ransparently
Accelerating Spark SQL
Code on Computing
—aroware

by

—aplan Nonnenmacher

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Wednesday August 19, 2020 at 2:00 PM.

Student number: 5154006
Thesis number Q&CE-CE-MS-2020-09
Project duration: February 1, 2020 — August 19, 2020 (30 ECTS)

Thesis committee: Dr. Zaid Al-Ars, TU Delft, supervisor
Prof. Peter Hofstee, TU Delft, IBM Austin
Dr. Claudia Hauff, TU Delft

Dr. Joost Hoozemans, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Abstract

Through new digital business models, the importance of big data analytics continuously grows.
Initially, data analytics clusters were mainly bounded by the throughput of network links and
the performance of I/O operations. With current hardware development, this has changed,
and often the performance of CPUs and memory access became the new limiting factor. Het-
erogeneous computing systems, consisting of CPUs and other computing hardware, such
as GPUs and FPGAs, try to overcome this by offloading the computational work to the best
suitable hardware.

Accelerating the computation by offloading work to special computing hardware often re-
quires specialized knowledge and extensive effort. In contrast, Apache Spark became one
of the most used data analytics tools, among other reasons, because of its user-friendly API.
Notably, the component Spark SQL allows defining declarative queries without having to write
any code. The present work investigates to reduce this gap and elaborates on how Spark
SQL’s internal information can be used to offload computations without the user having to
configure Spark further.

Thereby, the present work uses the Apache Arrow in-memory format to exchange data
efficiently between different accelerators. It evaluates Spark SQL’s extensibility for providing
custom acceleration and its new columnar processing function, including the compatibility with
the Apache Arrow format. Furthermore, the present work demonstrates the technical feasibil-
ity of such an acceleration by providing a Proof-of-Concept implementation, which integrates
Spark with tools from the Arrow ecosystem, such as Gandiva and Fletcher. Gandiva uses
modern CPUs’ SIMD capabilities to accelerate computations, and Fletcher allows the execu-
tion of FPGA-accelerated computations. Finally, the present work demonstrates that already
for simple computations integrating these accelerators led to significant performance improve-
ments. With Gandiva the computation became 1.27 times faster and with Fletcher even up-to
13 times.

Preface

Throughout the EIT Master School, the last two years become an enriching experience, which
helped me to grow personally. | am thrilled that | had the chance to get to know two universities
and live in two foreign countries. Living abroad, away from friends and family, sometimes can
be scary. Therefore, | am thankful for meeting so many incredible people who made these two
years an exceptional experience and become close friends.

| am grateful for being a part of the ABS group at the TU Delft Computer Engineering
department for the last six months. | met there many inspirational people who are passionate
about their vision of making FPGAs more accessible to Big Data applications. | am also proud
that | was able to contribute to their vision and give something back to the support | have
received during the work on my thesis. This excellent experience was only disturbed by the
Corona situation’s restrictions, which were out of the department’s control. On the contrary,
the team was putting a lot of effort into compensating these restrictions by setting up weekly
meetings and tools for being available for us students.

| would particularly like to thank my supervisor Dr. Zaid Al-Ars, whose support and guid-
ance always was exceptional and far beyond his mandatory duty. The work during my thesis
was particularly motivating because of Zaid’s excitement about all the small steps | achieved
and his inspirational way of sharing his vision. | remember discussing with him after the first
month when | was overwhelmed by the many possibilities and directions to go. Then, the
discussions with him and his guidance helped me shape the goal of my work and, thereby,
not to get distracted by too specific details.

While Zaid ensures all individual projects contribute to the big picture, his team are reliable
supporters, who understand the used technologies into the smallest details. | want to express
special thanks to Joost Hoozemans and Johan Peltenburg. They were always available for
(technical) questions and discussion. Thereby, they helped me understand different parts of
the big picture and decide which ideas are worth following.

Furthermore, | want to thank my fellow EIT companions, Héctor Ballega, and Shashank
Aggarwal. They got stuck with me in Delft during the Corona lockdown and made it an un-
forgettable experience, despite the limited possibilities. Thanks for the excellent time and
especially for the extraordinary BBQs we had!

Last, but definitely not least, | want to appreciate the unlimited support of my family. Know-
ing that | always have a safe harbor gave me the confidence to start this international adven-
ture. Thank you for all the support and for giving me the freedom to gather new experiences.

Fabian Nonnenmacher
Eppingen, 3rd August 2020

Contents

List of Figures v

List of Acronyms Vi
1 Introduction

1.1 Context e 1

1.2 Contribution. 2

1.3 Researchquestion. e 3

1.4 Outline. e 3

2 Background 4

21 Spark SQL e 4

211 Spark RDD API 4

2.1.2 DataFrame APl 6

2.1.3 Catalyst-the queryoptimizer. 7

214 ProjectTungsten 8

21.5 Columnar processing. o oo e 10

2.2 Apache Arrow e 12

2.21 Arrow columnarformat. 13

2.2.2 ArrowJavalibrary. 14

2.2.3 Parquetreader 14

224 Gandiva 15

23 Fletcher. e 15

24 Relatedwork 16

3 Architecture and general concepts 18

3.1 Generalstructure 18

3.2 Executing custom code withinSpark SQL 19

3.3 Arrow-based columnarprocessing 20

3.4 Exchanging Arrow arrays between Javaand C++ 21

341 Overview. 21

342 FromJavatoC++. 22

3.4.3 From C++ to Java with preallocated buffers 22

3.4.4 From C++ to Java by forwarding the allocationto Java. 23

4 Integration of different accelerators 24

4.1 OVervieW e e 24

4.2 Importing Parquet files into Arrow format L. 25

43 Gandivaintegration 26

4.4 Simplemaxaggregation 27

4.5 Fletcher e 28

Contents

5 Evaluation
5.1 Setup e
5.2 Parquetreading
5.3 Gandiva. e
5.4 Fletcher e

6 Conclusions and future work
6.1 ConcluSionNSs
6.2 Furtherwork e

A Measurement Results
A1 ParquetReading. e
A2 Gandiva. e
A3 Fletcher e

List of Figures

2.1 Interfaces to Spark SQL, and interaction with Spark
2.2 Examples of narrow and wide dependencies
2.3 Spark runtime. The user’s driver program coordinates the computation on a
workernode cluster.
2.4 Applying constant-folding rule to the Catalyst tree for the expression x+ (1+2)
2.5 Phases of query planninginSpark SQL,
2.6 Memory layout of Spark’'s UnsafeRow
2.7 Example of volcano model based execution
2.8 Comparison of row-based and column-based memory layout
2.9 Different levels of data splittingin Spark.
2.10 Additional memory transformation phase in Catalyst planning
2.11 Schematic representation of the columnar memory layout of Arrow arrays . . .
2.12 Gandiva architecture overview Lo
213 Fletcheroverview Lo

3.1 Architecture overview: Structure of the implementation and used third-party li-

braries L
3.2 Different categories of computation that are executed by third-party libraries . .
3.3 Example of replacing a physical operator with a custom implementation
3.4 Modifying Spark’s columnar processing to be based on Apache Arrow
3.5 Implementation of MemoryPool that forwards the allocationto Java.

4.1 Simplified implementation of the custom Parquet reader operator
4.2 Spark SQL Catalyst’s representation of filter and projection operations
4.3 Internal computation of custom GandivaProjectExec operator
4.4 Spark SQL’s physical plan of a max aggregation and its modification
4.5 Spark SQL’s physical plan of the Fletcher use case and its modification

4.6 Implementation of the FletcherExecoperator

5.1 Changes to execution time when executing a Spark query multiple times
5.2 Parquet reading scenario: Physical plans of the different Spark configurations .
5.3 Comparing the execution of the Arrow-based Parquet reader with Vanilla Spark
5.4 Effect of changing the batch size on the Arrow-based Parquet reader (incl. max
aggregation) e
5.5 Gandiva scenario: Physical plans of the different Spark configurations
5.6 Comparing the execution of Gandiva-accelerated Spark with Vanilla Spark
5.7 Effect of changing the batch size on Gandiva-accelerated Spark (incl. max ag-
gregation) e
5.8 Fletcher scenario: Physical plans of the different Spark configurations
5.9 Comparing the execution of Fletcher-accelerated Spark to Vanilla Spark

18
19
20
21
23

25
26
27
28
29
30

31
32
33

33
34
35

35
36
37

ABS
API
AWS
CPU
DAG
DSL
FPGA
GPU
HAF
HDL
IPC
JDBC
JIT
JMH
JNI
JVM
LLVM
LSB
OoDBC
os
PoC
RDD
RMI
SIMD
sQL
SSD

Accelerated Big Data Systems
application programming interface
Amazon Web Services

central processing unit
directed acyclic graph

domain specific language
field-programmable gate array
graphics processing unit
hardware-accelerated function
hardware description language
interprocess communication
Java Database Connectivity
Just-in-time

Java Microbenchmark Harness
Java Native Interface

Java Virtual Machine

Low Level Virtual Machine
least-significant bit

Open Database Connectivity
operating system

Proof of Concept

Resilient Distributed Dataset
remote method invocation
single instruction multiple data
Structured Query Language

solid-state drive

List of Acronyms

UTF-8 8-Bit Universal Coded Character Set Transformation Format

Introduction

1.1. Context

With the creation of new digital business models, the amount of data created every day is
increasing dramatically. In 2018, 33 zettabytes of new data have been created, which is 375
million times more than the size of the internet in 1997. Many companies join together and
analyze the data, gathered from their users, and production processes to improve existing
business models and to find new business opportunities. It is essential for them to be able to
analyze a vast amount of data quickly and cost-efficiently [61].

Apache Spark is a unified analytics engine for distributed large-scale data processing. It
was started in 2009 by a research project at UC Berkeley. Since then, Spark’s popularity has
increased rapidly and it has become one of the most used big data analytics platforms. Apache
Spark is now used in many industries, including large internet companies such as eBay and
Netflix. Furthermore, with more than 1000 contributors, it has developed to being the largest
open source community in big data [15].

Besides the core component, which includes managing the memory, distributing the data,
and coordinating the execution in a cluster, Apache Spark contains multiple modules to support
further data-processing use cases such as streaming data and machine learning [15]. One of
these modules is Spark SQL, which enables Spark to process structured data. This module
integrates relational processing into Spark and allows the users to define their data processing
queries in declarative style (e.g. SQL). Furthermore, it includes the highly extensible optimizer
Catalyst, which optimizes the defined query for better performance before executing it [1].

There are many reasons for Spark’s popularity, in particular, its fast in-memory process-
ing, its ability to distribute workloads in clusters and the rich functionality provided by the whole
ecosystem. Furthermore, many different blogs [6, 16, 63] discuss the easy-to-use APIs as an
important reason for its rapid growth in popularity. Notably, the module, Spark SQL, allows
defining complex data processing workloads with a short and precise code. This user-friendly
API leads to a productivity boost for writing new queries and likewise improves the maintain-
ability by providing helpful debugging information.

With the increasing popularity of new hardware such as SSDs and 10 Gps network links,
the costs of 10 operations have decreased and the CPU and memory have become the new
performance bottlenecks. To address this problem, Project Tungsten was started, which in-
cludes several changes to the execution engine to increase its efficiency [56].

Nevertheless, these optimizations can also not overcome the fact that a CPU has limita-
tions in executing computations in parallel. For many data-intensive workloads, it is, therefore,
beneficial to make use of the SIMD capabilities of modern CPUs [32] or to offload computation-
intensive work to graphics processing units (GPUs) [43].

1

1.2. Contribution 2

Other computing accelerators are field-programmable gate arrays (FPGAs). These hard-
ware chips contain a two-dimensional array of logic gates that can be reprogrammed. FPGAs
allow developers to program an application-specific integrated circuit into the chip after fabri-
cation. General-purpose CPUs are restricted in their ability to execute operations in parallel.
In comparison, FPGAs do not have this limitation and can process data often faster and with
lower energy consumption than CPUs [8].

With the exploding volume of data and the increasing complexity of processing pipelines,
it is nearly impossible for traditional computer architectures to keep up with the arising perfor-
mance requirements. Hence, many experts in high-performance computing are working on
heterogeneous computing platforms that accelerate data analytics applications by offloading
parts of the workload to suitable hardware accelerators such as GPUs and FPGAs [24].

Spark has also recognized the trend of heterogeneous computing. By adding new fea-
tures, such as columnar data processing (Spark-27396) and accelerator-aware task-sched-
uling (Spark-24615), to the recently released major version 3.0.0, they have laid a foundation
for integrating Spark with different hardware accelerators.

The Accelerated Big Data Systems (ABS) group at the TU Delft Computer Engineering
department is also working on making the vision of heterogeneous computing platforms reality.
With their Fletcher framework, they simplify the integration of vendor-specific FPGAs into other
data processing tools [48]. This integration is based on Apache Arrow, a language-agnostic
in-memory columnar format that enables data exchange between different processes without
serialization overhead [3]. Spark is also compatible with the Arrow format and uses it mainly to
transfer data to and from python processes [20]. Similarly, this work contributes to the greater
vision of the ABS group by studying Spark’s heterogeneous computing features. It analyzes
how Spark queries can be executed on different hardware accelerators based on the Apache
Arrow format without losing the benefits of the user-friendly API.

1.2. Contribution

As described in the previous section, the module Spark SQL provides an APl where a data sci-
entist describes a data analytics query in a declarative style, which is understood structurally.
The main aim of the present work is to accelerate the query execution by using this structural
information to offload parts of the query to other hardware accelerators.

The use of hardware accelerations often requires specific knowledge to decide if accel-
eration is beneficial. The vision is that a data scientist uses Spark’s user-friendly APl and
defines a declarative query, and an algorithm uses execution statistics to decide on using the
available hardware accelerators as efficiently as possible. Following this visionary idea, this
work hides the acceleration and uses the query’s internal structure to accelerate the execution
transparently.

Motivated by the other work of the ABS group, this work concentrates on integrating Spark
with two hardware accelerators from the Apache Arrow ecosystem. Firstly, this work eval-
uates the suitability of Gandiva [51], which uses modern CPU SIMD capabilities to process
Arrow data. Secondly, it integrates Spark SQL with Fletcher [48] to accelerate the execution
with FPGAs. Additionally to the accelerators, this work also integrates Spark with the Arrow
Parquet file reader, to demonstrate a whole workflow based on the Arrow format.

The main contribution of this work is the elaboration of the technical feasibility of the de-
scribed integrations. The functionality and maturity of the associated technical components
are analyzed and a Proof of Concept (PoC) is implemented to demonstrate the workability.
Nevertheless, the implementation does not fully integrate a specific feature set. Instead, it
solves several significant challenges and demonstrates which additional challenges exist and
should be addressed in further work.

https://issues.apache.org/jira/browse/SPARK-27396
https://issues.apache.org/jira/browse/SPARK-24615

1.3. Research question 3

Even though Spark’s key functionality is to distribute computational work in a cluster, this
work focuses on accelerating the execution on a single-node. Spark divides the data into
chunks (partitions) and distributes them to different executor threads, which work in paral-
lel [66]. However, this work does not consider any challenges related to the distributed setup
(e.g. availability of hardware accelerators). Instead, it concentrates on a single executor and
improves the performance of the individual execution. Nevertheless, the implementation is
fully compatible with Spark’s executor model and can also be executed in a distributed setup
as long as the required hardware accelerators are available.

Finally, the work evaluates the performance of the PoC implementation on some exem-
plary use cases. It demonstrates first performance improvements and provides insights on
necessary preconditions for powerful acceleration.

1.3. Research question
The main goal of this work is described by the following main research question:

Can Spark SQL’s internal structural information of the query be used to accelerate the
query execution by offloading work to hardware accelerators based on Apache Arrow?

Answering this question requires the analysis of the technologies, a PoC implementation to
gain further insights, and an evaluation of the performance improvements. To give a well-
founded answer to the main question, the following subquestions will also be answered.

1. Does Spark SQL provide sufficient extension points that allow the provision of different
hardware accelerators?

2. How mature is Spark’s columnar processing function and is it compatible with the Apache
Arrow memory format?

3. Which performance improvements can be identified and what are potential bottlenecks?

1.4. Outline

Chapter 2 introduces the tools integrated during the present work and provides their internal
technical details necessary for the integration described later. This chapter introduces Apache
Spark, Apache Arrow, and Fletcher. Thereby it focuses on the components and features rel-
evant for this work.

Based on this background information, Chapter 3 presents the general architecture of
the present work and introduces general concepts necessary for integrating accelerators with
Spark. Firstly, it presents how Spark can be extended with custom columnar processing im-
plementations. Secondly, it discusses necessary modifications, so that Spark’s columnar pro-
cessing functionality becomes compatible with the Apache Arrow format. Thirdly, it presents
the present work’s approach to exchange Arrow data between Java/Scala code and native
C++ libraries, which enables Spark to use accelerators not implemented in Java.

Afterward, these concepts are applied to concrete accelerator implementations presented
in Chapter 4. This includes the Dataset Parquet Reader and Gandiva from the Arrow project
and the Fletcher runtime, which allows executing FPGA-accelerated functions on Arrow Data.

Chapter 5 evaluates the performance of these accelerated implementations by compar-
ing them to the unmodified Vanilla Spark. This chapter discusses the effect of the different
accelerators and evaluates the impact of the batch size.

Finally, Chapter 6 summarizes the results and reflects on the formulated research ques-
tions.Furthermore, it shows unsolved challenges and further work necessary to make the vi-
sion of a Spark-based heterogeneous computing platform, including Fletcher, reality.

Background

2.1. Spark SQL

Spark SQL is a module that enables Spark to process structured data. Additionally to the
underlying Spark RDD API, Spark SQL allows the users to define declarative queries and
uses the structure of the queries internally together with the structure of the data to optimize
the execution [20].

User Programs
JDBC Console (Java, Scala, Python)
¥ v ¥

Spark SQL DataFrame API

l Catalyst Optimizer ‘

4’ A
Spark

\ Resilient Distributed Datasets |

Figure 2.1: Interfaces to Spark SQL, and interaction with Spark [1]

Spark SQL is built on top of the functional programming API and extends Spark’s function-
ality (Figure 2.1). It exposes an SQL interface, which can be accessed through JDBC/ODBC
or a command-line tool. Therefore, end-users and applications can interact with Spark SQL
without the users having to write any code. Furthermore, Spark SQL includes the DataFrame
API, which can be called from all programming languages supported by Spark [1, 20].

This work evaluates several very recent features of Spark. Hence, the implementation
and testing done during this work are based on Apache Spark version 3.0.0 [60], which is the
most recent version at the time of writing. This new major version was released in June 2020
and was not available at the beginning of this work. Consequently, the first evaluations and
implementations began with the publicly available preview version (3.0.0-preview?2) but
were later migrated to the officially released version.

2.1.1. Spark RDD API

Apache Spark is a general-purpose cluster computing engine that offers a functional program-
ming API, allowing users to manipulate Resilient Distributed Datasets (RDDs) that are data
collections distributed among different nodes [1]. These RDD abstractions are specially de-
signed for efficient fault-tolerance and data reuse. In contrast, to other frameworks, Spark

4

2.1. Spark SQL 5

also provides an abstraction for distributed memory and allows the users to explicitly persist
intermediate results in memory and control the partitioning of the data [66].

RDDs are an immutable collection of records that can be created by referencing data in
external storage systems (e.g. shared filesystem) or transforming other RDDs. A transforma-
tion describes a deterministic operation such as map, filter, or join, that can be applied to one
or multiple RDDs and creates a new RDD. The new RDD then stores the information how
it was derived from other RDDs. As a result, the RDD does not need to be materialized the
whole time. Instead, the information can be used to recreate the RDD at any time (e.g. in a
case of failure) [66].

The second type of operation is an action. This is similar to a transformation, as it is applied
to an RDD. However, in contrast, it returns a materialized result value. Therefore, executing
an action triggers a computation. In Contrast, transformations are evaluated lazily. They
are only computed when required by an action. Internally, Spark creates a lineage directed
acyclic graph (DAG), which stores the dependencies between the RDDs and only executes
the transformations when required by an action to compute a result [19, 66].

In general, there are two different types of transformations. Firstly, there are the narrow
transformations, where each partition of the parent RDD can only be used once to compute
a partition of the resulting RDD. Secondly, there are wide transformations where partitions of
the parent RDD may be used many times. Examples of the different types of transformations
are shown in Figure 2.2 [66].

Narrow Dependencies: Wide Dependencies:

1)
(11)

map, filter groupByKey

join with inputs
co-partitioned

join with inputs not

union co-partitioned

Figure 2.2: Examples of narrow and wide dependencies. Each box is an RDD, with partitions shown as shaded
rectangles [66].

To use Spark, developers write a driver program by using the Spark RDD API. As shown
in Figure 2.3, this driver program controls the lineage DAG and forwards partitions (subsets)
of RDDs to a cluster of worker nodes. The driver program then invokes the computation of
the transformations and actions and gathers the results from the worker nodes [66].

In the distributed setup, it becomes apparent that narrow transformations can be executed
much faster than wide ones. For narrow operations, a worker node can compute the partition
of a new RDD from the partitions of the parent RDD without having to exchange any data with
the other worker nodes. Additionally, further optimization, such as pipelining, can be applied,
whereby multiple transformations may be grouped and executed in one pass. In contrast,
wide transformations are slow. They require a data exchange (shuffle), which has a negative
impact on the performance because of the network latency.

As described in the previous chapter, this work focuses on the evaluation of different ap-
proaches for the improvement of a single worker node’s performance. Translated into Spark’s

© ® N O O b W N

2.1. Spark SQL 6

Input Data
=
Figure 2.3: Spark runtime. The user’s driver program coordinates the computation on a worker node cluster [66].

terminology, this means this work focuses on improving the execution of narrow transforma-
tions.

2.1.2. DataFrame API

As described above, the DataFrame API allows users to control Spark SQL from another pro-
gramming language. At the time of writing, the API is available for Scala, Java, Python, and
R [20]. The central abstraction is a DataFrame which is equivalent to a table in a relational
database. Simultaneously, a DataFrame can also be viewed as an RDD of rows. The combi-
nation of these two principles allows the user to manipulate a DataFrame with either relational
operators, such as where and groupBy, or with procedural operators similar to the RDD API,
such as map or filter [1].

Apart from the relational API, a user can register a DataFrame as a temporary table and
query it using SQL [1]. With version 1.6, Spark introduced the additional DataSet abstraction
which extends the API with a strongly-typed, object-based API for procedural operators [41].
The following code example shows on a simple use case that all three approaches can be
mixed easily to create functionally equivalent computations.

// import a json file as DataFrame
val df: DataFrame = spark.read.json(”“employees.json”)

// Using the DataFrame API
val rl = df.where(col (”age”) < 30).count()

// Using a temporary table with pure SQL
df.createTempView ("employees”)
val r2 = spark.sqgl (”SELECT count (*) FROM employees WHERE age < 30 ")

// Using the strongly-typed DataSet abstraction

case class Employee (name: String, age: Long)

import spark.implicits.

val dataset = df.as[Employee] // map each record to the Employee class
val r3 = dataset.filter(employee => employee.age < 30).count ()

Listing 2.1: Three different ways of using the DataFrame API

The DataFrame operations are similar to the RDD transformations in that they are lazy and
are only executed when an “output operation” is called. The sequence of operations defined
by the user represents a logical plan which is then optimized before execution [1].

The three approaches from the previous example are functionally equivalent, but their log-
ical plan representations are not. In particular the lambda expression passed to the filter

2.1. Spark SQL 7

method of the DataSet API is executed within the JVM as in any other java function. As a
result, Spark SQL does not understand the lambda expression structurally and is, therefore,
limited in the abilities to optimize the lambda expression or to execute it in another environ-
ment. Analyzing the JVM byte code would be one solution to overcome this limitation, which
is proposed and discussed in feature Spark-14083 of the Spark backlog [59]. However, this
work highly depends on understanding the structure of the logical plan. Therefore, only logical
plans created by the other approaches are considered in the implementation of this work.

The DataFrame API supports atomic SQL types such as boolean, integer, double, decimal,
and string and complex types such as structs and arrays [1]. This work analyzes the technical
feasibility of integrating Spark with other tools and focuses only on the simple case, the atomic
data types.

2.1.3. Catalyst - the query optimizer

As already discussed, one of the main advantages of using Spark SQL is that it uses the struc-
tural information of the data and the query to optimize the latter before executing it. Within
Spark SQL, the responsible component is called Catalyst. This optimizer follows an extensi-
ble design so that new optimization techniques can be added easily by internal and external
developers. For adding new rules to Catalyst, no complex domain specific language (DSL)
is required. Instead, Catalyst is based on functional features of the Scala programming lan-
guage, such as pattern-matching [1].

Within Catalyst, every query is represented by a free of operations (e.g. filter) and expres-
sions (e.g. “x > 5”) that can be manipulated by applying rules to them. The most common way
to define a rule is to use Catalyst's transform method, which iterates through a tree and
replaces every subtree that matches a particular pattern [1].

By using Scala’s pattern matching syntax, these rules can be implemented quite easily.
For example, the following code snippet defines a rule for constant folding of additions. When
applying this rule to the expression x+ (1+2), this results in the new expression x+3 (see
Figure 2.4) [1].

tree.transform{
case Add(Literal(cl), Literal(c2)) => Literal (cl+c2)
}

Listing 2.2: Constant folding rule defined with pattern matching

Add
Attribute(x) Add
T~ Attribute

(x) Literal(3)
Literal(1) Literal(2)

Figure 2.4: Applying constant-folding rule to the Catalyst tree for the expression x+ (1+2)

As shown in Figure 2.5, the optimization of Catalyst is conducted in 4 phases: Firstly, the
logical plan is analyzed and all references are resolved. Secondly, the plan is logically opti-
mized and then mapped to different physical executors. Finally, the best physical mapping is
chosen on a cost-based model and used to generate Java byte code. The following describes
these 4 phases in detail [1].

As described in the previous section, there are multiple ways to define a Spark SQL query.
However, all approaches result in a tree of operations and expression, which is called an
unresolved logical plan. During the analysis phase, all references (e.g. column names) are

https://issues.apache.org/jira/browse/SPARK-14083

2.1. Spark SQL 8

; Logical Physical Code
Analysis optimization Planning Banarsiicn
SQL Query %
i Selected
Unresolved ; Optimized . 3
i H Logical Plan H . Physical = Physical RDDs

Logical Plan 9 Logical Plan Plans z F?;an

DataFrame O

Figure 2.5: Phases of query planning in Spark SQL [1]

resolved and their data types are determined. This information is then used to validate the
query, for example, by ensuring that the data types are compatible between operations [1].

The resolved logical plan is then optimized for a faster execution by applying a set of rules.
These rules include constant folding, predicate pushdown, projection pruning and boolean
expression simplification [1].

The next phase is to find the best way to execute a logical plan. Every logical operation
is mapped to at least one potential physical operator, which is a concrete implementation of
logical operations containing detailed instructions to compute the desired result [41]. Concep-
tually, this mapping could lead to multiple variants from which a cost-based model chooses
the best fitting one. However, the current implementation of Spark maps most logical oper-
ations to precisely one physical operator. A different physical operator is only used for Join
operations on small data sets. Therefore, there is no need for a complex cost-based model
and it has not been implemented at the time of writing [1].

Additionally, in this phase, further physical optimizations such as predicate pushdown are
applied. Predicate pushdown means that some filter operations are not executed by Spark,
but instead directly by the data source. As a result, fewer data must be loaded into the memory
or transferred over the network. For example, Parquet files are organized in chunks and store
various statistics about each chunk’s data, such as the maximum value of a column. When
applying predicate pushdown, these statistics are used to decide early if a chunk contains
data matching the filter expression and the loading of not matching chunks into memory can
be avoided [12, 41].

Especially for operations parameterized with expression trees, such as filter or projection,
the evaluation of the expression trees is a costly operation. For avoiding this, Catalyst gener-
ates Java byte code from the expression tree and applies this generated code to every row,
which is processed. With the Wholestage Code Generation, introduced in Subsection 2.1.4,
Spark enhanced this functionality and started to generate Java byte code from the whole phys-
ical plan and not only from the expressions of one physical operator.

Catalyst’s extensible design makes it easy for third-party developers to add new rules to all
phases of the optimization. The present work, uses this API extensively, to provide different
implementations for certain logical operations.

2.1.4. Project Tungsten

The use of SSDs and faster Ethernet connections led to a massive increase in 1/O perfor-
mance. CPU and memory access has now become the new bottleneck in big data process-
ing [41]. Project Tungsten was started to overcome this, combining different changes to the
execution engine to improve the efficiency of memory and CPU [14]. In the following, some of
these changes, such as memory management and code generation are presented in-depth.
Then, columnar processing for better SIMD support is discussed in the next section.

2.1. Spark SQL 9

Memory management

Generally the JVM garbage collector is responsible for managing the whole life cycle of Java
objects and their memory usage. The garbage collector is a very complex and powerful com-
ponent optimized for a wide variety of applications. However, Spark wants to achieve the
highest performance possible and wants to avoid the overhead through the Java memory
layout and the garbage collector [41, 64].

The memory layout of Java objects is designed for typical workloads and is not optimized
for small memory consumption. Every object stored in memory contains additional headers
and hash codes. Which results in a simple 4 byte UTF-8 String object consuming 48 bytes
memory [64].

The garbage collector continuously monitors the references of an object. After it detects
no reference exist anymore, it destroys the object and frees the memory. To manage the
objects as efficiently as possible, it estimates the life span based on many heuristics. However,
whenever this estimate is wrong, the garbage collector is not handling the objects ideally. In
contrast to the garbage collector, Spark manages the data flow through the computation and
knows the life-span of the data objects exactly. It can use these insights to manage the memory
more efficiently [41, 64].

For managing the memory format of the data, Spark has introduced in version 1.4 the
UnsafeRow, a binary representation of a data row. The implementation is based on Java’s
internal sun.misc.Unsafe package, which provides advanced functionality that allows C-
style memory access, such as explicit allocation, deallocation and pointer arithmetics [64].

The memory layout of an UnsafeRow consists of three different regions (Figure 2.6). The
first region, the null bit set region, indicates, with a bit, whether a value of the field is null or
not. This region is beneficial for non-null filtering because, for this, loading the actual value
is not necessary. The fixed-length value region has reserved an 8 byte spot for every field
of the row. Values fitting into 8 bytes such as int, long or double are stored directly in
their reserved spot. When the values are larger (or undefined), they are stored instead in the
variable-length value region. The spot in the fixed-length value region is used to refer to the
location by storing the starting offset and length. Additionally, all regions are 8-byte aligned,
so that they fit exactly into 64 bit CPU registers [41].

0 1 8 0 8 16 24 32 0 8 16
______ ' , I
00000100 | Padding ... : 5 |oie| o |6i5] |Alplalc|n]e|s]p|alr]k] .
indicates 3" offset length offset length ~ Start start
value is null 2" value 4™ value
. J . J . J
Y Y Y
null bit set region fixed length values region variable length values region

Figure 2.6: Memory layout of Spark’s UnsafeRow with the values: [5, “Apache”, null, “Spark”]

Whole Stage Code Generation
As described in the previous section, the initial version of Spark SQL Catalyst already con-
tained a code generation step. It has converted trees of expressions (e.g. a filter predicate)
into Java byte code and has executed it when processing a row. With Apache Spark 2.0,
an improved version of code generation was introduced. The new function generates one
coherent piece of code of all physical operators executed on the same node (“a stage”) [41,
57].

Similar to other database systems, previous versions of Spark used a query execution
strategy based on the volcano iterator model [57]. In this model, every processing step imple-

© ®©® N O O bh W N 2

2.1. Spark SQL 10

ments a next () method that returns the next processed data record. Internally, this method
calls the next () method of the predecessor and applies its transformation to it. Thereby,
a chain of next () methods is created, which allows processing one data record completely
independently of the other records [29].

SELECT “name’
FROM “employees”
WHERE “age’ < 30

Figure 2.7: Example of volcano model based execution

An example of this is shown in Figure 2.7 on a query filtering for employees less than
30 years old. Catalyst maps the shown SQL query to a physical plan consisting of three
operators. Calling the next method on the projection operator results in a chain of next ()
calls and finally returns the name of the first employee younger than 30 years. The whole
stage code generator combines multiple operators into one function, similar to the following
pseudo-code:

Iterator scanlterator = ... //database reader
while (scanlterator.hasNext ()) {
// get next record from database
Row row = scanlterator.next();
// filter
if (! (row.age < 30))
continue;

// projection
Row newRow = new Row (row.name) ;

append (newRow) ;

Listing 2.3: Pseudo Java Code demonstrating the whole stage code generation output

In comparison to the volcano model, the generated code has various advantages. Firstly,
it contains fewer virtual function calls. Secondly, the volcano model requires that the inter-
mediate records are stored in memory (function call stack). For the generated version, it is
sufficient to hold most intermediate records in the CPU registers. Moreover, modern compil-
ers, like the Java Just-in-time (JIT) compiler, optimize the code, for example, with pipelining,
prefetching, and instruction reordering. The compiler can use these optimization techniques
much better for coherent code, than for complex function call graphs [57].

2.1.5. Columnar processing

As part of Project Tungsten, Apache Spark 2.0 started to use a columnar memory format
for individual physical operators such as the parquet file reading [41]. In the just-released
version 3.0, the next step has been taken with feature Spark-27396 that extends Catalyst’s
public APIs with a generic design to specify columnar-based implementations for all physical
operators [59]. At the time of writing, Spark itself does not contain many columnar-based
implementations. Nevertheless, the new design, introduced in Spark-27396, is a fundamental
basis for the implementations of this work and is therefore, described as follows:

https://issues.apache.org/jira/browse/SPARK-27396

2.1. Spark SQL 11

Spark’s initial memory follows a row-based layout (Figure 2.8a). With this approach, every
row (or data record) is serialized as one chunk into memory. As the layout of the UnsafeRow
(described in the previous section) shows, multiple different data types are combined and
written in a contiguous block of memory. In contrast, in the column-based layout (Figure 2.8b),
the same fields of multiple rows are grouped and stored as one block in memory [41].

Row 1 Row 2 Row 3
Row 1 | Field1 | | Field 2 | | Field 3 | Column 1 | Field 1 | | Field 1 | | Field 1 |
Row 2 | Field1 | | Field 2 | | Field 3 | Column 2 | Field 2 | | Field 2 | | Field 2 |
Row 3 | Field1 | | Field 2 | | Field 3 | Column 3 | Field 3 | | Field 3 | | Field 3 |
(a) row-based layout (b) column-based layout

Figure 2.8: Comparison of row-based and column-based memory layout

Generally, in a row-based layout, a single record can be read or modified easily, however
for many use cases (e.g. aggregating a single field) much unnecessary data is read. For
column-based layouts, it is the opposite. Only the relevant fields can be loaded into memory,
but reading a whole row leads to multiple memory accesses [31].

In 1966, Michael Flynn [27] classified different computer architectures based on their han-
dling of data-level parallelism and task-level parallelism. The category single instruction multi-
ple data (SIMD) describes a computer architecture, where multiple processors apply the same
operations to different data streams simultaneously. However, the computer still has only a
single instruction memory and control processor. This architecture implements data-level par-
allelism and is suitable for many data processing use cases such as matrix computations or
image processing. Today most GPUs fall into this category and also modern CPUs come with
a separate SIMD unit for such use cases [32].

Modern implementations typically load a whole vector of data into the memory and process
all elements of this vector simultaneously. Naturally, this computer architecture works well
together with the column-based memory layout. The processor can load a whole column
without reorganizing it and can process multiple data rows at once. Accordingly, the columnar
memory-layout is an important precondition for processing data in heterogeneous clusters
using different computing hardware such as GPUs and FPGAs.

Analyzing Spark’s source code [58] reveals the details of the columnar-processing imple-
mentation. The most important abstraction is the ColumnarBatch, representing a chunk of
data and combining multiple Columnvector. Important to notice is that a ColumnarBatch
is a chunk of data within one partition. As shown in Figure 2.9, Spark splits the full dataset into
partitions, which are processed in parallel by multiple executor threads. Typically, a single par-
tition is then processed row-by-row within a single thread. However, the ColumnarBatch im-
plementation splits the data of one partition once more and enables the processing in batches.

The ColumnVector is an interface abstracting one column of in-memory data. Spark in-
cludes multiple implementations of this interface. An implementation based on Apache Arrow
(ArrowColumnVector) is also part of the project. Even though this is a long term goal, the
Spark contributors have decided not to use the Arrow-based implementation as the current
default. In the discussion of feature Spark-27396 in Spark’s issue tracker [59] the contributors
decided not to expose any Arrow-related APIs, before the release of an Arrow major version.
Instead, the Arrow-based implementation is internally used to exchange data with Pandas [18].

https://github.com/apache/spark/blob/v3.0.0/sql/catalyst/src/main/java/org/apache/spark/sql/vectorized/ColumnarBatch.java
https://github.com/apache/spark/blob/v3.0.0/sql/catalyst/src/main/java/org/apache/spark/sql/vectorized/ColumnVector.java
https://github.com/apache/spark/blob/v3.0.0/sql/catalyst/src/main/java/org/apache/spark/sql/vectorized/ArrowColumnVector.java
https://issues.apache.org/jira/browse/SPARK-27396

© O N O o Hh W N =2

2.2. Apache Arrow 12

}

ColumnarBatch

=

eeoe oo

Dataset Partitions ColumnarBatch
(data chunks that are processed in parallel) (data chunk that is processed at once)

Figure 2.9: Different levels of data splitting in Spark.

The implementation of feature Spark-27396 provides an API that enables physical oper-
ators to process data in batches. The base class of the physical operators SparkPlan was
extended with new methods. To create a operator with columnar processing support, the
following two methods need to be implemented:

/*4«
* The base class for physical operators.
*/
abstract class SparkPlan extends QueryPlan[SparkPlan] {
/**
* Return true if this stage of the plan supports columnar execution.
*/
def supportsColumnar: Boolean = false
/**
* Produces the result of the query as an ‘RDD[ColumnarBatch]®
*/
protected def doExecuteColumnar (): RDD[ColumnarBatch] = {

throw new IllegalStateException(s”column support mismatch”)

}
/]

Listing 2.4: Excerpt from class SparkPlan [58]

A new transformation phase was added to the Catalyst optimizer to combine columnar and
non-columnar operators (Figure 2.10). This phase introduces additional operators that either
convert the memory into the columnar format (RowToColumnarExec) or the other way around
(ColumnarToRowExec). Two new extension points have been introduced to add custom
transformation rules. The first set of rules (pre) is executed before inserting the transformation
and allows injecting operators with columnar-processing support. The second set of rules
(post) allows further addition of optimizations or replacement of transformations with custom
implementations.

2.2. Apache Arrow
In 2016, the Apache Foundation announced the Apache Arrow project, which defines a lan-
guage-agnostic in-memory columnar format embedded in a software framework. This mem-

https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala
https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala
https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/Columnar.scala#L405
https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/Columnar.scala#L60

2.2. Apache Arrow 13

Logical Physical
Optimization Planning
Selected Plan

Unresolved ; Optimized : d
X Logical Plan . Physical with columnar
[Loglcal Plan 9 Logical Plan inan (L J)Ktransw'tions
re post
Catalog pre p

Figure 2.10: Additional memory transformation phase in Catalyst planning (based on [1])

Add memory Code
transformations Generation

Analysis

Physical
Plans

RDDs

Cost Model

ory format and the multi-language implementations enable different processes to share data
between them. Because of the shared layout, this can be done without serialization, deserial-
ization, or memory copies. Therefore, Apache Arrow usage is especially beneficial for multi-
system workloads, in which the overhead of the cross-system communication can be reduced
dramatically. As discussed in Subsection 2.1.5, the columnar layout is especially beneficial
for modern hardware such as CPUs and GPUs and was, therefore, a logical design decision
for Arrow [28].

Arrow provides implementations for a wide variety of programming languages to read and
write the defined memory format. The Java and C++ implementations are especially relevant
for the present work. Furthermore, it includes additional computing libraries and functionality
supporting interprocess communication (IPC). In this work, the included Parquet file reader
and Gandiva, a toolset for executing SIMD operations, are used [3].

During the work on this thesis, Arrow version 0.17.1 has been released and is used for all
implementations.

2.2.1. Arrow columnar format

The Arrow Columnar Format defines a physical layout to store data-structures in-memory.
This layout is optimized for sequential access (data adjacency), constant random access, and
SIMD operations. Additionally, in shared-memory, it can be accessed from multiple processes
without copying data.

In Arrow, a sequence of values with a known length, all having the same data type, is
called an array. The elements of an array can be nested and can contain further child types.
However, for this work, the nested types are not relevant and therefore only the so-called
primitive types which do not have any child types are considered. Primitive types can either
have a fixed bit-width (e.g. an integer) or a variable size (e.g. a string).

An Arrow array is defined by two signed 64bit integers and different memory buffers. In
Arrow, a buffer represents a contiguous memory block. Firstly, the two integers store the
length of the array and the number of null elements. The first buffer is called validity buffer
and uses one bit to indicate if an array element is null or not. Within this buffer, least-significant
bit (LSB) numbering is used and a “0” indicates that an element is null. This buffer is optional
when either all or zero elements of the array are null.

The value buffer stores the values of the elements of an array. As Figure 2.11a shows, for
every element of a fixed bit-width type, a slot of the matching size is used. For data types with
a variable length, every element has a different size. Therefore, a further offset buffer stores
the start index of every element (see Figure 2.11b).

The Arrow documentation recommends aligning the buffers on 64 bytes. This means the
memory address and the length of a buffer should be a multiple of 64. Naturally, buffers are
than larger then required but instead, they are optimized for loading into the cache [2].

For IPC, Arrow introduces the RecordBatch container that holds multiple arrays. Besides

2.2. Apache Arrow 14

Length: 4 Length: 4
Null Count: 1 0 ; 4 Null Count: 0
| |
Validity Buffer: | 00001011 [padding.. Validity Buffer: not needed (no null elements)
indicates 3 0 2 7 9 64
elementisnut 4 '
? ‘I‘ fl’ 1|2 1|6 ________ ?4 Value Buffer: tu | delft |nl | Padding..
ValueBuffer: [+ [7 [o [9 [Padding..
4 byte per 0 4 8 12 16 64
integer element | | | | | H
OffsetBuffer: | 0 | 2 | 7 | 7 [padding..
(a) Int32 Array: [1, 7, null, 9] (b) UTF-8 String Array: ["tu”, “delft”, “*, “nl”]

Figure 2.11: Schematic representation of the columnar memory layout of Arrow arrays

the buffers’ memory addresses, the processes also exchange metadata about the structure
of the data. This metadata is called Schema and is transferred in Flatbuffer format. By using
this wide-spread format, it can be serialized into many different programming languages [2].

2.2.2. Arrow Java library

For this work, the Java library is used extensively. The custom memory layout cannot be easily
accessed with the regular JVM’s memory management and therefore a custom implementa-
tion is provided.

The Arrow library manages the memory independently of the garbage collector (off-heap).
This is similar to Spark’'s UnsafeRow implementation, discussed in Subsection 2.1.4. The
source code [4] shows that the memory allocation is abstracted by the BufferAllocator
interface, which provides methods to allocate new Arrow buffers. Internally, the default imple-
mentation BaseAllocator uses Netty’s Buffer API [53] to access the off-heap memory.

In the Java library, the VvectorSchemaRoot is a central container, holding data batches.
Unlike the RecordBatch in other language implementations, the vectorSchemaRoot can
be seen more as a pipeline, through which data flows. The valuevector interface is the java
abstraction of an Arrow array and, therefore, stores a sequence of values having the same
type. As previously described, the memory allocation is not handled by the garbage collector,
so the user is responsible for allocating and freeing the memory used by a valuevector. The
interface provides methods for this, which are forwarded to the internal Buf ferAllocator [2,
4].

2.2.3. Parquet reader

Apache Parquet is a columnar data storage format from the Hadoop ecosystem. Itis designed
to store complex and nested data structures and supports efficient compression and encoding
schemas. The format is not limited to a specific tool and is supported by most data processing
frameworks within the Hadoop ecosystem [46].

The columnar storage format of Parquet works well together with Arrow, so in 2018, the
Apache Foundation moved the parquet C++ library into the Arrow project [2].

Additionally to this library, Arrow includes the Arrow C++ Datasets component, which pro-
vides a higher abstracted API for processing Parquet files. Besides the pure reading and
writing functions, this component addresses issues such as parallel processing, handling dis-
tributed files, partitioning and filtering [4].

These additional features better suit the functionality provided by the Spark Parquet reader

https://github.com/apache/arrow/blob/apache-arrow-0.17.1/java/ memory/src/main/java/org/apache/arrow/memory/BufferAllocator.java
https://github.com/apache/arrow/blob/apache-arrow-0.17.1/java/memory/src/main/java/org/apache/arrow/memory/BaseAllocator.java
https://github.com/apache/arrow/blob/master/java/vector/src/main/java/org/apache/arrow/vector/VectorSchemaRoot.java
https://github.com/apache/arrow/blob/master/java/vector/src/main/java/org/apache/arrow/vector/ValueVector.java

2.3. Fletcher 15

implementation. Consequently, this work uses the Arrow C++ Datasets component, even
though it is still in an alpha/beta status at the time of writing. Due to this early development
stage, no extensive documentation was available, and mainly, the tests in the Arrow reposi-
tory [4] were used to understand the usage of the API.

2.2.4. Gandiva
Expres:slion A
Tree rrow
(==
BEE Batches

Figure 2.12: Gandiva architecture overview [51]

The company Dremio is developing a Data Lake Engine of the same name based on the
Apache Arrow format. As part of their product, they have developed Gandiva, an LLVM-based
execution kernel, for running analytical executions on Arrow data and donated it in 2018 to the
Apache Arrow project [5].

Figure 2.12 shows the two main components of Gandiva. Firstly, the runtime expression
compiler takes a tree of Gandiva expressions as input and converts them into assembly code.
Using the JIT compilation capabilities of the LLVM compiler internally, the resulting assembly
code is highly optimized for the underlying hardware. Secondly, Gandiva contains an execu-
tion kernel which consumes Arrow arrays and applies the generates assembly code to it [51].

As previously discussed, most modern CPUs include SIMD units and can simultaneously
process multiple data points. Additionally, data based on the Arrow memory layout can be
loaded cache-friendly into the CPU [2]. These properties support the LLVM compiler’s auto-
vectorization function [21], optimizing the assembly code for the execution on CPUs with SIMD
support.

Gandiva’s main function is implemented in C++. However, it provides an additional Java
integration because it was developed as part of the Java-based Dremio. The Java API allows
the definition of expression trees and the execution of them on Arrow data. Internally, the
expression trees are mapped to a Protobuf structure and passed to the underlying native
code that interacts with the LLVM compiler.

2.3. Fletcher
Following the vision to make data stored in Apache Arrow format accessible to tools in any
computing environment, the Accelerated Big Data Systems group at the TU Delft Computer
Engineering department has developed Fletcher, a fully-open sourced vendor-agnostic FPGA
acceleration framework [30, 48].

FPGAs are programmable devices, whose internal circuit can be configured after manufac-
turing. By applying different parallelism techniques to the circuit, the FPGAs outrun CPUs for

2.4. Related work 16

certain computations [25]. Therefore, FPGAs are being used for numerous compute-intensive
big data applications, such as data decompression [26], image processing [33], and genomics
algorithms [34, 49].

The Fletcher framework has two main capabilities summarized in Figure 2.13. On the
one hand it supports the development of hardware-accelerated function (HAF) by generating
templates that include FPGA bitstreams to access the Arrow data. On the other hand, the
Fletcher runtime component simplifies the integration and execution of HAF.

This work elaborates on calling the Fletcher runtime component from Spark and, therefore,
the development of HAF and Fletcher’s functionality is not considered here.

The Fletcher runtime includes an API that provides high-level functions to prepare and send
Arrow data to the FPGA, to control the execution of the HAL on different platforms (currently
supported: Amazon EC2 F1 and OpenPOWER CAPI) and to read the result data back after
the execution [30, 48].

The Fletcher runtime has also been designed to be language-agnostic, by using the lan-
guage-independent Arrow format. Generally, Fletcher can be used from all languages that
support the Apache Arrow format. At the time of writing, implementations of the runtime li-
brary exist for Python and C++ [30].

HDL/HLS template . Accelerator sources
/—. Accelerator Design
(manual, HLS) M
Arrow Interface ynthesis,
- A » Place and
R Generation Interface sources Route
Compile-timet

i |[\ Run-time!

Data PR
| 1 Apache | 6 dware

sodlglfe -4+ Arrow 4—D- Arrow H?ﬁ?;;&i?ﬂ—bﬁccelerat
| network) libraries Table '|' antmn
| | . 5 =

- ost 7 1 .

|) 1 H A 3 | %3 A 6 FPGA

/ Mem. v '
| [APPEICQ\ Fletcher run-time | ._
| la (C};;'Pgt’zh)m’j 3,4 (C++, Python, Java, etc.) | 3 %‘;ﬁ: Acc.
| \ | Mem.
| — ! |

« Host' Accelerator —

L - U

— Data flow Control flow ssveseeeee- - Optional data flow

Figure 2.13: Fletcher overview [48]

2.4. Related work

Many computationally intensive workloads, e.g. machine learning algorithms containing dense
matrix algorithms, are good candidates for GPU acceleration [24]. Because GPUs are wider
spread than FPGAs, there also exists more work discussing the integration of GPUs with
Spark. Generally, it seems that there are two main approaches to integrate GPU accelerators
with Spark.

On the one hand, we have the approach of re-implementing high-level Spark operations,
e.g. from Spark’s machine learning library MLib, without changing the interfaces. This ap-
proach requires the implementation of full algorithms on top-of Spark’s RDD API and is there-
fore not very flexible and requires a separate implementation for every interface function. Het-
eroSpark [42] is a framework providing such GPU accelerated machine-learning workloads.
Internally, it uses Java RMI to forward data to the GPU, which requires costly data serial-

2.4. Related work 17

ization and deserialization operations. The present work avoids this serialization by using
Apache Arrow. Also, IBM’s approach in 2016 presented by Rajesh Bordawekar in [9, 10] fol-
lows this approach and provides mainly alternative implementation for Spark’s MLib. Because
their implementation is based on a prior version of Spark, they are not making use of the new
columnar processing feature and copy the data of a whole partition into the device with the
CUDA framework. This brings the downsides that data conversions from Spark’s row-based
format are required, and the size of a partition is limited to the device’s memory.

On the other hand, the second approach is similar to the present work and uses Spark
SQL’s internal representation to generate GPU code. This approach is very flexible because
it adapts to all kinds of workflows, but it is also more complicated because many aspects
must be considered during the generation. This approach is, for example, followed by the
framework Spark-GPU [65]. They implement their own “GPU-RDD” which buffers the data
in native memory, to avoid costly transformations. Another project is the Spark RAPIDS Ac-
celerator [45, 55], developed by NVIDIA, which integrates Spark with the RAPIDS suite [54],
a bundle of open-source software libraries for running analytic pipelines on GPUs. Robert
Evans, a member of NVIDIA's team behind this project, has contributed the columnar pro-
cessing functionality, introduced in Subsection 2.1.5. Therefore, it is evident that this project
is based on the new feature. Unlike the present work, it is not based on Apache Arrow but
uses a custom ColumnVector implementation optimized to exchange data with RAPIDS.

Also, when accelerating Spark with FPGAs, the same two approaches can be seen. The
Kestrel Runtime from Falcon Computing [13] is an accelerator management tool for heteroge-
neous computing clusters. Through its compatibility with Apache Spark, it allows accelerating
big data queries with GPUs and FPGAs. This runtime is based on the open-source Blaze run-
time system [35], which allows implementing FPGA-accelerated algorithms on top of Spark’s
RDD. Like before, these algorithms can be designed interchangeably with Spark’s operations
and enable a transparent acceleration. However, a disadvantage is the lack of flexibility, and
users have to choose from a defined set of accelerated algorithms. Also, InAccel’'s FPGA or-
chestrator comes with a Spark integration. They provide a Machine Learning suite available
on the AWS marketplace, which overloads Spark’s MLib functionality and, therefore, their in-
tegration falls into the same category [39].

The only work found which falls into the second category is Bigstream [7]. This integration
uses Spark’s physical plan to evaluate if a bitfile templates (FPGA acceleration) is available to
accelerate the Spark execution. Thereby, they follow a similar approach to the present work,
but due to their closed-source implementation, no further analysis was possible.

During the final phase of the present work, another FPGA integration [11] was presented on
the “Spark+Al Summit 2020” conference. The demonstrated integration was based on Intel's
“Spark Native SQL Engine” [36] project. The goal of this open-source project is to enable
Spark SQL for vectorized SIMD optimizations. In favor of this, the team has implemented
an Apache Arrow-based version of Spark’s columnar processing and has integrated it with a
Native Parquet Reader, Gandiva, and Columnar Shuffle operations. Although the details of
the FPGA integration are not publicly available, this shows very well that this project follows
a similar idea as the present work. It has already integrated matching accelerators and has
solved similar challenges. Due to the very recent publishing on GitHub, the present work could
not use synergies or compare results with the “Spark Native SQL Engine” project. Due to the
higher development effort, this project is in a more robust and mature state, than the PoC
implementation of the present work. Therefore, Section 6.2 suggests further evaluation of this
project to figure out if synergies can be used.

Architecture and general concepts

3.1. General structure

To integrate the previously discussed tools, the architecture of the implementation has to take
into account the different programming languages of the third-party libraries used. There-
fore, the implementation of this work' is organized into three different modules (Figure 3.1).
Firstly, the arrow-processor-native module is written in C++ and is responsible for calling re-
lated C++ libraries. Furthermore, this module provides an interface, which is called from the
arrow-processor module by using the Java Native Interface (JNI). The arrow-processor is a
facade around the low-level native interface and provides a higher abstracted Scala interface
based on the abstractions from the Java Arrow library. The third module is the spark-extension
module, which extends Spark SQL and connects it with the custom accelerators implemented
in the arrow-processor module. Both modules, spark-extension, and arrow-processor are im-
plemented in Scala for easier integration with Spark. However, Scala code is executed on the
JVM and is fully interoperable with Java libraries, such as the Arrow library.

1
Protobuf
:protobuf-java | | :protobuf-cpp
— O O
implementation of this work | |]
{l {l {l Fletcher

:spark-extension _©— :arrow-processor _©— :arrow-processor-native —'©—— {l

(Scala) (Scala) NI (C++) :fletcher

I I =]
: z;’ ?/s @ \C.\\ 6\ 6 6 fletcher-platform

1 N~

Spark Arrow

cll 2] cHl 2] cHl %]

:spark-sql :spark-core :gandiva :arrow-java :arrow-cpp :arrow-dataset

Figure 3.1: Architecture overview: Structure of the implementation and used third-party libraries
(dependencies between the third-party libraries are not shown)

The general idea of the implementation is that Spark’s main function stays unchanged.
Spark remains responsible for coordinating the complete execution and for passing the data

'The implementation of this work can be found on https://github.com/fnonnenmacher/spark-arrow-accelerated

18

https://github.com/fnonnenmacher/spark-arrow-accelerated

3.2. Executing custom code within Spark SQL 19

between the different execution steps. However, with the extensions of this work, individual
execution steps are offloaded to Arrow-based hardware-accelerators of third-party libraries.
These execution steps always relate to the processing of data batches. In Spark terminology,
such a data batch is called ColumnarBatch. In Arrow terminology, it is called RecordBatch.
Both terms refer conceptually to a container with columnar data vectors. Section 3.3 describes
how both concepts come together at implementation level.

When offloading work to the accelerators, the Scala code iterates over the batches and
processes every batch individually with the help of third-party libraries. As Figure 3.2 shows,
the computations, considered in this work, can be grouped into three categories. Either they
aggregate one batch and return a set of values (Figure 3.2a), or they project a data batch
to a new batch (Figure 3.2b), or finally, they import one data batch from an external source
(Figure 3.2c).

.........

sum("array1");
max("array2")

|:> [21;2]

array1 + array2 read(file.parquet)

RecordBatch
i
RecordBatch

file.parquet

RecordBatch
RecordBatch

" arayt | " arayt

(a) Aggregating a RecordBatch (b) Projecting a RecordBatch to a (c) Reading a data from an
new one external source

Figure 3.2: Different categories of computation that are executed by third-party libraries

Chapter 4 presents the concrete integration of different accelerators, whereas this chap-
ter focuses on multiple general, high-level concepts which build an essential basis for these
integrations.

3.2. Executing custom code within Spark SQL

As described in Subsection 2.1.3, Spark SQL’s Catalyst converts the query into an internal
query representation, the so-called logical plan. Catalyst optimizes this plan and finally trans-
forms it into a physical plan, a combination of physical operators. Internally, Spark SQL con-
tains many different physical operators, each of them specifying the execution of one com-
putation step. Combined in the physical plan, these operators define the complete execution
of the query. The goal of this work is to modify Spark’s execution and, therefore, this work
replaces Spark’s operators with custom implementations.

A physical operator is defined by a class extending SparkPlan. This is Spark’s internal
base class for all physical operators and, as described in Subsection 2.1.5, it defines methods
for columnar processing. Therefore, all custom physical operators implemented in this work,
specify the computation by overriding these methods.

Firstly, the method, supportsColumnar, has to return true to inform Catalyst that this
operator provides a columnar based computation. Catalyst uses this information to insert
additional operators that convert the data when needed.

Secondly, the method, doExecuteColumnar, must be implemented to describe the ac-
tual computation. Following the volcano model (see Subsection 2.1.4), this method has to
call first the doExecuteColumnar method of the child node(s). From this call, it receives a
ColumnarBatch iterator. In Scala, an iterator is a way to access elements of a collection
one-by-one [23]. Unlike in a classical list, the elements are evaluated lazily, and the collection
never needs to be loaded entirely into memory. The custom implementation can now apply
the accelerated computation to the batches received from the child node so that the method

https://github.com/apache/spark/blob/v3.0.0/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkPlan.scala

3.3. Arrow-based columnar processing 20

returns an iterator of the resulting ColumnarBatches itself.

By overriding additional methods, it would be possible to define instructions for the Whole
Stage Code Generation (see Subsection 2.1.4). However, as previously discussed, the code
generation is the most beneficial, when multiple Java operations are called frequently. How-
ever, in this work, the computation is forwarded to third-party libraries, which cannot be opti-
mized by the JIT compiler. Furthermore, by iterating over ColumnarBatches instead of rows,
the computation is executed less frequently, and the compiler optimization would not have a
huge impact. Therefore, this work focuses on other challenges and does not integrate with
the Whole Stage Code Generation. Nevertheless, Spark’s code generation for the other phys-
ical operators is not influenced by this. The code is generated anyway and calls the custom
implementations.

The next step is to tell Spark about the custom operator implementations. Therefore, this
work implements a SparkSessionExtension, that allows adding rules to all phases of the
Catalyst optimizer on startup [38]. The first experiments have shown that the least invasive
way of modifying the physical plan is to use the pre-columnar transition phase introduced
with the new columnar processing feature. At this point, the physical plan is fully created,
and default operators can be replaced with custom implementations. For doing so, this work
follows the Catalyst tree transformation approach. It iterates through the physical plan and
replaces a subtree that matches a specific pattern with a custom operator.

The implementation of this work follows Spark’s naming convention. All physical operator
classes end with Exec, and the rules injected into the Spark session are defined in a class
ending with Extension.

Figure 3.3 summarizes the procedure of using a custom physical operator. Firstly, the
CustomExtension injects arule into the pre columnar transition phase. Later on, this rule re-
places the FilterExec with a custom implementation CustomFilterExec, extended from
SparkPlan.

«abstract»
------------------------ SparkPlan

| ProjectExec I ZE l ProjectExec I

CustomFilterExec

SELECT “name’” ;
FROM “employees” | Catalyst [FilterExec] | pre columnar transitions 5 + supportColumnar
WHERE “age” < 30 i : :

i | + doExecuteColumnar

| ScanExec I CustomExtension l ScanExec I

! adds a custom rule to | .) i
Physical Plan the p,eu co,um,l:a, 1 Modified Physical Plan :

_______________________ transition phase

Figure 3.3: Example of replacing a physical operator with a custom implementation

3.3. Arrow-based columnar processing

The idea of this work is to store all data in the Apache Arrow format through the whole com-
putation. In this way, the computation can be accelerated by tools from the Arrow ecosystem,
such as Gandiva and Fletcher, without expensive data conversions. As discussed in Sub-
section 2.1.5, Spark’s columnar processing API is currently not based on the Arrow format.
Consequently, this work modifies Spark’s columnar-processing functionality to use the Arrow
format internally.

3.4. Exchanging Arrow arrays between Java and C++ 21

As shown in Figure 3.4, Spark SQL inserts additional physical operators (orange) which
transform the memory between the row-based and columnar-based format, when the physical
plan contains both, columnar-based and non-columnar-based operators.

[ProjectExec] [ProjectExec]

supports columar | ' ¢
processing i | ColumnarToRowExec | !

ColumnarToRowExec

*FilterExec i | add columnar transitions > *FilterExec | post columnar transitions > *FilterExec

! : ! | RowToColumnarExec | \(gﬂ
1 : ! ! RowToArrowExec
¢ ! | ArrowColumnarExtension | ¢
m : [ScanExec : adds a custom rule to :
H H H the post columnar H [ScanExec
: : : transition phi ;
: : ; e e Physical Plan with
Physical Plan Physical Plan with transitions arrow transitions

Figure 3.4: Modifying Spark’s columnar processing to be based on Apache Arrow

The ColumnarToRowExec operator takes the ColumnarBatches as input and maps
them to rows. This mapping works independently from the implementation of the underlying
ColumnVectors and is compatible with data in the Arrow format.

The RowToColumnarExec operator works the other way around and transforms rows
into ColumnarBatches. Multiple rows are combined and every column of them is stored in
an OnHeapColumnVector, which is Spark’s default Columnvector implementation. Nat-
urally, this data cannot be easily converted into an Arrow array and would require another
transformation before processing it with Arrow-based accelerators. Hence, this work replaces
this transform operator with a custom implementation (RowToArrowExec) that converts the
data directly into the Arrow format. These arrays are then wrapped with Spark’s internal
ArrowColumnVector class and can be stored in a ColumnarBatch.

Again to modify the physical plan, a custom extension ArrowColumnarExtension is
used to inject rules into Catalyst. As shown in Figure 3.4, this rule replaces the default
RowToColumnarExec with the Arrow-based implementation during the post-columnar tran-
sition phase.

Currently, Spark’s public API hides all details related to the Arrow implementation. There-
fore, no public methods are available to access the underlying Arrow arrays when processing
a ColumnarBatch. Consequently, this implementation uses Java’s reflection API to access
hidden private fields. Naturally, there is no guarantee that this approach will work in future ver-
sions of Spark. However, it is sufficient for evaluating the technical feasibility, and hopefully,
this “hack” will become obsolete as soon as Spark moves its columnar processing entirely to
the Arrow format, which is the long-term goal.

3.4. Exchanging Arrow arrays between Java and C++

3.4.1. Overview
Many tools from the Arrow ecosystem are not available as Java libraries. Nevertheless, these
tools might provide additional performance improvements and it is worth considering integrat-
ing them into Spark. This work illustrates this by integrating Spark with the Arrow Parquet
reader and with Fletcher. Both tools only provide APIs in C++ and Python and cannot be
called easily from the JVM. This work uses the JNI interface to call C++ libraries from Spark.
Thereby, the implementation benefits from the language-agnostic Arrow memory format and
avoids expensive data conversion between the two languages.

As described in Section 3.1, the architecture of this implementation also reflects these two

3.4. Exchanging Arrow arrays between Java and C++ 22

languages. On the one hand, there is the arrow-processor-native component, implemented
in C++, which interacts with the third-party libraries. On the other hand, there is the arrow-
processor component, implemented in Scala, which provides a high-level API based on the
Java Arrow abstractions. Both components are connected through a JNI based interface and
are internally mapping the Java Arrow abstractions to the C++ Arrow abstractions.

Apache Arrow’s documentation discusses multiple approaches to exchange data between
processes implemented in different languages. This can be done, for example, by using
shared-memory, such as the Arrow Plasma Store [44], or by exchanging IPC messages [2].
However, by using JNI this becomes easier. The JNI is Java’'s standard way to interoperate
with applications and libraries written in other programming languages, such as C, C++, and
assembly. Furthermore, the JNI allows the native languages to access the same memory
region [22]. As a result, there is no need to copy the data between both components of the
implementation. Instead, they can access the same Arrow buffers stored in-memory. When
accessing the same objects from Java and native code, another typical challenge is to make
sure that the garbage collector is not deleting data still required by the native code. Also, this
challenge does not apply to the implementation of this work. The Arrow buffers are already
stored off-heap and are not managed by the garbage collector.

As described in Subsection 2.2.4, Gandiva follows a similar structure. It provides a Java
library, which delegates all calls to a library implemented in C++. The source code of Gan-
diva [4], released under the Apache License 2.0, was studied during this work and builds the
conceptual basis for this work.

3.4.2. From Java to C++

In this work, Spark coordinates the query execution. It knows about the structure of the data
and just calls individual third-party libraries, to compute an Arrow RecordBatch. At the time
of calling, the arrays are already allocated and initialized. The used third-party libraries follow
best practices and consider the arrays as immutable. Hence, they are not modifying any Arrow
buffers and just need read access. Typically, the result data of a computation is either a single
value which can be directly returned on the JNI method call, or a new RecordBatch, which
can be transferred back with methods discussed in the following subsections.

As discussed in Subsection 2.2.1, an Arrow RecordBatch is a container, described by a
schema, that holds multiple Arrow arrays.

For transferring the schema, functionality from the Gandiva library is used. On the Java
side, the library provides methods that use Protobuf to serialize the Java schema into a byte
array. After passing this array via JNI, methods from the C++ library are used to deserialize it
into a C++ schema object.

As previously described, an Arrow array consists of two signed 64bit integers and two
or three buffers. The two signed 64-bit integers are storing the length of the array and the
number of null elements. They can be passed as a Java long parameter to the JNI method
call. For each buffer, the memory address and the size is transferred. This information is
enough to access the memory in C++ and to create the related C++ Arrow buffer abstractions.
Combining these buffers in the C++ Arrow array abstraction allows accessing the Arrow data
with the regular methods of the Arrow API.

3.4.3. From C++ to Java with preallocated buffers

In some cases, the Java side already knows the number of result elements, before calling
the native computation methods, e.g. when two arrays are added together to form a new
array. The buffers can then be allocated from the Java code and can be sent to C++, following
the same approach as transferring data from Java to C++. In this scenario, the C++ code

3.4. Exchanging Arrow arrays between Java and C++ 23

simply writes the resulting data into the already allocated buffers, which are known and can
be accessed from Java.

However, when the resulting array stores values of a variable-width data type, such as
strings, the size of the value buffer cannot be known before. Gandiva has solved this problem
by adding an own buffer implementation JavaResizableBuffer which resizes by doing a
callback to Java. Because a buffer has to be written in a contiguous memory block, resizing
often requires allocation of a new larger buffer and copying the old buffer into the new one.
Arrow’s Java implementation completely handles this reallocation and returns the memory
address of the new buffer to the C++ code.

This work has evaluated this approach and demonstrates the technical feasibility with test-
case implementations. For the implementation, functionality from the Gandiva library was
used. However, this approach was not suitable for the chosen accelerators. Therefore, in all
Spark integrations, the approach described in the next subsection was used.

3.4.4. From C++ to Java by forwarding the allocation to Java.

Some tools, such as the Arrow Parquet reader, are incompatible with preallocated buffers. In-
stead, these tools use Arrows default approach and call the MemoryPool class [4] to allocate
memory for buffers, when needed. Unfortunately, the memory allocated in C++ during a JNI
call cannot be easily accessed from Java. Furthermore, managing the allocated buffer’s lifes-
pan is not easy, because they must remain accessible after the JNI call terminates, so that the
data is accessible for the next execution steps. As previously discussed, Spark is responsible
for coordinating the whole execution and knows best when the buffers can be freed again.
Therefore, this implementation delegates all allocation calls to the Java Arrow library, so that
the Java code stays responsible for managing the life-cycle of the Arrow data.

arrow-java arrow-processor arrow-processor-native arrow
JavaMemoryPoolServer JavaMemoryPool «abstract»
+ allocate(size) + allocate(size) MemoryPool
Wil I dd I dd
+ reallocate(addr, size <—1 > i reallocate(addr, size,
BufferAllocator uses () Torwards calls ()
Java/Scala JNI C++

Figure 3.5: Implementation of MemoryPoo1l that forwards the allocation to Java.

As Figure 3.5 shows, this was achieved by implementing JavaMemoryPool, a custom
specialization of the Arrow MemoryPool that forwards all allocation requests to a similar
Java class JavaMemoryPoolServer, by using JNI methods. This Java class then uses
the BufferAllocator from the Java Arrow library to allocate the needed buffers to off-heap
memory. Additionally, the JavaMemoryPoolServer stores internally, the allocated Java
buffer abstractions, which are then used to create the Arrow array abstractions after the JNI
computation terminates.

https://github.com/apache/arrow/blob/apache-arrow-0.17.1/cpp/src/gandiva/jni/jni_common.cc#L674
https://github.com/apache/arrow/blob/apache-arrow-0.17.1/cpp/src/arrow/memory_pool.h#L64

Integration of different accelerators

4.1. Overview

The previous chapter 3 has discussed essential concepts necessary to integrate different tools
from the Arrow ecosystem with Apache Spark. This chapter applies these concepts now in
practice and gives concrete examples of possible integrations. The integrated tools were
chosen to reach the goal of providing a complete data analytics pipeline based on the Arrow
format. The present work focuses on integrating the main functionality instead of building a
solution that is functionally equivalent to Spark’s internal implementation.

The first step of every data analytics pipeline is importing data. For avoiding unnecessary
data conversion, it is essential to load the data into the Arrow format directly. The present
work has chosen the Parquet file format as input source because it stores the data already in
columnar format and is an ideal candidate to read it in columns into the memory. The present
work discusses the integration with the Arrow C++ Dataset library in Section 4.2. This library
is part of the Arrow project and allows demonstrating the data exchange between Java and
C++. Alternatively, the Java library Parquet MR would have been another option, which also
provides a function to import in the Arrow format [47].

As discussed in Subsection 2.1.4, Spark optimized the CPU and memory usage with
Project Tungsten a lot. Nevertheless, due to the limitations of the JVM and its limited colum-
nar processing operators, the SIMD capabilities of modern CPUs cannot be used. Therefore,
Section 4.3 describes the integration with Gandiva to execute SIMD-accelerated filter and
projection operations on Arrow data.

At the end of every computation, Spark copies the result from the internal format into
Java/Scala objects. Because this copying is a costly operation, the Spark documentation
recommends reducing the amount of data and only loading aggregated results. Spark’s ag-
gregation implementation does not work well together with the Arrow format. For measuring
whole data processing pipelines, the present work provides, in Section 4.4, a simple aggre-
gation that determines the maximum of integer arrays.

Finally, the present work contributes to the vision of the ABS group. Section 4.5 dis-
cusses the acceleration with FPGAs by using Fletcher. The implementation of the present
work demonstrates the integration based on a simple use case thus creating a valuable foun-
dation for further, deeper integration.

24

4.2. Importing Parquet files into Arrow format 25

4.2. Importing Parquet files into Arrow format

Internally, Spark implements the importing of files by the physical operator FileSourceScan-
Exec. As described in Section 3.2, the implementation of the present work replaces this
operator with a custom physical operator, the ArrowParquetSourceScanExec, which uses
the Arrow C++ Dataset library for reading Parquet Files.

The definition of the computation requires the doExecuteColumnar method, which is
summarized in Figure 4.1. The implementation uses the metadata (e.g. the input schema),
which was determined during the Catalyst optimizations. This metadata is used for initializing
the ParquetReader, which is a Java abstraction and calls the Arrow C++ Dataset library
through JNI. Following the modularization concept introduced in Section 3.1, this class pro-
vides an interface based on the Arrow Java abstractions. Precisely, the class implements an
operator of VvectorSchemaRoot objects and allows thereby reading the Parquet file batch-by-
batch. Internally, every request to read a new batch is forwarded to the C++ library. The buffers
of the returned Arrow RecordBatch are passed back through the layers of the implementa-
tion. They are mapped to the VectorSchemaRoot Java abstraction without transforming or
copying any data.

—1
spark-extension arrow-processor arrow-processor-native Arrow C++ Dataset

«interface»

Spark Executor Iterator<VectorSchemaRoot>

:ArrowParquetSourceScanExec

doExecuteColumnar

new(filename, outputSchema)
parquetReader:ParquetReader

1 init(filename, outputSchemaAsBytes) [
» :DataSetParquetReader

’ :DatasetAPI

initialize(...) »

loop /

[parquetReader.hasNext()] next()

gl next() : 3
> Next() .
RecordBatch
vectorSchemaRoot | le----- '_e_”.gf'] _Of _a_r [;iy_s_, _b_u_ﬂ_e_r_aqur_e_s_s ?_S Lol < H

emmmmmmee - .

loop is . I
defined as wrap vectorSchemaRoot in ColumnarBatch !
Iterator and :
executed lazily

| wrap lterator<ColumnarBatch> in RDD
' RDD<ColumnarBatch>
ST Tt L

Figure 4.1: Simplified implementation of the custom Parquet reader operator

Following Spark’s architecture concept, the iterator is not evaluated, directly. Instead, the
implementation applies a transformation to it, which maps the Arrow abstraction to Spark’s
ColumnarBatch container (see Section 3.3). This lazy evaluated iterator approach avoids
loading the whole data into memory and allows instead to process one batch through the
whole pipeline before reading and processing the next one (volcano model [29]). Finally, the
resulting ColumnarBatch iterator is wrapped in Spark’s RDD implementation, which provides
functionality to iterate through the data in distributed setups.

Both Spark’s Parquet reader and Arrows’s C++ Dataset library provide extensive features
to read Parquet files. These features include reading multiple files, reading from network
shares and optimizations such as predicate pushdown. Generally, both implementations are
a good fit and most of Spark’s features have an equivalent fit in the Arrow library. The present
work does not claim to integrate all of these features and focuses on the basic functionality,
which is reading a single file from a local file system. It allows limiting the imported columns
but does not allow filtering on the data values (predicate pushdown). Furthermore, it supports
uncompressed and snappy-compressed Parquet files.

4.3. Gandiva integration 26

4.3. Gandiva integration

As introduced in Subsection 2.2.4, Gandiva allows running analytical executions on Arrow
data optimized for CPUs with SIMD capabilities. Gandiva takes expressions as input and
compiles them with the LLVM compiler at runtime to optimized assembler code. These ex-
pressions can be used for two different operations. Either for filtering or projecting the rows of
a RecordBatch.

Figure 4.2 shows an example of a query containing filter and projection operations. As
shown, both operations are represented by two separate corresponding physical operators.
The operator FilterExec is responsible for filtering rows. Thereby, this physical operator
is parameterized by a tree of expressions representing a binary predicate. During the exe-
cution, this operator filters out all rows where the predicate evaluates to false. Whereas,
the projection operator ProjectExec is parameterized with multiple expression trees. When
executing it, the results of these expression trees create a new row [58].

ProjectExec projection | Attribute("name")
expressions

SELECT ; :
‘name’, H |
“price’ * 0.9 : chid

Tttt ¢ Attribute("price") Literal(0.9)

1+ FROM G s 4

i ! ‘products.parquet 17 e T rediats .
E ___'_______________________I H E child \ E
! | WHERE et ""<~J,A¢ R :
:_ _c_alt_e%o_ry_ i:_"f_ogdj) : FileSourceScanExec [Attribute("category")] [Literal("food")]

Catalyst

Figure 4.2: Spark SQL Catalyst's representation of filter and projection operations

This shows that the operators in Spark are structurally similar to the Gandiva operations,
allowing to replace Spark’s physical operators with custom implementations that use Gandiva
for filtering and projection.

For mapping Spark’s filter and projection expression to Gandiva, the implementation of
the present work transforms the tree of Spark expressions into a tree of Gandiva expres-
sions. It uses an approach similar to Catalyst’s internal transformations. It iterates top-down
through Spark’s expression tree and uses Scala’s pattern matching functionality to replace ev-
ery node with an equivalent Gandiva representation. The work currently supports expressions
containing arithmetic operators, relational operators and data type casts. Nevertheless, the
pattern-matching approach is very flexible and can be extended with further functions easily.

Unlike the other accelerators, Gandiva provides a Java library, which internally follows a
similar structure as this project and forwards Arrow data also to an underlying native library.
The Scala code implementing the custom physical operator can directly call Gandiva’s Java
interface and does not need to handle the Arrow transformation.

As shown in Figure 4.3, the custom implementation GandivaProjectExec for projec-
tions firstly transforms the projection expressions into Gandiva’s format and uses them to
instantiate Gandiva’s Projector. During the instantiation, Gandiva compiles the tree of ex-
pressions to SIMD optimized assembly code. After Gandiva is set up, the operator calls the
doExecuteColumnar method of the child operator, which returns a ColumnarBatch itera-
tor. As described previously the iterator is lazy evaluated and not entirely materialized. Also
the custom GandivaProjectExec implementation follows this approach and defines the
processing of every ColumnarBatch without executing it instantly. Instead, the processing
is embedded in an iterator and is lazily evaluated when requested.

Within the individual processing of a ColumnarBatch, firstly, the underlying Arrow data
abstractions are extracted. These abstractions are then passed to Gandiva that executes the

4.4. Simple max aggregation 27

projection on it and returns a new RecordBatch containing the projected data. Finally, this
Arrow structure is mapped to Spark’s ColumnarBatch.

1 1

spark-extension spark arrow-gandiva

:SparkPlan

Spark Executor :GandivaProjectExec :ExpressionConverter (child physical aperator)

doExecuteColumnar

>,

loop /| |

[for each projection expression]

transform(Spark Expression Tree) H

make(Gandiva Expression Trees)

:Projector

A 4

doExecuteColumnar()
»
RDD<ColumnarBatch>
ESCE e

loop /

[for each columnar batch]

extract Arrow RecordBatch from columnar batch

evaluate(RecordBatch)
: >
Recodgach Ll] I 1

loop is
defined as
Iterator and

wrap resulting RecordBatch in columnar batch
executed lazily

wrap lterator<ColumnarBatch> in RDD
RDD<ColumnarBatch>

Figure 4.3: Internal computation of custom GandivaProjectExec operator

Generally, also the filtering implementation GandivaFilterExec follows the same struc-
ture. However, instead of returning a RecordBatch containing only the rows which evaluate
to true, Gandiva returns a SelectionVector. This vector contains all indexes of the rows
not filtered out. When performing a projection directly after filtering, this Selectionvector
can be passed as an additional parameter and to Gandiva’s projection. The projection is then
only created for the rows in the Selectionvector. Unfortunately, Spark’s ColumnarBatch
representation currently does not support anything similar to a Selectionvector. There-
fore, this Gandiva-based filter implementation is not fully compatible with other columnar-
based operators. Nevertheless, the implementation of the present work has added an alter-
native for Spark’s ColumnarToRowExec conversion (see Section 3.3), which only transforms
rows listed in the SelectionVector, and allows, thereby, combining the filter operation with
regular Spark operators.

4.4. Simple max aggregation
Using the Parquet reader with the Gandiva implementation allows running of first data pro-
cessing use cases entirely based on the Apache Arrow format. However, to continue working
with the result data, it is still necessary to store them in a file or to load them with Spark SQL’s
collect () method into the driver’'s memory. Both operations are quite costly because they
are not optimized for Apache Arrow. These operations have a high impact on the execution
time and make it hard to evaluate the accelerators’ improvements. Therefore, the present
work adds an elementary operator that calculates the maximums of an integer Arrow arrays.
Using this operator forces Spark to evaluate the full data but reduces the results loaded back
to one value per column.

Generally, different from the previously discussed operations, an aggregation operation

4.5. Fletcher 28

does not only operate on exactly one ColumnarBatch. Instead, it combines multiple data
rows and creates new rows. Thereby, an aggregation is a wide Spark transformation and
requires exchanging data (shuffling) between Spark’s executors. All the challenges related
to shuffling make Spark’s aggregation implementation rather complex. Through the different
focus of the present work, no custom implementation with a comparable functionality was
created. Instead, the present work focuses on a particular, but also essential aggregation
used to measure the performance improvements.

As Figure 4.4 shows, Spark SQL creates multiple physical operators to define the max
aggregation. Firstly, the maximum is calculated for every partition. Afterward, all interme-
diate results are collected to one executor, and their maximum is calculated. As described
before, not many of Spark’s operator implementations support columnar processing. Also,
the aggregation is no exception and only supports row-based processing. Therefore, Catalyst
inserts automatically a ColumnarToRowExec operator which converts the batches into rows.
The least invasive way of implementing the max aggregation is to replace this transforma-
tion operator in the post columnar transformation phase with a custom implementation, which
maps every ColumnarBatch to one row containing the maximum of this batch. As a result,
the structure of the data between the operators stays unchanged and the aggregation related
operators have not to be changed.

..

HashAggregateExec ' ' HashAggregateExec
T . : T
child H , child
v H H \4
Shuffle : ; Shuffle
T . : T
child H 1 child
v . ! \4
SELECT . i
. . HashAggregateExec ! ' HashAggregateExec
MAX(value') TaShRagregaTeEx : A Bl
child 1 v child
1| transformation \4 H H \4
FB.OM . I from column .\ ColumnarToRowExec : : SimpleMaxAggExec
integers.parquet 1| formattorows | . : : .
' child : ' child
*FileSourceScanExec : i |*FileSourceScanExec
! | Catalyst ! |Extension > !
SQL Query ' v H Physical Plan h H Modified Physical Plan

Figure 4.4: Spark SQL'’s physical plan of a max aggregation and its modification

Internally, the simpleMaxAggExec is simplistic, too. It calls a C++ method that iterates
through the Arrow arrays and returns their maximums. Finally, it creates a new row with these
maximums for every ColumnarBatch. Afterward, Spark’s aggregation operators compute
the maximums of all ColumnarBatch maximums.

4.5. Fletcher

The last accelerator integrated during the present work is a significant step towards the vi-
sion of heterogeneous computing. By using Fletcher, a vendor-agnostic FPGA accelerator
framework, this integration offloads parts of the computation to FPGAs.

An FPGA is a programmable device that allows configuring the internal circuit. This circuit
can be optimized using different parallelism techniques and can perform specific tasks much
faster than a CPU designed for generic tasks. The execution logic of an FPGA is specified
using a hardware description language (HDL) which describes the digital circuit. Generally, im-
plementing such a circuit requires in-depth knowledge related to digital electronic designs. In

4.5. Fletcher 29

layman’s terms, this makes the development of a HAF for an FPGA much more expensive than
the development of equivalent software programs. Additionally, there are different compilers
available that generate the HDL design from programming languages or SQL. However, these
automatically generated designs are often much slower than manually written designs [25].

Nevertheless, even converting the HDL design into the physical circuit layout (Logic Syn-
thesis) is a time-consuming process and can take up to several hours. Therefore, as opposed
to Gandiva, for FPGA accelerators, it is not beneficial to automatically generate the hardware
designs at runtime. Instead, the vision of the ABS group is to store the hardware-accelerated
functions in a repository and use them to accelerate parts of data analytics queries. The anal-
ysis of Spark SQL’s capabilities showed that Spark SQL’s internal representation is generally
detailed enough for querying such a repository. However, checking if Spark’s internal logical
plan can be partly substituted with a HAFs requires nontrivial tree comparison and was not
further elaborated in the present work.

Instead, the present work demonstrates the technical feasibility of such an integration
based on a specific use case. This use case uses the publicly available Chicago Taxi data
set [40], which includes all taxi trips operated in Chicago from 2013 to the present with addi-
tional metadata such as the trip length. The use case reads the data from a Parquet file and
calculates the total duration of all trips operated by the company “Blue Ribbon Taxi Association
Inc.”

HashAggregateExec HashAggregateExec
I T
child child
\ 4 \4
Shuffle Shuffle
I T
child child
\ 4 \4
HashAggregateExec HashAggregateExec
SELECT |
SUM(trip_seconds’) chvild
foTTTTTTT I ProjectExec | | ... child
1 FROM Lo —— T
I ‘integers.parquet’ 1" ¢ child o T
_____________ [') 4 e,
T T T T T T T 7 FilterExec FletcherExec
1 WHERE A T ; .
1 “company’ rlike Lot . ¢ child o e
' "Blue Ribbon Taxi\ ' S e
1 Association Inc" | ’ ColumnarToRowExec | .- child
______________ , fasend
child
[
P4

*FileSourceScanExec *FileSourceScanExec

. |Extension

i | Catalyst
: Physical Plan

Modified Physical Plan

Figure 4.5: Spark SQL'’s physical plan of the Fletcher use case and its modification

Thus, the execution is accelerated by a Fletcher HAF, which takes a RecordBatch as
input and computes the “Blue Ribbon Taxi Association Inc’s” total trip duration of this batch.
This HAF is based on a regex and allows generally different patterns as well. Therefore, also
the SQL query shown in Figure 4.5 is based on a regex match.

Internally, this query is mapped to a physical plan containing the Parquet file reading, the
memory transformation, the regex-based filtering, the projection to the relevant ‘company’
field and, finally, the sum-based aggregation including a shuffle phase. The present work

replaces now, a part of this query with a custom implementation FletcherExec, which in-

4.5. Fletcher 30

ternally calls Fletcher's HAF. Similar to the simple max aggregation, this replacement also
includes the memory transformation. Thereby, the custom implementation is again reducing
every ColumnarBatch to exactly one row containing the intermediate sum. Afterward, these
rows are regularly handled by Spark and added together with Spark’s default aggregation
mechanism.

Figure 4.6 shows the implementation of FletcherExec. As already mentioned, this op-
erator also converts ColumnarBatches into rows. Therefore, the doExecute method is
overwritten. When entering the method, firstly, the Fletcher run-time is set up. Afterward, the
child operator is called. For this use case, this is the ArrowParquetSourceScanExec. This
operator returns an iterator of ColumnarBatches. As before, to allow batch-by-batch eval-
uation, this iterator is not directly processed but mapped to a new iterator. This new iterator
applies a mapping function to every ColumnarBatch. This mapping function passes the un-
derlying Arrow buffers, through the different layers, to the Fletcher run-time, which loads them
and executes the previously configured HAF. The intermediate sum returned from Fletcher is
then finally written into a row, so that the final method returns an RDD containing an iterator
of rows.

1 1
spark-extension arrow-processor arrow-processor-native spark Fletcher
Spark Executor :GandivaProjectExec . 5p a.rkPlan :FletcherAPI
(child physical operator)
i doExecute g
T new
> :FletcherProcessor
new
——————>{:FletcherProcessorCpp
| initialize Plattform, ... J
doExecuteColumnar() o .
RDD<ColumnarBatch> H 1 '_Ll
<' """""""""""" : """""""""""""""""""""""""""""""""" n

loop
[for each columnar batch] :
extract VectorSchemaRoot from columnar batch

process(VectorSchemaRoot) E

loop is $— process(buffer adresses, ...) ! :

defined as »— create context, load RecordBatch, execute kernel, ... o

Iterator and) _ intermediate sum ! 'J_|

executed lazily . X intermediate sum R B R EEL CEEE TR LT :
intermediate sum | |€--mmmmmmm e oo ' '

E< RDD<Rows new Row(intermediate s:um)

Figure 4.6: Implementation of the FletcherExec operator

A particular challenge has arisen related to the recommended Arrow buffer 64-byte align-
ment. Fletcher requires all buffers to be aligned on 64-byte, but the Java implementation only
supports 8-byte alignment. Therefore, Arrow data initialized by the Java API cannot be pro-
cessed easily with Fletcher. Luckily, in the taxi data use case, the data processed by Fletcher
is initialized by the C++ Dataset Parquet file reader. As described in Section 3.4.4, this im-
plementation uses a call-back mechanism to allocate buffers in Java. The API used for this
is a thin layer around the Netty Buffer API [53], which can be configured to allocate 64-byte
aligned buffers. Unfortunately, this configuration is not sufficient for Arrow arrays created with
the Java API. Therefore, the Fletcher accelerator is, for example, not fully compatible with the
Gandiva accelerator. However, the implemented approach is suitable for the taxi use case
and allows evaluating performance improvements on it.

Evaluation

5.1. Setup

When executing code on the JVM, the code is optimized by the JIT compiler during run-time.
Generally, many of these optimizations are based on different code heuristics and, therefore,
the JIT compiler can optimize the code better the more often it executes it [50].

This effect can also be seen when executing a Spark query multiple times. Figure 5.1
shows an example of this on the use case of determining the maximum value of 500 million
integers stored in a Parquet file. As shown, especially, the first iterations are slow, and it takes
roughly ten iterations until the execution time stabilizes. Naturally, even then, the execution
times vary, because of effects that cannot be controlled, such as background processes of the
OsS.

x X

x X
x Xx

x %
x
XXX xXXXKXKX X xxXXXX XXX x XX XXX x X X x XXX

O T T T T T T
0 10 20 30 40 50

iteration

Figure 5.1: Changes to execution time when executing a Spark query multiple times. Query was executed on
vanilla Spark and determines the maximum from 500 million integers stored in a Parquet file

Therefore, the measurements executed in the present work always start with a warm-up
phase consisting of 20 iterations to give the JIT compiler the time to optimize the execution.
Afterward, another 20 iterations are executed, and their average value is measured. To avoid
defining these iterations manually, Java Microbenchmark Harness (JMH) is used. This Open-
JDK project supports setting up environments for performance tests and allows configuring

31

5.2. Parquet reading 32

the execution with annotations [50].

For determining the execution time, the present work relies on Spark’s internal metrics [17].
Additionally, new metrics have been added to measure the execution of the custom executors.
Unfortunately, this only works for columnar-based operators and not for Spark’s internal row-
based operators. Processing a single row does not take much time, and measuring this would
add a high overhead.

Except for the Fletcher-related use case, all measurements are executed on a Macbook
Pro Early 2015 (Intel Core i5, 2.4 GHz, GB RAM) and the oracle JVM in version 1.8.0 241.
This work is only interested in the performance improvements of a single executor. Therefore,
Spark is started in local mode using 1 core and 4GB memory for the execution. All files loaded
by Spark, are stored on the internal SSD. If not mentioned differently, the evaluation uses a
batch size of 100,000 elements.

5.2. Parquet reading

Firstly, the present work compares the custom Arrow-based Parquet reading implementation
to Spark’s default implementation. For this evaluation, a Parquet file with 500 million rows
containing 3 integers (x7, x2, and x3) is used. To force Spark to process all data but avoid
loading everything into memory, the following query returns the maximum of every row.

SELECT MAX (‘'x1'), MAX('x2'), MAX('x3') FROM parquet.‘500-million-triples.parquet®

This query has been executed on three differently configured Spark instances that map the
query to different physical plans. The first configuration is the unmodified Vanilla Spark, which
executes the physical plan shown in Figure 5.2a. Secondly, Spark uses the ArrowParquet-
Extension implemented in the present work, which creates a physical plan (Figure 5.2b)
containing the custom operator loading the Parquet file into the Arrow format. Finally, the third
executed configuration additionally uses the custom max aggregation thus replacing Spark’s
column into row transformation (see Figure 5.2c).

HashAggregateExec HashAggregateExec HashAggregateExec

Shuffle

Shuffle

Shuffle

HashAggregateExec

HashAggregateExec HashAggregateExec

ColumnarToRowExec SimpleMaxAggExec
v
FileSourceScanExec ArrowParquet...Exec ArrowParquet...Exec

ColumnarToRowExec

(a) Vanilla Spark (b) Custom Arrow parquet reading (c) Custom Arrow parquet reading
with simple max aggregation

Figure 5.2: Parquet reading scenario: Physical plans of the different Spark configurations

The measured execution times are summarized in Figure 5.3. Thanks to Spark’s inter-
nal metrics, it is possible to measure the time taken for reading the Parquet file. Evaluating
these metrics reveals that Spark’s default implementation is slightly faster (approximately 10%)
then the custom implementation calling Arrow’s C++ Dataset API. Nevertheless, Arrow’s C++
Dataset APl was not chosen because it promised to be faster. Instead, it allows the creation
of pipelines entirely based on Arrow, and the current PoC implementation has to live with this
trade-off.

5.2. Parquet reading 33

Parquet Reading

301 mm Total

25 1

20 1

time [s]

15 A

Vanilla Spark Arrow Parquet Arrow Parquet &
Max Aggregation

Figure 5.3: Comparing the execution of the Arrow-based Parquet reader with Vanilla Spark
(importing 500 million integer triples with a batch size of 100,000 rows)

Furthermore, it is especially noticeable that determining the maximum value from the data
in the Arrow format is a long-running computation. Consequently, the physical plan using the
custom Arrow Parquet Reader takes three times longer than the Vanilla Spark. This demon-
strates that converting the Arrow-based columnar format back to Spark’s rows is a very ex-
pensive operation. In contrast, converting the columnar data produced by Spark’s default
Parquet Reader is highly optimized. With the improvement suggested in [37], Spark’s Whole
Stage Code Generation (see Subsection 2.1.4) generates specific code for reading data from
Spark’s internal columnar storage, which enables the JIT compiler to apply optimizations. In-
deed, the custom max aggregation improved the performance of aggregating the Arrow data
dramatically. Nevertheless, it was not sufficient to compete with Vanilla Spark’s implementa-
tion and is still 1.1 times slower.

% Total
70 4 Parquet Reading

500 1K 5K 10K 50K 100K 500K
Batch Size

Figure 5.4: Effect of changing the batch size on the Arrow-based Parquet reader (incl. max aggregation)
(importing 500 million integer triples)

BowW N

5.3. Gandiva 34

Finally, the present work elaborates on the impact of the ColumnarBatch size. Therefore,
the execution of the third Spark configuration (Arrow Parquet reading, max aggregation) has
been parameterized with the ColumnarBatch size. The results are shown in Figure 5.4. As
expected, the execution is very slow for small batches, requiring calling the accelerator more
often and having a high coordination overhead. With an increasing batch size, which requires
more memory, it becomes faster and converges to the fastest possible execution. The Figure
shows that the execution time of the batch size of 50.000 elements is very close to this limit
and further increases of the batch size barely have a measurable impact on the execution.

5.3. Gandiva

For demonstrating the performance improvements of Gandiva, again, three different Spark
configurations are compared. These are (1) Vanilla Spark, (2) Spark with the Arrow Parquet
reader and the Gandiva accelerator, and finally (3) Spark with the Arrow Parquet reader, the
Gandiva accelerator and the columnar-based max aggregation. Additionally to the previous
query, the new query also includes a projection operation. The query reads a file containing
50 million records of ten integers. These ten integers are summed up, and their maximum is
returned. The SQL query is defined as follow:

SELECT

MAX (‘x1' + Yx2' 4+ Yx3' 4+ x4 4+ x5 4+ Yx6' + x7'Y + 'x8' + 'x9' + 'x10V)
FROM

parquet.'50-million-10-ints.parquet®

Internally, these three configurations map the query into different physical plans, that are
shown in Figure 5.5.

HashAggregateExec
Shuffle
HashAggregateExec

HashAggregateExec
Shuffle

HashAggregateExec

Shuffle

HashAggregateExec

HashAggregateExec
ColumnarToRowExec SimpleMaxAggExec

v

ColumnarToRowExec
ProjectExec GandivaProjectExec GandivaProjectExec

v v
ArrowParquet...Exec ArrowParquet...Exec
(a) Vanilla Spark (b) Arrow parquet reading & (c) Arrow parquet, Gandiva & max
Gandiva aggregation

Figure 5.5: Gandiva scenario: Physical plans of the different Spark configurations

When evaluating the results shown in Figure 5.6, firstly, the same effects as before can be
seen. The Arrow Parquet reading is significantly slower than Spark’s internal implementation.
Again aggregating the results in configuration (2) requires the transformation from the Arrow-
based format into Spark’s rows, which is a very costly operation.

Unfortunately, it is not possible to measure the time taken for calculating the sum of the ten
integers in Vanilla Spark, because it is a row-based computation and does not allow to mea-
sure the execution efficiently. Therefore, it is only possible to compare the whole computation
without the Parquet reading with each other. This does include not only the projection but also
the aggregation. It can be seen that Gandiva and the maximum aggregation are executed
1.27 times faster than the computation of Vanilla Spark (see red arrows on Figure 5.6). This

5.3. Gandiva

35

time [s]

Figure 5.6: Comparing the execution of Gandiva-accelerated Spark with Vanilla Spark
(calculating 50 million times the sum of 10 integers with a batch size of 100,000 rows)

3.0
Parquet Reading
I Gandiva
2.5 1 == Total
2.0 A
775 ms
1.5 4
1.0 4
0.5 - 1270 ms 1613 ms 1624 ms
00 T T T
Vanilla Spark Arrow Parquet & Arrow Parquet, Gandiva &

Gandiva Max Aggregation

experiment demonstrates that Spark’s computation can be accelerated by using SIMD capa-
bilities of modern GPUs. This improvement is not sufficient to overcome the slower Parquet
reading. Nevertheless, the results demonstrate how important it is to avoid costly 10 opera-
tions and the importance of efficient data aggregation. Moreover, it makes clear that queries

with more complex computations also have a higher potential for acceleration.

Analyzing the impact of the ColumnarBatch size reveals similar results as before. Es-
pecially small batches lead to a much slower execution. Choosing a batch size of 50.000
elements leads to an execution close to the limit, and increasing the size barely affects the

computation.

time [s]

Figure 5.7: Effect of changing the batch size on Gandiva-accelerated Spark (incl. max aggregation)

164 * % Total
K --%- Gandiva Processing
14 1 Parquet Reading
12 A
10 A x
g 8
6 .
41 . LI
5 | [N ... K CETPNS SV S Pernnrennann ®
0 IR T T S Y P TSI I x
T T T T T T T
500 1K 5K 10K 50K 100K 500K

Batch Size

(calculating 50 million times the sum of 10 integers)

o oA W N =2

5.4. Fletcher 36

5.4. Fletcher

As distinguished from the previous experiments, the Fletcher scenario is not based on random
data sets. As described in Section 4.5, it uses the Chicago taxi data [40] and determines the
total duration of all trips operated by the Blue Ribbon Taxi Association Inc company. The
following query defines this scenario.

SELECT

SUM(‘trip seconds‘')
FROM

parquet. ‘chicago-taxi.parquet®
WHERE

‘company' rlike ”Blue Ribbon Taxi Association Inc”

Similarly, as before, this experiment compares the execution of Spark’s default physical
plan (Figure 5.8a) with the Fletcher-accelerated one (Figure 5.8b).

Shuffle

HashAggregateExec

HashAggregateExec

HashAggregateExec

ProjectExec

HashAggregateExec

ColumnarToRowExec FletcherExec
v
FileSourceScanExec ArrowParquet...Exec

(a) Vanilla Spark (b) Arrow Parquet Reading & Fletcher

Figure 5.8: Fletcher scenario: Physical plans of the different Spark configurations

The Fletcher experiments were conducted on a POWER9 system with two CPUs (44
cores), 128 GB memory, and an AlphaData ADM-PCIE-9H7 FPGA accelerator card. In this
Setup, Spark was executed in local mode with 16 GB memory and a ColumnarBatch size
of 1 million records was chosen.

Figure 5.9 shows the results of comparing the Fletcher-accelerated Spark version with
Vanilla Spark on reading data sets of different size. First of all, this use case, which includes
reading string data, reveals the weaknesses of the Arrow Parquet reading implementation
even more clearly than before. While Vanilla Spark was able to import the parquet file con-
taining 150 million entries (about 130MB) within 250ms, the Arrow implementation needed 9.6
seconds. This work could not to find a satisfying explanation for this enormous difference.
However, it could show that the problem is not directly related to the Spark integration or the
memory allocation in Java. A separate C++ program just importing the file with the Arrow C++
Dataset API resulted in a similar importing time.

Nevertheless, the FPGA-accelerated Spark configuration could increase the performance
of the other processing operations enormously. For the data set with 150 million record, the
remaining processing steps could be executed more than 13 times faster (see red arrows
on Figure 5.9). This improvement is slightly smaller for the other data sets, but sufficient
to compensate the much slower Parquet file import. In total, the accelerated variant was
more than two times faster than the default implementation for all data set sizes. The FPGA’s

5.4. Fletcher 37

parallel execution capabilities can clearly explain this improvement compared to the single-
threaded Spark CPU executor. Nevertheless, the current implementation of the HAF is also
only using a small part of the FPGA’s capacity. This experiment demonstrates that Spark
can be accelerated with different computing hardware, but it leaves the problem of using the
hardware at full capacity for further work.

Parquet Reading A
251 mEm FPGA Execution
B Total
20
0
o 157
£
10 - 26.8s
=<
©
o
)
5 1 ©
= _—
C
— v
0 T T
10M 50M 100M 150M

Number of data records

Figure 5.9: Comparing the execution of Fletcher-accelerated Spark to Vanilla Spark
(Chicago taxi data use-case presented in Section 4.5 using a batch size of 1 million rows)

Conclusions and future work

6.1. Conclusions

The research question “Can Spark SQL’s internal structural information of the query be used to
accelerate the query execution by offloading work to hardware accelerators based on Apache
Arrow?”, formulated in Section 1.3, has set the primary purpose of the present work to evaluate
the technical feasibility of accelerating Spark SQL transparently. Firstly, the present work
analyzed the involved technologies, such as Apache Spark, Apache Arrow, and Fletcher. It
elaborated recent features supporting heterogeneous computing and used these insights to
create an architecture and concepts for integrating different tools. During the work, several
custom accelerators were implemented to validate the developed concepts and to discover
further challenges. This successful PoC implementation was evaluated with regard to first
performance improvements and to gain further insights on necessary preconditions for strong
acceleration.

The first subquestion, “Does Spark SQL provide sufficient extension points that allow the
provision of different hardware accelerators?” was answered by analyzing Spark SQL deeply
and presenting its concepts. It has been shown that especially the query optimizer Catalyst
plays an important role. Internally, it processes the query defined by the user and creates pre-
cise execution instructions. Additionally, it is designed and built very modifiable and provides
an extensive API to manipulate the query optimization process. With the new columnar pro-
cessing function, which perfectly integrates into Catalyst’'s APls, Spark took a significant step
towards heterogeneous computing and laid an essential basis for columnar accelerators. The
architecture developed within the present work (Section 3.2) highly relies on Catalyst’'s API. It
uses the API to define custom accelerators (physical operators) and uses the rule-based Spark
extensions to replace Spark’s default operators. This demonstrates the extensive possibilities
to modify Spark SQL and shows that Spark SQL’s API fulfills all necessary preconditions for
the present work and allows extending Spark with custom implementations calling hardware
accelerators.

Besides Spark, Apache Arrow is a central component that connects all tools used in the
present work. Its columnar in-memory format and the language-specific abstraction allow
exchanging data without copying overhead. The idea of the present work is based on using
Apache Arrow for exchanging data efficiently between Spark and tools from the Arrow ecosys-
tem, such as Gandiva and Fletcher. Validating this idea led to the second subquestion, “How
mature is Spark’s columnar processing function and is it compatible with the Apache Arrow
memory format?”. The present work discussed that Spark’s columnar processing functionality
does not yet fully integrate with Apache Arrow. Although Spark contains Arrow-based imple-
mentations, the underlying Arrow structures are not part of the public APl and can only be

38

6.2. Further work 39

extracted by accessing hidden fields. Moreover, when Spark converts rows into the colum-
nar format, it uses an internal format. But, as the concept of the present work (Section 3.3)
discusses, these restrictions can be overcome and enable Spark to manage its data in the Ar-
row format. However, the performance evaluations showed a disadvantage, which remained.
Spark’s columnar-to-row conversion is optimized for the internal format, and using the Arrow
format leads to significantly slower conversions.

Based on the Apache Arrow format, the present work integrated hardware-accelerators
and libraries from the Arrow ecosystem with Spark. Firstly, this was the Arrow C++ Dataset
component. It allows importing Parquet files directly into the Arrow format and enables the
present work to execute full data analytics pipelines without having to transform the data.
Moreover, this integration demonstrates how Arrow data imported in C++ can be made avail-
able to Spark implemented in Scala/Java. Secondly, the present work provides an integra-
tion that conceptually allows executing all of Spark’s projection and filter operations on Gan-
diva. By converting Spark’s operations into Gandiva’s expression trees, these operations are
compiled into assembly code optimized for CPUs with SIMD capabilities and are accelerat-
ing Spark’s internal computation. Finally, the present work provides a Fletcher integration as
a prototype, allowing offload computational work to FPGAs. While implementing these inte-
grations, the present work also has revealed differences between the tools. Gandiva’s filter
operation is returning a vector containing all indexes of the selected rows, which does not find
a conceptional equivalent in Spark and is therefore not fully compatible. Furthermore, Fletcher
requires Arrows suggested 64-byte alignment. However, Arrow’s Java library only aligns the
buffers on 8 bytes and makes it difficult to send data to Fletcher.

Finally, to answer the third subquestion, “Which performance improvements can be identi-
fied and what are potential bottlenecks?”, the present work conducted experiments on different
use cases. These experiments have shown that transforming the data between the Arrow for-
mat, and Spark’s row-based format are costly operations. Therefore, the best results can be
achieved when these transformations are avoided and the whole data analytics pipeline man-
ages the data in the Arrow format. It became clear that aggregations are common operations
and an Arrow-based implementation is required to avoid transferring the data to Spark’s format
first. Furthermore, the performance evaluations have revealed that the Parquet reading imple-
mentation is significantly slower than Spark’s implementation, making it hard for Arrow-based
computations to compete with Vanilla Spark. Nevertheless, the performance experiments
have demonstrated that Spark can be significantly accelerated by using hardware accelera-
tors. Not considering the Parquet reading operations, the Gandiva-accelerated computation
was up to 1.27 times faster and the Fletcher-accelerated version could compute the data of
the Chicago taxi use case more than 13 times faster.

6.2. Further work
The present work has focused on elaborating on the technical feasibility of integrating Spark
with the Apache Arrow ecosystem and, in particular, with Fletcher. This feasibility has been
demonstrated, being an important step towards the presented vision of heterogeneous com-
puting based on Apache Arrow. During the evaluations and implementations done in the
present work, many new questions and challenges arose, which could not be answered in fa-
vor of focusing on the main purpose of the present work. Therefore, the present work creates a
basis for further implementations and additional integrations with other work of the community.
As the evaluation has shown, the Arrow-based Parquet reading function, developed in the
present work, is significantly slower than Spark’s default implementation and has a significant
impact on the overall execution. To overcome this limitation, it is necessary to analyze this
issue further and evaluate other implementations such as Parquet Mr [47], which provides

6.2. Further work 40

a Java-based implementation to import Parquet files into the Arrow format. Moreover, the
implementation of the present work focuses on the basic functionality. To reach feature parity
with Spark’s implementation, it is necessary to integrate additional features of the Arrow C++
Dataset library such as predicate push-down and to read from network shares.

An essential result of the present work is that the conversion between Apache Arrow and
Spark’s internal row format should be avoided. For being able to accelerate a wide variety of
use cases, it is necessary to provide Arrow-based implementations for most of Spark’s physi-
cal operators. To be pointed out is the aggregation operator, which is an essential operation for
many data analytics pipelines and also enables the execution of the TPC-H benchmarks [52].
The TPC-H benchmark is a standardized database benchmark consisting of business oriented
ad-hoc queries and concurrent data modifications. This benchmark has been defined to have
broad industry-wide relevance and allows a better evaluation of the performance improve-
ments and a comparison with other available data analytics systems.

However, implementing columnar-based versions for all operators is an enormous task due
to Spark’s extensive features. Therefore, it is essential to exploit potential synergies with other
publicly available work. Particularly Intel’s “Spark Native SQL Engine” project [36], introduced
in Section 2.4, is an interesting candidate. At the time of writing, this project was still in an early
stage, but similarly, as the present work, it uses Spark’s columnar processing feature and has
integrated an Arrow Parquet reader, Gandiva and further columnar processing operators. To
follow the vision of heterogeneous computing and making Fletcher accessible for broader data
analytics, this project is an interesting candidate and should be evaluated further.

The present work has focused on accelerating a single executor node and does not discuss
challenges related to distributed Setups. Therefore, challenges such as using the available re-
sources efficiently, choosing a physical plan based on the available resources and distributing
the work in a heterogeneous cluster are not addressed and remain open for further work.

This work forms the basis for the ABS group’s vision, presented in Section 4.5, to accelerate
Spark queries with Fletcher-based HAFs without losing the usability of Spark’s powerful API.
The key idea is to choose a matching HAF automatically from a repository and integrate it into
the execution to accelerate the execution as much as possible. This approach requires a tree
comparison between Spark’s logical plan and the HAFs. These additional steps necessary to
achieve this vision have not been considered in the present work and remain open for further
work.

With version 3.0.0, Spark has announced the Adaptive Query Execution feature [62], which
gathers statistics at runtime and uses them to adapt the execution dynamically. Integrating with
this function might be a valuable addition to the greater vision of the presented work. Using
this feature might allow switching dynamically to a different accelerator based on the insights
gathered from the first executions.

Measurement Results

This appendix lists the exact measured values from the experiments conducted in Chapter 5.
The implementations of the experiments can be found in the repository’ containing the imple-
mentation of the present work.

A.1. Parquet Reading

The experiments conducted in Section 5.2 compare the Arrow-based Parquet reader, imple-
mented in the present work, with Vanilla Spark. They were executed on Spark started in local
mode using 4 GB running on a Macbook Pro Early 2015 (Intel Core i5, 2.4 GHz, GB RAM). The
following tables show the average value of 20 executions after another 20 warm-up executions

Vanilla Spark Arrow Parquet Arrow Parquet &

Reader Max Aggregation
Parquet reading 75s 8.4s 8.2s
Total 10.8 s 318s 121s

Table A.1: Comparing the execution of the Arrow-based Parquet reader with Vanilla Spark
(importing 500 million int triples with a batch size of 100,000 rows)

batch size 500 1K 5K 10K 50K 100K 500K
Parquet reading | 45.8s | 26.7 s 115s 10.5s 7.7s 7.7s 76s
Total 777s | 445s | 181s | 1566s | 1M18s | 117s | 116s

Table A.2: Effect of changing the batch size on the Arrow-based Parquet reader (incl. max aggregation)
(importing 500 million integer triples)

A.2. Gandiva

Section 5.3 shows the experiments to evaluate the performance of the Gandiva accelerator.
The experiments were conducted on the same setup as the parquet reading and the following
tables show the measured values for the comparison with Vanilla Spark and the effect of the
batch size:

'https://github.com/fnonnenmacher/spark-arrow-accelerated#performance-tests

41

https://github.com/fnonnenmacher/spark-arrow-accelerated#performance-tests

A.3. Fletcher

Vanilla Spark Gandiva Gandiva & Max
Aggregation
Parquet reading 1.27s 1.61s 1.62s
Gandiva (sum) - 0.31s 0.32s
Total 205s 287s 2.23s

Table A.3: Comparing the execution of Gandiva-accelerated Spark with Vanilla Spark
(calculating 50 million times the sum of 10 integers with a batch size of 100,000 rows)

batch size 500 1K 5K 10K 50K 100K 500K
Parquetreading | 10.54s | 6.15s | 241s | 1.92s | 167s | 164s | 1.76s
Gandiva (sum) 3.85s | 208s | 062s | 044s | 0.33s | 0.33s | 0.29s
Total 16.43s | 950s | 348s | 272s | 229s | 226s | 2.32s

Table A.4: Effect of changing the batch size on Gandiva-accelerated Spark (incl. max aggregation)
(calculating 50 million times the sum of 10 integers)

A.3. Fletcher

The Fletcher related experiments of Section 5.4 were conducted on a POWER9 system with
two CPUs (44 cores), 128 GB memory, and an AlphaData ADM-PCIE-9H7 FPGA accelerator
card. In this Setup, Spark was executed in local mode with 16 GB memory and a configured
batch size of 1 million records.

10M 50M 100M 150M
[Vanilla] Parquet reading 0.02s 0.04 s 0.11s 0.25s
[Vanilla] Total 222s 9.31s 17.59 s 27.06 s
[Fletcher] Parquet reading 0.69s 3.36s 6.64 s 9.65s
[Fletcher] FPGA execution 0.15s 0.68s 1.21s 1.77 s
[Fletcher] Total 0.98 s 4.20s 8.03 s 11.62s

Table A.5: Comparing the execution of Fletcher-accelerated Spark to Vanilla Spark
(Chicago taxi data use-case using a batch size of 1 million rows with different data set sizes)

(1]

(2]

[3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

(1]

[12]

Bibliography

Michael Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data. SIG-
MOD ’15. Melbourne, Victoria, Australia: Association for Computing Machinery, 2015,
pp. 1383—-1394. ISBN: 9781450327589. DOI: 10.1145/2723372.2742797.

Apache Arrow. Apache Arrow Docs v0.17.1. 2020. URL: https://arrow. apache.
org/docs/index.html (visited on 07/01/2020).

Apache Arrow. Apache Arrow homepage. URL: https : / /arrow . apache . org/
(visited on 06/30/2020).

Apache Arrow. Apache Arrow on Github (v0.17.1). May 2020. URL: https://github.
com/apache/arrow/tree/apache-arrow-0.17.1 (visited on 07/13/2020).

Apache Arrow. Gandiva: A LLVM-based Analytical Expression Compiler for Apache
Arrow. Dec. 2018. URL: https://arrow. apache.org/blog/2018/12/05/
gandiva-donation/ (visited on 07/02/2020).

Himani Bansal. Why Industries Running behind Spark — “50 Reasons why spark is
important”. Feb. 2020. URL: https://medium.com/javarevisited/why-indus
tries-running-behind-spark-50-reasons-why-spark-is-important-
83473477b41d (visited on 07/20/2020).

Bigstream. Hyperacceleration With Bigstream Technology. URL: https://blog.big

stream.co/resources/hyper-acceleration-with-bigstream-technolog
y (visited on 08/04/2020).

Priyabrata Biswas. Towards Data Science: Introduction to FPGA and its Architecture.
2019. URL: https://towardsdatascience.com/introduction-to- fpga-
and-its-architecture-20a62cl4421c (visited on 07/20/2020).

Rajesh Bordawekar. Accelerating Spark workloads using GPUs O’Reilly. Aug. 2016.
URL: https://www.oreilly.com/content/accelerating-spark-workload
s-using-gpus/ (visited on 08/04/2020).

Rajesh Bordawekar. Nvidia GTC Silicon Valley 2016: Accelerating Spark Workloads
Using GPUs. 2016. URL: https://on-demand-gtc.gputechconf.com/gtcnew/
sessionview.php?sessionName=s6280-accelerating+spark+workloads+

using+gpus (visited on 08/04/2020).

Weiting Chen Calvin Hung. Spark+Al Summit 2020: Accelerating Spark SQL Workloads
to 50X Performance with Apache Arrow-Based FPGA Accelerators. 2020. URL: https:
//databricks.com/session na20/accelerating-spark-sgl-workloads-
to-50x-performance-with-apache-arrow-based- fpga-accelerators

(visited on 08/04/2020).

Cloudera. Cloudera Documentation v6.3.x : Predicate Pushdown in Parquet. URL: ht
tps://docs.cloudera.com/documentation/enterprise/6/6.3/topics/
cdh ig predicate pushdown parquet.html (visited on 07/09/2020).

43

https://doi.org/10.1145/2723372.2742797
https://arrow.apache.org/docs/index.html
https://arrow.apache.org/docs/index.html
https://arrow.apache.org/
https://github.com/apache/arrow/tree/apache-arrow-0.17.1
https://github.com/apache/arrow/tree/apache-arrow-0.17.1
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/
https://arrow.apache.org/blog/2018/12/05/gandiva-donation/
https://medium.com/javarevisited/why-industries-running-behind-spark-50-reasons-why-spark-is-important-83473477b41d
https://medium.com/javarevisited/why-industries-running-behind-spark-50-reasons-why-spark-is-important-83473477b41d
https://medium.com/javarevisited/why-industries-running-behind-spark-50-reasons-why-spark-is-important-83473477b41d
https://blog.bigstream.co/resources/hyper-acceleration-with-bigstream-technology
https://blog.bigstream.co/resources/hyper-acceleration-with-bigstream-technology
https://blog.bigstream.co/resources/hyper-acceleration-with-bigstream-technology
https://towardsdatascience.com/introduction-to-fpga-and-its-architecture-20a62c14421c
https://towardsdatascience.com/introduction-to-fpga-and-its-architecture-20a62c14421c
https://www.oreilly.com/content/accelerating-spark-workloads-using-gpus/
https://www.oreilly.com/content/accelerating-spark-workloads-using-gpus/
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s6280-accelerating+spark+workloads+using+gpus
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s6280-accelerating+spark+workloads+using+gpus
https://on-demand-gtc.gputechconf.com/gtcnew/sessionview.php?sessionName=s6280-accelerating+spark+workloads+using+gpus
https://databricks.com/session_na20/accelerating-spark-sql-workloads-to-50x-performance-with-apache-arrow-based-fpga-accelerators
https://databricks.com/session_na20/accelerating-spark-sql-workloads-to-50x-performance-with-apache-arrow-based-fpga-accelerators
https://databricks.com/session_na20/accelerating-spark-sql-workloads-to-50x-performance-with-apache-arrow-based-fpga-accelerators
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/cdh_ig_predicate_pushdown_parquet.html
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/cdh_ig_predicate_pushdown_parquet.html
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/cdh_ig_predicate_pushdown_parquet.html

Bibliography 44

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Falcon Computing. Kestrel Runtime - Big Data application scheduling and load balanc-
ing. URL: https://www.falconcomputing.com/falcon-kestrel-runtime/

(visited on 08/04/2020).

Databricks. Glossary - Tungsten. URL: https : / /databricks.com/glossary/
tungsten (visited on 07/10/2020).

Databricks. What is Apache Spark. URL: https://databricks.com/spark/about
(visited on 06/28/2020).

Quora Discussion. Why is Apache Spark popular among data scientists? 2018. URL:

https://www.quora.com/Why-is—-Apache-Spark-popular-among-data-
scientists (visited on 07/20/2020).

Apache Spark 3.0.0 Documentation. Monitoring. June 2020. URL: https://spark.
apache.org/docs/latest/monitoring.html (visited on 07/28/2020).

Apache Spark 3.0.0 Documentation. PySpark Usage Guide for Pandas with Apache
Arrow. 2020. URL: https://spark.apache.org/docs/3.0.0/sgl-pyspark-
pandas-with-arrow.html (visited on 07/13/2020).

Apache Spark 3.0.0 Documentation. RDD Programming Guide. June 2020. URL: http:
//spark.apache.org/docs/3.0.0/rdd-programming—-guide.html (visited
on 07/08/2020).

Apache Spark 3.0.0 Documentation. Spark SQL and DataFrames. June 2020. URL:
https://spark.apache.org/docs/3.0.0/sgl-programming-guide.html
(visited on 07/07/2020).

LLVM 10 Documentation. Auto-Vectorization in LLVM. 2020. URL: https://1lvm.
org/docs/Vectorizers.html (visited on 07/02/2020).

Oracle Java Documentation. Java Native Interface Specification. 2014. URL: https:

/ /docs .oracle.com/ javase/ 8 /docs/ technotes /guides/ jni / spec/
intro.html (visited on 07/23/2020).

Scala Documentation. lterators. 2020. URL: https://docs . scala-lang.org/
overviews/collections-2.13/iterators.html (visited on 07/23/2020).

Daniel Eaton. Turning big data challenges into opportunities with FPGA-accelerated
computing. 2018. URL: https://www.datacenterdynamics.com/en/opinio

ns/turning-big-data-challenges-opportunities—-fpga-accelerated-
computing/ (visited on 07/20/2020).

Jian Fang et al. “In-memory database acceleration on FPGAs: a survey”. In: The VLDB
Journal 29.1 (Jan. 2020), pp. 33-59. ISSN: 0949-877X.DOI: 10.1007/s00778-019-
00581-w.

Jian Fang et al. “Refine and Recycle: A Method to Increase Decompression Parallelism”.
In: July 2019, pp. 272-280. DOI: 10.1109/ASAP.2019.00017.

M. J. Flynn. “Some Computer Organizations and Their Effectiveness”. In: IEEE Transac-
tions on Computers C-21.9 (1972), pp. 948-960. DOI: 10.1109/TC.1972.5009071.

The Apache Software Foundation. Apache® Software Foundation announces Apache
Arrow™ as a Top-Level Project. Feb. 2016. URL: https://blogs.apache.org/f

oundation/entry/the apache software foundation announces87 (visited
on 06/30/2020).

https://www.falconcomputing.com/falcon-kestrel-runtime/
https://databricks.com/glossary/tungsten
https://databricks.com/glossary/tungsten
https://databricks.com/spark/about
https://www.quora.com/Why-is-Apache-Spark-popular-among-data-scientists
https://www.quora.com/Why-is-Apache-Spark-popular-among-data-scientists
https://spark.apache.org/docs/latest/monitoring.html
https://spark.apache.org/docs/latest/monitoring.html
https://spark.apache.org/docs/3.0.0/sql-pyspark-pandas-with-arrow.html
https://spark.apache.org/docs/3.0.0/sql-pyspark-pandas-with-arrow.html
http://spark.apache.org/docs/3.0.0/rdd-programming-guide.html
http://spark.apache.org/docs/3.0.0/rdd-programming-guide.html
https://spark.apache.org/docs/3.0.0/sql-programming-guide.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/intro.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/intro.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/intro.html
https://docs.scala-lang.org/overviews/collections-2.13/iterators.html
https://docs.scala-lang.org/overviews/collections-2.13/iterators.html
https://www.datacenterdynamics.com/en/opinions/turning-big-data-challenges-opportunities-fpga-accelerated-computing/
https://www.datacenterdynamics.com/en/opinions/turning-big-data-challenges-opportunities-fpga-accelerated-computing/
https://www.datacenterdynamics.com/en/opinions/turning-big-data-challenges-opportunities-fpga-accelerated-computing/
https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.1007/s00778-019-00581-w
https://doi.org/10.1109/ASAP.2019.00017
https://doi.org/10.1109/TC.1972.5009071
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces87
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces87

Bibliography 45

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

G. Graefe. “Wolcano— An Extensible and Parallel Query Evaluation System”. In: IEEE
Trans. on Knowl. and Data Eng. 6.1 (Feb. 1994), pp. 120-135. ISSN: 1041-4347. DOI:
10.1109/69.273032.

Accelerated Big Data Systems Group. Fletcher on Github. 2020. URL: https://gith
ub.com/abs-tudelft/fletcher (visited on 07/07/2020).

Stavros Harizopoulos, Daniel Abadi, and Peter Boncz. Column-Oriented Database Sys-
tems. 2009. URL: http://www.cs.umd.edu/~abadi/talks/Column_ Store
Tutorial VLDBO09.pdf (visited on 07/11/2020).

John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quan-
titative Approach. 5th. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011. ISBN: 012383872X.

Joost Hoozemans et al. “VLIW-Based FPGA Computation Fabric with Streaming Mem-
ory Hierarchy for Medical Imaging Applications”. In: Mar. 2017, pp. 36—43. DOI: 10.
1007/978-3-319-56258-2 4.

Ernst Joachim Houtgast et al. “Hardware Acceleration of BWA-MEM Genomic Short
Read Mapping with Longer Read Length”. In: Computational Biology and Chemistry 75
(Jan. 2018). DOI: 10.1016/j .compbiolchem.2018.03.024.

Muhuan Huang et al. “Programming and Runtime Support to Blaze FPGA Accelerator
Deployment at Datacenter Scale”. In: Proceedings of the Seventh ACM Symposium on
Cloud Computing. SoCC ’16. Santa Clara, CA, USA: Association for Computing Machin-
ery, 2016, pp. 456—469. ISBN: 9781450345255. DOI: 10.1145/2987550.2987569.

Intel. Spark Native SQL Engine - Optimized Analytics Package for Spark Platform. 2020.
URL: https://github.com/Intel-bigdata/0OAP/tree/master/oap-native
-sqgl (visited on 08/03/2020).

Kazuaki Ishizaki. “Analyzing and Optimizing Java Code Generation for Apache Spark
Query Plan”. In: Proceedings of the 2019 ACM/SPEC International Conference on Per-
formance Engineering. ICPE '19. Mumbai, India: Association for Computing Machinery,
2019, pp. 91-102. ISBN: 9781450362399. DOI: 10.1145/3297663.3310300.

Spark 3.0.0 JavaDoc. SparkSessionExtensions. 2020. URL: http://spark.apache.

org/docs/3.0.0/api/java/org/apache/spark/sql/SparkSessionExtens
ions.html (visited on 07/23/2020).

Dr. Chris Kachris. FPGA Acceleration of Apache Spark on the Cloud, Instantly. 2018.
URL: https://bigdataconference.1lt/2018/wp-content/uploads/2018/
12 /Machine-Learning—-Acceleration-using-FPGAs-in-the-Cloud-by-
Christophoros-Kachris-min.pdf (visited on 08/04/2020).

Kaggle. Chicago Taxi Trips. 2020. URL: https : //www . kaggle . com/ chicago/
chicago-taxi-trips-bqg (visited on 07/27/2020).

Romeo Kienzler. Mastering Apache Spark 2.x: Scalable analytics faster than ever. Sec-
ond. Birmingham, UK: Packt Publishing Ltd, July 2017. ISBN: 9781786462749.

Peilong Li, Ning Zhang, and Yu Cao. “HeteroSpark: A Heterogeneous CPU/GPU Spark
Platform for Machine Learning Algorithms”. In: Aug. 2015. DOI: 10.1109/NAS.2015.
7255222.

Boston Limited. What Is GPU Computing? URL: https://www.boston.co.uk/
info/nvidia-kepler/what-is-gpu-computing.aspx (visited on 07/20/2020).

https://doi.org/10.1109/69.273032
https://github.com/abs-tudelft/fletcher
https://github.com/abs-tudelft/fletcher
http://www.cs.umd.edu/~abadi/talks/Column_Store_Tutorial_VLDB09.pdf
http://www.cs.umd.edu/~abadi/talks/Column_Store_Tutorial_VLDB09.pdf
https://doi.org/10.1007/978-3-319-56258-2_4
https://doi.org/10.1007/978-3-319-56258-2_4
https://doi.org/10.1016/j.compbiolchem.2018.03.024
https://doi.org/10.1145/2987550.2987569
https://github.com/Intel-bigdata/OAP/tree/master/oap-native-sql
https://github.com/Intel-bigdata/OAP/tree/master/oap-native-sql
https://doi.org/10.1145/3297663.3310300
http://spark.apache.org/docs/3.0.0/api/java/org/apache/spark/sql/SparkSessionExtensions.html
http://spark.apache.org/docs/3.0.0/api/java/org/apache/spark/sql/SparkSessionExtensions.html
http://spark.apache.org/docs/3.0.0/api/java/org/apache/spark/sql/SparkSessionExtensions.html
https://bigdataconference.lt/2018/wp-content/uploads/2018/12/Machine-Learning-Acceleration-using-FPGAs-in-the-Cloud-by-Christophoros-Kachris-min.pdf
https://bigdataconference.lt/2018/wp-content/uploads/2018/12/Machine-Learning-Acceleration-using-FPGAs-in-the-Cloud-by-Christophoros-Kachris-min.pdf
https://bigdataconference.lt/2018/wp-content/uploads/2018/12/Machine-Learning-Acceleration-using-FPGAs-in-the-Cloud-by-Christophoros-Kachris-min.pdf
https://www.kaggle.com/chicago/chicago-taxi-trips-bq
https://www.kaggle.com/chicago/chicago-taxi-trips-bq
https://doi.org/10.1109/NAS.2015.7255222
https://doi.org/10.1109/NAS.2015.7255222
https://www.boston.co.uk/info/nvidia-kepler/what-is-gpu-computing.aspx
https://www.boston.co.uk/info/nvidia-kepler/what-is-gpu-computing.aspx

Bibliography 46

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Philipp Moritz and Robert Nishihara. Plasma In-Memory Object Store | Apache Arrow.
Aug. 2017. URL: https://arrow.apache.org/blog/2017/08/08/plasma-in-
memory-object-store/ (visited on 07/23/2020).

NVIDIA. Spark RAPIDS plugin - accelerate Apache Spark with GPUs. 2020. URL: htt
ps://github.com/NVIDIA/spark-rapids (visited on 08/04/2020).

Apache Parquet. Apache Parquet Documentation. URL: https://parquet.apache
.org/documentation/latest/ (visited on 07/02/2020).

Apache Parquet. Apache Parquet MR on Github. 2019. URL: https://github.com/
apache/parquet-mr/tree/apache-parquet-1.11.0 (visited on 07/24/2020).

J. Peltenburg et al. “Fletcher: A Framework to Efficiently Integrate FPGA Accelerators
with Apache Arrow”. In: 2019 29th International Conference on Field Programmable
Logic and Applications (FPL). 2019, pp. 270-277. DOI: 10.1109/FPL.2019.00051.

Johan Peltenburg, Shanshan Ren, and Zaid Al-Ars. “Maximizing systolic array efficiency
to accelerate the PairHMM Forward Algorithm”. In: Dec. 2016, pp. 758-762. DOI: 10.
1109/BIBM.2016.7822616.

Kevin Peters. codecentric AG Blog: Performance measurement with Java Microbench-
mark Harness. 2017. URL: https://blog. codecentric.de/en/2017/10/
performance -measurement -with-jmh-java-microbenchmark-harness/

(visited on 07/28/2020).

Ravindra Pindikura. Dremio - Introducing the Gandiva Initiative for Apache Arrow. June
2018. URL: https://www.dremio.com/announcing-gandiva-initiative-
for-apache-arrow/ (visited on 07/02/2020).

Meikel Poess and Chris Floyd. “New TPC Benchmarks for Decision Support and Web
Commerce”. In: SIGMOD Rec. 29.4 (Dec. 2000), pp. 64-71. ISSN: 0163-5808. DOI:
10.1145/369275.3692091.

The Netty project. Docs: Buffer API. URL: https://netty.io/wiki/using-as-
a-generic-library.html (visited on 07/14/2020).

RAPIDS. Open GPU Data Science. URL: https://rapids.ai/about.html (visited
on 08/04/2020).

Jason Lowe Robert Evans. Spark+Al Summit 2020: Deep Dive into GPU Support in
Apache Spark 3.x. July 2020. URL: https://databricks.com/de/session
na20/deep-dive-into-gpu- support-in-apache- spark-3-x (visited on
08/04/2020).

Josh Rosen. Deep Dive into Project Tungsten: Bringing Spark Closer to Bare Metal.
2015. URL: https://databricks.com/de/session/deep-dive-into-p
roject - tungsten-bringing - spark-closer-to-bare-metal (visited on
07/20/2020).

Davies Liu Sameer Agarwal and Reynold Xin. Apache Spark as a Compiler: Joining a
Billion Rows per Second on a Laptop - The Databricks Blog. May 2016. URL: https:
//databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-
joining-a-billion-rows-per-second-on-a- laptop.html (visited on
07/11/2020).

Apache Spark. Github - Apache Spark source code (v3.0.0). June 2020. URL: https:
//github.com/apache/spark/tree/v3.0.0 (visited on 07/13/2020).

https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/
https://github.com/NVIDIA/spark-rapids
https://github.com/NVIDIA/spark-rapids
https://parquet.apache.org/documentation/latest/
https://parquet.apache.org/documentation/latest/
https://github.com/apache/parquet-mr/tree/apache-parquet-1.11.0
https://github.com/apache/parquet-mr/tree/apache-parquet-1.11.0
https://doi.org/10.1109/FPL.2019.00051
https://doi.org/10.1109/BIBM.2016.7822616
https://doi.org/10.1109/BIBM.2016.7822616
https://blog.codecentric.de/en/2017/10/performance-measurement-with-jmh-java-microbenchmark-harness/
https://blog.codecentric.de/en/2017/10/performance-measurement-with-jmh-java-microbenchmark-harness/
https://www.dremio.com/announcing-gandiva-initiative-for-apache-arrow/
https://www.dremio.com/announcing-gandiva-initiative-for-apache-arrow/
https://doi.org/10.1145/369275.369291
https://netty.io/wiki/using-as-a-generic-library.html
https://netty.io/wiki/using-as-a-generic-library.html
https://rapids.ai/about.html
https://databricks.com/de/session_na20/deep-dive-into-gpu-support-in-apache-spark-3-x
https://databricks.com/de/session_na20/deep-dive-into-gpu-support-in-apache-spark-3-x
https://databricks.com/de/session/deep-dive-into-project-tungsten-bringing-spark-closer-to-bare-metal
https://databricks.com/de/session/deep-dive-into-project-tungsten-bringing-spark-closer-to-bare-metal
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://databricks.com/blog/2016/05/23/apache-spark-as-a-compiler-joining-a-billion-rows-per-second-on-a-laptop.html
https://github.com/apache/spark/tree/v3.0.0
https://github.com/apache/spark/tree/v3.0.0

Bibliography 47

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Apache Spark. Spark Issue Tracker. URL: https://issues.apache.org/jira/
browse/SPARK (visited on 07/09/2020).

Apache Spark. Spark Release 3.0.0. June 2020. URL: https://spark. apache.
org/releases/spark-release-3-0-0.html (visited on 07/14/2020).

Statista. Digital Economy Compass 2019. 2019. URL: https://cdn.statcdn.com/
download/pdf/DigitalEconomyCompass2019.pdf (visited on 06/26/2020).

Herman van Hovell Wenchen Fan and MaryAnn Xue. Databricks: How to Speed up SQL
Queries with Adaptive Query Execution. May 2020. URL: https://databricks.
com/de/blog/2020/05/29/adaptive-query-execution-speeding-up-
spark-sgl-at-runtime.html (visited on 08/03/2020).

Alex Woodie. A Decade Later, Apache Spark Still Going Strong. 2019. URL: https:
/ /www .datanami.com/2019/03/08/a-decade-later-apache-spark-
still-going-strong (visited on 07/20/2020).

Reynold Xin and Josh Rosen. Project Tungsten: Bringing Apache Spark Closer to Bare
Metal. Apr. 2015. URL: https://databricks.com/blog/2015/04/28/proj

ect-tungsten-bringing-spark-closer-to-bare-metal.html (visited on
07/10/2020).

Y. Yuan et al. “Spark-GPU: An accelerated in-memory data processing engine on clus-
ters”. In: 2016 IEEE International Conference on Big Data (Big Data). 2016, pp. 273—
283.D0OI: 10.1109/Bigbata.2016.7840613.

Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for in-
Memory Cluster Computing”. In: Proceedings of the 9th USENIX Conference on Net-
worked Systems Design and Implementation. NSDI'12. San Jose, CA: USENIX Asso-
ciation, 2012, p. 2.

https://issues.apache.org/jira/browse/SPARK
https://issues.apache.org/jira/browse/SPARK
https://spark.apache.org/releases/spark-release-3-0-0.html
https://spark.apache.org/releases/spark-release-3-0-0.html
https://cdn.statcdn.com/download/pdf/DigitalEconomyCompass2019.pdf
https://cdn.statcdn.com/download/pdf/DigitalEconomyCompass2019.pdf
https://databricks.com/de/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://databricks.com/de/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://databricks.com/de/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html
https://www.datanami.com/2019/03/08/a-decade-later-apache-spark-still-going-strong
https://www.datanami.com/2019/03/08/a-decade-later-apache-spark-still-going-strong
https://www.datanami.com/2019/03/08/a-decade-later-apache-spark-still-going-strong
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://doi.org/10.1109/BigData.2016.7840613

	List of Figures
	List of Acronyms
	Introduction
	Context
	Contribution
	Research question
	Outline

	Background
	Spark SQL
	Spark RDD API
	DataFrame API
	Catalyst - the query optimizer
	Project Tungsten
	Columnar processing

	Apache Arrow
	Arrow columnar format
	Arrow Java library
	Parquet reader
	Gandiva

	Fletcher
	Related work

	Architecture and general concepts
	General structure
	Executing custom code within Spark SQL
	Arrow-based columnar processing
	Exchanging Arrow arrays between Java and C++
	Overview
	From Java to C++
	From C++ to Java with preallocated buffers
	From C++ to Java by forwarding the allocation to Java.

	Integration of different accelerators
	Overview
	Importing Parquet files into Arrow format
	Gandiva integration
	Simple max aggregation
	Fletcher

	Evaluation
	Setup
	Parquet reading
	Gandiva
	Fletcher

	Conclusions and future work
	Conclusions
	Further work

	Measurement Results
	Parquet Reading
	Gandiva
	Fletcher

