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Figure 1: Overview of the implemented system showing the painting Figures in a Courtyard behind a House by Pieter De Hooch [Kre19];
The pixel selection is highlighted in red in the a) image view, b) embedding view and shown as the top spectrum in the c) spectrum view.

Abstract
Reflectance Imaging Spectroscopy (RIS) is a hyperspectral imaging technique used for investigating the molecular composition
of materials. It can help identify pigments used in a painting, which are relevant information for art conservation and history.
For every scanned pixel, a reflectance spectrum is obtained and domain experts look for pure representative spectra, called
endmembers, which could indicate the presence of particular pigments. However, the identification of endmembers can be a
lengthy process, which requires domain experts to manually select pixels and visually inspect multiple spectra in order to find
accurate endmembers that belong to the historical context of an investigated painting. We propose an integrated interactive
visual-analysis workflow, that combines dimensionality reduction and linked visualizations to identify and inspect endmembers.
Here, we present initial results, obtained in collaboration with domain experts.

CCS Concepts
• Human-centered computing → Visual analytics; Visualization systems and tools; • Applied computing → Fine arts;

1. Introduction

Digital, non-invasive imaging techniques provide new insights into
cultural heritage. Domain experts register and analyze properties
of materials present in paintings, in order to identify pigments
and guide the conservation and restoration of old master paintings.
Moreover, this information is relevant for art history to enable dat-
ing and establishing the authenticity of a painting [BPP05]. One
such technique is Reflectance Imaging Spectroscopy (RIS), a hy-
perspectral technique which captures the molecular composition of
the material being scanned as reflectance spectra. Experts look for
pure representative spectra, called endmembers [RDF*12], which
correspond to different pigments, allowing them to establish the

pigment distribution in a painting. Domain experts can manually
select pixels and analyze their spectra in order to find pigments,
but this can be a lengthy process. Automatic endmember selec-
tion [GMGM18; MBG*22] shows promising results for pigment
identification, but depends on matching spectra to a set of prede-
fined endmembers. Domain experts often need to identify wrongly
classified pixels and to help improve the automatic endmember
selection process. Further, there is limited comparability between
endmembers derived from different paintings, as other factors such
as aging of the painting, measurement batches, etc. have an impact
on the acquired data. Therefore, domain expert knowledge is cru-
cial in the analysis process.
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We propose a visual analysis system that keeps domain experts
in the analysis loop and provides semi-automatic methods for end-
member detection. This work is the first part of an ongoing design
study, conducted in collaboration with domain experts in order to
create a visual analysis workflow for painting analysis. In partic-
ular, here, we focus on the interactive extraction of endmembers.
The main contributions of this work are:

• a visual analysis workflow for interactive identification of end-
members in RIS data

• a prototype implementation of the workflow

While endmember selection is an essential part of the analysis
process, more than just molecular information is needed to char-
acterize a pigment or a combination of pigments and understand
the layered composition of a painting. In the broader scope of this
project, we aim to integrate the analysis of RIS data with other
imaging modalities, such as Macro X-Ray Fluorescence (MA-
XRF) which is commonly used to inspect the elemental distribution
in paint layers. [DDVV20; MTS*19]

2. Related Work
Visual exploration of high-dimensional data is a vast area in vi-
sualization research. An in-depth review is out of the scope of
this paper. A good overview is presented in the survey by Liu et
al. [LMW*17], while Brehmer et al. [BSIM14] present an overview
of typical applications, domains, and corresponding tasks.

Recently, high-dimensional imaging data has become more
widely available in several application domains, including cultural
heritage, and consequently a number of visual analysis approaches
are available. Grabowski et al. [GMGM18] use t-SNE [vdMH] as a
base for clustering pixels and then automatically identify pigments
by matching spectra to predefined endmembers representing differ-
ent pigments. Pouyet et al. [PRK*18] compare t-SNE to PCA and
MNF for visualizing hyperspectral data of paint samples and ob-
tain the best results for pigment identification with t-SNE. Alfeld et
al. [APMW18] applied t-SNE on RIS and MA-XRF data. With the
help of the t-SNE embedding visualized in a scatterplot, they were
able to identify most of the pigments present in the wall paintings
of an Egyptian tomb. We build on these developments as one aspect
of our proposed workflow.

Hyper3D [KRF*14] is a visualization system designed to aid art
conservators, focused on hyperspectral volumetric data. It provides
a pixel-wise reflectance spectrum view for detail exploration of the
data. We follow a similar approach of developing an integrated sys-
tem, but focus on paint layer information revealed by RIS where the
spectrum view offers a broader range of analysis options for end-
member identification.

3. Requirements Analysis
In order to establish the requirements for the system, we conducted
a series of meetings with collaborating imaging-science experts
from the Rijksmuseum, Amsterdam. After discussing their general
data analysis needs, we conducted a field study consisting of semi-
structured interviews and observed their current workflow for ana-
lyzing RIS data. After implementing our initial prototype, we have
deployed the software with our partners and have conducted regular
follow-up meetings to identify issues and provide updates.

https://www.overleaf.com/project/62c96f03f5a459ae819940dd

Data Reflectance Imaging Spectroscopy (RIS) is a hyperspec-
tral imaging technique that goes beyond standard photography by
measuring continuous spectra of reflected light for each imaged
pixel [APMW18]. Depending on the acquisition hardware, differ-
ent ranges of the light spectrum are captured. For example, VNIR
(visible to near-infrared spectroscopy) cameras capture the range of
400 nm to 1000 nm and SWIR (short-wave infrared spectroscopy)
cameras capture 1000 nm to 2500 nm. The data is stored as a vol-
ume where the x- and y-dimensions correspond to the spatial ex-
tents of the data and the z-dimension to a discrete sampling of the
spectral information. In the following, we interpret the spectral in-
formation as a high-dimensional space and thus the data at each x,y
position as a high-dimensional pixel.

Throughout this paper, we use a VNIR dataset (covering roughly
400 nm to 900 nm) of the painting Figures in a Courtyard Behind
a House by Pieter de Hooch [Kre19]. The data cube consists of
1174× 1756 pixels with a pixel size of roughly 0.35× 0.35 mm2.
Each pixel represents a sampling of the spectral information with
2.54 nm, resulting in 200 dimensions.

Current Workflow The current endmember extraction workflow
of our collaborators is based on a combination of tools and scripts
around the geospatial analysis software ENVI [L3H]. They start
by selecting different areas in the painting in an image viewer and
then inspect the corresponding spectra in a lineplot. Once they have
an initial overview of the data, they manually and/or automatically
define endmembers using the Spectral Hourglass Wizard (ENVI-
SHW). Lastly, they create endmember maps by plotting points with
similar spectra to an endmember using the Spectral Angle Map-
per [DM00]. At this point they can look at the maps and reason
about the used pigments.

Task abstraction Based on the data and observed workflow, we
have identified the following tasks that the proposed system must
support. The user

T1: identifies different endmember candidates in the high-
dimensional image data,

T2: compares and filters identified endmember candidates based
on their spectral information, and

T3: explores the spatial distribution of pixels relating to identified
endmembers and mapping parameters.

4. Proposed Solution
Based on the requirements analysis (Section 3), we created the de-
sign and implemented a prototype of our proposed system that we
refined during follow-up meetings with our collaborators.

4.1. Design
The proposed system is shown in Figure 1. It consists of three main
views to support the tasks described in Section 3. All views in the
system are linked to enable comparison across all views.

4.1.1. Image View

The first view (Figure 1a) is an image view. The view can be used in
different modes to support tasks T1 and T3. For probing the image
for potential endmembers (T1), the view is used to show the orig-
inal image data. Since showing the full spectral information is not
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feasible on an RGB-screen, we provide different modes; if a reg-
istered photograph of the painting is available, this can be shown
directly. Additionally, the user can select any wavelength to show
the corresponding scalar field, optionally as false colors using a col-
ormap, or select three different wavelengths and map them to the
red, green, and blue channels of the screen. Figure 1a shows an ex-
ample using three wavelengths in the visible red, green, and blue
spectra, inidcated by the vertical lines in Figure 1c, emulating a
photograph. However, channels can easily be remapped, for exam-
ple to show information of the otherwise invisible infrared part of
the spectrum. The user can interactively make selections of pixels
in this view and visualize the corresponding spectra in the spectrum
view (Section 4.1.3).

Additionally, the image view is also used for T3. Any created
endmember map (Section 4.1.3) can be shown in the view, either
individually or as a combination, e.g., by mapping up to three dif-
ferent maps to the RGB channels (Figure 2).

4.1.2. Embedding View
Figure 1b shows the embedding view. We use t-SNE [vdMH] to
create an embedding of the original VNIR data. To support the
calculation of t-SNE embeddings on more than two million pixels
we use a GPU-based implementation of t-SNE [PTM*20]. Every
point in the embedding corresponds to a pixel in the image, where
points with a similar spectrum are placed close to each other. We
use the cosine distance to calculate the pairwise distances between
the discrete spectra. The t-SNE view is used to identify groups of
similar pixels that can serve as potential endmembers (T1), with-
out relying on the visual inspection in image space. The user can
probe the embedding via a selection and visualize the correspond-
ing spectra in the spectrum view (Section 4.1.3). This task can also
be supported by clustering the embedding using Mean Shift clus-
tering [HPvU*16] and using the resulting clusters to derive end-
members.

4.1.3. Spectrum View
The third view (Figure 1c) is the spectrum view that is implemented
as a lineplot, where the x-axis represents the wavelengths in nm and
the y-axis represents the measured reflectance. The view shows the
mean spectrum of any selection of pixels from the two other views
as a black line. In addition to the mean, it is possible to visualize
the standard deviation of a spectrum as an area around the line (e.g.,
colored areas in Figure 2). When the user has identified a suitable
spectrum for an endmember, the selection can be made persistent

Figure 2: Endmember maps corresponding to three endmembers.

in this view (T2). Persistent spectra are added to a list view and can
optionally be visualized in the lineplot with a user-defined color.

To allow further inspection of the image, based on the spectra,
the user can set the wavelengths for coloring the image view di-
rectly in this view. Three vertical lines (Figure 1c) represent the R,
G, and B channels of the image view and can be dragged along the
x-axis to any combination of interest. For example, the user can set
the values of the three lines in the near-infrared range to identify
areas that are perceptually similar, but differ in their spectral com-
position. The change is reflected immediately in the image view
so that the user can gradually see how their wavelength selections
influence the colors in the image.

As described above, when a selection is made persistent to cre-
ate an endmember, it is added to a list view on the side of the spec-
trum view. From this view, the user can toggle the creation of an
endmember map for each item, using the Spectral Angle Mapper
(SAM) (T3). SAM computes the cosine distance of the endmem-
ber to all pixels in the image. We choose SAM based on the current
workflow of our collaborators, but optionally provide mapping us-
ing the Spectral Correlation Mapper [DM00; DGH14]. For either,
the distance is typically thresholded to create binary maps, where
similar pixels are set to true and all others to false. Figure 2 shows
an image combining three endmember maps, obtained with SAM,
using the R, G, and B channels.

4.2. Implementation
We implemented our workflow in a plugin-based framework for
high-dimensional data analysis. The system is implemented in
Qt/C++ and visualizations in OpenGL and D3 [BOH11], respec-
tively, according to the required performance. Upon completion of
the full project, we plan to release the tool as open source.

5. Preliminary Results
We have deployed an initial prototype of the implemented system
with our domain expert collaborators. Based on their feedback, we
have gone through several iterations to add functionality.

Our collaborators have successfully identified endmembers us-
ing the system in initial testing. In their early feedback, they were
enthusiastic about the integrated analysis workflow. The linked
views with real-time selections make the analysis easier and offer a
better understanding of the data.

In this first phase, the focus was on interactive, manual explo-
ration of the data. Initial experiments lead us to believe that clus-
tering based on the t-SNE embedding can further improve the pro-
cess and potentially also replace the SAM computation. We use the
same cosine distance metric as SAM when computing the pairwise
distances in t-SNE. As a result, obtained clusters contain points
that are similar to an endmember in an SAM map. Figure 3 shows
a visual comparison of an endmember map created using SAM and
one based directly on a cluster extracted from the t-SNE map. The
points belonging to the endmember cluster (Figure 3b) are high-
lighted in red and the points selected through SAM for the same
endmember (Figure 3c) are highlighted in blue. Based on a thresh-
old angle, SAM selected dissimilar points, which are scattered in
other clusters than the endmember cluster (Figure 3d) and which
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Figure 3: Comparison of t-SNE cluster (red) and endmember-based (blue) map.

lead to a larger standard deviation of the SAM points visible in blue
in the spectrum view (Figure 3e). t-SNE offers a more automatic so-
lution than SAM as it does not require predefined endmembers or
setting threshold angles for identifying similar spectra. We plan a
structured comparison in future work.

6. Conclusion and Future Work
We presented an integrated, interactive system and analysis work-
flow for endmember identification and mapping. Initial results and
feedback from our collaborators show that the system improves
their current workflow. As part of our research, we want to fur-
ther develop the system to allow for the combined visual analysis
of MA-XRF and RIS data. In particular, we aim to provide means
to identify points with similar elemental composition and study
correlations between the two data modalities. Further, it would be
interesting to explore ways to model pixels as a combination of
endmembers using spectral unmixing [GTG21] as pigments can
appear in a painting as such mixtures.
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