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Preface

This thesis paper will be centered around the design and creation of a Brain Computer Interface (BCI)
that is controlled through electroencephalogram (EEG) signals based on a Motor Execution paradigm.
This project forms the Bachelor Graduation Project which is done in a group of 6 people. The group is
further divided into 3 subgroups being data collection, machine learning and interface design. The goal
of this thesis will primarily focus on the measurement and data collection process within the pipeline of
the whole system. We would love to express our gratitude to Bori Hunyadi for supervision and guidance
during our project. Thanks to our colleagues: Akram Chakrouni, Adnane Acudad, Ilyaas Shousha and
Oussama Seddouki for their continued collaboration during the project and we sincerely hope that this
project will be pursued further after this thesis.

Abhay Shenoy, Niels van Duivendijk
Delft, July 2024
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Abstract

The main goal of this project is to utilize a commercially available OpenBCI Ultracortex IV for the mea-
surement of Electroencephalogram(EEG) signals. A pipeline consisting of preprocessing, classification
and extraction is employed to transform the motor execution EEG signal into a singular Left or Right
output. This output is then further displayed on an Interface that offers the option to either calibrate or
play a simple game.

The Ultracortex and relevant software were used to determine the sensor layout, with the placement of
the sensors focused on areas which exhibited high cortical activity duringmotor execution. Experiments
were strategically designed to optimize our chance of successful readings and OpenVIBE was used
in conjecture with preprocessing filters to save the raw and filtered data which was further sent to the
Machine Learning group.

The collected data was analyzed through Spectrograms, Power Spectral Density(PSD) and Event-
Related Desynchronization/Synchronization(ERDS) plots. The analysis aimed to confirm whether the
desired activity occurred and whether the observed patterns resemble those documented in other re-
search papers.

The data from the headset is live-streamed to the interface via Lab Streaming Layer(LSL) where it
undergoes further filtering before being sent to the Machine learning group. This process was done
through python libraries which then allowed for efficient and effective communication between the other
groups.
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Nomenclature

This thesis incorporates a variety of abbreviations and specialized terminology. Table 1 shows a brief
overview of the abbreviations in this project and Table A.1 shows descriptions of the jargon words that
may be encountered in this thesis. Please refer to the these tables for clarification on any unfamiliar
terms or abbreviations.

Abbreviations
Abbreviation Definition
BCI Brain Computer Interface
CAR Common Average Reference
EEG Electroencephalogram
ERD Event Related Desynchronization
ERDS Event Related Desynchronization/ Synchronization
ERS Event Related Synchronization
ERSP Event Related Spectral Perturbation
FFT Fast Fourier Transform
FY Fourier Transform
ICA Independent Component Analysis
Mark IV OpenBCI Ultracortex Mark IV
ME Motor Execution
MEG Magnetoencephalography
MI Motor Imaging
PSD Power Spectral Density
SNR Signal-to-noise ratio
SSVEP Steady-State Visually Evoked Potentials
STFT Short-time Fourier transform

Table 1

Descriptions
Definition Description
EEGBrowser A graphical interface for viewing EDF files
EEGLAB A MATLAB based toolbox for processing and viewing recorded EEG

data
Epoch A partition of a timesignal to be evaluated and/ or classified
OpenBCI Graphical user interface for EEG data streaming
OpenVIBE A software platform for designing and testing BCI’s

Table 2

v



1
Introduction

The goal of the project is to develop an Electroencephalogram (EEG) based Brain-Computer Interface
(BCI) that utilizes motor execution signals generated in the brain. Given the complexity of the project,
it has been logically divided into three components: data collection, machine learning, and the inter-
face. This report will detail the headset used, the choices made on pre-processing, and the process
of streaming data to the interface. The machine learning model will extract common features and de-
velop a model capable of accurately predicting left and right motor execution movements. The interface
group will dynamically implement training and viewing screens to visualize the EEG signals and play a
collection of simple games.

For a comprehensive understanding of this project, it is important to understand the concepts of EEG
and BCI. EEG signals, or Electroencephalograms, measure electrical activity in the brain. EEG sig-
nals are hard to read as their magnitude is of a few microvolts and must pass through the scalp and
hair. Brain-computer interfaces (BCI) are a current research topic where signals from EEG or Mag-
netoencephalography (MEG) are converted into computer-readable instructions. There exist several
BCI-related paradigms such as Motor Imagery (MI), Steady-State Visually Evoked Potentials (SSVEP),
or P300 [20]. The chosen paradigm for the report is a derivation of motor imagery called Motor Execu-
tion (ME) in which control of a limb evokes an EEG signal. This paper [12] about finding new features
in motor-related brain activity explains that motor tasks blocking of ongoing activity in the µ-band (8Hz
– 13 Hz) of an EEG record, i.e., Event-Related Desynchronization (ERD) takes place. To further clarify,
motor execution is less affected by BCI illiteracy[4], a phenomenon in which test subjects struggle to
produce distinguishable signals. Motor execution also produces much more robust and identifiable
signals as compared to motor imaging hence the choice for using it[19]. Examples of integrating the
EEG paradigms in a BCI would include left and right movements for motor execution. Different EEG
Paradigms also have different frequency bands where patterns and movements are most observable.
For motor execution, the most common frequency bands that will be considered are the alpha and beta
bands, which are frequencies from 8Hz - 12Hz and 12Hz - 30Hz. The moment when a stimulus or task
is presented to a user is called a stimulation with expected differences from non-event-related data from
varying brain stimulation. For theMotor execution paradigm, expected behaviors include Event-Related
Desynchronization (ERD) and Event-Related Synchronization (ERS). A decrease of power from the
baseline (ERD) followed by an increase (ERS) should be observed when trials are averaged. EEG
signals read by headsets also are especially susceptible to interference with some common sources
of artifacts including movements, eye blinks, cardiac movements, muscle movements, and power-line
noise. These interference sources reduce the overall signal-to-noise ratio of the signal and therefore
need to be further addressed. Muscle movements and cardiac artifacts occur at a frequency range of
above 35hz which is not of relevance in the alpha and beta band, the bandpass filters for 8Hz - 30Hz
will therefore remove this interference.

The project is conducted using a pre-provided OpenBCI Ultracortex Mark IV headset, which is used
in tandem with OpenVIBE to process and collect data to be sent to the Machine learning group. The
collected methodologies and EEG signals will be analyzed to determine the quality of our data.
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2
Requirements

To ensure the success of the project, a set of requirements has been established to serve as a bench-
mark. Each subgroup within the project has its own unique set of requirements. To maintain coherence
across all subgroups, a set of global requirements has also been defined. The group requirements are
defined based on the target audience of gaming users with possible future applications in healthcare.
The requirements, which are a mix of qualitative and quantitative will aid in more precisely defining the
goals for the project based on the target audience.

2.1. Group requirements
• The delay for the Machine learning model to decision should be less than 0.75s.
• The classification accuracy must be at least 75%.
• The headset to data receiving latency must be less than 0.10s.
• The machine learning and streaming must be done in Python to ensure easy compatibility.
• The final demo must allow for a user to wear the headset and make left/right decisions in a game.
• The final demo must be able to train and fit new user’s data to a refitted ML model.
• The group must use an OpenBCI Ultracortex mark IV to stream the read EEG data.

The general requirements are kept simple to ensure that the subgroups have the most ability to imple-
ment features while still being able to cohesively integrate.

2.2. Subgroup requirements
• At least 3 testing experiments should be created to best extract EEG data from the test subjects
for eye blinks and motor execution.

– Create repeatable OpenVIBE scenarios that would allow for others to also gather data.
– Create a testing document to show steps that must be taken for headset setup and data
acquisition.

• There must be at minimum n=200 trials for 1 test subject to best work for a single person.
• Electrode layout should be chosen in a manner that spatial patterns for blinks show a 3x increase
in signal amplitude over baseline.

• Electrode layout should be chosen in a manner that spatial patterns for motor execution show a
2x increase in signal amplitude over baseline.

• Filter the data from the EEG signal using a bandpass or high pass filter to extract relevant fre-
quency components which should be sent to machine learning.

• The latency of the system from streaming the data from the headset to Python after filtering should
be less than 170 ms.

2



2.2. Subgroup requirements 3

– The latency for the signal acquisition on Python should be less than 70 ms.
– The latency for the signal filtering should be less than 100ms.

• The output data of the preprocessing subgroup should be saved in a .EDF file format with respec-
tive stimulation annotations.

• Filtering and streaming should be able to be performed on Python or using a Python library to
allow for easy integration with the other subgroups.

The goals were internally set as something that was practically achievable by the end of the project, the
decisions taken to implement these goals and whether they were achieved will be further elaborated
throughout the document.



3
Hardware overview

The implementation of BCI necessitates the use of a device that can capture EEG signals from the brain.
This chapter will elaborate on the specific hardware utilized during the project for the experiments, as
well as various design design decisions regarding the hardware. A comprehensive overview of all
hardware connections is visualized in figure 3.1.

Figure 3.1: Diagram of the hardware connections for an 8-channel cyton Ultracortex Mark IV headset

3.1. Ultracortex
In order to capture EEG signals, our group was provided with an OpenBCI Ultracortex Mark IV headset.
The Mark IV uses a Bluetooth connection for connecting wirelessly with a USB Bluetooth receiver.
This receiver is plugged into a computer, enabling data reading through either dedicated software that
accesses the USB port or custom-coded programs developed in an external coding environment, such
as Python.

3.2. Reading EEG Signals
When a large group of neurons in the brain synchronously fire, they produce electric fields. Each
electrode consists of 12 spikes, also called combs are made of a conductive material called silver
chloride. When an electrode is placed firmly against the scalp, it will pick up the electric field created by
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3.3. Electrode Layout 5

the group of neurons. The signal, albeit weak and typically within the range of a couple of micro-volts,
is then sent to a channel of the Cyton OpenBCI Board which will sample the signal with a sampling
rate of 256Hz. The cyton board will in turn send the digital signal to a computer for processing. The
detailed workings of the board as presented on the OpenBCI website [3].

3.3. Electrode Layout
The Mark IV that the team used can connect a maximum of 8 channels to the electrodes, so the team
was tasked to find an optimal electrode layout for an eight-electrode configuration. It is important to
base this layout on the paradigm that will be experimented with, in our case motor execution. It must
be known what area of the brain activates during a motor execution event. The paper [5] shows ex-
periments with motor execution where a majority of cortical activity is present. It therefore becomes
clear that C3 and C4 are the most important sensors for detecting motor execution. FP1 and FP2 are
also important placements as these are used to detect blink artifacts [1]. Section 6.2 and section 7.2
elaborate more on blink artifacts and their detection. With these four sensor placements being certain,
the other four sensors should be placed strategically for the optimal detection of motor execution. An
overlay of the brain activity from paper [5] with the helmet shows approximate locations that could be
good for detection. This results however in an asymmetrical layout, while other sources suggest sym-
metrical brain activity for motor execution. A 2d topographic map of the brain during motor execution is
overlaid with a photo of the headset to gauge sensor regions that would likely experience the most cor-
tical activity, given the variance in motor execution trials by subject a rough mapping of areas was used
to gather sensor locations. Figure 3.2 confirms that a majority of the activity during motor execution
occurs around the C3 and C4 electrodes. This figure is only shown to get a general sense of where the
brain is active and should be taken with a grain of salt as this shows a likely 2D representation of the
cortex combined with a 3D top-view of the Mark IV. Figure 3.3 then shows the final electrode layout that
the team chose for the experiments. Their connections to the channels of the Cyton OpenBCI board
are shown in table A.1.

Figure 3.2: An overlay of the brain activity from paper [5] with the Mark IV
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Figure 3.3: The final electrode layout used for the experiments



4
Software overview

Functionality and reliability were a priority in choosing the ideal software for data acquisition. The
software should be easy to understand, compatible with the Mark IV headset, and able to export .EDF
files to meet the subgroup goal requirements. The ability for the platform to natively export LSL streams
would also be beneficial to troubleshoot data streaming-related issues. The choice of used software
based on merits is presented below.

4.1. Acquisition
Data acquisition is the primary focus of the subgroup and therefore it was of great importance to use
software that is reliable and could export in .edf files. A few standout choices for the data acquisition
were BCI2000, OpenBCI GUI, OpenVIBE[7], Python, Matlab, and TMSI Apex. Each of these programs
has a set of advantages and disadvantages as shown in table 4.1[17].

7



4.1. Acquisition 8

Software Benefits Drawbacks
BCI2000

• Designed for BCI
• Mark 4 headset support
• Real-time processing possible

• Limited support/small user base
• Difficulty with LSL communication
• Questionable reliability

MATLAB
• Live signal processing possible
• Familiar MATLAB environment
• Able to store to .EDF file

• Headset support is limited
• No live signal displays

OpenBCI
GUI • Designed for Mark 4 headset

• Live signal view
• LSL streams possible

• Cannot write to .edf
• Limited compatibility

OpenVIBE
• Works with many headsets
• Able to write to .edf
• Block-based modelling
• LSL streaming possible

• Lackluster signal view
• Reliability

Python
• LSL streaming possible
• Works with many headsets
• Able to write to .edf

• Missing GUI
• More difficult setup required

TMSI Apex
• GUI available
• Works with many headsets

• LSL streaming difficult
• Cannot write to .EDF
• More difficult setup required

Table 4.1: Showing benefit vs drawback analysis for all considered data acquisition software

As visible from the table every software had its own set of benefits and drawbacks whichmeant choosing
which software best fit our needs. Software like TSMI Apex, and BCI2000 missed certain functionality
andwere the least documented software which led us to choose against them. MATLABwas not chosen
due to no live signal display capability and OpenBCI GUI was chosen instead used for data viewing.
The workflow we desired benefited from simpler modeling and more documented setups which were fit
by OpenVIBE perfectly, this is the reason that OpenVIBE was chosen as the data acquisition software
for the project. A detailed overview of OpenVIBE and a few relevant boxes has been provided below.

4.1.1. OpenVIBE
OpenVIBE as a software can be split into two main components the acquisition server and designer.
The working test setup of acquisition software and designer is shown in the image 4.1 and 4.2 [14].
The acquisition server acts as a bridge to read the signals from the USB port and forward them to the
designer. The Mark IV has options to use in both WiFi mode or using 2.4 GHz which both allow data to
be streamed, given the chosen 2.4 GHz dongle the acquisition server interfaces with the relevant COM
port and retrieves the transmitted signal. The acquisition server also contains many settings to correct
for device drift which is an accumulating delay throughout using the headset and identifiers of the test
subject which is useful for .EDF trial data sorting. The sample count per block essentially chooses the
epochs of the buffer data to be sent. The captured and streamed data is then sent through a virtual
IP port which can be further read by the OpenVIBE designer. This is the reason that OpenVIBE was
chosen as the data acquisition software for the project.

The OpenVIBE designer on the other hand is a block-based modeling section of OpenVIBE which
allows for the setup of hardware-independent measuring and modeling scenarios. Many forms of filter-
ing, processing, and classification functionality are built into the designer. However, the most important
aspect is the filtering and stimulation functionality of OpenVIBE. Using the same IP port as the acquisi-
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tion server, a scenario was created that applied temporal bandpass filtering with Graz visualization to
capture the relevant motor execution signal. The acquisition server box after receiving the data on the
IP port outputs many things such as the raw signal, time scale, and units of the signals. The signal is
then filtered through an 8-30Hz butter worth bandpass filter as further elaborated in the chapter 6. The
filtered signal is displayed using a signal display block along with being sent to the.EDF writer’s block.
The Graz simulator and visualization are both blocks that run lua scripts to execute a standard Graz
testing setup with baseline cross and arrow commands for left and right motor execution[9]. This stim-
ulation is then further written along within the.EDF file as stimulation which is used for further epoching
and processing.

Figure 4.1: Workflow of OpenVIBE acquisition server used to set and initialize communication with the headset

Figure 4.2: Workflow of OpenVIBE designer used to design and model tests to gather data

4.2. Data viewing
While data collection is important, being able to view and inspect the data post-measurements to ex-
amine for faults is just as crucial. OpenVIBE as mentioned before severely could not simply inspect
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data post-recording with .EDF annotations. The choice for data viewing was therefore split between
OpenBCI, EDFbrowser, and EEGLAB with each used for different purposes. The typical workflow of
data viewing post-trial measurement is described below.

4.2.1. OpenBCI GUI
OpenBCI GUI is free-to-use compatible software that works natively with OpenBCI headsets with the
ability to plot[10], filter, and store EEG signals. OpenBCI GUI has a very simplistic workflow in the fact
that it was the most ”plug and play” for visualizing the EEG data streams. The dongle is plugged into
the USB port of the computer after which OpenBCI GUI is opened. The start stream button was used to
visualize the time domain signal along with an FFT and either a topographic head plot or a 10s interval
live spectrogram. The use of OpenBCI is to check whether no periodic interference is observed and no
channels are railed. A simple test of motor execution was then performed with special attention paid
to the FFT plot where an increase should be noticed, given all the above was done the data collection
with OpenVIBE could proceed.

4.2.2. EDF browser
EDF browser is free software that natively can plot EEG signals, apply filters, and simple data visual-
ization. The data loaded in the EDF browser can be viewed split by channel or together with the further
ability to change the amplitude and timescale of the signals. The annotation section also allows partial
filtering of annotations showing signals after a certain stimulation and a real-time player that plays the
signal back in real-time. Filters such as butter-worth bandpass and high pass filters are also applicable
to the EEG signal with further simple amplitude or power spectrum displays. The software in the data
collection workflow was used to quickly view the signals post-measurement to ensure that the activity
did indeed occur after a stimulation. The whole signal was also inspected for anomalies or artifacts
that would later need to be removed.

4.2.3. EEGLAB
EEGLAB is a MATLAB-based extension for processing and visualizing EEG data, the software has
quite a large scope of abilities with the most relevant sections being blink inspection, topographic maps,
and a spectral Event-related Synchronization/Desynchronization (ERDS) analysis. The data is initially
loaded where channels are mapped to signals using the channel definition. The data is then further in-
spected for eye blinks and other prevalent artifacts that would need correction. The native Independent
Component Analysis (ICA) decomposition which is a blind source separation technique is then used
with a standard run-ICA algorithm to distinguish artifacts from wanted EEG signals. The data if needed
is then rejected using the ICA classification section to further remove eye blink activity[1], the plots of
the spectral ERSD are finally viewed to ensure whether the components are either not noticeable or
of a certain amplitude. The use of the software in our data collection pipeline is to better visualize and
remove eye-blink artifacts.

4.3. Data streaming
Finally, the data from the headset will be streamed from the headset to a python environment for further
display and use. The LSL framework was chosen due to its ease of use and availability in the previously
used software. To ensure further simplicity in implementing the chosen method of data streaming,
python is chosen as the platform of implementation.



5
Data Acquisition

The goal of this project is to capturemotor execution signals from an EEGheadset which entails creating
test setups best suited for maximizing usable results. The tests were designed in a method where
other experimenters trying to follow this setup will be easily able to replicate it, the analysis and created
methods are presented below.

5.1. Factors for Error
Due to the sensitive nature of the EEG systems, there were a multitude of different factors that need to
carefully be considered. A further clarification required is that the errors mentioned below are all factors
that may cause problems in the EEG signal however are all avoidable, artifacts discussed further in
chapter 6.2 refer to processes in the environment or in the human body which are realistically not
possible to control such as heartbeat and eye blinks. The factors for error will therefore be further
evaluated and are located below.

5.1.1. Movement
Motor execution in theory entails movement of a limb followed by a certain action. The movement
during this action could shift the headset which can create unwanted EEG signals. Figure 5.1 below
shows the effect of a slight movement of the headset on the EEG signal.

Figure 5.1: Effect of natural movement on an 8Hz - 30Hz filtered squared magnitude EEG signal, the signal is smoothed using
a moving average. The code for the plots can be found in Appendix B

When a substantial enough movement was induced, the signal would spike and need at least 5 to 10s
to come back to baseline. In an experimental scenario, this is non-ideal as the movement caused an
anomaly that would ruin legibility for a certain event with a chance of also a subsequent event. The

11



5.1. Factors for Error 12

anomaly also pertains to all channels meaning that certain channels during the event could not be
ignored. The problem with the error is that being so heavily reliant on movement for motor execution
signals, there would naturally be movement across the body which is not ideal. To prevent the error a
multitude of steps were taken such as changing arm movements and introducing stability electrodes
and mechanisms to keep the head still. Instead of moving the whole arm, which would lead to head
movements, an active change was made to lock the elbows to a certain point where only the forearms
were allowed to move, this ensured that shoulder and head movement would be limited. To further
limit the sliding of the headset during movements more electrodes were added at O1, O2, F7, and
F8 as non-readable channels where they were not connected to the main board but rather placed as
stability electrodes which they were tightly pressed against the head to reduce movement and slip of
the headset. The last optimization made to reduce the movement was by ensuring that the test subject
pressed their back against a chair with their head and then remained in a neutral position. This also
further reduced the risk of random movements.

5.1.2. Concentration
The concentration of the subject also played a major role in the data received from the test subject.
While being tested the subject had a limited span of concentration which limited many factors while
designing the experiment. The subject was placed in a quiet isolated room with only the Graz visual-
ization present to eliminate any external forms of distraction. During the testing, no people were near
the test subject. To ensure proper movement the subject was initially guided to perform the movement
with the OpenBCI-GUI to ensure that signals were detected. To visualize the effect of fatigue on the
recorded data, two tests were used. The first test was an initial recording of the ”Motor execution basic
test collection setup” as shown in figure 5.4 and included a single movement that had to be performed,
while the second test was the same test done after 9 previous consecutive recordings. The normalized
squared magnitude of the signal is used to visualize the strength of the signal around the epoch. The
recording setup initially consisted of filtering between 8Hz - 30Hz and then taking the squared magni-
tudes of the filtered signal for the epochs, the filtering and calculation of squared magnitude are further
defined in chapter 6 and 7 respectively. Figure 5.2 shows the difference in signal squared magnitude
as shown below.

(a) Average magnitude of bandpass filtered signal for concentrated
subject

(b) Average magnitude of bandpass filtered signal for not concentrated
subject

Figure 5.2: Comparison of a for a 5 trial averaged concentrated vs not concentrated subject performing a left trial, the plots are
4s around the stimulation(t=0s) and are filtered and normalized from 8Hz - 30Hz. The code for this plot is available in Appendix

B.1

While the plots seem similar the normalized magnitude of the concentrated signal was much higher
than the non-concentrated subject. The testing was therefore designed and chosen to have 3 tests
followed by breaks of at least 5 to 10 minutes.
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5.1.3. Electrode Contact
Differences in subjects such as hair length and hair density play a major role in the quality of the
recorded signal. Hair means that the electrodes do not properly contact the scalp which reduces the
SNR of the received signal. The spiky electrodes were used in conjecture with the ”railed” indicator
on OpenBCI GUI to limit any chances of the headset not contacting the scalp, this did not guarantee
errors from a poor connection, however, it was used to mitigate it.

5.2. Referencing
The choice of reference for electrodes was the last important step before designing the test setups and
ideally a reference point would be chosen with zero potential to accurately determine the difference in
magnitude of the brain signals. A reference point on the human body with zero interference however
does not exist and therefore allows for multiple different methods for referencing[16], the OpenBCI
headset allows for uni-polar or bi-polar referencing with the reference point being the earlobe. There
are also other referencing techniques such as Mastoid referencing and common average referencing
which present their unique benefits and drawbacks. Mastoid referencing is a very often used refer-
encing technique where the reference point is the mastoid bone present right behind the ear. The
mastoid is often chosen due to the distance from the cerebral cortex, which means that the reference
is less likely to be any generated cortical signals, the drawback however for high electrode measure
setups or measurements near mastoids result in noise in the reference. Common Average Reference
(CAR) entails averaging the signals of all electrodes to get a reference signal which is then further used.
The benefit of such a method is that biases on single points have less of an effect on CAR than other
reference methods. The drawback however is that average referencing is very sensitive to bad chan-
nels and therefore the average reference can easily be shifted[6]. The used test setup was especially
susceptible to noise and therefore meant that common average referencing could be used. Mastoid
references were also not chosen due to the different hardware needed to attach to a mastoid. The
choice of referencing was therefore chosen as bipolar referencing. Re-referencing is a process where
a reference method can be changed to better evaluate data, re-referencing can cause increased noise
and more distortion which is prevented by recording data with more electrodes An important note is
that signals recorded could always be re-referenced later using software such as EEGLAB allowing for
better data extraction.

5.3. Test Methodologies
Given the previously made optimizations, test methodologies were chosen to accommodate these
factors and to ensure the best chance of getting a good motor execution signal while having the highest
possible SNR. The testing methodology for both blink detection and motor execution is shown and
further explained below.

5.3.1. Blink testing
The blink testing was done as an initial setup for testing whether EEG signals were truly measurable
by the headset. Blinks being a very easily detectable artifact in EEG systems meant that it formed a
logical start for testing to ensure that EEG signals with the relevant pattern were observable. The main
power in a blink signal lies in the delta band being from 0Hz to 4Hz. The filter that was therefore chosen
was a combination of a 5th order IIR high pass 1Hz filter along with a power line suppressing 48Hz -
52Hz notch filter. This allowed for the removal of DC components while maintaining the main power in
the blink signal. The filters were also chosen at 1Hz as this was the lowest possible frequency where
a majority of the DC component was still removed. Further in testing the trial was kept to a maximum
of two minutes as we found that it was the maximum time of continued focus for a test subject. The
experiment consisted of a 10s start window where all the EEG headset channels would calibrate and
settle to a baseline. This was then followed by a 5s window of the subject preparing for the experiment.
There is then a stimulation every 5s through an auditory system of a beep playing on a speaker till the
time of 120s when the test ends. Figure 5.3 shows the visualized test setup.
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Figure 5.3: Test setup designed to capture blinks with a stimulation every 5s after 15s of initial calibration

5.3.2. ME testing
The motor execution testing was split into 2 relevant phases with the first being a test to see whether
motor execution was detectable through the headset and the second to gather data. Motor execution
as described prior is much easier to detect than its alternative motor imaging, however, the initial unfa-
miliarity with the EEG headsets and the relatively small magnitudes of EEG signals caused doubt on
whether it was possible to detect and separate visually between left and right trials. The first test was
designed in conjecture with a bandpass filter from 8Hz to 30Hz which encompassed the alpha and beta
bands, this frequency band also adequately removed the large DC component and power line noise. A
Graz test was used which is a standardized testing system for motor imagery and motor execution, the
test consists of a cross on the screen followed by arrows pointing left and right. The Graz test for all
motor execution trials was slightly adjusted to increase the time for acting and the rest time in between
with the diagram of the relevant Graz setup presented in Appendix A.3. The initial test started with the
standard 10s of calibration followed by 5s of rest. One single stimulation at 15s was presented and the
test ended at 20s. The test was kept simple as the goal was to see frequency domain activity in the
relevant alpha frequency band. Figure 5.4 shows the first test setup named ”Motor execution basic test
collection setup”. The second test was designed to keep close to the 2 minutes and a mix of 5 left and
right trials would be conducted. To prepare for the experiment 30s was designated for calibration and
a further 3.5s for rest. A stimulation would then be shown every 10 seconds until 133.5s. The testing
was chosen in such a manner to ensure that the participant could remain focused while gathering the
highest amount of trial data per test possible. Figure 5.4 also shows the second test setup named
”Motor execution collection setup”.

Figure 5.4: Test setups designed to capture motor execution signals with a 1 stimulation for the basic test and a stimulation
every 10s after 33.5s of calibration



6
Preprocessing

The machine learning module requires both raw and filtered data for the classification of its model. Raw
data itself is not useful as it contains DC components and noise from the power line and thus requires
several preprocessing procedures to make analysis possible and classification easier. This will be
referred to as the semi-raw data signal. The filtered data requires a few additional preprocessing steps.
This chapter describes all the necessary steps of manipulating the data to achieve useful semi-raw and
filtered data. Figure 6.1 shows a block diagram of the preprocessing pipeline.

Figure 6.1: Block diagram of the EEG signal preprocessing pipeline to produce semi-raw and filtered signals

6.1. Filtering
Filtering refers in this case to the process of isolating frequencies using a high-pass, low-pass, band-
pass, or band-stop filter. The team filters the signal mainly using the OpenVIBE software, which offers
the option to use Butterworth or Chebyshev filter types.

6.1.1. Filterting mathematics
Mathematically a random filtering process is easiest explained as windowing in the frequency domain.
One may use a Fast Fourier Transform (FFT) function to convert the filtered signal to a function that
shows the amplitude of frequency components in the original signal. The equation for the Fourier
transform is shown in equation 6.1. Keep in mind that this equation shows the Fourier transformation
of the continuous time-domain signal, yet we will transform the sampled version of this signal which is
discrete. Also, keep in mind that the FFT algorithm differs from the actual mathematical function, yet
the process results in the roughly same outcome.

X(f) =

∫ ∞

−∞
x(t)e−i2πft dt (6.1)

Similarly to equation 6.1, the signal can be converted back to a time domain signal using the inverse
Fourier transform shown in equation 6.2.

x(t) =

∫ ∞

−∞
X(f)ei2πft df (6.2)
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In case certain frequencies must be isolated, the frequency-dependent signal could simply be multi-
plied by a transfer function that magnifies the desired frequencies and suppresses the other frequen-
cies. This process is shown in figure 6.2. The multiplication in the frequency domain translates to a
convolution in the time domain, which is mathematically shown in equations 6.3.

Y (f) = X(f)G(f)

y(t) = x(t) ∗ g(t) =
∫ ∞

−∞
x(τ)g(t− τ) dt

(6.3)

Figure 6.2: Example of a 5th-order Butterworth filter which is filtering random noise

Depending on the desired output, different transfer functions can be used as filters. As mentioned
before, OpenVIBE offers transfer functions for Chebyshev and Butterworth. These are mathematically
represented with the transfer function in equations 6.4. Note that both equations allow the variables
n and ω0 to be chosen. The variable n represents the order of the filter, and ω0 represents the cutoff
frequency. The cutoff frequency should be chosen depending on the desired structure of the filter, as
it defines where the signal starts or stops being suppressed. This varies per application of each filter.
The order of the filter was chosen to be 5th order, as this was the maximum order that the OpenVIBE
software allowed.

Gn(ω) =
1√

1 + (ω/ω0)2n
(Butterworth) Gn(ω) =

1√
1 + ϵ2T 2

n(ω/ω0)
(Chebyshev) (6.4)

All filtering was digitally performed in the OpenVIBE environment. More information about the charac-
teristics of the filters that this software offers can be found on the website [7].

Semi-raw signal
The raw data is not useful without having performed mainly two preprocessing steps. First of all the
DC components of the signal must be removed as the signal will otherwise shoot up or down without
oscillating around a center point. This phenomenon is shown in figure 6.3. The team used a high-pass
filter with a cutoff frequency of 1Hz to remove these DC components. The other important preprocess-
ing step regarding the raw data is to remove any interference coming from the electric fields created
by nearby power lines. As the team’s experiments were done in the Netherlands, which uses a fre-
quency of 50Hz on the power lines, a notch (Band-stop) filter was added with 48Hz - 52Hz as the cutoff
frequencies to remove any interference coming from the electric fields created by the power lines.
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(a)With DC components (b)Without DC components

Figure 6.3: Raw signal of channel FP2 with and without DC components

Filtered signal
The alterations made to the raw signal for it to become a useful filtered signal are that the artifacts
should be removed from the data and that the irrelevant frequencies should be removed from the signal.
The team is mostly interested in the alpha and beta waves of the EEG signal as the ME paradigm is
significantly more active in these active frequencies. The alpha waves are the waves with frequencies
between 8Hz - 12Hz and the beta waves correspond to the frequencies between 12Hz - 30 Hz. The
team decided to use a Band-Pass filter of 8Hz - 30Hz.

Some artifacts have a relatively low frequency of <5Hz. Measurements showed that blink artifacts
for instance are most prominently present in these lower frequencies. This is shown in the Event-
related Spectral Perturbations (ERSP) of one of the blink experiments shown in figure 7.1. It would
be inconvenient to try and detect these artifacts for removal after filtering away most low frequencies
with the previously mentioned Band-pass filter of 8Hz - 30Hz. For this reason, it is wise to remove
the artifacts before band-filtering irrelevant frequencies. The process of the removal of the artifacts is
elaborated on in section 6.2.

6.2. Artifact removal
Several artifacts are present in most EEG data streams that should be removed for a more optimal
signal, likely resulting in a higher accuracy of the machine learning model. Some examples of these
artifacts are blink artifacts, cardiac artifacts, and muscular artifacts.

Blink artifacts
One very common type of artifact that will almost certainly show up in every EEG dataset is an artifact
created by the subject blinking. A blink artifact is generated by the upward deviation of the eyes and
the closing of the lid. This phenomenon is called the ’Bells phenomenon’. A more in-depth study [8]
shows these artifacts appearing in EEG readings for different eye movements and closings.

Blink artifacts have a distinct look in the time and frequency domain. The time domain signal of several
blinks is shown in figure 6.4. Due to the filtering already removing most of the frequency components
of a blink artifact, the team has decided not to implement a full removal of these artifacts due to time
constraints. The team has however devised several ways to try and remove this artifact fully.

The blink is most notably present in the FP1 and FP2 sensors, located closest to the eyes. The location
of these sensors is shown in figure 3.3. The blink artifacts will be prominently present in the data of
these sensors and it is therefore easy to detect an event. One could simply ignore the epoch in which
this artifact is present. This removes the ability to detect an ME event during the ignored epoch, but
it also rids the data of every single false positive that might be triggered due to a blink event. This
trade-off will be worth it in the team’s opinion. This method is most likely the easiest way to remove a
blink artifact.

Another method to remove a blink artifact would be to suppress the amplitude of the signal solely during
a blink event. This way there is no need to ignore an entire epoch. One could guess the length of a
blink event by having a standard duration of the signal being suppressed in case a blink is detected.
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Since not every blink event will have a duration, an even better solution will be to use machine learning
to detect the specific duration of a blink, isolating and suppressing solely the blink event of the signal.

Figure 6.4: Measured raw datasignal from FP1 and FP2 during several blink events

Muscular artifacts
An artifact one may encounter in their EEG data is a muscular artifact. Muscular artifacts arise from the
movement of muscles under the skin that may be close to an EEG sensor. It is known to be difficult to
remove. The paper [2] describes how a muscle movement can cause interference in the EEG readings,
and describes how primarily the clenching of the jaw will be visible on the EEG data. The team has not
noticed any significant muscular artifacts present in their data and it is therefore decided not to spend
time removing these artifacts from the data.

Cardiac artifacts
Finally, an artifact the team looked at to potentially remove from the data is a cardiac artifact. These
artifacts arise from the pulsation of the heart being picked up in the data due to a sensor placed on
the scalp being close to a vein under the skin. The team encountered many oscillatory interference in
the data, some of which were thought to be cardiac artifacts. These oscillatory interferences will be
elaborated on in chapter 9.

The team’s solution to getting rid of cardiac interference would be to move the Mark IV slightly on the
scalp to get the sensor with interference away from the vein that is picking up this artifact. Another
method the team discussed to remove this artifact is to filter out the frequency components that are
expected to come with a cardiac artifact. A logical thought would be that a cardiac signal is a periodic
signal averaged between 60bpm - 100bpm, or 1Hz - 1.67Hz for a resting heart. These frequencies
could be easily removed by moving up the cutoff from the high pass filter, mentioned in section 6.1,
from 1Hz to 2Hz. It is worth mentioning that the filtered signal would not need this adjustment to remove
these frequencies as this signal has been Band-filtered from 8Hz-30Hz. The paper [13] however states
”cardiac or electrocardiogram (ECG) artifact is one of the most devastating physiological artifacts, which
arises due to heart movements and is characterized by the presence of highly energetic quasi-periodic
QRS complex in the frequency range of 5–22.5 Hz”. These frequencies are impossible to remove
without a very complex solution. The team decided it was not worth the time and effort to try and
remove the artifacts in these frequency ranges.



7
Data Analysis

7.1. Background knowledge
The data analysis performed on the measurements requires some background knowledge. For stan-
dard reference, the table 7.1 below shows the mapping between channel number and name.

Channel Number Channel Name
1 FP1
2 FP2
3 F3
4 F2
5 C3
6 C4
7 P3
8 P4

Table 7.1: Showing a table mapping channel number to channel names

Mathematical Descriptions
To gain a grasp of the visualization a little mathematical background is needed in time and frequency
domain analysis techniques, the mathematical descriptions although mentioned briefly are used to
visualize and therefore analyze the recorded signal. The mathematical description of the Short-time
Fourier transform (STFT), power normalization, signal envelopes, and statistical analysis have been
shown below.

The Fourier transform (FT) is a mathematical tool that is used to decompose a signal into all the fre-
quency components that exist inside it, Fourier transforms are in essence time to frequency domain
transforms that allow for more signal processing and further frequency domain visualization. The math-
ematical description of the Fourier transform is given below.

FT{x(t)} =

∫ ∞

−∞
x(t)e−j2πftdt

The equation above shows the FT with x(t) representing the signal in the time domain. While the FT is a
useful analysis tool to discern frequency components, it also results in a loss of time information of the
signal. Given the nature of EEG signals acting as non-stationary signals, a different related transform
is used. The short-time Fourier transform (STFT) is a method to determine the sinusoidal frequency
and phase of small sections of a signal as it changes over time. The Short-Time Fourier Transform
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(STFT) is defined as shown below.

STFT{x(t)} =

∫ ∞

−∞
x(τ)w(t− τ)e−j2πfτdτ (7.1)

The equation above represents the STFT with x(t) representing the signal and w(t-τ ) as the window
function which is either a non-zero Gaussian or sine window for a small interval of time. Another tech-
nique used to analyze and visualize EEG signals is the Power Spectral Density PSD and normalization.
The PSD of a signal is the amount of power present as a function of frequency. The PSD is usually cal-
culated through the FT or one of its variants and is used to identify the dominant frequencies in a signal.
While not in explicit scope for this paper, the Welches method is used to compute the PSD of finite-
length signals. Normalization is then used to compare changes in frequency in a signal concerning a
baseline. The equation for normalizing is presented below.

Pnorm(f, t) = P (f, t)− 1

TBaseline

∫ tend

tstart

P (f, t)dt (7.2)

Some statistical tests are also used in Event-Related Spectral Perturbation (ERSP) such as paired t-test
and Wilcoxon signed-rank test. The statistical tests are used to determine whether events observed
in the signal are statistically significant. The tests compare two related samples from the same group
where based on the distribution one of the two tests is used. A paired t-test is used for symmetric
distributions around a mean and the Wilcoxon signed-rank test is used the rest of the time. The focus
of the essay lies less on understanding the complete workings of statistical analysis, however, for the
sake of completeness both formulas are provided below.

t =
d̄

sd/
√
n

(7.3)

The Wilcoxon signed-rank test statistic W can be further calculated as shown below,

W =

n∑
i=1

sgn(xi − yi) · rank(|xi − yi|) (7.4)

Finally, the Hilbert transform is used to generate an analytical signal consisting of the signal as its real
part and the Hilbert transform as its imaginary part. For a real signal x(t), the corresponding analytical
signal xa(t) is given below.

xa(t) = x(t) + j · H[x(t)]

where H[x(t)] is the Hilbert transform of x(t), and j is the imaginary unit. The Hilbert transform also
shifts the phase of the original signal by 90 degrees. The Hilbert transform is then used to calculate the
envelope of the signal which is then given by the magnitude of the analytical signal. The envelope is
used to identify oscillatory activities while neatly visualizing changing patterns in a signal. The equation
below shows the envelope of a real-time domain signal.

E(t) = |xa(t)| =
√
x(t)2 +H[x(t)]2

7.2. Results
As mentioned in chapter 5 the first experiments were done in order of increasing complexity. The
simple blink testing was done initially to check whether the Mark IV headset could read signals. Blinks
as mentioned before are also very easy to see in data. Motor execution was then tested with the main
goal of seeing expected time-frequency spatial patterns.
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7.2.1. Latency
The latency of the filters and system was determined using a simple Python time function where time
was stored before running the code and was stopped after relevant Python filtering. The code for the
time is present in B.1 with a screenshot of the delay captured and plotted in A.3.1. The delay from
headset to filtered signal as presented by Python is 173.675 ms which is within 2% of the subgroup-
defined goal

7.2.2. Blink Experiments
The experiment for blinking entailed blinking every 5s after an initial 15s for 120s total. Blinking artifacts
occur due to the bells phenomenon as shown in [8] where the strongest visible peaks should have been
on channel 1 (FP1) or 2 (FP2) with electrodes further from the eyes presenting weaker to nonexistent
signals. The amplitude time plots are presented in 6.4.

In the channels, it is visible that the strongest activity occurs on channels 1 (FP1) and 2 (FP2) with
almost no activity on channels 5 (C3), 6 (C4), 7 (P3), and 8 (P4). The positional weakening of the
electrode signal from the forehead intuitively makes sense and shows that the different electrodes on
the headset can read different signals in the brain spatially. As stated before blinks occur at quite a
low frequency with most of the signal power component between 0Hz and 5 Hz. An EEG processing
technique known as ERSP is used where the STFT of the normalized signal around epochs is plotted
along with a PSD, the ERSP also uses an Independent Component Analysis (ICA) algorithm to plot
increases and decreases over baseline power. The visualized ERSP of the signal is presented in the
center, PSD on the left, and power concerning baseline shown at the bottom, are presented in figure
7.1 below.

Figure 7.1: ERSP analysis plot of blinks performed by EEGLAB shown from 0Hz to 30Hz with a count of 400 samples

It can again quite easily be seen that the majority power of the signal lies in the delta frequency band
(0.1Hz - 3.5Hz) and that the plot shows a periodic spectral activity due to the experiment of blinking
every 5s. Theoretically, a filter of sufficiently high enough pass band and slope can result in all the
effects being mitigated. The blinks also don’t much affect channels 5 (C3) and 6 (C4) where cortical
activity would be the highest for motor execution, this leads to the conclusion that with the preprocessing
mentioned in chapter 6, blink artifacts would not have a major effect on motor execution.

7.2.3. Motor execution experiments
The subsequent experiment after blinking was detecting signal patterns of ERD/ERS commonly found
during motor execution. The general testing consisted of distinguishing left and right movements in
the alpha and beta bands (8Hz - 30Hz) of the signal. The goal of the section is to visualize whether
motor execution signals are visible in time or frequency domains and whether there was a sufficient
distinction between left and right trials. A great example of the results that would be expected is shown
in the paper [15]. This paper shows a clear distinction between left and right movement with the ERS
and ERD nicely visualized. The activities around trials were used to determine epochs and find the
relevant aspects of a signal. An epoching setup of 2s before the epoch and 2s after the epochs was
considered as it provided the most clarity for plots in most scenarios. The plot 7.2 shows the amplitude
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of a signal in channel C3 and its overall PSD has been placed below.

(a) Plotted channel C3 (b) Plotted channel C4

Figure 7.2: Comparison of a plotted time domain signal for a motor execution trial between channels C3 and C4 with an
applied bandpass filter of 8Hz - 30Hz and between time t=0s and t=20s. The code for this plot is available in appendix B.1

The filtered signal in itself does not show any clear indication that motor execution signals are present.
The normalized squared magnitude of the signal is therefore used to distinguish any sort of peaks or
troughs that occur in the time domain. An average of all signals for each channel during the period
of the epoch is used to calculate the normalized squared magnitude signal. By using the time before
the stimulation as a baseline the plot should show clear ERS or ERD patterns. The plot for squared
magnitude is presented in the appendix A.4. To better visualize trends in the squared magnitude, an
envelope is used. The relevant procedure is determining the squared magnitude plot for all the relevant
epochs where they would be time domain averaged and then the envelope would be determined. The
plot 7.3 below shows the envelope of all the averaged left and right epochs respectively for 150 trials.

(a) Average Envelope of left trials channel 5 (C3) (b) Average Envelope of right trials channel 5 (C3)

Figure 7.3: Comparison of average envelopes of squared magnitudes for left and right for n=250 trials for channel 5 (C3). The
code for this plot is available in appendix B.1

While a peak can be observed in the envelopes it is not very distinct and it does not show a good
increase from the baseline period, this is corrected by using a baseline corrected squared magnitude
where increases are respective to the value of a baseline value or in this case an average of a small
time interval of 0.1s at the start of the epochs. The plotted average baseline corrected envelope of
n=150 trials is presented in figure 7.4 below.

The average baseline corrected envelope shows a very distinct ERS behavior with a peak of 0.52
and 1.25 seconds after stimulation for left and right respectively. This is not an expected behavior that
should be observed with n=150 trials and could indicate a systematic error or unknown and unexpected
behaviors. There also hardly exists any ERD in the signal which would indicate that the ERS is much
stronger than the ERD for both trials in channel C3. channel C4 also exhibited similar behavior across
the n=150 trials. Another interesting point was that the plot for the right trials always lagged the left by
about 0.73s which was highly unlikely, a delay of about 0.3s for both trials is expected due to inherit
reaction times of the subject where they approximately occur at the same time after the stimulation.
While some characteristics of ERD and ERS are visible in the averaged and normalized magnitude the
only feature that shows distinctions is the time of peak occurrence after the stimulation, provided more
than n=150 trials for left and right the result is likely statistically significant. The averaged PSD is also
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(a) Average baseline corrected envelope of left trials on
channel 5 (C3)

(b) Average baseline corrected envelope of right trials on
channel 5 (C3)

Figure 7.4: Comparison of filtered(8Hz - 30Hz) and averaged baseline corrected envelopes on channel 5 (C3) for n=250 left
and right trials. The code for this plot is available in appendix B.1

used to check and see whether any ERS and ERD patterns are visible in the frequency domain. The
PSD of the filtered signal is calculated and it is then averaged to show power frequency relationships
across all epochs. The graph was averaged across 150 trials and was normalized with the baseline
being used from the signal before the stimulation. The PSD of channels 5 (C3) and 6 (C4) are plotted
for averaged left and right trials as shown in figure 7.5.

(a) Average PSD of channel 5 (C3) (b) Average PSD of channel 6 (C4)

Figure 7.5: Comparison of filtered(8Hz - 15Hz) and averaged PSD between channel 5 (C3) and 6 (C4) for n=150 left and right
trials. The code for this plot is available in appendix B.1

As seen from the plots above, the averaged PSD across the epoch does not seem to exhibit any major
differences for left and right trials across any of the recorded channels. The peak of the PSD seems
to lie around 10Hz for channel 5 (C3) and 11Hz for channel 6 (C4). The PSD therefore does not
show significant separation between left and right trials which is quite unfortunate. A further method of
visualization to distinguish left and right movement is ERDS plots. The ERDS plot is in essence a form
a spectral estimation of the STFT and is used to visualize the change of frequencies over time with a
focus on seeing regions of activity (ERS) and regions with negative activity (ERD). The paper [11] has a
great explanation that goes more in-depth on the basic principles of ERD and ERS. The settings used
for the ERDS plot included using a 0.5s hamming window and 80% overlap as these produced the
most clear visualizations. These specific settings were used as they provided the best time resolution
while sufficiently separating frequencies in the concerned frequency band of 8Hz -30Hz. The ERDS
plot of both averaged left and right trials are shown in figures 7.6 and 7.7 below.
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Figure 7.6: ERDS plot of filtered(8Hz - 30hz) and averaged epoch signals across n=150 L and R trials on channel 5 (C3). The
code for this plot is available in appendix B.1

Figure 7.7: ERDS plot of filtered(8Hz - 30Hz) and averaged epoch signals across n=150 L and R trials on channel 6 (C4). The
code for this plot is available in appendix B.1

The plots show ERD/ERS activity but to very different extents, with the color bar referring to a change
in power from baseline in dB hence a dark red area with a value of 0.7 represents a linear 1.16 increase
in power from baseline. In the plot, it is quite visible that there is spectral ERS activity roughly 550ms
after the stimulus for the left scenario in channel 5 (C4) where the right trials exhibited a weaker more
spread-out signal for channel 6 (C4). ERD is also much more visible in the first plot with time before
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(a) Average alpha band power C3 (b) Average alpha band power C4

Figure 7.8: Average alpha band(8-12hz) power for the signal . The code for this plot is available in appendix B.1

(a) Average beta band power C3 (b) Average beta band power C4

Figure 7.9: Average beta band(12-20hz) power for the signal. The code for this plot is available in appendix B.1

the stimulation at t=0s showing ERD activity. The first plot of channel 5 (C3) also shows this however
to a much lower extent and with the power of right trials being slightly more concentrated in time. The
plots were also averaged over n=150 epochs for each trial which indicated the statistical certainty of
the data. This entails that while the analysis prior shows that while it is quite easy to see that motor
execution is taking place by using the above tools it is hard to see the distinction between left and right
trials. Features such as PSD and amplitude plots do not show any differences whereas ERDS plots
and magnitude plots can visualize ERDS much better. The figures below show a

The spectrograms in figures 7.6 and 7.7 shows the signal power of each frequency overtime during an
event, but another interesting visualization of the signal power is to average the signal power over all
frequencies in a specific frequency band. This results in a line chart of the alpha band (8Hz - 12Hz)
and beta band (12Hz - 30Hz) power during an event. Figures 7.8 and 7.9 show the average power per
frequency of channels C3 and C4 for both the alpha and beta band. As the left part of the brain controls
the right arm, and the right part of the brain controls the left arm, we expect the power in C3 for the right
to be dominant over the left and we expect the power in C4 for the left to be dominant over the right.
Interestingly, our experiments show for both channels C3 and C4 that the left signal is much larger.
Several reasons may explain this result. The experimental setup may have been faulty regarding the
sturdiness of the headset. The subject could have been moving the headset while performing the trials
for the ’left’ motor execution, while the headset remained still for the ’right’ motor execution trials. This
would have had to happen over many trials to make a significant impact on the average trial and is
therefore unlikely but still possible. Another explanation could be that the electrode C3 was not placed
entirely against the scalp, thereby picking up a lesser signal.

Although it is difficult to make a solid distinction between left and right through this data, it is obvious
that the motor execution is happening. ERS and ERD are visible however not to the extent of clearly
distinguishing left and right trials. While a concrete distinction could not have been made, the machine
learning model with a collection of features may prove to be far more effective at distinguishing the
trials.



8
Conclusion

To conclude this thesis we achieved a majority of the subgroup goals set in the beginning with sufficient
to great levels of competence. Research was done into both hardware and software regarding the best
methods to acquire and process data. Electrode layouts were chosen to be placed on areas with the
most cortical activity during motor execution and software was chosen to be able to store recorded data
in.EDF files with relevant annotations that was sent to the machine learning subgroup. Testing was de-
signed around problems that were found such as movement, concentration, and electrode contact with
robust solutions created to minimize these negative effects in the recorded data. Three separate test-
ing experiments were created in a repeatable and logical manner to ensure that signals being received
from the headset were as clear as possible a testing document as provided in supplement with this
document was also successfully created and used. The achieved increase in amplitude for blinks was
approximately 3x compared to the baseline. The achieved increase in power for the motor execution
movements from baseline was 1.6667x on channel 5 (C3) and 2.0667x on channel 6 (C4) which was
more than satisfactory to visualize the ERS patterns, ERD signals remain hard to visualize. There were
also 150 trials measured for one test subject which while falling short of the goal of 200 was sufficient
for current data visualization and analysis. Further recordings are also planned post June 14th, 2024
in which the aim is to measure more than 100 more datasets to better improve the machine learning
models. The preprocessing step was designed to filter the blinks with a 5th-order butter worth 1Hz
high pass filter and the motor execution signals were filtered with an 8hz-30hz 5th-order butter worth
bandpass filter, allowing for extraction and visualization of patterns both temporally and spatially. The
latency of signal acquisition came to approximately 172.183ms which is a little bit above the goal of
170ms, the goal of achieving a delay of 170ms was also considered to be achieved sufficiently. To ana-
lyze the blink signals ERSP was used which showed clear spectral blink patterns with varying strength
across the electrodes on the headset with a peak in signal power around 1Hz. The plots to visualize
motor execution allowed for the verification that motor execution signals were detectable and whether
left and right trials could be visually distinguished. The plots of the PSD of the signal did not yield much
information whereas ERDS plots and envelope plots showed much clearer motor execution patterns.
The Envelope plots also showed lagging data across left and right trials which was not expected behav-
ior. For the group requirements, the goal succeeded in creating usable motor execution signals which
were sent to the Machine learning subgroup. Integration is also underway with all other subgroups to
create a working system, meaning that there is no concrete way to verify whether the group require-
ments were achieved The data collection subgroup has successfully achieved most of the subgroup
goals set to a sufficiently high standard with further progress remaining on more data collection, latency
reduction, and systems integration.
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9
Discussion

This project endured many hindrances that are of relevance to mention in this thesis. This chapter will
elaborate on potential objections to the validity of the measurements and results. This chapter will also
discuss improvements that could be made to the experiments.

9.1. Interference
This project lost much time due to some strange interference that the team encountered. A very large
percentage of the recorded measurements had to be thrown out of the datasets due to this strange
interference. Figure 9.1 shows a good example of the sudden interference on one of the channels.
More examples of this interference in the raw signal are shown in section A.5. The team has not
been able to pinpoint the cause of this interference but has figured out the following parameters. The
interference is periodic. The interference is independent of one’s location since it was observed on
various levels of the faculty as well as right outside of the faculty. The interference seems to be around
8Hz, with peaks about 3 times the size of EEG data peaks. It is likely that the interference is caused
by either a strong antenna inside the faculty that emits frequencies of around 8Hz, or the interference
is caused by a hardware issue where some periodic signal from one of the components is leaking into
the data. Although this may be a software issue, it is very unlikely as this was observed in several data
acquisition programs.

Figure 9.1: Example of the signal suddenly picking up interference

9.2. Conclusiveness of the results
9.2.1. Hardware
Although the team tried to make sure that the EEG helmet was always harnessed incorrectly, this was
a rather difficult task. The electrodes must be placed directly against the scalp to pick up decent data,
which is difficult for a person with hair. We have seen in a previous thesis [18] that the standard deviation
of an EEG signal is dependent on the amount of hair a person has. This combined with the sub-optimal
sturdiness of the helmet resulted in many times one or more channels becoming rather noisy. Some
of the datasets likely had one or more channels that had more noise than they were supposed to have.
This could have influenced the results. The team recommends any new research group experiment on
the person with the least amount of hair, as well as watching the EEG signals live while mounting the
Mark IV. This way one could easily identify a noisy channel before starting measurements.
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9.2.2. Software
Some strange filtering behavior by the ’Modifiable temporal filter’ function of the OpenVIBE software
was observed. This function supposedly allows the user to more specifically customize a filter. The first
datasets that were sent to the Machine Learning group used this filter. This filtering method however
was much less optimal than the ’Temporal filter’ function. Figure 9.2 shows the same raw signal, where
one uses the ’Temporal filter’ function and the other uses the ’Modifiable Temporal Filter’ function. Sec-
tion 6.1 explains how the filters were applied to obtain this ’raw’ signal. The team still does not know
where the vast difference comes from, but recommends any new research team use the ’Temporal
filter’ over the ’Modifiable temporal filter’.

Figure 9.2: Left: Temporal filter, Right: Modifiable temporal filter

9.2.3. Continued Development
While our group achieved sufficient progress there is still a lot to be pursued, especially in terms of col-
lecting more data or extending to motor imagery. Due to time constraints, the amount of data recorded
was sufficient however it could be extended by capturing trials for more than one test subject, for a
much broader high-accuracy application we would suggest at least 300 trials and 10 unique people.
The use of other gel-based headsets could also be considered for better comfort and results along with
more feature analysis to visualize the difference between left and right trials. Overall the field of motor
execution-based BCIs seems very promising and we hope that this research will be picked up further.
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A
Figures and Tables

A.1. Hardware overview
Channel Electrode
1 FP1
2 FP2
3 F3
4 F2
5 C3
6 C4
7 P3
8 P4

Table A.1: Electrode connections to the channels of the Cyton OpenBCI board

A.2. Preprocessing

Figure A.1: The spectrogram of an experiment where the subject periodically blinked

A.3. Data Acquisition
A.3.1. Latency

31
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Figure A.2: Latency measured of the headset to filtered data using python measured using a time function

A.4. Plots
A.4.1. PSD plots

(a) Average PSD of channel 1(FP1) (b) Average PSD of channel 2(FP2)

Figure A.3: Comparison of filtered(8-30hz) and averaged PSD between channel 1 and 2 for n=150 left and right trials

(a) Average PSD of channel 3(F3) (b) Average PSD of channel 4(F2)

Figure A.4: Comparison of filtered(8-30hz) and averaged PSD between channel 3 and 4 for n=150 left and right trials

A.4.2. Squared Magnitude plots
A.5. Discussion
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(a) Average PSD of channel 7(P3) (b) Average PSD of channel 8(P4)

Figure A.5: Comparison of filtered(8-30hz) and averaged PSD between channel 7 and 8 for n=150 left and right trials

(a) Average PSD of channel 1(FP1) (b) Average PSD of channel 2(FP2)

Figure A.6: Comparison of filtered(8-30hz) and averaged squared magnitude plot between channel 1 and 2 for n=150 left and
right trials

(a) Average PSD of channel 3(F3) (b) Average PSD of channel 4(F2)

Figure A.7: Comparison of filtered(8-30hz) and averaged squared magnitude plot between channel 3 and 4 for n=150 left and
right trials
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(a) Average PSD of channel 5(C3) (b) Average PSD of channel 6(C4)

Figure A.8: Comparison of filtered(8-30hz) and averaged squared magnitude plot between channel 5 and 6 for n=150 left and
right trials

(a) Average PSD of channel 7(P3) (b) Average PSD of channel 8(P4)

Figure A.9: Comparison of filtered(8-30hz) and averaged squared magnitude plot between channel 7 and 8 for n=150 left and
right trials
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Figure A.10: Note the right edge of the spectogram: very clearly a specific band interference

Figure A.11
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Figure A.12

Figure A.13
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Figure A.14

Figure A.15



B
Code

B.1. Python
Average Power Alpha/Beta band

1 """
2 @author: Niels van Duivendijk
3 """
4

5 import mne
6 import numpy as np
7 import os
8 import matplotlib.pyplot as plt
9

10 # Directory containing the EDF files
11 edf_directory = r'C:\Users\nvand\OneDrive\Documenten\EEG␣DATA\New␣filter␣data\RAW'
12

13 # Get a list of all EDF files in the directory
14 edf_files = [os.path.join(edf_directory, f) for f in os.listdir(edf_directory) if f.endswith(

'.edf')]
15

16 # Load the EDF files
17 raws = [mne.io.read_raw_edf(f, preload=True) for f in edf_files]
18

19 # Concatenate the raw data objects
20 raw = mne.concatenate_raws(raws)
21

22 #Define frequency band of interest
23 l_freq=13.
24 h_freq=30.
25

26 raw_filtered = raw.copy().filter(l_freq, h_freq, method='iir', iir_params={'order': 5, 'ftype
': 'cheby1', 'rp': 0.1})

27

28 # Extract events from the raw data
29 events, event_id = mne.events_from_annotations(raw_filtered)
30

31 # Keep only the events of interest
32 event_id = { 'OVTK_GDF_Left': event_id['OVTK_GDF_Left'], 'OVTK_GDF_Right': event_id['

OVTK_GDF_Right'] }
33

34 # Define the duration of the epochs
35 tmin, tmax = -2, 2 # start and end of an epoch relative to the event
36

37 # Use 'events' to create epochs
38 epochs = mne.Epochs(raw_filtered, events, event_id, tmin, tmax)
39

40 # Split the epochs based on the event type
41 epochs_left = epochs['OVTK_GDF_Left']
42 epochs_right = epochs['OVTK_GDF_Right']
43
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44 # Compute TFR for left and right epochs
45 freqs = np.arange(l_freq, h_freq+1, 1.)
46 n_cycles = freqs / 2 # different number of cycle per frequency
47

48 # Compute the TFR for the left epochs
49 power_left = mne.time_frequency.tfr_morlet(epochs_left, freqs=freqs, n_cycles=n_cycles,

return_itc=False)
50

51 # Compute the TFR for the right epochs
52 power_right = mne.time_frequency.tfr_morlet(epochs_right, freqs=freqs, n_cycles=n_cycles,

return_itc=False)
53

54 # Get the index of the channel of interest
55 index = raw.ch_names.index('C4')
56

57 # Sum the power across frequencies for the channel for each time point
58 power_left_avg = power_left.data[:, index, :].mean(axis=0) # Sum across the frequency

dimension and avereage
59 power_right_avg = power_right.data[:, index, :].mean(axis=0)
60

61 # Create time vector based on the epochs' time information
62 times = epochs.times
63

64 # Plot the summed power for the channel for left and right epochs
65 plt.figure(figsize=(10, 5))
66 plt.plot(times, power_left_avg, label='Left', color='blue')
67 plt.plot(times, power_right_avg, label='Right', color='red')
68 plt.axvline(0, color='r', linestyle='--', label='Stimulus')
69 plt.xlabel('Time␣(s)')
70 plt.ylabel('Average␣Power/freq␣�(V²)')
71 plt.title('Average␣power␣per␣frequency␣in␣the␣beta␣band␣in␣channel␣C4')
72 plt.legend()
73 plt.show()

Averaged PSD
1 """
2 Created on Wed May 29 12:27:56 2024
3

4 @author: Abhay Shenoy
5 """
6

7 import mne
8 import numpy as np
9 from scipy.signal import welch
10 import matplotlib.pyplot as plt
11 import os
12

13 # Directory containing the edf files
14 edf_directory = r'C:\Users\Abhay␣Shenoy\Documents\EEG␣DATA\NEW␣FILTERED␣EDF␣DATA'
15

16 # Get a list of all edf files in the directory
17 edf_files = [os.path.join(edf_directory, f) for f in os.listdir(edf_directory) if f.endswith(

'.edf')]
18

19 # Load the edf files
20 raws = [mne.io.read_raw_edf(f, preload=True) for f in edf_files]
21

22 # Concatenate the raw data
23 raw = mne.concatenate_raws(raws)
24

25 raw_filtered = raw.copy().filter(l_freq=7., h_freq=15., method='iir', iir_params={'order': 6,
'ftype': 'cheby1', 'rp': 0.1})

26

27 # Extract events from the raw data
28 events, event_id = mne.events_from_annotations(raw_filtered)
29

30 # Keep the events of interest
31 event_id = { 'OVTK_GDF_Left': event_id['OVTK_GDF_Left'], 'OVTK_GDF_Right': event_id['

OVTK_GDF_Right'] }
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32

33 # Define the duration of your epochs
34 tmin, tmax = -2, 2
35

36 # epochs creation
37 epochs = mne.Epochs(raw_filtered, events, event_id, tmin, tmax)
38

39 # Split the epochs
40 epochs_left = epochs['OVTK_GDF_Left']
41 epochs_right = epochs['OVTK_GDF_Right']
42

43 # Average the epochs
44 epochs_average_left = epochs_left.average()
45 epochs_average_right = epochs_right.average()
46

47 # Define the mapping of channel indices to names
48 channel_mapping = {1: 'FP1', 2: 'FP2', 3: 'F3', 4: 'F2', 5: 'C3', 6: 'C4', 7: 'P3', 8: 'P4'}
49

50 # Compute PSD of the averaged epochs for every channell
51 for i in range(epochs_average_left.data.shape[0]):
52 frequencies_left, power_left = welch(epochs_average_left.data[i], fs=raw.info['sfreq'])
53 frequencies_right, power_right = welch(epochs_average_right.data[i], fs=raw.info['sfreq'

])
54

55 # Normalize the PSD
56 power_normalized_left = power_left #/ np.sum(power_left)
57 power_normalized_right = power_right #/ np.sum(power_right)
58

59 ch_name = channel_mapping.get(i+1, f'Channel␣{i+1}')
60

61 # Plot normalized PSD
62 plt.figure()
63 plt.semilogy(frequencies_left, power_normalized_left , label='Left')
64 plt.semilogy(frequencies_right, power_normalized_right , label='Right')
65 plt.xlabel('Frequency␣(Hz)')
66 plt.ylabel('Average␣PSD')
67 plt.title(f'Averaged␣PSD␣of␣{ch_name}␣for␣L␣and␣R␣trials')
68 plt.xlim([3, 25])
69 plt.legend()
70 plt.show()

Normalized Squared Magnitude
1

2 """
3 Created on Wed May 29 12:27:56 2024
4

5 @author: Abhay Shenoy
6 """
7

8 import mne
9 import time
10 import numpy as np
11 import os
12 import matplotlib.pyplot as plt
13 from scipy.stats import sem
14 from scipy.signal import hann, savgol_filter
15

16 # Directory containing the edf files
17 edf_directory = r'C:\\Users\\Abhay␣Shenoy\\Documents\\EEG␣DATA\\NEW␣FILTERED␣EDF␣DATA'
18

19 # Get all edf files in the directory
20 edf_files = [os.path.join(edf_directory, f) for f in os.listdir(edf_directory) if f.endswith(

'.edf')]
21

22 # Load the edf files
23 raws = [mne.io.read_raw_edf(f, preload=True) for f in edf_files]
24

25 # Concatenate the raw data objects
26 raw = mne.concatenate_raws(raws)



B.1. Python 41

27

28 start_time = time.time()
29

30 # Apply a bandpass filter between 8 and 12 Hz
31 raw_filtered = raw.filter(l_freq=8, h_freq=12, method='iir', iir_params={'order': 5, 'ftype':

'butter'})
32

33 # Stop the timer
34 end_time = time.time()
35

36 # Calculate the elapsed time
37 elapsed_time = end_time - start_time
38

39 print(f"The␣filter␣operation␣was␣{elapsed_time}␣s.")
40

41 # Extract events
42 events, event_id = mne.events_from_annotations(raw_filtered)
43

44 # Keep the events of interest
45 event_id = { 'OVTK_GDF_Left': event_id['OVTK_GDF_Left'], 'OVTK_GDF_Right': event_id['

OVTK_GDF_Right'] }
46

47 # duration of your epochs
48 tmin, tmax = -2, 2 # start and end of an epoch relative to the event
49

50 #create epochs
51 epochs = mne.Epochs(raw, events, event_id, tmin, tmax)
52

53 # Get epochs for the 'OVTK_GDF_Right' event
54 epochs_right = epochs['OVTK_GDF_Left']
55

56 # Average epochs
57 epochs_average_right = epochs_right.average()
58

59 # Convert data to microvolts
60 raw_data_microvolts = epochs_average_right.data * 1e6
61

62 # Normalize data
63 raw_data_microvolts = (raw_data_microvolts - np.mean(raw_data_microvolts)) / np.std(

raw_data_microvolts)
64

65 # Get time vector
66 times = epochs_average_right.times
67

68 # Get channel names
69 ch_names = epochs_average_right.ch_names
70

71 fs = raw.info['sfreq']
72

73 # Plot each channel
74 for i, ch_name in enumerate(ch_names):
75 # Get the signal
76 signal = raw_data_microvolts[i]
77

78 n_samples = len(signal) # No. of samples in 4s
79

80 # Hann window
81 window = hann(n_samples)
82

83 # Apply the Hann window
84 signal_windowed = signal * window
85

86 # Calculate the average and standard error
87 avg = np.mean(signal_windowed)
88 err = sem(signal_windowed)
89

90 # standard error array
91 err_array = np.full_like(signal_windowed, err)
92

93 # Plot
94 plt.figure()
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95 plt.plot(times, signal_windowed, label='Average')
96 plt.fill_between(times, signal_windowed - err_array, signal_windowed + 14 * err_array,

color='gray', alpha=0.5, label='Standard␣Error')
97 plt.axvline(0, color='r', linestyle='--', label='Stimulus')
98 plt.xlabel('Time␣(s)')
99 plt.ylabel('Amplitude␣(µV)')
100 plt.title('EEG␣L␣Channel:␣' + ch_name)
101 plt.ylim([0, 2.5])
102 plt.legend()
103 plt.show()

Envelope and Baseline corrected Envelope
1 """
2 Created on Sun May 26 22:04:08 2024
3 SINGLE MAGNITUDE(NORMAL OR SMOOTHED)
4 @author: Abhay Shenoy
5 """
6 import mne
7 import numpy as np
8 import matplotlib.pyplot as plt
9 from scipy.signal import hann
10 from scipy.signal import hilbert
11 import os
12

13 # Path to edf file
14 # Directory containing the EDF files
15 edf_directory = r'C:\\Users\\Abhay␣Shenoy\\Documents\\EEG␣DATA\\NEW␣FILTERED␣EDF␣DATA'
16

17 # Get a list of edf files in directory
18 edf_files = [os.path.join(edf_directory, f) for f in os.listdir(edf_directory) if f.endswith(

'.edf')]
19

20 # Load edf
21 raws = [mne.io.read_raw_edf(f, preload=True) for f in edf_files]
22

23 # Concatenate the raw data
24 raw = mne.concatenate_raws(raws)
25 raw_c3 = raw.copy().pick_channels(['C4'])
26

27 # Crop the data (31 to 35 seconds)
28 raw_c3.crop(tmin=31, tmax=35)
29

30 # Get the data and times
31 data, times = raw_c3[:]
32

33 # magnitude
34 magnitude = np.abs(data[0]) # Convert from V to µV
35 fs = raw.info['sfreq']
36

37 n_samples = len(smoothed_magnitude)
38

39 # Create Hann window
40 window = hann(n_samples)
41

42 # Apply the window
43 signal_windowed = smoothed_magnitude * window
44

45 # Apply a bandpass filter between 8 and 12 Hz
46 raw_filtered = raw.filter(l_freq=8, h_freq=12, method='iir', iir_params={'order': 5, 'ftype':

'butter'})
47

48 # Extract events
49 events, event_id = mne.events_from_annotations(raw_filtered)
50

51 # Keep the events of interest
52 event_id = { 'OVTK_GDF_Left': event_id['OVTK_GDF_Left'], 'OVTK_GDF_Right': event_id['

OVTK_GDF_Right'] }
53

54 # Define duration of epochs
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55 tmin, tmax = -2, 2
56

57 # create epochs
58 epochs = mne.Epochs(raw, events, event_id, tmin, tmax)
59

60 # Get epochs for the 'OVTK_GDF_Left'
61 epochs_left = epochs['OVTK_GDF_Left']
62

63 # Average epoch
64 epochs_average_left = epochs_left.average()
65

66 # Get data and times from averaged epochs
67 data_avg, times_avg = epochs_average_left.data, epochs_average_left.times
68

69 # Compute magnitude of signal in microvolts
70 magnitude_avg = np.abs(data_avg[0]) # Convert from V to µV
71

72 # Compute smoothed signal
73 smoothed_magnitude_avg = moving_average(magnitude_avg, window_size)
74

75 # Apply Hann window to the signal
76 signal_windowed_avg = smoothed_magnitude_avg * window
77

78 # Get the epochs for the 'OVTK_GDF_Right' event
79 epochs_right = epochs['OVTK_GDF_Right']
80

81 # Average epochs
82 epochs_average_right = epochs_right.average()
83

84 # Get data and times from averaged epochs
85 data_avg_right, times_avg_right = epochs_average_right.data, epochs_average_right.times
86

87 # Compute magnitude of signal in microvolts
88 magnitude_avg_right = np.abs(data_avg_right[0]) # Convert from V to µV
89

90 # Compute smoothd signal
91 smoothed_magnitude_avg_right = moving_average(magnitude_avg_right, window_size)
92

93 # Apply Hann window to the signal
94 signal_windowed_avg_right = smoothed_magnitude_avg_right * window
95

96 # Compute envelope of the signal for each epoch
97 envelopes_right = [np.abs(hilbert(epoch)) for epoch in epochs_right]
98 envelopes_left = [np.abs(hilbert(epoch)) for epoch in epochs_left]
99

100 # Compute average envelope
101 average_envelope_right = np.mean(envelopes_right, axis=0)
102 average_envelope_left = np.mean(envelopes_left, axis=0)
103

104 # Baseline correction
105 baseline_corrected_envelope_right = average_envelope_right - average_envelope_right[0, 0]
106 baseline_corrected_envelope_left = average_envelope_left - average_envelope_left[0, 0]
107

108 # shaded average envelope
109 plt.figure(figsize=(12, 6))
110

111 # Plot
112 #plt.fill_between(times_avg_right, average_envelope_right[0], color='orange',alpha= 0.5,

label='Average Envelope Right ')
113 #plt.fill_between(times_avg_right, average_envelope_left[0], color='blue',alpha= 0.5, label='

Average Envelope Left ')
114 #plt.fill_between(times_avg_right, 0, baseline_corrected_envelope_right[0], color='orange',

alpha=0.5, label='Average Envelope Right (Baseline Corrected)')
115 plt.fill_between(times_avg_right, 0, baseline_corrected_envelope_left[0], color='blue', alpha

=0.5, label='Average␣Envelope␣Left␣(Baseline␣Corrected)')
116

117

118 plt.axvline(0, color='r', linestyle='--', label='Stimulation')
119 plt.xlabel('Time␣(s)')
120 plt.ylabel('Magnitude␣(µV)')
121 plt.title('Average␣Envelope␣of␣Epochs')
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122 plt.legend()
123 plt.show()

ERDS plot
1 """
2 Created on Wed May 29 12:27:56 2024
3

4 @author: Abhay Shenoy
5 """
6

7 import mne
8 import numpy as np
9 import os
10 from scipy.signal import welch
11 import matplotlib.pyplot as plt
12

13 # Directory containing edf files
14 edf_directory = r'C:\Users\Abhay␣Shenoy\Documents\EEG␣DATA\NEW␣FILTERED␣EDF␣DATA'
15

16 # Get list of all edf files in directory
17 edf_files = [os.path.join(edf_directory, f) for f in os.listdir(edf_directory) if f.endswith(

'.edf')]
18

19 # Load edf files
20 raws = [mne.io.read_raw_edf(f, preload=True) for f in edf_files]
21

22 # Concatenate the raw data
23 raw = mne.concatenate_raws(raws)
24

25 raw_filtered = raw.copy().filter(l_freq=7., h_freq=30., method='iir', iir_params={'order': 6,
'ftype': 'cheby1', 'rp': 0.1})

26

27 # Extract events
28 events, event_id = mne.events_from_annotations(raw_filtered)
29

30 # Keep events of interest
31 event_id = { 'OVTK_GDF_Left': event_id['OVTK_GDF_Left'], 'OVTK_GDF_Right': event_id['

OVTK_GDF_Right'] }
32

33 #duration of your epochs
34 tmin, tmax = -2, 2
35

36 #create epochs
37 epochs = mne.Epochs(raw_filtered, events, event_id, tmin, tmax)
38

39 # Split the epochs
40 epochs_left = epochs['OVTK_GDF_Left']
41 epochs_right = epochs['OVTK_GDF_Right']
42

43 # Compute TFR
44 freqs = np.arange(6, 32., 1.) # frequencies of interest
45 n_cycles = freqs /2 # different number of cycle per frequency
46

47 power_left = mne.time_frequency.tfr_morlet(epochs_left, freqs=freqs, n_cycles=n_cycles,
return_itc=False)

48 power_right = mne.time_frequency.tfr_morlet(epochs_right, freqs=freqs, n_cycles=n_cycles,
return_itc=False)

49

50 # Plot TFR
51 fig, ax = plt.subplots(1, 2, figsize=(10, 5), sharey=True)
52 power_left.plot([raw.ch_names.index('P3')], baseline=(-0.5, 0), mode='logratio', axes=ax[0],

show=False, colorbar=True, vmin=-0.7, vmax=0.7)
53 power_right.plot([raw.ch_names.index('P3')], baseline=(-0.5, 0), mode='logratio', axes=ax[1],

show=False, colorbar=True, vmin=-0.7, vmax=0.7)
54 ax[0].set_title('Left')
55 ax[1].set_title('Right')
56 plt.suptitle('ERDS␣plot␣of␣Left␣and␣Right␣Epochs␣for␣P3␣Channel')
57 plt.show()
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Signal Plot
1 """
2 Created on Mon Jun 10 10:23:23 2024
3

4 @author: Abhay Shenoy
5 """
6

7 import mne
8 import matplotlib.pyplot as plt
9

10 # Path edf file
11 edf_file = r'C:\Users\Abhay␣Shenoy\Documents\EEG␣DATA\FILTERED␣EDF␣DATA\record

-[2024.05.28-15.30.09]_FILTERED.edf'
12

13 # Load edf file
14 raw = mne.io.read_raw_edf(edf_file, preload=True)
15

16 raw_filtered = raw.copy().filter(l_freq=7, h_freq=30, method='iir', iir_params={'order': 6, '
ftype': 'cheby1', 'rp': 0.1})

17

18 raw_eeg = raw_filtered.copy().pick_channels(['P3'])
19

20 # Get data and times from'C3' channel
21 eeg_data, eeg_times = raw_eeg[:]
22

23 # Plot the 'C3' channel data
24 plt.figure(figsize=(10, 5))
25 plt.plot(eeg_times, eeg_data[0, :], label='C3')
26 plt.title('EEG␣Signal␣-␣C3␣Channel')
27 plt.xlabel('Time␣[s]')
28 plt.xlim(0,20)
29 plt.ylabel('Voltage␣[µV]')
30 plt.legend()
31 plt.show()

Power bar
1 """
2 Created on Wed May 29 12:27:56 2024
3

4 @author: Abhay Shenoy
5 """
6

7 import matplotlib.pyplot as plt
8 import numpy as np
9 import pandas as pd
10 import seaborn as sns
11 from matplotlib.colors import TwoSlopeNorm
12 import os
13

14 import mne
15 from mne.datasets import eegbci
16 from mne.io import concatenate_raws, read_raw_edf
17 from mne.stats import permutation_cluster_1samp_test as pcluster_test
18

19 # Directory containing edf files
20 edf_directory = r'C:\Users\Abhay␣Shenoy\Documents\EEG␣DATA\NEW␣FILTERED␣EDF␣DATA'
21

22 # Get a list of all edf files in directory
23 edf_files = [os.path.join(edf_directory, f) for f in os.listdir(edf_directory) if f.endswith(

'.edf')]
24

25 # Load edf files
26 raws = [mne.io.read_raw_edf(f, preload=True) for f in edf_files]
27

28 # Concatenate the raw data
29 raw = mne.concatenate_raws(raws)
30

31 raw_filtered = raw.copy().filter(l_freq=7., h_freq=30., method='iir', iir_params={'order': 6,
'ftype': 'cheby1', 'rp': 0.1})
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32

33 # Extract events
34 events, event_id = mne.events_from_annotations(raw_filtered)
35

36 # Keepthe events of interest
37 event_id = { 'OVTK_GDF_Left': event_id['OVTK_GDF_Left'], 'OVTK_GDF_Right': event_id['

OVTK_GDF_Right'] }
38

39 #duration of your epochs
40 tmin, tmax = -2, 2
41 event_ids = dict(OVTK_GDF_Left=2, OVTK_GDF_Right=3)
42

43

44

45 epochs = mne.Epochs(raw,event_id=['OVTK_GDF_Left', 'OVTK_GDF_Right'],tmin=tmin - 0.5,tmax=
tmax + 0.5,picks=("C3","P3", "C4"), baseline=None, preload=True,)

46

47 freqs = np.arange(2, 36)
48 vmin, vmax = -1, 1.5
49 baseline = (-1, 0)
50 cnorm = TwoSlopeNorm(vmin=vmin, vcenter=0, vmax=vmax)
51

52 kwargs = dict(n_permutations=100, step_down_p=0.05, seed=1, buffer_size=None, out_type="mask"
)

53

54 tfr = epochs.compute_tfr(
55 method="multitaper",
56 freqs=freqs,
57 n_cycles=freqs,
58 use_fft=True,
59 return_itc=False,
60 average=False,
61 decim=2,
62 )
63 tfr.crop(tmin, tmax).apply_baseline(baseline, mode="percent")
64

65

66 df = tfr.to_data_frame(time_format=None, long_format=True)
67

68 #Map frequency bands:
69 freq_bounds = {"_": 0, "delta": 3, "theta": 7, "alpha": 13, "beta": 35, "gamma": 140}
70 df["band"] = pd.cut(
71 df["freq"], list(freq_bounds.values()), labels=list(freq_bounds)[1:]
72 )
73

74 df_mean = (
75 df.query("time␣>␣1")
76 .groupby(["condition", "epoch", "band", "channel"], observed=False)[["value"]]
77 .mean()
78 .reset_index()
79 )
80

81 # Filter to relevant frequency bands:
82 freq_bands_of_interest = ["delta", "theta", "alpha", "beta"]
83 df = df[df.band.isin(freq_bands_of_interest)]
84 df["band"] = df["band"].cat.remove_unused_categories()
85

86 g = sns.FacetGrid(
87 df_mean, col="condition", col_order=['OVTK_GDF_Left', 'OVTK_GDF_Right'], margin_titles=

True
88 )
89 g = g.map(
90 sns.violinplot,
91 "channel",
92 "value",
93 "band",
94 cut=0,
95 palette="deep",
96 order=["C3", "P2", "C4"],
97 hue_order=freq_bands_of_interest ,
98 linewidth=0.5,
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99 ).add_legend(ncol=4, loc="lower␣center")
100

101 g.map(plt.axhline)#, **axline_kw)
102 g.set_axis_labels("", "ERDS")
103 g.set_titles(col_template="{col_name}", row_template="{row_name}")
104 g.fig.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.3)

B.2. Matlab
Noise filtering demonstration

1 %Author: Niels van Duivendijk
2

3 % Parameters
4 Fs = 1000; % Sampling frequency
5 T = 1/Fs; % Sampling period
6 L = 1500; % Length of signal
7 t = (0:L-1)*T; % Time vector
8

9 % Generate random noise signal
10 noiseSignal = randn(size(t));
11

12 % Compute the Fourier transform of the signal
13 Y = fft(noiseSignal);
14

15 % Butterworth filter design
16 n = 5; % Order of the filter
17 Wn = 0.2; % Normalized cutoff frequency (0 < Wn < 1)
18 [b, a] = butter(n, Wn); % Filter coefficients
19

20 % Apply the Butterworth filter to the noise signal in the time domain
21 filteredSignal = filter(b, a, noiseSignal);
22

23 % Compute the Fourier transform of the filtered signal
24 Y_filtered = fft(filteredSignal);
25

26 % Compute the single-sided spectrum of the filtered signal
27 P1_filtered = abs(Y_filtered/L);
28 P1_filtered = P1_filtered(1:L/2+1);
29 P1_filtered(2:end-1) = 2*P1_filtered(2:end-1);
30

31 % Define the frequency domain f for the filtered signal
32 f = Fs*(0:(L/2))/L;
33 f_filtered = Fs*(0:(L/2))/L;
34

35 % Plot the original and filtered frequency domain signal
36 figure;
37 subplot(2,1,1);
38 plot(f, abs(Y(1:L/2+1)/L)*10, 'blue');
39 title('Random␣noise␣frequency␣spectrum');
40 xlabel('Frequency␣(f)');
41 ylabel('|N(f)|');
42 ylim([0,1]);
43 xlim([0,300]);
44

45 % Frequency response of the filter
46 [h, w] = freqz(b, a, L/2+1, Fs);
47

48 % Plot the magnitude response (normalized frequency)
49 hold on; % Hold on to the current plot
50 plot(w, abs(h), 'red','LineWidth',2); % Plot the frequency response in red
51 legend('Noise␣Signal', 'Butterworth␣Filter');
52 hold off; % Release the plot hold
53

54 subplot(2,1,2);
55 plot(f_filtered, P1_filtered*5, 'blue');
56 title('Filtered␣random␣noise␣frequency␣spectrum');
57 xlabel('Frequency␣(f)');
58 ylabel('|N_{filt}(f)|');
59 ylim([0,1]);
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60 xlim([0,300]);
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