wh 8-S ss-sh SS-p

# of LB steps 85.5 72.8 72.7 70.4 69.7 71.5
LB step size 11.6 12.3 12.3 17.8 18.1 16.8
Core size 7.52 6.91 6.83 7.01 7.19 6.46
Total time (s) 24.1 18.8 17.9 24 .4 25.0 26.1
Solver time (s) || 23.7 18.3 17.4 24.0 24.6 24.3
# of nodes 67k 52k 54k 105k 86k 100k

Table 5.14: The data points describing the optimisation process for the slice-based weight
splitting variants. For each metric, except for the number of nodes, the best value has
been made bold; this may be the largest or smallest value, depending on the metric. The
number of nodes has been excluded, as changes to it are not necessarily improvements, nor
deteriorations. Data from 321 instances was used; this is the number of instances solved to
optimality by all variants in this table.

The data in shows that this variant strongly improves when equipped with
hardened WCE, and experiences smaller positive effects when equipped with the other fea-
tures - with the exception of partitioning. Note that all features consider quite strong relax-
ations, resulting in an increase in instances proven unsatisfiable. One reason for the perfor-
mance changes is seen in[lable 5.14f all additional features decrease the average core size
- with the associated changes in lower bound steps, as explained in several of the previous
sections. However, these changes are not sufficient to explain the performance differences.

This solver variant combines particularly well with hardened WCE because the remain-
ders keep the search space relatively compact (reflected by a decrease in number of nodes
in [Table 5.14), while the disjoint cores decrease overhead. These factors combined de-
crease the time spent searching. By pruning suboptimal solutions, hardening amplifies the
effect of disjoint cores, as it causes more cores to be extracted before adding reformulation
variables. Stratification has a relatively small effect, despite having the least lower bound
steps; the speedup is nullified by the fact that the used relaxations heavily expand the search
space, thereby increasing time spent traversing it. Hardening can again slightly amplify the
positive effects while decreasing the search space, thereby slightly improving performance.
Partitioning is able to extract very small cores, but suffers heavily from the expanded search
space. Additionally, numerous problems generate many, small partitions, which are non-
trivial to solve while containing little or no cores - thereby increasing time taken without
contributing to the problem.

5.8 Slice-based coefficient eliminating variants

From [lable 5.15, we can see that only WCE seems to have a significant positive effect;
this feature, and its hardened variant, caused a notable performance increase. The other
approaches - stratification and partitioning - mainly increased the number of timeouts. Note
that the number of instances proven unsatisfiable is relatively low compared to the weight
splitting variant, for both stratification and partitioning; this is because of the reformulation
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Solver H se se-w se-wh se-s se-sh se-p
# Solved 345 348 355 345 343 335
# Timed out 399 394 387 402 404 411
# Out of RAM 27 26 26 24 24 24
# Proven UNSAT || 11 14 14 11 11 12

Table 5.15: A comparison of the slice-based coefficient eliminating variants, in terms of
reasons for termination. The best value in each column is made bold. Note that in the first
and fourth columns, this is the largest value, while in the second and third columns, it is the
smallest.

Solver H se se-w se-wh se-s se-sh se-p
# of LB steps 176.8 156.8 155.0 112.9 112.6 133.5
LB step size 1.09 1.54 1.87 13.3 13.6 12.5
Core size 5.98 5.61 5.25 5.84 5.54 5.24
Total time (s) 31.1 21.6 20.8 254 27.2 29.0
Solver time (s) 30.3 20.9 20.2 24.9 26.7 27.0
# of nodes 69k 61k 58k 108k 91k 101k

Table 5.16: The data points describing the optimisation process for the slice-based coeffi-
cient eliminating variants. For each metric, except for the number of nodes, the best value
has been made bold; this may be the largest or smallest value, depending on the metric. The
number of nodes has been excluded, as changes to it are not necessarily improvements, nor
deteriorations. Data from 313 instances was used; this is the number of instances solved to
optimality by all variants in this table.

variables, as discussed further later. In we see that the core sizes and number
of steps decrease for each variant, combined with an increase in step size; despite these
seemingly positive changes, performance decreases.

WCE combines well with the slice-based nature of this variant, as discussed in
keeping search space small and overhead low. Stratification improves on key
metrics, while decreasing overall performance; this is explainable when considering that
the solvers intersect in In many cases, stratification aids performance, hence
the improved metrics; however, in certain problems, stratification introduces low-weighing
variables in early strata - as reformulation variables have weight 1 - which can cause a delay
by forcing the solver to extract many (unit) cores in a relaxed setting, while the addition
of later strata could help discover this information more easily. This effect is slightly am-
plified by hardening, as pruned intermediate solutions can cause more such variables to be
introduced, in the few cases where these occur. The effect of partitioning is comparable to
that in it results in smaller cores, but suffers from the large search spaces and
partitions with little or no cores, as well as from the low-weighing cores mentioned before.
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5.9 Variable-based weight splitting variants

’ Solver H Vs ‘ VS-W ‘ vs-wh ‘ VS-S ‘ vs-sh vVS-p
# Solved 357 360 362 363 362 346
# Timed out 385 384 383 380 383 398
# Out of RAM 29 24 24 25 23 25
# Proven UNSAT || 11 14 13 14 14 13

Table 5.17: A comparison of the variable-based weight splitting variants, in terms of reasons
for termination. The best value in each column is made bold. Note that in the first and fourth
columns, this is the largest value, while in the second and third columns, it is the smallest.

Solver H \& VS-W vs-wh | vs-s vs-sh vs-p
# of LB steps 99.4 89.7 84.1 93.5 92.3 88.1
LB step size 11.0 13.2 13.5 16.2 16.5 16.3
Core size 4.89 4.93 4.89 4.60 4.63 4.46
Total time (s) 24.5 19.9 20.0 24.0 242 26.9
Solver time (s) 24.1 19.5 19.6 23.7 23.8 25.1
# of nodes 77k 77k 77k 106k 81k 106k

Table 5.18: The data points describing the optimisation process for the variable-based
weight splitting variants. For each metric, except for the number of nodes, the best value
has been made bold; this may be the largest or smallest value, depending on the metric. The
number of nodes has been excluded, as changes to it are not necessarily improvements, nor
deteriorations. Data from 328 instances was used; this is the number of instances solved to
optimality by all variants in this table.

From [Table 5.17] we see that most features have a positive impact on the variant - only
partitioning underperforms. All variants increase the number of instances proven unsatis-
fiable. Unhardened stratification has the largest positive effect. Similar to the slice-based
variant, unsatisfiability is more easily proven due to a relaxation being considered.

According to stratification combines particularly well with this variant due
to the increased lower bound steps. It has a moderate effect, allowing it to be slightly
more efficient on certain problems, leading to an overall performance increas Hardening
slightly amplifies the positive effects, as well as decreasing the search space; however, this
again at the cost of pruning suboptimal solutionﬂ thereby experiencing a minor increase
in time and an additional timeout. Surprisingly, the large step size in stratification does

8There is no particular reason why this variant experiences a performance increase while the slice-based
variant does not; due to variable-based variants being slightly more efficient, a small number of problems was
close to being solved, and the minor improvement incurred by stratification allowed these to be solved; in the
slice-based case, the improvement is comparable, but such files are not present, and a significant improvement
is needed to experience performance increase.

°In the few cases that used them.
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not result in the lowest number of steps; WCE is able to decrease this metric further. The
reason is that stratification has more variance: some problems, for example those with low
weights, experience little benefit, while those with weights in different orders of magnitude
experience an enormous benefit; WCE causes a more moderate yet structural decrease in
step size. Overall, WCE is able to curate a significant speedup in many cases due to the
disjoint cores; however, the search space expands relatively more than in the slice-based
variants, somewhat diminishing the positive effect. Hardening allows slightly more cores
to be extracted per reformulation, which slightly increases time due to additional (relaxed)
search in some cases, but decreases overhead and time in other cases. Partitioning is able to
find the smallest cores, while also having a low number of large steps; yet it underperforms
because of the aforementioned partitions with little or no cores. In many cases, a lot of
time is required to solve individual partitions, before a single core is even present in such a
partition.

5.10 Variable-based coefficient eliminating variants

’ Solver H ve ‘ ve-w ‘ ve-wh ‘ ve-s ‘ ve-sh ‘ ve-p
# Solved 366 360 357 364 363 350
# Timed out 378 381 384 383 384 396
# Out of RAM 27 27 27 24 24 24
# Proven UNSAT || 11 14 14 11 11 12

Table 5.19: A comparison of the variable-based coefficient eliminating variants, in terms of
reasons for termination. The best value in each column is made bold. Note that in the first
and fourth columns, this is the largest value, while in the second and third columns, it is the
smallest.

Solver H ve ve-w ve-wh | ve-s ve-sh ve-p
# of LB steps 189.0 175.6 167.4 147.8 148.1 1371
LB step size 1.20 2.67 4.06 12.6 13.0 12.1
Core size 3.32 3.41 3.34 3.30 3.16 2.95
Total time (s) 31.2 26.1 244 27.2 27.4 29.3
Solver time (s) 30.8 25.7 23.9 26.8 26.9 27.6
# of nodes 93k 161k 157k 126k 106k 112k

Table 5.20: The data points describing the optimisation process for the variable-based coef-
ficient eliminating variants. For each metric, except for the number of nodes, the best value
has been made bold; this may be the largest or smallest value, depending on the metric. The
number of nodes has been excluded, as changes to it are not necessarily improvements, nor
deteriorations. Data from 334 instances was used; this is the number of instances solved to
optimality by all variants in this table.
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The numbers in [lable 5.19) show that all features decrease the performance of the
variable-based coefficient eliminating variant. The variants using WCE do increase the
number of problems proven unsatisfiable, again because of the relaxation being considered.
The number of instances solved to optimality decreases notably in these variants; more so
than in the stratified variants. Partitioning again causes the most significant performance
decrease.

Interestingly, shows that several of the features do combine well with this
variant; not only the core size or lower bound steps show improvements, but so does the
time taken. WCE is the fastest by comparison, especially when combined with hardening;
this is because, in many cases, the overhead significantly decreases. The cost, however, is
that the search space expands very rapidly, much more so than in any other variant - due to
the lack of both remainders and residual weights. In cases where this happens, the result is
often a timeout; this causes the time taken according to[Table 5.20|to remain relatively low,
as it only incorporates the solved instances, and thus over-represents those with a positive
effect. This is in line with the intersection visible in Stratification causes a
minor speedup due to the large steps, but again introduces reformulation variables with
low weight early in the process; this keeps the effects moderate, while the relaxations still
heavily expand the search space, thereby increasing search time. Hardening slightly amplify
most positive effects, while negatively affecting the small number of instances dependent
on pruned intermediate solutions. Partitioning again suffers from the expanded search space
as well as partitions containing little or no cores, despite finding by far the smallest cores
and requiring the smallest number of steps.

5.11 Input files with a single objective term

As previously mentioned, several input problems have only a single term in their objective
function (after flattening). When this is the case, core-guided search is performed on only a
single variable, severely limiting its functionalities. As such, we shall briefly consider these
cases separately.

From [Table 5.21)(a), we first observe that the performance of all core-guided variants is
(nearly) equal. This is because, with a single objective term, only unit cores can be found;
these are processed in the same way for each approac The small differences are most
likely due to variance introduced by the scheduler program, or the underlying hardware.
The linear search solver, on the other hand, performs much better on these single-term
instances. The reason is that the strength of core-guided solvers lies in the extraction of
multi-valued cores, and the resulting refinements. In instances with a single objective term,
the core-guided variants perform constrained linear search; this naturally results in lower
performance.

When instead looking at [Table 5.21|(b), it is clear that core-guided solver variants per-
form much more competitively when multi-valued cores are present; most outperform the

10This statement is only true when considering cases where only unit cores were found; if a unit core is
found later in the search process, slice-based weight splitting resets its weight, something other variants do not
do.
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Solver Correct Unsolved Solver Correct Unsolved
outcome outcome
SS 107 99 Ss 251 325
SS-W 107 99 SS-W 257 319
ss-wh 107 99 ss-wh 262 314
$S-8 107 99 S-S 254 322
ss-sh 108 98 ss-sh 255 321
SS-p 109 97 SS-p 242 334
se 108 98 se 248 328
se-w 106 100 se-w 256 320
se-wh 108 98 se-wh 261 315
se-s 108 98 se-s 248 328
se-sh 108 98 se-sh 246 330
se-p 108 98 se-p 239 337
VS 108 98 VS 260 316
VS-W 107 99 VS-W 267 309
vs-wh 108 98 vs-wh 267 309
VS-S 108 98 VS-S 269 307
vs-sh 108 98 vs-sh 268 308
vs-p 108 98 vs-p 251 325
ve 107 99 ve 270 306
ve-w 108 98 ve-w 266 310
ve-wh 107 99 ve-wh 264 312
ve-s 108 98 ve-s 267 309
ve-sh 107 99 ve-sh 267 309
ve-p 108 98 ve-p 254 322
lin 123 83 lin 251 325

(a) For objective functions with a single term.

(b) For weighted linear objective functions.

Table 5.21: Tables showing the (simplified) termination conditions for input files with objec-
tive functions consisting of (a) a single term, and (b) a weighted linear sum of multiple vari-
ables. “Solved” indicates that either optimality or unsatisfiability was proven, “unsolved”
indicates that neither was proven within the allotted time or memory bounds. Note that the
linear search solver performs especially well on the input files whose objective function has
a single term, while conceding to many core-guided variants on those using a weighted lin-
ear sum. There are 206 input files in the single term category, and 576 files in the weighted
linear sum category.

linear search solver, with the other variants performing only slightly worse. This is in line
with our expectations. To visually compare the performance on this type of problems,
shows again the performance of all solvers, using only data from instances with
multi-valued objective functions. It is clear that the linear search solver appears much less
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Figure 5.3: A zoomed cactus plot, showing the time taken (Y-axis) as a function of the
number of instances solved before this time (X-axis), considering only the problems with a
weighted linear sum as the objective function. Compared to more core-guided
solvers outperform the linear search solver.

powerful than it did in

Based on this data, we can thus conclude that core-guided search requires a somewhat
larger number of objective variables to perform optimally. It still performs relatively well on
problems with only a single objective term, but is easily surpassed by linear search solvers
in these cases. This also advocates the earlier conclusion that different types of solvers
are most adequate for different types of problems, as all approaches have their individual
strengths and weaknesses.

5.12 Influence of input problem metrics

In order to analyse which types of problems are most suited for core-guided solvers, sev-
eral features were extracted for each input file. These features have been visualised in
These images have allowed us to draw some minor conclusions on the performance
of each variant, for problems of different sizes.

The main conclusion that can be drawn from this data is that, on average, all solvers tend
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to perform better on smaller instances than on larger instances; the means and distributions
of unsolved instances are higher than those of the solved instances. Additional conclusions
can be drawn by looking at each plot individually.

When looking at the number of objective variables, we see that the mean of the linear
search solver is lower than the other means. This is mostly due to the aforementioned fact
that linear search performs significantly better on single-term objective functions, while
core-guided search performs better when more terms are present. We also see minor de-
creases in the means for variants applying partitioning, and the variable-based solvers apply-
ing hardened WCE. Partitioning performs better on smaller objective functions as a smaller
number of objective variables correlates with a smaller number of partitions to consider,
resulting (on average) in a faster process. The problems solved by variable-based variants
with hardened WCE tend to have fewer objective variables, as these benefit the most from
disjoint cores. With relatively little variables, it is more likely to find non-minimal cores
with reformulation variables; as such, overhead is reduced when cores are forced to be
disjoint.

For the number of unique objective weights, we again observe that linear search is
slightly biased to input files with a single term, and as such has a lower average. We see
that stratified variants - especially when combined with hardening - solve problems with,
on average, a smaller number of unique weights than other variants; this is mostly because
the unique weights all need their own stratum, resulting in many strata and thus additional
overhead when many unique weights are present. This effect is most present in the coeffi-
cient eliminating variants due to the reformulation variables having a weight of 1. It stands
out that the average of variants with hardened WCE lies just above the overall average, in
all cases except variable-based weight splitting. This specific variants excels when many
variables have the same weight, due to the weight splitting nature and the absence of re-
mainders. Hardened amplifies this effect by solving slightly more (difficult) problems with
a low number of unique weights.

The number of variables shows that stratified approaches perform slightly better on
larger problems; this is most likely due to the increased lower bound steps. Compared to
the number of decisions on non-objective variables, the increased number of nodes incurred
by stratification is insignificant, while the lower number of steps effectively decreases the
number of cores that need to be extracted. Partitioning has a lower average, which can be
explained by looking at graph size; the more variables are present, the larger the graph,
most likely resulting in a large number of partitions. The linear search solver presumably
performs worse on large instances due to the search space being unconstrained, but can
solve additional small instances for the very same reason. The number of constraints shows
approximately the same results.
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Chapter 6

Conclusions

In this thesis, we have investigated the efficacy of several additional features for core-guided
search in the context of CP. We have done so by first implementing the four reformulation
and weight handling approaches described in [18]], after which four additional features were
implemented: WCE, stratification, hardening and partitioning. Of these, the first three have
been previously implemented in [18]], while partitioning has been newly adapted to CP. A to-
tal of twenty-four solver variants was considered; for each of the base variants, i.e. variants
applying a given reformulation and weight handling approach, we considered a variant with
no additional features, a variant applying partitioning, and variants applying either WCE or
stratification, both with and without hardening. Note that several additional combinations
could have been considered, such as partitioning with hardening, or a combination of WCE
and stratification; these have been left out in favour of extensive individual evaluations for
each feature and approach. Each of these twenty-four solver variants, in addition to a single
linear search solver, were evaluated on a dataset of 782 problem instances.

The most important conclusion drawn from this research is the fact that solvers of-
ten solve different problems from one another; we have seen on multiple occasions that
two solvers performed nearly identical in quantitative terms, while the selections of solved
problems showed notable differences between the two. This was most clear when compar-
ing the core-guided solver variants to the linear search solver as done in but
also occurred for various combinations of core-guided solver variants. Despite the over-
all performance of most solvers being comparable - and the solvers completing largely the
same set of instances - this shows that a lot can be gained by picking the right solver for a
given problem. Additionally, we have seen that the order of assumptions can play a notable
role in the performance of a core-guided solver.

For each individual solver variant, we analysed the performance in comparison to those
applying the same feature, and to those using the same reformulation and weight handling
approach. These conclusions were different for each variant, but for satisfiable instances,
we mainly saw that variable-based coefficient elimination is most efficient when no addi-
tional features are used; that WCE improves the other variants, with slice-based approaches
experiencing significant additional benefits from hardening; and that partitioning decreases
overall performance in most cases, despite increasing several metrics. For unsatisfiable in-
stances, we concluded that WCE quite strongly improved performance in all four variants;
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that stratification allowed unsatisfiability to be proven in some instances, while causing ad-
ditional timeouts in the coefficient eliminating instances; and that partitioning was able to
improve performance to a lesser extent.
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Chapter 7

Future research directions

Based on this research, several future research directions can be set out. This research has
shown that, depending on the solver, certain additional features can significantly improve
performance. This raises the question which other features can improve performance in a
similar fashion. This may either be additional features already present in MaxSAT solvers,
which are converted to work on CP, as has been done in this thesis; or research could be
done to develop additional features specifically for CP-based core-guided solver, potentially
even focusing on a specific reformulation or weight handling approach. Though this is the
more promising option, it may prove more difficult, and may cause some promising features
from MaxSAT to be overlooked.

A second research direction, related to the first one, is to investigate how much value
can be found in altering the order in which assumptions are added. Though less prevalent
in variable-based approaches, this has caused the slice-based weight splitting variant to out-
perform the slice-based coefficient eliminating variant on multiple occasions. Additionally,
certain variants which are expected to perform comparably have shown divergence due to
this factor. It may very well be the case that a proper heuristic for assumption ordering
is able to increase performance by a notable amount, in both reformulation approaches, as
well as across different features.

An alternative research direction could be the development of a more suitable parti-
tioning approach. In this research, the implementation of partitioning was based on the
MaxSAT version presented in [31]. The weighing scheme was made to approximately cor-
respond to this MaxSAT version as well, and as such did not consider the unique features
of CP. If a more appropriate graph representation and corresponding weighing scheme are
designed specifically for CP, the partitions found in this graph may be much more adequate,
potentially increasing overall performance significantly.
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Figure A.1: Box plots showing the approximate distribution of solved (green) and unsolved
(red) instances per solver, across four input file metrics. To the left of each plot is a his-
togram showing the distribution of the instances. The arithmetic mean of each box is rep-
resented by a thick bar, usually above the box itself. Note that the Y-axis is logarithmic,
meaning the histogram has exponentially increasing bin sizes. A dotted line in the his-
togram shows the arithmetic mean value across all input files, and a thin solid line shows
the arithmetic mean value across the solved input files. To highlight the most relevant data,
three plots have been cropped; the plot of the unique objective weights lacks its top part,
while the plots showing the number of variables and constraints lack their bottom parts.
Note that a significant proportion of input files has only a single objective variable, and an
even larger proportion has only a single unique weight.
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