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Chapter 1

Introduction

The application of natural circulation of the coolant in a boiling water nuclear reactor
(BWR) is a promising concept, since the natural-circulation design can be more econorn-
ical and safer than present-day, forced-circulation BWRs. In a natural-circulation BWR,
the coolant flow is driven by the density difference between the boiling two-phase mixture
in the core + the riser and the single-phase fluid in the downcomer (figure 1.1). This
gravity-driven, passive process ensures the coolant circulation as long as heat is being
produced in the core. It also largely simplifies the system by eliminating the need for
recirculation pumps, which are present in forced-circulation BWRs. This is in line with
the trend towards simplicity and passive safety in modern reactor design philosophy in
the last two decades (Taylor, 1989; McCandless and Redding, 1989; Murley, 1990).
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Figure 1.1: A cut-away scheme of the vessel of the Dodewaard natural-circulation BWR.

No recirculation pumps are present in this design. A relatively long riser is placed on the
top of the core to increase the natural-circulation flow rate.

However, the concept of natural-circulation BWRs is not new. A commercial natural-
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circulation BWR. plant was put into operation in the Netherlands between 1968-1997,
called the Dodewaard reactor. The reactor was a design of the General Electric Company
(GE) with a relatively low power of 57 MWe. A cut-away view of the vessel of the
Dodewaard reactor is shown in figure 1.1. To enhance the natural-circulation flow rate
a relatively long unheated section, a so-called riser (chimney), is placed on top of the
core, as is shown on the figure. This reactor can be considered as a prototype of the
natural-circulation BWRs.

As response to the renewed interest in natural circulation and passive processes, GE
started with the design of a natural-circulation BWR again, in 1982. This 670 MWe
Simplified Boiling Water Reactor (SBWR) design has, apart from the natural circulation
of the coolant, several additional safety systems that rely predominantly on passive pro-
cesses, such as the isolation condensers and the gravity driven emergency core cooling
system (McCandless and Redding, 1989). In 1996, the SBWR. concept was followed by
the more economical, 1190 MWe, ESBWR (Challberg et al., 1998; Cheung et al., 1998),
where E stands for European. The significant power uprate from the SBWR to the ES-
BWR design requires certain changes to assure sufficient coolant flow rate. The magnitude
of the natural-circulation flow rate depends on the driving head and the losses through
the circulation path. The chimney height was increased to enhance the core flow rate.
The ESBWR has an unrestricted downcomer flow area, which was optimized to minimize
losses. The effective fuel height remained the same, which means relatively less pressure
loss over the core. A very important aspect for both the natural-circulation flow and the
stability of the reactor is the design of the steam separator on the top of the chimney. An
improved, reduced pressure drop steam separator is incorporated in the ESBWR. These
changes must be thoroughly evaluated with respect to reactor safety and stability.

The stability of BWRs has always been a very important issue since the first BWR
designs were proposed. The research on BWR dynamics, started at that time, has resulted
in significant progress in understanding the physics and modelling of the stability of this
type of reactors. Although experiments on the stability of BWRs have been performed
in the past, the experimental database is still poor. Especially, experimental results on
natural-circulation systems should be gathered for code validation. There is no confidence
that the state-of-the-art thermal-hydraulic codes available are able to reproduce within
acceptable margins the behavior of natural-circulation BWRs at all practically interesting
operating conditions. It is particularly true for the prediction of nonlinear, unstable
behavior. Furthermore, all relevant physics involved in the dynamics of natural-circulation
BWRs should be well understood.

Driven by these needs, this thesis focuses on investigating several problems associ-
ated with the dynamics and stability of natural-circulation BWRs. Part of the work
contributes to a coordinated research project, Natural Circulation and Stability Perfor-
mance of BWRs (NACUSP), which was started in 2000 within the European-Union Fifth
Framework Programme. The main aims of the project are to increase the understanding
of the physics of the phenomena involved in natural-circulation BWRs, to provide with
a large experimental database, to validate state-of-the-art thermal-hydraulic codes and
to give guidelines on how to prevent instabilities in operating and future BWRs (like the
ESBWR).

In the next section, after a brief historical review on BWR stability analysis, the differ-
ent BWR instability types and the tools used for studying BWR stability are introduced.
Finally, the objectives of the work are listed and an outline of the thesis is given.
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1.1 Boiling Water Reactor Stability

1.1.1 A short historical review on BWR stability investigation

The concept of a BWR was examined first by the Argonne National Laboratory (ANL).
There was a series of BWR experiments, BORAX (Kramer, 1958), starting in 1953,
designed to study aspects of BWR behavior. The lessons of the BORAX experiments led
to the design of the Experimental Boiling Water Reactor (EBWR) (Kramer, 1958) and
commercialization starting at the Dresden unit. The EBWR was operated at ANL-Illinois
from 1957 until 1967 at power levels up to 100 MWt with an electrical output of 5 MW. Its
missions included demonstrating the BWR concept for electricity generation with various
fuel enrichments. The first large-scale, utility-owned BWR was the 200 MWe plant at
Dresden. It started operation in 1960 and ran until 1978.

It has already been recognized in the framework of the Dresden project that a BWR
is analogous to a feedback amplifier that might become unstable if the feedback signal
acquires 180 degree phase shift at a gain of unity. This was the starting point of the
analysis of dynamics and stability. The experimental tests on the EBWR and the Dresden
reactor were in reasonable agreement with the result of the first BWR dynamic models
and showed that these BWRs are very stable (Thie, 1957, DeShong and Lipinski, 1958;
Beckjord, 1957). It was then clear that a large BWR for commercial power generation
can be designed without concern about stability. At sufficiently high operating pressure,
due to the relatively weak feedback from void production to power, no stability problems
were expected. Using oxide pellet fuel was also very important for the stability of these
designs: due to its long thermal time constant it attenuates oscillations in the void-
reactivity feedback and prevents instability (D’Auria et al., 1997). However, several fuel
modifications have been carried out in the course of development of BWRs and the core
power density of later designs has been increased. These changes resulted in stability
problems in operating BWRs in the 1970s and 1980s. The unexpected instability events
in the Caorso power plant in 1984 (GE, 1983) and in the LaSalle power plant in 1988
(IRS, 1988) have reinforced the research in BWR stability. In the early 1990s several
operating BWRs have also experienced stability incidents. A comprehensive review of
BWR stability is given in the OECD-NEA report: State of the Art Report on Boiling
Water Reactor Stability (SOAR) (D’Auria et al., 1997). In thc next section, a short
introduction is given on the different types of instabilities occurring in BWRs.

1.1.2 Review of BWR instability types

The instabilities occurring in BWRs are classified in the literature in different ways. Sev-
eral authors distinguish, in the first place, between thermal-hydroulic instability and cou-
pled neutronic-thermalhydraulic instability (Bouré et al., 1973; Lahey and Moody, 1993).
The former one is basically represented by the so-called density-wave oscillations. The
mechanism of density-wave oscillations in boiling channels, such as a BWR fuel assembly,
can be explained in a number of equivalent ways (Bouré et al., 1973; Yadigaroglu, 1981;
Lahey and Moody, 1993). The most commonly accepted explanation is as follows. Flow
perturbations at the channel inlet create enthalpy fluctuations in the single-phase region.
At the boiling boundary (the elevation at which the bulk of the liquid reaches the sat-
uration temperature and starts to boil) the enthalpy perturbations are transformed into
void-fraction variations that travel with the flow through the system. Obviously, the posi-
tion of the boiling boundary fluctuates as well. The combined effect of flow, void-fraction
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and boiling-boundary perturbations causes fluctuations in the pressure drop across the
channel. Since the total pressure drop across the channel is imposed externally by the
characteristics of the system feeding the channel, variations in the pressure drop produce
a feedback perturbation in the inlet flow. Under specific conditions, the pressure-drop
perturbations can acquire appropriate phases and the inlet flow-oscillations become self-
sustained. Thus, transportation delay and pressure-drop characteristics are of paramount
importance for the stability of the system (Bouré et al., 1973; Yadigaroglu, 1981; Lahey
and Moody, 1993). The well-accepted terminology "density-wave oscillations" originates
from Stenning and Veziroglu (1965) and illustrates that packages of alternatively lower-
and higher-density mixture travel with the flow through the system. Density-wave oscil-
lations represent dynamic instabilities of the boiling, two-phase flow system in contrast to
the static, excursive type (Ledinegg) instabilities (Bouré et al., 1973; Lahey and Moody,
1993).

Thermal-hydraulic instabilities can also be divided into high-pressure versus low-
pressure instabilities. Under normal operating pressure in a BWR (~ 75 bar), the so-called
Type-I and Type-1I oscillations can occur (Fukuda and Kobori, 1979). At low-power and
low-pressure start-up conditions flashing-induced instabilities might occur. This insta-
bility is pronounced in natural-circulation systems with long risers. The void flashing
phenomenon is the sudden boiling of the coolant in the riser caused by the considerable
decrease of the saturation temperature along the riser due to the decreasing hydrostatic
pressure. Void flashing in the riser results in oscillations of the driving force of the natural-
circulation flow.

Density-wave oscillations form the basis for coupled neutronic-thermalhydraulic in-
stabilities (Lahey and Moody, 1993). Due to the strong influence of the coolant on the
neutron population in the reactor - as it also serves as moderator - oscillations in the
coolant flow rate and void fraction result in power oscillations in BWRs. The strength
of the coupling between the thermalhydraulics and the neutronics, the void-reactivity
feedback, has an important effect on the stability of an BWR.

Typical example of the interplay between neutronics and thermalhydraulics, the so-
called out-of-phase (regional) power oscillations, have been observed in several operating
BWR plants. During out-of-phase oscillations, the power in one half of the reactor core
oscillates opposite to the power in the other half, as does the coolant flow through the
core. This instability is in contrast with in-phase (core wide) oscillations where the power
(and the flow) in the whole core oscillates simultaneously. It was pointed out that the out-
of-phase oscillations are less stable from thermal-hydraulic point of view (March-Leuba
and Rey, 1993), but they are damped by the subcritical neutronic mode (first azimuthal
mode). While the in-phase oscillations are thermalhydraulically more stable, they are
destabilized by the strong feedback from the fundamental (critical) neutronic mode.

The core of a BWR consists of hundreds of fuel bundles, which are practically parallel-
coupled two-phase flow channels. With respect to this, distinction is usually made between
single-channel and parallel-channel instability (D’Auria et al., 1997). The former one
refers to the case when one of the several parallel channels is oscillating in a stable system.
A single oscillating channel may trigger more complex instabilities, regional instability or
core-wide reactor instability. The latter one is related to the stability of different fuel
bundles up to including the entire core and to the way they are coupled to each other
through the external boundary conditions. Parallel channel oscillations may be either
core wide or regional.
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1.1.3 Tools for BWR stability investigation

Three tools are used in this thesis to study the stability of natural-circulation BWRs: an
experimental facility, a reduced-order model and a thermal-hydraulic system code. These
tools are introduced briefly below:

The experimental facility

The most obvious way to investigate the stability of a natural-circulation BWR is to
carry out measurements on it. Recently, an extensive series of stability measurements
was carried out at the Dodewaard reactor (Van der Hagen et al., 1997), where the reactor
conditions varied from very stable to unstable. Although these measurement results are
extremely valuable for stability analysis, the experimental possibilities are quite restricted
in an actual reactor. The number and types of sensors that are present in a reactor are also
limited. Therefore, it was decided at the Department of Reactor Physics of the Interfaculty
Reactor Institute to build a natural-circulation experimental facility that can provide with
experimental data that it would not be possible to measure otherwise. Obviously, such
a facility has also its own limitations and the actual BWR cannot be imitated perfectly
with it. However, concentrating on the relevant phenomena and parameters, a model
facility can be designed that simulates the real system fairly well with respect to these
phenomena.

One commonly used technique to achieve this in case of two-phase flows is scaling. A
facility, consisting of a scaled copy of a fuel bundle of the natural-circulation Dodewaard
reactor, has been designed (Van de Graaf et al., 1994a). The flexible design of the facility
allows the study of new natural-circulation reactor designs as well. The Delft Simulated
Reactor (DESIRE) facility - a natural-circulation, boiling two-phase flow loop - became
operational in 1994. Using the facility, valuable information on natural-circulation two-
phase flows can be obtained like the void fraction, the void-fraction distribution and the
natural-circulation flow rate. Later on the loop was equipped with an artificial void-
reactivity feedback simulation (Kok and Van der Hagen, 1999). The void-reactivity feed-
back simulation must be optimized to enable realistic simulation and investigation of
coupled neutronic-thermalhydraulic oscillations encountered in actual BWRs. A detailed
description of the facility is given in Chapter 3.

The reduced-order model

To model BWR dynamics and stability, two main approaches can be distinguished. One
approach develops and uses advanced system-transient codes, which are based on a de-
tailed description of the underlying physical phenomena. These codes incorporate state-of-
the-art models for the three-dimensional neutron kinetics, the fuel-to-coolant heat transfer
and the coolant thermalhydraulics. The other approach focuses on the utilization of so-
called low-dimensional or reduced-order models (March-Leuba et al., 1986a; Rao et al.,
1995; Karve et al., 1997). Reduced-order models capture only the most significant physi-
cal processes determining the dynamics of a BWR and usually consist of a limited number
of ordinary differential equations. This simplification obviously occurs at the expense of
accuracy. Nevertheless, it leads to the development of fast-running models that gener-
ate qualitatively correct predictions of stability trends for a wide range of operating and
design paramecters. This makes reduced-order models very suitable for fast parametric
studies on BWR stability, in contrast to the time-consuming advanced codes. Amnother
very important advantage of simplified models is that they allow increasing insight into
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the physics of BWR dynamics and enable the identification of the relevant dynamical
processes responsible for instabilities. This possibility is quite limited, or not feasible at
all, with advanced state-of-the-art BWR system codes due to their inherent complexity.
Van Bragt and Van der Hagen (1998a) have developed a reduced-order model of natural-
circulation BWR dynamics. They evaluated the stability measurements carried out on
the Dodewaard reactor. They showed that the model predicts the measured trends in
BWRs reasonably well. The model is described in detail in Chapter 2.

The thermal-hydraulic system code

The state-of-the-art thermal-hydraulic code, MONA 1.9, is used as a complementary nu-
merical tool for reference calculations and for quantitative comparison with experimental
results. MONA 1.9 is a commercial thermal-hydraulic code for steam-water /inert gas sys-
tems developed by Scandpower (Hoyer, 1994a). The code has been developed with the aim
of improving the thermal-hydraulic models used in the reactor dynamic code RAMONA
5. Possible applications of the code range from pressurization, flow and temperature
transients to the analysis of density-wave oscillations.

1.2 Objectives

Using the tools introduced above, the thesis examines the following aspects of natural-
circulation BWR dynamics and stability:

e increasing the insight into the role of different physical phenomena involved in
thermal-hydraulic and coupled neutronic-thermalhydraulic instabilities of natural-
circulation BWRs applying the reduced-order model, improving the model and the
understanding of the physics of instabilities;

e investigating several practical linear stability and nonlinear dynamical problems of
natural-circulation BWRs numerically;

e investigating the thermal-hydraulic stability of natural-circulation two-phase flows
experimentally for as wide range of stability situations as possible: from very stable
(linear behavior) to strongly unstable (nonlinear behavior);

e improving the artificial void-reactivity feedback simulation in the DESIRE facility
to enable realistic simulation of coupled neutronic-thermalhydraulic oscillations en-
countered in actual BWRs, investigating the coupled neutronic-thermalhydraulic
stability of natural-circulation BWRs experimentally;

1.3 The outline of the thesis

This thesis is organized as follows:

In Chapter 2, a linear stability analysis of natural-circulation BWRs and the under-
lying thermalhydraulics is presented using the aforementioned reduced-order model. The
root loci (poles) of the system are examined as a function of the operating conditions,
riser length, and void-reactivity coefficient. The origin of the poles and their importance
for the stability of the system are investigated. Furthermore, the relevant physical phe-
nomena driving the instabilities are studied to gain more insight into their influence on
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the dynamics. The study includes the stability analysis of forced-circulation systems as
well.

Experimental investigations on the linear stability of natural-circulation two-phase
flows are presented in Chapter 3. First, it is described how the DESIRE facility is desta-
bilized on purpose to enable the study of unstable situations. Stability maps are obtained
under different experimental conditions such as changing the friction distribution along
the loop, or changing the axial heating profile. Assessment of the measurements using
the reduced-order model and the MONA code is also given.

In Chapter 4, two distinct applications of the reduced-order model are discussed. The
first problem is related to the stability monitoring of BWRs. It is examined how the
decay ratio, which is almost exclusively used for stability monitoring, is related to safety
(stability) margins expressed in operational parameters. The second problem addressed
is the influence of core-inlet temperature variations on the thermal-hydraulic stability of
BWRs. For this purpose, the model is extended to account for the dynamics of the core
inlet subcooling. The problem is examined using the MONA code as well.

In Chapter 5, numerical bifurcation analysis of the nonlinear dynamics of BWRs
is performed examining the influence of asymmetrical axial power profiles. Thermal-
hydraulic and coupled neutronic-thermalhydraulic systems are treated separately.

Experiments on the nonlinear dynamics of natural-circulation, boiling two-phase flows
are discussed in Chapter 6. The character of density-wave oscillations measured close
to the stable operating region is examined first. The strongly nonlinear density-wave
oscillations measured deep in the unstable operating region are analyzed using nonlinear
time series analysis methods. An overview of these methods is given as well.

Chapter 7 is devoted to the investigation of coupled neutronic-thermalhydraulic stabil-
ity of BWRs. The study concentrates on improving the artificial void-reactivity feedback
simulation in the DESIRE facility. Experiments on the coupled neutronic-thermalhydraulic
stability of the system are carried out using the improved void-reactivity feedback simu-
lation.

Conclusion and recommendations are given in Chapter 8.
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Chapter 2

Understanding the linear stability
characteristics of BWRs

2.1 Introduction

The first simplified BWR dynamic models were already developed in the 1950’s by, among
others, DeShong and Lipinski (1958) and Thie (1958) These models have been used to
study the reactivity-to-power transfer function and the root loci of the natural-circulation
Experimental BWR (EBWR) reactor (Thie, 1958). A simple point-kinetics (zero-power
transfer function) description of the neutronics was used. It became clear already from
these early models that a higher-order modelling of the void production process - several
poles and zeros in the transfer function describing the power to void-reactivity feedback
mechanism - is needed to represent the transfer function of the reactor correctly and to be
able to predict instabilities. In the 1960’s, Miida and Suda (1963) built a detailed model
considering steam load and recirculation flow dynamics for a natural-circulation BWR.
After that, the concept of natural circulation was abandoned and attention was focused
on forced-circulation BWRs.

In the 1960’s and 1970’s, as research on the stability of boiling two-phase flow systems
was intensified, some authors tried to couple the sophisticated thermal-hydraulic models
developed in that field with a simple neutronic (mostly point-kinetic) model to study
BWRs (Lahey and Moody, 1993; Yadigaroglu, 1981). However, this effort was in most
cases the starting point for the development of large-scale transient codes rather than of
reduced-order models.

In the 1980’s, a pioneering work was accomplished by March-Leuba et al. (1986a,b),
in the sense that they developed a simplified, phenomenological model to study linear and
nonlinear dynamical behavior of BWRs. They used a strongly simplified description for
the thermalhydraulics, a second-order model that is not able to predict two-phase flow
instabilities. However, coupled with the neutronics, it can describe instabilities of BWRs.
They found that at least three zeros and four poles are needed to properly represent the
reactivity-to-power transfer function of a BWR. Moreover, these poles and zeros have
been associated with physical processes that occur in the reactor.

In order not to underestimate the important role of the thermalhydraulics even in
reduced-order BWR stability models, the trend in the last decade was to develop sim-
plified models that do capture the most significant physical processes involved in the
thermalhydraulics and to couple it with a usually simple description of the neutron ki-
netics. The reader is referred to the models of, e.g., Rao et al. (1995) and Karve et al.
(1997).
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This last tendency was accompanied by a renewed research interest in reduced-order
natural-circulation BWR models. Progress herein was supported by the development
of more elaborate, but still reasonably simple, models concerning the thermal-hydraulic
stability of natural-circulation two-phase flow systems, for instance, by Clausse and Lahey
(1991); Lee and Lee (1991); Wang et al. (1994); Pinheiro Rosa and Podowski (1994); Garea
et al. (1994); Chang and Lahey (1997). Chang and Lahey (1997) analyzed the stability
of the Simplified Boiling Water Reactor (SBWR) using a more sophisticated model for
the dynamics of the natural-circulation two-phase flow in the reactor. They concluded
that under typical low-pressure startup conditions, the SBWR is quite stable. However,
large-amplitude limit-cycle oscillations may occur under abnormal operating conditions.

This chapter elaborates on the linear stability of natural-circulation BWRs and the un-
derlying (two-phase) thermal-hydraulic system via the root-locus method. The reduced-
order model of Van Bragt and Van der Hagen (1998a) is used, which is just sophisticated
enough to predict the thermal-hydraulic instability phenomena. Because of its simplicity,
it has the potential to increase the insight into the relation between the main physical pro-
cesses determining BWR stability. The root loci (the poles) of the system are examined
as a function of the operating conditions, riser length, and void-reactivity coefficient. The
origin of the poles and their importance for the stability of the system are investigated.
Furthermore, the paper studies the relevant physical phenomena driving the instabilities
and attempts to gain more insight into their influence on the dynamics. It is examined
whether these physical phenomena can be related to the poles of the system.

The model is briefly described in Section 2.2. To make the analysis more transpar-
ent, the thermal-hydraulic subsystem (both forced and natural circulation) of a BWR
is investigated separately in Section 2.3. In Section 2.4, a natural-circulation BWR is
analyzed.

2.2 The reduced-order model

Figure 2.1 gives an schematic overview of the flow path in a natural-circulation BWR
loop showing all the components that are accounted for in the reduced-order model of
Van Bragt and Van der Hagen (1998a). Although the steam dome above the riser is
not modelled explicitly (compare with figure 1.1), a constant water level in the system
is assured by adjusting the feedwater flow to the steady-state steam flow. The system
components outside of the reactor vessel are not modelled therefore the steam line pressure
and feedwater temperature are imposed as boundary conditions. Local pressure losses are
modelled using friction factors at the core inlet, core exit, riser exit and downcomer inlet.
Distributed pressure losses (tube friction) is modelled in the core and in the riser.

The most important assumptions and approximations applied in the reduced-order
model can be summarized as follows:

1. The neutron kinetics is modelled by the point-kinetic equations with one effective
delayed neutron group.

2. The heat transfer from fuel to coolant is modelled as a first-order process using one
effective time constant.

3. The two-phase flow in the multiple parallel coolant channels of a BWR is analyzed
on the basis of the one-dimensional homogeneous-equilibrium-mixture (HEM) model
using one effective (average) coolant channel.
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Figure 2.1: Schematic of a natural-circulation BWR as it is represented in the reduced-
order model. The arrows indicate flow directions.

4. The core section is divided into a single-phase and a two-phase axial node. The
differential balance equations are integrated over each node by assuming a time-
dependent and spatially linear profile of the one-phase enthalpy and the two-phase
flow quality in the axial direction. Whereas, the axially varying mass-flux density in
the two-phase region is assumed to be constant and equal to the core-exit mass-flux
density in the integration process.

5. Subcooled boiling and void flashing phenomena are ignored.

6. To analyze a system with a riser, the riser is divided into several axial nodes, and
the aforementioned linear spatial approximation is used for the flow quality and
mass flux within each node.

7. The liquid in the downcomer is assumed to be one-phase (no carry under) and
incompressible with a fluid temperature uniform in space and time.

The governing differential balance equations for the thermalhydraulics are transformed
into ordinary differential equations (ODEs) using the above assumptions. The influence
of these assumptions on the accuracy of prediction will be discussed in Section 3.3.2
comparing measurement results with model calculations. A comprehensive list of the
model equations is given in Appendix A.

Van Bragt et al. (1999) have shown that using four axial nodes in the riser is a
reasonably good approximation for the case of the Dodewaard natural-circulation reactor.
The data set and geometry of this reactor (see Appendix B), dividing the riser into four
axial nodes, is used as a model reactor in this study.

Using four nodes in the riser the model consists of ten nonlinear ODEs, which are
linearized and Laplace- transformed to facilitate a frequency-domain analysis. The un-
derlying relations between the system variables can be represented in the block diagram
shown in figure 2.2. For the thermal-hydraulic subsystem, shown within the dashed rect-
angle, G, denotes the normalized transfer function from variable y to x. The explicit
expressions of the transfer functions are listed in Appendix A. The transfer functions in
the block diagram are all functions of the Laplace variable s = o + iw, where ¢ is the real
part and w is the imaginary part. The model represents the inherent feedback mechanisms
in a BWR (void- and Doppler-reactivity feedback), as depicted in figure 2.2. The transfer
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Figure 2.2: Block diagram representing the closed-loop, ’external reactivity’ to ’reactor
power’, transfer function of a BWR for the linearized, frequency-domain model. The
thermal-hydraulic transfer functions are clustered in the dashed rectangle. The Doppler
and void reactivity is obtained by multiplying the fuel-temperature and void-fraction
oscillations with the corresponding reactivity coefficients, ap and oy .

function of the thermal-hydraulic subsystem from heat flux to core-average void fraction
is given by
i<a(s)>¢

<a>co. __ G,

7 -
54" (s) 14+ GrpaGr + Guig,0Gy, 0

%

where

Gy =G,y +Ga, G

1"
2bh,9

The closed-loop reactor transfer function from external reactivity to reactor power is
then P
947 GR
Gr=-" = . 2.2
pest 1 — GrGFrlav + apG4] 22
The poles of the closed-loop transfer function are obtained by considering the roots
of the characteristic equation:

1-— GRGF[O!D + avG'A] =0. (23)

The closed-loop transfer function of a higher-order system, as with a BWR, has several
poles, which are real and/or form complex conjugate pole pairs. The dynamic stability of
a pole is usually quantified by its decay ratio (DR), which is defined as DR = exp 270 /|w|
for a pole at s = o + iw. The least stable pole, with the largest o/|w| ratio, determines




2.3. Analysis of the thermal-hydraulic stability 13

the stability of the system. The poles of the system at a specific operating point are
determined by a numerical search algorithm, a quasi-Newton method. Or specifying the
least stable pole (the stability of the system), the corresponding operating conditions can
be determined the same way.

To make the analysis more transparent, the thermal-hydraulic subsystem is examined
separately. The characteristic equation of the thermal-hydraulic subsystem, using Eq. 2.1,
is

1 + GMC,iyﬂ (Ga,q" + Gaazbbszb,qN) + GMC.i,zbbszb,q" =0. (24)
Considering that
A Pyoiay GAP; 01
GM _ _ 0<ae>c < >C GM _ Szpp Zbb,o (2 5)
Cir® T 7 BAPyoral Cis%b — T JAP, :
' —Wg% MC,z,o _LBMtctf Mciio
and
szmMc,d = —szb,q"’ Ga,q” = _Ga,Mc,i (2~6)

the characteristic equation of the thermal-hydraulic subsystem can be written in a
form that is frequently used in literature (Yadigaroglu, 1981; Rao et al., 1995)

(SA-Ptotal _
m(s) =0, (2.7)

where %‘M—L( ) is the total transfer function from the inlet mass flux to the total
pressure drop over the circulation loop. The left side of this characteristic equation (the
characteristic polynomial) can be split into a sum of transfer functions from inlet mass
flux to the different types of physical pressure drops:

SAPy SAP,, 6AP , AP, SAP,,.
L OEEDY ()i + 5oy

s (8)] =(8)j+ = (s); = 0.
5MC,i g2 5MC,,' ‘,, (5M

(2.8)

The following physical pressure drop terms are distinguished in both the one- and the
two-phase region: inertial, frictional, gravitational, and accelerational pressure drop. We
will refer to the foregoing transfer functions from inlet mass flux to the different types of
pressure drop shortly as pressure drop transfer functions throughout the text. By fixing all
the system parameters except one, the threshold of dynamic instability for that parameter
and the corresponding oscillation frequency can be obtained numerically from Eq. 2.8 if
one sets s = iw (the latter corresponds to DR = 1). Incrementally varying another system
parameter an entire stability map can be drawn in a two-dimensional parameter space.
Equation 2.8 also provides the threshold of the static instability as the w — 0 limit
is taken (Lahey and Yadigaroglu, 1982). We note here that if a system without riser is
modelled, then all the transfer functions in the characteristic equation, Eq. 2.4, are (ratios
of) second- or first-degree polynomials in s in such combination that the left side of the
equation is equivalent to a third-degree polynomial (third-order system). If a system with
four riser nodes is modelled, then the order of the system increases to seven. Obviously,
the same holds for Eq. 2.7.

2.3 Analysis of the thermal-hydraulic stability

In Section 2.3.1 and 2.3.2, the root loci of the thermal-hydraulic system of a BWR (the
roots of Eq. 2.8) are studied. The contributions of the individual pressure drop transfer
functions in Eq. 2.8 are examined as well.
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2.3.1 Forced-circulation system

First, a forced-circulation boiling channel is investigated, with the dimensions of one
average fuel assembly in the Dodewaard reactor under nominal Dodewaard operating
pressure (75.5 bar). Figure 2.3 shows the linear stability map with the static and dynamic
stability boundary (SB) of the system in the so-called Zuber (or phase-change) number
(Nzu) and subcooling number (N,,;) plane (Saha et al., 1976); Nz, and N, are both
dimensionless numbers and are defined as follows:

NZu = m”ih—ﬂm and Naub = Mu.

Py hg=hs  pg
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Figure 2.3: Stability map of a forced-circulation two-phase boiling channel obtained for
a constant pressure drop boundary condition. The term Y., = 0 denotes the zero exit
thermodynamic equilibrium quality line (Lahey and Moody, 1993).

These two numbers are commonly used in stability analysis of boiling two-phase flow
systems. The stability of the channel depends on the amount of inlet flow feedback,
which is determined by the characteristics of the recirculation loop. In the case of forced
circulation, the recirculation loop and the pump dynamics impose the boundary condition
for the inlet flow feedback. The stability map in figure 2.3 is obtained with a constant
pressure drop over the channel as boundary condition, which corresponds practically to a
constant pumping head in the system (set to 195 mbar). This is the most unstable type
of boundary condition for a forced-circulation system since it provides no damping of the
inlet-flow oscillations by inertial and frictional effects (pressure drop variations) in the
downcomer. For the natural-circulation system examined in Section 2.3.2, the pressure
drops in the downcomer influence the stability. The dynamic SB separates the stable and
the so-called Type-II unstable operating region. The Type-II instability is mainly driven
by the interplay between the one- and the two-phase frictional pressure drops (Fukuda
and Kobori, 1979).

Figure 2.4 shows the poles of the system along the vertical trajectory of operating
points (from point a to f) in figure 2.3. Moving along a vertical trajectory in the op-
erating plane, in practice, corresponds to increasing the inlet subcooling in the channel
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while keeping the power/flow-rate ratio constant. Since a boiling channel without a riser
is modelled as a third-order system (the simplest model that can predict the dynamic in-
stability of the two-phase flow), it has three poles. Two of them form a complex conjugate
pole pair in each operating point below the oscillation boundary.

 (rad/s)

. 15 -
C\‘\b

//b
a -15

Figure 2.4: The root locus of the complex conjugate pole pair of the forced-circulation
system along the vertical trajectory of operating points (from a to f) in figure 2.3. The
third pole of the system is not depicted because it is irrelevant for the stability.

This complex conjugate pole pair is responsible for the Type-II instability as they shift
into the right half-plane of the complex domain when the operating conditions change from
point a through point b to the Type-1I unstable region. At point ¢, the system becomes
again stable. Passing through point d, the oscillation boundary is reached; the complex
pole pair becomes real, and the two real poles move in opposite directions. In operating
points above the oscillation boundary (but below the static SB), all of the poles are real,
and the system does not give an oscillatory but an exponentially changing (decaying)
response to perturbations. As the static (Ledinegg) SB is reached (point e), the pole
moving in the positive direction crosses the origin. In point f, the system is statically
unstable; i.e., it exhibits excursive (exponentially diverging) behavior when disturbed.
In general, the Ledinegg instability in forced-circulation systems occurs when for the

derivative of the total static pressure drop versus inlet flow curve (Lahey and Moody,
1993).

aAPtotal,charmel _ 8APdrim’nghead <0
IM¢, OMc,; -7

(2.9
which reduces in the case of our simple constant pressure drop boundary condition to

8APtotal channel
I total,channel - 2.
B S 0 (2.10)

Note that since w = 0, the total pressure drop transfer function is just the derivative
of the total static pressure drop with respect to the inlet flow. Accordingly, Eq. 2.8 is
equivalent to the equality in Eq. 2.10, marking the threshold of the Ledinegg instability.
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Figure 2.5: The values of the different types of static pressure drop derivatives along the
Ledinegg SB as a function of Ny,;. The inertial pressure drop derivatives are zero on the
static SB.

Figure 2.5 shows how the contributions of the different types of static pressure drop
derivatives to the characteristic equation, Eq. 2.8, change along the Ledinegg SB. In
view of Eq. 2.10, the negative contribution of the frictional, the accelerational, and the
gravitational pressure drop terms in the two-phase region are responsible for the Ledinegg
instability. On the other hand, the positive contributions from the one-phase frictional
and gravitational pressure drop have a stabilizing influence. (There is no accelerational
pressure drop in the one-phase region since the channel cross section is uniform.) The
static instability occurs at high subcoolings (low exit flow qualities) because then the
negative (destabilizing) pressure drop derivatives become too large to be compensated for
by the positive, stabilizing terms. This is due to the sudden change in the void fraction
induced by fluctuations in the flow quality at low exit qualities.

Figure 2.6 shows the contributions of the individual pressure drop transfer functions to
Eq. 2.8 in operating points along the dynamic (Type-1I) SB. Note that the accelerational,
two-phase frictional and two-phase gravitational pressure drop transfer function all have
a large phase lag (close to —180°) with respect to the inlet flow perturbations. On the
contrary, the frictional and gravitational pressure drop in the one-phase region have no or
a small phase lag, respectively. This explains the physical mechanism of the instability:
because of the large delay (phase lag) in the two-phase pressure drops with respect to
the inlet flow perturbations, fluctuations in the total pressure drop over the channel can
become out of phase with the inlet flow fluctuations. This results, via the constant
pressure drop boundary condition, in a positive feedback and self-sustained oscillations in
the inlet flow. In case of single-phase flow, i.e. in absence of the two-phase pressure drop
terms with large phase lags, the characteristic equation (Eq. 2.7) could not be fulfilled for
any s = iw (the resultant of the complex vectors in figure 2.6 could never be zero). This
means that the system is always stable, which is known from experimental experience as
well. In this sense, one can say that the accelerational, two-phase frictional and two-phase
gravitational pressure drops are responsible for the instability of the two-phase flow.
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Figure 2.6: The complex vectors representing the gain and phase of the different pressure
drop transfer functions obtained at operating conditions along the dynamic (Type-I11) SB.
Points A and B correspond to those in figure 2.3
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Figure 2.7: Relative change (sensitivity) of the DR of the system for a 5% increase in
a pressure drop transfer function along the dynamic SB. Points A and B correspond to
those in figure 2.3

The influence of the different pressure drops on the stability of the system can be
quantified by examining the sensitivity of the system stability to changes in the magnitude
of the individual pressure drop transfer functions. Figure 2.7 shows how the stability
of the system would react for a 5% increase in magnitude of a pressure drop transfer
function. The relative increase or decrease of the DR of the least stable pole is given
as one moves along the dynamic SB (from point A to point B in figure 2.3). One can
notice that as the magnitude of the transfer functions increases along the dynamic SB
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toward higher subcoolings in figure 2.6, the corresponding sensitivities also increase in
figure 2.7. The results show that the system stability is about two times more sensitive
to the accelerational than to the two-phase frictional pressure drop. These two are the
most important destabilizing terms for the Type-II instability.

2.3.2 Natural-circulation system

In the following, a natural-circulation thermal-hydraulic system is considered with a, riser
placed on the top of the heated section. The dimensions and the operating pressure are
again the same as in Dodewaard.
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Figure 2.8: Stability map of a natural-circulation system. The thermal-hydraulic SB (solid
line) is shown together with the reactor-kinetic SB’s for two different void coefficients (ay)
(dotted lines).

The stability map, given in figure 2.8, shows that another region of instability emerges
compared to the forced-circulation case close to the zero quality line: the Type-I instability
region (Fukuda and Kobori, 1979). For the Type-I instability, the large variations in the
gravitational pressure drop in the riser play a very important role. The large variation in
the gravitational pressure drop in the riser is due to the abrupt change in void fraction
triggered by core exit flow quality fluctuations at low core exit qualities (Fukuda and
Kobori, 1979). This is similar to the origin of the Ledinegg instability, except that then
other kinds of pressure drops (acceleration and two-phase friction) are influenced just as
strongly as the gravitational pressure drop by the void fraction fluctuations (see figure 2.5).

A static SB as shown for a forced-circulation system in figure 2.3 does not appear for a
natural-circulation system. To illustrate this, we have calculated the root loci of a natural-
circulation system without a riser and with relatively small risers in operating points along
a vertical trajectory similar to that in figure 2.3 going up to the zero-quality line. The
results are shown in figure 2.9. Because of the symmetry of the root-loci diagrams around
the real axis, we plot only the positive imaginary half-plane in the rest of the figures. The
natural-circulation system without a riser remains oscillatory up to the limit of the model,
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the zero-quality line. If a very short riser (relative to the 1.79-m core height) is added to
the system, the system becomes again dynamically (Type-I) unstable before reaching the
zero-quality line, and the root loci approach the origin from the positive real half-plape.
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Figure 2.9: Root loci of a natural circulation system without a riser (left figure) and with
rather short risers (right figure) along a vertical trajectory of operating points from the
Nz, axis up to the zero-quality line (similar to the vertical line in Figure 2.3).A natural-
circulation system without a riser remains oscillatory approaching the zero-quality line
with the operating conditions. With a relatively small riser (L, denotes the riser length),
the system becomes dynamically (Type-I) unstable just before reaching the zero-quality
line.
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Figure 2.10: The complex values of the pressure drop transfer functions along the SB
of the natural-circulation thermal-hydraulic system. The arrows show the direction of
moving from the Type-II to the Type-I region (from point D to E in figure 2.8).

Figure 2.10 shows the contributions of the different pressure-drop transfer functions
to the characteristic equation along the SB moving from the Type-II region to the Type-I
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region (from point D to point E in figure 2.8). One can see that as the Type-I region is ap-
proached, the two-phase gravitational pressure-drop transfer function gradually becomes
larger in magnitude and becomes dominating, while the magnitudes of the two-phase
frictional and accelerational pressure-drop transfer functions decrease. A similar trend
in the behavior of the sensitivity of the system stability with respect to these terms is
shown prominently in figure 2.11. The following interesting points can be inferred from
figure 2.11:

1.

The sensitivity of the stability to the two-phase gravitational term increases tremen-
dously, from practically zero to 20% in the DR, moving from the Type-II to the
Type-I region.

. In the Type-I region, where the core exit flow quality is low, the boiling boundary is

situated close to the core exit. Therefore, the influence of the two-phase gravitational
pressure drop is due to the change of the gravitational pressure drop in the riser.
The riser behaves as an amplifier for the Type-I oscillations.

. The sensitivities to the other two-phase pressure drop terms that are dominating

in the Type-II region decrease to very low values in the Type-I region. The effect
of the two-phase frictional and the two-phase inertial pressure drop change from
destabilizing to stabilizing.

. The sensitivity to the one-phase inertial pressure drop is just about the opposite of

the sensitivity to the two-phase inertial pressure drop.

. The one-phase frictional and one-phase gravitational pressure drops are stabilizing

in both regions. The latter one has a strongly increasing influence on the stability
in the Type-I region, similarly to the increasing (destabilizing!) influence of the
two-phase gravitational pressure drop.
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Figure 2.11: Sensitivity of the stability of a natural-circulation two-phase flow system
with a riser to a 5% increase in the magnitude of a pressure drop transfer function along
the SB. Points D and E correspond to those in figure 2.8.
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Figure 2.12 shows typical root loci of the natural-circulation system as one follows
trajectories (the horizontal line in Figure 2.6) of operating points leading from the Type-I1
to the Type-I region. Using four riser nodes, the thermal-hydraulic subsystem is modelled
as a seventh order system, which has in this case three complex conjugate pole pairs and
one real pole.

The same pole pair remains the least stable one in both instability regions. On the
other hand, we have seen that different types of physical mechanisms arc responsible for
the two types of instabilities. This shows that a pole (pair) of the natural-circulation
thermal-hydraulic system cannot be identified with a specific physical phenomenon.
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P (thermal-
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Figure 2.12: Root loci of the natural-circulation thermal-hydraulic system moving along
the horizontal trajectory in figure 2.8 from the Type-II to the Type-I region. The single
real pole is out of the range on the negative axis.

2.4 Stability analysis of a natural-circulation BWR

In this section, we analyze a natural-circulation reactor by coupling the thermal-hydraulic
system studied in Section 2.3.2 with the neutronics and fuel dynamics (see figure 2.2).
A detailed description of the void-reactivity feedback is given in Chapter 7. It should
be noted, that this study is restricted to the examination of in-phase reactor stabil-
ity. Figure 2.8 shows the stability maps of a natural-circulation reactor for two different
void-reactivity coeflicients (ay). The value of the void-reactivity coefficient is used as
a parameter to draw the root loci of the system at two operating points denoted by A
(Nzu = 6.0, Nywp = 1.96) and B (Nz, = 2.44, N, = 1.96) in figure 2.8. Parts of these
root loci are shown in figure 2.13. The locations of the reactor-kinetic SB’s in figure 2.8
already show that the Type-II unstable region increases by increasing (in absolute sense)
the void coefficient; consequently, point A becomes unstable at a certain, large enough
value of the void coefficient. However, the Type-I region decreases, and point B (which
was exactly on the Type-I SB for the thermal-hydraulic system) becomes stable. The
same can be seen in more detail in the root-loci diagrams in figure 2.13.

It is well known in linear stability analysis that the poles of the so-called open-loop
transfer function play an important role in determining the stability and root loci of the
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Figure 2.13: Root loci of a natural-circulation reactor using the void coefficient (av) as
parameter. The Type-II oscillations are destabilized in point A in figure 2.8 (left figure),
while in point B the Type-I oscillations are stabilized (right figure) by increasing (in the
absolute sense) the void coefficient. At strong void feedback (ay = —0.3), the higher-
frequency pole becomes (Type-II) unstable at point B. Arrows indicate the direction of
the increasing void coefficient. (The locus of one real pole is restricted within a very small
interval close to the origin.) Two real poles are strongly negative and out of the range of
the figure.

system. The open-loop transfer function of the reactor system is equal to GrGrlap +
ayGa] (see Eq. 2.2). The zero-power reactor transfer function Gg has two real poles
(second order) using one group of delayed neutrons (Hetrick, 1971). The locus of one
of them is the one very close to the origin in figure 2.13; the other is out of the range
on the negative real axis. The G fuel heat transfer function has one real pole (the
corresponding locus is the longer one on the real axis in figure 2.13), determined by the
fuel time constant (first-order process). The thermal-hydraulic transfer function G4 has
three complex conjugate pole pairs and one real pole, as is shown in Sec 2.3.2. The root
loci of the system approach the poles of the open-loop transfer function if the void and
Doppler feedback coefficients approach zero (Hetrick, 1971). It can also be shown that the
complex pole pairs of Eq. (3) at ay = 0 in figure 2.13 are just the poles of the thermal-
hydraulic subsystem. Their position is gradually changed (and thus also the stability of
the system) as ay is increased.

In the case of point B, the Type-I unstable pole (at the lower frequency) of the thermal-
hydraulic system is stabilized by an increasing void coefficient. On the contrary, the pole
at a higher frequency, which is thermal-hydraulically stable, becomes unstable at high
values of the void coefficient (around ey = —0.3). At this value of ay, the Type-11 SB
is shifted past point B. The opposite effects of the void reactivity feedback on the two
different types of instabilities can be explained as Van Bragt and Van der Hagen (1998b)
have pointed out: At the relative high frequencies of the (thermal-hydraulic) Type-II
oscillations, a large phase lag is caused by the fuel transfer function and the thermal-
hydraulic subsystem. This large phase lag turns the negative feedback into positive,
destabilizing the system. At higher frequencies, the gain of the fuel transfer function is
considerably smaller. This is compensated for by a strong feedback, a void coefficient of
-0.3, in case of the higher-frequency pole pair in figure 2.13. The frequency of the Type-I
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oscillations is generally low; thercfore, the phase lags are much smaller, and the negative
void reactivity feedback has a stabilizing effect on the thermal-hydraulic oscillations. This
is the origin of the interchange of the least stable poles in figure 2.13.

A similar interchange of the stability of two different pole pairs can be found if one
follows a trajectory (the horizontal line in figure 2.8) of operating points leading from the
Type-II to the Type-I region for different void reactivity coefficients. The results can be
seen in figure 2.14. Only the complex poles are plotted there since the real poles are not
important for the stability.
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Figure 2.14: Poles of the reactor system along the trajectory of operating points shown in
figure 2.8 from point F to point C, for two void reactivity feedback coefficients. Only the
relevant poles are plotted. For a stronger void reactivity feedback, there is an interchange
between the two pole pairs being the least-stable one.

For a low value of the void reactivity coefficient, a similar behavior can be observed as
for the thermal-hydraulic subsystem in figure 2.12: The same pole pair remains the least
stable one in both regions. This is plausible because for weak void reactivity feedback, the
coupled system behaves more or less in the same manner as the thermal-hydraulic sub-
system. However, for a stronger void reactivity feedback, the two pole pairs interchange
their stability. First, the higher-frequency pole is the least stable in the Type-1I region,
whereas in the Type-I region (at point C of the horizontal trajectory in figure 2.8), the
lower-frequency pole becomes the least stable one and moves into the right half-plane.
Moving from the Type-II region to the Type-I region with the operating point, the void
fraction in the core becomes gradually lower (lower core exit quality), and thus, the void
feedback becomes gradually weaker [just the same effect as decreasing oy (in absolute
sense) in figure 2.13b]. Eventually, the system behaves again like the thermal-hydraulic
subsystem (o = 0 in figure 2.13b), which is confirmed by the joining of the root loci
obtained with different void coeflicients as well.

To illustrate the effect of the interchange of the least stable pole pairs on the behavior
of the system, figure 2.15 shows the impulse responses of the reactor power at some points
along the root loci for oy = —0.1 in figure 2.14. In points 1 and 2, the higher-frequency
pole pair is the least stable and dominates in the impulse response. In points 3 and C,
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Figure 2.15: Impulse responses of the reactor power at different positions along the root
loci marked by 1,2,3 and C in figure 2.14 for the case of ay = —0.1. For a better
comparison, each impulse response is normalized with the value of its first positive peak.

its influence can be seen only up to 2 second, after that the lower-frequency pole pair
determines the impulse response, which is then the least stable one.

To ascertain the stability of the system correctly, one should be able to find the least
stable (dominating) pole of the system for any operating conditions. The interchange of
the least stable pole pairs shows us that one has to consider several pole pairs carefully
when determining the linear stability.

2.5 Conclusions

A reduced-order dynamic model has been used to examine the root loci of natural-
circulation BWRs and the underlying two-phase flow systems.

To gain more insight into the physics of the instability phenomena, the role of the
different poles of the system in determining the stability and their relation to the physical
instability mechanisms have been examined. By evaluating the contributions of the dif-
ferent pressure drop transfer functions to the characteristic equation, it was reconfirmed
that different types of pressure drops are responsible for the two types of instabilities in a
natural-circulation (thermal-hydraulic) system. For the Type-II instability the two-phase
frictional and the accelerational pressure drop are the main destabilizing terms, whereas
for the Type-I, instability the gravitational pressure drop is the most important destabi-
lizing term. It was also demonstrated that the same pole pair of the thermal-hydraulic
subsystem determines the stability in both the Type-I and the Type-II instability regions.
Thus, a certain pole pair cannot be associated with a specific instability mechanism.

For a reactor with weak void reactivity feedback, the same conclusion can be drawn
since the root loci behave similarly as for the thermal-hydraulic system: The same pole
pair is the least stable one in both instability regions. For a reactor with strong void
reactivity feedback, an exchange of the least stable pole pairs has been found for the
transition between the two different instability types: The least stable pole pair in the
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Type-1II region is not the same as in the Type-I region. This shows that one has to consider
the different poles carefully to be able to determine the correct stability characteristics of
a natural-circulation BWR using a frequency-domain reduced-order model.

This study demonstrates the usefulness of reduced-order models in understanding and
‘ identifying the physics behind the instability phenomena in BWRs.
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Chapter 3

Experiments on the stability of the
DESIRE facility

3.1 Description of the DESIRE facility

The DESIRE facility is a natural-circulation, boiling two-phase flow loop. It contains a
scaled copy of a fuel assembly of the Dutch Dodewaard reactor. The scaling analysis that
led to the design of the DESIRE facility, based on using Freon-12 (CClyF) as working
fluid instead of water, is described in Van de Graaf et al. (1994a,b). The goal of the
scaling analysis was to obtain the same axial void-fraction and flow-quality distribution in
DESIRE as it is in an average fuel bundle of the Dodewaard reactor at nominal conditions.
The main result of the scaling analysis was a size reduction of a factor of 0.47 in all
directions, a reduction of the nominal pressure from 75.5 bar to 11.6 bar, and a reduction
of the nominal average assembly power from 1116 kW to 22.3 kW.

Figure 3.1 shows a schematic view of the DESIRE facility. The primary loop consists
of the fuel assembly, a riser, a downcomer, and four downcomer loops. At the top of
the riser, separation of liquid and vapor takes place at the free surface. The liquid flows
into the downcomer, while the vapor flows upward towards the condenser. There it first
passes a pressure-controlling valve. The setpoint of this valve determines the pressure in
the primary loop. This is a motor-actuated valve controlled by a proportional-integral-
derivative (PID) controller. The settings of the PID coeflicients were chosen so that the
control of the valve is slow enough not to influence the dynamics of the two-phase flow in
the facility. The vapor that leaves the facility is condensed in the condenser. Before this
liquid is pumped back into the primary loop, it can be cooled to about —20°C by a heat
exchanger that is connected to a separate cooling system (see figure 3.1). The temperature
and the mass flow rate of the "feedwater" flow are important boundary conditions for the
primary circuit. The liquid level in the primary circuit is controlled via the flow rate of
freon pumped back to the primary loop. The variable pump speed is controlled using PID
controllers.

3.1.1 Heated section

The heated section is a copy of a fuel assembly from the Dodewaard reactor, consisting of
the following parts: 35 electrically heated fuel rods, 3 spacers, bottom nozzle, top nozzle,
and a dummy (instrumented) fuel rod, all contained in the fuel assembly casing. There
are two sets of fuel rods, which can replace one another, onc with a flat power profile,
the other with a sinus+offset power profile. In the latter, the pitch of the coils of the
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Figure 3.1: Scheme of the DESIRE facility, where P, T and F denote pressure, temperature
and flow sensors, respectively (left figure). The dimensions of the facility are shown in
the right figure. The length of heated section is at 962 mm and the liquid flows upwards
entering at the bottom nozzle. The system parameters are summarized in Appendix B.

resistance wire is a function of the axial position in the rod in such a way that the power
profile P’(z) is:

(1- %fp) + (fp -1) sin(z%)
Lo(1-2)

where f, is the axial peaking factor that has the value of 1.4, L¢ is the height of the
assembly and P is the total power. The fuel rods are arranged in a square 6x6 lattice
with a pitch of 8.8 mm. One of the four central rods is not a fuel rod but an unheated
instrumentation rod with the same dimensions as a heated rod. This corresponds with
the Dodewaard fuel assembly, in which one of the four central rods does not contain any
uranium but is filled with water.

The fuel assembly is contained in a square-formed stainless steel casing with an inner
width of 54 mm. The fuel rods are held in place by three spacers located at 251, 491, and
731 mm from the bottom of the assembly. The spacers are exactly scaled copies of the
spacers used in the Dodewaard reactor. The height of the spacers is 24 mm.

The bottom nozzle of the DESIRE fuel assembly is designed to allow each fuel rod to
be connected individually to one of six power supplies while retaining the shape of the
Dodewaard bottom nozzle. In this way it is possible to create a variety of radial power

P(z)=P

(3.1)
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profiles.

3.1.2 Riser section

The riser consists of a fixed part and a telescopic part. The fixed part is a square tube
with an inner dimension of 54x54 mm. It has a length of 1000 mm and is mounted directly
on top of the fuel assembly. The telescopic part also has a length of 1000 mm but has a
larger inner dimension of 61x61 mm. The telescopic section fits around the fixed section
and can be moved up and down during operation, thus creating a variable riser length
between 1.1 and 1.9 m. The riser was made of glass to allow visual inspection of the
two-phase flow in the riser through viewing ports in the downcomer casing. A variable
flow resistance element is installed at the exit of the riser section. Without this friction
element the facility is so stable that it is impossible to study flow instabilities (Section 3.2).
A schematic picture of the flow resistance element can be seen in figure 3.2. It consists
of two slightly conical shaped metal plates situated on the top of each other, both having
a circular cross section. The upper one is fixed to a support plate that fits exactly into
the square cross section of the riser, while the lower one can be rotated. Both plates have
a threefold orifice arranged in 120° rotational symmetry as is shown on the top view of
figure 3.1. By setting the lower plate under different angles, between 0° and 60°, with
respect to the upper one, the size of the orifices and thus the flow resistance (friction) of

the element can be changed.

J
=

Figure 3.2: Side view of the two metal plates forming the friction element (left figure).
Top view of the lower plate (right figure).

3.1.3 Downcomer

The downcomer tube is placed concentrically around the riser. The downcomer doces
not extend to the bottom of the fuel assembly as in Dodewaard but ends at the top
of the fuel assembly, where the flow is diverted into four loops. This enables to place
external measurements devices (e.g. gamma-transmission setup) around the assembly.
The dimensions of the downcomer loops are chosen such that the extra friction introduced
by them is negligible. Moreover, the scaling of the transit times is also taken into account
choosing the length of the downcomer loops: the ratio of the transit times in the core
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and in the rest of the system is the same as for Dodewaard. Due to the aforementioned
scaling constrains, the inertia of the downcomer could not be scaled properly. Namely,
the dimensionless equivalent inertia length of DESIRE is more than twice of that of
Dodewaard.

The downcomer consists of three lengths of square stainless steel tubing with an inner
dimension of 90x90 mm. Total length of the tube is 2.8 m, which leaves 0.9 to 1.7 m
above the riser exit. Viewing ports are located at 200, 1300, and 2600 mm above the top
of the fuel assembly. The viewing port at 1300 mm is located in the range of the riser
exit, so the flow at this point can be inspected visually. The feedwater sparger is located
1200 mm above the top of the fuel assembly. It injects the "feedwater" evenly from all
sides into the downcomer flow through thirty-six 2-mm-diameter holes.

The downcomer loops divert the flow away from the fuel assembly. Each of the four
loops consists of the following sections, from top to bottom (see figure 3.1):

1. Horizontal straight section with a 380-mm length and 40-mm inner tube diameter.
2. 90° curve with a 380-mm radius and 40-mm inner tube diameter.

3. A heat exchanger consisting of two concentric tubes of 1000-mm length. The inner
tube has a diameter of 40 mm. The secondary side of the heat exchanger can be
connected to the water mains. Approximately 2 to 3 kW of heat can be extracted
from the primary loop, increasing the subcooling by about 3°C.

4. Straight section for the flowmeters: 550 mm of 30 mm tube.

5. 180° curve with a 380-mm radius and 40-mm inner tube diameter.

The four loops are joined in a conical section with a length of 270 mm, a bottom diameter
of 129 mm, and a top diameter of 50 mm. Finally, a section with two T-junctions, a
total length of 650 mm and a tube diameter of 50 mm connects the loop to the bottom of
the fuel element. Between the T-junctions a valve is installed to be able to influence the
inlet flow. On the two T-junctions a pump is coupled which enables to use the facility in
forced-circulation mode. Tt is also used for friction measurements.

3.1.4 Instrumentation

The DESIRE facility is equipped with temperature sensors, flow meters and with abso-
lute and differential pressure sensors. Figure 3.1 shows the approximate positions of the
instrumentation. For the measurement of the local void fraction at different axial posi-
tions, a gamma-ray transmission set-up is installed on the facility. In the following, the
instrumentation is described briefly.

Temperature sensors

Most of the temperature sensors used in DESIRE are chromel-alumel thermocouples with
a diameter of 0.5 mm and a sensitivity of 40 uV/°C. Eight thermocouples are located in
the fuel assembly. They are mounted in the instrumented fuel rod and extend into the
bulk of the flow. The first one is placed 12 mm from the bottom of the fuel assembly,
the rest at 100 mm intervals. Four thermocouples are placed at the bottom of the riser,
just above the top nozzle. They are positioned above different subchannels. In the
downcomer one thermocouple is located 150 mm from the bottom and one at 1050 mm
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from the bottom. The vapor temperature is measured at the very top of the downcomer
tube, near the vapor-exit point. One thermocouple is located at the inlet 150 mm below
the fuel assembly. The accuracy of such thermocouples is not better than +1.0°C.

There are also two PT100 probes (Class B, DIN 43760) - platinum resistance sensors
- installed for high-accuracy temperature measurements. One is installed 180 mm below
the inlet of the heated assembly, the other is installed in the "feedwater" line. The former
one is also used as reference for calibrating the thermocouples in the facility.

There are six so-called temperature-difference sensors installed at points where meca-
suring the temperature difference with relative high accuracy is of interest. Such a sensor
consists of two chromel-alumel thermocouples (originating from the same badge) coupled
with one side (of the same type) on each other and the voltage between the other sides is
amplified. In this way one measures the temperature difference more accurately between
the positions of the two thermocouples than by taking the difference of two low-accuracy
absolute measurements. Furthermore, there is no need for cold junction compensation and
only one amplifier is needed, both of which can increase the accuracy of the measurement.
One temperature difference sensor is installed over the heated assembly to measure the
inlet subcooling. Four sensors are positioned over the sections with the heat exchangers
in the downcomer loops and one measures between the downcomer and the exit of the
heated assembly. The last one is used for measuring the carry-under (see section 3.2).

Pressure sensors

Four absolute pressure sensors (PTX 510, measurement range: 0-30 bar) are located at
the following positions:

1. at the inlet 210 mm below the fuel assembly
2. in the downcomer 150 mm from the bottom
3. at the top of the downcomer tube near the vapor exit (’steam dome’)

4. in the "feedwater" line close to the feedwater sparger

Flow meters

The main circulation flow rate is measured by four vortex flowmeters installed in the
downcomer loops. (Endress+Hauser SwingWirl II DMV 6331 with an inner diameter of
26.6 mm.) The feedwater flow rate and the vapor flow rate are also measured by vortex
flowmeters. (Endress+Hauser SwingWirl II DMV 6331 with an inner diameter of 14 mm.)

The operation of these flow meters is based on the principle of vortex shedding. The
frequency of the vortex shedding is determined by the flow velocity. In a typical velocity
range in DESIRE, the vortices are shed at very regular intervals with typical frequencies of
10-20 Hz. This frequency is converted to a 4-20 mA current, which requires an averaging
over time of the vortex frequency. The SwingWirl manual states that the time constant
of this low-pass filter is 2 seconds. This means that these flow meters are too slow for
dynamic measurements. It was found possible to cxperimentally determine the transfer
function of the electronics of the flow meter which converts the vortex shedding frequency
to a 4-20 mA current. Using this experimentally determined transfer function the dynamic
measurements could be corrected for the low-pass filtering and typical flow rate variationg
(up to 0.5-0.6 Hz) could be handled.
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Differential pressure sensors

Three differential pressure sensors are installed in DESIRE.

One (Endress+Hauser Delatabar S series PMD235, range:6 bar) measures the pres-
sure drop over the inlet valve. The second one (Endress+Hauser Delatabar S series
FMD533, range:500 mbar) is connected between the bottom and top of the downcomer
tube. This sensors measures the collapsed liquid level above the riser exit. The third
one (Endress+Hauser Delatabar S series FMD633, range:160 mbar) is installed over the
heated section to measure the average void fraction there. The sensor used to measure the
pressure drop over the inlet valve is connected directly to the freon in the primary loop,
the other two has indirect connection using a diaphragm seal filling fluid (glycerine oil).
The sensor installed over the heated section has a time constant of 2 seconds (specified
by the manufacturer). It is important to correct for it in case of dynamic measurements.

Gamma-transmission setup

The gamma source and the detector are mounted on a translation table. The translation
table is mounted on a rotation table and the whole setup can be positioned at different
heights along the heated assembly. The setup is used with one of the two following sources:
a 300 mCi ! Amn (60 keV) source or a 250 mCi °!Cr (320 keV) source. The former one can
only be used via one of the inspection windows due to the low energy of the gamma ray.
The latter one has a gamma energy high enough to measure through the steel casing of the
heated section. The detector is a scintillation detector with a 38-mm height and 38-mm
diameter BGO (bismuth germanate, BisGe3Oz) crystal. BGO has a high density (7.13
g/cm3) making it a very efficient gamma absorber. The scintillation flashes are converted
to current pulses and amplified by the photo-multiplier tube mounted on the detector.
A preamplifier is built in the detector for signal shaping and further amplification. The
signal coming from the detector is amplified and passed through a single channel analyzer
that converts the pulses into uniform pulses. Depending on the void fraction, the source
gives a count rate of about 10.000-20.000 counts per second, which is converted to a
continuous signal by a ratemeter with a variable time constant.

3.2 Destabilizing the DESIRE facility

The reduced-order BWR dynamics model (Van Bragt and Van der Hagen, 1998a) has
been used to investigate the thermal-hydraulic stability of the DESIRE facility. The
frequency-domain version of the model is very suitable for performing fast parametric
studies on the stability of the system. It was shown that the model is able to predict the
trends on stability as some system parameters are varied (Van Bragt and Van der Hagen,
1998a).

Kok (1998) has concluded, based on his experimental results, that the DESIRE facility
is very stable from the thermal-hydraulic point of view. It is in accordance with the results
obtained using the reduced-order model, which predicts the linear stability boundary of
DESIRE situated far away from the operating range of the facility (figure 3.3). We focus
here on the Type-II instability; since the Type-I region cannot be reached in DESIRE due
to its limited operating range with relatively low subcooling (see figure 3.3).

To be able to investigate a wide range of dynamic behavior of the system e.g. density-
wave oscillations, the stability characteristics of the facility have been changed, namely
the facility has been destabilized. An extensive study was performed to examine all the
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Figure 3.3: The stability boundary (SB) and the operating range of DESIRE for zero
riser-exit friction (left figure). SB’s for two increased riser-exit friction values and the
corresponding operating ranges (right figure).

possible changes in the system that decreases stability. The practically easiest realizable
solution, which also has the largest impact on stability according to the prediction of
the model, is to increase the friction at the riser exit. A comparison can be seen in
figure 3.3, that shows that increasing the riser-exit friction factor destabilizes considerably
the facility. In Chapter 2, it was demonstrated that increasing the two-phase frictional
pressure drop the two-phase flow becomes less stable. For an increased riser-exit friction,
not only the stable operating region decreases, but also the operating range of the system
shifts towards the unstable operating regime. The shift of the operating range in terms
of Nz, is due to the lower flow rates caused by the increased friction. At an increased
Nz, assuming steady-state and a constant liquid level in the system, the Ny, increases
as well (see Eq. 4.1 in Chapter 4).

It must be noted that the friction element built into the exit of the riser in DESIRE
can be used to simulate the influence of the friction of the steam-water separator on the
stability of a natural circulation system. A steam separator on the top of the riser is also
incorporated in the ESBWR design to decrease carry-under (whereas in Dodewaard free-
surface separation was utilized). Carry-under is the amount of steam (gas) flow that is
dragged by the liquid into the downcomer. It is important for the ESBWR to keep carry-
under as low as possible since it decreases the driving force for the natural-circulation
flow.

3.3 Experiments on the thermal-hydraulic stability of
DESIRE

Extensive experimental series have been carried out to examine the linear stability of the
DESIRE facility at two settings of the riser-exit friction element. The measurement series
were performed for both a sinus t offset and for a flat axial power profile. In each series,
measurements were done at various operating conditions, so that practically the whole
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interesting operating region of the facility was covered. All the measurements introduced
here have been performed at a nominal system pressure of 11.6 bar. First, a short review
of the measurement and signal analysis methods is given.

3.3.1 Experimental and signal processing methods

In these measurements, we use two signals to investigate the stability: the local void-
fraction and the inlet mass flow rate. The local void-fraction signal obtained by the
gamma transmission setup using the 2! Am source. Choosing a sufficiently small time
constant on the ratemeter, the void-fraction variations are measured without significant
attenuation and phase shift at the frequencies of interest (0.2-0.3 Hz). We measured the
void fraction via the third inspection window at the core.

To quantify the stability of the system we use the decay ratio (DR), which is widely
accepted measure for BWR stability (D’Auria ef al., 1997). We already defined the DR for
a complex conjugate pole pair of the dynamic model in Chapter 2. In general, the DR is
defined as the ratio between two consecutive maxima (or minima) of the impulse response
function of the system. The latter is equivalent to the definition given in Chapter 2 for
an oscillatory second-order system (i.e. a system with one complex conjugate pole pair).
For higher-order systems, the ratio of consecutive maxima or minima can change (see
figure 2.15 in Chapter 2). Therefore, the DR is uniquely defined only for a second-order
system. To emphasize this, March-Leuba (1984) distinguishes between the apparent DR
(obtained from the first two maxima) and the asymptotic (the actual) DR for a BWR,
which is not a second-order system.

There are numerous methods to extract the DR from measured time series (Upadhyaya
et al., 1980; Van der Hagen et al., 1995; D’Auria et al., 1997). Many of the methods are
based on autoregressive (AR) modelling of the time series. In these methods, the impulse
response of the system is reconstructed and the DR is calculated from it. The DR can
also be extracted from the autocorrelation function (ACF) of the signal. The ACF of
signal z(t) is defined as (Priestley, 1981)

1 T
oz [ z(@)z(t+ T)dt
ACF,3(1) = lim L fol T .

T Jo z(t)?dt

For a second-order system, the ratio of the two consecutive maxima or minima of the
ACF is the same as that of the impulse response and thus renders the same DR (Van der
Hagen et al., 1995). It is possible to derive the ACF for higher-order systems and to
obtain the DR from that. In this thesis, we use a second- or a third-order model to fit
the measured ACF to estimate the DR. In most practical cases, the contribution of the
least stable pole pair, which determines the stability, dominates in the impulse response
and the contributions of other poles die out soon. Therefore, the second-order assumption
works reasonably good for higher-order systems too if one ignores the first few peaks of
the ACF and determines the DR from peaks at higher 7’s. However, one has to make
a compromise since at higher 7’s the peaks can become too small to be practical for
determining the DR. The advantage of using the ACF for DR determination is simplicity
and no additional model is needed to reconstruct the underlying system like in case of
AR model based methods.

To determine the stability, noise measurements were performed on the system. For
the noise analysis technique to work, one needs (real) fluctuations in the physical pro-
cesses, parasitic (e.g. electronic) noise is not useful. Boiling in a two-phase flow system

(3.2)
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cesses, parasitic (e.g. electronic) noise is not useful. Boiling in a two-phase flow system

(3.2)



3.3. Experiments on the thermal-hydraulic stability of DESIRE 33

7 3
——SB Kex,iis=0 <ee--- SB Kexyis=S0
61 251 SB Kexsis=20
5 nstable
2 4 Type
4 A Unstable = Unstable
H Type Il 21.5 - R Type Il
Z Z . .'.
3
14
2 4
Operaling range | 0.5
17 C}‘/ of DESIRE
0 T T 0 T T T T
0 10 20 0 S5 6 7 8 9

NZu

Figure 3.3: The stability boundary (SB) and the operating range of DESIRE for zero
riser-exit friction (left figure). SB’s for two increased riser-exit friction values and the
corresponding operating ranges (right figure).

possible changes in the system that decreases stability. The practically easiest realizable
solution, which also has the largest impact on stability according to the prediction of
the model, is to increase the friction at the riser exit. A comparison can be seen in
figure 3.3, that shows that increasing the riser-exit friction factor destabilizes considerably
the facility. In Chapter 2, it was demonstrated that increasing the two-phase frictional
pressure drop the two-phase flow becomes less stable. For an increased riser-exit friction,
not only the stable operating region decreases, but also the operating range of the system
shifts towards the unstable operating regime. The shift of the operating range in terms
of Nz, is due to the lower flow rates caused by the increased friction. At an increased
Nz, assuming steady-state and a constant liquid level in the system, the N,,; increases
as well (see Eq. 4.1 in Chapter 4).

It must be noted that the friction element built into the exit of the riser in DESIRE
can be used to simulate the influence of the friction of the steam-water separator on the
stability of a natural circulation system. A steam separator on the top of the riser is also
incorporated in the ESBWR design to decrease carry-under (whereas in Dodewaard free-
surface separation was utilized). Carry-under is the amount of steam (gas) flow that is
dragged by the liquid into the downcomer. It is important for the ESBWR to keep carry-
under as low as possible since it decreases the driving force for the natural-circulation
flow.

3.3 Experiments on the thermal-hydraulic stability of
DESIRE

Extensive experimental series have been carried out to examine the linear stability of the
DESIRE facility at two settings of the riser-exit friction element. The measurement series
were performed for both a sinus-+offset and for a flat axial power profile. In each series,
measurements were done at various operating conditions, so that practically the whole
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Figure 3.4: Several typical ACFs of the measured local void-fraction signal. The examples
are taken from the measurements described in Table 3.1.

is a stochastic process, but in a relatively stable operating condition these fluctuations
are too small to be practical. In this case, the system has to be disturbed by external
noise. For this reason, a wide-band random noise signal is added to the driving signal of
the electrically heated rods to enable noise measurements. We must note here that the
situation in an actual BWR is somewhat different since the inherent fluctuations caused
by boiling (the boiling noise) are amplified by the void reactivity feedback and result in
small power fluctuations. These power fluctuations are well measurable and they form a
practically usable source of information on the dynamics of BWR's.

Practical experience shows that assuming a second-order system is a quite good ap-
proximation for thermal-hydraulic stability measurements in DESIRE (see some typical
ACFs of the measured void-fraction signal in figure 3.4). Using this assumption, three
methods are applied to calculate the DR from the oscillatory ACFs:

1. Taking the ratio of several consecutive maxima and minima and averaging these
ratios.

2. Taking the square root of a neighboring maximum and minimum.

3. Using Lagrange Interpolating Polynomial formula as it is described in D’Auria et al.
(1997).

The three aforementioned methods give practically the same results. Both the void-
fraction and the flow signals give practically identical DR values in all measured cases.

3.3.2 Measurement results and their comparison to the reduced-
order model

All the measurements discussed here were carried out at a nominal pressure of 11.6 bar.
The operating points at which measurements were carried out are given in the Nz, — Ny,
plane in figure 3.5. It can be seen from the DR values in the figure, that the two-phase
flow loop is less stable at a higher riser-exit friction for both axial power profiles. This
result is expected according to the prediction of the reduced-order model.
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Figure 3.5: Measurement points in the Nz, — Ny plane for the two riser-exit friction
settings. The left figure shows the results for a sinus+offset axial power profile, the
right figure for a flat power profile. The numerals are the measured DR’s indicated near
several points. Solid symbols indicate unstable points (limit-cycle oscillations, DR=1),
open symbols indicate stable operating points. The operating conditions are detailed in

Table 3.1 for the sinus+offset power profile case.

Kr,e P (I)C,i Tsub wa (wa NZu Nsub
(=] [ (kW] | [kg/s] [C] Y (kg/s]
64 | 23.3 | 1.14+0.01 | 3.9+£0.5 | -0.9£0.5 | 0.13+0.01 | 2.88+£0.02 | 0.58+0.07
+6 | 19.0 | 1.10+0.01 | 5.9+0.5 | -9.3+0.5 | 0.08+0.01 | 2.43+0.02 | 0.8840.07
23.3 | 1.11+0.01 | 6.6+0.5 | -9.7+0.5 | 0.011+0.01 | 2.94 + 0.02 | 0.98 &+ 0.07
30.0 | 1.11+0.01 | 5.8+£0.5 | -1.7£0.5 | 0.17+0.01 | 3.80 &+ 0.03 | 0.86 & 0.07
27.8 | 1.11+0.01 | 7.8£0.5 | -10.0£0.5 | 0.13+0.01 | 3.52 £ 0.03 | 1.15 £ 0.07
32.8 | 1.094+0.01 | 8.5+0.5 | -8.5+£0.5 | 0.16+£0.01 | 4.22 £+ 0.03 | 1.27 &+ 0.07
34.7 | 1.084+0.01 | 7.3+0.5 | -1.9£0.5 | 0.21+£0.01 | 4.5 £ 0.03 | 1.08 + 0.07
L 35.6 | 1.12+0.01 | 7.9+0.5 | -6.6+£0.5 | 0.19£0.01 | 4.45 £ 0.03 | 1.17 &+ 0.07
109 | 16.7 | 0.86+£0.01 | 6.6£0.5 | -8.0£0.5 | 0.07+0.01 | 2.74 & 0.02 | 0.98 & 0.07
+7 | 18.7 | 0.884+0.01 | 5.140.5 | -9.640.5 | 0.10+0.01 | 2.75 + 0.02 | 0.75 % 0.07
20.6 | 0.874+0.01 | 5.7+0.5 | -9.940.5 | 0.1040.01 | 3.30 + 0.03 | 0.85 + 0.07
21.5 | 0.8740.01 | 6.240.5 | -10.2+0.5 | 0.11£0.01 | 3.46 + 0.03 | 0.91 + 0.07
22.5 | 0.8740.01 | 6.440.5 | -10.140.5 | 0.12+0.01 | 3.62 + 0.03 | 0.94 + 0.07
23.5 | 0.8740.01 | 6.7+0.5 | -10.240.5 | 0.1240.01 | 3.80 + 0.03 | 1.00 % 0.07

Table 3.1: Overview of the operating conditions of the stability measurements for the case
of sinus+offset power profile shown in figure 3.5. The measurements have been carried
out at nominal system pressure, 11.6 bar.

For the case of the sinus+offset power profile, the operating conditions and the cor-
reponding values of Nz, and Ny, at which the measurements were carried out, are sum-
marized in Table 3.1. The estimated errors in N correspond to an uncertainty of about
0.5°C in the temperature measurements. The uncertainty in Nz, is determined by the
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accuracy of the flow meter as specified by the manufacturer (0.7% full range).

DR DR DR | Frequency | Frequency | Frequency @cﬂ
[Hz] [He] o | [kg/s]
Measured Calc. Calc. | Measured Calc. Calc. Calc.
red.-o. mod. | MONA red.-o. mod. | MONA | MONA

0.53+0.04 | 0.72+0.09 0.46 | 0.27£0.01 | 0.263£0.006 0.30 1.13
0.43£0.02 | 0.9540.13 0.46 | 0.23+0.01 | 0.2334-0.005 0.25 1.11
0.66+0.05 | 1.3240.15 0.71 | 0.25+0.01 | 0.2494-0.006 0.27 1.12
0.63+£0.02 | 1.4440.16 0.62 | 0.29+0.01 | 0.286+0.006 0.35 1.11
0.76+£0.04 | 2.0240.26 0.73 | 0.2640.01 | 0.2494+0.006 0.31 1.11
0.85+£0.01 | 2.8340.42 - 0.274+0.01 | 0.27140.007 - -
0.95+0.01 | 2.3540.33 1.0 0.30+0.01 | 0.29740.006 0.30 1.05
0.99+0.01 | 2.6740.38 1.0 0.30+£0.01 | 0.29540.006 0.31 1.04
0.72£0.04 | 1.9440.26 0.81 | 0.1940.01 | 0.1774+0.005 0.25 0.90
0.70£0.05 | 1.5040.19 0.76 | 0.21£0.01 | 0.20340.005 0.24 0.92
0.86+0.03 | 1.97+0.24 0.71 | 0.21£0.01 | 0.211+0.006 0.27 0.90
0.83£0.02 | 2.314+0.28 0.77 | 0.21+£0.01 | 0.212+0.005 0.27 0.91
0.96+0.01 | 2.57+0.33 1.0 0.22+0.01 | 0.21740.006 0.26 0.91

1.00 2.9610.37 1.0 0.23+0.01 | 0.2204-0.006 0.26 0.90

Table 3.2: Comparison of the results of the stability measurements with the results ob-
tained by the reduced-order model and by the MONA code (see next section) for the case
of sinus+offset power profile shown in figure 3.5. The corresponding operating conditions
are given in Table 3.1.

The results of the stability measurements (the DR’s and oscillation frequencies) are
shown in Table 3.2. The oscillation frequency was determined from the frequency spec-
trum of the signals, and the uncertainties in the frequencies correspond to half of the
resolution of the frequency spectra. The uncertainties of the DR’s are estimated from the
uncertainties of the measured ACF values.

First, we compare the measurement results with the prediction of the reduced-order
model introduced in Chapter 2. The measured natural-circulation flow rate is not pre-
dicted accurately by the reduced-order model. It is partly due to the simple two-phase
flow model used, but more importantly it stems from the lack of modelling the carry
under (the amount of vapor flow dragged into the downcomer), which plays an important
role in DESIRE (Kok, 1998). Therefore, we use the measured flow rate - to which value
the dynamics of the system is sensitive as numerical experience shows - as input for the
dynamic calculations with the reduced-order model. The same holds for the inlet sub-
cooling, which is not an independent variable of the system either, rather is the feedwater
temperaturc. However, using the feedwater temperature as input without taking into
account the carry under would lead to an erroneous estimation of the inlet subcooling.
The other two input parameters for the calculations are the system pressure and power.
Table 3.2 contains the DR’s and oscillation frequencies calculated by the reduced-order
model. The influence of the measurement uncertainty in the inlet subcooling is accounted
for in the calculated DR’s and oscillation frequencies. The effect of the uncertainty in the
riser-exit friction factor on the results of the calculation is also taken into account. The
standard deviation originating from the combined effect of these uncertainties is given as
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Figure 3.6: Comparison of the results of the stability measurements and those obtained
by the reduced-order model for sinus+offset power profile (figures are given in Table 3.2).
Prediction of the frequency is excellent, but the DR’s are strongly over predicted. The
triangles correspond to a friction factor K, . = 109, squares correspond to a friction factor
K, =64.

the uncertainty of the calculated values in Table 3.2. The influence of uncertainty of the
flow rate measurement on the prediction is negligible with respect to the aforementioned
two effects.

Figure 3.6 shows the comparison of the results obtained by the reduced-order model
to the experimental results in a scatter plot. It can be seen that the oscillation frequencies
are predicted very well. Their values agree quantitatively with the measured ones within
the uncertainties (only the error bars in the measured frequencies are given since they
are significantly larger than those of the calculated results). However, the deviations
in the DR’s are quite significant: all the DR’s are very strongly over predicted by the
model. There are several reasons that might be responsible for this discrepancy. The
reduced-order model contains a lot of approximations and assumptions (Chapter 2). It
captures only the very basic physics of the phenomena involved. Thus, one cannot expect
quantitatively precise prediction of the measurements, although there is a clear correlation
between measured and calculated DR’s.

Remarkably, the larger the actual value of the DR, the larger is the error in the
prediction. The following conservative and non-conservative approximations, used in the
reduced-order model (see Section 2.2), might have a major influence on the results:

1. A very rough approximation in the model is neglecting the wave phenomena in the
heated channel: a quasi-static approximation assuming linear spatial enthalpy and
quality profiles is used instead. It is a non-conservative approximation (Karve et al.,
1994).

2. The neglecting of subcooled boiling, which results in over-predicting the boiling-
boundary oscillation and has a destabilizing influence (Van Bragt, 1998).

3. In calculating the dynamic pressure drop over the heated channel there is a con-
servative assumption: instead of the true two-phase mass flux profile, the delayed
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(and thus destabilizing) channel-exit mass flux is used in integrating the momentum
equation.

4. Inlet-temperature variations are neglected although it has a significant influence on
the dynamics. Whether it is a conservative or a nonconservative assumption depends
on the operating conditions (the phase of inlet-temperature oscillation with respect
to inlet-flow oscillations). Its influence is investigated in the next chapter.

Although the first approximation is always strongly non-conservative, the third one
is always strongly conservative, it is difficult to estimate the gross effect of the above
approximations since it might depend on the operating conditions. One can only spec-
ulate. Therefore, in the next section, we evaluate the stability measurements using the
thermal-hydraulic system code MONA 1.9, which is based on an advanced two-phase flow
model and a much more detailed description of the phenomena than the reduced-order
model.

3.4 Evaluation of the measurements using the MONA
code

Before discussing the results of the evaluation of the stability experiments using the
MONA code, the code and the nodalization of the DESIRE facility are described briefly.

3.4.1 Description of MONA code; the nodalization of DESIRE

MONA 1.9 is a commercial thermal-hydraulic code developed by Scandpower {Hoyer,
1994a) for steam-water/inert gas system. The code has been successfully benchmarked
by Scandpower against experiments performed with the FRIGG loop for steady-state con-
ditions and for dynamic conditions with particular emphasis on density wave oscillations
(Hoyer, 1994b).

MONA includes a full two-fluid, non-equilibrium, non-homogeneous two-phase flow
model. It contains a set of seven conservation equations, based on the modelling of three
flow fields: the bulk liquid or liquid film at the wall, the liquid droplet field and the
gas or steam phase. From the seven conservation equations three are mass conservation
equations. Using a simplifying assumption the momentum conservation equations for gas
and droplet are added to yield one combined conservation equation. The same is done with
the energy conservation equations for liquid and droplets. The conservation equations are
completed with the thermodynamic equation of state for each phase and with closure
relations for liquid and gas wall shear, for interfacial shear and for interfacial heat and
mass transfer rates. The closure relations depend on the flow regime. The code uses an
implicit upwind scheme to solve the discretized conservation equations numerically.

Only the primary loop is considered for the nodalization. The rest of the facility is
considered in the definition of the boundary conditions for the primary loop (see below).
The first nodalization of the DESIRE facility was done by Adams (1997) and it was
modified by Manera (1998). Figure 3.7 shows the nodalization of the DESIRE facility for
the MONA code (only one of the four downcomer loops is represented in the figure).

The table in figure 3.8 shows the representation of the different sections of the facil-
ity by different number of nodes. The primary loop of the facility is represented by 8
BRANCH components divided into 35 pipes. In the following a brief description of the
main parts of the circuit is given.




40 Chapter 3. Experiments on the stability of the DESIRE facility

B70_P70

R60_P6U BoO_P61

B50_PS4

3
=TH oI

8

9

T

[ ]nsn_ps2

BSk_PS

E—]Bso_rso

Figure 3.7: DESIRE nodalization for MONA 1.9. The facility is divided into a certain
number of pipe components (P) in order to reproduce geometrical changes (all volumes
of the same pipe are characterized by the same hydraulic diameter and flow area). The
pipes are grouped in branches (B) to simulate the network of connections between the
different parts of the loop.

Lower plenum: it is represented by one branch divided into two pipes in order to simulate
the abrupt area changes and the valve used to influence the inlet flow (Branch 50,
Pipe 50-51).

Fuel assembly: the active part of the fuel assembly is represented by a pipe component
(Branch 50, Pipe 53) divided into 22 hydraulic volumes. The corresponding heat
structure is modelled by 35 cylindrical pins subdivided into 22 axial nodes, each one
corresponding to a hydraulic volume of the fuel assembly nodalization. It is possible
to associate a certain amount of the total heating power to each of these nodes, so
non-uniform axial power distributions can be simulated.

Feedwater inlet: it is specified by a SOURCE term; external inputs are the feedwater
flow rate and its temperature (Branchl, Pipe 1, Volume 2).

Downcomer: it is represented by five branches, one for the region coaxial with the riser
section and four for the downcomer loops.

Riser: the riser section is simulated by two different pipes having different flow areas
(this is to represent the telescopic riser section).

Steam dome: the steam dome above the riser section is represented by a pipe of 9
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GENERAL ZONE NODES NAME
- Branch 50
Lower plenum 2 Pipe 50
5 Pipe 51
Valve - Pp. 51 Loc. 3
1 Pipe 52
Fuel assembly 22 Pipe 53
Pipe 54
Branch 60
Pipe 60
Pipe 61
Branch 60-70
Pipe 62
Pipe 70
Branch 1
Pipe 1
Pipe 2
Branch 10
Pipe 10
Pipe 11
Pipe 12
Pipe 13
Pipe 14
Pipe 15

Riser

Steam dome

o= |hu

Upper downcomer

Downcomer loop 1

PR LN IR~

Downcomer loop 2 Branch 20
Downcomer loop 3 Branch 30
Downcomer loop 4 Branch 40

Figure 3.8: Hydraulic volumes in MONA 1.9. nodalization. Table taken from Manera
(1998).

hydraulic volumes and by a horizontal pipe needed to simulate the separating surface
between liquid and vapor phase. At the top of the steam dome a NODE component
is used to fix the system pressure.

The nodalization was benchmarked against steady-state measurement with DESIRE
and the results show a good agreement (Manera, 1998). The nodalization was also used
to perform pre-test calculations on the dynamics of the system (Manera, 1998).

3.4.2 Numerical simulations

We simulated the stability measurements using the MONA code. MONA is capable of
calculating flow regime related two-phase friction and form friction factors. However, as
much as it is possible, the same measured friction factors (see Appendix B) are used in
the simulations as in case of the reduced-order model.

For the MONA code, the externally controllable parameters of the system: system
pressure, power, and feedwater flow and temperature have to be given as input parameters.
There is no carry under model in MONA, but one can give an average value of the carry
under as input too, and the code takes its influence into account. An example of MONA
input file is given in Appendix C for the case of the last measurement above the double
horizontal line in Table 3.2.

The results of the MONA calculations are compared to the experimental results in a
scatter plot in figure 3.9 (figures are given in Table 3.2). The overall agreement is quite
good: the difference between the calculated and measured DR’s remains always within
ten percent, just like the differences between the oscillation frequencies. The calculated
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inlet mass flow rates are also given in Table 3.2. Since the flow rate is a very important
dependent variable in a natural-circulation system, comparison of it also qualifies the

results. The scatter plot in figure 3.10 shows that the matching of the calculated and
measured flow rates is quite good.
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Figure 3.9: Comparison between experimental DR’s, oscillation frequencies and those
calculated by the MONA code for the linear stability measurements carried out for a
sinus+offset power profile.
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Figure 3.10: Comparison of the experimental values of the inlet mass flow rate and the
prediction of it by the MONA code.

In figure 3.5 there are several points indicated that lie in the linearly unstable region
of the facility, where constant-amplitude oscillations are measured. These so-called limit-
cycle oscillations are typical nonlinear phenomena for which the initially small-amplitude,
growing (linearly unstable) oscillations are bounded by nonlinear effects (see Chapter 5).
In these conditions, linear analysis is not a valid approximation anymore.
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We could simulate these limit-cycle oscillations with the MONA code in most cases,
although oscillation amplitudes did not really match with the measured ones. As the
operating point gets further away from the linear SB, the oscillation amplitude increases
strongly (see Chapter 5 and Chapter 6). These large-amplitude limit cycles resulted
in flow reversal (negative flows) in the simulation. The experimental investigations on
the nonlinear dynamics of the facility in the unstable operating region are described in
Chapter 6.

3.5 Conclusions

In its original design, the DESIRE facility is extremely stable from the thermal-hydraulic
point of view, therefore the facility has been "destabilized" on purpose to enable the ex-
perimental study of a wider range of dynamic situations. The experiments were preceded
with a parametric study on the stability of DESIRE using a reduced-order model. Based
on the results of this study a variable flow resistance element has been build into the exit
of the riser.

The influence of increasing the friction at the riser exit was examined in the ex-
periments. The results show the same trend as predicted by the reduced-order model:
increased friction at riser exit decreases the stability of the two-phase flow.

Quantitative comparison of the results of stability measurement with the prediction
of the reduced-order model shows that the model predicts the oscillation frequency very
well, however, the DR of the system is very much overpredicted. This is due to the strong
approximations applied in the model.

The measurements are simulated using the advanced thermal-hydraulic code MONA
1.9 with more success. A very good agreement has been found with the measured DR’s,
oscillation frequencies and with an important dependent variable: the natural-circulation
flow rate.







Chapter 4

Applications of the reduced-order
model

4.1 Introduction

This chapter consists of two studies carried out using the reduced-order model addressing
two quite distinct issues about BWR stability analysis. The first one examines the relation
between the DR and operational stability margins and it provides with results that are
interesting from the point of view of BWR stability monitoring and operation. The
outcome of the other study, which investigates the influence of core-inlet temperature
variations on the thermal-hydraulic stability of natural-circulation reactors, might be
interesting for the design of future BWRs.

4.2 On the relation between DR and operational sta-
bility margins

The decay ratio (DR) is a commonly accepted and widely used parameter for BWR sta-
bility monitoring (D’Auria et al., 1997). Present-day commercial BWR plants are usually
equipped with a core stability monitoring system, which determines the DR through noise
analysis of measured neutron-flux signals. The DR is defined as the ratio of two consec-
utive maxima of the impulse response of the system. Methods to calculate the DR are
given in the previous chapter.

At a given operating condition of the reactor, the DR proves to be a correct measure
of the linear stability of the system: in a system with a smaller DR the perturbations are
damped more rapidly than in a system with a higher DR. However, relying exclusively on
the DR can be misleading since it cannot give reliable information about the operational
margin to unstable system behavior. This was pointed out recently by Van der Hagen et al.
(1997), who have performed a series of stability measurements on the natural-circulation
Dodewaard BWR. They showed that a very slight change (less than a few per cents) in
the operational conditions might cause a dramatic increase in the DR (from 0.7 to 1.02),
supporting the concern expressed above about the feasibility and practicability of the DR
as a stability indicator. To gain more insight into this problem, we investigate it using
the reduced-order model. It is shown here that a reactor working at an operating point
with a smaller DR can be closer to instability than at an operating point with a larger
DR in terms of operational variables. This fact is very important from a practical point
of view. For the reactor operators it would be useful to know the margin to unstable
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reactor behavior expressed in terms of operational parameters (power, system pressure
etc.) together with the DR.

4.2.1 Numerical investigations

The geometry and parameters of the Dodewaard reactor are used in this study. In a
natural-circulation BWR, the power, the system pressure and the temperature of the
feedwater are the externally controllable operating parameters. The relation between the
DR and the operational margins to instability, expressed in terms of the aforementioned
three variables, is investigated. We use the dimensionless Nz, and N,, numbers to
characterize the reactor operating conditions and to plot the stability map. At a certain
feedwater temperature, the following simple relationship exists, which determines possible
reactor operating conditions in the Nz, — N,y plane:

Ns = ﬂNZua (41)
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Figure 4.1: Equi-DR lines (solid) and power equi-stability margin lines (dashed) intersect
in the Nz, — Ny plane (left figure). This means that the power stability margin changes
along the same equi-DR line (right figure). Only those parts of the equi-DR and equi-
stability margin lines are depicted on the figure that correspond to the Type-II reactor
instability.

The solid lines on the left of figure 4.1 show the linear SB and the lines of operating
points with equal DR (equi-DR lines). Only those parts of these lines are shown that
correspond to the Type -II instability since this is the region where practically all stability
incidents have been encountered in operating plants and therefore the most important for
stability monitoring.
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The operational margin to instability in terms of the reactor power is defined in an
operating point described with a power P, as

powermargin = (P, — P,)/P,, (4.2)

where P, is the power value at which the threshold of instability (the SB) is reached by
gradually changing the power and keeping all other independent variables constant. This
(relative) power margin is evaluated in operating points along the different equi-DR lines.
Figure 4.1 shows also the lines (dashed) of operating points with equal power stability
margin. From figure 4.1 it is obvious that operating points with the same DR can have
quite different operational margins to instability. Moreover, the curves show that an
operating point with a certain DR may have a larger safety margin to instability than
another operating point with a smaller DR. This is shown more clearly in figure 4.2.
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Figure 4.2: Range of possible power margins to instability as a function of decay ratio
(for cases with a subcooling number smaller than unity).

The operational stability margins for the other two externally controllable variables are
defined in the same way as for the reactor power (except that not relative but absolute
margins are given). These are shown as a function of N, along the equi-DR lines in
figure 4.3.

The stability margin in terms of feedwater temperature changes a lot along an equi-DR
line. Remarkably, an operating point with DR=0.9 might have a feedwater temperature
margin as high as -45°C, while an other point with DR=0.6 has a margin of only -12°C
(about a factor four difference in the margin)! This reconfirms our concern about the
practicability of the DR as an indicator for the margin to instability.

The pressure margin changes only slightly as a function of operating point along the
equi-DR lines and it is always smaller (in absolute scnse) for a larger DR. It indicates
that for operational changes in the pressure the DR can also be used as an indicator for
the margin to instability.

The above reported operational stability margins and equi-stability margin lines have
been evaluated at nominal system pressure of the Dodewaard reactor (75.5 bar). Using
the Nzy — Nyup plane has the advantage that the thermal-hydraulic SB and the equi-DR
lines are independent of the system pressure (Van Bragt and Van der Hagen, 1998a). It
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Figure 4.3: Operational stability margins in terms of the feedwater temperature (left
figure) and the system pressure (right figure) along different equi-DR lines.
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Figure 4.4: The stability margins in terms of the reactor power (left figure) and in terms of
the feedwater temperature (right figure) change significantly for different system pressures.

is approximately true for the reactor SB too, since the void- reactivity coefficient is only
slightly dependent on the pressure (Van Bragt and Van der Hagen, 1998a). However, the
Nz, and Ng,; numbers themselves depend on the pressure and thus the position of an
operating point described with a certain power, flow rate and inlet subcooling depends
on the system pressure in the Nz, — Ny, plane. Therefore, the operational stability
margins also depend on the pressure. The power margin and the feedwater temperature
margin lines at nominal pressure are compared with the same equi-margin lines at 35 bar
in figure 4.4. The curves are given in the power — Tfeedwater Plane, which is more useful
from the practical point of view since these are the externally controllable parameters of
the system. The differences are significant, especially the feedwater temperature margins
may vary considerably with the system pressure.
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4.2.2 Summary

The relation between the DR and the operational stability margins in a natural-circulation
BWR has been examined. The margins are expressed in terms of the externally control-
lable variables of the system: power, pressure and feedwater temperature. It has been
found that the system might be closer to instability than the value of the DR would indi-
cate. Therefore, the usage of operational margins in combination with the DR seems to
be more practical for stability monitoring.

Of course, the simplicity of the model used here allows only to give indicative results;
one should not focus too much on the exact numerical values of its output. Nevertheless,
we believe that the results shown here call for a reconsideration of the use of the DR as
a sole indicator for BWR stability monitoring.

4.3 The influence of core-inlet temperature variations
on BWR stability

In (flow) transient situations, the coolant temperature at the inlet of the core of a natural-
circulation BWR can vary. This thermal feedback has an influence on the dynamics and
stability of the closed-loop reactor system as is pointed out by Podowski and Pinheiro Rosa
(1997). A quite rough approximation in the reduced-order model of Van Bragt and Van der
Hagen (1998a) is that fluctuations of the core-inlet temperature (inlet subcooling) are
ignored and a constant inlet subcooling is assumed in dynamic situations (see point No.
7 on p. 11). The influence of this approximation is examined with respect to the linear
stability of the system by extending the model with a variable core-inlet temperature.

4.3.1 Modelling core-inlet temperature variations

Assuming a constant feedwater temperature and flow rate, we consider the inlet tempera-
ture variations that originate from the temperature fluctuations at the feedwater sparger
caused by the mixing of the constant (cold) feedwater flow and the fluctuating (warm)
circulation flow. We do not consider fluctuations in the feedwater flow or feedwater tem-
perature. First of all, the time dependence of the inlet liquid enthalpy is introduced in
the dynamic equation for the position of the boiling boundary (see Appendix A).

dz,,b(t) _ 2[MC’,(t) _ q’(t)zbb(t)
dt ] piAc(hy — he,lt))
A flat axial power profile is assumed here, although other profiles can be introduced
easily (see Chapter 5). Since we use a frequency-domain approach for the linear stability
analysis, Eq. 5.8 is linearized and Laplace transformed to obtain the normalized transfer
function from the core-inlet enthalpy to the boiling-boundary position:

(4.3)

Szpp heyio
__ Zbbo hf—hc,io
szb,hc,i = Sho; 14 s> (4.4)
heyio 2
where 7, = % is the single-phase transit time in the core. To describe the dynam-
ics of the inlet temperature (enthalpy), we start with the differential enthalpy-balance
equation for the single-phase flow in the downcomer. Using a one-dimensional model (no
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radial effects) and neglecting heat losses to the environment and heat diffusion in the
downcomer one can write:

dpih(z, 1) + OMy(t)h(z,t)
ot 0z N

where M, is the mass flux in the downcomer. Linearizing and Laplace transforming, this
equation can be integrated from the feedwater sparger to the core inlet to obtain the
normalized transfer function from mass flux to inlet enthalpy:

0, (4.5)

dhei B 3

— hoio _ U T NG —8Tq
GhC,inC,i = Mg, hc‘ € ’ (46)
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where 74 = ’°‘—1f;%'" is the transit time of the coolant from the feedwater sparger to the
core inlet and la,,,,-n'is the distance between the feedwater sparger and the core inlet. Here,
an instantaneous and perfect mixing of the cold feedwater and the down-coming fluid at
the sparger is assumed and use is made of Eq. 4.1.
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Figure 4.5: The block diagram of the extended model. The core-inlet enthalpy is intro-
duced as a new system variable in the model.

Adding the two aforementioned transfer functions, one can draw the block diagram
of the extended model as is shown in figure 4.5. We examine only the thermal-hydraulic
stability of the system. The transfer function from heat flux to the core average void
fraction can be derived as (compare to Eq. 2.1)
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d<a(s)>c

<a>co _ G1— GG+ GyGy
% 14+ GGy + GGy ’

(4.7)
where
Go = szbvhc',iGhG,iaMC,iG<a>,zbb

Gy = GMg ;<a>
14+GMe Gzz,b,q” ‘GMc,Mbb szb'h(],i Gh(}',i Mg
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and G, has already been defined in Chapter 2 (Eq. 2.1).
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Figure 4.6: Thermal-hydraulic stability map of the Dodewaard reactor obtained by the
original and the extended model. The extended model predicts a significantly less stable
system. The feedwater sparger is placed at 4.15 m distance from the core inlet in the
Dodewaard reactor.

The thermal-hydraulic SB’s of the Dodewaard reactor obtained by the original and the
extended model are compared in figure 4.6. The figure shows that ignoring the core-inlet
temperature variations has a significant influence on the prediction of the stability.

Adding the transfer function in Eq. 4.6 to the model, introduces an extra complex
exponential (delay) term. Since transport delays are crucial for density-wave oscillations
(see Chapter 1), we expect this transfer function to play an important role in the thermal-
hydraulic stability. The phase shift of this transfer function is determined by the coolant
transit time 74, which, at a certain operating condition, depends only on the distance
between the feedwater sparger and the core inlet. We study the role of the phase of
the aforementioned transfer function in determining the thermal-hydraulic stability by
changing the sparger position.
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Figure 4.7: Thermal-hydraulic stability of the Dodewaard reactor for various positions of
the feedwater sparger obtained by the extended model. As the position of the feedwater
sparger approaches the core inlet the system becomes more stable. If the sparger is placed
at the core inlet, the model predicts a stable system in the entire Nz, — Ny, plane.

4.3.2 Influence of the sparger position on the stability

The results on the stability map of the reactor found by changing the sparger position
(the lypin distance) are shown on figure 4.7.

The thermal-hydraulic system becomes more stable as the sparger position approaches
the core inlet. At the limit of zero sparger-core inlet distance, the system becomes stable
in the entire operating region (unconditionally stable). This is because the influence
of flow variations on the boiling-boundary position is just cancelled by the influence of
the inlet-temperature variations. This follows from G, My, = —GuyhoGhosMe, fOr
74 = 0. In other words, if the sparger is at the core inlet, the right side of the linearized
boiling boundary equation, (Eq. 5.8), becomes independent of the instantaneous value
of the inlet mass flux and the inlet enthalpy, i.e. the boiling-boundary oscillations are
cancelled. Van Bragt (1995) has shown that ignoring the boiling-boundary oscillations
in the reduced-order model, it reduces to a damped oscillator like the model of March-
Leuba (1984) and predicts an unconditionally stable thermal-hydraulic system,. This is
because only two nodes (one single-phase and one two-phase) are considered in the core
and within the nodes a quasi-static approximation is used for the enthalpy and quality
profiles. For more details on the influence of the number of nodes used for modelling the
core see D’Auria et al. (1997).

What happens with the stability as [y ;, increases is explained via the following illus-
trative example. The DR’s and frequencies of several (dominant) pole pairs of the system
(see Chapter 2) are shown in figure 4.8 as a function of the distance between the sparger
and the core inlet calculated in an operating point marked with A in figure 4.6. Fig-
ure 4.8 also shows the phase of the Gp ; u,; transfer function as a function of the sparger
core-inlet distance for the frequencies (f,) of the different poles (phase = —2 f74 from
Eq. 4.6).

The important role of the phase of the Gy, ; m,; transfer function can be inferred from
the figure: for frequencies and I, ;, distances where the phase is close to zero, the DR
of the pole pairs is small (minimal). In these cases, the inlet-temperature oscillations are
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just in-phase with the inlet-flow oscillations and therefore compensate the influence of the
latter on the boiling-boundary oscillations. If the phase is close to —180°, i.e. the inlet-
temperature oscillations are out-of-phase with the inlet-flow oscillations and therefore
reinforce their influence on the boiling-boundary oscillations, then the corresponding DR
has a (local) maxima. The matching of the maxima (minima) of the DR curves with the
—180° (0°) crossings of the corresponding phase curves is not fully perfect because the
DR of a pole pair of the system is influenced also by other processes than the relative
phase between inlet-flow and inlet-temperature oscillations. The number of local minima
and maxima in the DR curves corresponds to the number of crossings of the phase 0° and
—180°, respectively, which in turn is determined by the frequency of the pole.
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Figure 4.8: The upper figures show the DR’s and the frequencies of several (dominant)
pole pairs of the thermal-hydraulic system as a function of the distance between the
feedwater sparger and the core inlet (Is;,) in operating point A from figure 4.6. The
lower-left figure shows the phase shift of the Gy, a1, transfer function (¢ = 27 f,74) as a
function of /s, ;, and the frequency of the different poles. The important influence of the
Ghe,Mq, transfer function is clear from the figures: where its phase is close to zero the
DR of the corresponding pole is small (minimal), where the phase is close to —180° the
DR of the pole has a (local) maxima. The lower-right figure shows the transit time from
sparger to core inlet as a function of the distance between the sparger and the core inlet.
There is a change in the slope of this line at around I, ;, = 2, which is due to change of
the area of the downcomer of Dodewaard at a certain height; it has no significance for
the results shown here.

The stability of the system is determined by the least-stable pole pair. It is only at
lspin = 0 (when the phase of Gy, m., is zero for all frequencies) that all the pole pairs
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have minimal DR’s. If l,,,, increases, there is an interchange between the different poles
being the least-stable one as shown in figure 4.8. Therefore, the DR of the system is a
sort "envelope" of the curves (at each s, the maximal DR must be taken) shown in
figure 4.8.

Investigations using the MONA code

It is due to the simplicity of the reduced-order model that it predicts an unconditionally
stable system, when the sparger is at the core inlet. Considering the steady state, it is
plausible physically that e.g. an increase in the flow would raise the boiling-boundary
position just as much as the increase in the inlet temperature - caused by the increase
in the flow - would pull it down; i.e. the boiling boundary position remains constant.
In dynamic situations, the trend of decreasing DR as the sparger approaches the inlet,
predicted by the reduced-order model, deserves further investigations. We use the MONA
1.9 code to study the influence of the position of the feedwater sparger on the thermal-
hydraulic stability of the system. To enable subsequent comparison with experimental
data, the nodalization of the DESIRE facility (see Chapter 3) is used for this study, since
from a thermal-hydraulic point of view DESIRE is just a scaled copy of Dodewaard.

MONA is an advanced thermal-hydraulic code and 22 nodes are used to model the
core section of the DESIRE facility. In this way we can circumvent the limitations of the
reduced-order model and expect more reliable results.
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Figure 4.9: The influence of the feedwater sparger position on the stability of the DESIRE
facility as predicted by MONA. There is a trend of stabilizing as the sparger position
approaches the core inlet. the results are shown only for relatively small sparger-inlet
distance.

The influence of the distance between the sparger and the core inlet on the stability of
the system is examined by MONA in an operating point with a Nz, and N, number close
to that of point A in figure 4.6. The result in figure 4.9 shows a similar trend as found by
the reduced-order model. The system becomes more stable as the sparger approaches the
core inlet. Unfortunately, the investigations using MONA were not completely successful.
This is due to the strong numerical diffusion in calculating the propagation of temperature
oscillations in the downcomer of DESIRE as illustrated in figure 4.10.
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Figure 4.10: The temperature oscillations in the downcomer of DESIRE predicted by
MONA. Due to numerical diffusion the temperature oscillations are strongly damped
already within a relatively small distance downstream from the sparger (left figure). The
oscillations do not appear at the core inlet (right figure). The distance between the sparger
and the assembly inlet in DESIRE is 5.55 m, which corresponds to about 22 s transit time.

The figure shows that the temperature oscillations created at the sparger are strongly
damped as they propagate towards the core inlet. Arriving at the core inlet the oscil-
lations are died out completely due to the numerical diffusion in solving the discretized
conservation equations over the nodes.
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Figure 4.11: The temperature oscillations in the downcomer of DESIRE predicted by a
refined nodalization (eight times more hydrodynamic volumes in each node in the down-
comer) are still damped by numerical diffusion although temperature oscillations appear
at the core inlet (left figure). The damping of temperature oscillations is less severe only
if the sparger is close (<1m) to the core inlet (right figure).

The nodalization of DESIRE in the downcomer is quite rough. MONA uses an implicit
upwind numerical scheme for solving the governing equations, which usually needs a
quite fine nodalization (small hydrodynamic volumes) to decrease numerical diffusion.
Therefore the nodalization of the downcomer is refined. The results are shown for an
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eight times finer mesh, i.e. each original node is divided into eight nodes equidistantly, in
figure 4.11. Using the refined nodalization, the results do not improve very much. The
damping by numerical diffusion is not so significant only if the sparger is placed less than
about 1 m from the core inlet. The curves (DR, frequency) in figure 4.9 are calculated with
the refined nodalization. Some tests showed that refining further the nodalization does
not improve the results satisfactory. Moreover, it has the drawback that the calculations
become unpractically time-consuming.

These results indicate that one should be aware of the importance of proper modelling
of core-inlet temperature oscillations and the influence of numerical diffusion when using
thermal-hydraulic codes for stability investigations.

4.3.3 Examining the influence of turbulent diffusion on inlet-
temperature variations

Turbulent heat diffusion has also a smearing out, damping influence on the temperature
oscillations in the downcomer in actual cases, which is neglected in Eq. 4.5.

To get an idea how important (strong) the inlet-temperature variations actually are,
we examine them measured in the DESIRE facility at transient flow conditions.
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Figure 4.12: Inlet subcooling oscillations during typical transient flow conditions are well
observable in the DESIRE facility. The measurements are carried out for a linearly stable
system DR’s of 0.79 (left figure) and of 0.92 (right figure).

Figure 4.12 shows that the inlet temperature (subcooling) variations are well de-
tectable during flow transients (2 — 4% relative amplitude).

To get an idea how strong the damping of the temperature oscillations in the down-
comer of DESIRE is, figure 4.13 shows the temperature oscillations measured in the
downcomer just below the sparger and at the core inlet for a typical flow transient case.
the data shows that, on average, the amplitude of temperature oscillations at the core
inlet is around 30-32% of that at the sparger.
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Figure 4.13: Temperature oscillations measured in DESIRE just under the feedwater
sparger in the downcomer and at the core inlet for transient flow conditions. The flow
rate oscillations are also depicted.

To estimate the damping of the temperature oscillations by turbulent diffusion, the
one-dimensional heat convection-diffusion equation is considered:

orT t 2T (2, t
Gut) | T _ 0T
ot 0z 022
where a = # is the thermal diffusivity and k is the thermal conductivity. It is
assumed that the flow velocity, u, is constant which is a reasonable approximation if the
flow variations are relatively small. Laplace transforming and integrating Eq. 4.8, one

obtains the temperature fluctuations at a distance z from the sparger by taking only the
physically meaningful solution as:

(4.8)

T(z,5) = Typ(s)ets LV 1F1as/v?), (4.9)

where T,(s) is the Laplace transform of the temperature oscillations at the sparger.
Substituting s = iw into Eq. 4.9, the ratio of the amplitude of temperature oscillations
at the core inlet and at the sparger can be calculated in the frequency range of interest.
In highly turbulent flows, as in the DESIRE facility, an effective diffusivity must be
used in Eq. 4.8 instead of the molecular (material) diffusivity. This turbulent diffusivity
can be several orders of magnitude higher than the molecular diffusivity and it strongly
depends on the flow. Although there are correlations for the diffusivity in turbulent pipe
flows obtained by e.g. k — & model (Wilcox, 1993) experimental values of the diffusivity,
measured in the DESIRE facility (Van der Hagen, 1996), are used here. The value of
a = 2.8¢cm?/s for flow in a cylindrical and the value of a = 46cm?/s for flow in between
two square tubes is given by Van der Hagen (1996) for DESIRE. Since the downcomer of
DESIRE is a combination of square and cylindrical geometries, we estimate and effective
turbulent diffusivity as a weighted average (weighted by the relative lengths of the two
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sections) of the aforementioned two diffusivity values: a = 10.97cm?/s. Using this value,
the amplitude of the temperature oscillations at the core inlet is estimated to be around
30% of that at the sparger for the measured oscillation frequency (0.2 Hz) in DESIRE.
This is in good agreement with the measured value.

Using Eq. 4.8 instead of Eq. 4.5 would lead to the following transfer function from
mass flux to inlet enthalpy in Eq. 4.6:

Shei

— hcio _ hf - hC,i,O u—lm(l—\/1+4as/u2)
th,i,MC,i = Mcs hoa € . (4.10)
Mcyio e

The gain and the phase of this transfer function are compared with those of the transfer
function in figure 4.14 using the above value of the turbulent diffusivity for DESIRE. The
figure shows that the difference between the gain of the two transfer functions is less
than 20% up to a sparger to core-inlet distance of 1 m, for the the measured oscillations
frequencies (around 0.2 Hz). The difference in the phases is negligible. This confirms that
the turbulent diffusion has a relative small influence and neglecting it has practically no
consequence on the results of the previous section, i.e. the stabilizing influence of nearing
the sparger to the core inlet.
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Figure 4.14: Comparison of the gain and the phase of the transfer functions in Eq. 4.6,
the exponential delay term (no turbulent diffusion is modelled), and in Eq. 4.10 (with
turbulent diffusion) for different sparger to core inlet distances.

4.3.4 Discussion

It has been shown that neglecting the influence of core-inlet temperature variations leads
to erroneous results on the thermal-hydraulic stability of natural-circulation BWRs. Ap-
plying frequency-domain analysis of the reduced-order model, it was found that the phase
at which the temperature oscillations, created at the feedwater sparger, reach the core
inlet has a significant influence on the stability. This phase can be adjusted by posi-
tioning the sparger and it was found that approaching the sparger to the core inlet has
a stabilizing influence. At the limit, when the sparger is at the core inlet, the system
becomes unconditionally stable. The unconditional stability is due to the simplifications
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in the reduced-order model. The MONA code was used to obtain more reliable results.
A stabilizing trend is found with MONA too as the sparger approaches the inlet,

The stabilizing effect of positioning the sparger at the core inlet might be interesting
for the design of the new generation of BWRs. The following important items should be
thoroughly considered with respect to effects on reactor operation and consequences on
the design if the sparger is placed at the core inlet (Challberg, 2002):

e There can be a decrease in the driving force of the natural-circulation flow if there
is a significant carry-under (like in the Dodewaard reactor with free-surface steam-
water separation). In a design with a steam-water separator (like the ESBWR),
where the carry-under is small, the flow decreasing influence is presumably minor.

e In case of a (feedwater) pipe-line break, the reactor core would not remain covered
with water if the sparger is at the height of the core inlet. However, this could be
circumvented by using internal piping in the downcomer: starting from a high vessel
entry position travelling downward to the core inlet (lower plenum). This internal
piping in the downcomer should be accommodated in a way that relatively low extra
friction is added.

o An advantage of a high sparger position is that one obtains a thorough mixing of the
feedwater and the down-coming saturated liquid, which in turn, provides consistent
temperatures or better yet, known conditions at the entrance to the core. Placing
the sparger near the core inlet can have an undesirable effect creating not well-mixed,
separate streams of cold and saturated liquid at the core inlet. This is an important
practical issue that should be thoroughly examined using multi-dimensional analysis
to see whether sufficient mixing can be achieved in the lower plenum if the sparger
is placed in the vicinity of the core inlet.

o There is practical consideration of access to the lower annulus primarily for vessel
material test specimens.

As another approach, one could try to optimize the length/area ratio of the down-
comer, i.e. the transit time in the downcomer, so that for typical operating conditions
oscillations in a certain (expected) frequency range are damped.

Examining further the influence of positioning the sparger at the core inlet on the
stability remains an interesting issue.

Thermal-hydraulic codes implemented with other numerical scheme than implicit up-
wind scheme could be used for further numerical investigations. For example, numeri-
cal schemes based on the so-called time-splitting technique are very efficient in solving
diffusion-convection type of equations that are involved in the present problem Press et al.
(1986).

To enable a simple experimental investigation of the problem, an extra sparger could
be added to the core inlet of the DESIRE facility, which could be alternatively used with
the original one for stability investigation.
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Chapter 5

Numerical analysis of the nonlinear
dynamics of BWRs

5.1 Introduction

The understanding of density-wave oscillations and nuclear-coupled density-wave insta-
bilities in BWRs is fairly good for linear phenomena, however, more work is needed to
understand nonlinear dynamics and unstable behavior. As in the case of linear stabil-
ity analysis, reduced-order models are more attractive for parametric studies on non-
linear BWR dynamics than complicated system codes. The work by March-Leuba et al.
(1986a,b) was the first significant attempt to investigate the nonlinear dynamics of BWRs
using a simplified model. Similar, entirely numerical studies have also been carried out
on the stability of boiling channels (Rizwan-uddin and Dorning, 1990; Clausse and Lahey,
1991; Pinheiro Rosa and Podowski, 1994; Garea et al., 1994). Such numerical analyses
are time consuming and therefore restricted to small regions of the parameter space. A
better alternative is to perform analytical bifurcation analysis, which was first done by
Achard et al. (1985) for a boiling channel using the homogeneous-equilibrium model. It
was extended later by Rizwan-uddin and Dorning (1987) using the drift-flux model and
nonuniform heater profiles. The application of these analytical techniques, developed in
the field of nonlinear dynamics, for BWR stability analysis gradually gained attention. A
"fully analytical" approach, based on the Hopf theory, was applied by Munoz-Cobo and
Verdt (1991) for coupled neutronic-thermohydraulics using March-Leuba’s model. The
disadvantage of such an analytic approach is that algebraic complexity increases tremen-
dously with the number of equations. To circumvent this difficulty, Tsuji et al. (1993)
performed bifurcation analysis of forced-circulation BWRs using the numerical bifurcation
code BIFOR2.

The present study employs the latter - numerical bifurcation analysis - approach to
examine the influence of a special operating parameter, namely the axial power distribu-
tion, on the nonlinear dynamics of natural- and forced-circulation BWRs. The influence of
asymmetrical axial power profiles on the linear and non-lincar stability of a simple heated
channel has been investigated by Rizwan-uddin and Dorning (1986, 1987) using the drift-
flux model. They concluded that (for the same total heating power) a bottom-peaked
power distribution results in the lowest and a top-pcaked profile results in the highest
stability in the region of practical interest. This result was confirmed by Narayanan et al.
(1997), who reported on the effect of linear and exponential variations of the axial power
profile on the stability boundary. However, only thermal-hydraulic stability was investi-
gated in the aforementioned papers. Since the natural-circulation BWR is a promising
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candidate for the next generation of BWRs, Van Bragt et al. (1999) performed stabil-
ity and bifurcation analysis of natural-circulation BWRs. They used the reduced-order
BWR model introduced in Chapter 2 and the numerical Hopf-bifurcation code BifDD.
Nevertheless, only symmetrical axial power profiles have been analyzed there, whereas in
reality the axial power distribution can be quite asymmetrical. To broaden the insight
into the influence of the axial power profile on the nonlinear dynamics of BWRs, Hopf
bifurcation analysis is performed here on four different types of systems. Two purely
thermal-hydraulic systems are investigated: a forced-circulation and a natural-circulation
boiling channel. The corresponding reactor (coupled) systems are examined as well. Nu-
merical time-domain simulations are also carried out to determine the range of validity
of the bifurcation analysis.

5.2 The Hopf bifurcation

The Hopf bifurcation proved to be one of the most important bifurcation type in BWR
dynamic analysis (Achard et al., 1985; Rizwan-uddin and Dorning, 1986; Tsuji et al.,
1993). The Hopf bifurcation theorem guarantees the existence of family of a periodic
solutions of a set of nonlinear ordinary differential equations (Hassard et al., 1981; Hale
and Kocak, 1991). Consider the autonomous system

di

o = F@v), (5.1)

where v is a so-called bifurcation parameter, and suppose that for a certain v,, #(v.)=0

and 7=0 is an equilibrium point of the system, i.e.

F(Z,v,)=0 (5.2)

According to the theorem, a family of periodic solutions of Eq. 5.1 exists in the vicinity
of v, if the following conditions are fulfilled (Hassard et al., 1981; Hale and Kocak, 1991):

1. Let DF(%,v) = 95(&, v) denote the Jacobian matrix of F and A(v) = o(v) + iw(v)
the eigenvalues of it. DF(Z, v,) has a pair of complex conjugate eigenvalues lying on
the imaginary axis, i.e. o(v,) = 0 and w(v,) = w, > 0 and all the other eigenvalues
have strictly negative real parts.

2. The real parts of the eigenvalues cross the imaginary axis with a non-zero speed,

ie. 2 2,

Obviously, at the v, critical value, the stability of the system changes, with other words
it undergoes a bifurcation. The critical value v, (the linear stability boundary value)
can be easily determined using linear stability analysis. However, bifurcation analysis is
needed to determine the amplitude of the linearly unstable, oscillatory solutions close to
the stability boundary. The bifurcation can be studied either by integrating numerically
the governing differential equations for different v values around v, or by performing
analytical bifurcation analysis. The latter one usually involves some form of asymptotic
expansion methods. In such a case, the periodic solution is expanded in terms of a small
parameter ¢:

#(t,v) = Z(v,) + eRe(e TS ) + O(2), (5.3)




5.2. The Hopf bifurcation 63

where ¥ is the eigenvector of the linearized system on the stability boundary. Sim-
ilarly, the nonlinear oscillation period T'(¢) and the bifurcation parameter v are also
expanded in powers of e:

T(e) = %71[1 +7é + O(eY], (5.4)

v(€) = v + poe® + O(e*). (5.5)

The stability of the periodic solutions can be determined by the Floquet theory of
differential equations with periodic components (Hassard et al., 1981; Hale and Kocak,
1991). Let p(t) be a T-periodic, zp(t) be an arbitrary solution of 5.1. Suppose that
§(t) = () — p(t) is small, and we form the following linear variational system:

W~ R+ 9) - F() ~ AW, (5.6)

where A(t) = DF(p(¢)) is a matrix with T-periodic components. The stability of F(¢t)
is largely determined by the behavior of the aforementioned linear variational system.
The Flouget theorem states that every fundamental matrix solution of %? = A(t)7 has
the form: Y () = P(t)e?!, where P(t) is a T-periodic matrix and B is a constant matrix.
The g; eigenvalues of B are called the characteristics or Floquet exponents.

The Floquet exponent describing the stability of the periodic solutions can be written
as fB(e) = B2 + O(e*) (Hassard et al, 1981). The Floquet exponents describe the
asymptotic decay of the transients to the periodic solution in Eq. 5.3. Depending on
the sign of the Floquet exponent the periodic solution attracts neighboring state-space
trajectories and is thus orbitally stable (a limit cycle) for 8{¢) < 0; or repels trajectories
in his vicinity and is thus orbitally unstable for 8(¢) > 0. Detailed analysis of the Hopf
theorem shows that if periodic solutions exist in the linearly unstable region, i.e. the Hopf
bifurcation is supercritical, the periodic solutions are stable. If periodic solutions exist
in the linearly stable region, i.e. the bifurcation is subcritical, the periodic solutions are
unstable.

In principle, one can derive so-called bifurcation formulae for the expansion coeffi-
cients y;, 7;, 5;. However, one usually stops already at o, 72, 52.(Detailed analysis shows
(Hassard et al., 1981) that 4y = 0,7, = 0, 8; = 0 always; and uz = 0,75 = 0, 83 = 0 with
an appropriate choice of the variables.) The analytical calculation of the expansion coef-
ficients is only practical for a very limited class of reasonably simple systems. For more
complex systems it becomes quickly cumbersome. A practical alternative is to evaluate
the bifurcation formulae numerically.

This analytic-numeric alternative is used in the the numerical Hopf-bifurcation code
BifDD (Hassard, 1987), which is applied here for bifurcation analysis of the reduced-order
BWR model. The BifDD code enables to calculate the aforementioned critical value of the
bifurcation parameter in the model at given values of all other system parameters. Thus,
by incrementally varying another parameter of the system, the entire stability boundary in
a two-dimensional space can be determined. The main result of the bifurcation calculation
with BifDD is the set of expansion coefficients, po, 7o, B2 for each point along the SB.

One has to bear in mind that the result of the Hopf theorem is local in nature and
is only valid in the vicinity of the SB (Hassard et al., 1981). Thercfore, we have also
performed direct numerical integration of the model equations for several cases to check
the range of validity of the prediction of BifDD and to determine the system dynamics
further away from the SB. The NDSolve subroutine in the Mathematica package has been
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used for this purpose (Wolfram, 1996). The NDSolve routine uses the Adams predictor-
corrector method for non-stiff differential equations and backward difference formulas
(Gear method) for stiff differential equations with a default accuracy of ten digits. All
calculations are performed with double precision using the BifDD code.

5.3 Modelling of asymmetrical axial power profiles

The reduced-order BWR, dynamic model has been already introduced in Chapter 2, and
further details of the model are given in Van Bragt and Van der Hagen (1998a), and in
Van Bragt et al. (1999). Only the slight modifications, which have been made to this
model to perform the present study, are mentioned in the following. For the simulation of
asymmetrical axial power profiles, the AP(2*) = f,sin(A + Bz*) power profile has been
added to the model, where z* is the axial position (relative to the core height), and f, is
the power peaking factor. The axial position of the power peak z, and the value of the
peaking factor can be given as an input to the model, relating A and B to each other
as A+ Bz, = §. The values of the constants A, B then follow from the normalization
condition:

/1 AP(2*)dz* = 1. (5.7)

Note that for each z; there is an upper limit for f, for which a still physically meaningful

profile exist (e.g. f, = § for z; = 0).

1
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Figure 5.1: Typical axial power profiles used in the model. The areas under the different
curves are normalized to unity.

Some typical axial power distributions used in the model are depicted in figure 5.1.
The dynamics equation describing the boiling-boundary position (Van Bragt et al., 1999)
is strongly dependent on the actual power distribution in the one-phase region:

NZu

sub

dng 1 * * * ¥ * e
dir = E[Mc,e(l + Jz,c) —(I—zp) <qg* > Nzgu— 25, < q " >14

D, (68)
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where the factor P; characterizes the influence of the axial power profile on the dynamics
of the boiling boundary:
[25,B - cos A +sin A — sin(A + Bzg,)] sin(A + Bz;,)

_ 5.9
Fa [cos A — cos(A + Bzp,)J? (5-9)

The asterisk in Eq. 5.8 and in Eq. 5.9 means that the quantities are made dimensionless
(Van Bragt and Van der Hagen, 1998a).

5.4 Thermal-hydraulic systems

5.4.1 Forced-circulation system

An elementary thermal-hydraulic system, consisting of a vertical heated channel and a
downcomer is investigated first in this section. The circulation in the loop is sustained by
an external pressure drop imposed over the downcomer section.

The stability map of the heated channel system are shown in figure 5.2 in the Nz, —
Ny plane for the four axial power profiles depicted in figure 5.1.
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Figure 5.2: Stability map of a simple heated channel for the four different axial power
profiles depicted in figure 5.1. A bottom-peaked profile yields the least, and a top-peaked
profile yields the most stable system for relatively low Nz, and Ny, numbers.

As it was shown in Chapter 2, for a forced-circulation system the most important
type of instability is the Type-Il density-wave oscillation. The mutual positions of the
SBs agree with previous results by Rizwan-uddin and Dorning (1987), obtained for a
similar heated chanuel system. In figure 5.3, SBs of a typical top- (2, = 0.75, f, =
1.39) and bottom-peaked (25 = 0.25,f, = 1.39) profile are given. The dashed lines
connect operating points for which equal-amplitude periodic solutions exist, where ¢ is
the oscillation amplitude (half of the peak-to-peak value) of the channel-exit mass-flux
density relative to its equilibrium value. (The eigenvector ¥; in Eq. 5.3 is normalized with
respect to the first component, i.e. the normalized core-exit mass-flux density Mg, of
the state vector Z(¢, v).) Figure 5.3 shows that in case of a top-peaked profile the periodic
nonlinear solutions are located to the right of the SB, i.e. in the Type-II unstable region.
This means that the bifurcation is supercritical for a top-peaked profile and the periodic
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solutions are orbitally stable, limit-cycle oscillations. On the other hand, in case of bottom
peaked profile, the ¢ = 0.3 line crosses the SB at about N,,; = 3.0 and penetrates into
the (linearly) stable region at high values of the subcooling number. When the periodic
nonlinear solutions are located in the linearly stable region, the bifurcation is subcritical
and unstable periodic solutions exist. As long as perturbations in the core-exit mass-
flux density do not exceed the value of the corresponding € in that operating point, the
oscillations are damped and the system settles to equilibrium. As the magnitude of the
perturbations exceed € diverging oscillations develop. Subcritical bifurcations are therefore
rather dangerous, since they might result in diverging oscillations in the linearly stable
operating regime.

« SB Channel
Bottom peaked

SB Channel
Top peaked \

Figure 5.3: SBs and lines of equal-amplitude oscillation (¢ = 0.3) for a typical top- and
bottom-peaked profile (see figure 5.1). The bifurcation is subcritical for high values of the
subcooling in case of a bottom-peaked profile, whereas, bifurcation is supercritical for a
top-peaked profile.

Note that a linear analysis cannot predict the existence of this kind of diverging non-
linear oscillations. This phenomenon therefore deserves a more detailed analysis. The
detailed bifurcation analyses are carried out at Ny,,=4.0 using Nz, as bifurcation param-
eter for different axial power peak positions and peaking factors. The results are shown
in figure 5.4. The horizontal coordinate in figure 5.4 - 6Nz, = (Nzu — Nzu,58)/Nzu,sB
- is the relative distance of the ¢ = 0.3 curve from the SB, the vertical coordinate is the
relative axial power peak position. For positive values of Nz, a bifurcation is supercrit-
ical, whereas a bifurcation is subcritical for §Nz, < 0. Figure 5.4 clearly shows the strong
impact of the axial power profile on the Hopf-bifurcation characteristics. The bifurcation
is supercritical if z; > 0.3. Only for strongly bottom-peaked profiles (z; < 0.3), with a
high peaking factor, subcritical bifurcations may occur. Note also that the € = 0.3 curves
depicted in figure 5.4 cross in the same point regardless of f,. The reason for this is not
known and it needs further investigations.

The influence of the peaking factor f, on the oscillation amplitude is also apparent; the
equal amplitude curves shift away from the SB as a function of f,. A similar observation
was made by Van Bragt et ol. (1998) with respect to symmetrical power profiles. Figure 5.4
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Figure 5.4: Relative distances from the SB for different peak positions and different
peaking factors. The lines of equal oscillation amplitude (e = 0.3) are located quite close
to the SB (the oscillation amplitude rises rapidly as a function of the distance from the
boundary).

shows that a shift of only 0.1% in Nz, (from the SB) results in limit-cycle oscillations
with a relative large amplitude of 30% for a slightly bottom-peaked profile (2 = 0.4).
Supercritical bifurcations result in orbitally stable oscillations, however, from safety point
of view it is also very important to notice how fast the amplitude of the limit cycle
increases as the SB is crossed.

5.4.2 Natural-circulation system

The next system under consideration is a natural-circulation boiling loop. In natural-
circulation BWRs the flow rate is enhanced by installing a tall riser section on the top
of the core. The system considered consists of a heated channel, an unheated riser and a
downcomer. For such a natural-circulation system the SB is depicted for a typical bottom-
and top-peaked profile in figure 5.5. Due to the presence of a riser, the additional unstable
region of the Type-I instability appears close to the one-phase boundary (see Chapter 2).
The corresponding ¢ = 0.3 lines are also presented in figure 5.5.

The bifurcation type changes from supercritical to subcritical in the Type-I region in
case of a bottom-peaked profile, while it remains supercritical for a top-peaked profile. A
detailed study has been performed again to examine the influence of the peak position
on the bifurcation characteristics (for different peaking factors), both in the Type-I and
Type-II regions. The result of this analysis is shown in figure 5.6. It is again obvious
from the figure that the asymmetry of the power distribution significantly influences the
Hopf-bifurcation characteristics (cf. figure 5.4).

One should notice that in figure 5.6, in case of the Type-I region, the locations of the
stable and unstable regions are just opposite to those in the Type-II region. This implies
that in this case subcritical bifurcation occurs for § Ny, > 0 and supercritical bifurcation
for Nz, < 0. The right side of figure 5.6 shows that bottom-peaked profiles with a
high peaking factor can cause the occurrence of unstable oscillations in the Type-I region
(suberitical bifurcation). The left side of figure 5.6 shows that in the Type-II region no
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subcritical bifurcation occurs in contrast to the forced-circulation case (figure 5.4).
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Figure 5.5: Bifurcation and stability map of a natural-circulation loop, for bottom- and
top-peaked power profiles. The mutual position of the boundaries in the Type-II region
is approximately the same as for a forced-circulation system. Bifurcation is subcritical in
the Type-I region for a bottom-peaked profile, whereas bifurcation is supercritical for a
top-peaked profile.
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Figure 5.6: Influence of the axial peak position on the Hopf bifurcation characteristics
in a natural-circulation loop in the Type-I (left figure) and in the Type-II (right figure)
region.

In the Type-II region in figure 5.6, the oscillation amplitude rises the slowest for the
lowest peaking factor and the fastest for the highest peaking factor as a function of the
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distance from the SB for the natural circulation system. This is just the opposite for the
forced-circulation system in figure 5.4.

To examine this behavior further and to validate the prediction of the oscillation
amplitude made by BifDD, the model equations have been integrated numerically using
the NDSolve subroutine in the Mathematica package. The calculations have been carried
out for bottom and top-peaked profiles in several points in the vicinity of the points A
and B indicated in the stability map in figure 5.5. The oscillation amplitudes are given
in figure 5.7 as a function of the relative distance from the SB. For practical reasons,
this distance is expressed as a function of the subcooling number (for Nz, = 5.0) in the
vicinity of point A in figure 5.5. The oscillation amplitude increases as the square root
of the distance from the SB according to the prediction of the BifDD code (see Eq. 5.5).
This prediction agrees very well with numerical time-domain results up to about ¢ = 0.6
(60% relative amplitude) for a top-peaked profile in point B. BifDD predicts the relative
amplitude accurately only up to about 0.3 in case of a bottom-peaked profile.

1 1
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. e
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Figure 5.7: Comparison between the Hopf prediction of the oscillation amplitude made by
BifDD and direct time-domain results in the Type-II region. Simulations with a bottom-
peaked profile (left figure) are carried out in points in the vicinity of point A in figure 5.5.
Simulations with a top-peaked profile (right figure) are performed in the vicinity of point
B in figure 5.5.

3.5 Reactor systems

This section investigates the impact of the axial power profile on the Hopf-bifurcation
characteristics of BWRs. It is shown in Chapter 2 that void-reactivity feedback influences
strongly the linear stability. Recently, Van Bragt et al. (1998) have examined the influence
of the strength of the void reactivity feedback on the Hopf bifurcation. They found that
the actual value of the void-reactivity feedback coefficient (c,) can significantly influence
the type of bifurcation. However, only axially symmetrical profiles have been investigated
there. We present here a similar analysis using different asymmetrical profiles. Results in
figure 5.8 are obtained for a forced-circulation BWR.
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The curves, plotted in the o, — Nz, plane, are the € = 0.3 lines calculated by BifDD.
It must be noted that € here means the relative (half peak-to-peak) oscillation amplitude
of the reactor power. Different top- and bottom-peaked profiles are used in the calcula-
tions. The results are similar to the results reported in the aforementioned paper of Van
Bragt et al. As the reactivity coefficient is increased (in absolute sense), the bifurcation
type changes from supercritical to subcritical (around o, = —0.05) and again back to
supercritical for larger (negative) values of a, as is shown on the left side of figure 5.8.
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Figure 5.8: Influence of the void-reactivity coefficient (c,) on the Hopf bifurcation curves
of a forced-circulation reactor with different asymmetrical power profiles for Ny, = 1.0
(left figure), and for N, = 4.0 (right figure). The peaking factor was kept constant

(fp=13)

0
-0.05
7,08 —»:|
o, -0.11 R
subcrit. ] supercrit.
HB e
-0.15 1 I
SB—> 1 Unstable
Stable i (TypelD
02 . —
001 -0.005 0 0.005 0.01

BN, rel. (N, ,=1.0; f =1.3)

Figure 5.9: Influence of the void-reactivity coeflicient on the Hopf bifurcation for a natural-
circulation reactor with asymmetrical power profiles. The peaking factor was kept con-
stant (f, = 1.3).
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Note that for a strongly bottom-peaked profile the region where subcritical bifurcations
occur is reduced very much. For strong void reactivity feedback (large negative o), the
equal amplitude lines approach the SB for each profile. This means that the oscillation
amplitude grows very rapidly away from the SB for a strong void-reactivity feedback for
each different power profiles. For a higher value of N, on the right side of figure 5.8, the
bifurcations are always subcritical except for small absolute values of o,. The uppermost
curve - belonging to z; = 0.2 - takes a very sharp turn and returns to the subcritical
region as o, approaches zero (the case of a boiling channel) while the others remain on
the supercritical side (this is not depicted for a better visualization). This is in agreement
with the result in figure 5.4. For large negative a,, the curves are squeezed to the SB
again.

Finally, the same analysis has been performed for a natural-circulation BWR. Results
are shown in figure 5.9. The bifurcation curves show the same qualitative behavior as
on the left side of figure 5.8. It appears that for a strongly bottom-peaked profile the
bifurcation remains supercritical for all values of the void-reactivity coefficient examined.
For «, approaching zero, the bifurcation is supercritical for each profile, in correspondence
with the previous results in figure 5.6.

5.6 Conclusions

The influence of asymmetrical axial power distributions on nonlinear BWR dynamics
has been investigated using a reduced-order BWR dynamics model. Both forced- and
natural-circulation two-phase flow channels and reactor systems have been evaluated.
Hopf-bifurcation analyses of these systems have been performed using the numerical
Hopf-bifurcation code BifDD. Both fundamental Hopf bifurcation types, the sub- and
the supercritical bifurcation, are encountered depending on the actual power distribu-
tion. Bottom-peaked profiles (with a high peaking factor) typically induce subcritical
bifurcations in the Type-II regime for high values of the core-inlet subcooling. For top-
peaked profiles the bifurcation is supercritical in practically the whole operating range for
a forced-circulation channel. In case of a natural-circulation boiling channel, subcritical
bifurcations occur again for bottom-peaked profiles but in the Type-I instability region.
Top-peaked profiles result in supercritical bifurcations in both unstable regions. In case
of reactor systems, the strength of the void-reactivity feedback has a significant impact on
the bifurcation characteristics. With increasing void-reactivity coeflicient (in an absolute
sense), the Hopf bifurcation changes from supercritical to subcritical and then back again
to supercritical for practically interesting (relatively low) values of the inlet subcooling.
This bifurcation-changing effect is strongly attenuated in case of low power-peak posi-
tions. In case of very strong reactivity feedback, the lines of equal-amplitude oscillations
are squeezed to the SB for each axial power profile and the limit-cycle amplitude grows
very rapidly as a function of the distance from the SB.






Chapter 6

Experiments on the nonlinear dynamics
of natural-circulation two-phase flows

6.1 Introduction

This chapter presents comprehensive experimental investigations on the nonlinear dy-
namics of natural-circulation, boiling two-phase flows using the DESIRE facility. The
investigations can be divided into two distinct studies. One study concentrates on exam-
ining the character of nonlinear density-wave oscillations measured in the neighborhood
of the SB. The other tries to map the system behavior over a larger domain of operating
conditions focusing on what happens "deep" in the unstable region.

6.2 Experiments on the character of density-wave os-
cillations

6.2.1 Previous work

Density-wave oscillations in heated channels have been studied for long being of a vital
importance for the safe operation of industrial boiling, two-phase flow systems like heat
exchangers, boilers and BWRs. The progress in this field has continuously been reviewed
(Bouré et al., 1973; Yadigaroglu, 1981; Kakac and Liu, 1991; Lahey and Moody, 1993).
Thanks to the considerable research effort, significant success has been achieved in explain-
ing and identifying the main physical mechanisms involved in density-wave oscillations
(see Chapter 1 section 1.4).

Several papers discussed the relation between the oscillation period and transit time
of the fluid through the system. The period was traditionally reported to be one to two
times the channel transit time (Stenning and Veziroglu, 1965; Bouré et al., 1973; Kakac
and Liu, 1991).

Some years ago, Rizwan-uddin restarted the discussion about the physical mechanism
of density-wave oscillations (Rizwan-uddin, 1994). He pointed out, based on numerical
simulations for high channel-inlet subcooling, that density-wave oscillations may persist
with mixture-density variations occurring almost simultancously along the system (i.e.
with very weak "density-waves"). He showed that variations in mixture velocity play a
more important role than variations in the mixture density in determining the channel
pressure-drop characteristics. He found the oscillation period to be between three-to-four
times the channel transit time. He found the same using earlier experimental data of Saha
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et al. (1976), calculating channel residence times and comparing them to the measured
oscillation periods.

Inspired by the work of Rizwan-uddin, Ambrosini et al. (1998) have performed a
comprehensive analysis of density-wave oscillations using nonlinear analytical tools. They
have mapped the oscillation-period to transit-time ratio for the whole operating parameter
plane in terms of Nz, and N,y;. They found a continuous distribution of the oscillation-
period to transit-time ratio from very low values (<1) at low subcooling to infinity at the
threshold of the Ledinegg (excursive) instability at high subcooling. In the low-subcooling
region generally, a strong propagating (wave) character of the mixture-density oscillations
is found and the period of the oscillations is generally close to twice the transit time of
the fluid. At high-subcooling conditions they draw the same conclusions as Rizwan-uddin
(1994).

The continuing discussion shows that there is still obscurity in the physical interpre-
tation of density-wave oscillations and a complete consensus has not been reached yet.
Density-wave oscillations involve a complex combination of void propagation (transport)
and local void production effects. Inlet-flow fluctuations result in an instantaneous vari-
ation in heating rate along the channel, which result in variations in the local enthalpy
(in the single-phase region) and in the local void production (in the two-phase region).
This is accompanied by the propagation of these enthalpy and void-fraction perturbations
with the flow from lower elevations to higher elevations in the channel. 1t seems extremely
difficult, if not impossible, to disentangle these two effects. Which one of the two char-
acters of mixture-density variations - the instantaneous or the propagating - dominates
during the oscillations, depends on the operating parameters as pointed out numerically
by Ambrosini et al. (1998).

We have investigated the problem experimentally using the DESIRE facility. As a new
approach, we examine the character of the mixture-density variations by measuring the
phase shift (and the associated time lag) between the inlet-flow oscillations and the void-
fraction oscillations at different heights. Furthermore, the time lag between the inlet-flow
oscillations and riser-exit void-fraction oscillations is compared to the oscillation period.
The time lag between the inlet-flow oscillations and riser-exit void-fraction oscillations
is a dynamic variable that we expect to reflect more from the dynamic characteristics
of the oscillating two-phase flow than the steady-state fluid transit time. We show that
this time lag cannot be interpreted simply as the transit time of mixture-density waves
propagating through the system, which is due to the aforementioned complex nature of the
density-wave oscillations. To compare the experimental results with the aforementioned
numerical studies, we also examine the relation of the measured oscillation period to the
steady-state fluid transit time estimated from the model of Rizwan-uddin.

6.2.2 Experimental results

The experiments have been carried out in the unstable operating region of the facility,
relatively close to the SB, where it exhibits large, constant-amplitude density-wave oscil-
lations. For these experiments two gamma-transmission setup have been used to measure
the mixture density (void fraction) at different elevations.

Taking the Cross-Correlation Function (CCF) between the inlet-flow oscillations and
the void-fraction oscillations at different elevations, we can extract the phase shift between
them and the time lag associated with the phase shift. For periodic oscillations, the CCF
will also be periodic as it is shown in figure 6.1.
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Figure 6.1: Left figure: the solid line, the CCF between the inlet-flow and the temperature
(Tr2) oscillations measured at 10 cm elevation from the inlet, shows a minimum (negative
correlation) while the dashed line, the CCF between the temperature and void-fraction
oscillations (at 50 cm above the inlet), shows a maximum (positive correlation) for positive
times. Right figure: CCFs obtained combining the inlet flow oscillations, riser-exit void-
fraction oscillations and the void-fraction oscillations measured in the core (The negative
of the flow signal was taken!). The time lag between the inlet-flow and riser-exit void-
fraction oscillations is estimated to be around 2.6 s from the grey line.

On the left side of figure 6.1 the solid line shows the CCF between the inlet flow and
the temperature at about 10 cm elevation above the inlet of the heated section (still in the
single-phase region). One can see a negative correlation with a minimum of the CCF at
about 0.1 s. This is plausible, since a positive inlet-flow perturbation triggers an enthalpy
fluctuation with the opposite sign. The 0.1 s time lag is associated with the phase shift
between the enthalpy oscillations at 10 cm height and the triggering flow oscillations
at the inlet. The dashed line shows the CCF between the temperature and the void-
fraction signal (this latter is measured in the two-phase region at about 50 cm above the
inlet). Since the void-fraction oscillation has the same sign as the enthalpy perturbation it
originates from, this CCF has a positive peak at about 0.2 s that corresponds to the phase
shift between the void-fraction oscillations and the temperature (enthalpy) oscillations.
The right side of figure 6.1 shows the CCFs obtained combining the inlet-flow signal,
the riser-exit void-fraction signal and the void-fraction signal measured in the core. To
eliminate the effect of opposite sign between inlet-flow and enthalpy oscillations and to
facilitate the comparison of these CCFs, we took the negative of the flow signal (we do
similazly in the rest of the section). The figure shows the considerable phase shift and
consequently the large time lag between the inlet-flow fluctuations and the riser-exit void-
fraction fluctuations. Taking the CCF between the void-fraction oscillations at the outlet
of the system and the inlet-flow oscillations should be sufficient to estimate the time lag
between them. However, in case of periodic signals one has to identify the cause-and-
effect relations and the phase shift with care. Using two void-fraction signals obtained at
different locations is helpful for this.

Two extensive series of measurements have been carried out at two different settings
of the riser-exit flow resistance element with the friction factors K, = 122 (Set I) and
K. . = 80 (Set II), respectively. At both scttings, diverse operating conditions have been
chosen to cover a region of the operating plane as large as possible. For the DESIRE
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Set I Set 11
NZu Nsub NZu Nsub
3.93+0.17 | 1.294-0.05 | 3.894+0.14 | 1.25+0.04
3.94+0.18 | 1.040.05 | 4.19£0.15 | 1.31£0.05
4.07£0.17 | 1.34£0.06 | 4.43£0.16 | 1.33+0.05
4.3240.19 | 1.10+0.05 | 4.47+0.16 | 1.124+0.04
4.30+0.19 | 0.85+0.04 | 4.54+0.16 | 1.36+0.06
4.2240.17 | 1.354+0.07 | 4.7910.18 | 1.23+£0.05
4.56+0.20 | 1.10£0.05 | 4.80£0.18 | 1.07+0.05
4.68+0.21 | 0.94£0.07 | 4.75£0.16 | 1.38+0.06
9 |4.76+0.22 | 0.69£0.05 | 4.98+0.18 | 1.24+0.06
10 | 4.48+£0.18 | 1.37£0.07 | 5.14+0.19 | 1.0940.05
11 | 4.87£0.21 | 1.11+0.06 | 5.51+0.21 | 1.24+0.05
12 | 5.18+0.24 | 0.93+0.06 | 5.59+0.21 | 1.1940.05
13 | 5.29+0.25 | 0.5640.05
14 | 5.23+0.23 | 1.14+0.06
15 | 5.71+0.27 | 0.93+0.05
16 | 5.80£0.28 | 0.65+0.05
17 | 6.03£0.29 | 0.92+0.06
18 | 6.03+0.30 | 0.64+0.05
19 | 6.54+£0.33 | 0.94+0.06
20 | 6.621+0.33 | 0.621+0.07

Z
<)

W~ O Ut W N

Table 6.1: Operating conditions for Set I and Set II. The numbers marking the measure-
ments corresponds with those in Table 6.2 and Table 6.3.

facility this region is limited to relatively low subcoolings. The operating conditions are
given for both measurement sets in Table 6.1.

First, we examine the results of a typical measurement (No. 3 in Table 6.1) of Set I in
detail. The CCFs, shown in figure 6.2 are measured moving the lower gamma-transmission
setup to different elevations while the facility is kept in the same operating condition.
The figure shows a significantly increasing phase shift between inlet-flow oscillations and
local void-fraction oscillations at increasing elevations in the core. This indicates a strong
propagating (wave) character of the mixture-density (void-fraction) variations in the core.
The same qualitative behavior is found practically in the whole measured operating region
that is characterized with a relatively low inlet subcooling. This is in good qualitative
agreement with the results of Ambrosini et al. (1998), who also found a strong propagating
character of the density-waves at low-subcooling conditions.

There is, in general, a large time lag between the riser-inlet and riser-exit void-fraction
oscillations. Due to the lack of void production in the unheated riser, the time lag between
the riser-inlet and riser-exit void-fraction oscillations can be interpreted as the transit time
of the void-fraction wave through the riser (pure propagation effect).

Table 6.2 and Table 6.3 contain the values of the oscillation period and the time lag
between inlet-flow and riser-exit void-fraction oscillations for all the measurements in Set
I and Set II, respectively. In both cases, we also compare the oscillation period with the
estimated steady-state transit time of the fluid.
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Figure 6.2: The curves from left to right are the CCFs between the inlet-flow and the void-
fraction oscillations measured at increasing elevations (elevations are measured in mm’s
from the inlet of the heated section). The time lag between the inlet-flow oscillations and
the void-fraction oscillations significantly increases with increasing elevation.

The steady-state transit time of the fluid is estimated from the operating conditions
using the model of Rizwan-uddin (1994). The model is based on the assumption of incom-
pressible single-phase flow and uses the homogeneous equilibrium model for the two-phase
flow. It contains two integro-differential equations that are obtained by integrating the
mass and energy balance equations along their characteristics to find the kinetic variables
as a function of inlet velocity. Substituting the kinetic variables into the momentum equa-
tion, it is integrated along the total length of the system to get the equation for the total
pressure drop. The dimensionless steady-state transit time for the single-phase region is

given as:
Nsub
e = . 6.1
n ¢ NZu ( )
For the two-phase region in the heated section it is given as
1
TQ—¢ = N ln(l =+ NZu - Nsub) (62)
Zy

Although it is not given in the paper of Rizwan-uddin (1994), one can derive the
steady-state transit time for the riser section in a similar fashion as for the two-phase
region in the heated section without taking heating into account. This transit time is
given as

Ly A;

Ty = ———
" 1+NZu_Nsub

(6.3)
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No. Tosc.period [S] Ttime lag[S] T’%:fﬁ; Ttransit time[S] %ﬁz—r
(measured) | (measured) (estimated)
1 4.88+0.06 2.70+0.05 | 1.81+0.06 3.5440.20 1.38+£0.05
2 4.55£0.05 2.50+0.05 | 1.82+0.06 3.31+0.19 1.37+£0.05
3 4.76+0.06 2.70+0.05 | 1.763+0.05 3.33+0.18 1.434+0.05
4 4.55+0.05 2.804+0.05 | 1.63+0.05 3.1540.17 1.4540.05
5 4.36+0.05 2.40+0.05 | 1.82+0.06 2.93+0.15 1.4940.04
6 4.66+0.05 2.604+0.05 | 1.7940.06 3.10+£0.17 1.50+0.04
7 4.45+0.05 2.60+0.05 | 1.71+0.05 2.944+0.15 1.51+0.04
8 4.364+0.05 2.30+0.05 | 1.8940.06 2.844+0.16 1.54+0.04
9 4.18+0.04 2.30+0.05 | 1.824+0.06 2.66+0.14 1.57£0.04
10 | 4.55+0.05 2.60+0.05 | 1.7510.05 2.931+0.15 1.554+0.04
11 4.36£0.05 2.701+0.05 | 1.6140.05 2.774+0.14 1.57+0.04
12 | 4.27+0.04 | 2.70£0.05 | 1.58+0.05 | 2.68+0.14 | 1.5940.04
13 | 4.10£0.04 2.10+£0.05 | 1.9540.07 2.454+0.12 1.67+0.04
14 | 4.2740.04 2.70+0.05 | 1.5840.05 2.65+0.13 1.614+0.04
15 | 4.184+0.04 3.00+0.05 | 1.394+0.04 2.564+0.12 1.63+0.04
16 | 4.10+0.04 2.90+0.05 | 1.4140.04 2.40+0.11 1.714+0.03
17 | 4.1840.04 3.00+0.05 | 1.394-0.04 2.50+0.13 1.671+0.04
18 | 4.02+0.04 2.90+0.05 | 1.38+0.04 2.34+0.11 1.71+0.03
19 | 4.10+0.04 3.00+0.05 | 1.37+0.04 2.40+0.12 1.71+£0.04
20 | 4.1040.04 2.90+0.05 | 1.4140.04 2.2440.14 1.831+0.04

Table 6.2: Ratio of the oscillation period and the time lag between inlet-flow and riser-exit
void-fraction oscillations for measurement Set I. In the last column, the oscillation period
is also compared to the steady-state transit time of the fluid estimated from the operating
conditions using the model of Rizwan-uddin (1994).

’7N0' Tosc.pe’riod [S] Ttime lag[S] % Ttransit time[S] %
(measured) | (measured) (estimated)
1 3.9440.04 | 2.30+0.05 | 1.71£0.05 | 2.874+0.14 | 1.3740.04
2 3.86+0.04 | 2.50+0.05 | 1.55+0.056 | 2.76+0.13 | 1.40+0.04
3 3.7940.04 | 2.40+0.05 | 1.58+0.05 | 2.62+0.13 | 1.4510.04
4 3.5940.03 | 2.3040.05 | 1.56+0.05 | 2.484+0.11 | 1.45+0.04
5 3.66+0.03 | 2.2040.05 | 1.66+0.05 | 2.504+0.11 | 1.46+£0.04
6 3.59+0.03 | 2.304+0.05 | 1.56+0.05 | 2.43+0.12 | 1.48+0.04
7 3.47+0.03 | 2.204£0.05 | 1.58+0.05 | 2.34+0.11 | 1.484+0.04
8 3.59+0.03 | 2.10£0.05 | 1.71+0.06 | 2.38+0.11 | 1.51+0.04
9 3.53+£0.03 | 2.204+0.05 | 1.61+0.05 | 2.334+0.11 | 1.52+£0.04
10 | 3.47+0.03 | 2.20+0.05 | 1.584+0.05 | 2.24+0.10 | 1.55%0.03
11 | 3.47+0.03 | 2.10+0.05 | 1.654+0.05 | 2.24+0.10 | 1.55+0.04
12 | 3.47+0.03 | 2.2040.05 | 1.58+0.05 | 2.21£0.10 | 1.57+0.03

Table 6.3: The results for measurement Set II.

The total steady-state transit time is 7,_4 + 724 + 7,. The variables are made dimen-
sionless as follows:
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where L is length of the heated channel, A is the cross section and v;, is the steady state
velocity at the inlet of the heated section.

The uncertainty of the measured oscillation frequencies in Table 6.2 and Table 6.3
corresponds to the half of the frequency spacing of the Fourier spectrum of the oscillations.
The uncertainty in the time lag between inlet-flow oscillations and riser-exit void-fraction
oscillations is estimated as the half of the time spacing of the CCF. The uncertainty
of the estimated transit time of the fluid stems from the uncertainties in the operating
conditions, Nz, and Ngy,.
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Figure 6.3: Ratios of the oscillation period and the time lag between inlet-flow and riser-
exit void-fraction oscillations and the ratios of the oscillation period and the steady-state
transit time for measurement Set I as a function of Nyy,/Nz, (left figure). The measured
oscillation period and time lag and the estimated transit time of the fluid are compared
in the right figure.
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Figure 6.4: The results for measurement Set II plotted similarly as in figure 6.3.

The measured ratio of the oscillation period and the time lag between inlet~flow and
riser-exit void-fraction oscillations varies from 1.35 to 1.95 for the different measurements.
The ratio of the oscillation period and the estimated steady-state transit time of the fluid
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varies between similar values (1.37 - 1.83). These latter values are in accordance with the
results obtained by Ambrosini et al. (1998) in the low-subcooling operating region.

The results given in Table 6.2 and Table 6.3 are plotted in figure 6.3 and figure 6.4.All
values are plotted there as a function of the ratio N,,s/Nz,, which is just the dimension-
less single-phase transit time and also equal to the dimensionless position of the boiling
boundary (Rizwan-uddin, 1994).

The transit time increases with an increasing Ny,,/Nz, ratio, as it is also inferred
from Egs. 6.1 to 6.3, since the length of the lower velocity single-phase region increases
relative to the higher velocity two-phase region. The measured oscillation period behaves
similarly to the transit time. A trend of increasing can be seen for the time lag in case
of Set II for increasing Ny,,/Nz, ratio as well. However, in case of Set I, the time lag
shows a more complex behavior: at low N,y,/Nz, ratios a significantly larger transit time
is obtained for certain cases than for others measured at almost the same N,/ Nz, ratio.
These points are measured at relatively higher power, therefore at relatively higher void
fractions and for the higher riser-exit friction setting (Set I) as is indicated in figure 6.5
comparing the time lag and the transit time. Although the propagating character of
the void fraction oscillations dominates, this figure shows that the measured time lag
between inlet-flow and riser-exit oscillations can not be interpreted as a transit time of
mixture-density waves propagating along the system. It is a complex dynamic variable of
the system. To the author’s knowledge there is no analytical model that can predict the
behavior of the time lag between inlet-flow and riser-exit oscillations directly as a function
of operating conditions. Its behavior could be examined using advanced thermal-hydraulic
codes by simulating the measured density-wave oscillations.
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Figure 6.5: Comparison of the measured time lag between inlet-flow and riser-exit void-
fraction oscillations with the estimated transit time of the fluid shows a complex relation-
ship. The solid dots denote the results for Set I, the open squares those for Set II.

6.2.3 Summary

The characteristics of mixture-density variations during density-wave oscillations have
been investigated experimentally using a natural-circulation, boiling, two-phase flow loop.
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The void-fraction oscillations measured at different elevations along the system are cor-
related with the inlet-low oscillations and a significantly increasing time lag has been
found between them with increasing elevation. This indicates, in accordance with the re-
sults of previous numerical studies, that in the operating region with low inlet subcooling
the mixture-density (void-fraction) oscillations exhibit a strong propagating character and
the instantaneous variations in the local void production induced by inlet-flow oscillations
seem to be less significant.

The oscillation period has been compared to the time lag between system outlet (riser-
exit) void-fraction oscillations and the inlet-flow oscillations. Their ratio has been found
between roughly one and a half to two. The steady-state transit time of the fluid has been
estimated from the operating conditions using a model based on assuming homogeneous
equilibrium two-phase flow. The oscillation period is also between one and a half to twice
the estimated transit time for each measurement case. This is in agreement with previous
findings.

The comparison of the estimated steady-state transit time of the fluid with the mea-
sured time lag between inlet-flow and riser-exit void-fraction oscillations shows a complex
relation and that the time lag cannot be interpreted simply as the transit time of mixture-
density waves propagating through the system. This is because density-wave oscillations
involve a combination of variation in void propagation and variation in the local void
production.

6.3 Nonlinear dynamics deep in the unstable region

The nonlinear dynamics of the natural-circulation two-phase flow is investigated further
away from the SB, deep in the unstable operating region. Before starting to discuss the
experimental results, we introduce shortly the so-called Feigenbaum scenario from the
field of dynamics of nonlinear systems.

6.3.1 The Feigenbaum scenario

In this scenario, a cascade of successive period-doubling bifurcations takes place as a
system parameter (the bifurcation parameter) is being varied in a nonlinear system and
the aperiodic (chaotic) behavior starts off as the bifurcation parameter is varied past a
critical value. At each period-doubling bifurcation, the period of the oscillation becomes
twice as before and the number of different oscillation amplitudes is also doubled. This
is accompanied by the appearance of successive subharmonics in the frequency spectrum
of the oscillations. According to Feigenbaum’s theory (Feigenbaum, 1980), this scenario
possesses certain universal features that are independent of the actual form of the equa-
tions governing the dynamics of the nonlinear system. Namely, the ratio of successive
increments (or decrements) in the bifurcation parameter at which the consecutive bifur-
cations occur approach asymptotically a universal number, the Feigenbaum-delta (§). In
other words, the sequence of consecutive bifurcation points converges asymptotically in
a geometric manner with é towards the limit of aperiodic behavior. The value of § was
found to be 4.6692... by mathematical models. Another universal scaling feature of this
scenario is that the ratio of the amplitudes of the consecutive subharmonic components
in the spectrum converges to: u = 6.5573....

Since the discovery of the universality features of the period-doubling route towards
chaotic behavior, this scenario has been observed experimentally in a broad variety of
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small scale physical systems (Lauternborn et al., 1997) including e.g. nonlinear electronic
circuits (Linsay, 1981), Rayleigh-Bénard cells (Giglio et al., 1981), optically bistable laser
cavities (Gibbs et al., 1981) and superfluid helium (Smith et al., 1982). However, in large-
scale physical, mechanical systems prone to high noise levels even the onset of the scenario
(the first period-doubling) has not been reported. For example, although predicted with
theoretical models by Clausse and Lahey (1991) and by Chang and Lahey (1997), it has
not been observed yet in boiling two-phase flow systems. To the author’s knowledge the
results presented here are the first experimental observations of the Feigenbaum scenario
in a large, boiling two-phase flow system.

6.3.2 Experimental observations

The experiments were carried out for different system pressures and for various distri-
butions of the frictional pressure drops in single- and two-phase regions. The latter was
achieved by varying the friction coefficient of an adjustable flow resistance element at the
riser exit. The following procedure has been followed in all cases: starting from a stable
operating condition, the heating power was gradually increased, in steps, while all other
controllable system parameters were kept constant. At each power step a measurement
was carried out after waiting long enough for the system to settle down to its asymp-
totic state. The following scenario has been observed in all cases with different system
pressures and with various friction at the riser exit: as the power reaches the threshold
of stability, the fixed point becomes unstable, undergoes a supercritical Hopf bifurcation
and constant amplitude flow oscillations result. As the power reaches another critical
value, the system undergoes a next bifurcation: a period-doubling bifurcation. At this
point, oscillations with two different amplitudes and with a period twice the period of
the original oscillations arise. These two bifurcations are the onset of the Feigenbaum
scenario.

Representative oscillation patterns and the corresponding Fourier spectra for the onset
of the Feigenbaum scenario measured at a system pressure of 11.6 bar are shown in
figure 6.6a and figure 6.6b, respectively.

After the first period doubling, with a relatively small increase in the power, the system
becomes chaotic in accordance with the universal scaling with d. A representative chaotic
oscillation pattern, recorded at 11.6 bar, and the corresponding spectrum are shown in
figure 6.6¢c. The oscillation amplitude (maxima and minima) as a function of the power
is shown in the bifurcation diagram of figure 6.7.

The finer details of the Feigenbaum scenario - the cascade of period-doubling bifurca-
tions - could not be detected conclusively. Because of the relative large value of §, the con-
secutive bifurcation points - after the first few period-doublings - cannot be distinguished
from each other in terms of the bifurcation parameter due to the finite resolution of the
measurement. Due to the scaling with y, the amplitude of the successive subharmonics
becomes very small for practical (measurement) purposes after a few period-doublings as
well. Obviously, the presence of measurement noise diminishes further the possibility to
identify subsequent bifurcations. The small spectral peaks corresponding to higher-order
bifurcations disappear in the noisy background spectrum. Noise has in our two-phase
flow system a very strong inherent source, namely boiling. Nevertheless, in all cases, a
gradual and clear change can be observed in the measured oscillation patterns and in
the corresponding spectra (a gradual broadening of the peaks and a peculiar increase in
the broad-band background; see e.g. figure 6.6¢) as the power is increased past the first
period-doubling bifurcation point.
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Figure 6.6: Inlet flow oscillation patterns and the corresponding APSD (Auto Power
Spectral Density) for a system pressure of 11.6 bar and for a friction factor at the riser exit
of 118 + 18. a.) Beyond the threshold of stability (at 25.5 kW power). The appearance
of numerous higher harmonic components in the APSD indicates the strongly nonlinear
character of the oscillations. b.) Just beyond the first period- doubling point (at 28.4
kW power). The oscillation period is twice of that in a. Correspondingly, a halved
frequency component (f, the first subharmonic) appears in the spectrum next to f,. c.)
Further beyond the first period-doubling bifurcation (at 32.3 kW power) the oscillations
are chaotic.
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Figure 6.7: The bifurcation diagram shows the minima and maxima of the flow-rate and
void-fraction oscillations as a function of power measured at a system pressure 11.6 bar
and with a riser-exit friction factor of 118+18. Points at 32.3 kW show chaotic oscillations
with random amplitudes

Series | Pressure K., I P, P, pest
bar | | WL | W) Wl W

1 11.6 118 £8 {180+ 03 (274 £ 1.0} 32.3 | 30.0 + 1.3

2 8.4 1454+ 171152+ 0.3 (246 1.0 293 |271+14
3 11.2 145 £ 17 1 16.2 £ 0.5 n.a. 31.3 n.a.

4 12.2 110+7 {240+ 04| 3824+1.0| 459 {421+ 14

Table 6.4: Critical values of heating power at the transition to oscillatory behavior (F),
at the first period- doubling bifurcation (P;) and for chaotic oscillations (Py). Also
shown are the estimated threshold values for the transition to chaos (P£*). Experimental
conditions (pressure, riser-exit friction factor) are given in the table as well.

The effect of system pressure on the bifurcation sequence was studied by repeating
the experiments for two different values of system pressure at the same riser-exit friction
factor (series 2 and 3 in Table 6.4). However, period doubling in experiment series 3
could not be detected clearly and hence the effect of system pressure on the bifurcation
sequence is not clear. The effect of changing the fraction of total pressure drop in the
two-phase region was studied by varying the riser-exit friction factor while keeping the
system pressure approximately constant (series 1 and 4). Decreasing the frictional pressure
drop at the riser exit tends to increase the critical bifurcation values, and also tends to
stretch the interval between the first bifurcation and the period-doubling bifurcation.
Table 6.4 summarizes the experimental conditions: system pressure, riser-exit friction
factor (K, .), the values of the power at the bifurcations points and the measured and
estimated chaotic limit for each measurement series. The critical value of the power at
the chaotic limit is estimated (assuming geometric convergence with §) from the first two
measured bifurcation points, the threshold of stability, Py, and the value of the power at
the first, period-doubling bifurcation, P as:
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P -5
0—1

The estimated values of the chaotic limit are somewhat lower than the observed chaotic
limit (Table 6.4). The discrepancy is believed to be due to the fact that in reality the
convergence is only asymptotically geometric. It should also be noted that the measured
chaotic limits in Table 6.4 are not really accurate being actually the lowest power values
at which chaotic signals are measured (see next section).

It is difficult to quantify the system behavior close to and in the chaotic region by
only looking at the Fourier spectrum. Autoregressive (AR) based methods would not work
better for these extremely nonlinear signals either, since they assume linearity and claim
that all non-linearities have effects indistinguishable from noise. To qualify and quantify
the system behavior in the presumed chaotic region, we apply special methods developed
for nonlinear and chaotic time series analysis. The void-fraction and the mass flow rate
signals measured at a power indicated in the P, column in Table 6.4 are analyzed in the
next section.

Pst:P]_-"

(6.4)

6.3.3 Nonlinear time series analysis

A vast literature exists on the different methods to detect and quantify chaos in measured
time series (Eckmann and Ruelle, 1985; Grassberger et al., 1991). To substantiate the
overview of the methods that we use to analyze the measurements, first, the basic concepts
of strange attractor and time delay embedding are introduced. The attractor is a subset
of the state space of the dynamical system on which the system remains moving after
the transients die out. It can be e.g. a fixed point or an attracting periodic orbit for a
linearly stable or a periodic system. Because a chaotic system is aperiodic, the system’s
trajectory never settles to a point or a closed curve but it rather fills a subset of the state
space in a complicated manner. This subset is also called a strange attractor. To map
the attractor, we should measure all the system variables representing each state space
dimension. In practice, however, one measures only a few well accessible system variables.
To circumvent this problem, a basic technique was introduced: the time-delay embedding
(Takens, 1981). This technique enables the reconstruction of the dynamics (the attractor)
of a multidimensional system from a single measured variable of it. Given the measured
time series (i) with i=1,..,N and sampling time 7, the reconstruction vectors of dimension
d are formed as

X)) = (), 2(i + T), ..., x(i + (d — 1)T)), (6.5)

T and d being the time delay and the embedding dimension, respectively. The firm
mathematical base of the method was formulated by Takens (1981). He showed that an
embedding in d = 2D +1 dimension (where D is the dimension of the attractor) captures
completely the dynamics of the system.

All the algorithms introduced below, except for determining the Lyapunov exponent,
are implemented in a menu driven software package RRCHAOS (Schouten and Van den
Bleek, 1994). This package is used to evaluate chaos quantifiers for the different measure-
ment series. Each algorithm in RRCHAOS starts with the reconstruction of the attractor
using time-delay embedding. Schouten et al. (1994a) argue that the average cycle time
of the oscillations, T, provides a robust and characteristic measure for the length of the
embedding time window (i.c. d-T - 7). The average cycle time is defined as

T length of time series |s]

= (number of crossings the average of the time series)/2
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They also suggest to choose the sampling frequency so that the embedding dimension,
d - the number of sample points in one T¢ - is at least of the order of 50-200 points per
time window.

First, we perform a statistical test, which was developed to distinguish between pos-
sible deterministic chaos and colored random noise or more generally between nonlinear
deterministic time series and linear stochastic time series.

Statistical test for non-linearities

The main idea behind most methods used to distinguish chaos from noise is to make use
of the short-term predictability of chaotic signals. It is (in theory) impossible to predict
the time evolution of a random signal. This short-term predictability is described by so-
called characteristic exponents in a chaotic system (see Kolmogorov entropy and Lyapunov
exponent below). These exponents measure the average rate of divergence or convergence
of two initially close points on nearby orbits in the state space. For a random noise signal
the rate of divergence is infinite corresponding to unpredictability. The analysis relies on
the time-delay reconstruction of the system’s attractor in state space and it assumes that
the system is in stationary condition. The method uses a statistical test, which compares
the measured time series with a linear, random surrogate time series that are created with
the same autocorrelation coefficients as the original time series. This way the surrogate
data series have the same spectral properties as the original signal (isospectral random
signals). The test is a combination of the method proposed by Takens (1981) and by
Kennel and Isabelle (1992). First an AR-model of the measured time series is composed
according to

k

o= azi g, (6.6)
j=1

where k is the order of the AR model. For these analyses k is taken typically 20. The
coefficients a; are estimated from the measured series using Burg’s method. The noise, 7;
is modelled as

i =2 — T, (6.7)

A random time series, w;, is created by using the AR coefficients of the original series
and the noise, r, chosen randomly from the set of residues ;, as

k
w; =T + Z aj’u),'_}', (68)
j=1

so it has the same spectral properties as the original signal. To compare the short-term
predictability in the original, z;, with that in the random series, w;, the (exponential)
growth of the interpoint distances are examined in the two series. A set of interpoint
distances in the reconstructed state space are created by randomly choosing N; number
of pairs that are closer than a certain distance. The distances between the reconstruction
vectors are followed for a fixed amount of time T}, and the distances at ¢ = Ty, 40 are
gathered in set A. Set B is created by repeating the same for M number of surrogate
data sets being N, distances collected in each of them (so the total number of elements in
B is N3 = N, x M). With sets A and B the Mann-Whitney rank-sum statistic is formed
as
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U=3 Y 04 - By, (6.9)

where O is the Heaviside operator. For large enough N, the quantity

Z = U= MiNs/2 , (6.10)

5 NiN3(Ny + N3 + 1)

is normally distributed with zero mean and unit variance under the null hypothesis
that both sets A and B come from the same distribution (which is only true when the
original time series is linear stochastic). On the other hand, if the original series (sct A)
has short-time predictability originating from deterministic chaos, then the distances in
set A are smaller than the distances in set B (short term predictability originating from
randomness) in a statistically significant way and we will observe a Z-value smaller than
zero. To disprove the null hypothesis at 99% confidence level a Z-value smaller than -3 is
required.

Flow rate Void fraction
Series | Power [kW] ez Dopin | <Z> Zrmaz Dmin | <Z>
1 32.3 -5.65 -8.62 | -6.69 -5.64 -797 | -6.92
2 29.3 -7.23 -10.89 | -8.99 -6.45 -11.3 | -9.7
3 31.3 -7.38 -13.9 | -11.01 -9.06 -11.26 | -9.86
4 45.9 -7.72 -8.98 | -8.53 -6.95 -104 | -8.32

Table 6.5: Results of the non-linearity test. A < Z > value smaller than -3 indicates the
presence of non-linearities and short term predictability.

The calculation of the Z-value defined in Eq. 6.10 is repeated ten times in the analysis
with RRCHAOS using the same set A. The results, shown in Table 6.5 are the maximum,
minimum and the average value of Z in each case. The considerably smaller values of
< Z > than -3 for both the void-fraction and flow signals show that there is a very high
level of non-linearity and short-term predictability in the measured time series. It can
also be considered as a sign of chaotic behavior. Although no general rule exists for that,
some authors, e.g. Kennel and Isabelle (1992) and Van der Hagen et al. (1996), found
that Z is around or smaller than -10 for chaotic systems.

The Kolmogorov entropy

The Kolmogorov entropy, K, characterizes the dynamics (time evolution) of chaotic be-
havior. One divides the state space into small cells and follows the time evolution of the
system using a collection of initial conditions located all within one cell. After N time
steps of length 7, the trajectories generally are already spread out over a large number of
cells, the entropy Sy is calculated:

Sy =— Zprlnph (6-11)

where p,, is the probability (the relative frequency) that a trajectory is in cell r after
N steps. The Kolmogorov entropy characterizes the rate of change in Sy
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Sy — Sk
==

The precise definition of K is the average of K over the whole attractor (as N — o00)
in the limit of infinite small cells size and time steps (7 — 0). A more general definition
can be found in Eckmann and Ruelle (1985). To illustrate the meaning of K, consider one
of the most fundamental features of a chaotic system, the divergence of nearby trajectories.
This manifests itself as an exponential separation of initially close trajectories as times
goes on. As a result, two different initial conditions, that are not distinguishable (they are
in the same cell) within a certain experimental precision, will evolve into distinguishable
states (into separate cells) after a finite time. In this way, extra information about the
state of the system is produced as it evolves. This process can also be interpreted as
information loss, since the state of a single initial point specified with a certain accuracy
will not be predictable after evolving for a finite time. The Kolmogorov entropy measures
the rate of information loss (or gain) along the attractor. It is usually expressed in
bits/seconds. A positive, finite K is considered as the conclusive proof that the time
series and the underlying system are chaotic. K equal to zero represents a regular, cyclic
or constant motion. An infinite K refers to a stochastic, random phenomenon.

The maximum-likelihood estimation of K as proposed by Schouten et al. (1994b) is
used in this study. This has the advantage that the uncertainty of the entropy can be
estimated easily. The essence of the method is as follows. According to Grassberger and
Procaccia (1983b), the separation of nearby points on different orbits is exponential, and
the time interval ¢, required for two initially nearby points to separate by a distance larger
than [, will be exponentially distributed:

Ky (6.12)

Ct,) ~ e Ko, (6.13)

This can be transformed into a discrete cumulative distribution function as

C(b) ~ e K", (6.14)

with b=1,2,3... and 7 the sampling interval in the time series. The variable b is the
number of sequential pairs of points on the attractor for which the interpoint distance
is for the first time larger than [, (given that the initial pair of points were within the
distance [,). For determining the distance of two reconstruction vectors the maximum
norm is used. The probability of finding a distance larger than [, after exactly b interpoint
distances is

p(b) = C(b—1) — C(b). (6.15)

Using this probability distribution of b, a maximum-likelihood estimation of K can
be derived. The probability of finding exactly the sample (by, b2, b3, ..., bar), depending on
K, from a random drawing of M pairs of independent points on the attractor, is

M
px = P(by, by, .., bas; K) = [ [ p(B3)- (6.16)
=1

Applying the maximum-likelihood method for this probability distribution as a func-
tion of K one can find a maximum-likelihood estimation of K as (Schouten et al., 1994b):

1 1
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with

1

bia (618)

M=

1

which is the average value of the b’s in the sample (b1, by, b3, ..., bar), with sample
size M. The relative standard deviation of Ky, is approximately proportional to 1/M
(Schouten et al,, 1994b). Thus, requiring a certain accuracy for Ky, the necessary
number M of samples of b’s (the number of initially close point pairs for which ¢, should
be evaluated from the time series) can be determined.
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Figure 6.8: The influence of the choice of the embedding time window (normalized with
T¢) on the estimated Kolmogorov entropy for Series 4 (left figure). The influence of the
choice of I, (normalized with the average absolute deviation of the time series) on Ky,
for Series 2 (right figure).

First, the influence of the embedding time window (embedding dimension) on the
estimation of Ky, is examined and the results are shown in figure 6.8a. For embedding
windows larger than two cycle time, the estimated Ky, is independent of the embedding
time window. Generally, it is expected that the quantifiers of the reconstructed attractor
does not change as a function of the size of the embedding window once the window
size necessary to accommodate the attractor is reached (Hilborn, 1994). Choosing the
embedding window as twice the cycle time seems to be correct for the entropy estimation.

Figure 6.8b shows the influence of the choice of I, on K. The figure shows that
lowering [, at small I s increases the entropy estimate significantly. According to Eq. 6.17,
Ky, depends only on the average value of time steps, that is needed for an initially small
interpoint distance to grow larger than /,, i.e. on b. If there is an approximately constant
rate at which the interpoint distances grow on the attractor (see also the Lyapunov ex-
ponents), then the smaller [, is chosen, the smaller b is. This results in a larger entropy
estimate. On the other hand, for increasing l,, Kasy, slowly drops. Using the same ar-
gument, increasing [/, will result in a larger b and, in turn, a smaller K. Choosing [,
around unity scems to be a good compromise between the two extremes.

Using the above values of the embedding window and [,, the K, values evaluated for
the different measurement in the four experimental series are summarized in Table 6.6.
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Void fraction Flow rate
Series | Power Kyp Rel. st.dev. Kuyr Rel. st. dev.
kW] Ibits/sec] (%] [bits/sec] (%]
1 32.3 0.256 0.96 0.211 0.94
2 29.3 0.127 0.93 0.139 0.93
3 31.3 0.044 0.93 0.049 0.91
4 45.9 0.189 0.94 0.116 0.89

Table 6.6: Maximum-likelihood estimation of the Kolmogorov entropy (Kaz).

The positive values of the estimated Kolmogorov entropy confirm that the system behavior
is chaotic.

The correlation dimension

The correlation dimension is a geometric type of chaos quantifier. It emphasizes the
geometric nature of the trajectories in state space and it is closely related to the concept
of fractals. The correlation dimension was proposed by Grassberger and Procaccia (1983a)
based on the behavior of the so-called correlation sum. If one lets the system trajectory
evolve for a longer time and collects N trajectory points, then the correlation sum is
defined as

- lzi — z;)), (6.19)

N N

= s 3 o

where © is the Heaviside function. The correlation sum, C(R), gives the relative

number of trajectory points in the state space that are within a distance R from each

other. If R is about the size of the attractor, then C(R) — 1. If R is smaller than

the smallest distance between the trajectory points, then C(R) = 0. The correlation
dimension, Dg, is defined to be the number that satisfies

C(R) = lim kRPc. (6:20)
R—0
or equivalently log C(R)
— lim 28V
Dc = }lzl—% logR = .

D¢ is also called scaling index since C(R) scales with it as a function of R. This
generalized dimension definition can give dimensionalities that are not integers for special
objects, which are called fractals. Fractals play an important role in the dynamics of
chaotic systems since a strange attractor, per definition, has a non-integer dimension.

Generally, measurement noise induces a bias in the observed distances of trajectories
and corrupts the scaling behavior expressed in Eq. 6.21. To calculate D¢, we use the
method proposed by Schouten et al. (1994a) for the case of noisy attractors. This method
can disentangle the dimension of the underlying (uncorrupted) attractor by rescaling the
correlation integral assuming a noise strictly bounded in amplitude. The scheme of the
procedure is as follows. One must embed the time series, then choose randomly point
pairs (Z;, Z;) from the reconstructed attractor. The k* component of the vector Z;
is zix = Zig + 0%ik, where z;,’s are the components of the uncorrupted (noise free)
vector and —0Zmar/2 < 62;) < +0Zpmaz/2 is the bounded noise component. An upper
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limit for the scaling distance should be chosen, note it by [, (I, is chosen as the average
absolute deviation of the time series following Schouten et al. (1994a)). The maximum-
norm distance, [,, between Z and ZJ is determined for each pair and a histogram of the
number of pairs with [, < [, is created. Due to the usage of the maximum norm the
corrupted distance {, = {, + l,,, where [, is the noise free distance and {,, = 6z the
maximum noise distance. Then the corrupted !, distances are rescaled in order to let the
correlation integral obey the power scaling law. For the noise free distance: C(I,) ~ 12¢,
then we can write that

Cl|l, > 1) ~ (I, — 1) e, (6.22)

because Iy = [, — l,. With the requirements that C(l, < 1,) =0and C(l, =1,) = 1
one obtains that

lz —in
C(ZZ) = (ﬁ)[)ca l’n < lz < lo~ (623)

n

Then all the distances are normalized with respect to l,, using r = [, /I, and r,, = {,,/l,
from which it follows that

r—="rn

C(r)=( Yoo r, <r < 1. (6.24)

1—17r,

Thus, calculating the normalized cumulative histogram from the aforementioned his-
togram of number of the experimental point pairs with distance [, < [,, one gets the
correlation integral C(r). Applying a nonlinear least-squares fit to this in the form of
Eq. 6.24, the correlation dimension, D¢, and the minimum scaling length (maximum
noise level), r,,, are estimated.

We examined the influence of the choice of the embedding parameters and the maximal
scaling distance, ,, on the estimated correlation dimension. Examples of it are shown in
figure 6.9. For normalized embedding windows larger than 1.5 - 2, the value of D¢, apart
from small deviations, does not change as function of the embedding time window. This
is consistent with the results obtained for the Kolmogorov entropy (see above).

For I/ s larger than about 0.6-0.7 times the average deviation D¢ becomes practically
independent of the value of l,. For lower values of [, the correlation dimension estimates
are becoming higher. As I, approaches the noise level (the scaling region decreases),
the influence of the noise on the C(r) distribution function and on dimension estimation
obtained from it increases (especially if the noise is in reality not bounded in amplitude
in contrast to the assumption in the method). The random measurement noise tends to
make the trajectories spread out more uniformly in the state space and thus increases the
estimated dimension.

The correlation dimensions for the four measurement series are given in Table 6.7
evaluated using the same embedding window as for the Kolmogorov entropy in Table 6.6.

The estimated dimension of the attractor varies around 1.4 -1.8 in almost all of the
cases, which indicates low-dimensional chaotic behavior. The cstimated noise levels (r,)
are relatively high, about 20% of the average absolute deviation. In Schouten ef al.
(1994a), it is pointed out that at such noise levels the rescaled correlation integral might
underestimate the real dimension.
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Figure 6.9: The influence of the choice of the embedding time window (normalized with
T¢) on the correlation dimension for Series 4 (left figure). The influence of the choice of
l, (normalized with the average absolute deviation of the time series) on D¢ for Series2
(right figure).

Void fraction Flow rate
Series | Power [kW] Do Tn D¢ Tn
1 32.3 1.738 0.158 1.796 0.206
2 29.3 1.746 0.273 1.831 0.242
3 31.3 1.576 0.287 1.615 0.194
4 45.9 1.203 0.345 1.405 0.301

Table 6.7: The estimated values of the correlation dimension and the noise level.

The Lyapunov exponents

The Lyapunov exponents measure the average exponential rate of divergence or conver-
gence of nearby orbits in state space. It is very closely related to the Kolmogorov entropy.
Any system containing at least one positive Lyapunov exponent is defined to be chaotic
and the magnitude of the exponent reflects the time scale on which system dynamics be-
come unpredictable (loss of information). Given a dynamical system in a n-dimensional
state space, one monitors the time evolution of an infinitesimal n-sphere. After time ¢ it
will be transformed to an n-ellipsoid with principal axes p;(t). The i** Lyapunov exponent
is defined in terms of p;(t) as

.1 i
Ai = tllprg 7 log, %((Oi; (6.25)

Thus, the Lyapunov exponents are related to the expanding and contracting nature of
different directions in state space. Motion on a periodic attractor results in a zero largest
Lyapunov exponent corresponding to the neither converging nor diverging nature of the
motion. For a stable fixed point, all the Lyapunov exponents are negative. Similar to the
Kolmogorov entropy, the units of Lyapunov exponents are bits/sec. It should be noted
here, that there is a mathematical theory for differentiable map functions (Packard et al.,
1980), which establishes the relation between the Kolmogorov entropy and the Lyapunov
exponents stating that K < 3. positive);. This result is believed to be true for continuous
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Void fraction Flow rate
Series | Power A St. dev. A St. dev.
(kW] [bits/sec] | [bit/sec| | [bits/sec] | [bit/sec]
1 323 0.71 0.44 0.74 0.50
2 29.3 0.05 0.19 0.16 0.29
3 31.3 0.03 0.12 0.11 0.21
4 45.9 0.06 0.21 0.13 0.27

Table 6.8: The estimated values of the largest Lyapunov exponent using the algorithm in
Wolf et al. (1985).

systems as well (Packard et al., 1980). This means that a positive Kolmogorov entropy
indicates the existence of at least one positive Lyapunov exponent.

The method of Wolf et al. (1985) is be used to extract the largest Lyapunov exponents
from the measured time series. The straightforward idea of the method is to follow the
evolution of two points on nearby orbits of the reconstructed attractor. The nearest
neighbor (in the Euclidean sense) of the first point of the embedded time series is located
first. These two points can be considered to define the early state of the first principal
axis. Denote the distance of the initial points by L(¢,). At time ¢;, this distance increases
to L(t1) as the two points evolve along their trajectories. As the separation between the
two points becomes large, the algorithm applies a simple replacement of the second point,
which attempts to preserve orientation and minimizes the distance between the evolved
first point and the replacement point. In this way one monitors the evolution of a single
principal axis vector. From this evolution a Lyapunov exponent is estimated at each
replacement. The evolution+replacement procedure is repeated until the end of the time
series is reached. Then the set of estimated Lyapunov exponents is averaged to get

M
1 L(t)
A= lo , 6.26
: tM—to; 8 Tt ) (6.26)

where M is the total number of replacement steps. The idea behind preserving the
orientation at replacement is that one keeps following the evolution of the principal axis
always in an expanding direction. For this reason, the angle between the replacement
point and the replaced point is minimized.

In the algorithm proposed by Wolf et al. (1985), the evolution time #; —#;_, is chosen
to be constant, so that only the small scale attractor structure is examined. This is
because for bounded attractors, the distance L cannot grow unlimited. If the evolution
time is chosen to be too long, L can even shrink as the two trajectories pass a folding
region of the attractor. This would lead to an underestimation of A;. The evolution time
is chosen, taking into account this effect, somewhat less than half of the average cycle
time. The values for the largest Lyapunov exponent obtained by the above method are
summarized in Table 6.8.

The largest Lyapunov exponents are estimated to be around 0.05 for the void-fraction
signal and 0.12-16 for the flow signal except for Series 1, where it is considerably larger.
The standard deviations are usually two-to-three times larger than the estimated expo-
nents themselves (again, except for Series 1). This shows that the algorithm, although
appealing for its simplicity, does not work really well in our case. The method is for
example not robust against the influence of measurement noise. However, the most severe
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Void fraction Flow rate
Series | Power A St. dev. A St. dev.
[kW] [bits/sec] | [bit/sec] | |bit/sec] | [bit/sec]
1 32.3 0.23 0.13 0.21 0.12
2 29.3 0.33 0.25 0.30 0.29
3 31.3 0.29 0.19 0.25 0.21
4 45.9 0.36 0.24 0.26 0.18

Table 6.9: The estimated values of the largest Lyapunov exponent using the modified
algorithm.

handicap is presumably the constant evolution time that might make the method ’stiff’.
Depending on the position on the attractor, a fixed evolution can be sometimes so long
that one passes from a expanding region to a folding region of the attractor, which results
in underestimation or even negative exponent estimates. On the other hand, choosing the
evolution time short increases the necessary number of replacement steps, which can lead
more frequently to the loss of following the direction of expansion or to the accumulation
of small errors in the direction at replacement steps. The orientation is usually preserved
at replacement within a certain limit, however, if no possible replacement point is found,
then this constraint is automatically loosened in the algorithm.

A quite straightforward modification of the algorithm in order to try to circumvent
the above problems is to use variable evolution times. The variable evolution time is
determined in the following way: after each replacement we follow the evolution of the
distance between the two trajectories until it start to decrease. At that point, the next
replacement step follows. In this way, one always follows the trajectories in the stretching
region of the attractor and the necessary number of replacement steps is decreased as
well. To reduce the effect of noise, we reject in the calculation of the Lyapunov exponent
those evolutions that are shorter than a few time steps (thus, probably only due to noise).
The largest Lyapunov exponents estimated with the modified algorithm are summarized
in Table 6.9. The results are considerably improved compared to the ones obtained with
the original algorithm. The exponent estimates are increased (except for series 1), while
their (relative) standard deviations are significantly decreased.

More sophisticated methods, as proposed by Sano and Sawada (1985) and by Eckmann
et al. (1986) examining the growth of the tangent vectors in the tangent space of the
original trajectories, could also be used to improve the results. Moreover, those methods
are capable of predicting all the positive Lyapunov exponents of the system.

6.3.4 Summary

The nonlinear dynamics of natural-circulation two-phase flow has been investigated. It
is found that the two-phase flow undergoes, first, a supercritical Hopf bifurcation at the
threshold of linear stability, followed by a period-doubling bifurcation as the heating power
is increased. The finer details of the well-known Feigenbaum scenario, i.e. the cascade
of period-doubling bifurcations, could not be detected presumably due to the presence
of strong experimental noise. The oscillations, detected further on after the first period-
doubling point, exhibit a peculiar, chaos-like behavior. To analyze those measurements,
nonlinear time sequence analysis methods were applied. A statistical test shows that there
is a strong short-term predictability and non-linearity in the time series with possible
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chaotic behavior.

Quantifier: Ky D¢ A

[bit/sec] | - | [bit/sec]

Void fraction | 0.256 | 1.738 0.23
Flow rate 0.211 1.796 0.21

Table 6.10: Summarizing the three different chaos quantifiers found for measurement at
32.3 kW in Series 1. The values are typical of a system exhibiting low-dimensional chaotic
behavior.

Several types of chaos quantifiers have been determined for the different measurement
series including the Kolmogorov entropy, the largest Ljapunov exponent and the correla-
tion dimension of the attractor. To find the correct embedding parameters the influence
of the embedding window is examined on the estimated Kolmogorov entropy and correla-
tion dimension. For both cases, it was found that choosing the embedding time window
as about twice the average cycle time or larger the attractor is reconstructed correctly.
The estimated values of the quantifiers obtained by using these embedding parameters
are summarized for the measurement in Series 1 in Table 6.10. They indicate, just as in
case of the other measurement series, low-dimensional chaotic behavior.







Chapter 7

Experiments on the
neutronic-thermalhydraulic stability

7.1 Introduction

To be able to develop reliable BWR stability models and codes, extensive experimental
databases for code validation are inevitably needed. In spite of this, considerable more
work has been devoted to modelling of BWR stability than to experimental studies. Ex-
perimental activities are limited to a few reactor tests and event records (D’Auria et al.,
1997). This is mainly because experimental possibilities on BWRs are quite restricted.
Valuable experimental data can be gathered by using thermal-hydraulic facilities, however,
these all lack the neutronic feedback. This problem can be solved by providing a thermal-
hydraulic facility with a simulated neutronic feedback (Rao et al., 1996; Kok and Van der
Hagen, 1999). Such a hybrid system that is flexible and comprises the most important
physics of a real BWR, enables the investigations of coupled neutronic-thermalhydraulic
stability. The idea behind this type of hybrid facilities with real thermalhydraulics and
simulated neutronics is that the difficulty and uncertainty of modelling the thermalhy-
draulics is much larger than of the neutronics. The opposite and probably less feasible
approach has been reported by Turso et al. (1995) using a university research reactor cou-
pled with a reduced-order model for the thermalhydraulics. The calculated void reactivity
effect of the thermalhydraulics was realized by control rod movements. The underlying
thermal-hydraulic model was improved later to account better for the two-phase flow phe-
nomena (Huang and Edwards, 2000). Recently, the same authors proposed the coupling of
a two-phase flow loop with a research reactor in order to minimize the need for computer
simulation (Edwards et al., 2000).

The DESIRE natural-circulation two-phase flow facility has been extended with simu-
lated neutronics (Kok and Van der Hagen, 1999). The void-reactivity feedback simulation
is implemented in the form of a digital controller (DC) on a PC. The DC controls the
power of the electrically heated rods based on the simulated reactivity effect of the mea-
sured void-fraction fluctuations. The flexible design of the digital controller allows to
study BWR dynamics with the possibility to vary the fuel time constant and other reac-
tor physical parameters like the void-reactivity coefficient, the delayed-neutron fraction
and decay constant (e.g. important for predicting the influence of using MOX fuel). These
parameters can all be given to the simulation as input.

The details of implementation of the void-feedback simulation are described in Kok
and Van der Hagen (1999). The most crucial point in the simulation of the void-reactivity
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feedback is the reconstruction of the average void fraction in the heated assembly. This re-
construction is based on a quite simplified approach with several assumptions (see section
7.3). Presumably due to these strong simplifying assumptions, the first test measurements
with the simulated feedback gave results contradictory to those of the reduced-order model
of Van Bragt and Van der Hagen (1998a); even qualitative agreement was not found at all
(Kok, 1998). The reduced-order model is not suitable for quantitative comparison with
measurements, however, it predicts the stability trends qualitatively well (as is shown
in Chapter 4). Therefore the void-reactivity feedback simulation needs to be improved.
In the following, the theoretical background of the void-reactivity feedback simulation is
given. Thereafter, the improvements in the feedback simulation and the measurement
results obtained with the improved system are presented.

7.2 Theoretical background

A brief overview of the theoretical background of the void-reactivity feedback simulation is
given here. The simulation is based on the well-known point-kinetic equations to describe
the dynamics of the neutron population in the reactor (Ott and Neuhold, 1985):

gl% - p(t)T_ﬂn(t) + ;/\ici(t) -1
and de: (¢ ;
20 _ Bty - hett), (= 1,...6), 72

where the symbols have their usual meaning.

Generally, point kinetics is a good approximation for reactor dynamics when the spa-
tial flux shape does not vary strongly as a function of time. This is the case for small,
tightly coupled reactor cores, or for transient situations in large reactors that involve fairly
uniform perturbations throughout the core. The latter one is practically true for in-phase
oscillations in BWRs. We assume small variations in the reactor properties (cross sec-
tions) around the equilibrium values at which the reactor is critical. Then the reactivity
changes are given with respect to a critical reactor using a first-order approximation as
(Ott and Neuhold, 1985)

5p— < ¢* (8P — 6D)¢, >
< ¢*|Fogpo >
where P is the production operator, D is the destruction operator and the subscript
o denotes the equilibrium (critical reactor) state. The actual form of these operators

depends on whether the transport equation or one of its diffusion approximations is used
for deriving the point-kinetic equations. The < | > scalar product is defined as:

< flg>= [ fgdx,

where x denotes all the phase space variables. The function ¢ appearing in Eq. 7.3 is a
weighting function and ¢, is the critical flux shape:

: (7.3)

E¢o = Z)\o(ﬁm (74)

The solution of the point-kinetic equations is particularly sensitive to uncertainties
in the reactivity. Therefore, it is desired to choose the ¢t weighting function so that
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one gets an optimal estimation of the reactivity. It can be shown that using the static
adjoint function as weighting function, Eq. 7.3 for the reactivity is stationary (Ott and
Neuhold, 1985). It means that first-order errors in the flux result only in second-order
uncertainties in the reactivity. The static adjoint function, ¢, is defined to satisfy the
adjoint to Eq. 7.4: . .

B}g} = Dio;. (7.5)

For the physical meaning of the adjoint function we refer to the book of Ott and
Neuhold (1985).

We simplify the treatment by applying one energy group diffusion approximation,
for which the flux is self-adjoint. The two feedback effects that give rise to reactivity
variations in a BWR are the variations in fuel temperature (Doppler effect) and in the
moderator void fraction. Confining our attention only to the void reactivity variations
Eq. 7.3 can be written as (Ott and Neuhold, 1985):

2 _ s 2
6,0a(t) — fV(Z/(SEf - 62(1)‘750 6D(v¢o) dV’ (76)
f v 1/2 f¢§dV

where ¥¢, 3, and D are the one-group fission, the one-group absorption cross sections

and the diffusion coefficient, respectively. We ignore the leakage term in Eq. 7.6, which

is reasonable approximation. Using a one-dimensional, axial, model of the reactor and

assuming small variations in the cross sections around the equilibrium value, i.e. assuming

a linear dependence on the variations in the void fraction, the void-reactivity variation is
given as:

6m@=CACﬁMM%0M (7.7)

where C is a constant of proportionality.

7.3 Improving the void-reactivity feedback simulation

Eq. 7.7 is taken as a basis to calculate the void reactivity for the simulation. The Doppler-
reactivity effect is not simulated. Since flat-profile heater rods are installed in DESIRE, we
do not apply the flux shape weighting for the void-reactivity calculation in the measure-
ments reported here. However, it is quite straightforward to add the flux shape weighting
for non-flat profiles (e.g. for chopped-cosine) to the methods introduced below. Eq. 7.7
shows that to calculate the reactivity the time evolution of the axial void-fraction profile
must be known. Concerning the feedback simulation in the DESIRE facility, it means
that the axial void-fraction distribution in the heated part must be measured real time.
If the local void fraction is simultaneously measured at different heights using e.g. several
gamma-transmission set-ups, the axial void-fraction profile could be approximated. How-
ever, this is practically not feasible. Reconstructing the void-fraction profile from fewer
local measurements using some assumptions is a practical alternative.

This approach was chosen by Kok and Van der Hagen (1999), measuring the local
void fraction at a certain height by gamma-transmission technique. It was converted to
quality using the HEM model:

1
X(zmesvt) = Loy (1 _ &)7

alZmest) pg Py

(7.8)

where z,., is the elevation of the void measurement. They applied a quasi-static
approximation for the thermodynamic equilibrium quality (x(2,t)) assuming a linear axial
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quality profile. The linear quality profile is calculated at each time instant from the
measured local quality and the channel-inlet quality as:

X(Z,t) — X(Zmes,t) - XC,iz + xcir (79)

zmes

From the quality profile the core-averaged void fraction was calculated, then multiplied
by the void-reactivity coefficient to obtain the void reactivity (no flux shape weighting
was used). This quasi-static approach is a quite rough approximation of the actual, wavy
character of the void production and propagation in DESIRE (see Chapter 6). There is
both a considerable magnitude and phase difference between the actual core-average void
fraction and the one obtained by the linear, quasi-static approximation.

To improve the void-fraction profile reconstruction, we introduce six methods in the
following.

The quality profile method

In this method, we apply a polynomial expansion of the axial quality profile up to a
second-degree approximation. For this, we use two gamma setups and measure the void
fraction at two elevations simultaneously. These are converted to quality values using
the HEM model and together with the measured instantaneous value of the core-inlet
temperature (quality) are used to obtain a quadratic polynomial approximation of x(z,t)
in the from:

x(z,t) = ap(t) + a1 (t)z + az(t) 2%, (7.10)

where the parameters ag,a; and ap are determined at each sampling instant using
Eq. 7.10. A quadratic quality profile with time dependent coefficients has also been used
in a reduced-order BWR model by Karve et al. (1994). They compared stability maps
obtained using linear and quadratic quality profiles with the exact solution and showed
that using a quadratic profile instead of a linear profile considerably improves the results.
A similar conclusion was drawn by Shanathanan (1964), who developed a BWR model
applying an expansion of a(z, t) in a series of orthogonal functions (Legendre polynomials)
of the axial position with time dependent coefficients similarly to Eq. 7.10. He concluded
that changing from a first-degree to a second-degree approximation in the expansion has
the largest influence on the results. Applying higher-degree approximations increases the
calculational labor considerably, however, the results do not change significantly. Based on
these numerical results, we expect that using Eq. 7.10 will also improve the performance
of the feedback simulation in DESIRE.

The instantaneous position of the boiling boundary, z(t), is estimated from Eq. 7.10
by setting x(z(t)) = 0 and taking the physically meaningful root of the equation. Then
inverting Eq. 7.8 the axial void-fraction profile is reconstructed. At this step, we suppose
thermal equilibrium and neglect the influence of subcooled boiling on the void-fraction
profile. Integrating the void-fraction profile over the two-phase region the core-averaged
void fraction, denoted by < & >pr0y, can be calculated as:

<O Sproy= 1-ig — ! arctan( (Le — 2) ), (7.11)
prox= 7 _ p KW <7 ) .
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or L m .
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These formulas can be used in combination with the void reactivity coefficient to
calculate the simulated void reactivity.

The void profile method

Instead of using the quality, as in Eq. 7.10, one can apply a second-degree polynomial
expansion to the axial void-fraction profile as well:

afz,t) = ag(t) + ai(t)z + aq(t) 2% (7.14)

Eq. 7.14 applies only in the two-phase region, thercfore we use it with the constrain
a(zp,t) = 0. The coefficients in Eq. 7.14 are determined from the two local void-fraction
measurements and the estimated instantaneous position of the boiling boundary. The
boiling-boundary position can be cstimated using the second-degree approximation in
Eq. 7.10. The influence of subcooled boiling is neglected here as well. The core-averaged
void fraction, denoted by < & >, 4, is obtained using Eq. 7.14 as

Lo — 2w o

a1 (t)
Le 2

as(t
<O >prga= 2; )

(L + zi) + (LE + Loz + 233)]- (7.15)

The AP methods

Another way of improving the simulation of reactivity feedback is to use a different (not
local) void-fraction measurement technique. One possibility, that was chosen for DESIRE,
is to use a differential pressure sensor over the core. The core-averaged void fraction can be
estimated from the measured pressure drop. Obviously, this technique gives only integral
information about the axial void-fraction distribution. A drawback of this method is that
the contribution of the non-gravitational pressure drops in the measured signal can spoil
the estimation of the average void fraction. Rao et al. (1996) reported on experiments
with a hybrid thermal-hydraulic loop where the simulated void reactivity was calculated
based on the pressure drop measured over the heated section. They argucd that the
contribution of the inertial, frictional and accelerational pressure drops were so small due
to the very low flow rate in their experiments that they could ignore them.

The simplest method, which neglects the non-gravitational pressure drops, estimates
the core-averaged void fraction (denoted by < @ >apgray) as:
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o ch — AP, mes
Leg(p— pg)
where AP,,.; is the measured pressure drop over the heated section.
However, the non-gravitational pressure drops are not always negligible in DESIRE
(see next section). Therefore we use two other methods, which correct for these terms in
the measured core pressure drop. To account for the frictional, inertial and accelerational
pressure drop correctly, one should know the dynamic behavior of the void-fraction and
flow-quality distribution and the mass flux along the heated section. Since these are not
known, the contributions of the non-gravitational pressure drops are estimated in a quasi-
static fashion from the measured or estimated instantaneous values of mass flux, quality,
void fraction and the boiling-boundary position as:

<a>apgr= (7.16)

_ oy Mei(®)?
APprag(t) = aw(t) 5p= = (7.17)
([ — fMci(t)®
APprag = (Lo = z(t) = Do ¥ (7.18)

where the two-phase multiplier ¢ using the HEM model is given as

(p=1+(£;“1)<x>2_¢(t)

2 1 ng(t) (1 — Xez(t))2
BPoce = Mos(i) () ez ()py (11— OV (7.19)
The instantaneous values of zy, (ez and e in the above equations can be obtained
either using the quality profile from Eq. 7.10, or using the void profile from Eq. 7.14.
The core-averaged void fraction is denoted by < o >ap, for the former method, and by

< @ >ap, for the latter method. It is calculated as

_ pLcg = (APpes = APprig = APprp g — AFyc)
<a>ap.= .
Leg(p — pg)

In the quasi-static approach we ignore the contribution of the inertial pressure drop
in Eq. 7.20, which is a quite reasonable approximation for linearly stable situations in
DESIRE.

The factor f in Eq. 7.17 and in Eq. 7.18 is the wall friction factor (Fanning friction
factor) and it can be estimated with the empirical Blasius formula (Todreas and Kazimi,
1989) for circular pipe or bundle geometries. However, in the heated bundle in DESIRE
there are three spacers whose influence cannot be accounted for with the Blasius formula.
Therefore an effective wall friction factor incorporating the friction of the spacers was
determined experimentally for a range of flow rate, which is typical in DESIRE. It is
found to be f = 0.039 & 0.003. In the next section, we show the importance of the
non-gravitational pressure drop correction terms to obtain a reasonable estimate of the
core-averaged void fraction.

(7.20)

The combined void profile method

A straightforward way to combine the local (gamma transmission) and the integral (pres-
sure drop) measurements of the void fraction is to apply a third-degree polynomial expan-
sion of either the quality or the void-fraction profile instead of the aforementioned second-
degree approximations. The coefficients are determined from the two local measured void
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fractions, the estimated position of the boiling boundary (obtained from Eq. 7.10) and
from the estimated core-averaged void fraction obtained from the pressure drop measure-
ment. Because of the latter the third-degree polynomial has to be integrated, which would
lead, in case of expansion of the quality profile, to a system of transcendent equations for
the coefficients containing cumbersome formulas like in Eq. 7.11, Eq. 7.12 and Eq. 7.13.
This would pose difficulties and possibly problems for the real-time simulation. Therefore
a third-degree expansion to the axial void-fraction profile is applied in the form:

a(z,t) = ag(t) + a1 (t)z + az(t) 2% + as(t) 2. (7.21)
In this case, finding the coefficients reduces to a linear problem. From Eq. 7.21 the
core-averaged void fraction, denoted by < & >.om, is obtained as
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7.3.1 Implementation of the feedback simulation

Because of the major changes (new methods, new instrumentation) the whole void-
reactivity simulation has been newly implemented in DESIRE. It is now realized in LAB-
VIEW environment (LABVIEW, 2000) on a powerful PC.
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reactivity reactor thermalhvdraulics

Gru

<

Gps

2zer0-order power
hold supply
Grup L‘

DESIRE thermalhydraulics

DIGITAL CONTROLLER (DC)

LG [ o] { Gen [[ 60" [ @' [ o ]

void prompt jump
coefficient  approximation
of Gg

Figure 7.1: Comparison of the block schema of a BWR and DESIRE extended with the
artificial void-reactivity feedback simulation. Gg denotes the zero-power reactivity-to-
power transfer function, G is the fuel-to-coolant heat transfer function and Gry is the
thermalhydraulics (heat flux to average void fraction) transfer function. The transfer
function in the DC are in discrete time, the rest is in continuous time.

The simulation was implemented in a flexible way that the user can choose among
the aforementioned void fraction reconstruction methods. In figure 7.1 the void-reactivity
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feedback scheme of a BWR and the artificial void-reactivity simulation in DESIRE is
compared.

The transfer functions in the digital controller (DC) are all in discrete time, while
the rest of the transfer functions in the figure are all in continuous time. The DESIRE
system contains some elements that are not present in a BWR, however, one cannot avoid
them in the feedback simulation. Such element is the zero-order hold (ZOH). It couples
the discrete-time simulation in the DC with the rest of the continuous-time system. This
is the most common used reconstruction filter, which takes into account the effect of
sampling the data (Ogata, 1987). The output signal of the DC is kept constant by the
ZOH during one sample interval.

Gsen symbolizes the transfer function of the void measurement sensor - both the trans-
fer function of the gamma-transmission setup (the ratemeter) and the transfer function
of the differential pressure sensor. Gy, is the transfer function of the power supplies of
DESIRE. In order to avoid the undesired phase shift and attenuation of the signal in
these elements, the transfer functions G;.}, and G, are included in the DC to correct for
them in the simulation. Experimental experience shows that correcting for the transfer
function of the ratemeter of the gamma setup is not necessary if the time constant of
the ratemeter is small enough (< 0.1s). Then the attenuation and the phase shift of the
ratemeter is negligible in the frequency range of interest (< 1Hz). However, we must
correct for the attenuation and the phase shift caused by the differential pressure sensor
since it has a quite large time constant of 2 s as specified by the manufacturer. Similarly,
we have to compensate for the power supply.

171s
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Figure 7.2: The magnitude and the phase of the transfer function of the power supply of
DESIRE (solid line). Although the power supply is not a first-order system, it behaves
like a first-order system with a time constant of 0.5 s (dashed line) up to about 1 Hz.

The experimentally determined transfer function of the power supply is shown in
figure 7.2. The figure shows that the behavior of the power supply is of a first order system
with a time constant of 0.5 s up to about 1 Hz. In principle, one can compensate for the
low-pass filtering effect of both the pressure sensor and the power supply using the inverted
transfer functions with the appropriate time constants. However, this would amplify high
frequencies too much. The input to the DC contains a considerable level of relatively
high-frequency measurement noise (e.g. originating from the Poisson statistics of the
gamma measurement). Although this high-frequency noise has practically no effect on the
dynamics of the system, it can saturate the control signal driving the power supply since
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the latter has a limited range. Therefore, in the transfer functions G}, and G,;' besides

the compensating zero we apply a pole that filters out the disturbing hlgh-frequency noise:

1+ 8Tgen
1+ 57,

G'= , (7.23)
where T,., is the time constant of the sensor. The 7, time constant is chosen such

(0.05 s - 0.1 s) that filtering (suppression) occurs only above the frequency range of our

interest. Applying Z-transform (Ogata, 1987), Eq. 7.23 corresponds in discrete time to

-1 l—eept 1— ereenz 1
(G7) At At ) (7.24)
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where At is the sampling time of the DC. In case of the power supply, an ARMA(2,2)
model was fitted to the transfer function and its inverse was originally proposed to be
used for compensating in the DC by Kok and Van der Hagen (1999). This is replaced
by an Eq. 7.24 type of correction not only to achieve the aforementioned noise reduction
but the ARMA model has also a slight negative bias at zero frequency. Eq. 7.24 does not
have this problem.

Another compensating transfer function in the DC is (Gpp)~'. This is 1mplemented in
combination with G to enable the simulation of systems with various fuel time constants.
The time constant of the fuel rods in DESIRE was found to be about 0.5 s (Kok, 1998).
The combined effect of compensating for the DESIRE fuel time constant and simulating
an arbitrary fuel time constant is also implemented in the form of Eq. 7.24 in the DC. In
that case, Ty, is the DESIRE fuel time constant and 7, is the fuel time constant of the
simulated system.

To simplify the simulation of the neutronics, the prompt-jump approximation to the
point-kinetic equations with one effective group of delayed neutrons is implemented in
DESIRE (Kok and Van der Hagen, 1999). In the prompt-jump approximation the dn/dt
term in Eq. 7.1 is neglected, which is valid for the low-frequency region interesting for
BWR stability and for reactivities smaller than 1§ (p = 8.} (Hetrick, 1971). This limits
the maximum void-reactivity coefficient that can be validly used during the simulation.
Under this conditions of limited reactivity changes, the small sampling interval of At = 25
ms applied in the DC ensures a sufficiently small time step for solving numerically the
neutronic equations.

An important point is the scaling of the neutronics when one simulates an actual
BWR with DESIRE using the artificial feedback as discussed by Kok and Van der Hagen
(1999). Due to the different channel transit times - the characteristic time that plays
an important role for density-wave oscillations - in DESIRE and in the BWR that is
simulated, one has to scale the point-kinetic equations. This can be done by setting the
N; = M dimensionless group for the simulation to the same value as for the reactor (Kok
and Van der Hagen, 1999). For example, a proper scaling is achieved for the Dodewaard
reactor if one uses a A in the simulation that is 1.47 times larger than in Dodewaard, since
the transit time in DESIRE is smaller by a factor of 0.68 (Kok and Van der Hagen, 1999).

7.4 Experimental results

We have carried out measurements to test the different void-fraction reconstruction meth-
ods proposed in the previous section and to test how the artificial void-reactivity feedback
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simulation works with these methods. As a reminder, the six void reconstruction methods,
introduced in the previous section, are summarized in Table 7.1:

Method Based on non-gravitational <a>¢
pressure drops is given by
Qpro,y x(2,t) = ap + a1z + ax2® - Egs. 7.11 to 7.13
Qproa a(z,t) = ap + a1z + a2* - Eq. 7.14
QAP gr APme, - Eq. 7.16
APy APpes from Xpro(2,1) Eq. 7.20
QAPq APpes from 04r0,0(2,1) Eq. 7.20
Olcom alz,t) = ap + a1z + a2 + a32° | from qpro,e(2,t) Eq. 7.21

Table 7.1: Summary of the six void-fraction reconstruction methods.

The experiments have been carried out for three friction distributions in the facility
to represent all possible thermal-hydraulic stability conditions in DESIRE. These three
cases are:

1. A high friction setting (K. = 80) of the riser-exit resistance element in combination
with a zero-friction setting at the core-inlet valve (K¢ ; = 0) representing the least
stable situation from the thermal-hydraulic point of view (see Chapter 3), with a
relatively low coolant flow rate.

2. The lowest possible friction setting at the riser-exit (K. = 15), a high-friction
setting at the core-inlet valve (K¢; = 65) representing an extremely stable thermal-
hydraulic system with a relatively low coolant flow rate.

3. The lowest possible friction setting at the riser-exit (K,. = 15), a zero-friction
setting at the core-inlet valve (K¢; = 0) representing an intermediate stability in
between the above two cases - practically a very stable thermal-hydraulic system -
with a relatively high coolant flow rate.

We concentrate on the question how good the different methods can reproduce the
core-averaged void fraction in dynamic situations. As it was mentioned in section 7.3.,
the method proposed previously by Kok and Van der Hagen (1999) had the deficiency to
introduce a significant phase and magnitude difference with respect to the actual core-
averaged void-fraction variations. Considering the latter one, we have to realize that it is
not the absolute value (magnitude) of the core-averaged void fraction that is important
to be predicted correctly. Rather the fluctuations, more precisely the dynamics of the
core-averaged void fraction that must be reconstructed properly for a correct simulation
of coupled neutronic-thermalhydraulic oscillations. We qualify the methods with respect
to this. However, for entirety, first the reconstruction of the steady-state void fraction
using the different methods is discussed briefly.

7.4.1 Reconstruction of the steady-state void fraction

We examine how the steady-state axial void-fraction profile and the steady-state core-
averaged void fraction is reconstructed. The six methods, listed in Table 7.1 are compared
to each other and to the actual core-averaged void fraction, < o >.
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Figure 7.3: The influence of the void-measurement heights on the reconstruction of the
steady-state void-fraction profile. The left figure shows the results obtained by the o,
method, the right figure corresponds to those of the g, method. The different curves
corresponds to different combinations of the heights (given in meters) of the two gamma
sensors. A typical case for K, . = 80, K¢; = 0 is depicted.

To be able to estimate < o >, measurements were carried out changing the elevation
of the two gamma-transmission setups while keeping the facility in the same operating
condition. The core-averaged void fraction is estimated from the local void-fraction mea-
surements as

<a>= Z iiii—:ﬁoz(zi), (7.25)
. ¢

where z; is the elevation of the i local void-fraction measurement point.
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Figure 7.4: The reconstructed steady-state void-fraction profile using the a,, method.
The measurements for K, , = 80, K¢; = 0 are shown.
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Figure 7.3 and figure 7.4 show the results for a typical case for the friction distribution,
K,. =80 and K¢; = 0, which represents relatively low inlet flow rate conditions. The
axial void-fraction profile is obtained for the Gyroy, the 0proe and the acy, methods.
Figure 7.5 shows the corresponding predictions of the core-averaged void fraction for the
six methods.
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0.4 7

Kew=0

g
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E
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>
3
g
L
; i :
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o
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Figure 7.5: The core-averaged void fraction predicted by the six methods for all void-
measurement height combinations. The actual core-averaged void fraction estimated from
the local measurements is shown as well. The oy, and the oy, methods predict the
average void fraction within the uncertainty of the measurements. The AP based methods
underpredict it. The prediction of the o, method shows a strong dependence on the
height of the gamma sensors. The same measurement case is depicted as in figure 7.3 and
in figure 7.4.

The Qpro,, method seems to predict the most realistic steady-state axial void-fraction
profile. The void-fraction profile predicted by the yro method is only a second-degree
approximation of the actual void-fraction profile. This is not a very realistic description
since the actual profile is obviously not a second-degree polynomial of the axial position.
Since only two local void-fraction values are used to fit the profile at a time, the profile
depends on the void-fraction measurement heights. However, the differences in the predic-
tion of the core-averaged void fraction for the various measurement heights are small. The
core-averaged void fraction, although usually slightly overestimated, is predicted always
within the uncertainties of the measurements using the aforementioned two methods.

The 0/, method does not work properly for the steady-state. This is because the
average void fraction that would be obtained only from the measured local void fractions
and the one extracted from the pressure-drop measurement differs in the most cases
significantly. The former usually overestimates the actual average void fraction (see <
@ >proq in figure 7.5), the latter usually underestimates it (see < & >apg in figure 7.5). In
Eq. 7.21, basically, we try to match these two which can lead, depending on the local void-
fraction measurement positions, to non-physical void-fraction profiles and to an erroneous
core-average void fraction prediction as shown in figure 7.5.

The aape and the aap, methods usually underestimate the actual core-averaged void
fraction. However, they predict significantly better then if one only considers the gravi-
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Figure 7.6: The core-averaged void-fraction prediction for the other two friction settings
at the core-inlet and at the riser-exit. Qualitatively, the results for K, . = 15, K¢; = 65
are similar to those in figure 7.5 (left figure). In case of K., = 15 and K¢; = 0 (high flow
rate conditions) the prediction of the AP based methods is relatively worse, the aapg
method gives a negative void fraction (right figure).

tational pressure drop (< & >ap,r) without correcting for the non-gravitational pressure
drops. The performance of the pressure drop based methods could be, in principle, further
improved using a more sophisticated two-phase model instead of the HEM for estimating
the correction terms for the two-phase frictional and accelerational pressure drops.

The results of a typical case for the other two friction distributions are given in fig-
ure 7.6. It can be seen that for the K, ., = 15 and K¢; = 0 casc the corrections for the
non-gravitational pressure drops is absolutely necessary otherwise negative void fraction
is predicted. This is because at this friction distribution the flow rate is relatively high
and the relative contributions of non-gravitational pressure drops to the total pressure
drop is much higher than for the other two friction distributions. For K, . = 15 and
K¢ ; = 65, the predictions of the core-averaged void fraction by the different methods are
comparable to those obtained for K, = 80, K¢; = 0.

7.4.2 The dynamics of reconstructed average void fraction

In this subsection, we examine how the dynamics of the core-averaged void fraction is
reconstructed using the six methods without turning the feedback on. The phase dif-
ferences between the actual and the different reconstructed core-averaged void fractions
are examined and their stability indicators: the DR and the oscillation frequency are
compared.

Measurements were performed changing the position of the two gamma sensors keeping
the facility around the same equilibrium point. We propose to use the asymmetry of the
cross correlation function (CCF) between the reconstructed and the actual corc-averaged
void fraction with respect to the Y-axis to extract the phase difference. At zero phase
difference the CCF should be symmetrical around the Y-axis. First, the CCF between
the actual core-averaged void fraction and the core-averaged void fraction obtained by
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the aap g method is estimated as

Zitl — %
CCF<a(t)>,<a(t)>Ap,gr = Z +LC lCCFa(z,-,t),<u(t)>Ap'g,., (726)
i

It is assumed here that the system is stationary and that the CCFs on the right-
hand side represent the same system behavior (the same dynamics). We will see later
that this is approximately true (figure 7.8). The measurements were carried out at the
K, . =80 and K¢; = 0 friction settings for which the thermal-hydraulic stability is low
enough to obtain usable CCFs. The value of the phase difference is obtained by fitting
the Asin{wt + ¢) function to the measured CCFs using a nonlinear least-square method,
where ¢ is the phase difference.

at P =31 kW | at P = 27T kW
Pco> <a>ape | -9-21°£0.56° | -3.1°+0.83°

Table 7.2: The measured phase difference between the estimated core-averaged void frac-
tion and the average void fraction reconstructed by the aap g4 method. The measurements
are done for the least stable thermal-hydraulic system, K, . = 80, K¢; = 0.

Small phase differences are measured between the estimated core-averaged void frac-
tion and the average void fraction reconstructed by the aapg method as shown in Ta-
ble 7.2. This shows that the phase of the AP, signal, and thus that of < @ >apg too,
with good approximation is the same as of the core-averaged void fraction.

For the aap 4 method, the phase of the reconstructed core-averaged void fraction does
not depend on the local void-measurement heights, since it is based exclusively on the
pressure drop measurement. However, for the other methods it might depend on the local
void measurement height (see figure 7.7). Therefore, we estimate the phase differences
between the actual core-averaged void fraction and the reconstructed core-averaged void
fractions by taking the phase difference between < a >apg- and the other reconstructed
average void fractions (< & >y¢) as

Pca>,<a>ree = P<a>,<a>apgr T P<a>apgr<asree: (7.27)

These values are shown in figure 7.7. The figure shows a significant dependence of the
phase differences on the height of the local void-fraction measurements for the methods
based exclusively on these local measurements. The same trend is observed for both
measurement cases : when both gamma sensors are at low positions, there is a small phase
difference between the reconstructed average void fraction and the core-averaged void
fraction. As one of the gamma sensors is placed higher, the phase difference (phase delay)
increases. As both sensors are placed at higher positions, the phase differences decrease
and become small. For the other methods, based on the pressure drop measurement or
on a combination of pressure drop and gamma measurements, the phase difference is
significantly less dependent on the void-fraction measurement height and remains small
for each height combinations.




7.4. Experimental results 111

P=27 kW Krisex=80 P=3] kW
i K —0 10 7 0.6.0.808
G 0.6-0.808 0.281-0.6 0.36-0.685 0.36-0.715
40 0
— = -10 1
%0 g
S 207 0.415-0.6 = ]
3 . 0.36-0.808 g 20
= =}
.36-0.808
é é 30 1 Ksex=80 0.36-0.8¢
3 - 3 40 KO
3 <
-50
<O>AP,Y
0.36-0.715 <oopro, ), -60 E<o>pro,X,
-60 0.36-0.685 <O>pro, o <OU>pro,ot
5 -70 0.415-0.6 B <ooAP.o
<a>AP,a !
-80 - 0 <a>com -80 - O <o>com

Figure 7.7: The phase differences between the actual core-averaged void fraction and the
reconstructed core-averaged void fractions (except for < @ >ap4). The measurements
are carried out at 27 kW and 31 kW power for X, . = 80, Kc; = 0. The phase differences
for methods based exclusively on the local void-fraction measurements show a significant
dependence on the height of the gamma sensors. The methods based on the pressure
drop measurement give generally a small phase difference with respect to the actual core-
averaged void fraction.

Next, we compare the stability indicators of the core-averaged void fractions obtained
by the different methods. The stability indicators of the actual core-averaged void frac-
tion are obtained from its autocorrelation function (ACF) that is estimated similarly to
Eq. 7.26 as

Z; — Z;
ACF<a(t)> = Z %JACFQ(%'J% (728)

i

and compared with the DR and oscillation frequency of the reconstructed core-averaged
void fractions.

The DR’s are shown in figure 7.8 for all the combinations of the measurement heights
of the two gamma sensors. The DR’s and oscillation frequencies are obtained by fitting
the ACF of a third-order system to the measured ACFs using a nonlinear least-square
method (see Chapter 3).

The figure shows that the differences between the DR’s of the reconstructed and the
estimated actual core-averaged void fraction are small (less than 2% for P=31kW and less
than 6% for P=27kW). For the oscillation frequency it is always less than 0.5%, which
is not depicted for brevity. These results show that with respect to stability (indicators)
all reconstruction methods perform very similar. We note that the DR’s calculated from
the < & >apg, signal for the different void-measurement height combinations are practi-
cally constant, which confirms our assumption made for calculating the CCF in Eq. 7.26
that approximately the same dynamics has been measured for all measurement height
combinations.
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Figure 7.8: The DR’s determined from the reconstructed average-void-fraction signals
obtained by the different methods for all combinations of the measurement heights of the
two gamma detectors at 31 kW power and at 27 kW power. The DR of the estimated
core-averaged void fraction is also shown. The differences between the DR’s obtained by
the different methods are very small.

7.4.3 Dynamics with feedback simulation

The reconstruction methods are compared in this section by studying the dynamics of the
simulated reactor. We examine the results of measurements performed with the simulated
feedback turned on for the friction distribution K, . = 15, K¢; = 65 and positioning the
gamma, sensors at 0.36 m and at 0.715 m. Table 7.3 shows the DR’s of the simulated
reactor using the < o >ap, and the < @ >p,, void-fraction reconstruction methods
with various void-reactivity coeflicients. The table contains the DR’s calculated with
the reduced-order model too, showing the same trend - increasing DR with increasing
magnitude of @y - as the measurements.

DR DR DR

ay QAP Olpro.x model
0 - - 0.07
-0.01 | 0.1440.04 | 0.082+£0.04 | 0.08
-0.015 | 0.1840.03 - 0.09
-0.05 - 0.194+0.03 | 0.22
-0.06 - 0.2940.03 | 0.28

Table 7.3: Measured DR’s of the simulated reactor using the aap, and the og,, void-
fraction reconstruction methods with the void-reactivity feedback on. Measurements are
done for the friction distribution K, ., = 15, K¢; = 65 at P=22 kW with the gamma-
transmission sensors positioned at 0.36 m and at 0.715 m elevations. DR’s calculated
with the reduced-order model are shown in the last column.

The results show that a void-reactivity coefficient with about three times higher mag-
nitude (-0.015 and -0.05) is needed for the < a >,,, method to obtain about the same
DR (0.18 and 0.19) as with the < @ >ap, . To explain this one has to consider that the
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stability of the coupled system is determined by the poles of the characteristic equation
(see Eq. 2.2 in Chapter 2):

1+GRGF|Ofv|GA =0, (729)

where the Doppler feedback is omitted and we take into account that the void coef-
ficient, ay, is negative in a BWR. Examining |ayv|GrGrG4 as a function of the com-
plex frequency, iw, one can define the phase margin to instability as A¢ = 180° —
arg(|av|GrGrGa) at the frequency where |ayGrGrGa| = 1. Similarly, one can define
the gain margin to instability as 1—|ay G G pG 4| at the frequency where arg(|ay|GrGrG 4)
= 180°. Since G is always the same in the feedback simulation, it is enough to examine
the phase and the magnitude of GrG 4, which is actually the normalized transfer function
from the power to the core-averaged void fraction (G<qs.,,. p). The phase and the gain of
this transfer function is shown in figure 7.9 for a measurement case of Table 7.3.
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Figure 7.9: The measured gain and phase of the G<o>,,, p and the Gcos,,, ,,p transfer
functions for the measurement at ay = —0.015 from Table 7.3. The vertical dashed line
marks the resonance frequency of the simulated reactor, which is approximately the same
for both methods. The two extra solid lines in the phase diagram are the phase of G
(from the prompt-jump approximation) and the phase of Gr (obtained with 0.5 s time
constant of the DESIRE rods) from Eq. 7.29. The gain at the resonance frequency is
approximately the same for both methods, however there is a significant difference in the
phase.

The gain of the two transfer functions at the resonance frequency are practically the
same. The phase shift of the transfer function for < o >ap,, is however significantly larger
(with about 48°) and thus the phase margin is considerably smaller for that method.
Therefore, the difference in stability in this case is attributed mainly to the difference
in the phase of G.qs,.. p. Note that similar phase differences are found between the
< a >apy and < « >p, for the thermal-hydraulic measurements in figure 7.7 at the
0.36 m - 0.715 m void-measurement height combination as here between the Gqo AP P
and the Gcqs,,, ,,p transfer functions at the resonance frequency of the simulated reactor.
We must keep in mind that the difference between the phase of the different G.qs., . p
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transfer functions depends on the resonance frequency of the simulated reactor, which is,
in general, different from the resonance frequency of the thermalhydraulics.

This example shows that concerning the stability and dynamics of the simulated re-
actor, it is better to qualify the different void reconstruction methods by comparing the
phase and gain of the G4, ..,p transfer function obtained by the different reconstructions.
To examine this transfer function, measurements were carried out (again for different void-
fraction measurement height combinations) with the feedback switched off and adding a
random noise signal to the constant heating power (this option is also implemented in the
DC). The transfer function from the power to the actual core-averaged void fraction is
estimated as

G o HEHCOPSDy ) p
<a(t)>,P = Z % Llc_zi APSDp ’

(7.30)

where CPSD; , is the cross power spectral density between signal x and y.

The phase shift and the gain of the G<qs,...p transfer functions are compared for the
different methods with the one obtained from Eq. 7.30 in figure 7.10 and in figure 7.11.

As pointed out above, the phase depends on the frequency and one should look at
the phase at the resonance frequency of the simulated reactor (the coupled system).
Therefore phases of the transfer function are compared in a +0.1 Hz frequency range
around the resonance frequency of the thermal-hydraulic system. In general, for the
gamma-transmission sensor positions shown in figure 7.10 the phase shift of the G<4>....p
is somewhat larger in the 0.2 Hz - 0.3 Hz range than for the gamma sensor positions
in figure 7.11. This corresponds with the trend shown in figure 7.7 on the dependence
of the phase differences on the local void-fraction measurement heights for the different
methods.

Considering the gain, G<a>ap,,p a0d Geas 4, p lie closest to the gain of Gqs p for
the most sensor height combinations, although the differences with other methods are
small. Only the gain of Go5Ap,,.p is considerably higher than the rest. This is because
the transfer functions are normalized and < a >apg always significantly underestimates
the steady-state core-averaged void fraction (see the section 7.4.1). The same occurs at
certain combinations of the height of the gamma-transmission sensors with the gain of
Gcaseom,p for the same reason (see also figure 7.5).
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Figure 7.10: The gain and the phase of the measured power to core-averaged void fraction
transfer functions for all the reconstruction methods. The phase curves are shown in
a frequency range where there is a reasonable coherence between the power and the
void-fraction oscillations. The dashed vertical lines in the phase diagrams indicate the
resonance frequency of the thermalhydraulics. The measurement are carried out at 31 kW
power for Ke; s = 80, K¢; = 0. The results for three combinations of the height of the
gamma-transmission sensors are shown here, for other three are shown in figure 7.11. The
relative standard deviation of the phase values (depending on the coherence) is estimated
to be around 10%, for the gain it is estimated to be around 22%.
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Figure 7.11: The continuation of figure 7.10.

Finally, we show the results of stability measurements with the simulated reactor
using all the reconstruction methods. The measurements were carried out for various
void coefficients at 19 kW power for the friction distribution K,, = 80, K¢; = 0. The
measured DR’s are summarized in Table 7.4.

Unlike for the measurements shown in Table 7.3, the DR does not increase monotonous
with increasing magnitude of the void coefficient but shows a more peculiar behavior. For
the reconstruction aap,a, Oproe and Ceom the DR first decreases, then it starts to increase.
This, at first sight surprising, trend is also predicted by the reduced-order model (see the
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B DR DR DR DR DR DR
Ty Qo Dpro,a Upro,x QAP QAP model
-0.002 - - - 0.57£0.02 - 1.13
-0.004 | 0.61+0.02 - - 0.4240.03 - 0.96
-0.005 - - 0.6940.02 - 0.70+£0.02 | 0.88
-0.006 | 0.244+0.04 - - 0.63£0.02 - 0.81
-0.007 - 0.7610.01 | 0.744+0.02 - - 0.74
-0.008 | 0.2740.03 - - 0.75+£0.01 | 0.55£0.02 | 0.69
-0.009 - 0.7040.01 | 0.8640.01 - - 0.64
-0.010 | 0.45+0.03 - - - - 0.64
-0.011 - 0.86+0.01 | 0.88+0.01 - 0.43£0.03 | 0.65
-0.012 - - - - - 0.68
-0.013 - - - - - 0.71

Table 7.4: Measured DR’s of the simulated reactor using the different void-fraction re-
construction methods for the void feedback. Measurements are done for the friction
distribution K, . = 80, K¢; = 0 at P=19 kW. The DR’s predicted by the reduced-order
model are shown in the last column. A trend of decreasing and then increasing DR with
increasing (absolute) value of the void coefficient is shown for both the predicted and for
the measured DR’s (except for aspy and for ap,y)-

table) and it is attributed to the interchange in the stability of the two least stable pole
pairs as is shown in figure 2.13 in Chapter 2. The reduced-order model is used here only
for qualitative comparison. In case of the aa px reconstruction method the DR decreases,
for the @y, method it increases monotonous for the range of void coefficients at which
measurements were carried out.

7.5 Summary

The DESIRE two-phase flow facility has been extended with an artificial void-reactivity
feedback simulation to enable the study of coupled netutronic-thermalhydraulic stability
of natural-circulation BWRs. In the first version of the void-feedback simulation a very
simple linear, quasi-static approach has been used to reconstruct the axial void-fraction
profile and to calculate the core-averaged void fraction. The first results obtained using
the simulated feedback with this simple approach were unsatisfactory. Therefore, more
sophisticated methods have been introduced to improve the most crucial point in the
simulation, the real-time reconstruction of the axial void profile.

Two methods are based on a second-degree polynomial expansion of the axial quality
profile (ayroy) and the axial void-fraction profile (qroq), using two simultaneous, local
gamma-transmission measurements of the void fraction and the measured inlet quality
(temperature). Three other methods are based on the measurement, of the pressure drop
over the heated section. One of them (aapg-) directly obtains the core-averaged void
fraction from the measured pressure drop. The other two corrects for the non-gravitational
pressure drops using the profile information either from .., (@apy) or from Qpro.a
(capa). A sixth method, combining the local gamma-transmission measurements and
the pressure drop measurement, applies a third-degree polynomial expansion of the axial
void-fraction profile (com)-
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Since for the stability of a BWR the fluctuations (the dynamics) in the void frac-
tion and in the void reactivity are important, we examined how the different methods
reconstruct the core-averaged void fraction in dynamics situation.

The two local void measurement based methods are discussed together. The same is
done for the three pressure drop based methods. We summarize the findings about the
performance of the different methods with respect to the following items:

1.

Reconstruction of the core-averaged void-fraction fluctuations (without turning the
feedback on), considering the phase differences and differences in stability indicators
(DR, oscillation frequency) with respect to the estimated actual core-averaged void
fraction.

. Reconstruction of the power to core-averaged void-fraction transfer function, with

respect to phase and gain in a frequency range around the resonance frequency of
the thermal-hydraulic system. The gain and the phase of the power to core-averaged
void-fraction transfer function are the most important parameters determining the
stability when one turns on the void-reactivity feedback simulation.

Methods based on the local void-fraction measurements

1.

In dynamic situations, the oproq and opro, methods predict the core-averaged void
fraction reasonably well. For both methods, the phase difference with respect to the
actual core averaged-void fraction depends on the local void-fraction measurement
heights and shows the same trend as a function of those for both methods. For
certain height combinations: 0.36-0.685, 0.36-0.715 the phase delay is significant.
The differences in stability indicators are less than a few percent for both methods.

. Considering this item the gain is usually slightly underestimated. The phase shift

shows a similar trend as mentioned in the previous item for the different height
combinations of the local void-fraction sensors.

Methods based on the pressure drop measurement

1.

For the methods aapa,0ar, and aapg,, the phase difference with respect to the
actual core-averaged void fraction is much less dependent on the local void-fraction
sensor heights (for aapgr is independent) than for the methods based exclusively on
the local void-fraction measurements. This phase difference remains always small.
The differences in stability indicators with respect to the actual core-averaged void
fraction are less than a few percent for each method. A disadvantage of the aap,,
method is that it does not work under relatively high flow rate conditions.

. The estimation of the gain and the phase of the power to core-averaged void-fraction

transfer function is reasonably good and the phase depends only very slightly on
the local void-fraction measurement heights.

The combined method

1.

Considering the phase difference with respect to the actual core-averaged void frac-
tion the oy, method behaves, in general, similarly to the local void-fraction based
methods. However, for certain void sensor height combinations this method gives
very unphysical results and for these cases the phase difference is large. The stability
indicators are predicted well, within a few percent.
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2. The gain is overpredicted for the aforementioned unphysical cases. For these cases
the phase shift is also considerably different than that for the actual core-averaged
void fraction for these cases.

Comparing the overall performance of the six methods, it is not straightforward to
choose a single one that is the best. Two methods based exclusively on the local gamma
measurements (Qpro,o and Gy, ) perform quite similarly to each other. The two pressure
drop based methods (cap, and aapy) give also similar results to each other. Considering
that the phase difference with respect to the actual core-averaged void fraction is always
small and only slightly depends on the local void-fraction measurement heights for the
aape and aap, methods, these methods are favored. However, they do not provide the
axial void-fraction profile, while the q,o and oy, methods do, which is advantageous
if one wants to include flux weighting for the reactivity calculation.

Keeping these comments in mind, either one of the former two methods or one of
the latter two methods could be used for stability experiments. If the qom method is
chosen then the experimenter should take care because it does not work for certain height
combinations of the local void-fraction sensors. This method should be further improved.

Using all the methods, we performed several stability measurements on the simulated
coupled neutronic-thermalhydraulic system. The DR is found to decrease first and then
to increase with an increasing magnitude of the void coefficient. This behavior is also
predicted qualitatively by the reduced-order model in the measured operating conditions
and it is attributed to an interchange in the stability of the two least stable pole pairs of
the system.







Chapter 8

Conclusions and discussion

In this thesis, several aspects of the dynamics and stability of natural-circulation BWRs
have been studied using three powerful tools: an experimental facility, a reduced-order
model and a thermal-hydraulic system code.

The linear stability of natural-circulation BWRs has been investigated extensively
using a reduced-order model. The reduced-order model has been developed concentrating
only on the most important physical processes determining the dynamics of BWRs and
neglecting less important phenomena. This model is very suitable for fast parametric
studies on the stability of BWRs. It has the capability to increase the insight into the
role of the relevant physical processes responsible for the different kinds of instabilities.
The sensitivity of the stability (the decay ratio) of the natural-circulation two-phase flow
to the different types of pressure drops present in the system has been examined. It has
been found that the accelerational and the two-phase frictional pressure drops are the most
important destabilizing terms for the Type-II instability and the gravitational pressure
drop in the riser is the most important destabilizing term for the Type-I instability. Using
frequency-domain analysis, the poles of a natural-circulation BWR have been identified
with neutronic, heat transfer and thermal-hydraulic processes. It is shown that it depends
on the strength of the void-reactivity feedback which pole pair determines the stability of
the reactor in the Type-II and in the Type-I instability region: for a strong void-reactivity
feedback there is an interchange between two pole pairs moving from the Type-II to the
Type-I region.

The reduced-order model has been extended to take into account core-inlet temper-
ature variations. It is shown that it has a significant effect on the thermal-hydraulic
stability of the system. It is found that moving the feedwater sparger to the core inlet the
thermal-hydraulic stability increases. If the sparger is at the core inlet the reduced-order
model predicts a unconditionally stable system, which is due to the simplification in the
reduced-order model. On physical basis the stabilizing effect is plausible. A similar sta-
bilizing trend is obtained by the advanced thermal-hydraulic code MONA as the sparger
approaches the core inlet. Unfortunately, as the sparger core-inlet distance increases there
is a strong numerical diffusion in modelling the propagation of temperature oscillations in
the downcomer. The influence of the sparger position on the thermal-hydraulic stability
deserves further investigations, if the effect is significant enough then new reactor designs
might benefit from it. With a simple modification, adding an alternative extra feedwa-
ter sparger connected to the inlet of the heated assembly, the DESIRE facility could be
used to investigate the effect experimentally. Further numerical investigations should be
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performed using a thermal-hydraulic code provided with an advanced numerical scheme.

As an application of the reduced-order model, the problem of the practicability of
using the decay ratio as a sole stability indicator for BWR stability monitoring is exam-
ined. It is shown that the system can be much closer to unstable behavior in terms of
operational parameters like power, pressure and feedwater temperature than the value of
the decay ratio would indicate. Therefore, relying only on the value of the decay ratio
can be misleading in judging the stability margin. It would be more practical to use the
operational margins together with the decay ratio. Due to the simplicity of the reduced-
order model, the results given here are only indicative. Advanced thermal-hydraulic codes
could be used to obtain more reliable results on the relation of decay ratio and opera-
tional margins. Experimental investigation of the problem using the DESIRE facility is
also advocated.

The influence of the axial power profile on the nonlinear dynamics of BWRs has been
examined using a numerical Hopf bifurcation code based on the reduced-order model.
It is shown that bifurcation characteristics of the thermal-hydraulic system are sensitive
to the axial power profile and both sub- and supercritical bifurcations are encountered.
Generally, strongly bottom-peaked profiles might result in subcritical bifurcations (accom-
panied by diverging oscillations), for top-peaked profiles the bifurcation is supercritical
(constant-amplitude oscillations). The type of bifurcation occurring in the reactor is
found, in accordance with earlier studies, to be predominantly influenced by the strength
of the void-reactivity feedback. The influence of the power profile in that case is not so
significant. As for further investigation on the the nonlinear dynamics of BWR it would
be of interest examining the role of the different nonlinear physical processes in the oc-
currence of subcritical and supercritical bifurcations, a similar (but nonlinear) study as
described in Chapter 2 of this thesis.

The experimental facility, the DESIRE natural-circulation boiling two-phase flow loop,
has been modified, based on a study with the reduced-order model. Installing a variable
friction at the riser exit enables the study of unstable situations (density-wave) oscillations.

The thermal-hydraulic stability of natural-circulation two-phase flows have been in-
vestigated by performing extensive sets of stability measurements e.g. for different friction
distributions, for different axial power profiles. Valuable experimental data has been gath-
ered, which can be indicative for innovative, natural-circulation BWR. designs (like the
ESBWR) and it can be used for code validation as well. The measured stability indicators
(decay ratio, oscillation frequency) are predicted fairly well by the MONA code, however,
the reduced-order model is able to predict only the trends in the stability indicators
correctly.

The nonlinear dynamics of the natural-circulation two-phase flow is investigated per-
forming measurements at unstable operating conditions. The characteristics of the non-
linear density-wave oscillations in the vicinity of the stability boundary are examined and
it is shown that the oscillations are dominated by the strong propagating mixture-density
variations confirming earlier numerical results. It is found that the natural-circulation
two-phase flow undergoes the so-called Feigenbaum scenario, the period-doubling route
towards chaotic behavior as one penetrates into the unstable operating region of the sys-
tem. To the author’s knowledge, this is the first occasion that this phenomenon has been
experimentally observed in (boiling) two-phase flow systems.
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The prediction of highly nonlinear, unstable behavior is usually very sensitive to
modelling assumptions and the empirical correlations applied in thermal-hydraulic codes.
Therefore the pertinence of correlations and modelling assumptions could be efficiently
checked by benchmarking the numerical results of the code against the aforementioned
type of experimental data on nonlinear oscillations.

As an extension of the experimental possibilities of the thermal-hydraulic facility, the
DESIRE loop is equipped with an artificial void-reactivity simulation implemented on a
PC. This hybrid system is used to investigate the stability of natural-circulation BWRs
experimentally. The most crucial point in the simulation is the real-time reconstruction of
the axial void-fraction profile in the heated assembly of DESIRE. New void-fraction recon-
struction methods have been introduced into the simulator to improve its performance.
These methods are based on the measured pressure drop over the heated assembly (inte-
gral measurement), or on local gamma-transmission void-fraction measurements applying
improved models or on the combination of the local void-fraction and pressure drop mea-
surements. The performance of the different methods have been compared with respect
to reconstructing the dynamics of the actual core-averaged void fraction without turning
the feedback on. Comparison of the methods is also made for reactor stability measure-
ments. In general, all methods perform reasonable well in dynamic situations except the
combined method, which does not work for certain height combinations of the local void
sensors. The phase difference with respect to the actual core-averaged void fraction might
be higher for void-profile based methods depending on the height of the local void-fraction
measurements. The phase difference for the pressure-drop based methods is always small
and only very slightly dependent on the local void-fraction measurement height. The
disadvantage of the pressure-drop based methods is that they do not provide with infor-
mation on the void-profile. Moreover, one must apply corrections for the non-gravitational
pressured drop terms, which might spoil the prediction of the core-averaged void fraction.

Dynamic measurements using the improved void-feedback simulation reveal stability
trends that are also predicted by the reduced-order model.

Systematic experimental investigation on the neutronic-thermohydraulic stability can
be performed in the future using the void-feedback simulation methods described here.
The correction terms for the non-gravitational pressure drops should be improved and
in this way the performance of the pressure-drop based and the combined reconstruction
methods could be improved. The pressure-drop measurement methods with the improved
correction terms could be the most practical to use if the heated assembly of the system
is split into two (or more) parallel channels for investigating out-of-phase stability.







Appendix A

The reduced-order model

A.1 Model equations

The following equations constitute the reduced-order model of Van Bragt and Van der

Hagen (1998a).

Neutron kinetics

Using one effective delayed neutron group:

dn(t) _ p(t) — ﬁn(t) + Ac(t),

dt A
dfi(tt) - %z(t) ~Aelt).
Fuel dynamics
iq”(t) 3 1 [M q//]’

dt g o4, 4
where ¢"(t) = k[T (t) — Toat]-

Boiling boundary dynamics
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Core void dynamics
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Riser void dynamics

For the n'* riser node

d<oft) >, M) — M) N,

= =0 ; o A8
dt Ps— Pg L, ( )
My (O] + 22220y (0] = My @)1 + 2222y, (2], (A.9)
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where N, is the number of riser nodes.

Mass-flux density dynamics

The mass-flux density equation is given implicitly by the integral momentum equation
along the closed natural-circulation loop:

AP (t) + AP, () + APy(t) = 0, (A.11)

where the different types of pressure drops accounted for in the model are summarized in
the following table:

Inertia core a2 (8) 2@ 4 (Lo — be(t)]nde(t)+
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Inertia riser ETI:& . 11;/: d<M;t(t)r,,.
Inertia downcomer ( A) L1
. Mc' e( ) 2 é,i(t)
Acceleration core [XCe(t)] o1
Acceleration riser ’p;(t) 2[Xr.z ] - (t) @ [xri(t)]
. 1
Acceleration downcomer 2,, y (;r Zr,»)
Gravity core Leglps(1— < aft) >c) + pg < aft) >¢l
Gravity riser S Leglps(1— < a(t) >rp) + pg < at) >4
Gravity downcomer —psg(Lc + Ly) ]
. - MZ () Mg
Distributed friction core 2 (t) 6= I f, ==+ [Lc l;( jbb(t)]é'jt_)% —=p P*[3xce(t)]
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Distributed friction riser Yot f\'/_,EDL, —Tcpz[< x(t) >rn]
x
Local friction inlet core Kc,iM—;#
Local friction exit core Kce M§,‘,;(t) @*[xc,e(t)]
Local friction exit riser K., 5; f(t) D2 [xre(t)]
Local friction inlet downcomer Ky, 2,’;,(”
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A.2 Transfer functions used in the frequency-domain
approach
The following transfer functions appearing in the block diagram of figure 2.2 can be

derived from the above equations. The zero-power reactivity transfer function derived
from the point-kinetic equations is given as follows:

L s+ A
e & = 2
Cr 0p  As?+ (A +B)s (4.12)

The transfer function describing the heat transfer from fuel to coolant is

"

611 1 1
Gr=-o = —— . A13
F ‘;J—I: TfS'f‘# ( )

The transfer function from the heat flux and from the core-inlet mass flux to the boiling-
boundary position are

d2pp
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where
__ Zbboll.
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and
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The transfer function from the heat flux and from the core-inlet mass flux to the core-
averaged void fraction are
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The transfer function from the boiling-boundary position to the core-averaged void frac-
tion is
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The transfer function from the core-averaged void fraction and from the boiling-boundary
position to the core-inlet mass flux are

Mg, A M, )
— —_ _Q C,B
G = Mo _ (L — 2o + L 58)s + K1) 52,25 + Core + Riser (A19)
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The G35 5eass Baer dynamic pressure drop derivatives appearing in G ;.o and G, 2,

can be derived from the dynamic pressure drop terms listed in the above table in a
straightforward manner.
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System parameters

Dimensions
Dodewaard DESIRE
length of fuel rod [mm)] 1800 830
diameter rod [mm] 13.5 6.23
area of a fuel assembly [m?] 0.006981 0.001776
number of assemblies 164 1
riser length [m)] 2.84 variable between 1.1 and 1.9
area riser [m?] 2.58 0.003237
length downcomer [m)] :
along riser 2.84 variable between 1.1 and 1.9
along core 2.01 (see Section 3.1.3)
area downcomer [m?] :
along riser 3.52 varying (see Section 3.1.3)
along core 2.62 varying (see Section 3.1.3)
elevation of feedwater sparger
from top of the core [m] 2.14 1.2
Friction coeflicients
Dodewaard DESIRE
core inlet, K¢ ; 3.46 variable: 3.0 — oo (inlet valve)
core exit, K¢ 3.02 3.02
riser exit, K, . 1.0 variable: 15.7 — oo (exit, valve)
downcomer inlet, Ky 1.0 1.155
distributed friction factor core, fo 0.0164 0.021
distributed friction factor riser, f, 0.0164 0.039
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Nominal operating parameters

Dodewaard | DESIRE

pressure [bar] 75.5 11.6
mass flux per assembly [kgm 2s1] 1006 1137
average assembly power [kW] 1116 22.3
core inlet subcooling [K] 5 2

feedwater temperature [K] 408 268
inlet velocity [ms™!] 1.37 0.93
channel transit time [s] 1.31 0.89

Netronic and fuel data set

Dodewaard | DESIRE
fuel time constant [s] 2.11 0.5
Eky [Js 'm 1KY 9.33-10° | 5.69-10°
B 0.0061 -
As™ 0.084 -
Afs™ 5-107° -
rp [K7Y -2-107% -




Appendix C

MONA input file example for DESIRE

'
! MONA model of DESIRE
! This version of the input deck incorporates revised loss coefficient
! Change position for the valve

! 22 nodes for fuel assembly nodalization

t FINAL VERSION (uscd for dynamics expcriments)

P

'
CASE PROJECT = "Mona model of DESIRE"
)

:
! Branch Data
1

1
BRANCH ID=1
! Downcomer
PIPE ID=|, DH=0.023, AREA=0.003611, LENGTH=1.000, ELEVATION=-
1.000,\
EPSABS=5.0E-6, NSEG=7, DZ = ({0.05,0.1,0.15,0.2,0.2,0.2, \
0.1y ! Upper Downcomier (fixed length)
'
PIPE D=2, DH=0.030, AREA=0.004500, LENGTH=0.248, ELEVATION=-
0.248,\
EPSABS=5.0E-6, NSEG=2, DZ = (0.150, 0.098)

BRANCH ID=10

! Downcomer Loop 1

! An entrance loss coefficient for the horizontal section of each
!oop must be defined to account for the 90 degree flow redirection
! from the lower downcomer.

'
PIPE ID=10, DH=0.040, AREA=0.001257, LENGTH=0.350, ELEVATION=
0.000,\
EPSABS=5.0E-6, NSEG=2 ! Horizontal section
PIPE ID=11, DH=0.040, AREA=0.001257, LENGTH=().550, ELEVATION=-
0.350.\

EPSABS: ! 90 Degree bend
PIPE 1D=12, DH=0.040, AREA=0.001257, LENGTH=1.000, ELEVATION=
1.000, \

EPSABS=5.0E-6, NSEG=5 ! Upper vertical section
PIPE ID=13, DH=0,030, AREA=0.000707, LENGTH=0.550, ELEVATION=-
0.550,\

EPSABS=5.0E-6, NSEG=2 ! Lower vertical section
PIPE ID=14, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=-
0.350,\

EPSARS=5.0E-6, NSEG=2 !90 Degree bend down
PIPE ID=15, DH=0.040, AREA=0.001257, LENGTH=
0.350,\

EPSABS=5.0E-6, NSEG=2 ! 90 Degree bend up

.550, ELEVATION=

'
BRANCH 1D=20
! Downcomer Loop 2
PIPE  ID=20, DH=0.040, AREA=0.001257, LENGTH=0.350, ELEVATION=
0.000,\

EPSABS=5.0E -6, NSEG=2 ! Horizontal section
PIPE ID=21, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=-
0.350,\

EPSABS=5.0E-6, NSEG=2!90 Degree hend
PIPE ID=22, DH=.040, AREA=0.00)1257, LENGTH=1.0{X), ELEVATIO!
1.000,\

EPSABS=5.0E-6, NSEG=5 ! Upper vertical section
PIPE 1D=23, DH=0.030, AREA=0.000707, LENGTH=0.550, ELEVATION=-
0.550,\

EPSABS=5.0E-6, NSEG=2 ! Lower vertical section
PIPE  [D=24, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=-
0.350,\

EPSABS=5.0E-6, NSEG=2 !90 Degree bend down
PIPE 1D=25, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=
0.350,\

EPSABS=5.0E-6, NSEG=2!90 Degree hend up

,
BRANCH ID=30

! Downcamer Loog 3

PIPE  ID=30, DH=0.040, AREA=0.001257, LENGTH=0.350, ELEVATION=
0.000,\

EPSABS=5.0E-6, NSEG=2 ! Horizontal section
PIPE ID=31, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=_
0.350,\

EPSABS=5.0E-6, NSEG=2 !90 Degree bend
PIPE 1D=32, DH=0.040, AREA=0.001257, LENGTH=1.0{X), ELEVATION=.
1.000,\

EPSABS=5.0E-6, NSEG=5 ! Upper vertical section
PIPE 1D=33, DH=0.030, AREA=0.000707, LENGTH=0.550, ELEVATION=-
0.550,\

EPSABS=5.0E-6, NSEG=2 ! Lower vertical section
PIPE ID=34, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=-
0.350,\

EPSABS=5.0E-6, NSEG=2 !90 Degree bend down
PIPE ID=35, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=
0.350,\

EPSABS=5.0E-6, NSEG=2 !90 Degree bend up

BRANCH ID=40
! Downcomer Loop 4
PIPE  1D=40, DH=0.040, AREA=0.001257, LENGTH=0.350, ELEVATION=
0.000,\

EPSABS=5.0E-6, NSEG=2 ! Horizontal section
PIPE 1D=41, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=-
0.350,\

EPSABS=5.0E-6, NSEG=2 ! 90 Degree bend
PIPE  1D=42, DH=0.040, AREA=0.001257, LENGTH=1.000, ELEVATION=-
1.000,\

EPSABS=5.0E-6, NSEG=5 ! Upper vertical section
PIPE  1D=43, DH=0.030, AREA=0.000707, LENGTH=0.550, ELEVATION=-
0.550,\

EPSABS=5.0E-6, NSEG=2 ! Lower vertical section
PIPE ID=44, DH=0.040, AREA=0.001257, LENGTH=0.550, ELEVATION=-
0.350,\

EPSABS=5.0E-6, NSEG=2 ! 90 Degree bend down
PIPE 1D=45, DH=0.040), AREA=0.001257, LENGTH=0.550, ELEVATION=
0.350,\

EPSABS=5.0E-6, NSEG=2 ! 90 Degree bend up
!
BRANCH 1D=50
! Lower Plenum, Upper Plenum, Assembly
I

i’lI’E 1D=50, DH=0.0895, AREA=0.006291, LENGTH=0.290, ELEV ATION=
0.290,\

EPSABS=5.0E-6, NSEG=2 ! Lower plenum
PIPE 1D=51, DH=0.050, AREA=0.001964, LENGTH=0.600, ELEVATION=
0.600, \

EPSABS=5.0E-6, NSEG=5, DZ=(0.08,0.12,0.12,0.08 ,0.2) ! Upper plenum
PIPE ID=52, DH=0.00764, AREA=0.001776, LENGTH=0.012, ELEV ATION=
0.012,\

EPSABS=5.0E-6, NSEG=I ! Assembly unheated section
PIPE 1D=53, DH=0.00764, AREA=0.001776, LENGTH=0.880, ELEV ATION=
0.880,\

EPSABS=5.0E-6, NSEG=22! Assembly heated section
PIPE 1D=54, DH=0.00764, AREA=0.001776, LENGTH=0.066, ELEV ATION=
0.066, \

EPSABS=5.0E-6, NSEG=!l ! Asscmbly unhcated scction

\
BRANCH ID=60
! Riser
PIPE 1D=60, DH=0.054, AREA=0.002916, LENGTH=1.000, ELEVATJON=
1000\
EPSABS=5.0E-7, NSEG=S ! Lower Riser (fixed length)

PIPE ID=61, DH=0.061, AREA=0.003721, LENGTH=0.300, ELEVATION=
0.300,\

EPSABS=5.0E-7, NSEG=4, DZ = (0.1, 0.1, 0.05, 0.05)
! Upper Riser (variable length)

)
PIPE ID=62, DH=0.3281, AREA=0.165096, LENGTH=0.03925,
ELEVATION= 0.000, \

NSEG=1 ! horizontal connecting pipe.
.
BRANCH 1D=70
! Steam Dome
PIPE  1D=70, DH=0.090, AREA=0.008100, LENGTH=1.100, ELEVATION=
1100,0
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EPSABS=5.0E-6, NSEG=9, DZ =(0.05, 0.05,0.1,0.1,0.1,0.1, \
02,0.2,0.2)
! Steam Dome (variable length)
t
t.

! Network Data
L

1
TABLE LABEL=PEAK, X = TIME, F=PT
TABLE POINT = (0., 11.60E+5)
TABLE POINT = (200., 11.60E+5)
'TABLE POINT = (45.1, 12.4E+5)
ITABLE POINT = (45.2, 11.60E+5)
ITABLE POINT = (300., 11.60E+5)
NETWOR NODE=1, TYPE=SPLIT ! Downcomer, Riser, Steam Dome (reference
Riser)
NETWOR NODE=2, TYPE=SPLIT ! Downcomer to Downcomer Loops
(reference Downcomer)
NETWOR NODE=3, TYPE=MERGE ! Downcomer Loops to Lower Plenum
(reference L.P.)
NETWOR NODE=4, TYPE=MERGE ! Assembly to Lower Riser (reference
Lower Riser)
NETWOR NODE=5, TYPE=TERMINAL, PTTAB = PEAK, \

TL = 48,00 C, TG = 48.00 C ! Steam "Outlet"
NETWOR BRANCH= 1, ORIGIN = 1, DESTINATION =2, OANG=90!D.C. -
Inlet to Exit
NETWOR BRANCH=10, ORIGIN = 2, DESTINATION = 3 ! Loop 1 Inlet to
Exit
NETWOR BRANCH=20, ORIGIN = 2, DESTINATION =3 ! Loop 2 * "
NETWOR BRANCH=30, ORIGIN = 2, DESTINATION =3 ! Loop 3" "
NETWOR BRANCH=40, ORIGIN =2, DESTINATION =3 ! Loop 4 " "
NETWOR BRANCH=50, ORIGIN = 3, DESTINATION = 4 ! Lower Plenum to
Lower Riser
NETWOR BRANCH=60, ORIGIN =4, DESTINATION = 1 ! Lower Riser to
Steam Dome
NETWOR BRANCH=70, ORIGIN = |, DESTINATION = 5 ! Steam Dome to
Outlet

t
!
! Fluid
'
]

i"LUlD PROP=R12, FILE="dkal l:[zboray]R12.DAT"
t
1

! Special components
[}

!

! Define an entrance loss coefficient for the inlet to the upper

' downcomer. Treat the entrance as square-edged (Reference Fox &

! McDonald, "Introduction to Fluid Mechanics”, Table 8.1, page 366).
!

LOSS BRANCH=1, PIPE=1, LOC=1, BPOS=0.5 ! Upper Downcomer inlet
!

1 Define an entrance loss coefficient for the exit of the upper

t downcomer. Treat the entrance as an expansion (Reference Fox &
! McDonald, "Introduction to Fluid Mechanics", Fig. 8.17 page 367).
1

LOSS BRANCH=1, PIPE=2, LOC=1, BPOS=0.05 ! Upper Downcomer exit
T

TABLE LABEL=BEND, X = REYN, F = BPOS
TABLE POINT = (8.5E+3, 0.4181)

TABLE POINT = (1E+4, 0.4050)

TABLE POINT = (2E+4, 0.3371)

TABLE POINT = (4E+4, 0.2874)

TABLE POINT = (6E+4, 0.26132)

TABLE POINT = (1E+5, 0.23519)

TABLE POINT = (3.5E+5, 0.1829)

1

LOSS BRANCH=10, PIPE=14, LOC=1, BPOS=19.73 ! Experimental value,
lumped coeff.

1

i.»OSS BRANCH=20, PIPE=24, LOC=1, BPOS=15.95 ! Experimental value,
lumped coeff
!

LOSS BRANCH=30, PIPE=34, LOC=1, BPOS=19.01 ! Experimental value,
lumped coeff.
!

LOSS BRANCH=40, PIPE=44, LOC=1, BPOS=19.68 ! Experimental value,
lumped coeff.
!

! The contraction of the lower plenum from 129 mm diameter to a 50 mm
! diameter is modeled as a reversible pressure loss. Treat the loss

! coefficient as a gradual contraction (Reference Fox & McDonald,

! "Introduction to Fluid Mechanics”, Table 8.2, page 367).

!

11t was changed here to branch=50 extraction at cone inlet
t

iDSS BRANCH=50, PIPE=50, LOC=2, BPOS=0.79 ! Lower plenum inlet
LOSS BRANCH=50, PIPE=5|, DPAREA=ON, BPOS=0.1 ! Lower plenum
!

! The flow control valve in the upper plenum is modeled directly.

! The valve discharge coefficient is defined assuming a gate valve
! (Reference Fox & McDonald, "Introduction to Fluid Mechanics”,
t Table 8.3, page 371). The valve relative flow arca can be varied

{ to match experi i1} d recirculation flows.

t

VALVE BRANCH=50, PIPE=51, LOC=3, CD=1.0, DMAX=0.050, AREL=10
t

i Assembly entrance loss coefficient as provided by KEMA from

! their TRAC input deck.

!

LOSS BRANCH=50, PIPE=52, LOC=1, BPOS=3.343 ! Assembly inlet (3.343)
!

! The spacers in the assembly are modeled by a pressure loss. The

! spacers are located 251, 491, and 731 mm from the bottom of the

! fuel assembly. With 14 axial sections, these locations correspond

! approximately to sections 4, 8, and | 1. The loss coefficient (BPOS)

! needs Lo be adjusted to yield the proper pressure drop across the

! spacers. Spacer value as provided by KEMA from their TRAC input deck.
'

LOSS BRANCH=50, PIPE=53, LOC=(6,12,18), BPOS=0.775 ! Assembly
spacers.

'

! Assembly exit loss coefficient as provided by KEMA from their TRAC
t input deck (note that their value includes the assembly upper tie
!and the chimney, so these values are combined herein)

!
LOSS BRANCH=50, PIPE=54, LOC=1, BPOS=0.87 ! Assembly outlet
!

! Define an entrance loss coefficient for the outlet of the lower

triser. Treat the outlet as an expansion (Reference Fox & McDonald,
! "Introduction to Fluid Mechanics”, Fig. 8.17 page 367).

t

LOSS BRANCH=60, PIPE=61, LOC=1, BPOS=0.07 ! Upper riser inlet
!

i..OSS BRANCH=60, PIPE=61, LOC=4, BPOS=64. ! Riser exit
'

i.DSS BRANCH=60, PIPE=62, LOC=1, BPOS=0.28 ! Steam dome inlet
!

! The steam dome is currently modeled in MONA as a split node with a
! stagnant water level. The carry under and carry over volume fractions
! are user input, not calculated.

!

SEPARATOR MODEL=DOME, NODE=1, GASLEG=70, CAROV=0,
CARUN=0.110

!

!

!initial conditions
]

1.
1

INITIAL BRANCH=1, TL=44.70 C, TG=48.00 C, AL=0.0000, PT=11.65E+5,
WT=1.122

INITIAL BRANCH=10, TL=44.60 C, TG=48.00 C, AL=0.0000, PT=11.90E+5,
WT=0.273

INITIAL BRANCH=20, TL=44,60 C, TG=48.00 C, AL=0.0000, PT=11.90E+5,
WT=0.273

INITIAL BRANCH=30, TL=44.60 C, TG=48.00 C, AL=0.0000, PT=11.90E+5,
WT=0.273
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INTTIAL BRANCH=40, TL=44.60 C, TG=48.00 C, AL=0.0000, PT=11.90E+3,
WT=0.273
INITIAL BRANCH=50, PIPE=50-52,\

TL=44.47 C, TG=49.00 C, AL=0.0000, PT=11.88E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC= 1-6,\

TL=46,00 C, TG=48.80 C, AL=0.0300, PT=11.84E+5, W1=1.123
INITIAL BRANCH=50, PIPE=53, LOC= 7-8,\

TL=48.0 C, TG=48.77 C, AL=0.100, PT=11.82E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC=9-10,\

TL=48.70 C, TG=48.74 C, AL=0.2000, PT=11.81E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC= 11-]2,\

TL=48.85 C, TG=48.71 C, AL=0.3200, PT=11.80E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC= 13-14,\

TL=48.82 C, TG=48.69 C, AL=0.4000, PT=11.79E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC= 15-16,\

TL=48.79 C, TG=48.66 C, AL=0.4700, PT=11.78E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC=17-18,\

TL=48.74 C, TG=48.64 C, AL=0.5100, PT=11.78E+5, W1=1.123
INITIAL BRANCH=50, PIPE=53, LOC=19,\

TL=48.71 C, TG=48.62 C, AL=0.5300, PT=11.77E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC=20, \

TL=48.69 C, TG=48.61 C, AL=0.5450, PT=11.77E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC=21,\

TL=48.67 C, TG=48.59 C, AL=0.5540, PT=11.77E+5, WT=1.123
INITIAL BRANCH=50, PIPE=53, LOC=22,\

TL=48.64 C, TG=48.58 C, AL=0.5590, PT=11.76E+S, WT=1.123
INITIAL BRANCH=50, PIPE=54,\

TL=48.57 C, TG=48.55 C, AL=0.5600, PT=11.76E+5, WT=1.123
INITIAL BRANCH=60, TL=48.30 C, TG=48.30 C, AL=0.5000, PT=11.70E+5,
WT=1.123

INITIAL BRANCH=70, TL=48.00 C, TG=48.0 C, AL=1.0000, PT=11.60E+5,
WT=0.113

! The "fuel rods” consist of 6.35 mm O.D. Incoloy 800 tubcs with a wall
! thickness of 0.3 mm. The tube is filled with boron nitrate.
1

MATERI LABEL = INCOLOY, COND =

13,968, CP = 502.4, DENS = 8025.25!

WALL HS=FRODS,IDHS= 9,RIGHT=PIPE,RBRANCH=50 RPIPE=53 RLOC=
9,SURMUL=35

WALL

HS=FRODS,IDHS=10,RIGHT=PIPE,RBRANCH=50,RPIPE=53 RLOC=10,SUR
MUL=35

WALL
HS=FRODS,IDHS=11,RIGHT=PIPE,RBRANCH=50,RPIPE=53 RLOC=1 {,SUR
MUL=3§

WALL

HS=FRODS,IDHS=12,RIGHT=PIPE,RBRANCH=50,RPIPE=53 RLOC=12,SUR
MUL=35

WALL
HS=FRODS,IDHS=13,RIGHT=PIPE,RBRANCH=50,RPIPE=53 RLOC=13,SUR
MUL=35

WALL
HS=FRODS,IDHS=14,RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=14,SUR
MUL=3s

WALL

HS=FRODS,IDHS=15 RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=15,SUR
MUL=3s

WALL
HS=FRODS,IDHS=16,RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=16,SUR
MUL=35

WALL

HS=FRODS,IDHS=17 RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=17,SUR
MUL=35

WALL

HS=FRODS,IDHS=18 RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=18,SUR
MUL=35

WALL

HS$=FRODS,IDHS=19,RIGHT=PIPE,RBRANCH=50,RPIPE=53, RLOC=19,SUR
MUL=35

WALL

H8=FRODS, IDHS=20,RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=20,SUR
MUL=35

WALL

HS=FRODS,IDHS=21,RIGHT=PIPE,RBRANCH=50, RPIPE=53,RLOC=21,SUR
MUL=35

WALL
HS=FRODS,IDHS=22,RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=22,SUR
MUL=35

MATERI] LABEL = BORNITR, COND = 1.8025, CP = 1381.6, DENS = 2274.62 ! Heat Structure Power - Define an axial cosine+offset distribution

! Heat Structure Geometry Data
I

GEOMET LABEL = FRODS , TYPE = CYLIND , ORIGIN = 0.

ZONE NSEG = 5, SEGTY = ERAD, MATERI = BORNITR, ENDCOO =
002875, RELPOW = |

ZONE NSEG = 2, SEGTY = ERAD, MATERI = INCOLOY, ENDCOQ =
003175, RELPOW =0

!

! Heat Structure Coupling
WALL HS=FRODS,IDHS= 1 ,RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=
1,SURMUL=35
WALL HS=FRODS,IDHS= 2, RIGHT=PIPE RBRANCH=50,RPIPE=53,RLOC=
2,SURMUL=35
WALL HS=FRODS,IDHS= 3,RIGHT=PIPE,RBRANCH=50,RPIPE=53, RLOC=
3,SURMUL=35
WALL HS=FRODS,IDHS= 4,RIGHT=PIPE,RBRANCH=50,RPIPE=53, RLOC=
4, SURMUL=35
WALL HS=FRODS,IDHS= 5,RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=
5.SURMUL=35
WALL HS=FRODS,IDHS= 6,RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=
6,SURMUL=35
WALL HS=FRODS,IDHS= 7,RIGHT=PIPE,RBRANCH=50,RPIPE=53,RLOC=
7,SURMUL=35
WALL HS=FRODS,IDHS= 8 RIGHT=PIPF,RBRANCH:=50,RPIPE=53 RLOC=
8,SURMUL=35

TABLE LABEL = RAMP, X= TIME, F=POWER
TABLE POINT = (0., 24444)
TABLE POINT = (60., 28000)

POWER POWER = 35590, STRUCTURE=1
POWER HSPOWER= 0017167560, IDHS = |
POWER HSPOWER= 0.024227842, IDHS =2
POWER HSPOWER= 0.031071793, IDHS =3
POWER HSPOWER= 0.03756(090, IDHS = 4
POWER HSPOWER= (1043560654, IDHS =5
POWER HSPOWE 048951327, IDHS = 6
POWER HSPOWER= 0.053622372, IDHS = 7
POWER HSPOWER= 0.057478699, IDHS = 8
POWER HSPOWER= 0.060441806, IDHS =9
POWER HSPOWER= 0.062451371, IDHS = 10
POWER HSPOWER= 0.063466486, IDHS = 11
POWER HSPOWER= 0.063466486, IDHS = 12
POWER HSPOWER= 0.062451371, IDHS = 13
POWER HSPOWER= 0.060441806, IDHS = 14
POWER HSPOWER= 0.037478699, IDHS = 15

POWER HSPOWER=

1053622372, IDHS = 16
POWER HSPOWER= 0.048951327, IDHS = (7
POWER HSPOWER= 0.04356(654, IDHS = 18
POWER HSPOWER= 0.037560090, IDHS = 19
POWER HSPOWER=0.031071793, IDHS = 20
POWER HSPOWER=(.024227842, IDHS = 21
POWER HSPOWER=0.017167560, IDHS = 22
!

! The source defines the location and flow rate of the "feedwater". Note
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* that the source location can be cither in the horizontal riser section
! (with the telescoping riser extended less than 2 cm ) or in the upper
! downcomer (with the telescoping riser extended beyond 2 cm).

1

sOURCE BRANCH=I, PIPE=1, LOC=2, STL= -6.60 C, LFL1 = 0.188

'

INTEGRATION TBEG=0., TEND=200., DTSTART=.001, DTMAX=1.,
STABLIMIT=ON

1

1

! output declarations
!

]
TABLE LABEL = PRNTOUT, X = TIME, F = DTOUT
TABLE POINT = (0., 10.)
OUTPUT BRANCH=1, DTOUTTAB = PRNTOUT, \
VAR= (GG, GL, GD, WG, WL, WD, WT, AL, GA, TLC, TG C, PT,\
D, VOL, DZ, 7Z, ZZVOL, STL, COSAF)
OUTPUT BRANCH=10, DTOUTTAB = PRNTOUT, \
VAR= (GG, GL, GD, WG, WL, WD, WT, AL, GA, TLC, TG C, PT,\
D, VOL, DZ, ZZ, ZZVOL, STL, COSAF)
QUTPUT BRANCH=50, DTOUTTAB = PRNTOUT, \
VAR= (GG, GL, GD, WG, WL, WD, WT, AL, GA, TL.C, TSAT C, TG C,\
PT, D, VOL, DZ, ZZ, ZZVOL, STL, COSAF, UG, UL)
OUTPUT BRANCH=60, DTOUTTAB = PRNTOUT, \
VAR= (GG, GL, GD, WG, WL, WD, WT, AL, GA, TLC, TG C, PT,\
D, VOL, DZ, 77, ZZVOL, STL, COSAF, UG, UL)
OUTPUT IDHS = 1-22, DTOUTTAB = PRNTOUT, \
VAR= (IDHR, RHFL, RTEM C)
OUTPUT BRANCH=70, DTOUTTAB = PRNTOUT, \
VAR= (GG, GL, GD, WG, WL, WD, WT, AL, GA, TLC, TGC, PT,\
1D, VOL, DZ, ZZ, ZZVOL, STL, COSAF)
QUTPUT VAR= (RMERR, RMOUT, RMTOT, RMOTOT, \
EERR, EOUT, QOUTW, ETOT, EOTOT, VOLGBL )
t
L
! plot file declarations
)

]
TABLE LABEL = PLTOUT, X= TIME, ¥ = DTPLO
TABLE POINT = (0., 04)
TABLE POINT = (200., .04)
TABLE POINT = (201., 0.04)
TABLE POINT = (300, 0.04)
ITABLE POINT = (111,, 0.8)
ITABLE POINT = (120,, 0.8)
1PLOT TYPE=TRACE, DTPLOTAB = PLTOUT, BRANCH=1,\
! VAR= (AL, GD, GG, GL,\
! ROG, ROL, WG, WL, WD, WT, UD, UG, UL, \
! PT,TLC, TG C, TSATC)
{PLOT TYPE=TRACE,DTPLOTAB = PLTOUT, BRANCH=10,\
! VAR= (AL, GD, GG, GL,\
! ROG, ROL, WG, WL, WD, WT, UD, UG, UL, \
! PT,TLC, TG C, TSATC)
PLOT TYPE=TRACE,DTPLOTAB = PLTOUT, BRANCH=50, PIPE=53,\
VAR= (AL, GD, GG, GL, ID,\
ROG, ROL, WG, WL, WD, WT, UD, UG, UL, \
PT, TL.C, TG C, TSAT CHL.HG,)
PLOT TYPE=TRACE,DTPLOTAB = PLTOUT, BRANCH=60, \
VAR= (AL, GD, GG, GL, ID,\
ROG, ROL, WG, WL, WD, WT, UD, UG, UL, \
PT,TLC, TG C, TSATC,)
IPLOT TYPE=TRACE,'fPLOTAB = PLTOUT, BRANCH=10,\
! VAR= (AL, GD, GG, GL,\
! ROG, ROL, WG, WL, WD, WT, UD, UG, UL, \
! PT, TLC, TGC, TSATC,)
PLOT TYPE=trace, DTPLOTAB = PLTOUT, VAR=(VOLGBL)
ENDCASE




Nomenclature

a thermal diffusivity m?s~!

A cross-sectional flow area m?
constant of proportionality -

a; autoregressive coefficients —
auxiliary parameter -

B anxiliary parameter -

¢ delayed neutron precursor population m=3

C constant of proportionality —

C(R) correlation sum -

Cp correlation dimension —

d embedding dimension -

D dimension of the attractor —
one-group diffusion coefficient m

| hydraulic diameter m
| D destruction operator -

fo axial power peaking factor -

f frequency g1
Fanning friction factor -

g gravitational acceleration ms™?

Gy auxiliary transfer function —

Gy auxiliary transfer function -

Gy auxiliary transfer function —

Gs auxiliary transfer function -

Ga normalized transfer function from heat flux to void fraction  —

Gr normalized transfer function from power to heat flux —

Gr zero power reactivity transfer function —

Gr closed-loop transfer function from external reactivity to power —

Gzy transfer function from y to x -
specific enthalpy Jkg™!

H auxiliary variable Jm™3

Jo dimensionless auxiliary functions -
thermal conductivity JsT K1

kg fuel heat transfer coefficient Js K tm?

K friction factor -
Kolmogorov entropy bits™!
auxiliary function -

K auxiliary function m

L, maximal scaling distance —

L length m




mass flux density

neutron population

probability distribution function
pressure

power

dimensionless auxiliary functions
production operator

linear power production in the fuel
heat flux density from fuel to coolant
Doppler reactivity coefficient
minimal scaling distance
Laplace variable

entropy

velocity

Mann-Whitney rank sum

time

oscillation period

average cycle time

temperature

state vector

velocity

volume

state space vector

z; time series

axial position

Z-transform variable

zZ statistical variable

LU w3

[}

ﬂnggmmgg

8 << <

™

Greek symbols

a void fraction
ap normalized Doppler reactivity coefficient
oy void reactivity coefficients
B delayed neutron fraction
Floquet exponent
Ba Hopf bifurcation parameter
X flow quality, thermodynamic equilibrium quality
é Feigenbaum’s constant
€ auxiliary parameter
A eigenvalue

Lyapunov exponent

delayed neutron precursor decay constant

A neutron generation time

o Feigenbaum’s constant

Lo Hopf bifurcation parameter
v bifurcation parameter

average number of neutrons released per fission

w the imaginary part of s
angular frequency




p density
reactivity
o the real part of s
P one-group absorption cross section
DI one-group fission cross section
T time constant
sampling time
transit time
Ty Hopf bifurcation parameter
o Heaviside operator
¢ neutron flux
phase difference
® mass flow rate
7 two-phase friction multiplier
13 heated perimeter
Subscripts
00 chaotic limit
1—-¢ one phase
2—¢ two phase
ace acceleration
bb boiling boundary
C core
c critical
com combined
d downcomer
eff effective
e exit
f saturated liquid
fuel
fr friction
fw feed water
g saturated gas
g gravitation
i inlet
n inertia
l property of the liquid phase
mes measured
ML maximum-likelihood
nb non-boiling
0 steady state
P peak
pro profile
ps power supply
T riser
rec reconstructed
sat saturation
sen sensor



sub subcooling
sp sparger
v void
transfer function in discrete time

Superscripts

+ adjoint

* dimensionless
Operators

A difference

0 fluctuating part level
v nabla operator

<> spatial average

ensemble average

Dimensionless numbers

Np, Froude number

Ny Subcooling number

Nz, Zuber (phase change) number

N, dimensionless group to scale the neutronics for

the artificial void-reactivity feedback simulation

Abbreviations

ACF auto-correlation function

ANL Argonne National Laboratory

APSD auto power spectral density

AR autoregressive

ARMA  autoregressive moving average

BifDD bifurcation analysis of delay-differential equations, code

BIFOR  bifurcation formula, code
BORAX Boiling water reactor experiments

BGO bismuth germanate oxide
BWR boiling water reactor
CCF cross-correlation function

CPSD cross-power spectral density

DESIRE Delft Simulated Reactor

DC digital controller

DR decay ratio

EBWR  Experimental boiling water reactor

ESBWR  European simplified boiling water reactor

GE General Electric Company

HEM homogeneous equilibrium mixture model

MONA  thermal-hydraulic system code

NACUSP Natural circulation and stability performance of BWRs
ODE ordinary differential equation

OECD Organization for Economic Co-operation and Development
PID proportional integral derivative




PS power supply

RAMONA reactor transient code

SB stability boundary

SBWR Simplified boiling water reactor
ZOH zero-order hold
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Summary

The dynamics and stability of natural-circulation boiling water reactors (BWRs) have
been studied in this thesis using diverse tools: a reduced-order analytical model, an
advanced thermal-hydraulic system code (MONA) and a natural-circulation two-phase
flow loop, the DESIRE facility.

The linear stability of natural-circulation BWRs has been investigated extensively using
the reduced-order model. This reduced-order model is very suitable for fast parametric
studies on the stability of BWRs. It has the capability to increase the insight into the
relevant physical processes responsible for the occurrence of instabilities. The sensitivity
of the stability of the natural-circulation, boiling two-phase flow has been examined to the
different types of pressure drops present in the system. It has been found that the accel-
erational and the two-phase frictional pressure drops are the most important destabilizing
terms for the Type-II instability and that the gravitational pressure drop in the riser is
the most important destabilizing term for the Type-I instability. Using frequency-domain
analysis, the poles of a natural-circulation BWR have been identified with neutronic,
heat transfer and thermal-hydraulic processes. It is shown that the strength of the void-
reactivity feedback influences which pole pair of the reactor determines the stability in
the Type-II and in the Type-I region.

The reduced-order model has been extended with taking into account core-inlet temper-
ature variations. It is shown that it has a significant effect on the thermal-hydraulic
stability of the system. It is found that moving the feedwater sparger to the core in-
let strongly stabilizes the thermalhydraulics. Similar result have been found using the
MONA code for relatively small core-inlet to feedwater sparger distances.

The reduced-order model has been used to examine the practicability of using solely the
decay ratio in BWR stability monitoring. It was shown that the system can be much
closer to unstable behavior in terms of operational variables than the value of the decay
ratio would indicate. Therefore, relying only on the value of decay ratio can be misleading
in judging the stability margin in terms of operational variables.

The influence of the axial power profile on the nonlinear dynamics of BWRs has been
examined using a numerical Hopf bifurcation code based on the reduced-order model. 1t is
shown that bifurcation characteristics of the thermal-hydraulic system are sensitive to the
axial power profile. Both sub- and supercritical bifurcations are encountered. Generally,
strongly bottom-peaked profiles might result in subcritical bifurcations (accompanied by
diverging oscillations). The bifurcation characteristics of the reactor are found, in accor-
dance with earlier studies, to be strongly influenced by the strength of the void-reactivity
feedback, which overrules the influence of the power profile.



Using the experimental tool, the DESIRE facility, first, the thermal-hydraulic stability of
this natural-circulation system has been mapped. Valuable experimental data has been
gathered, which can be indicative for innovative, natural-circulation BWR designs as well.
The measured stability indicators are predicted fairly well by the MONA code, however,
the reduced-order model predicts only the trends in the stability indicators correctly.

Next, the nonlinear dynamics of the natural-circulation two-phase flow has been investi-
gated using the facility. It is demonstrated that the two-phase flow undergoes the so-called
Feigenbaum scenario, the period-doubling route towards chaotic behavior as one penetrates
into the unstable operating region of the system. To the author’s knowledge, this is the
first occasion that this phenomenon has been experimentally observed in (boiling) two-
phase flow systems.

As an extension of the experimental possibilities of the thermal-hydraulic facility, the
DESIRE facility is equipped with an artificial void-reactivity feedback simulation. This
hybrid system is used to investigate the stability of natural-circulation BWRSs experimen-
tally. The most crucial point in the simulation is the real-time reconstruction of the arial
void-fraction profile in the heated assembly. New void-fraction reconstruction methods
have been introduced into the simulator to improve its performance. These methods are
based on the measured pressure drop over the heated assembly (integral measurement),
or on local gamma-transmission void-fraction measurements applying improved models
(higher-degree polynomial expansion of the void-fraction profile) or on a combination of
these. The performance of the different methods have been compared with respect to
reconstructing the dynamics of the actual core-averaged void fraction. In general, all
methods perform reasonably in dynamic situations. Comparison of the methods is also
made for reactor stability measurements.

Dynamic measurements using the improved void-feedback simulation reveal stability trends
that are also predicted by the reduced-order model.




Samenvatting

Dit proefschrift beschrijft een zowel experimenteel als modelering onderzoek aan de dy-
namica van natuurlijke-circulatie kokendwaterreactoren (BWRs). Het onderzoek is uit-
gevoerd met behulp van: een vereenvoudigd analytische model, een thermohydraulische
systeemcode (MONA) en een natuurlijke-circulatie experimentele opstelling, DESIRE.

De lineaire stabiliteit van natuurlijke-circulatie BWRs is grondig onderzocht met behulp
van het vereenvoudigd analytische model. Dit model is zeer geschikt voor het uitvoeren van
snelle parameterstudies aan de stabiliteit van BWRs. Met behulp van het model kan man
het fysisch inzicht in de rol van de relevante processen vergroten. De invloed van de ver-
schillende type drukvallen op de stabiliteit van natuurlijke-circulatie tweefasenstromingen
is bestudeerd. Het is bewezen dat de tweefasige frictiedrukval en de versnellingsdruk-
val van belang zijn voor de zogenaamde Type-II instabiliteit en dat de gravitatiedrukval
in de riser de drijvende kracht voor de zogenaamde Type-I instabiliteit is. De polen
van de natuurlijke-circulatic BWR zijn geassocieerd met neutron kinetische, splijtstof-
dynamische en thermohydraulische processen. Het is aangetoond dat de strekte van de
void-reactiviteits terugkoppeling beinvloedt welke pool paar van het systeem het minst
stabiel is in de Type-I en in de Type-II regionen.

Het vereenvoudigd analytische model is uitgebreid met het modeleren van temperatuur
variaties bij de inlaat van de rector kern. Het blijkt dat variaties in de inlaat temperatuur
een sterke invloed op de stabiliteit van de natuurlijke-circulatie BWR hebben. Verplaatsen
van het inlaatspruitstuk dicht bij de inlaat van de kern kan de stabiliteit van het systeem
positief beinvloeden. Vergelijkbare resultaat is gekregen met behulp van de MONA code
voor relatief kleine afstanden tussen het inlaatspruitstuk en de kerninlaat.

De bruikbaarheid van de zogenaamde decay ratio als indicator voor BWR stabiliteits-
bewaking is bestudeerd met behulp van het analytische model. Het is bewezen dat het
systeem veel dichter bij de stabiliteitsgrens kan zijn in termen van operationcle variabelen
dan de waarde van de decay ratio dat indiceért. Het gebruiken van de decay ratio kan
misleidend zijn voor reactoroperators voor het beoordelen van de stabiliteitsmarge.

De invloed van de axiale vermogensverdeling op de niet-lineaire dynamica van BWRs is
geanalyscerd met behulp van het analytische model. Berekeningen zijn unitgevoerd met
een numerieke Hopf bifurcatieprogramma. De resultaten laten zien dat de bifurcatiekarak-
teritiek van het thermohydraulische systeem hangt van de axiale vermogensverdeling af.
Sub- en superkritieke bifurcaties zijn aangetroffen. Over het algemeen, systemen met een
maximum van de vermogensverdeling in de onderste helft van de kern onderhevig zijn aan




sub-kritieke bifurcaties vergezeld door divergerende oscillaties. De bifurcatiekarakteristiek
van de reactor is uiterst athankelijk van de sterkte van void-reactiviteits terugkoppeling,
hetgeen onderdrukt de invloed van de vermogensverdeling aan de niet-lineaire dynamica.

Met behulp van de experimentele opstelling, de DESIRE faciliteit, het thermohydraulis-
che stabiliteit natuurlijke-circulatie tweefasenstromingen is in kart gebracht. Uitgebreide
experimentele data zijn verzameld dat richtlijnen kan geven ook voor de stabiliteit van
nieuwe, innovatieve natuurlijke-circulatie BWR ontwerpen. De gemeten stabiliteitsindi-
catoren zijn goed te voorspelen met behulp van de MONA code. Het vereenvoudigd
analytische model kan allen maar de stabiliteit trends voorspelen.

De niet-lineaire dynamica van natuurlijke- circulatie tweefasenstromingen is ook bestudeerd
met behulp van de DESIRE opstelling. Voor de eerste maal is experimenteel aangetoond
dat natuurlijke-circulatie twefasenstromingen onderhevig zijn aan de zogenaamde Feigen-
baum scenario hetgeen tot chaotisch gedrag via een opeenvolging van periodeverdubbeling
bifurcaties leidt.

De DESIRE opstelling is uitgerust met een gesimuleerde void-reactiviteits terugkoppeling
om de experimentele potentieel uit te breiden. Dit hybride systeem is gebruikt om de
stabiliteit van werkelijk natuurlijke-circulatie BWRs te bestuderen. Hoofdzaak is in de
simulatie de correct real-time reconstructie van de axiale dampfractieverdeling. Nieuwe
methodes zijn geimplementeerd in de simulator voor het reconstrueren van de dampfrac-
tieverdeling om de prestatie van de simulator te verbeteren. Deze methodes zijn gebaseerd
of op de meting van de totale drukval over de kern, of op een tweetal meting van de
locale dampfractie of op een combinatie van deze twee. De verschillende methodes zijn
vergeleken ten opzichte van het reconstructeren van de kerngemiddelde dampfractie. Over
het algemeen, alle reconstructie methodes presteren redelijk goed wat de dynamica van
de kerngemiddelde dampfractie betreft.

Metingen aan de dynamica van de gesimuleerde reactor tonen stabiliteit trends aan dat
ook door het analytische model zijn voorspeld.
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