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1
Introduction

Micro Air Vehicles (MAV) are small and light air vehicle systems that, due to their scale, are beneficial for

search, exploration and observation applications. For these vehicles to be self-reliant and independent of

external navigational aid, all computations regarding navigation, trajectory planning and control require

on board calculations and environmental awareness. Sequentially, on board systems are constrained

by scale and power consumption. Making sensors and processors smaller and more powerful will allow

MAVs to decrease further in size or adopt more sophisticated perception and computation possibilities.

Reducing the scale of MAVs is beneficial for such missions since size is less of a constraint for narrow or

indoor environments and build/operating costs in general are lower for smaller vehicles.

Insects and birds are commonly regarded as the biological counterpart of MAV’s. Flying insects

essentially establish a benchmark considering their size, and navigational and control capacities based on

visual input. Precise object avoidance and agile manoeuvring are features that are realized, though, with

low computational power. The level of intelligence (perception and algorithmic complexity) of MAV’s is

dictated by sensors and on board computing power. The processing units on board most MAV’s possess

a conventional Von Neumann architecture [1] that must grow in size to increase computational capabilities

and processing power. A size and power usage increment is undesirable for MAV’s that owe many

beneficial properties to their small size.

The previous is not only regarded as a consideration for robotic applications, but generally speaking,

might be troublesome as the efficiency of current hardware can not be increased [2]. As future (robotic)

applications will demand more computing power, the only resolution will be increasing the number of

processing cores and thus inevitably, size. Another downside of conventional chips are the limited

possibilities for parallelism while operating, which renders to continuously executing and therefore power

hungry cores. These cores are continuously engaged, even when less computational capabilities are

required. Different alternatives opposed to conventional computing methods for robotic applications are

searched for. A crucial source of inspiration are the nervous systems and brains of animals and humans.

Neuromorphic engineering resembles a realistic neuro-biological approach that mimics the computational

principles observed in animal and human nervous systems. By structuring the electronic circuits as our

nervous system, biological cognitive abilities can be approached. A key factor that can be attributed to

these improvements is the asynchronous processing capabilities of such systems with electronic analog

circuits. Such devices are affiliated with neuromorphic hardware, allowing neuromorphic computing.

Recent developments indicate an increasing interest in neuromorphic computing because of the decreased,

in several magnitudes, computational power and increased arithmetic capabilities since neuromorphic

hardware allow cognitive alike parallelism. A key difference between the on-chip logic and memory storage

functions, currently present on most chips and neuromorphic hardware, is the representation of information.

Like nervous systems, neuromorphic hardware allows binary, sparse and asynchronous input which is

hard to interpret for traditional arithmetic on-chip computations. Another key difference lies in the execution,

since neuromorphic chips are driven by event-based processing. The latter means that neurons will

only operate and require power when the neuron has been engaged. Next to event-based processing,

neuromorphic components can operate in parallel since the neuronal efficacies are independent of each

other. Additionally, as only simple non-information conveying impulses are transmitted, processing speeds

are faster. Since spikes over electric analog circuits are means of communication, almost no time delays

exist while processing.
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Not only has event-based processing been an inspiration for computation, but for sensing as well.

Sensors that mimic the dynamic processing of motion of the visual field have been developed and are

described as a Dynamic Vision Sensor (DVS) [3]. By switching from frame-based image data to (almost)

continuous vision data with a spatial and temporal component, redundant scene information is avoided.

As the DVS only produces an output when a (small) brightness changes observed at pixel level, vision

information is delivered efficiently, which makes such neuromorphic sensors suitable for robotics. A

downside of a DVS is the lack of static scene information, such as absolute brightness, making it more

difficult to interpret for current machine vision algorithms.

With an increase in efforts aspiring neuromorphic engineering, the algorithms most fit to function

on neuromorphic hardware are increasingly being applied to robotics to improve the practicality and

applicability. Also known as the third generation AI [4], Spiking Neural Networks (SNN) possess the same

traits and dynamics as explained before, namely working in asynchronous and sparse conditions. The

spikes generated in a SNN have a spatial and temporal component, and the neurons communicate with

each other through synapses over which impulses are being sent. A key aspect of a SNN model lies

in the dynamics of a neuron, which can differ, but generally speaking, represent a differential equation.

The latter encompasses the importance of the timing of spikes, justifying the increased complexity SNN’s

can process and yield for any type of application. Evidently, the previous properties given of neuronal

dynamics are expressed in a general sense, but more on the exact modelling of dynamics, networks and

cognitive abilities can be found in [5].

A key aspect of implementing neuromorphic control is the learning algorithm. The learning algorithm is

responsible for tuning the decision parameters, such as synapse weights and decay values. The learning

algorithm should ensure the most optimal output by means of the past and current input. Although learning

SNN’s for neuromorphic control is gaining traction for robotics, a clear leading technique does not exist.

Many control applications apply a significant simplification, which decreases the general usability of the

learning scheme used. For example, simulated environments would often be used, ignoring the non-

linearities present in the real environment. Other real world control applications of SNN involve transforming

conventional control loop mechanisms, such as a Proportional Integral Derivative (PID) controller, into a

framework fit for a SNN. This would translate to using specific encoding and decoding scheme’s, where

the neuron properties in a SNN would be altered to perform basic arithmetic operations [6]. Although using

a SNN in closed loop continuous control is achieved, the true non-linear performances empowered by the

neuronal dynamics are not reached to the fullest.



2
Research Question

From the introduction, we have learned about the advantageous neuromorphic properties and why MAV’s

might benefit from them. The aim is to demonstrate that an end-to-end event based processing system

can be designed for carrying out a complex flight control task on MAVs. The motivation is to show that the

controller can capture non-linear and real world environment dynamics, showcasing the advantageous

spatio-temporal processing capabilities of neuromorphic hardware. This allows us to deduce the main

research question:

Can a Spiking Neural Network be evolved, using Evolutionary Strategies, to map Event-
Based Optical Flow observables to motor commands for a Micro Air Vehicle, proving
biologically plausible visuomotor characteristics of insects, to perform a 3D controlled
real-world landing using Neuromorphic Hardware ?

The research objective is therefore twofold:

1. How to design a neuromorphic controller ensuring appropriate visuomotor coordination for MAV

motor control

2. Implement a full event-based end-to-end processing system

Three main themes can be identified according to the research question and objectives. These roughly

cover the perception, processing and robotic application part of the experiment. The contribution will consist

of the following three aspirations: Determine suitable spike-based visual observables for flight control,

evolve a SNN for generating optimal motor commands and finally, implement the system on neuromorphic

hardware for a real-world 3D controlled landing. According to these contributions, the following research

sub-questions are formulated:

1. How can we acquire visual features from event-based sensors for vision based navigation that are

suitable for identifying ego-motion and navigation purposes ?

2. How can we evolve a SNN-based motor controller using visionary inputs ?

3. How to implement an end-to-end event-based system on a MAV for a real-world 3D controlled landing

?

2.1. Structure of work
This thesis report is structured as follows: The first part will include the scientific paper as well as the

appendices belonging to the paper. Chapter 4 displays the current landscape of landing controllers for

MAV’s. By understanding current methods and their properties, we will be able to comprehend important

features of control systems and compare performance. The next chapter analyses the fundamentals

of vision based flight. Here, different optical flow estimation techniques are examined, as well as the

corresponding biologically inspired flight control strategies. Event-based vision will be discussed in the

second part of this chapter. Following is chapter 6, which discuss how insect interpret and utilize vision for

different manoeuvres and navigation purposes. The organization of the receptive field shows the directional

sensitivity of perception. Chapter 7 will explain different evolutionary algorithms and their properties. Next

to the fundamentals of evolutionary frameworks, more recent developments, that take into account current

reward based learning schemes, will be discussed. Chapter 7 studies the neuromorphic engineering

2



domain for robotic applications. By having a look at modelling, hardware and applications, an understanding

is formed of the learning and implementation challenges concerning neuromorphic computing. The last

chapter discusses the findings from the literature study. Finally, this report is concluded with a conclusion

and recommendations with possible guidelines for future continuation.
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Neuro-evolution learned Neuromorphic Control for a Vision-based 3D
Landing

Erwin Lodder1, Stein Stroobants2, Guido C.H.E. de Croon2

Neuromorphic control is a biologically inspired processing
method that uses Spiking Neural Networks (SNN) to simulate the
computational principles observed in mammal nervous systems.
Micro Air Vehicles (MAV) are small and light air vehicle systems
of which the level of intelligence is dictated by sensors, algorithmic
complexity and onboard computing power. Implementing flight
control systems with SNNs would allow us to pursue an end-to-end
event-based processing sytem that decreases scale and power usage,
which can substantially increase the artificial intelligence of MAVs.
With the rise of available neuromorphic sensors and processors, one
would expect to find many robotic applications. However, learning
and the reality gap impede robotic applications. This work shows
that a single SNN controller can be evolved for 3D flight control
(thrust, roll and yaw). By learning an Optical Flow (OF) based flight
control strategy, it is proven that a neuromorphically controlled
MAV can take-off, cruise and land on a target with great precision
(𝑥𝜖 , 𝑦𝜖 < 0.02𝑚 & 𝑉𝑧 < 0.05𝑚𝑠−1). The extracted ventral flow
in the longitudinal axis controls motion in the for 𝑥 and 𝑧 in the
𝑥𝑧 plane. By means of evolution, not only are the SNN network
parameters evolved, the topology is modified during training as
well. Instead of using a pre-defined fully connected Multi Layer
Perceptron (MLP) like architecture, a randomly connected and
sparse network is custom built and learned.

I. Introduction
Micro Air Vehicles (MAVs) represent a robotic embodiment of
insects that pursue the same autonomous manoeuvrability and
navigational capabilities that flying insects have. For MAVs
to be self-reliant and independent of external navigational aid,
all computations regarding navigation, trajectory planning and
control require onboard calculations. Not only can flying in-
sects perform high speed visuomotor computations, they do so
with highly limited computational resources. While most au-
tonomous MAV applications require external navigational aid
(GPS) or multiple sensors complementing the onboard camera
[1], for flying insects however, determination of ego motion
heavily depends on visual information. In order to keep the
payload as small as possible, it is desirable to use low weight
and low power consuming sensory equipment and processors
to fit with MAVs’ constraints.Neuromorphic engineering more
closely approximates the computational principles observed in
animal and human nervous systems. By structuring the electronic
circuits as our nervous system, biological cognitive abilities can
be approached. Also known as the third generation networks [2],
Spiking Neural Networks (SNN) possess the same traits and dy-
namics as explained before, namely, working in asynchronous and
sparse conditions. The spikes propagated through an SNN have a
spatial and temporal component, and the neurons communicate
with each other through synapses. Neuromorphic control refers
to artificially constructed networks that transfer these event-based

processing characteristics to control systems. The energy efficient
and high speed processing characteristics will allow insect-scale
MAV applications.

While SNNs possess beneficial characteristics for robotic
applications, the number of real-world experiments is relatively
low. This is due to the non-linear learning traits and gap be-
tween simulation frameworks and real world experiments. Sparse
and asynchronous features do not allow well-known gradient
learning to work as efficiently as for traditional Artificial Neural
Networks (ANN). In order to deal with the binary activation
functions of SNN’s, surrogate gradients [3] are typically used
to enable learning with backpropagation. Additionally, most
deployed SNN architectures are similar to fully connected MLPs,
since Convolutional Neural Networks (CNN) [4] and MLPs are
the most commonly used architectures for ANNs. However,
bio-inspired SNNs are sparse and randomly connected. The
dynamic and recurrent functioning of SNNs are due to recurrent
connections, the membrane potential of each neuron and spikes
that are carried across multiple network layers. Unfortunately,
the fixed architecture of dense feed forward ANNs, as simulated
in frameworks like PyTorch [5], do not allow sparse and layer
independent connections to exist while these architectures are
common in bio inspired SNNs.

The current state-of-the-art in neuromorphic control for MAV
platforms contains different kind of SNN applications. The au-
thors in [6] present a SNN based PID controller for a one DOF
control task of an UAV. The architecture of a neuromorphic chip
is utilized to perform arithmetic calculations, though no learning
is involved. The authors in [7] have evolved SNNs for controlling
a pure vertical landing of a MAV. The closed loop SNN controller
uses the extracted divergence to control motor thrust for a landing.
The attitude estimation network learned in [8] is able to deter-
mine flight control angles while only receiving raw IMU data.
These previous applications have shown the potential that fully
embedded neuromorphic control systems have on MAVs.
The compound eye of insects possesses event-based vision of
which the output, in contrast to traditional cameras, is dependent
on motion in the scene viewed. The output of event-based cam-
eras, such as a Dynamic Vision Sensor (DVS), has a temporal
and spatial component, whereas the temporal property for frame-
based cameras is fixed. Spikes are encoded from visual stimuli by
light-sensitive cells that react to viewed brightness shifts in the en-
vironment, with a latency close to microseconds. Asynchronous
log intensity changes are recorded at pixel level and therefore
possess a spatial component. Neuromorphic sensors have shown
that this event-based processing is fast and can encode visual
information at a low granular level [9]. The processing of these
spikes is characterized by sparse and asynchronous properties,
as the activations of single pixels across the sensor are sent on
independently.

01 Student 2 Supervisor
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Figure 1. Both figures display the same base of a ground surface and MAV. The left image shows the according geometries as viewed
underneath the camera, while the right image shows the coordinate frames. 𝛽 determines the pitch setting of the camera and thus the MAV.

This pitch setting is not influenced by the SNN controller and is set outside the control loop. 𝛾 encodes the heading error. The surface
between the ground surface and MAV represents the camera sensor. The grey area of this surface (with asterisk) is not used for flow 𝑢

determination. In the right image, two reference frames are present, namely of the World frame W and Camera frame C. The motion of
the camera is influenced by translational velocities (𝑈C , 𝑉C ,𝑊C) and rotational rates (𝑝, 𝑞, 𝑟). The surface nearest to the asterisk

represents the camera sensor.

Flying insects solve odometry, obstacle avoidance and nav-
igational problems by reacting to relative movements observed
in the field of view caused by self-motion. These patterns in
visual motion are referred to as Optical Flow (OF). OF is defined
as the apparent motion between the observer and scene and de-
pends on the distance between them. OF does not allow absolute
magnitudes to be determined and can not disentangle velocity
and distance [10]. Insects use OF for different flight strategies.
For example, during cruise and landing, it is shown that insects
maintain a constant OF.

Robotic applications with OF based control either are lim-
ited by processing power needed for frame-based OF extraction,
or low number of pixels on an Elementary Motion Detection
(EMD) constraining more complex applications. Both limitations
only permit one or two-dimensional control tasks to be executed.
While the level of visual processing efficiency, in terms of speed
and power, of insects will for now be unreachable, MAVs would
benefit of a DVS and neuromorphic processors since the sensory
equipment fits the control systems functioning which can be
deployed at a small scale while consuming low power. This work
will show that OF extracted from only visual information, can be
used by a single SNN controller for 3D flight control. By using
the same OF control strategy, take-off, cruise and landing can be
performed.

The contribution of this work is two-fold: (1) Using only
visual cues obtained from onboard cameras for attitude com-
mands, a flight including take off, cruise and landing is performed.
Since in nature, the longitudinal plane is regarded as the most
important direction for covering distance, a heading-following

control system is introduced, for which a single SNN controller
is learned that controls thrust, roll and yaw. It is shown that using
noise settings extracted from real world experiments, precise
flight control is achieved.

(2) A flight controller is evolved using NEAT-SNN. By means
of parameter and topology evolutions, an SNN is constructed. The
previous allows the most common simulation frameworks to be
used while building and learning more efficient sparse networks.
Such method allows random sparse networks to be created that,
in terms of topology, are closer to the networks found in the brain
and nervous systems than MLPs. NEAT-SNN randomly places
neurons and synapses while mutating the weights and parameters
of existing synapses and neurons. An algorithm is developed
that converts adjacency lists created by NEAT to PyTorch models
without comprising the efficacy of spiking neurons.

II. Methodology

A. Determining ego-motion from optical flow
In order to operate an OF based flight control strategy, the OF
parameters must be defined. The model used for interpreting opti-
cal flow is based on [11], which assumes that the retina or sensor
can be viewed as a plane and the camera’s aperture is viewed
as a pinhole-point. The position of a point in both the World
frame 𝑊 and Camera frame 𝐶 is defined by (𝑋W , 𝑌W , 𝑍W) and,
(𝑋C , 𝑌C , 𝑍C) respectively. (𝑈C , 𝑉C ,𝑊C) are the corresponding
velocity components in 𝑚/𝑠 of a point in the C frame. The Euler
angles (𝜙, \, 𝜓) express the orientation of frame C with respect

2



to W and represent roll, pitch and yaw respectively. Additionally,
(𝑝, 𝑞, 𝑟) are the corresponding rotational rates. Furthermore, the
camera pixel coordinates are (𝑥, 𝑦) and their velocities, which
represent OF components, denote (𝑢, 𝑣) in 𝑟𝑎𝑑/𝑠. The exact
labels and axis can be found in Figure 1.

The projection of an arbitrary point in the reference frame 𝐶
onto the image plane is denoted by (𝑥, 𝑦) = ( 𝑋C

𝑍C
,
𝑌C
𝑍C

). Due to the
observer’s motion, this point moves with velocity (𝑢, 𝑣) across
the image plane. Utilizing the time derivative of points on the
image plane, the OF of a point can be expressed into translational
and rotational components :

𝑢 = −𝑈C
𝑍C

−𝑈C
𝑊C

𝑍2
C

= (−𝑈C
𝑍C

− 𝑞 + 𝑟𝑦) − 𝑥(𝑊C
𝑍C

− 𝑝𝑦 + 𝑞𝑥) (1)

𝑣 = −𝑉C
𝑍C

−𝑉C
𝑊C

𝑍2
C

= (−𝑉C
𝑍C

− 𝑟𝑥 + 𝑝) − 𝑦(𝑊C
𝑍C

+ 𝑞𝑥 − 𝑝𝑦) (2)

For general applications of OF, it is beneficial to separately
measure the rotational rates (𝑝, 𝑞, 𝑟). Including these rates in
equations 1 and 2, will only let translational flows remain as the
observed states in (𝑢, 𝑣). This is called de-rotation as is common
for OF-based control [12], where ego-rotational movements are
isolated from determining (𝑢, 𝑣) . For this work, flows caused by
vertical speed, are not considered in ventral flow 𝑣. Furthermore,
the observed flow 𝑢 controls both 𝑧 and 𝑥 in the longitudinal
(𝑥, 𝑧) plane of the Camera frame C. Since the flow is measured
symmetrically around the 𝑌C = 0 axis, all terms containing 𝑦

in eq. 1 can be cancelled out. This also applies to 𝑣 in eq. 2
though measured around the 𝑋C = 0 axis. Additionally, pitch
is not considered a controlled variable, though, pitch rate is still
considered during transition phases from take-off to cruise, and
cruise to landing. This leads to

𝑢 ≈ (−𝑈𝑐

𝑍𝑐

− 𝑥
𝑊𝑐

𝑍𝑐

− 𝑞 − 𝑞𝑥2), (3)

𝑣 ≈ (−𝑉𝑐

𝑍𝑐

− 𝑝 − 𝑝𝑦2), (4)

where 𝑞 = 0 during cruise. The ventral flow 𝑢 observed in
the shaded area on the sensor in Figure 1 contains flows that, for
vertical and forward speed increments, have an opposite sign. It
is desirable that these coupled variables have opposite signs in 𝑢.
The flows detected by pixels in the unshaded area of the sensor in
1, are not considered for OF computations.

B. 3D visual flight strategy
The evolved 3D flight controller is a high level controller that does
not concern attitude control. Therefore, the controller outputs a
control signal for thrust 𝑇 , roll angle 𝜙 and yaw angle 𝜓. Thrust
controls motion in the 𝑥𝑧 plane of the Camera frame C, and roll
and yaw control the heading-following control of the MAV. The
input signal consists of a ventral flows 𝑢 and 𝑣 and course error 𝛾.
It is assumed that the desired heading is known, which can either
be calculated from a target (flower in Figure 1 or while following
a ground path.

Figure 2. The pitch setting is dictated by 𝛽, which depends on the
height and distance between the MAV and target (Figure 1).

Since it is hard to disentangle the cause of flow increments
in 𝑢 by thrust 𝑇 or pitch \ adjustments, the pitch is fixed as in
[13]. As explained in [10], OF can not disentangle distance and
velocity, which makes it difficult to control 𝑇 and from the same
flow. Pitch is therefore determined according to the distance and
height between the MAV and target, which translates to an angle
𝛽. The larger the angle between the centreline (𝑋C = 0) of the
sensor and target as viewed on the sensor, the greater the pitch.
The angle 𝛽 is not encoded in the input layer, but adjusted for
outside the control loop. The exact pitch setting according to
angle 𝛽 can be found in Figure 2. During take-off and cruise,
it is assumed that a ground track is followed without an exact
target, wherefore pitch can be set to an arbitrary setting. The
pitch setting can either be increased over time during take-off or
set at a pre-determined value. The heading error is determined by
a separate target or line on the ground surface that the controller
must follow. For take-off and cruise, a line is followed while for
landing, a target on the ground surface has an established position.
Here, the heading error 𝛾 is defined as the angle between the
longitudinal centreline of the MAV and target.

Figure 3. The graphs viewed represent a separate encoding neuron.
Both neurons receive a similar spiking probability if the camera’s
centreline 𝑋C = 0 has the same heading as the target (Figure 1).
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In case of the line-following control scenario, the angle be-
tween the centreline of the sensor at (𝑌C = 0) and the line viewed
at the top of the sensor, depicts the heading error 𝛾. This error sig-
nal is encoded by two neurons. Each encoding neuron represents
a different error sign, whereas the spiking frequency represents
the angle magnitude. Figure 3 shows the firing probability of both
nodes according to the heading error magnitude. If the heading of
the MAV is similar to the target’s bearing, both encoding neurons
fire at 𝑃(𝛾 = 0) = 0.5.

C. SNN properties
The synapses in networks that connect neurons have a certain
weight 𝑤𝑖 𝑗 . The membrane potential 𝑢𝑖 (𝑡) in each neuron is in-
fluenced proportionally by the weight from the synapse of which
a spike is received. If no inputs are received, 𝑢𝑖 (𝑡) will decay
to a resting potential 𝑢𝑟𝑒𝑠𝑡 . Though, if 𝑢𝑖 (𝑡) reaches a certain
threshold \𝑖 , a spike 𝑠𝑖 is emitted after which 𝑢𝑖 (𝑡) will reset
to 𝑢𝑟𝑒𝑠𝑡 . The synapses are static, and the biologically inspired
neuron model used for this work is the leaky integrate-and-fire
(LIF) model. After discretizing the differential equation with
forward Euler, the membrane potential 𝑢𝑖 (𝑡) is modelled as,

𝑢𝑖 (𝑡) = 𝑢𝑖 (𝑡 − Δ𝑡)𝜏𝑢𝑖 + 𝑖𝑖 (𝑡) (5)

where it is assumed that 𝑢𝑟𝑒𝑠𝑡 = 0, 𝜏𝑢𝑖 is the membrane decay
factor and 𝑖𝑖 the incoming spike function of neuron 𝑖, which
multiplies the synapse weights by spikes. 𝑖𝑖 (𝑡) = Σ 𝑗𝑤𝑖 𝑗 𝑠 𝑗 (𝑡).

Since SNNs only can interpret binary spikes as input, the
continuous input signal must be converted from a real-valued
signal to binary spikes (encoding). The same accounts for the
output, as most systems require continuous real-valued signals
(decoding). For the encoding, a pair of spiking neurons is used to
address both a positive and negative value of an input signal 𝑎𝑖 .
One neuron of each pair of encoding neurons spikes at each time
step. The magnitude of the signal is multiplied by the weights
of synapses in the first layer before reaching the first layer of
hidden neurons. This means all values are positive floating point
values. The sign of the encoding signal determines which neuron
of each encoding pair is fired 7. All values that are fed into
the network are positive, whereas the signal sign translates to a
spatial component. To avoid spikes being fired that have a larger
magnitude than |𝑎𝑖 | > 1, another neuron is added that spikes the
remainder of |𝑎𝑖 | − 1 when the input signal exceeds magnitude 1.

𝑠+𝑗 = |𝑎𝑖 | if 𝑎𝑖 > 0 else 0, (6)

𝑠−𝑗 = |𝑎𝑖 | if 𝑎𝑖 < 0 else 0 (7)

For decoding the binary spikes, a non-spiking LIF is adapted,
which essentially acts as a low pass filter. Every real valued
output signal 𝑋𝑖 (𝑡) receives a pair of output neurons. Again, the
pair of neurons address positive and negative values. Both of the
decoding neuron’s membrane potential only can attain a positive
value. However, to ensure that the system can output a broad
range of positive and negative control signals, the membrane
potential value of the negative neuron is subtracted from the
positive neuron.

𝑋𝑖 (𝑡) = 𝑋𝑖+ (𝑡 − Δ𝑡)𝜏𝑥𝑖+ + 𝑖𝑖 (𝑡)−
(𝑋𝑖− (𝑡 − Δ𝑡)𝜏𝑥𝑖− + 𝑖𝑖 (𝑡)

D. NEAT-SNN
NeuroEvolution of Augmenting Topologies (NEAT) is an Evolu-
tionary Algorithm (EA) that evolves network topologies along
synapse weights [14]. This framework allows sufficient ex-
ploitation and exploration of networks by a topology cross-over
mechanism. The networks are categorized according to archi-
tecture properties into so-called species. By separating the
evolutionary process of each species, structural innovations are
protected. SNNs would benefit from such optimisation schemes,
since sparse networks with random connections that are closer
to bio inspired networks can be built. Since a non-continuous
activation function is present SNN’s neurons, a higher probability
for SNNs in comparison to ANNs exist, that cross-overs produce
over exciting or inactive neurons when two separately evolved
SNNs are combined. Due to these possible signal propagation
discontinuities present in SNNs when creating cross-overs, cross-
overs are unfavourable. The maintenance mechanism of species is
discarded, since the segmentation measure introduced by NEAT,
that measures compatibility, becomes less applicable to SNNs.
This means that individuals are only evaluated and compared to
other individuals in a single species if new neurons or synapses
improve performance.

In order to use NEAT for SNNs, modifications are required.
The library NEAT-SNN we created evolves SNNs and can simu-
late SNNs in an MLP fashion. Where NEAT would formulate
graph networks as separate genes, PyTorch and other common
frameworks use fixed architectures. As most real-world applica-
tions require fixed architecture network formulations, it is key to
be able to simulate NEAT networks in these fixed architecture
frameworks. The reason for not using NEAT’s own network
simulation method is that most networks that are implemented
on neuromorphic hardware, benefit from hierarchical top down
networks with such fixed architecture [15] [16]. Furthermore,
common frameworks like Pytorch have a large library’s in where
custom learning algorithms can be built and multiple custom
neuron activation functions can exist. Besides the hidden states in
neurons, further external memory is not necessary, as the synapse
and neuron are updated online. This makes implementation
on neuromorphic hardware easier. True recurrence can not be
achieved, since these fixed architectures do not allow sequentially
independent connections to exist. Therefore, the only recurrent
property the evolved SNNs will possess is the membrane poten-
tial 𝑢𝑖 , that is carried across multiple layers. Though, as will
be shown later, neurons that are located in the same sequential
layer can be connected. In such fashion, with skip connections,
a neuron activation can be carried across multiple layers while
other network activity is not disturbed. This simulates sparse
connections that can span multiple layers. It is important to note
that not every synapse can be created for the network to remain a
feed forward network. NetworkX [17] is used to assess whether
a synapse creation violates this feed forward property. Another
important feature of such networks is that the architecture does
not possess any symmetrical properties.
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Figure 4. a) A randomly generated sparse network is shown. Neurons 𝑛𝑖 are connected by synapses with weights 𝑤𝑖 𝑗 . It is seen that synapse
with weight 𝑤45 links two neurons in the same layer while 𝑤26 skips a layer. b The same network, though in an MLP format. Both networks

share the same output behaviour, but simulate a SNN differently. The fixed architecture simulation frameworks require the weights
between two sequential layers to be given. Here, other than for the weight specified, all weights are 0. A weight of 1 is given to neurons that
propagate a spike across sequential layers. As for synapse weights, decay 𝛼𝑖 and threshold \𝑖 can theoretically be chosen at random, as long
as the neuron emits a spike when a spike is received. The neuron’s parameters are chosen as such, that the neuron essentially operates as a

synapse. The non-transparent nodes indicate the original neurons with the same neuron parameters as in network a.

Figure 4 shows the required transformation from a randomly
generated sparse network to a fixed architecture MLP while main-
taining the same efficacy. The transparent nodes indicate the
additional required neurons for the MLP format. The neurons
that bridge different layers, by means of a skip connection, carry
an arbitrary weight, though the neuron must spike to propagate a
signal. An algorithm has been created that places the according
neurons and weights in the fixed architecture referred to earlier.
The previous means that neurons must be placed in the correct
layer, and the synaptic weights must be filled in an array that suf-
fices as a placeholder of weights located between two consecutive
layers. Transforming a sparse network to an MLP requires custom
skip connections, as some connections span multiple sequential
layers. A sparse network is converted to a fully connected MLP by
solving the neuron placement problem. The algorithm first finds
the longest ’route’ (chain of neurons) between the input layer and
output layer. As the longitudinal positions of these neurons are
certain, neurons that are not in the longest route but are connected
to these neurons, can be placed accordingly. The longest chain of
neurons determines the number of layers in a network. Multiple
solutions of neuron placement configurations exist, though the
configuration with the least amount of skip connections, keeping
the network as small as possible, is preferred. Since in an MLP
the neurons of layer 𝑙 are connected to every neuron in layer 𝑙 − 1,
some connections receive weight 0. Iteratively, all neurons can
be placed. The order of neurons in a layer does not matter, since
there exists a placeholder connection between every neuron in
2 sequential layers. The scale or network size does not affect
the workings, however more iterations are required for ’placing’
neurons.

Table 1. NEAT parameters

Parameter Value
Population 50

WeightMutationRate 0.3
ResetWeightRate 0.075

AddGeneMutationRate 0.43
AddNodeMutationRate 0.25

DecayMutationRate 0.2
ThresholdMutationRate 0.2

ResetDecayRate 0.05
ResetThresholdRate 0.075

E. Learning SNNs
Each evolution begins with a randomly initialized sparse network.
At the start, without any hidden layers, the network is expanded
up to a certain number of hidden neurons and synapses. From
there, the evolution starts and network parameters (weights and
neuron parameters) along topology are mutated every generation
and optimized according to the control task. As explained in
the previous section, cross-overs are not favourable due to possi-
ble discontinuities present in SNN’s neurons. Although NEAT
maintains fundamentally different networks in species, here, the
networks only differ a couple of mutations from each other. This
means that the topology of individuals in the same generation
do not differ significantly. This also indicates that any topology
can be learned as appropriate/required synapses will be added
according to the control task.

A stochastic simulation environment, which will be elabo-
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rated further upon in the next section, is used for the objective
evaluation. In the environment, a pre-determined ground path is
created that the controller should follow. Instead of a straight line,
a more challenging sine wave 𝑌W = 5 · sin(0.5𝑋W) marks the
ground path. In order to challenge the controller in maintaining a
constant 𝑢, Perlin noise [18] is added to the ground surface. Perlin
noise is regarded as a realistic terrain generator and challenges
the evolved controller even further, making it less prone to failure
on flat surfaces. An example of a terrain profile can be found in
the Appendix 15.

For training purposes, a function calculates the appropriate
heading for the MAV to follow. This heading depends on the
location of the MAV relative to the ground track. Would the
MAV deviate from the path, will heading signal 𝛾 compensate for
the deviation in the following heading commands to prevent the
MAV drifting. The flight path is heavily constrained by speed and
position requirements. In order to reach the end of the path, the
MAV must fly through a maze with certain attitudes. The nearer
the MAV is to the end of the path, the higher the reward. Thus,
we are sure that the controller will only have reached the end of
the environment according to imposed flight characteristics.

As viewed in equation 8, this aforementioned term dictates the
reward signal, since the most reward is gained from successfully
completing the objective of reaching the end of the environment.
The intended trajectory has different constraints that cap or get rid
of undesirable behaviour from the controller. Once the MAV has
reached the end of the environment, the heading and OF control
will be improved, though, all imposed constraints on the flight
performance remain. Since the environment is highly stochastic,
50% of a generation’s individuals, are considered for the next
generation. To make sure learning does not converge too much in
the beginning, these individuals are evaluated again in the next
generation.

𝑟𝑝𝑒𝑛𝑎𝑙𝑡 𝑦 = abs(𝑋Wsim − 𝑋Wtarget) +
Σ𝜖𝑢 + Σ𝜖𝜓

𝑡𝑠𝑖𝑚
(8)

Here, 𝑋Wtarget represents the end of the environment, whereas
𝑋Wsim indicates the position of the MAV when the imposed flight
properties are not satisfied. A low score 𝑟𝑝𝑒𝑛𝑎𝑙𝑡 𝑦 indicates a
good controller performance. The error signal 𝜖 represents the
difference in the control set point and actual variable for 𝑢 and
heading. The previous term is divided by the duration of the
simulation to stimulate controllers that last for a longer time in
the environment. In other words, we give importance to a stable
controller fulfilling the control task with less precision, than a
controller with better control performance but more prone to
violating the environment’s contstraints.

Table 2. Sampling distribution of enviroment parameters

Parameter Sampling Distribution
𝜎𝑢 U(0, 0.15) rad/s
𝜎𝑢𝑃

U(0, 0.25) rad/s
𝜎𝛾 U(0, 0.15) rad
𝜎𝛾𝑃 U(0, 0.25)
𝛿𝑢 U(1, 4) steps

F. Simulation setup
For the environment, the 3D model from [19] is used in com-
bination with the noise signals proposed in [20]. Similar to
[19], a point-mass MAV is assumed that is under the influence
of (𝜙, \, 𝜓, 𝑇), where (𝜙, 𝜓, 𝑇) are controlled. As mentioned
previously, \ is not controlled by the SNN controller, but set
according to the variable 𝛽 2 if a landing location is acquired.
Else, a different desired pitch setting \ can be chosen.


¤𝑥
¤𝑦
¤𝑧
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𝑣𝑥

𝑣𝑦

𝑣𝑧
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¤𝑣𝑥
¤𝑣𝑦
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0
0
𝑔

 + RW
C


0
0
𝑇
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W


𝑣𝑥

𝑣𝑦

𝑣𝑧
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¤𝜙
¤\
¤𝜓
¤𝑇


=


𝑘𝜙 (𝜙𝑐 − 𝜙)
𝑘 \ (\𝑐 − \)
𝑘𝜓 (𝜓𝑐 − 𝜓)
𝑘𝑇 (𝑇𝑐 − 𝑇)


Here, (𝑥, 𝑦, 𝑧) is the position of the MAV in the World frame

W and 𝑣∗ is the velocity. g is the gravity effect and 𝑇 the acceler-
ation caused by thrust. Drag is estimated as a simplified first order
drag matrix K = diag( [−0.5,−0.5, 0]). RW

C is the rotation matrix
from the World to Camera frame. The forces on the MAV caused
by aerodynamics are given by RW

C KRC
W [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧]𝑇 . A propor-

tional feedback control system is in place for low level attitude
control where the gains are 𝑘𝜙 = 6, 𝑘 \ = 6, 𝑘𝜓 = 6 and 𝑘𝑇 = 6.
The model is a 10 states x = [𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 𝜙, \, 𝜓, 𝑇]𝑇 and
four input u = [𝜙𝑐, \𝑐, 𝜓𝑐, 𝑇𝑐]𝑇 nonlinear system. In order to
increase real world transferability, the 3D simulation environment
has artificial noise added to certain variables. These variables
are calculated outside the control system in order to simulate
real-time computation issues. The simulation is run at 200Hz.
To increase robustness and adaptivity, the following noise signals
are added to ventral flow 𝑢 and heading error 𝛾.

�̂�(𝑡) = 𝑢(𝑡−𝛿𝑢 ·Δ𝑡)+N (0, 𝜎2
𝑢)+𝑢(𝑡−𝛿𝑢 ·Δ𝑡) ·N (0, 𝜎2

𝑢𝑝𝑟𝑜𝑝
) (10)

𝛾(𝑡) = 𝛾(𝑡 − Δ𝑡) + N (0, 𝜎2
𝛾) (11)

Furthermore, the observed ventral flow 𝑢 is affected by 𝜎𝑢

and 𝜎𝑢𝑝𝑟𝑜𝑝
, being the standard deviations of added noise and

proportional noise, respectively. The noise parameters have been
obtained by the work presented in [21]. The starting position
in the environment is (𝑥0 = 0, 𝑦0 = 0, 𝑧0 = 0.5) with speeds
(𝑣𝑥0 = 0.4, 𝑣𝑦0 = 0, 𝑣𝑧0 = 0). The initial conditions do not match
the set point 𝑢.

Table 3. Sampling distribution of network parameters

Parameter Sampling Distribution
𝑤𝑖 𝑗 U(𝑤𝑖 𝑗 − 0.05, 𝑤𝑖 𝑗 + 0.05) clamped at [0.02, 1]

𝜏𝑢𝑖 , 𝜏𝑋𝑖
U(𝜏 − 0.02, 𝜏 + 0.02) clamped at [0.3, 0.9]

\𝑢𝑖 U(\𝑢𝑖 − 0.02, \𝑢𝑖 + 0.02) clamped at [0.6, 0.9]
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Figure 5. The learning curve shows objective evaluations of the best
scoring individual every generation. The highlighted area shows that
the controller has converged, which means that the MAV reaches the
end of the simulation environment. When reaching the end, the only
penalty given is due to a difference for 𝑢 and 𝜓 between the actual
and setpoint

III. Simulation Experiments
50 individuals are initialized at the start of an evolution. The learn-
ing is stopped after the learning curve has converged (𝜎𝑟 < 0.02
of last 25 generations). The best performing individual of the last
50 generations is considered for future simulations. The initial
synaptic weights are drawn from U(0.1, 0.9), the thresholds
from U(0.5, 0.9) and decay values from U(0.3, 0.9). In order
to simulate SNNs, Pytorch in Python is used. The other network

parameters are sampled from the distributions shown in table 3.
NEAT-SNN evolves the network parameters, including topology.
In contrast to other learned SNNs, only positive synapse weights
are used. During evolution, the 𝑢 flow set point is 1, which means
that a larger error between actual and this set point results in a
higher penalty (8).

The aim is learning a random topology SNN controller for a
3D flight control task. Maintaining a constant OF 𝑢 rate allows
the same controller to be used for take-off, landing and cruise.
While the controller has only been learned on a cruise scenario,
the line following controller uses the same learned flight strategy
to perform take off and landings. In order to simulate the SNN in
MLP fashion, the original topology has been transformed to fit
a fixed architecture MLP. The number of hidden neurons differs
from the actual hidden neurons in NEAT because of additional
neurons needed to facilitate skip connections. While the network
output remains the same, these connections that skip a layer
require a placeholder neuron to transport a spike to the next
layer. For comparison purposes, a conventional MLP network
was supposed to be compared to a custom built sparse network.
Unfortunately, a dense CNN would not converge, leading to an un-
usable controller. Therefore, only a single controller is presented.
Figure 5 shows that the learning curve of the controller is not
smooth. This is due to individuals suddenly being able to cover a
larger part of the ground track. It is evident that at some point,
an individual got ’lucky’ and got past a certain corner of the sine
wave, however this is no guarantee that this will happen again in
the next generation. This explains the fallback in the objective
evaluations scores 𝑟𝑝𝑒𝑛𝑎𝑙𝑡 𝑦 . After the 80th generation, the first
part of the 𝑟𝑝𝑒𝑛𝑎𝑙𝑡 𝑦 signal does not dictate the score any more
and the time averaged 𝑢 and 𝜓 continue being optimized. This
means that after 80 generations of 50 individuals being evaluated,
the NEAT-SNN algorithm has been able to produce a sufficient
SNN controller.

Figure 6. The transformed NEAT-SNN network fit for running on MLP architectures is shown. The thickness of the synapses represent the
synapse weight, while the colours of neurons represent the spike rate. The neurons on the left, with parallel aligned synapses, are
connections that span multiple layers. The lowest and last layer are the decoding neurons of which the colour depicts the average

membrane potential, as these neurons do not fire spikes. The labels of the encoding and decoding neurons indicate the variables that the
neuron represents. The labels including a 1, indicate that the neurons is fired when |𝑢 | > 1 depending on the sign of 𝑢.
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The network in Figure 6 shows a transformed network of 167
neurons, while the same NEAT-SNN networks consists of 76
neurons. This denotes that an additional 89 neurons are needed
to operate this network in a fixed MLP architecture. Of these
167 neurons, depending on the flight scenario, some do not spike.
This either means that the inactive neurons were already present
before learning started, or NEAT has mutated the parameters as
such that the membrane potentials of these neurons never reach
the threshold. An example of a network topology without neurons
serving as synapses, can be found in 14 in the Appendix.

A. Take off
The take-off is initialized by increasing pitch, allowing the MAV
to tilt forward and pick up horizontal speed𝑈C (Figure 7). Conse-
quently, the 𝑢 ventral flow will increase, whereafter the controller
will increase thrust in order to gain altitude, keeping 𝑢 constant.
It is assumed that the ground surface allows some sliding for the
MAV to speed up. Here, pitch is not gradually increased, but set
to the desired angle immediately. The previous ensures the MAV
reaches cruise phase as fast as possible.

Figure 7. Body speeds 𝑈𝑐 , 𝑉𝑐 , 𝑊𝑐 , ventral flow 𝑢, height, pitch,
thrust, heading and roll for a simulated take-off. The dashed red
lines indicate the set point of variables 𝑢 and 𝜓 during learning.
The continuous red line shows the controller’s actual set point for
𝑢. Since the thrust signal 𝑇 is very noisy, an overlay is plotted that
averages the last 10 time steps of 𝑇 .

Figure 7 shows that the controller overshoots the equilibrium
OF point by twice the equilibrium magnitude, but stabilizes after
5 𝑠. While leaving the ground surface, we see that the controller
is not maintaining the defined course from the start directly. A
small error in heading is visible in the first 2–3 seconds of take off,

which is corrected for after picking up some speed. Repeatedly
executing this experiment shows that this is a negative 𝜓 bias.
This indicates that the deviation is not caused by noise, but by
the controller itself. The trajectory in Figure 8 shows that no
significant deviations from the ground path are present. One
could argue that the controller is underdamped as some vertical
swerving is noticeable after 30 𝑠. This however, mainly is an issue
at higher pitch angles. At lower pitch angles, vertical swerving is
less evident.

Figure 8. The dots indicate the position of the MAV, which is sampled
every second. For more clarity, a bar is added that displays the
position at ground surface level. The arrows indicate the direction
of travel.

The thrust diagram in Figure 7 shows a broad range of cal-
culated thrust commands. This is most likely due to the missing
scaling factor between the decoding neuron and thrust control
signal and negative thrust bias. This means that the SNN has
learned taking into account the dynamics of the thrust control
system of the environment. For future real world experiments, an
additional controller will be needed. Since NEAT-SNN randomly
assigns a pair of neurons with a new connection, the network
possesses no symmetrical properties. One could expect that there
would be a difference present in the flight commands following a
set point error with a different sign. However, the roll 𝜙 and yaw
𝜓 angle in the last two graphs of Figure 7, show no particular bias
for either positive or negative set points. During take off, 84 out
of 167 neurons in the network have not spiked. A large part of the
network is inactive. However, as we will see during cruise, not all
neurons remain unengaged. Some of these neurons are inactive
due to moderate spiking activity of the neurons encoding the
heading error. As the heading does not change over time, large
errors are not recorded. The inactive neurons include neurons that
function as a synapse. If a synapse is meant to bridge 2 layers and
the first neuron remains inactive, the neurons after do not spike
as well. The number of inactive neurons therefore seems higher
than originally true without the fixed architecture framework.
B. Cruise
During cruise, the same ground path as the training scenario is
followed. For demonstration purposes, a different pitch is given
halfway in the experiment. The experiment starts at \ = 0.06rad
and at 𝑥 = 25𝑚, pitch is decreased to \ = 0.02rad. The dots
present in the trajectory graph, in the lower right corner of Figure
10, coincide with the pitch setting found in the lower left graph.
These dots match the colour of shade in the graphs in Figure 9.
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Figure 9. Body speeds 𝑈𝑐 , 𝑉𝑐 , 𝑊𝑐 , ventral flow 𝑢, height, pitch,
thrust, heading and roll for a simulated landing. The different
coloured shaded areas indicate a different pitch setting and match
the colours in Figure 10. Since the thrust output signal 𝑇 is very
noisy, an overlay is plotted that averages the last 10 time steps of 𝑇 .
The dashed red lines indicate the 𝑢 set points during learning, as
there is a discrepancy between the evolved set point and the actual 𝑢
maintained.

Figure 10. During cruise, a sine wave ground path is followed. The
dots indicate the MAV’s position and are sampled every second. Due
to a lower pitch and consequently forward speed, the dots are closer
to each other in the second part of the trajectory.

Although 𝑢 = 1 is optimized for during learning, 𝑢 = 0.68
is maintained in flight. The best performing controller seems to
converge to such a value and does not improve further, as seen in
the learning curve in Figure 5. This causes the learning curve to

converge more closely towards 𝑟𝑝𝑒𝑛𝑎𝑙𝑡 𝑦 = 0. Interestingly, thrust
is adjusted according to the pitch setting. This indicates that a
single controller can find an equilibrium thrust level for different
pitch settings. The continuous red line in the 𝑢 graph in Figure
9 shows that the 𝑢 set point remains the same, although pitch is
changed. The SNN controller does not only calculate a simple
thrust bias, as such a controller would only be useful for only a
single pitch setting.

As explained in [13], a thrust bias is introduced that would cor-
rect for this lost vertical thrust force due to pitch. The controller
in our work does not need a separate thrust bias calculation to be
applied. Furthermore, the controller has learned to deploy roll and
heading while making a turn. Although applied simultaneously,
some drift in corners is visible as 𝑉𝐵 increases (9). After corners,
the MAV loses some altitude but recovers while approaching the
next turn (10).

During cruise, 64 out of 167 neurons have not fired. This
means that during turns, more neurons are engaged. Since for
cruise, a sine wave ground path is followed, an increase in en-
coding spike activity has caused more neurons in the network to
spike.

Figure 11. The dots indicate the position of the MAV, which is
sampled every second. For more clarity, a bar is added that displays
the position at ground surface level. A 0.25𝑟𝑎𝑑 offset is introduced
in the heading signal, which causes the MAV to approach the target
with a slight curve.

C. Landing
The blue dots in Figure 11 represent the part of the trajectory that
is shaded blue in the graphs of Figure 12. It is seen that until
the very last moment before landing, a constant 𝑢 is maintained.
Comparable to take off, it is observable that at lower speeds,
roll 𝜙 and yaw 𝜓 angles experience more fluctuation. Instead
of maintaining a certain pitch, like during take off and cruise,
for landing, pitch is slowly decreased while approaching a target.
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Again, 𝛽 is the angle between the target and 𝑋𝐶 = 0 line from
the MAV point of view. Correspondingly, 𝛽 will increase if the
altitude decreases. Simultaneously, the closer the MAV gets to
the target, the smaller 𝛽 becomes. As a result, pitch will decrease,
which in turn results in a lower altitude. This altitude decrease
then increases 𝛽, but over time will cause 𝛽 to decrease again
as the MAV is nearing the target. This process repeats itself,
which causes pitch \ to decrease in a ’wavy’ manner, as shown
in Figure 12. Pitch will roughly be equal to zero near the target.
The horizontal speed the MAV is still carrying while touching
down, is not caused by the pitch setting at that moment, but by
the remainder speed of the approach to the target.

Figure 12. Body speeds 𝑈𝑐 , 𝑉𝑐 , 𝑊𝑐 , ventral flow 𝑢, height, pitch,
thrust, heading and roll for a simulated landing. The blue shaded
area on the right half of the graphs define from where the trajectory
becomes visible in Figure 11. Since the thrust output signal 𝑇 is very
noisy, an overlay is plotted that averages the last 10 time steps of 𝑇 .
The dashed red lines indicate the 𝑢 set points during learning. As
there is a discrepancy between the evolved set point and the actual 𝑢
maintained, the red line (experimentally maintained 𝑢) highlights
the difference.

Divergence based landings are prone to self-induced oscilla-

tions [22]. These oscillations are a result of scaled uncertainties
in OF control while nearing the ground surface. While some
moderate oscillations are observed, altitude gains are not visible
in Figure 11. The proposed landing strategy introduces a small
off set in 𝜓, which causes the MAV to approach the target with a
slight curvature. 100 landing are executed, of which the touch-
down position error are shown in Figure 13. The box plot tells
us the mean distance from the target is a couple of centimetres
at touch-down. Whilst the controller does not match the perfor-
mance in terms of speed and precision with conventional control
strategies (Kalman filter, PID, MPC), the soft landings and overall
precision ensure reproducibility with a lower level of algorithmic
and sensory intelligence.

Figure 13. A 2D box plot of the touch-down locations of 100 executed
landings.

IV. Conclusion
It is shown that a single controller can be evolved for full 3D
neuromorphic control. Making use of a challenging learning
environment, a single controller can be utilized for take-off, cruise
and landing. The learning scheme is less focused on conventional
control performance metrics but instead, puts many constraints
on the flight path of the MAV. This will decrease the probability
of reaching unstable states in flight. This results in a robust and
adaptive controller that can operate in different circumstances.
Though, these flight operation prerequisites must be determined
before learning and influence the feasibility of the proposed learn-
ing metrics. While a 𝑢 = 1 set point was chosen during evolution,
a clearly different set point was accomplished.
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Appendix

Figure 14. An evolved network using the NEAT-SNN module. The square nodes in the top layer represent the input neurons while the blue
shaded neurons on the bottom are the output neurons. The remaining neurons are part of the hidden layers. It should be noted that the
networks starts learning without any direction connection between the input and output layer. This means that every input signal travels
through a neuron before reaching the output neurons.

Figure 15. Perlin noise adds a realistic terrain profile to a ground
surface. By training on such ground surface, a robuster controller
is evolved.
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4
State-of-the-art Landing controllers MAV’s

Since the appearance of MAV’s, an increasing interest towards automation occurred in parallel. Not only

has effort been put in automating the procedures and execution of mission specific tasks when deployed on

a MAV platform, but also have fully autonomous flight control solutions, that are both scalable and resource

efficient, been searched for. Flight control solutions can be categorized by their level of autonomy and

flight phase. In general, landing is regarded as the most critical and challenging flight phase because of

increased exposure to risks and reliability issues induced by for example changing conditions. Exemplary

properties that can be tracked to demonstrate the performance over other control solutions are resilience

to disturbances and noise or landing speed in general. Before researching the possibly advantageous

performance gains of neuromorphic control for Unmanned Aerial Vehicles (UAVs), more consideration

should be solicited to the current landscape of (landing) controllers available for UAV’s. The following

section will briefly analyse while categorizing the present controllers researched and experimented with.

In order for an (UAV) to complete an autonomous navigational task, such as landing, two main aspects

must be considered, namely sensing and control. Although many sensing and control methods may dictate

one another method in terms of applicability and possible configurations, some are compatible with other

either sensing and control techniques and therefore are initially discussed separately.

4.1. Sensing
Three main sensing techniques are identified: Global Positioning (GPS), Inertial Navigation Sensors (INS),

vision-based sensing as mentioned in [7]. For completeness purposes, all options are briefly analysed

while examining their technological applicability for the research goal.

1. GPS. Landing techniques that are based on GPS use a signal to estimate the position of a drone.

The signal(s) received by a MAV are transmitted by for instance satellites or other comparable

external communication infrastructures. In order for a MAV to determine its exact position, multiple

signals are required. Additionally, the precision of location synchronization generally increases if

the number of incoming signals grows. The advantages of a GPS based landing technique are

the potential precise position estimates and since GPS technology is on of the oldest navigational

systems used, many algorithms and experience exist in using such intelligence. Unfortunately, GPS

can be inaccurate when the drone is not ’visible’ and the processing power for calculations on the

receiving end, make GPS expensive. Furthermore, GPS does not allow local perceptibility, meaning

no information regarding the actual environment is given. GPS however is resistant to different

atmospheric conditions, but it’s efficacy for indoor use is compromised by disturbances originating

from constructions and buildings.

2. INS. The sensors inhibit some mechanical component that tracks a certain physical exertion and

links the measurement with accelerations. On the upside, INS are not dependent on external

infrastructure, whereby the UAV is fully contingent on its own efficacy. Since INS involves some

physical component, this often induces sensor drift. When drift is experienced, the sensors are

influenced by a low frequency change over time, which often does not directly affect high frequency

usage. However, over longer periods of times, an off set might be introduced. Drift can often be

corrected for when continuous and invariable changes are experienced, but need a different sensory
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suite or system for calibration. Another aspect to consider is the excluding additional environmental

awareness since only intro observable states are utilized.

3. Vision-based. Vision based navigational features can be divided into two categories, namely solely

operating visionary guidance systems and computer vision algorithms that are part of the feedback

control loop. The first category includes systems that are capable of detection and tracking, however,

can not be used as a stand alone autonomous algorithm. Instead, these supporting systems can be

combined with other navigational techniques to increase overall performance or expand navigational

capabilities. The second group addresses flight control systems that are fully dependent on visionary-

based observables. Additionally, camera and processors are light and tiny, which improves scalability

and costs.

4.2. Conventional control algorithms
The following section will introduce different kind of MAV controllers. The controllers are categorized by

methodology, which in turn can have multiple versions. The final section introduces intelligent control using

different kinds of Machine Learning (ML) techniques

4.2.1. Proportional-Integrative-Derivative (Linear)
A Proportional-Integrative-Derivative (PID) controller is one of the most common feedback control tech-

niques. The controller continuously calculates the control input signal by tracking the error between a set

point value and the actual process variable. By applying a certain gain multiplication to the proportional Kp,

integral KI and derivative term KD of the signal to calculate control signal u, a control loop mechanism is

created 4.1.

u = Kpe+KI

∫ t
0
edt+KD ė (4.1)

To this day, PID control still remains of the most widely just control technology due to its simple and

robust set up as shown in [8]. Although less complex control structures and configuration are achievable,

at 91%, the PID controller is regarded to be the most influential control technology to date [8]. As previously

mentioned, a PID controller is easy to implement and tune, however, complex control solutions are

limited. Although tuning is relatively easy, an accurate model representing the actual behaviour of a

system is necessary. The latter results in the control mechanism not having any adaptive properties. The

predetermined gains dictate the behaviour of a system. In order to change performance parameters such

as settling time and overshoot, the PID gains must be tuned again. As shown in [9], a PID controller can

be used as a navigational control mechanism by controlling the states of a quad rotor. Since the system is

under-actuated, the flight angles are controlled for. In [10] the authors as well use a PID controller, however

do calculate the desired speeds for the earth-fixed frame, showing the versatility of a PID controller.

4.2.2. Optimization based control
Optimized control design makes use of knowing how valuable it is to be in a certain state, especially with

respect to other possible states. Two main optimal control methods are categorized, namely methods

based on cost functions and methods that calculate the optimal control input by simulating possible control

inputs while establishing the corresponding reward. Both methods need to have some value granted to the

importance of certain states and/or control input (combinations) in order to express a preference. While

some might refer to cost and others prefer reward, the same is implied. The next two subsections will

discuss the advancements in Linear Quadratic Regulators (LQR) and Model Predictive Control (MPC)

based control.

LQR

A LQR control mechanism favours the control of a certain state over other states, and defines how the use

of different control inputs should be prioritized or minimized over other inputs. Equation 4.2.2 displays the

adjustable matrices Q and R that dictate the shape of the cost function J . The cost function is minimized

by the LQR controller in order to calculate the optimal control strategy considering states x and control

input u.

J =

∫ ∞

0

(xTQx+ uTRu)dt
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By solving the equation, a feedback gain K can be calculated. Large values in the Q matrix will result in a

larger gain, ensuring a faster response. Though, a larger R value will penalize the use of a control input

and decrease the feedback gain value.

While many applications only consider systems with certain physical continuity, other applications

demonstrate the LQR capabilities of operating under severe physical modifications. The authors in [11]

demonstrate the robustness of a LQR controller by showing the stability properties attained by a quadcopter

despite having lost multiple rotors using LQR. As mentioned before, a LQR controller can penalize the

use of control inputs, which can prove beneficial for changing flight conditions. By severely punishing

the use of, in this case a certain rotor, eliminating the general control possibility, a new stable equilibrium

can be found. Adjustments in the to be optimized cost function, allow the drone to still be controlled for

position. However, in this case, attitude control is sacrificed since full system controllability is not possible

any more. Not only do vehicles that are damaged benefit from such control properties, LQR’s are also

beneficial for platforms that can change their configuration in-flight. This allows the system to achieve

better flight control qualities while maintaining the same control system [12]. Changed flight characteristics

due to morphology, which signifies modifications to the shape of the vehicle, can be corrected for using

an LQR controller. A disadvantage of these systems is that a mechanism must be in place that actively

monitors the vehicle’s state. This mechanism will initiate a computation for new feedback gains in the case

of control preferences.

LQG Another form of a LQR controller is the Linear Quadratic Gaussian (LQG) controller. A LQG

consists out of a LQR and a Linear Quadratic Estimator (LQE), which is a Kalman Filter, that experiences

Gaussian distributed disturbances. A convenient property of the LQG is, when multiple cost functions

co-exist, an optimal control strategy can still be found. It should be noted though that there remain specific

circumstances in where instabilities might occur. Unmodelled non-linear dynamics and system uncertainties

might lead to unstable situations. The authors in [13] make use of the additional state estimation and

filtering capabilities. Here, a LQG is favoured over a LQR, since the discontinuities introduced by the

SLAM algorithm, migh introduce small offsets and noise in the control input.

Model Predictive Control

A Model Predictive Control (MPC) system essentially performs multiple actuator deflection (i.e. control

input) strategies and forecasts future states using a system model. By simulating possible control inputs

(random or planned) over a certain amount of time steps in the future, a score is assigned to every trajectory.

The mechanism performs an optimisation using constraints and a cost function. As the highest scoring

sequence of control inputs is known, the first step of the input sequence is employed as the next control

input. This sequence of computations is performed for every time step, meaning every t+ 1 time window

is optimized for. When projected in the form of a landing controller, [14] demonstrates the efficacy of

MPC with a simple and straightforward cost function for a landing requirement. By selecting the control

strategy that transports the drone as close as possible to the moving landing target, a successful landing

is accomplished.

Traditional MPC algorithms mainly concern the planning aspect, namely by assessing possible combi-

nations of future states and input combinations. The planning mechanism is responsible for producing

different sequences of inputs. Since planning consists of many aspects, much efficiency and performance

is to be gained by advancing certain elements of the MPC algorithm. Several MPC adaptations exist,

where computation speed and precision are significantly improved by optimizing trajectory generation and

tracking.

As for most MPC algorithms, a linear(ized) model is used for the sake of modelling and computation

speeds. A natural consequence is the gap between simulation and reality. These model uncertainties

can consist of non-linear aerodynamic effects and payload variations and decrease the overall system

performance. Non-Linear MPC (NMPC) adjusts for many non-linearities. The authors in [15] capture these

model uncertainties and compensate these by mapping the differences between estimated and reference

future states. The adaptive controller uses a reference model that learns the discovered and matched

uncertainties to compensate for immediately. It must be noted that model imperfections are, because of

the many iterations, minimized over time. Since the modelling error stays consistent over time, optimal

sequences of control inputs can still be produced [16]. The same accounts for [17] where a high speed and

aggressive control task is carried out. A radio-controlled car is raced around a track. Although the model is
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not the best representation of true environment dynamics, high speeds are accomplished. Although not a

flight control example, this shows that, while a poor model is being used, appropriate control commands

can still be calculated

4.2.3. Non-linear
The difference between linear control and non-linear control is that non-linear control does not conform

with the superposition principle. Additionally, the stability of non-linear systems heavily depend on initial

conditions, input signal properties and internal system dynamics. Control methods exist that omit these

non-linear terms as much as possible. The techniques that will be discussed are Sliding Mode control and

Incremental Non-linear Dynamic Inversion.

Sliding Mode Control

Sliding Mode Control (SMC) is a robust non-linear control method that applies a discontinuous control

signal to a non-linear system. Due to its insensitivity to disturbances and uncertainties, the method provides

a robust approach for controlling such systems. The idea behind SMC is to drive the controlled states

onto a particular surface within the state space. The latter is referred to as sliding surface and must be

chosen for carefully. Part of the design of a SMC thus involves choosing appropriate states, that will allow

the controller to keep the states close to the sliding surface for convergence. Depending on the initial

conditions of a system, the controller will drive the states to the sliding mode surface, which is referred

to as reaching mode. After the states have reached the surface within the state space, sliding mode is

initiated and the system will ’steer’ near to the surface as close as possible. This control rule can battle

non-linear effects, however, outputs a harsh discontinuous control signal that might induce chattering. The

oscillations caused by these high frequency control signals are generally less desired. Although several

adaptations are known, these will not be discussed as this is outside the scope. Adaptations include

smoothing functions etc.

As mentioned previously, SMC can be used in combination with another feedback control mechanism,

as done in [18]. The authors successfully implemented a sliding mode controller that made the controller

adaptive by letting a sliding surface function dictate the PID gains. Overall, the controller outperformed an

ordinary PID controller but only if the learning rates, that are responsible for adjusting the PID gains, are

large enough.

Incremental Non-linear Dynamic Inversion

Non-linear Dynamic Inversion (NDI) is a model-based control system that describes a linear relationship

between input and output. The control input is calculated by inverting a physical model. Incremental NDI

(INDI) is less dependent on model parameters, but rather a sensor-based control approach. A disadvantage

of NDI is that the control system must know the full system. An accurate model is expensive and hard to

obtain. As INDI is more dependent on sensor readings, it is important these are adequately filtered.

The authors in [19] achieves robust and adaptive attitude control for a MAV using INDI. Additionally,

some measure of control effectiveness is expressed, since the system is heavily dependent on inverting

the model of the controls. The aerodynamic uncertainties do not need any modelling, since the effects that

they have on the system, are measured with angular acceleration. This would allow basic morphology

without any tuning of system parameters. An optical flow control application is combined with Extended

INDI (EINDI) in [20]. Constant divergence landings are performed that can be varied for height while

not experiencing oscillations [21]. Most important contribution is the lacking dependency of having a set

timescale for the input-output model, which allows such controller to be used for scaleless properties.

4.3. Intelligent control methods
Intelligent control methods are confined into a separate section, as this category includes the usage of

artificial intelligence to learn the most optimal control behaviour (policy). Since neuromorphic control is

also regarded as artificial intelligence, the learning (exploration and exploitation), deployment and many

other practical application complications overlap with the same complications as experienced for intelligent

control methods. Therefore, more emphasis is put on the obstacles and results found for designing flight

(landing) controllers with machine learning in a separate section.

Intelligent control methods belong to a category of methods that use various Artificial Intelligence (AI)

computing techniques, such as Neural Networks (NN) and Machine Learning (ML). A NN is a decision-
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making framework that inherits bio inspired properties that can be deployed to construct a control policy.

The most optimal decision variables can be found by ML techniques that either train or evolve a NN.

Intelligent control systems learn a policy, with or without a model, to control a dynamical system. The

policy should theoretically perform better each iteration, since it is learning to execute (control) a certain

task and has more attempts as the number of possible interactions with the environment increase. Fuzzy

control is also regarded as an intelligent control method, since fuzzy corresponds to a certain logic that the

designer can understand. This ’logic’ can address non-linearities or other uncertainties that hard to coop

with for other traditional controllers.

AI includes a broad range of techniques and algorithms that can be deployed for control tasks in

numerous ways. An apparent distinction can be made between techniques dealing with low level motor

commands and higher level control tasks. These higher level control tasks are supported by NN algorithms

that compute features as waypoints, speeds and trajectories but are not involved in directly calculating

the appropriate motor commands for control. The NN based algorithms supporting or optimizing high

level control tasks are hybrids since the control system necessitates another controller like the controllers

mentioned in this chapter. [22] is one of the first to introduce NN’s for computing motor commands based

on previous states and control input. Two NNs are utilized that support the determination of uncertainties

and non-linearities to perform a non-linear inversion. On the other hand, [23] for instance, has the AI

part compute optimal states for a MAV to be in at certain locations. Whilst learning high-level policies, a

secondary low level control systems calculates the actual motor commands. In [24], the authors use MPC

to calculate the actual motor commands.

Due to the bio inspired computational properties of NNs, non-linearities can be captured well [25].

Generally, for classic control applications, it is desirable to have a linearized system. This unfortunately

leaves a part of the dynamics and model uncertainties to be unmodelled, which is undesirable. NN’s

in control systems either estimate or compensate for uncertainties or provide full state feedback control

inputs. The first category includes many examples that implement NNs for reducing the model error. Not

only can this be done by creating a partial model that can approximate the non-linear effects, but also by

learning a network to perform model inversion for calculating the appropriate control commands. Different

implementations exist considering reducing the model error. [26] calculates the uncertain disturbance

force that should be added to the control input in order to follow a landing trajectory. The training is

performed offline. The other category directly calculates the appropriate control input. The authors in [27]

use a NN feedback controller which is trained online by trying to recreate control input from the linear and

non-linear feedback controller. [28] utilizes a simple control law that guarantees convergence, although

this experiment is not performed in a real-world test. It should be noted that many applications are not

performed in real-world tests, but rather simulations.
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Vision-based landings

Positioning systems that are dependent on signals from external infrastructures are often expensive,

sensitive to reflective surfaces and interference in, especially in-door environments. Cameras are small,

cheap and work in a large variety of environmental conditions while possessing a high degree of employa-

bility. Additionally, biological system have proven that visual information can be utilized (sometimes in

combination with other senses) for safe determination of ego-motion and subsequently navigation. The

following chapter will discuss methods to extract, model and use visual features for landing.

5.1. Optical Flow
Optical flow (OF) is a visual cue that expresses the difference due to motion between two sequential frames.

This difference signifies a direction and magnitude and helps to determine ego-motion, obstacle detection

and can be a navigational aid. OF cues provide smaller animals like birds and insects the ability to quickly

avoid obstacles and navigate through narrow spaces. For instance, for landings, insects mainly depend on

the divergence rate, which is kept constant during landing [29]. Additionally, OF is used to determine the

travelled distance using the Focus of Expansion (FoE) [30] and to regulate speed of flight [31]. Insects

use observed shifts in brightness patterns, that are further processed to eventual visual features, for

complex analysis of their image in order to identify shapes and motion. In a sense, insects set a benchmark

for autonomous MAV’s in terms of performance vs. efficiency of understanding and acting upon their

environment, considering their size. Determining OF through computer vision necessitates power and

hardware, which is scarce on a MAV platform. Many algorithms with different computational approaches

exist that can estimate OF [32]. The following section will show different OF estimation methods and after

discuss the modelling methods, including the constraints and assumptions that lead to different visual

observables.

5.1.1. Estimation
As discussed before, OF refers to the displacement of intensity patterns over time on the camera’s sensor.

OF can be determined using conventional frame-based camera’s, event-based sensors and OF sensors.

The analysis and processing of OF through event-based vision will be treated in the last section. Apart from

OF sensors, most frame-based OF algorithms use the brightness constancy assumption as mentioned in

[33]. The assumption states that intensity I of a local region of the viewed image plane remains equal over

a short time period 5.1:

δI

δx

δx

δt
+
δI

δy

δy

δt
+
δI

δt
= 0 (5.1)

Here x and y represent the pixel position on the sensor while dx
dt and

dy
dt are the OF component of u and

v respectively. At least two consecutive frames are needed to obtain partial derivatives dI
dx and

dI
dx . Although

not as important as the brightness constraint, one must adhere to a fast enough sampling frequency and

adequate spatial smoothness. The sampling frequency of the video must be fast enough to capture motion.

Furthermore, an adequate number of pixels must be present that can sufficiently differentiate motions.

Considering the 2D image plane when having only one brightness consistency constraint, two unknown

components u and v must be calculated. The latter described under-constrained condition is also known

23
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as the aperture problem. For instance, since strictly horizontal or vertical edges only allow for normal flow

extraction (one dimensional motion), optical flow can not be estimated. Normal flow is the motion detected

normal to the contour’s direction. These contours are lacking distinguishable corner points, which is why

only normal flow is estimated.

In order to determine the exact u and v components of OF, another constraint is required. Multiple OF

estimation algorithms exist that can be classified according to the different kind of secondary assumption

made.

Gradient-based estimation methods assume that the observed flows u and v are constant among

neighbouring pixels. Local and global gradient-based methods exist. The authors in [33] created one of

the first OF algorithms that included every pixel in the optimization process. By means of minimization, a

least squares solution for the best fitting OF is calculated. An additional constraint has later been added to

decrease computational loads. The smoothness constraint introduced an iteratively corrected factor that

would assume no discontinuities in consecutive frames of the observed flow. This is regarded as a global

OF optimization method, since every point in the image plane is used for calculation.

A local approach only optimizes for a certain number of features/points on the image plane. Sparse

methods benefit from choosing features as corners, since more brightness variance between neighbouring

pixels is present. These regions with divergent pixel values allow for more precise displacement estimates

to be produced. Before comparing the same visual feature on two different images and calculating the

subsequent optical flow, one must determine which features to track. In [34], the authors use corners

and edges for the Features from Accelerated Segment Test (FAST) algorithm. The quality of features

tracked influences the accuracy of the OF calculation. Using feature monitoring as done in [35], optimal

OF estimation is pursued. The most popular, though one of the oldest, OF estimation algorithm is the

Lukas-Kanade estimation method. Here, [36] assumes that the flow is constant in small neighbourhoods

and subsequently minimizes the witnessed brightness shift within a small neighbourhood.

Determining OF through correlation methods, means localizing a certain pixel patch on a successive

frame to determine its motion. By simulating the motion of a pixel patch for different possible displacements,

a subsequent matching motion can be found. A matching function minimizes the difference over a certain

search area, which is a squared window patch, as shown in [37]. A general matching function that minimizes

the sum of squared difference can be written as:

argmin
dx,dy

Σ(It(x, y)− It+dt(x+ dx, y + dy))2 (5.2)

Here I is the intensity of a pixel and is compared with another pixel in the neighbourhood on a frame at

t+ 1. Since optical flow vectors represent a velocity of a certain distance over time, block matches can

be found by varying the spatial or temporal component. An advantage of temporal searching methods

is that complexity increases linearly with the number of frames, while the complexity for spatial methods

increases quadratically with the size of the window.

5.2. Modelling
The following section will define an OF model that is used to link observed flows to ego-motion. For future

simplifications and derivations, the following formulated relationships will serve as a base. In order to start

interpreting viewed motion, the OF parameters must be determined.

The model is based on [38], which assumes that the retina or sensor can be viewed as a plane and

the camera’s aperture is viewed as a pinhole-point. The position of a point in both the world frame (W )
and camera frame (C) is defined by (Xw, Yw, Zw) and, (Xc, Yc, Zc) respectively. (Uc, Vc,Wc) are the

corresponding velocity components of a point in the (C) frame. The Euler angles (φ, θ, ψ) express the
orientation of frame (C) with respect to (W ) and represent roll, pitch and yaw respectively. Additionally,

(p, q, r) are the corresponding rotational rates. Furthermore, the camera pixel coordinates are (x, y) and
their velocities, which represent OF components, denote (u, v). The exact labels and axis can be found in

figure 5.1.
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Figure 5.1: Adopted from [39]. Two reference frames are present, namely of the worldW and camera C.
The motion of the camera C is described by the translational velocities (U, V,W ), the Euler angles (φ, θ, ψ)

and rotational rates (p, q, r).

The projection of an arbitrary point in the reference frame (C) onto the image plane is denoted by

(x, y) = (XCZC ,
YC
ZC

). Due to the observer’s motion, this point moves with velocity (u, v) across the image

plane. Utilizing the time derivative of points on the image plane, the OF of a point can be expressed into

translational and rotational components 5.3, 5.4.

u = −Uc
Zc

+ Uc
Wc

Z2
c

= (−Uc
Zc
− q + ry)− x(−Wc

Zc
− py + qx) (5.3)

v = −Vc
Zc

+ Vc
Wc

Z2
c

= (−Vc
Zc
− rx+ p)− y(−Wc

Zc
+ qx− py) (5.4)

It must be stated that models for stereo vision and cameras that possess a wide angle view lens, acquire

different modelling and estimation techniques. The former model can be characterized as a perspective

model. If we had not assumed a viewed plane, an omnidirectional or spherical model would suffice, as

explained in [40].

5.2.1. OF parameters
Now that the camera’s ego motion has been linked to the perceived OF on the image plane, the actual

ego-motion can be determined. Depending on the environment and viewed scene, a generally complex

computation is required to determine all depths and rotational and translational speeds of the camera.

It would require heavy iteration or optimization processing, which is not suitable for small-scale robotic

applications. Instead, depending on the application, simplifications or other sensors can be used in order

to determine the exact OF faster and more precise.

For general applications of OF, it is beneficial to separately measure the rotational rates (p, q, r).
Including these rates in equation 5.3, will only let translational flows remain as the observed states in (u, v).
This is called de-rotation, as ego-rotational movements are isolated from determining (u, v). The previous

means the absolute position and OF of visual features on the retina or sensor would be known if an Inertial

Measurement Unit (IMU) is available. For instance, in [41] [42] [43] [21] a rate gyro is added to the sensor

suite that defines the unknown rotational speeds in order to determine ego-motion from OF.
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Using OF for controlling a landing on flat surfaces allows us to implement another simplification. Since

a planar and horizontal surface is assumed, all points are interrelated. The surface must possess some

sort of static texture as OF can not be tracked from smooth surfaces. If the landing is purely vertically

controlled and the camera is pointing downwards, the following derivation is possible.

As shown in [44], with the latter assumptions, the OF vectors (u, v) in the image plane are:

u =
(−Uc + xWc)

Zc
(5.5)

v =
(−Vc + yWc)

Zc
(5.6)

As the MAV will experience roll and pitch movements, the ground surface has an inclination with respect

to the camera’s frame (C). In this case the distance between the ground surface and camera (Zc) can be

expressed with (Zc,0) (vertical distance to surface), (Zc,X) (plane slope (Xc)) and (Zc,y) (plane slope (Yc)):

Zc = Zc,0 + Zc,XXc + Zc,Y Yc, (5.7)

which can be rewritten into:

Zc − Zc,0
Zc

= xZc,X + yZc,Y . (5.8)

Since the height Zc,0 is between the floor and (x, y) = (0, 0), (Zc,x) and (Zc,y) are written as:

α = −arctan(Zc,x), β = −arctan(Zc,y) (5.9)

We can scale the velocities with respect to Zc,0:

ωx =
Uc
Zc,0

, ωy =
Vc
Zc,0

, ωz =
Wc

Zc,0
. (5.10)

Consecutively, combining all parameters leads to the expression:

u = (−ωx + x(ωz)(1− x(Zc,x − y(Zc,y)
v = (−ωy + y(ωz)(1− x(Zc,x − y(Zc,y)

(5.11)

When the inclination of the camera is unknown, the vertical velocity can not be determined. In other

words: without knowing (Zc,x) and (Zc,y), ωz can not be determined. As [45] puts it, a chicken-and-egg

problem is created since the same OF measure might indicate different speed/distance ratio’s. However, if

the ventral flows ωx, ωy are kept small, the perceived optical flow only is accountable to ωz [44].

∂u

∂x
= ωxZc,x + ωz ≈ ωz,

∂v

∂y
= ωxZc,y + ωz ≈ ωz (5.12)

As divergence (D) is expressed as

D =
∂u

∂x
+
∂v

∂y
, (5.13)

this means that D = 2ωz. Additionally, time-to-contact (TTC) τ can also be deduced from divergence,

namely: τ = Zc
Wc

= 1
ωz
. Knowing the time interval between images, when calculating time-to-contact, is

required to transform it to actual seconds.
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Although object detection is not the scope of this research, many similarities exist between OF-based

navigation and object detection. Most object detection algorithms use the anomalies caused by objects

in the OF field as an object detection method. When a MAV is moving forward in a purely translational

motion, the FoE is regarded as a singular point from where OF expands. It indicates the course of the MAV

and can therefore be beneficial for navigational purposes. The FOE can be determined using different

methods. An iterative scheme in [42] uses negative half-planes to calculate and score a potential FOE

area. [46] determines the FOE of every object in the frame by averaging the OF vectors intersection points.

Knowing their future paths allows for object avoidance.

As explained previously, the actual height and horizontal distance to objects and planes is important to

scale the other OF parameters. Knowing a MAV’s altitude helps determine the forward speed and vice

versa. Another solution could be stereo vision. By adding a second camera, a depth estimate can be

made, which can provide translational velocities as done in [47].

5.3. Vision based flight control
Now that we know how to interpret OF parameters for different camera configurations and settings, a closer

look is taken at how to use such features for control and navigation strategies. As previously mentioned, it

is known that insects make use of parameters deduced from OF to perform certain flight manoeuvres. The

following chapter will investigate how these parameters can deliver a suitable basis for control purposes.

Two important visual observables for (3D) landing are ventral flows and divergence. As explained

before, height control is not possible with zero ventral flow, since they are coupled 5.12. Both ventral flow

and divergence rate are known to be kept constant during landing of honeybees [31]. Honeybees also

decrease their altitude when their forward speed is decreased by for example headwind.

In [48], a tethered rotor-craft performs landings on a moving platform. Both height and forward speed are

controlled for with an OF regulator. Height is controlled with ventral flow while forward speed is regulated

by means of pitch which affects the amount of horizontal thrust generated. Equal visuomotor properties

are observed to that of insects and birds.

Often, a height approximation is given to MAV’s to scale the perceived OF. Instead of using height, [49]

integrates OF over a certain angle of a sphere to identify the scaled velocity. The OF distribution over a

spherical lens projection can give a comparative indication of the distance between the vehicle and surface.

This is used as a control variable for hovering and landing. The quadcopter is able to land on a moving

target.

Assuming no ventral flows are present and thus only controlling for divergence, pure vertically controlled

landing is possible. Several examples exist of divergence controlled landings. Differences are present

in the type of controller or extraction method for divergence, but most of these applications adhere to an

approximate bio-inspired landing strategy of maintaining a constant divergence during landing [44]. The

authors in[39] evolve multiple controllers that are different types of NNs for a divergence-based landing.

The new controllers are compared to a certain baseline controller. The newly evolved controllers show

promising results, including strategies that at first seem less apparent.

5.4. Event based Vision
In order to improve speed and accuracy properties of OF-based flight control systems for MAV’s, the

measurement speed and accuracy of estimating OF must increase too. Frame-based camera’s capture

a viewed scene at a fixed temporal interval that is independent of the viewed scene dynamics. Pixels

measure a continuous observed brightness of a certain scene or motion. For improving frame-based OF

estimation, this would mean that the number of frames per second should increase and that the algorithms

determining OF, must become more accurate. This generally increases the computational loads, which in

turn decreases their usability for real-time robotic applications.

In contrast, event-based camera’s output are dependent on the observed scene, since visual infor-

mation is captured the moment brightness shifts are observed 5.2. The communicated information are

asynchronous events that indicate positive (ON event) and negative (OFF event) changes in the log

intensity at each pixel’s location. Event-based camera’s [3] possess a temporal resolution of 1s with a

latency of only 1ms. Since redundant scene information is not captured and processed, a high sample
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rate is possible. For a frame-based camera to match the temporal resolution of 1 s, the fps should be

multiple thousands of fps. The sparse and asynchronous event-based output reduces processing power

and memory requirements, which are beneficial for high speed and low power MAV’s.

Figure 5.2: Illustration of the observed difference between frame and event based camera’s. As the black

bar in the image moves up, event-based camera’s only respond to the leading and trailing edge of the

black surface, since brightness changes are observed here. The green and red colours represent polarity

of a positive and negative change, respectively.

The additional temporal dimension to visual measurements can unlock many potential possibilities

for robotics, since more information is encoded using event-based cameras. This type of encoding of

visual information is biologically inspired by the spiking nature of visual pathways. As shown in [50], any

visual system of mammals and insects inhibit a visual system that perceives spatio-temporal variations of

brightness shifts at retina level. The retina possesses light-sensitive neurons that absorb and convert light

into electrical signals. These signals are sent to the ganglion cells, after which the activity is encoded into

temporal sequences of discrete spikes. After, larger networks decode this raw information of observed

brightness patterns to visual cues, in order for the brain to estimate ego-motion or perceive the environment.

Event-based vision approaches its biological counterpart to visual systems, showing us at which great

precision, speed and efficiency such type of information can be utilized.

In contrast to frame-based cameras, where every pixel records a brightness value at set time intervals,

event cameras pixel activity is driven by light intensity changes. Every pixel, on a DVS, reacts to changes

in log photocurrent L=̇log(I). An event ek=̇(xk, yk, tk, pk) is triggered at time tk and pixel location (xk, yk)
when

∆L(xk, yk, tk)=̇L(xk, yk, tk)− L(xk, yk, tk −∆tk), (5.14)

has reached a certain temporal contrast threshold of C :

|∆L(xk, yk, tk)| > C. (5.15)

A spike is transmitted when this brightness shift exceeds the threshold in 5.15. These spikes are transmitted

using an Address-Event Representation (AER) readout as in [3]. The messages include a pixel’s position,

a timestamp and polarity.
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5.4.1. Event based camera’s
As mentioned in the section introduction, event camera’s respond to an observed brightness change, as

seen in figure 5.2. While the data flow for outputs of frame based cameras are constant, event-based

camera data flow will increase if faster motion is observed.

Although event-based processing allows a more granular view of motion and can distinct fast motion

accurately, the light intensity should not vary too much. There exists a cut-off frequency at which cycles in

brightness shifts can not be captured. Additionally, while a frame-based camera aliases for frequencies

above the Nyquist frequency, a DVS, due to the continuous time response, does not. Depending on the

chip and hardware, the AER messages can become saturated. The latter does not directly affect any

physical properties of the measurements, but has influence on the times at which the messages have

been sent at.

(a) DVS camera (b) DVS pixel

(c) Reponse according to fluctuating light intensity

Figure 5.3: Image adapted from [3] (a) A DVS with it’s lens. (b) Schematic overview of a DVS pixel, which

reacts to shifts with fixed-size changes of log intensity. (c) Shows the output in response to changing light

intensity.

The first commercially made available event camera is the DVS [3] and is still commonly used [51]. The

camera features a 128x128 pixel grid operating at an intra-scene dynamic range of 120 dB and possesses

a s timing resolution and a latency period of 15 s. The continuous-time photoreceptors on the silicon retina

are coupled to a readout circuit, which is reset each time the pixel was sampled. Basic properties of the

camera and pixel working mechanism are found in figure 5.3

DVS is a conventional event-based camera that only outputs witnessed brightness changes. However,
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some vision applications require more than that. Two types of event camera can be identified, namely

cameras that only output brightness shifts and cameras that output the absolute brightness. Many

applications need to know this form of static information in order to make a distinction between the same

motion in a different setting. The Asynchronous Time Based Image Sensor (ATIS) [52] outputs both by

implementing two pixels side by side, namely a DVS pixel and a traditional pixel reading out absolute

intensity. In order to output static and dynamic readings simultaneously, a trigger resets the capacitor,

which ensures no absolute light intensity is outputted if a brightness shift has not exceeded the intensity

difference threshold. The mechanism is dependent on the absolute brightness of the scene for discharging

the capacitor. The brighter the light, the faster the capacitor discharges and the faster the DVS pixel is able

to respond to witness brightness changes. A downside of this mechanism is that, because of its discharge

dependence on absolute brightness, its efficacy is compromised in darker scenes. The Dynamic and

Active Pixel Vision Sensor (DAVIS) [53] combines an active pixel sensor with a DVS pixel. For DAVIS, the

photodiode is shared between the two pixels. ATIS on the other hand, introduces a new pixel side by side

which decreases the resolution of pixels per area. Another interesting event-based camera alternative for

MAV’s is the embedded DVS (eDVS) [54] that excludes an USB output connection and directly connects to

a microcontroller for weight and scale benefits. Where the DVS weighs 120 grams, the eDVS only weighs

16 grams.

5.4.2. Event processing
A granular and high frequency event stream requiring low processing power is favourable for different

real-time robotic applications. The following element to consider is how to extract meaningful features as

efficient as possible for the task considered. Due to the granular and high frequency data flow out of a DVS,

many applications require a transformation of the events to be able to extract features. Depending on the

task ahead, certain representations and subsequent processing methods are suitable. A key parameter is

the latency that is induced by grouping the temporal or spatial element of events. The following will first

discuss event representations and after discuss further processing aspects for certain objectives.

The table below gives a brief overview of the mostly used event representation, including a short

description as given in [55].

Table 5.1: Brief overview of all event representations as in [55]

Representation Notes

Individual Events The events do not undergo any form of pre-processing. Here, an event

ek=̇(xk, yk, tk, pk) is used by event-by-event filters and SNNs. For such methods, the

earlier activity of the same pixel and close pixels is important for future output.

Event packet Neurons are grouped (mostly neighbouring neurons) by either their temporal or spatial

properties, and a single aggregated output is formed.

Event image The events receive a simple conversion (averaging or counting events) before being

projected on a 2D plane. This allows more conventional algorithms to process event-

based data. However, sparsity in an area can not be viewed, and the converted

image is highly sensitive to the absolute number of brightness shifts witnessed.

Time Surface A time surface representation is a more elaborate version of an event image where

the only pre-processing mechanism in place is to display intensity of a viewed scene.

A higher value corresponds to a more recent brightness shift, which, in a basic sense,

takes into account prior activity of that pixel.

Voxel Grid A voxel grid represents a 3D histogram of events. Temporal information is more

precise, since a voxel shows the duration of events, polarity and spatial coordinates.

Now, we should question how to process the above-mentioned even interpretations. Manipulation of

the even data flow has different phases, such as input adaptation, feature extraction and output generation.

The processing methods are constrained by the feature extraction algorithms and hardware platform

required. Event processing techniques can be characterized by different algorithmic properties, such as

event-by-event-based methods or methods for grouped events. Event-by-event-based methods mainly

deal with the initial pre-processing tasks of noise reduction, low-level feature extraction and filtering. Filters
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essentially perform a grouping task of smoothing asynchronous input and aggregating multiple event

sources. The use of Kalman filters or SNNs, should theoretically lead to a more accurate determination of

OF, since the grouping mechanism in filters is tuned to a certain temporal or spatial extent. Time surfaces,

being grouped events, allow interesting further interpretation as scene edges become apparent. Voxel

grids on the other hand, require more memory but attain a higher level of preserving temporal information.

Deep learning applications initially favoured aggregated events as input, since the viewed motion or shape

can easier be linked to a less noisy input sequence. Currently, more emphasis is put on algorithms that, in

a biologically plausible fashion, extract features from individual events.

5.4.3. Event-Based Optical Flow
As mentioned previously, computer vision algorithms that use conventional frame-based cameras are

constrained by the brightness assumption. The spatial and temporal derivatives of two successive frames

are calculated or optimized for, for flow estimation. As is apparent for current OF estimation algorithms,

edges are used as reliable OF estimation [33]. This makes EB OF estimation more attractive, since edges

are the visual cue that EB camera’s react to. In addition to the high speed and granular temporal properties,

high speed flow can accurately be tracked. Furthermore, conventional computer vision have difficulties

with large inter-frame displacements of tracked features, as the optimization framework must perform

more iterations for equal accuracy. Motions overlapping will cause irregularities for conventional OF

estimation techniques, while event-based sensors do react accordingly to such scenes. Event-based visual

processing is a relatively new area of study and therefore a benchmark for an OF estimation algorithm, still

has to be determined. Unfortunately, the separate events alone from a DVS do not allow for flow estimation

and are in need of a certain aggregation function to understand the interplay between witnessed motion.

As EB camera’s have no access to information such as absolute pixel intensity, visual features are

hard to identify and subsequently track. Since much computationally expensive processing is necessary

for identifying such features, most algorithms do not distinguish the events received from a DVS.

Early versions include simple adjustments of current algorithms, such as [36], to fit the event-based

sensors. These gradient based methods use spatio-temporal derivatives and the brightness constraint [33]

to estimate OF. In order to grant continuous flow, certain spatio-temporal properties must be conceded.

The first implementations of event-based OF consist of extracting a continuous temporal derivative of

brightness [56]. By replacing a single event by the sum of event polarities at a pixel location, an adaptation

of the frame-based Lucas-Kanade tracker is possible. However, as the derivative is calculated using

sparse events, the estimations turn out noisy and unreliable for further OF estimation. The approach in

[57] also sums polarity values, but tries to minimize the inconsistencies by employing the second derivative

instead of first and second derivatives. Due to the high frequency, the moving fixed time window must

be accurately determined according to a scene. Else, the difference in witnessed intensities will lead to

poor OF estimation. Additionally, the total number of events within a certain time period are too low to give

precise estimates at a high frequency.

The following methods are based on viewing incoming events ek=̇(xk, yk, tk) of a moving edge as a

surface. The surfaces created by incoming events can be fitted with planes that estimate the according

flow orientation and amplitude. No additional aggregation function is necessary to calculate temporal

or spatial gradient. Planes can be solved for by using Least-Squares optimization methods.First [58]

proposed estimating normal flow from local spatio-temporal data. In order to improve accuracy, some

assumptions and constraints must be imposed. For instance, as planes approach pure vertical or horizontal

surfaces, the exploding or vanishing gradients must be dealt with. By introducing a threshold angle for

the fitted planes, outliers of flow estimations can be omitted, as done in [57]. In [51], the number of plane

parameters are reduced to perform more efficient optimization iterations. Additionally, by assuming a small

constant velocity, the flow estimation is regulated against noisy events and produces stable estimations.

[59] introduces a method that uses an IMU to correct OF induced by ego-motion. By filtering out all planes

’created’ by the camera’s movement, only the planes remain that are produced by objects and motions in

the scene.

Filters can be applied at different stages for OF estimation. Simple filters as the Savitzky-Golay (SG)

filter, can be implemented to improve the estimation methods mentioned above. The SG filter increases

the signal-to-noise ratio by fitting a low-order polynomial with linear least squares. This filter can be

applied to moving average functions (for capturing intensity) and local plane fitting. This filter does not
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necessarily induce more computational complexity and time since a system of equations does not have to

be solved as for Lucas-Kanade [36] or surface fitting algorithms [58]. The other class of filters are direction

sensitive filters. These filters yield directional motional sensitivity and improve OF estimation for certain

scene properties. Filter banks in [57] are tuned to certain directions and flow velocities, for which OF is

determined. Determining the exact magnitude of OF using direction sensitive filters can be problematic, as

the performance is mainly dependent on the configuration of filters. As determining OF becomes more

refined, the range of scenes for good OF approximation becomes narrower. As highly textured areas

can introduce estimation irregularities, high spatio-temporal frequencies, that are induced by texture, are

minimized leading to more accurate OF estimation [60]. However, the additional computational loads do

not allow smooth real-time operation.

Due to the continuous input flow necessary for Artificial Neural Networks (ANNs), frame-based cameras

are ideal for feature extractions, since a synchronous image feed is provided. Taking into account

established learning rules, ANNs have proven to be powerful for many vision related tasks. In order to

use ANNs for an event-based stream, modifications must be implemented to allow ANNs to interpret the

data flow. As ANNs necessitate a continuous input, the sparse flow must be modulated. Additionally,

since conventional learning algorithms, such as backpropagation, require discretized parts being trained in

episodes, the event stream must be divided into multiple temporal slices. This reduces the potential of

extraction due to not fully using the asynchronous properties of even-based vision.

In [61], an encoder-decoder Convolutional Neural Network (CNN) architecture (EV-FlowNet) is used to

match an event-stream with the equally observed scene in a greyscale representation. For OF estimation,

a self-supervised learning method is implemented to learn to predict normal flow from events out of a

DAVIS camera. A greyscale picture is used to build a ground truth loss function, meaning labels of such are

unnecessary. The loss function consists of a photometric and smoothness loss. The photometric loss aims

at minimizing the difference in intensity between the modulated event representation input, and greyscale

image output. Later, in [62], EV-FlowNet functionalities are extended by means of an unsupervised learning

scheme. The aggregation function interpolates discretized event volumes. This representation encodes

a distribution of all the events in a certain spatio-temporal domain, which can be linked to the perceived

motion blur present when decoding the distribution of events. Therefore, an unsupervised-learning signal is

possible. The authors in [63] have created a framework that can convert models trained on a synchronous

image feed to asynchronous models. Thus, by manipulating input data, the asynchronous and sparse

properties of event-data can be maintained. A local update function is introduced that shapes the event

signal by updating an activity measure at every individual pixel. The local update rule is dependent on the

location of the pixel and the pixel’s past activity.

Evidently, the characteristics of SNNs match the spatio-temporal properties of an event-based sensor.

Theoretically, SNNs should be able to reach more potential since even-data does not have to be encoded

in a continuous and synchronous fashion. Many SNN applications for OF are biologically inspired, as

mammals and insect’s visual systems possess processing characteristics similar to LIF or AEIF neurons.The

authors in [64] present a convolutional spiking architecture with properties of a filter that shows direction

and speed selectivity. Feature extraction is possible through an unsupervised learning rule that links

spiking activity and connectivity patterns to certain kernels that represent a spatial feature. These features

allow local motion perception and global ego-motion to be estimated. Such features are useful for MAV

navigation.

In [65], spatio-temporal filter are implemented with certain delays to capture motion. A total of 8

speed and 8 direction sensitive filters are used. Each neuron has unique purpose, therefore no overlap

of functioning is present. The introduced time-delayed synapses do increase the need for longer on-

chip storage of data. In the works of [66], a discretized input representation (fine-grained in time) is

presented that preserves the spatial and temporal information of events for SNNs. The encoder-decoder

architecture uses SNNs and ANNs for its deep hybrid architecture. The vanishing spike problem regards

the disappearing activity in a network that decreases learning opportunities. By realizing ANNs for the

decoder part, OF prediction learning can still make use of the beneficial learning traits ANN’s have.
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Visuomotor characteristics of insects for

flight control

The following chapter will discuss the visuomotor configuration and corresponding reflexes of insects. In

order to understand the flight control properties that insects have, the contribution of the organisation

of motion detection and processing is analysed. This includes labelling and understanding the visual

systems of flies and how the perception and processing is coordinated. As we know, insects base their

guidance and navigation on OF. While OF only gives us information regarding a speed and distance ratio

(chicken-and-egg problem [67]), insects are still able to navigate through unpredictable environments. Not

only is the visual processing responsible for this, but also the receptive field organization. The receptive

field organization initially dictates the sensitivity and selectivity by means of interpreting motion differently

across the eye’s surface. Explanations will consider the Drosophila, whereas if another type of fly is not

referred to explicitly.

6.1. Neuronal Diversity in Visual system
The processing of motion starts in the retina. After these brightness patterns have passed through an array

of photoreceptors, the information is processed by three neuropiles. These neuropiles are retinotopically

arranged and consist of the Lamina, Medulla and Lobula. The flies visual processing system is hierarchically

ordered, which means that more complex processing is applied sequentially at deeper layers of the brain.

Retina The first perception of a scene is captured by light sensitive cells. The resolution of the retina is

according to the number of ommatidia present on the surface that are spread over a certain angle width.

Sometimes these ommatidial rows are not evenly distributed over the retina. The female blowfly Calliphora

has a two times higher resolution in the frontal field than it has in the lateral part [68]. Each ommitidium

has overlapping photoreceptors that converge in groups of 6 into a single signal to the lamina (R1-R6

6.1B). Photoreceptors R1-R6 have found to be responsible for visuomotor behaviour [69]. It is thought of

photoreceptors R7-R8 to be involved with colour processing [70].

Lamina The Lamina is the first optic ganglia that receives optic information from clustered R1-R6

photoreceptors. It essentially amplifies the signals from the clustered photoreceptors, but narrows down

the dynamic range. It’s functioning could be compared to a high pass filter [71]. Lateral connectivity and

feedback connections appear to be present, though not as elaborate as the Lobula, since local signal

processing prevails.

Medulla The Medulla acts as a low pass filter. It performs a processing step between the ’brushed off’

high frequency signals from the lamina and Lobula, for the preparation of motion extraction 6.1A. Part of

the photoreceptors (R7 and R8) are directly connected with the outer part of the medulla. [72] has recorded

that orientation selective responses occur in different layers of the medulla. This can be regarded as the

first processing step in extracting features.

33
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Figure 6.1: Visual processing system of flies

Lobula Complex As mentioned previously, the Lobula is the neuropile with the most lateral and feedback

connections, which is necessary for recognizing and processing observed motion. The direction selective

processing properties allow for integrative sensitivity. The Lobula complex contains two separate regions

for flies, namely the Lobula and Lobula plate.

Lobula tangential plate cells As mentioned before, the Lobula can be divided into two: the posterior

Lobula and the anterior Lobula plate. In the Lobula plate, Lobula Plate Tangential Cells (LPTC) exist

that consist of wide field motion sensitive neurons. These neurons process a significant amount of visual

information and form a crucial link, which is a relatively short neuronal connection, between the perceived

motion and control of body movement. The LPTC is responsible for the link between witnessed motion

and body behaviour. An important part of the visual processing abilities is explained by the different

motion attributes that different neurons in the LPTC are able to detect and react to accordingly. The

following characteristics (or combinations) exist for the approximately 60 tangential cells in the LPTC [73]:

1) Orientation selectivity 2) A response or shift in firing rate as a result of a certain motion 3) The location of

where the output of the cell is connected to, being either to the hetero lateral, ipsilateral side or both and 4)

Whether the responses increase with the increase of a visual pattern or are only tuned for small motions.

6.1.1. LPTC orientation
A population of 60 visual interneurons are present on the Lobula plate. Most of these LPTC’s have extended

dendritic branches that possess input fields of distinct areas of the retinotopic arrangement. In these

dendrites a lot of preprocessing of the signals occur that are characterised as Elementary Movement

Detectors (EMD). Again, 4 categories of pre-processing groups have been identified [74]: 1) Heterolateral

LPTC’s that receive inputs from a large range of the receptive field 2) Direction selective small field elements

3) Centrifugal cells that combine the motion inputs from different sources in the receptive field which is

also linked with 4) Figure detection cells that receive small field motion elements from wide field area’s.

The output of LPTC cells have been found to be orientation sensitive (hausen 1982) and consist of

two groups, namely the horizontally and vertically sensitive cells. These cells have been linked with the

perception of self motion, though some might argue that this direction selectivity already occurs in layers

prior to the LPTC. The general alignment of the dendrites explains how this distinction is made.
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Figure 6.2: Picture adapted from [74] showing motion sensitivity across HS cells

Horizontal System Cells The Horizontal System (HS) cells can be divided into three groups namely

the HS North (HSN), HS Equatorial (HSE) and HS South (HSS) group [74] 6.2. The HSN, HSE and HSS

cover the dorsal third, middle third and ventral third respectively. The characteristics of these dendrites are

not equal, since the HSS-cells do not react to back-to-front motion as HSN- and HSE-cells record this.

The HSN-cell has found to be most active for motion slightly above the eye equator at an azimuth angle of

0− 15◦ [75]. The HSN and HSE group receive additional rotation signals from other (VS) heterolateral

cells that are thought to be used for identifying rotational movements.

Figure 6.3: Picture adapted from [76] showing motion sensitivity across VS cells and corresponding

selectivity to observing rotation for different axes

Vertical System Cells The Vertical System (VS) cells has 10 branches, starting with VS1 at the most

anterior position up until VS10, which is located at the most posterior area of the receptive field. As shown

in figure 6.3, VS1 is especially sensitive to vertical downward motion (pitch) in the frontal field. Additionally,

VS1 has some sensitivity for back to front motion due to the extended dendritic branches present in the

most posterior field. Other VS-cells cover right-handed and left-handed rotations between the axes located

in pitch and roll [77].
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Centrigual Horizontal cells The Lobula plate contains two Centrifugal Horizontal (CH) cells per hemi-

sphere, namely the dorsal CH (dCH) and ventral CH (vCH). Some do not regard CH-cells as a separate

system, since the CH-cells are dependent on HS-cells and not the other way around. The CH-cells are

more reactive to rotational than translational stimuli and are known to combine information from both eyes

[73].

Figure 6.4: Picture adapted from [78] showing motion sensitivity across CH cells. Note that in the caudal

equatorial part of the dCH response field shifts from horizontal to vertical. Although the image only depicts

one side of the directional sensitivity of the eye, symmetric response for both eyes can be assumed

6.2. Processing Characteristics and Sensitivity
After assessing the directional motion sensitivity, we could question how the directional sensitivity effects

the flow determination for ego-motion and subsequently navigation purposes. Not only does the distribution

of local sensitivity match certain OF fields, but within local motion sensitives, a distinction is made in

rotation- or translational-induced OF. As [74] suggests, some local motion LPTC’s have been optimised to

distinguish two types of OF, which are rotation- and translation-induced OF. Decreasing motion sensitivity

for translational flow in the ventral receptive field makes sense, since this area would mostly be dominated

by translational-induced flow. The distance between the insect and the ground is much smaller than the

horizontal distance to distant objects. If roll induced OF would be sensed by the ventral receptive field,

this OF would be dominated by translational-induced OF. The same accounts for sensing roll-induced OF.

Detecting ventral flow on the vertical side plane from the insect would be dominated by roll induced flows.

Translational flow estimation also shows higher sensitivity in ventral directed areas, as seen in the right

most image of the HSS-cell 6.2. This means that the upper 2 two thirds are responsible for observing

rotation induced flow. A mechanism is in place that compares roll induced OF, on the side where observed

vertical flow is dominated by roll movement. If there is a match, roll induced ventral flows are filtered out

to improve other navigation tasks. It is important to note that the HSS cells participate less in motion

integration, linking OF to a wider field of range. This allows us to deduce that the receptive field below the

equatorial horizontal line, predominantly detects ventral flows. HSE and HSN are responsible for sensing
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yaw induced self-motion. Additionally, it is believed that CH cells seem to indicate banked turns [78]. The

most important take away, is that yaw motion is not extracted from lower ventral regions. In [79] it is found

that can better regulate control for expansion and contraction patterns than rotational patterns. This is due

to the higher variance measured for wing torques. Flies are more sensitive to translational patterns than

rotation.

After analysing the directional sensitivity, it is interesting to observe that many vision applications do

not highlight that the OF estimation is effected by the camera orientation. In order to improve the quality of

sensed OF, the eye is selective to seeing certain OF directions at different locations on the retina. Figure

6.5 confirms this by showing the preferred rotational axis

Figure 6.5: Picture adapted from [74] using data from [77]. The figure shows the preferred rotational axes

of the VS-cells in the visual system of the Calliphora. A cylindrical projection of the right visual hemisphere

is assumed. The VS-cells in black are excited by right-handed rotation, and grey circels represent

left-handed rotation. The same rotations can be viewed in the lower right corner of figure 6.3. The

diameter of the circels illustrate the standard deviation of the preferred axis of rotation. The missing x axis

label is azimuth (◦)
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Evolutionary Algorithms

Evolutionary Algorithms (EA) are a robust optimisation method for difficult search environments. This is

mainly due to their flexible representation of decision variables and performance evaluation. EAs are useful

when the system dynamics are highly non-linear and the stochastic environment is poorly understood.

Most optimal control problems rely on a direct or indirect gradient to converge to a local optimum. When

the ill-behaved cost landscape or system dynamics are mathematically hard to characterize, EAs are a

robust tool for delivering a converging set of decision parameters. The latter characteristics have led to

many applications where an EA has been used for developing controllers [80]. EAs also allow for relatively

easy off-chip simulations, where hardware or other operational constraints can be implemented.

As there are many EAs with often additional diverse variations, the treated algorithms in this chapter

will only include algorithms that have fundamental differences in the mutation, selection and cross-over

operators. Variations mostly impose slight modifications to an operator, but these characteristics will not

be treated. First, the basic EA will be explained. Multi Objective Evolutionary Algorithms will follow, after

which Evolutionary Strategies will be discussed.

7.1. The Algorithm
Natural computing is an encompassing term which describes modelling methodologies inspired by naturally

occurring phenomena [81]. EAs belong to a class of probabilistic adaptive algorithms based on the

simplified dynamic principles of biological evolution [82]. An EAs approach to solving or optimizing an

objective function, happens by changing the decision variables to a certain extent and attempting a modified

set of decision variables to the problem domain. A certain set of different decision variables is referred

to as a generation. A generation evolves over time, thereby changing the decision variables, while the

performance of every set of decision variables is kept track of. Further evolutions are based on the

performances tested by generations in the past. As for the biological factor when considering EA, a

”Survival of the fittest” mentality is enforced. EAs belong to meta-heuristic search methods that discovers

a new set of parameters based on experience gained from previous sets.

The three main attributes of an EA, whose operators can be adjusted, are the capacities of selection,

mutation and recombination [82]. Populations of different decision variables are compared and depending

on their performance removed, retained or adjusted via mutations and cross-overs. A mutation in the

context of an EA means that a decision variable configuration is based on a previous version, while a

cross-over transformation combines either mutated or other versions of a set. Other global parameters

which can be altered for a different kind of preferred performance are the randomness in sampling methods,

establishment of population or the actual objective function itself. In order for an EA to perform accordingly,

the following properties are necessary for such frameworks: A design or representation of the parameters

evolved, the performance of a decision maker that must be tracked and an operator which can create an

offspring.

The reason that EAs are robust is that the exploration and exploitation features of the search algorithm

are adequately balanced. If this ratio is biased towards exploitation, for example, only local optimum

solutions might be found. [83] highlights that exploration and exploitation traits can not be assigned to a

single EA operator. A common belief is that exploitation is achieved by mutation and exploitation is done

38
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by selection. However, [83] points out that this is a misconception and that it is hard to address these

features exactly.

7.2. Multi Objective Evolutionary Algorithms
Up until now, the explanations given assumed a single objective to be optimized, however gross of control

problem domains focus on optimizing or solving for multiple objectives: Multi-Objective Evolutionary

Algorithms (MOEA). These objectives are often conflicting, which means that improving one objective

might deteriorate the other. A single optimal solution does not exist for all objectives simultaneously.

The relative performance against each objective must be compared. The Pareto front is composed of

solutions that compares the scores of different sets between different objectives. By plotting their relative

performance, a sufficient trade-off solution can be chosen. The set of parameters leading to the least

conflicting objectives is favorable. Often a substitute function is formulated that turns the vector optimization

into scalar optimization. Though, these classical methods that create a substitute problem have a harder

time identifying the conflicting objective traits.

7.2.1. NSGA-II
One of the most well known MOEA algorithms is the Non-dominated Sorting Genetic Algorithm II (NSGA-II)

[84] and it’s prior version, NSGA [85]. The core idea of NSGA is identifying the different Pareto fronts present

among the individuals. The non-dominated individuals are classified according to their performances

and withdrawn of the next ranking cycle. This process is repeated until a sufficient number of fronts

are identified. A random dummy value is given to the individuals present in different Pareto fronts. The

individuals located in a better performing front will always receive a higher score than individuals ranked

lower. A stochastic operator assigns a certain reproduction probability according to this dummy value.

In comparison to NSGA, NSGA-II has decreased computational complexity, which increases the number

of possible individuals and possesses a more elitism favourable approach. Non-dominated sorting might

be unfavourable, since the elitist solutions to some objectives are not used to construct a new generation.

NSGA-II addresses these issues by introducing a crowding measure and a binary tournament selection

operator for ranking the individuals and increasing likeliness of good performing individuals for reproduction.

Additionally, the computational effort decreases since much time is lost identifying multiple separate Pareto

fronts. By only performing a single ranking computation, time is saved.

Figure 7.1: The figure is adapted from [84]

showing the NSGA-II selection procedure. Figure 7.2: The figure is adapted from [84]

showing the crowding measure analysis.

In [86], the NSGA-II algorithm was used to find appropriate control points for a trajectory defined

by B-splines. By separating the path planner in a higher level offline and more precise online planner,

trajectories were found for an UAV. The result proved NSGA-II to be suitable for finding suitable trajectories

in a short time. The last part of the computational time would be used to refine the trajectory.

7.2.2. SPEA-II
The Strength Pareto Evolutionary Algorithm (SPEA) [87] uses a regular population and an archive of

individuals. The archive allows good performing individuals to persist over coming cycles if a good scoring

individual has a higher score than other individuals created in cycles after. It is useful to maintain an
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individual that might not have the highest score overall, but performs well in a certain objective for future

mutations. A fitness and strength value are awarded to every individual in the archive, which influences

future reproduction probability. In the mating selection, phase individuals of the current mutation and

archive are selected by a binary tournament. Consequently, this recombination and mutation replaces the

current population. An important aspect of the archive is that non-dominated individuals are appended to

the archive. If an individual is dominated or a duplicate exists, the individual is disregarded. SPEA-II [87]

uses a fine-grained fitness assignment to the individuals in the archive, although now the archive size is

fixed. When the archive can not be filled with non-dominated solutions, dominated individuals are added.

The exact scoring difference between SPEA and SPEA-II can be viewed in 7.3.

Figure 7.3: The figure is adapted from [87] and shows a difference in fitness assignment scheme between

SPEA and SPEA-II. An exponentially less fitness value is given to individuals on lesser performing Pareto

fronts.

7.2.3. Decomposition
TheMulti-Objective Evolutionary Algorithm based on decomposition (MOEA/D) is a MOEA that decomposes

a MOP into different scalar optimization sub-problems and optimizes these simultaneously [88]. Each

sub-problem only uses objective evaluations of neighbouring sub-problems. This is a difference with

NSGA-II since the non-domination sorting process requires the algorithms to know the evaluation of every

generation. Decomposing the multi-objective problem to different scalar optimization problems can be

done in different ways. The objective of each problem is a weighted aggregation of the objectives. A

sub-problem i is a close neighbour to a sub-problem j if the weight vector looks similar. In the most

simplistic set up of the MOEA/D, every sub-problem holds a single solution in its memory. This solution is

the best solution encountered so far. As mentioned before, the idea is that the algorithms generates a new

solution by only using solutions of it’s neighbouring sub-problems. If the new individual scores better than

the one before, the solution is adopted.

7.2.4. Differential Evolution
Differential Evolution (DE) is a population based direct search method. It is similar to a conventional EA,

but the mutation operator perturbs current individuals with a scaled difference of randomly selected other

individuals. The main advantage of such a mechanism is the excluding probability distribution that must be

sampled from for producing new individuals, as done in most EAs. Another advantage of DE is that only 2

parameters need to be set, namely cross over probability and differential weight. The differential weight is

multiplied by the difference between two randomly chosen individuals.

[90] used DE to find acceptable parameters for a SNN. Since an objective evaluation for this appli-

cation takes 30s-4min, an efficient learning algorithm was necessary. An EA was chosen to search the

discontinuous and multimodal optimisation landscape. DE has proven to be useful since the algorithm

has led tot the best performance and had the least amount of evaluations necessary. Though it should be

mentioned, as this is often the case, that a random search performs not too far off from EAs.
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Figure 7.4: The figure is adapted from [89] showing the ideal pathway of solution on the Pareto front to

follow.

7.3. Evolution Strategies
Evolutionary Strategies (ES) possess learning and adaptation features that have effect on the mutation

operator of an EA. The difference between EA and ES is that these self-adaptation mechanisms depend

on the course of step-wise improvements of the objective function.

The origins of ES do not lay in the effort of finding an optimum but came forth out of a concept that, using

a set of pre-determined rules, would adjust variables automatically after every consecutive experiment

[91]. Random perturbations of the variables and discarding of worse performing populations would lead to

improving solutions. These random perturbations would later become Gaussian distributed mutations. All

later versions of ES algorithms attain the latter two key concepts, which is slightly different from EAs. The

performance of ES algorithms depend on the internal parameters, i.e. pre-determined rules, that influence

the mutation strength.

A crucial difference to most EAs is that only newly generated populations are taken into consideration

for the selection pool. This means that parents, also when outperforming all off-springs, are not present in

the selection pool and are forgotten every iteration. For a condition of convergence to hold, the number of

selected parents must be smaller than the size of the selection pool itself. This implicitly means that the

optimisation will only occur successfully when at least one less performing solution is discarded for future

mutations

The mutation operator is influenced by the trajectory in the fitness landscape. Here, a mechanism

must be present that controls the variation operators, which are influenced by the performance trajectory.

As explained before, a key feature of ES is self-adaptation. The parameters that are dependent on

the objective function value and hence control certain statistical properties of the operators, are called

endogenous parameters. These parameters can learn and evolve over iterations. Exogenous parameters

are determined up front by the user and are kept constant during the evolutions. Furthermore, it is important

that the mutation operator is unbiased. That being said, the scalable nature of ES algorithms are due to

the continuous improvement scheme.

7.3.1. CMA-ES
For a wide spread of applications, the Covariance Matrix Adaptation ES (CMA-ES) algorithm has proven

to attain advantageous convergence properties over other ES algorithms. A key feature is the scaling of

the search space, increasing its robustness and reliability. Different versions have been developed over

time, however only the most common version will be elaborated on. As pointed out in [92] the first version

of CMA-ES had no real benefits for larger parallel applications since the performance for the number of

function evaluations decreases linearly with increasing population. This version increases the adaption

speed by introducing covariance matrix adaptation. The matrix calculation allows larger selection pools for

less necessary evolutions.

The basic form (µ, λ)-CMA-ES selects µ sets out of the λ sized pool to calculate an offspring for the
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g + 1 generation by:

xg+1
k = 〈x〉(g)µ + σgB

(g)D(g)z
(g+1)
k , k = 1, · · · , λ. (7.1)

where

B(g)D(g)z
(g)
k ∼ N (0,Cg)〈x〉(g)µ =

1

µ
Σx

(g)
i i b I

(g)
sel (7.2)

〈x〉(g)µ represents the centre of mass of the µ selected individuals of generation g and σ(g) is the step

size. The random vectors zk are randomly distributed with expectation zero and the identity covariance

matrix, in order to generate an offspring for generation g + 1 which is similar to calculating the centre of

mass as before:

〈z〉(g+1)
µ =

1

µ
Σz

(g)
i i b I

(g+1)
sel (7.3)

C(g)) is the symmetrical positive covariance matrix of random vectors B(g)D(g)z
(g+1)
k . B(g) has columns

that represent normalized eigenvectors of the covariance matrix, while D(g) is a diagonal matrix of which the

elements are eigenvalues ofC(g). The surfaces of the probability density functionB(g)D(g)z
(g+1)
k ∼ N (0,Cg)

created by the random vectors define the ellipsoid area where a new vector is drawn from. The exact

equations for the adaption mechanisms are too detailed to be treated here, but for a more detailed

description, please refer to [92]. It is important to know that the mechanisms consist of adapting the

covariance matrix C(g) and calculating an appropriate step size. The correlation between consecutive

steps is used to update the C(g) matrix and the step size uses the evolution path similarly but scales it with

D(g) to discard the dependence on the absolute size of the ellipsoid.

Figure 7.5: Figure shows the different sampling distributions in the CMA-ES algorithm. C is the positive

definite full covariance matrix. Adapted from [93]

7.4. Natural Evolution Strategies
ESs are a type of EA that possess adaptive learning properties. These mechanisms, discussed before, take

into account the trajectory of objective evaluations through the fitness landscape and adjust the mutation

operator accordingly. Natural Evolution Strategies (NES) take it a step further by basing parameter

adjustments solely on the stochastic returns of objective evaluations. Both ES and NES are regarded as

black-box algorithms, since the generic optimization scheme allows finding correlations and control policies

no matter the action frequency or delays (in the environment). Black-box algorithms are also regarded

as direct policy search methods. Where Reinforcement Learning (RL) algorithms learn by perturbing

the action space, allowing the agent to explore the environment, black-box algorithms don’t need any

exploration phase to understand the environment and produce adequate control policies. NES uses a

natural gradient to update a parameterized search distribution in the direction of higher expected fitness

[94].
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The main difference between ES and NES, is the representation of the population and how the mutation

and cross-over mechanisms perform. ES does not create a distribution for every single parameter. The

following will discuss how a stochastic objective evaluation signal regulates the weight modifications. In

7.4, F is the objective function F that is acting on decision variables θ. The parameters in NES algorithms

are represented by a population pψ(θ), where the distributions of parameters θ are indicated by ψ. A

population with a distribution of sampled decision variables pψ(θ) is applied to maximize the averaged

objective value Eθ∼pψF (θ). By perturbing the parameters, a distribution ψ is formed. The latter is regarded

as stochastic gradient ascent, which is comparable to how RL algorithms utilize the stochastic objective

evaluation provided by the environment.

∇ψEθ∼pψF (θ) = Eθ∼pψ{F (θ)∇ψ logpψ(θ)} (7.4)

The issue here is the possible non-smooth environment feedback or potential following discrete actions,

resulting in ambiguous objective evaluations wherefrom no adequate gradient can be determined. In

order to overcome this, the population distribution pψ is regarded as a multivariate Gaussian with mean ψ
and covariance σ2I. Now Eθ∼pψF (θ) becomes Eθ∼pψF (θ) = Eθ∼N(0,I)F (θ + σε). Therefore, the returned

stochastic objective evaluation will conceivably be an adequate approximation of a Gaussian. Now the

gradient function estimator for a stochastic gradient ascent becomes:

∇θEθ∼N(0,I)F (θ + σε) =
1

σ
Eθ∼N(0,I){F (θ + σε)ε} (7.5)

Equation 7.5 can be approximated with samples. In order to calculate a gradient in the direction of

the expected fitness, the population distribution pψ must be sampled. Where conventional EA and ES

have some ranking mechanisms in place, followed up by a mutation operator, NES combines the fitness

calculations to compute a gradient. The gradient is consequently multiplied with a learning rate to calculate

the eventual parameter adjustment. As mentioned before, a major advantage of such learning rules is

the independence of discontinuous environment dynamics or sparse actions of an agent. Additionally,

the learning process/characteristics and performance are independent of simulation time in contrast to

RL, where the learning is heavily influenced by the duration an agent spends in the environment. In other

words, black-box optimizers are invariant to the frequency at which an agent acts in the environment.

In order to decrease variance in the distribution ψ, mirrored sampling can be applied. This mean that

only pairs of perturbations are evaluated (ε,−ε). [95] also mentions that it is useful to apply some form of

ranking the stochastic returns. The latter removes outlier evaluations in each population to decrease the

possibility of reaching a local optima in the early stages of learning.

Similar to RL and other optimization control problems, a stochastic return reward is provided. A

difference is the performance evaluations out of these episodes/iterations for NES are used to estimate a

gradient for each decision variable. For conventional backpropagation algorithms, the gradient is computed

according to an error. For RL, policy iteration methods add noise to the action space, whereby the actions

are sampled from an appropriate distribution. As previously mentioned, NES adds noise in the parameter

space of the decision variables. For the policy iteration estimator, the variance will grow linearly with the

length of the sequence. For NES, the estimator is independent of the sequence length. Since the variance

is independent of the time steps simulated for, long-lasting (non-linear) behavioural effects are captured

better by NES.

Additionally, black-box optimizers are not sensitive to sampling frequency. Partially due to the gradient

estimate being invariant to the length of the episode, which increases robustness to the action frequency.

This is mainly due to the missing temporal discounting technique, which is necessary to be applied every

time/action step. [96] has also shown the robustness of the hyperparameter settings for NES, which didn’t

have significant impact on the final optimal policy. In contrast to RL, where a set of hyperparameters must

be tuned very precisely for a policy to converge.

Because of the different learning attributes and variable gradient estimation, the reward function for RL

and ES should be different too. Use of stochastic policies extracted from long sequences in RL, do not

allow the algorithm to converge to sub-optimal control policies first. For ES these sub-optimal strategies

are ’reached’ quicker than RL, however, have more difficulty completing/converging to the most optimal
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strategy, since ES ’finds’ every suboptimal control policy along the way. Because of the robuster features

black-box optimizers like NES have, and the ability to optimize a policy without knowing the exact internal

dependencies, NES could be a useful learning algorithm for SNN’s.



8
Towards Neuromorphic Engineering

Applications

Neuromorphic engineering is a class of brain-inspired computational methodologies that pursue the

understanding and adaptation of the fundamental properties of neural architectures found in mammals [97]

[98]. For researchers to be able to implement such technologies, we must transform and modify current

algorithms for neuromorphic applications. In order for these algorithms to compute with sparse data and

spike based-interactions, processing methods must change. Current algorithms and systems assume or

work with continuous data flows. SNN implementations are sparse and discontinuous. This is not only

regarded for the computational mechanisms itself, but for the whole system, since inputs (e.g. sensors)

and output (e.g. motors) might not adhere to neuromorphic properties.

The authors from [99] were the first to identify and quantify a mathematical model of a neuron into

Ordinary Differential Equations (ODE). Since then, many simplifications and adaptations have been made

while trying to maintain as much biological resemblance as possible. Simplifying these mathematically

defined relationships of neuronal dynamics is necessary for real world deployment and scalability. In order

to get the most advantage out of such systems, algorithms and hardware must cohere. The following

chapter will first cover the analysis and models for different neuronal elements. After, neuromorphic

hardware is discussed. Finally, some robotic applications are presented with a mix of different hardware,

learning rules and objectives that make use of the brain inspired computation methodologies.

8.1. Modelling
Before diving into the models that represent different elements of a neuronal system, a brief introduction is

given to the most conventional description of a spiking neuron, as described in [100]. A neuron consists of

three distinct elements, namely the dendrites, soma and axon, as can be seen in figure 8.1. The soma is

the main body of a neuron that performs the key processing step. If the sum of input signals delivered

by the dendrites plus the existing potential exceeds a certain threshold, an output signal is generated.

The soma sends output signals via the axon that is connected to other neurons. The signals referred to

consist of an electrical pulse. An emitted or received pulse does not change its form, which means no

information is encoded in the propagation along the axon. Information is only carried by the timing and

number of spikes. A sequence of spikes is called a spike train. A pulse travels via the axon to a synapse,

which connects an axon and dendrite. In a synapse, a chain of complex biochemical events are triggered

when an action potential arrives from an axon. After neurotransmitters have been released out of these

events and the transmitter molecules have reached the post-synaptic side, the membrane potential of the

receiving neuron will change. The membrane potential is the voltage difference u(t) between the interior

of a neuron and it’s surroundings.

45
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Figure 8.1: Neuronal elements

Positive and negative membrane potential changes are said to be excitatory and inhibitory, respectively.

An excitatory synapse will increase the likelihood of an action potential of the post-synaptic neuron, and an

inhibitory synapse decreases this possibility. While receiving no input, the neuron is at rest and remains at

a constant membrane potential urest. When the membrane potential has reached a certain firing threshold

value, a pulse (action potential) is exhibited that will travel along an axon and synapse to the next neuron.

Now that we have covered the basic elements of a neuronal system, the next section will break down

synapse, neuron and network modelling properties.

8.1.1. Synapse Models
Several synapse models exist, but differ according to their level of biological resemblance. Although

networks consist for a large part of synapses, the main benefits of brain like computations are not accom-

plished by the inner efficacy of synapses. The processing capabilities, i.e. capturing non-linear behaviour,

of bio-inspired neuronal systems are achieved mainly by the neuron’s dynamics and network topology.

While most use cases require a synapse to attain a simple and static multiplication of a value, the synapse

is often the most present and optimized element of a network. Likewise on a physical chip itself, where

synapses account for most space filled.

Increasing biological relevance would for many applications significantly increase implementation

complexity. Only if modelling biological behaviour is of foremost importance, synapse models would take

into account some elaborate form of plasticity or modelling of the chemical interactions such as ion flux

[101] and frequency dependent neurotransmitter release models [102](see figure 8.2).

A yet relatively simple and biologically proven phenomenon is spike timing dependent plasticity (STDP).

Synaptic plasticity is directly influenced by the exact timing of spikes, as described in [104] [105]. If a

pre-synaptic spike has led to a post-synaptic spike, an increase of synaptic strength would be witnessed.

Equally, for the reversed order which, in that case, would cause a depression. Neurons that are likely to

have contributed to the firing of an action potential of another neuron, are strengthened while inputs that

are less likely to have contributed are weakened. The temporal order of pre and post spiking is the most

important feature to STDP.

Multiple models have been proposed describing STDP behavior, such as in [100], which is written

down below:

∆t = tpost − tpre (8.1)

STDP (∆t) =

{
A+e

∆t/τ+ , if∆t ≥ 0

−A−e
∆t/τ− , if∆t < 0

(8.2)

When A+ > 0 and A− < 0, the synaptic efficacy is increased if the tpost spike has fire slightly after tpre.
Furthermore, τ is equal to the temporal learning window. Synapse plasticity is a phenomenon that not only
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Figure 8.2: The figure is adapted from [103] showing basic attributes of a synapse. Some applications

take into account models of ion flow and neurotransmitter frequency dependence.

signifies synapse behaviour, but also has been brought into relation with learning. The author in [106] is

the first to theoretically prove that the synaptic plasticity mechanism is used for learning and memory. Also

referred to as Hebbian learning, the learning rule that can also be described with the phrase ’Cell’s that fire

together, wire together with equation’ is shown as,

∆wij ∝ vi · vj , (8.3)

where ∆wij refers to a synaptic weight change of a synapse v that is located between pre-synaptic

neuron i and post-synaptic neuron j. Equation 8.2 refers to long term potation (LTP) and long term

depression (LTD) as mechanisms that underlie cognitive functions as learning and memory. Hebbian

learning will be treated further in the next section.

It must be added that there are roughly two types of synaptic plasticity models in terms of an input-output

relationship. Firstly, for rate based models, the average firing rate is important. Rate based networks have

been a popular approach for converting an ANN into a SNN. In such a manner, ANNs could be trained

using conventional learning algorithms (e.g. backpropagation). For spike based networks, more emphasis

is put on the exact timing of spikes instead of firing rates in general.

8.1.2. Spiking Neuron Models
As mentioned in the introduction, the authors in [99] were the first to analyse and describe neuronal

dynamics into four dimensional non-linear differential equations. As these equations could accurately

model biological neural systems, their modelling has been very popular for neuromorphic implementations.

Over the years, more models have been created and simplified, but these simplifications have led to a

decreasing level of biological plausibility. It is somewhat interesting and self-explanatory that computational

applicability is much taken into account. Depending on the task ahead, neuromorphic applications for

robotics require large scale networks that have computation time and power constraints, leading to simplified

biological models. The following list does not rank the discussed models according to popularity, but to

biological level of mimicry.

Although [99] is viewed as the most biologically plausible model, more models do exist that deliver

equal level of biological plausibility. Each giving various importance to modelling different neuronal

processes. Another biologically plausible model, is the Morris-Lecar model [107]. The model proposes a

two-dimensional description of the spike dynamics while maintaining non-linear terms in the differential

equations.
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The following category of biologically inspired neuronal models do not capture physical activities, but

rather try to model behaviour (also called phenomenological models). Additionally, conductance based

neuron models are hard to analyse, therefore phenomenological models are preferred for engineering

applications. The model of Fitzhugh-Nugamo, as described in [108], reduces the four equations of Hodgkin-

Huxley to two equations. This in turn significantly decreases the necessary floating point operations for

computations, which is beneficial for computational performance. The model of Izhikevich [109] has a

simple but biologically plausible representation that can produce bursting and spiking behaviours. The

model accounts for the activation of the K+ and Na+ ionic currents that are nested in the membrane

recovery variable.

The next category is for Integrate-and-Fire (IF) neurons. Although less complex and less biologically

realistic, enough complexity is realized to adhere to spatio-temporal properties. Within the IF category,

different levels of complexity exist that model different types of neurons. The most widely used IF model is

the Leaky Integrate-and-Fire (LIF) model:

τm
δu
δt (t) = urest − u(t) +R(i0(t) + Σwjij(t)), (8.4)

where τm represents the time constant of the membrane modelling the voltage leakage. The effect of

the forcing function on the membrane potential u is scaled by R. i0(t) is an external current influencing the

state and ij(t) is the input current that is multiplied with synapse j weight wj . If the membrane potential

reaches a threshold θ, a single spike is fired, after which the potential u returns to urest. Often a refractory

period follows in which a neuron does not record any activity.

Multiple LIF versions exist. Adaptive LIF adds a mechanism that protects a neuron from firing too

extensively by increasing the potential threshold according to the number of action potentials transmitted.

Another alternative LIF is the Adaptive Exponential LIF (AELIF) [110], which can produce accurate

predictions of a high detailed regular neuron model.

As mentioned previously, models that represent neuronal elements consider computational complexity

and biological plausibility. [111] has weighed both attributes by reviewing the necessary floating point

operations (addition, division etc.) and biological plausibility in general. Figure 8.3 shows the positioning of

neuron models according to biological resemblance and computational complexity of the aforementioned

models. It should also be noted that there exists a correlation between floating point operations and the

number of parameters present in models. Different kinds and more parameters are generally harder to

optimize for, which increases computational effort.

Figure 8.3: Computational effort vs. plausibility. Adapted from [111]. The blue dot depicts the LIF neuron,

which is not included in the original image.

The simplifications that have led to the LIF, are simplified around the membrane potential variable.

Spike Response Model (SRM) parameters depend on the last time step of firing an output spike. Instead of
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differential equations, SRM’s are configured using filters that express the membrane potential at a certain

time t as an integral over the past [100]. The most important difference is the included refractory period,

which is a certain time period in where the possibility of firing spikes is decreased. Regular IF models lack

biological plausibility here, as neurons are less likely to fire with equal incitement after the post synaptic

spike. This can be done in two ways: 1) Decrease the post synaptic membrane potential, ensuring that

input current decays quicker, and/or 2) increase the threshold for a short period of time after firing 8.4.

Both methods avoid direct firing to adhere to the refractory property of neurons [112]. This mimics the fact

that the ion channels remain more open just after firing, which is why equal incoming input currents have

less effect on the membrane potential.

Figure 8.4: Figure adapter from [100]. The figure shows the course of membrane potential ui(t) as a
function of time. The kernel η(t− tti) defines the form of the action potential. The figure shows how

refractoriness is accomplished by either making the threshold time dependent or the negative after-spike

membrane potential. Both influence the threshold for a short period of time. Current k at t′ lasts shorter
than when applied at t".

8.1.3. Network Models
Networks are populations of neurons that are defined by how synapses are connected. A topology, which

defines the structure of a network, models the interactions among neurons. As mentioned in [113], an

application’s basic requirements can make a certain network type more suitable than others. Furthermore,

the grouping of neurons is constrained by the hardware’s restrictions of certain topologies. Lastly, the

learning algorithm heavily influences the network of choice, since a certain type of synapse connection

can not adhere to a training rule. Single layer arrays can also be regarded as a type of network, such as in

[114] [115]. Nonetheless, these frameworks do not have the intention of pursuing a biologically feasible

application. Since the arithmetic operation dictates the shape of the network, these are not considered in

this section.

The most simple division for networks can be attributed to having any connections that propagate

impulses ’backwards’. This particular recurrent connection links a neuron with another neuron that is not

present further along the intended input to output direction for propagating information.

Recurrent Neural Networks (RNNs) are useful for sequential pattern recognition, since the internal

dynamics of such networks allow for capturing historic dependencies from the input. RNN’s have feed-

back connections in order to compute a new dynamical response that is history dependent. Reservoir

Computing (RC) is a computational framework that attains a high-dimensional computation space defined

by the randomly connected neurons in the reservoir. The high-dimensionality is reached by the large

number of spatio-temporal patterns that can exist in the reservoir. The problem is that training an RNN is

computationally expensive with backpropagation. Additionally, online recurrent learning is very complex

because it is hard to define which error can be attributed to a certain synapse. RC models omit the training

of network weights, assuming that the reservoir is able to capture enough and adequate information. The

only thing left to do is having to train the interpreting weights in the readout layer that are connected to
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random nodes of the reservoir. Two RC models have independently been proposed by [116] Echo State

Network (ESN) and [117] Liquid State Machine (LSM). The main difference is that ESN has rate-coded

applications and LSM is created to closely mimic the neural microcircuits in brains. The term liquid comes

from the probability of a pair of neurons being connected. The closer by these neurons are, the higher

chance of a synapse present between them. The echo state property refers to the initial conditions washing

out asymptotically as time advances

8.2. Neuromorphic chips
The spatial and temporal calculation properties of neuromorphic processing are much promising in combi-

nation with the speed and efficiency traits. Currently, these bio inspired algorithms are adjusted back-end

to work on Von Neumann [1] computer architectures. Bio inspired processing and computation software

would benefit more from neuromorphic chips that attain the same performance features as designed for

with neuromorphic computations. Subsequently, neuromorphic applications would like to make use of

hardware that directly supports and mimics biological neural functionalities. Only since the last decade

have substantial neuromorphic processors been produced and used.

Loihi chip There are 131072 LIF neurons present on the Loihi chip [97][118] that are partitioned over

128 cores in a spatial and asynchronous grid. Every core possesses memory to keep track of the synaptic

state and the routes of the flexibly divisible, 1024 neurons present in a core. The communication between

neurons occurs with 32-bit messages that are spike events, which contain the spike properties that are

to be shared among the cores. What makes the Loihi chip stand out from other neuromorphic chips

is the highly configurable synaptic memory due to its precision in assigning its weight. Additionally, a

significant delay of 63 time steps can be applied by the synapse. Next to that, plasticity rules can be applied

that change over time according to the spike activity. Three versions of the Loihi chip exist in different

configurations, namely the Kapaho Bay, Nahuku and Pohoiki Springs. The latter two are created for larger

neuromorphic applications, while the Kapaho bay is practical for small scale operations like MAVs.

TrueNorth The TrueNorth architecture [119] is not only functionally inspired by the brain, but also mimics

it’s mapping of a column. A cortical column spans from the top to bottom of the brain. The TrueNorth chip

consists of 4096 neurosynaptic cores, possesses 1 million neurons and contains 256 million synapses.

A single chip can attain a performance of 58 giga-synaptic operations per second and can increase its

performance by deploying multiple chips in 4 and 16-chip systems. The TrueNorth chip can attain different

neuron models and is able to store neuron connectivity and parameters on locally placed memory. Like the

Loihi, the TrueNorth chip allows a pseudo random number generator for different neuron model parameters.

For the design, a mix of asynchronous and synchronous elements were chosen, where the communication

and control circuits make use of so-called hand-shake protocols. These activate a core only when synaptic

inputs are received. The chip itself, which contains all the transistors, is 4.3 cm2 large and is implemented

on the IBM NS1e board as in [120] and [121]. The IBM NS1e board is approximately 15 cm wide and 10

cm long, wherefore an application on a size constrained MAV is less favourable.

Spinnaker The SpiNNaker [122] [123] is an ARM based processor that has been created to support large

parallel and bio inspired calculations that possesses a high degree of interconnection. More emphasis has

been put on the sorts of communication found in the human brain. The communication infrastructure is

optimized to carry numerous of small packets with less memory dedicated to model information. A design

compromise has been made for the requirement for deterministic operation, which means that sometimes

a packet is dropped to avoid a communication deadlock. Accurate sequential models can be maintained

by reimposing deterministic operation, however this evidently is not the most natural way of operating

the system. The SpiNNaker is able to run different LIF and Izhikevich models that can hold up to 1000

connected input neurons. Literature has shown that overall, less robotic control implementations of the

SpiNNaker chip exist. A robotic application includes the Neuropod [124]. The system makes use of a

central pattern generator that generates rhythmic patterns for certain movements. A hexapod robot and a

SpiNNaker processor are used to demonstrate the short delays the open-loop control loop acquires when

switching between different walking gaits.
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8.3. Learning
Due to the non-linear and non-differentiable nature of SNNs, learning performance lags behind the

performance achieved by ANNs with conventional learning algorithms. ANNs use differentiable and

linear activation functions, which makes it possible for gradient based optimization techniques to adjust

connection weights. When using such optimisation, it makes sense to stack layers of neurons (MLP),

because the derivatives calculated in one layer are propagated further back in the network. MLPs with

many layers are often referred to as Deep Neural Networks (DNN). High computing power enabled the

training of DNN’s, accomplishing identification tasks better than humans.

A major disadvantage of backpropagation is the lack of biological plausibility and employability on

neuromorphic hardware. Brain learning mechanisms allow learning while practising a certain task. The

brain can adjust synapse weights real-time, instead of having to wait for some sort of finite evaluation to

apply the necessary improvements. The learning rules that allow such real time adaptation are referred

to as online rules and provide on-chip parameter adjustments. The learning methods that require a

feedback signal every iteration are called offline methods and have much correlation with conventional

supervised learning methods. While conventional learning rules mostly are categorized by supervised and

unsupervised learning, though, a different division is opted for here. Since biological plausibility introduces

more learning aspects to keep in mind, the sections explaining the learning rules, are divided accordingly.

8.3.1. Supervised gradient-based Learning
As highlighted before, backpropagation uses error signals that are propagated through feedback connec-

tions to adjust synapses. A gradient can be acquired by minimizing a cost function L over a weight:

Wij ←Wij − η∆Wij , where∆Wij
δL

δWij
=
δL

δyi

δyi
δai

δai
δWij

. (8.5)

Here a = Σiwijxi represents the total input to the neuron, yi the output and η as learning rate. The

second term of the last part of the equation tells us which effect parameter changes have on the output of

the neuron. For backpropagation gradient descent, this term is calculated for every neuron in the direction

of the output prediction neuron to the input synapses.

Although this learning solution can not directly be applied to SNNs, it can be used for SNNs. By first

training a CNN with the same topology as the intended SNN will have, the CNN can after training be

transformed to a rate-coded SNN. The rates depict a certain magnitude. The previous allows conventional

known learning algorithms to be used while still retaining the advantages of neuromorphic processing.

[121] showed that a transformed CNN on the TrueNorth [119] chip was able to predict suitable motor

outputs.

Deep Learning Networks (DLN) have experienced major learning advancements, especially in capturing

long-term dependencies in sequential and temporal data. The combination of training RNNs with the

back propagation algorithm have significantly contributed to the achievements in for example speech

generation, but also in the continuous control domain [16] for MPC. A key feature of backpropagation

that facilitates the robust and accurate weight accreditation applied to the synapses, is due to the stored

historical states and outputs over time. However, due to complex non-linear models and environments, it

is hard to train a SNN offline (in batches) because there exists a reality gap between the simulation and

actual environment. Additionally, offline learning methods require storing and processing states, meaning

supplementary memory and processing power is essential, which in turn might harm the scalability of

neuromorphic control applications.

As mentioned in the introduction of this section, the non-differentiable nature of spikes makes it hard

to calculate a gradient. In order to deal with the discontinuous non-linearities, a surrogate gradient or

smoothing function can be introduced. Instead of changing the model, an approximation is used in order

to be able to use the proven gradient descent method. However, some adjustments must be made to a
in equation 8.5 since the activation function has changed. Smoothing functions allow the network model

to be continuously differentiable, while a surrogate gradient operates a continuous relaxation of the real

gradients [125]. Surrogate rules can be formulated in a forward and backward sense. The backward

method adheres to conventional backpropagation properties, while the forward method could be applied in

an online fashion. The latter methods refers to local update rules and is treated in the next section
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In [126], Spike Layer Error Reassignment in Time (SLAYER) learning rule is introduced. The authors let

the cost function be represented by spike timing and firing rates. This means that the algorithm considers

the temporal dependency of pre-synaptic and post-synaptic signals of a spiking neuron. In order to solve

the credit assignment problem, the local learning rule calculates a surrogate gradient. As SLAYER is a

pure offline learning algorithm, more suitability is pointed towards recognition and classification tasks. The

method did produce state-of-the-art results on the N-MNIST data set [127].

8.3.2. Supervised online learning
The credit assignment problem involves the challenge of assigning an appropriate weight to a single

synapse instructing a certain strengthening or weakening. The weight transport problem describes the

need of having two equal synapses in different directions in order to support back-propagation. Animals

do not possess feedback connections of any sort to provide for learning. Thus, conventional learning

algorithms are biologically not plausible [128]. Additionally, a major downfall of complex and expensive

learning algorithms is that these must be executed offline. An adapted environment is necessary in where

external hardware is necessary for calculating appropriate parameters. Our brains, however, are able

to accurately adjust parameters while simultaneously executing. Mammal brains are very adaptive. For

a similar case regarding offline training, the same scenario must be recalled and trained. Additionally,

changing an offline network’s topology will have unknown consequences and scales less good than models

capable of online learning.

Backpropagation algorithms exist that have taken inspiration from nature and are called Real-Time

Recurrent Learning (RTRL) methods. By approximating the same features as used in conventional

backpropagation in a feedforward manner, the issue as for online learning is solved. A downside to these

algorithms is the large memory necessary to keep track of every synapse’s activity while operating.

As will be explained more extensively in the next section, Hebbian learning forms a solid foundation for

biologically plausible learning. Hebbian learning is strictly regarded as unsupervised learning, but can be

used in combination with other learning signals. Supervised Hebbian learning refers to local modulatory

mechanisms being instructed by top-down teaching signals. The eligibility traces (measure of a neuron’s

activity) and reward signal ensure correct local adjustments in a network. Several algorithms are available

that practice these methodologies. SuperSpike [129] is a biologically plausible forward-in-time optimization

rule that focusses on aligning target spike trains. Locality refers to low-level activity in neurons to determine

their contribution to the output. SuperSpike avoids non-locality by randomly propagating error signals

from the output to hidden layers(Learning signal). Another learning rule that falls into this category is

e-prop [130]. e-prop has the simplest set-up and only uses eligibility traces and a top-down signal to adjust

weights. The learning process takes longer than most other methods, but approaches similar performance.

The learning scheme has been compared to others, such as backpropagation, to demonstrate temporal

processing capabilities.

Figure 8.5: Figure adapted from [131] showing cell-type-specific modulatory signals.

Similar to e-prop, the authors in [131] have a top-down learning signal in place, but add a local cell-type-

specific modulatory signal. The learning rule is regarded as Multidigraph Learning Rule (MDGL) and lets

the local modulatory signal be influenced by neurons around the ’updated’ neuron. Figure 7.5 shows the
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communication between different cells in a network for learning. 7.5ai shows how backpropagation uses

information of other synapses and neurons to calculate weight adjustments. For 7.5iii, the Truncated Real-

Time Recurrent Learning (TRTRL) allows dependencies within one connection step. These dependencies

are absent for e-prop and replaced by a diffusing modulatory signal for MDGL. Non-Local MDGL (NL-MDGL)

( 7.5V) includes dependencies that are ’further’ located than one connection step.

8.3.3. Unsupervised Learning
Hebbian learning refers to a neuroscientific formulation of a potential causal relation between two firing

neurons [106]. A synapse should be strengthened if the pre-synaptic neuron is ’repeatedly or persistently

taking part in firing’ the post-synaptic neuron. The causality suggested necessitates the pre-synaptic

neuron firing slightly before the post-synaptic neuron fires. Spike-Timing Dependent Plasticity (STDP) is a

spike-based formulation of Hebbian learning. STDP is a simple concept that links a network’s activity to a

synapse weight change (learning). Several learning rules fall under the term STDP that base their weight

adjustment on the timing between pre- and post-synaptic spikes.

As mentioned before, the firing of two near neurons allows for a learning rule to be formulated. If the

pre-synaptic neuron fires just before the post-synaptic neuron fires, the synapse between these neurons is

strengthened. A certain temporal threshold ∆t determines whether a post-synaptic neuron’s firing is due to

a pre-synaptic neuron’s activity. The strengthening of a synapse is called Long-Term Potentiation (LTP). In

the case of a pre-synaptic spike after a post-synaptic firing, it is regarded as Long-Term Depression (LDP).

LDP means that repeated spike arrival does not influence any post-synaptic action. If the firing recorded

does not fall within a temporal window, any correlation for synaptic adjustments are not recognized. The

adjustment of a synaptic weight ωij is according to:

∆ωij =

{
Ae

−(∆t)
τ ∆t ≤ 0 A > 0

Be
−(∆t)
τ ∆t > 0 B > 0

(8.6)

Here, A and B are constant parameters that can vary according to the learning application. τ is the
time constant that is equal to the temporal learning window. The time difference between a pre-synaptic

and post-synaptic spike is ∆t which stands for tpre − tpost. The learning rule is graphically visualised in

figure 8.6.

As [132] explains, networks that have been learned with the STDP rule experience other side effects

than only correct output spikes. STDP will make a neuron focus on the synapses of incoming spikes that

consistently fire early. The overall response latency of a network decreases by prioritizing signals that

propagate fast through a network. This is partially the reason that the brain is good at recognizing patterns.

If the input spike train fits a before learned pattern of spikes, the network will output faster.

Figure 8.6: Figure adapter from [133]. The figure shows the weight adjustments according to

∆t = tpre − tpost. The sequential order of firing will lead to an according weight change.
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Although STDP has shown great potential and results already, the learning rule by itself in the simplest

form, as shown in 8.6, is biologically not sound and in terms of training, unstable. The already strengthened

synapses have a higher probability of strengthening further, while weak synapses will experience LTD.

This will result in strong synapses to indefinitely reinforce. This implies that the current weight of synapses

also influences future learning.

As discussed before, different forms of the STDP rule exist. In order to solve for the previously

mentioned shortcomings, different modifications can be applied. Different kind of mechanisms can be

introduced to give the learning process some structure. The parameters that are involved in learning

can originate from neuronal activity or self defined user requirements. Two disadvantages arise from

introducing complementary mechanisms: 1) More complexity is added to the neuron and/or synapse model

and subsequently 2) implementations on hardware are computationally costly.

Additive and multiplicative STDP rules exist that stabilise learning. Additive rules necessitate a hard

weight constraint, while most multiplicative rules require some form of weight scaling, rate normalization or

some form of activity-dependent scaling. The work in [64] uses a weight scaling solution by implementing

a weight-depended exponential rule with pre-synaptic trace information. The learning rule is defined as:

∆wij = η(LTP + LTD) (8.7)

LTP = LTPw ∗ LTPX̂ , LTD = LTDw ∗ LTDX̂

LTPw = e−(wij−ωinit), LTDw = −e(wij−ωinit)

LTPX̂ = eX̂ij − a, LTDX̂ = e(1−X̂ij) − a

(8.8)

where η is the learning rate. The rule is split up in a LTP and LTD contribution of the weight adjustment.

Equation 8.8 shows the weight is scaled by the weight at the beginning of the learning step (ωinit) and
spike activity Xij .

In [134], weights are constrained by setting the total of all weights combined at a pre-determined fixed

magnitude. This leads to weight adjustments to certain neurons to be in favour of other neurons so that

some neurons will not be significantly larger than others. More examples of adapted STDP learning rules

can be found in [135].

As a conclusion of learning algorithms for SNN’s, one could conclude the following. The authors in [98]

suggest that a paradigm shift is required to understand how the hardware itself can be utilized to explore

and optimize training. Until now, learning algorithms have been applied on von Neumann architectures.

[98] suggests that a large part of choosing a learning algorithm for SNNs, can unfortunately not yet be

made by comparing performance, but leans towards the choice in level of biological plausibility. Therefore,

biological plausibility is an important part of the robotic application properties.

8.4. Applications
8.4.1. Encoding
A common decision that must be taken while considering the implementation of SNNs for a continuous

control system, is the encoding scheme. Since control systems mostly use a continuous numerical signal,

the signal must be converted to a spike-based encoding. The encoding methods influence the possible

future intelligence captured from the input. The two most common encoding approaches are rate coding

and temporal coding [136]. The encoding schemes will not be discussed elaborately, however, some

key observations are given as presented in [137]. First, it is noted that the appropriate encoding scheme

mainly depends on the application. This means that the encoding parameters have less effect on the

application than the encoding scheme itself. Furthermore, applications achieve higher fitness values if

the encoding scheme is more complex. Complexity refers to a combination of encoding schemes or a

higher resolution. This might not come too much as a surprise, though it is encouraging to realize that a

more complex encoding scheme does not lead to poorer results than a simple scheme. In general, a finer

encoded input will lead to a higher objective score. The authors in [138] developed a toolbox in MATLAB

and Python, that includes rate, temporal and population encoding schemes. Instead of focussing on the

performance, efficiency of the proposed schemes is investigated.
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8.4.2. Neuromorphic control methods
Applications of neuromorphic engineering for robotics come in different forms. Some applications focus on

transforming well known deep learning methods onto neuromorphic hardware (in order to make use of fast

en efficient NE properties above ANNs) and others try to stay as biologically sound as possible regarding

adaptation and learning. As [97] already signifies when developing the Loihi chip, a misconception arises

that NE is developed to improve current deep learning methods and algorithms. Accordingly, the design of

Loihi has favoured creating an understanding of the technology with the according fundamentals theory

over accelerating real world commercialized use. It is also important to note that for ANNs designated

hardware does not exist. SNNs have the advantage of hardware solutions that fit a solid approximation of

dynamics found in mammal like neuronal circuits.

The previous also shines through for neuromorphic control algorithms. Two main categories are

identified, namely: 1)a Use NE as framework to (partly) deploy or convert current control and sensing

methods and 1)b Build deep learning models and map these to neuromorphic dynamics. 2) Control

architectures inspired by insects, often making use of biologically plausible learning rules or applications

that fully harness the temporal and non-linear properties of neuromorphic networks.

The following section will highlight the use of neuromorphic processors for different flight control related

robotic applications. While we would prefer to dive into neuromorphic landing controllers, there are not

plenty of MAV applications. This means other robotic applications are considered in order to complement

the overview. Although neuromorphic engineering won’t be elaborately explained here, some examples

will be given. NE will later be treated in a separate chapter, as it deserves a broader introduction.

As briefly touched upon in the chapter introduction, bio inspired neuromorphic processors have different

advantageous properties for control systems. Not only does the framework have a high processing speed

and low power usage, the system is able to capture non-linear behaviour of a dynamical system. SNNs

consist out of a population of neurons that, according to the values of the neural parameters, are able

to output a control signal. The spatio-temporal calculation properties are beneficial for determining a

non-linear policy in highly uncertain environments. A subtle distinction can be made in the usage of these

neuromorphic processors.

The first category has adjusted the neuromorphic framework for being able to perform arithmetic

operations. This means that the neuromorphic architecture is used, ensuring speed and efficiency, but the

population topology and decision parameter values are set manually. No learning is involved by interacting

with the environment (training or evolving). [6] presents a SNN based PID controller for a one DOF control

task of an UAV. The architecture of a neuromorphic chip is utilized to perform arithmetic calculations 8.7.

Equally, for [115], though with extended capabilities, improving the controller on the Loihi [118]. [114] is the

most recent of the series of research conducted on realizing controllers on neuromorphic hardware that

include two separate SNN’s for vision and control. Here, the neuronal computing architecture is adapted for

traditional algorithms like the Hough transform [139] or PID control to run on. Both utilize neuronal arrays

in where the spatial aspect represents a scalar of a conventional algorithm in order for a neuromorphic

processor to be used. Additionally, for [114], an adaptation scheme is introduced that compensates for

static disturbances 8.8. Neuronal arrays are responsible for converting sparse representations to the

familiar PID terms, as presented in [6]. [140] also uses a rate coded neuromorphic implementation that

assigns a certain scalar to a position in a neuronal array. The calculated control error is not able to take a

range of values, but only the values assigned to in the array.

The second category includes controllers that fully make use of such bio inspired characteristics.

The control policy is build by letting the agent interact with its environment in a simulation or either the

real-world. The decision variables leading to the most optimal execution of a pre-defined task are used as

a control policy. The previous neuromorphic applications had the SNN only to function as a computational

architecture. However, when discussing AI based control, the bio inspired calculation properties are used

to create a certain behaviour or control policy. While prior applications already know beforehand which

neuron parameters they must attain to perform a certain arithmetic calculation, the optimum decision

parameters of the second category for a control policy (controller) must be learned. These values are

very hard to determine up front, since the exact system dynamics must be known in order to extract the

appropriate values of parameters. By simulation or real-world tests, it is tried to find the best decision

parameters in controllers to perform a certain control task. The following part will include SNN controllers

that constructed a policy fit for the agent and it’s environment.
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Figure 8.7: This figure is adapted from [6] and

shows the arithmetic operations performed on the

left. The right array shows possible errors the

control signal can attain.

Figure 8.8: The figure is adapted from [114]

showing adaptation scheme for minimizing effects

caused by constant disturbances

The authors in [141] have evolved SNNs for controlling a pure vertical landing of a MAV. The closed

loop controller uses the extracted divergence to control motor thrust for a landing. The algorithm of Lucas-

Kanade [36] is used to detect features and subsequently calculate divergence. Research showed that only

one neuron established the most preferable landing characteristics, as the projected motor command was

able to attain a wide range of thrust commands. The SNNs with a 1 or 20 neurons topology would output

only a couple of distinct motor thrusts. In [142], the accuracy performance is shown at which the intended

motor commands overlap with the simulated motor commands. A PD controller was implemented to bridge

the gap between the SNN set points and actual motor commands.

Another non MAV related robotic application is the robotic arm of [143]. Rate coded populations of

neurons represent the inverse kinematics of the robot arm to calculate the necessary motor currents.

These motor currents set the joints in the arm to reach a goal position. The neuromorphic application only

calculates the error, meaning a secondary controller (PID) is needed to reach the correct states. Other

robotic applications that are seen for neuromorphic implementations are the deployment of CNN to SNN by

converting traditional NNs to rate coded SNN’s. For [121], a CNN was trained to classify images into three

classes of motor output: turning left, right and moving forward. After training, the CNN was transformed to

run on neuromorphic hardware and was able to successfully navigate an RC car through in- and outdoor

environments.



9
Synthesis

The following chapter focusses on the most important findings and theories that are involved in completing

the research objective. To highlight relevant sections that answer different parts of the research question,

sections are summarized and presented in a conclusive form. The purpose of this study is to collect relevant

literature concerning neuromorphic control for biologically inspired and vision-based MAV navigation. Three

main areas were identified, namely: 1) Event-based optical flow for biologically inspired landing strategies,

2) Evolutionary frameworks deployable for different kinds of optimization problems and 3) The modelling

and challenges involved in neuromorphic computing for robotic applications.

9.1. Biologically inspired vision based navigation
Chapter 4 builds a foundation for the understanding of conventional control properties. The first section 4.1,

briefly summarizes available sensing techniques that would suffice for 3D navigation. Next, an overview

follows (section (4.2) that analyzes other current control algorithms effective for landings. However, not

all of these algorithms are directly useful for visual-based input. An idea is formed of the hardware

requirements, operation characteristics and performances. This allows us to compare future neuromorphic

control designs to other algorithms. After, intelligent control methods are introduced in section 4.3. These

methods use AI to learn the most optimal control behaviour. It is found that machine learning techniques

can be deployed for different elements of the control system. Sensing components, trajectory planning

and controllers can be trained and have proven to deal well with capturing non-linearities.

To gain insights on vision-based flight control, chapter 5 first discusses OF. Here, estimation techniques

are presented that are suitable for frame-based cameras. After listing these methods, the perceived

OF is linked to ego-motion by modelling in section 5.2. Derivations and assumptions are discussed that

relate flows to biologically inspired visual observables. These features can be used as control input, as

is shown in section 5.3, which elaborates on experiments using such strategies. Section 5.4 shows the

characteristics of event-based vision, as these are fundamentally different from frame-based perception.

The corresponding processing techniques are presented for determining OF with pulse-coded data flow.

Furthermore, event-based cameras are considered for different purposes. Following the visual observables,

chapter 6 elaborates further upon biologically inspired flight control. By assessing the spatial organisation

of the receptive field, an understanding is created of the effects of such organisation. It is shown that some

areas have a certain directional sensitivity that help insects determine more accurate OF.

9.2. Optimization frameworks using evolutionary mechanisms
The next chapter essentially analyses why many SNN learning solutions have used optimization schemes

based on evolutionary algorithms. Section 7.1 first covers the very basics of EAs. Then, section 7.2

presents popular MOEA, since many practical optimisation problems involve conflicting objectives. It is

found that the methods mostly differ in the assessment of separate individuals for future mutations. In

order to give future mutations some form of adaption, section ?? introduces ESs. The most well-known ES

is CMA-ES. CMA-ES has shown useful properties for evolving systems with discontinuous rewards and

in non-linear environments. The algorithm NES (section 7.4) takes it a step further and applies gradient

ascent, by means of sampling the evaluation function, to the decision variables. A short comparison to RL

is made, since the training and evolution method are both useful for continuous control problems.
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9.3. Neuromorphic computing for robotic applications
The last chapter essentially displays the design parameters that must be determined when a neuromorphic

application is pursued. These elements consist of models, hardware, encoding and learning properties.

First, section 8.1 shows how the basic elements of a neural circuit can be modelled. Synapse, neuron

and network models are showed that are based on the neural architectures found in mammals. SNNs,

which are regarded as the third generation AI, allow us to simulate the processing characteristics found in

the brain systems. Different models are shown that each prioritize different aspects, such as computation

complexity and biological plausibility. Section 8.2 discusses the available chips for simulating SNNs. The

application constraints dictate the choice of neuromorphic hardware. The next section discusses learning

schemes for SNNs. Training SNNs is fundamentally different from ANNs as spikes are non-differentiable.

In order to be able to use conventional learning algorithms, adaptions must be applied. Earlier, more effort

was put in transforming learning schemes for CNNs to SNNs to benefit from SNN properties, such as

speed and efficiency. Other solutions include biologically plausible learning rules that solve for the credit

assignment and weight transportation problem. It is evident that online learning algorithms are gaining

traction. Not only for closing the real-world gap, but also to maximize the on-chip performance without the

need of external hardware to guide the learning process. Furthermore, current advancements where SNNs

are implemented in control loops are discussed. The implementations are categorized according to the

level of using spatio-temporal properties. It is observed that many applications first implement other types

of control algorithms on neuromorphic hardware. Unfortunately, this does not unlock the full processing

characteristics of neuromorphic control.
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Part III
Closure
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10
Conclusion

Due to the limited on board computational resources of MAVs, the processing of visual input and the

consecutive navigational decision making require being efficient and fast. Considering the advancements

made in event-based processing and neuromorphic hardware, this research investigates the use of SNNs

for learning a complex 3D flight control task. A Literature Study is performed which established a reference

for the conducted research in the field and the accomplishments regarding integrating neuromorphic

hardware in real world robotic applications. Bio inspired feature extraction methods that insects use for

navigation during different flight phases were reviewed. Awareness is increasing on how the physical

organization and processing characteristics of insects contribute to the cutting-edge flight properties.

Inspiration for MAV’s is sought in the network architectures, visuomotor coordination principles and control

strategies of insects. Furthermore, learning methods were reviewed that showed the challenges linked

to learning non-linear and discreet SNNs. A simulation experiment has been established that uses a

SNN flight controller for 3D manoeuvres. After consideration of the visual input, it is decided to combine

divergence and ventral flow in a single signal. A separate heading error signal was encoded that gives

the controller a sense of the sign and magnitude of the heading error. NEAT-SNN was developed, which

combines the topology construction mechanism of NEAT and network parameter evolutions for SNNs.

The learning algorithm showed that only 80 generations of 50 individuals are necessary to succeed in

evolving and custom building a topology for a single network controlling states thrust T , roll ψ and yaw

φ. Although a single scenario has been trained for whilst optimizing the SNN, this strategy is operable

on different flight phases. Simplifying pitch control by adjusting it outside the SNN control system, shows

that accurate landings can be performed. The mechanism responsible for pitch adjustment is biologically

feasible as it is only using states known by the MAV without external information or sensing necessary. By

learning a neuromorphic controller for 3D flight, this work has shown that bio-inspired processing can be

used for complex robotic applications.
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11
Recommendations

Considering the restricted timeline for the research project, the scope of the project is limited to the topics

involved in successfully mapping visual inputs to flight commands. The methodology has discussed

multiple assumptions and decisions that, in the light of the Literature Review, might have led to other

possible research directions. Equally, the results of the simulation experiment will have uncovered areas

where potential gains can be made. The recommendations are split into visual features and the learning

algorithm for SNNs.

11.1. Visual feature extraction
While 3D flight control is achieved without controlling pitch θ, further research could focus on including pitch
in the output flight control angles. Pitch is not controlled by the SNN in the experiment in the paper, though

could be learned by using a different reward function. Since pitch should primarily be dependent on the

distance to an object, the objective evaluation could take into account the pitch setting while approaching

a target. As such, no outside control loop will be necessary, and every flight control command will be

neuromorphically controlled.

As explained in the Literature Review, it is common for vision-based MAV applications to de-rotate the

observed flows. This ensures that flows caused by rotation are disentangled from ventral and divergence

flows. Many MAV applications use all detected flows in their FOV for processing and motion extraction.

Insects, on the other hand, have shown to prioritize the detection of certain motion according to different

area’s in their FOV. The same motions are detected in different area’s of the field of view. Insects might

gain additional insights in these differences that result from biases or offsets that are unique to that area.

These differences could give the flows additional intelligence about, for instance, absolute distances. An

example would be using oscillatory motions to give the MAV a sense of the absolute distance to the

ground surface, as shown in [144]. Comparable to angle β in the paper, such variables could help the

determination of the MAV’s absolute positioning. Future research could focus on which feature to extract

in what area to learn additional navigational cues as input for a neuromorphic control system.

11.2. Learning SNNs
The species mechanism of NEAT currently focusses on the differences in synapse properties. The elements

that are taken into account are the accumulative weight differences at network level and number of disjoint

synapses. NEAT analyses every synapse separately, and therefore might attribute too much learning

progress to a single connection. The result would be that all individuals slowly adopt this synapse, which

is a successful method for smaller networks. However, if learning progress is a given, it would make more

sense for large scale SNNs to, instead, focus on higher order network properties as sparsity and neuron

parameters. In general, this research has experienced that the initial network parameters, as initialization

weights and neuron parameter values, highly dictate the speed and quality of the learning process. The

species mechanism should therefore put more emphasis on higher order network properties than individual

network elements. The latter description has much in common with the concept behind HyperNEAT [145].

HyperNEAT searches for optimal connectivity patterns by producing Compositional Pattern Producing

Networks (CPPN) that focuses on the spatial aspect of networks. In combination with general EA methods,

the quality of learning could be improved by linking the location of synapse or neuron generation to the

initialisation values. This could for instance mean that the neurons created nearby the input layer would
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have higher decay values to facilitate low pass filtering of visual information. As highlighted in the scientific

paper, a part of the learning algorithm consists of synapse generation between two randomly chosen

neurons. A large part of successful learning is attributed to synapse generation. Whenever a new synapse

is generated, the optimisation that follows starts converging from a new point in the cost landscape. This

might help the learning algorithm converge further, instead of being stuck in a ’local minima’. It would make

sense to create a connection between two neurons that have potential in improving the performance of the

SNN controller. A ’meaningful’ connection is created between two neurons when the post-synaptic neuron

is in need of information the pre-synaptic neuron provides. By intentionally placing the input and output

neurons in a certain order, the encoding neurons that are most likely to be used for mapping information

to the output neurons, should be placed closer to each other. By increasing the probability of a synapse

generation between neurons that are closer to each other, more ’meaningful’ connections will be made.

This will result in faster learning, as connections between neurons without correlation are less probable

to be created. As seen in the results of the paper, a large part of the network remains inactive. Inactive

synapses are the consequence of non-spiking pre-synaptic neurons, whose membrane potential does

not reach the threshold value. Instead of solely focusing on synapse creation, synapse pruning could be

added to the NEAT-SNN module. This mechanism would get rid of neurons that do not spike and therefore

only allow purposeful growth of the network, since all existing neurons would be active. Smaller networks

can be built for the same application.
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