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Visio-Verbal Teleimpedance: A Gaze and
Speech-Driven VLM Interface for Human-Centric

Semi-Autonomous Robot Stiffness Control
Henk H.A. Jekel*

Supervised by Luka Peternel and Alejandro Diaz Rosales

Abstract—Three-year-old toddlers can effortlessly guide a toy 
train along a wooden track, whereas this slide-in-the-groove posi-
tion tracking task requires a skilled operator using a teleoperated 
robot arm due to the lack of direct contact and force feedback. 
Although an autonomous robot can perform this task in a fixed 
setup, telerobotics is crucial for unknown environments where 
human control is essential, as humans provide the adaptability 
needed to handle unpredictable conditions. The introduction of 
torque-controlled motors and haptic devices has enhanced teleop-
eration by improving telepresence and immersion. Operators can 
perceive interaction forces through the primary position control 
input via the haptic device, while a secondary control input allows 
them to adjust the robot arm’s impedance. This ability, known 
as teleimpedance, allows operators to control the robot’s physical 
interaction based on environmental context. A toddler naturally 
remains relaxed in the plane perpendicular to the train’s forward 
direction, where gravity and the groove sides provide stability, 
preventing derailment and wheel damage. At the same time, 
they maintain firmness a long t he t rack f or s mooth forward 
movement. Tele-impedance enables the operator to achieve a 
similar balance. It allows adaptation of an optimal balance of 
low and high impedance in different axes of Cartesian space 
to match task demands. Current impedance control interfaces 
rely on complex muscle activity measurements, requiring long 
calibration procedures to map the operator’s arm stiffness to the 
robot arm. Other interfaces use hand-controlled input devices 
that must be operated in addition to the haptic device, reducing 
the operator’s cognitive bandwidth for the position tracking task. 
Existing interfaces typically provide only partial stiffness control 
or introduce visual distractions. In contrast, we propose a novel 
visio-verbal interface that leverages gaze and speech, natural 
modes of interaction, to enable hands-free semi-autonomous 
control of translational stiffness in all three dimensions while 
maintaining visual attention on the position tracking task. The 
interface’s vision-language model (VLM) determines the three-
dimensional robot endpoint stiffness by combining the operator’s 
verbal intent with gaze estimates from a mobile eye tracker. We 
demonstrate a proof of concept for this approach. The hardware 
includes Tobii Pro Glasses 2 eye trackers, a Force Dimension 
sigma7 haptic position input interface, and a KUKA LBR iiwa 
collaborative robot arm equipped with a custom-built endpoint 
camera mount for the Realsense D455 camera and a 3D-printed 
peg to evaluate the interface in a 3D-printed U-shaped slot for 
a slide-in-the-groove task similar to guiding a toy train.

Index Terms—Teleimpedance, teleoperation, impedance con-
trol, gaze estimation, speech interaction, semi-autonomous con-
trol, vision-language model (VLM), human-centric robotics

Delft University of Technology, Faculty of Mechanical Engineering, Depart-
ment of Cognitive Robotics, Mekelweg 5, 2628 CD, Delft, The Netherlands
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Fig. 1. Diagram illustrating the visio-verbal teleimpedance interface (green)
within a teleimpedance setup (red). The operator controls the remote robot’s
position via a haptic device with optional force feedback (bottom) and adjusts
impedance using gaze and speech input (top). The VLM processes these inputs
to generate the appropriate stiffness matrix, which is directly applied to the
robot. This introduces a novel impedance interface, enabling human-centric,
semi-autonomous stiffness control.

I. INTRODUCTION

Telerobotics plays a crucial role in scenarios where remote
human control is essential for safety and adaptability, such
as disaster response [1], robot-assisted surgery [2] [3] [4],
remote site inspection and maintenance [5],space [6] [7]
and ocean [8] exploration and hazardous environment oper-
ations. [9] Although autonomous robots excel in structured
environments found in manufacturing tasks, they struggle to
adapt to dynamic and unstructured conditions due to limited
cognitive flexibility [10]. To address this gap, teleoperation
integrates human adaptability into robotic control, enabling
operators at the local site to command robot movements at the
remote site using interfaces such as haptic devices, joysticks,
and motion capture systems. [10] This is similar to how a video
game character mimics a player’s actions, whether through a
controller or motion tracking.

The integration of torque-controlled motors [11] [12] and
haptic devices has significantly advanced teleoperation by
improving telepresence and immersion through force feedback
and impedance control. [13] To illustrate this, we refer to
the general structure of the tele-impedance setup in Figure
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2 MASTER THESIS

1. From bottom left to right, the operator’s hand movements
are sensed by the haptic device and converted into position
commands, which are sent to the robot arm’s endpoint at the
remote site, crossing the blue dotted site border. This one-way
communication, where the operator sends position commands
to the remote robot without receiving force feedback, is called
unilateral teleoperation. With torque sensors, the haptic device
can provide optional force feedback from the remote robot,
as shown by the dotted arrow in Figure 1. This additional
force feedback characterizes bilateral teleoperation, allowing
the operator to perceive interaction forces. [14] At the top of
the figure, teleoperation extends to teleimpedance [15] [16],
where an additional control input from an impedance interface
allows the operator to modulate the robot arm’s impedance.
This approach enables operators to adjust the robot’s physical
interaction based on the environment, improving performance
in tasks that require variable stiffness or directionally depen-
dent stiffness. For example, this additional input allows the
operator to achieve a soft interaction when handling fragile
materials like glass or to maintain stiffness only in the insertion
direction for peg-in-hole assembly, facilitating self-alignment.
[15] A detailed mathematical foundation of teleimpedance is
given in appendix B

Existing teleimpedance command interfaces can be broadly
categorized into manual impedance control and automated
impedance control, depending on whether the human or the
system determines the impedance of the interaction. [10] Man-
ual control approaches allow the human operator to explicitly
adjust stiffness through physiological signals [17] [18] [19],
physical inputs [20] [21] [22], or touchscreen-based graphical
interfaces. [23] One common method involves estimating the
operator’s stiffness using electromyography (EMG) sensors,
which map muscle activity to the robot’s impedance. [17]–
[19] While EMG-based teleimpedance interfaces enable multi-
degree-of-freedom stiffness control by estimating the end-
point stiffness ellipsoid of the human arm [17]–[19], they
present several challenges. These systems require surface
electromyography (sEMG) sensors to measure muscle activity,
relying on antagonistic muscle co-activation to infer stiffness
changes. [10] However, they demand precise calibration for a
specific arm configuration, limiting their generalization across
different poses. [10] Additionally, equipping multiple EMG
electrodes is a tedious process, and even simplified approaches
using fewer sensors or commercial arm braces still suffer from
signal noise, motion artifacts, and cross-talk. [10] Moreover,
while these methods effectively scale the size of the stiffness
ellipsoid, studies suggest that they provide limited control over
its shape. [24]

EMG interfaces are also susceptible to the coupling effect,
where unexpected haptic feedback triggers involuntary reflexes
in the operator’s arm, leading to increased muscle activity.
This unintended stiffening is detected by the EMG sensors and
subsequently alters the commanded robot stiffness. Force grip
sensor-based interfaces aim to reduce hardware complexity but
still suffer from the coupling effect, as grip force is inherently
linked to neuromuscular impedance [20]. Additionally, these
interfaces can only control one degree of freedom per sensor,
significantly restricting the operator’s ability to shape the

stiffness ellipsoid.
Alternative approaches introduce decoupled interfaces,

where unintended stiffening due to force feedback does not in-
fluence the robot’s endpoint stiffness. Examples include push-
button interfaces [21] and tablet-based interfaces [23]. Push-
button interfaces can only adjust a single degree of freedom
at a time, limiting operator flexibility. Tablet-based interfaces
offer a graphical representation of two planes of the stiffness
ellipsoid, allowing adjustments through familiar touchscreen
interactions. However, using a tablet while simultaneously
performing a position-tracking task shifts the operator’s focus
away from the primary task, potentially disrupting workflow.
A more recent approach to improving control over multi-
degree-of-freedom stiffness is a single-handed 3D stiffness
command device [22], which integrates two scroll wheels, a
joystick, and a force sensor to enable more versatile stiffness
control. While this device combines multi-degree-of-freedom
impedance control with the ability to maintain visual attention
on the primary task, it requires significant training and imposes
a high cognitive load on the operator.

In contrast, automated impedance control systems remove
the operator from the impedance control loop, allowing robot
autonomy to determine the appropriate stiffness. For example,
in [25], the robot used torque sensors to measure physical
interaction forces and autonomously adjust stiffness for task
stabilization, ensuring compliance when needed and increasing
rigidity during disturbances. Similarly, [26] proposed a vision-
based system where the robot detected objects and inferred
their material properties to preemptively set optimal stiffness
values. For instance, when approaching a fragile glass object,
the system automatically reduced stiffness to avoid excessive
contact forces. These fully autonomous approaches improve
safety and reduce operator workload but also remove direct
human input, reducing the operator’s ability to intervene in
uncertain environments. Both manual impedance control and
automated impedance control are forms of the traded control
paradigm where either the operator or the system is in full
control of the robot impedance.

Despite advancements in teleimpedance interfaces, current
methods either demand continuous manual adjustments, in-
creasing cognitive load, or rely entirely on automation, re-
ducing adaptability in uncertain environments. To bridge this
gap, this work introduces a novel visio-verbal teleimpedance
interface that follows the shared impedance control paradigm.
As illustrated in Figure 1, focusing now on the proposed
interface (green), it enables operators to adjust the robot’s full
3D stiffness matrix, including its shape, size, and orientation,
using gaze and speech, two natural and intuitive communica-
tion modalities. This approach eliminates the need for direct
manual input while ensuring on-demand adaptability without
diverting the operator’s visual attention from the task and
without the neuromechanical coupling effect.

Unlike previous methods that strictly required manual ad-
justments or complete automation, this system balances cog-
nitive workload between the operator and a vision-language
model (VLM). Figure 2 highlights how the system implements
human-in-the-loop impedance control: the VLM generates
a stiffness matrix based on the operator’s verbal command
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Fig. 2. Human-in-the-loop impedance control using verbal commands and scene images with overlaid gaze estimates. At the top, a snapshot of the teleoperation
scene with gaze overlay is captured in parallel with the operator’s verbal command (left), which is processed through a speech-to-text (STT) module. These
inputs, along with relevant conversation history stored in memory, are provided to the vision-language model (VLM) for stiffness matrix generation. The
generated stiffness matrix is then applied to the remote robot. Immediate feedback is given through text-to-speech confirmation and a real-time visualization
of the stiffness ellipsoid, ensuring alignment with the operator’s intent. If the operator disagrees with the output, they can modify it through subsequent verbal
adjustments, optionally referencing specific entries in the conversation history to refine the VLM’s response.

and optional gaze input, then communicates it via a brief
verbal notification and an optional visual check via a stiffness
ellipsoid (figure 8). If the operator disagrees with the proposed
matrix, they can provide verbal instructions for refinement.
Additionally, as shown in the top right of Figure 2, the
system retains a conversation history, allowing operators to
revert to previous stiffness configurations through simple voice
commands. For example, this feature can assist when repeating
a task in reverse or returning to a previous configuration after
an adjustment. This human-in-the-loop design ensures stiff-
ness adaptability in unstructured environments by preserving
human intent, making it the first teleimpedance interface to
integrate eye tracking and vision language models for shared
impedance control.

Section II begins by outlining the design requirements,
followed by a detailed presentation of the hardware and
software architecture of the visio-verbal teleimpedance in-
terface. It then describes the interaction with the VLM,
focusing on the prompt design used in the experiments of
Section III. Section III presents these experiments along with
their results. Section IV evaluates this work in the context of
existing teleimpedance research, discussing its contributions,
strengths, and limitations. Finally, Section V summarizes the
key findings, highlights the broader impact of this research,
and suggests directions for future work.

II. METHODS

For this work, a novel visio-verbal teleimpedance command
interface was designed to enable hands-free adjustment of the
orientation, size and shape of the 3D translational stiffness
(8). This interface leverages eye-tracking and speech recog-
nition to allow operators to specify stiffness parameters in a
natural and intuitive manner without diverting their attention
from the teleoperation task. By feeding these inputs into a

vision-language model (VLM), the system ensures on-demand,
adaptive stiffness control.

The structure and functionality of the impedance interface,
highlighted in green in Figure 1, are further detailed in
Figure 2, which illustrates the system’s workflow from multi-
modal input to stiffness adjustment. Starting from the top, it
captures a snapshot of the teleoperation scene and overlays
the operator’s gaze estimate as a red circle. Simultaneously,
starting from the left, the system processes the operator’s
verbal command through a speech-to-text (STT) module. The
VLM then interprets these multi-modal inputs to generate a
stiffness matrix, which is applied directly onto the remote
robot. To facilitate verification, the system provides immediate
feedback through both verbal confirmation using a text-to-
speech model (TTS) and a real-time visualization of the
updated stiffness in the form of a stiffness ellipsoid (figure
8), ensuring that adjustments align with the operator’s intent.

This section is organized as follows. Section II-A defines the
interface design requirements. Based on these requirements,
Section II-B presents the design of the novel impedance
command interface. Section II-C details the hardware setup,
while Section II-D covers the software architecture. Finally,
Section II-E explains the interaction with the VLM through
prompting.

A. Interface Design Requirements

Several teleimpedance command interfaces were briefly
discussed in the introduction, along with their limitations.
Based on these insights and a critical analysis of related
work [10], a set of design requirements was formulated to
guide the development of the novel visio-verbal teleimpedance
command interface. These requirements aim to address exist-
ing challenges and prioritize a human-centric design, focusing
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on adapting the system to the user rather than forcing the user
to conform to the system. The requirements are as follows:

• R1: Combine eye-tracking with verbal interaction for
stiffness matrix generation.

• R2: Enable the operator to control the full 3D transla-
tional endpoint stiffness.

• R3: Allow stiffness adjustments without diverting visual
attention from position tracking.

• R4: Minimize setup and calibration procedures.
• R5: Prevent coupling between force feedback and com-

manded stiffness.
These requirements address the challenges of existing

teleimpedance interfaces and ensure a balance between intu-
itive control and adaptability.

Existing impedance control methods fall into two categories:
manual and fully automated approaches. While manual meth-
ods provide flexibility, they require continuous operator input,
increasing cognitive load. On the other hand, fully automated
approaches optimize performance but remove human adapt-
ability, making them unsuitable for uncertain environments. R1
ensures that the interface follows a shared control paradigm,
leveraging a vision-language model (VLM) to process gaze
and verbal inputs. This allows the operator to remain actively
involved in impedance adjustments. Unlike manual systems
that require direct parameter tuning [17]–[19], or fully au-
tonomous systems that remove the human from the loop [25],
[26], the proposed approach balances automation with human
intent.

For effective teleimpedance control, the operator must have
full access to the 3D stiffness matrix. Many existing interfaces
only allow partial control. Tablet-based methods restrict ad-
justments to 2D planes [23], while EMG-based systems scale
stiffness magnitude but offer limited ellipsoid orientation con-
trol [24]. R2 ensures that operators can freely adjust stiffness
along all three translational degrees of freedom, providing
intuitive and complete control over impedance.

Another limitation of traditional teleimpedance interfaces
is the need for operators to shift their focus between control
inputs and the teleoperation task. Tablet interfaces and other
visual feedback methods force the operator to look away
from the robot [23], disrupting workflow and increasing error
potential. R3 addresses this by integrating gaze and speech,
allowing seamless stiffness adjustments without breaking vi-
sual attention. The interface uses quick verbal and visual
confirmations to ensure the operator stays aware of stiffness
changes while maintaining task focus (Appendix A).

Practical usability is another crucial factor. EMG-based
impedance control methods [17]–[19] require electrode place-
ment and frequent recalibration, making them impractical
for fast-paced teleoperation. R4 ensures that the interface
minimizes setup time and calibration procedures, allowing for
rapid deployment and user convenience.

Lastly, impedance control interfaces must prevent unin-
tended interactions caused by force feedback. Systems such
as EMG-based approaches [17]–[19] inherently link stiffness
adjustments to involuntary muscle responses, reducing control
accuracy. R5 ensures that force feedback remains separate
from stiffness commands, avoiding unintended impedance

Fig. 3. Image of the teleoperation setup illustrating the operator at the
local site interacting with the haptic device using their right hand, while
simultaneously monitoring a real-time video feed from the remote site
displayed on a monitor. The operator wears mobile eye-trackers in the form
of glasses, providing gaze estimates used by the interface. The laptop runs
the user interface, enabling the activation of hands-free mode through verbal
commands. In this mode, the visio-verbal impedance interface is operated
entirely through speech, including system calibration procedures. The remote
robot arm is visible at the top right.

changes due to reflexive stiffening [10]. By maintaining in-
dependent control channels, the interface preserves precision
and user intent.

B. Visio-Verbal Teleimpedance Interface Design

The proposed visio-verbal teleimpedance command inter-
face addresses key limitations of existing teleimpedance con-
trol methods by introducing a shared control paradigm that
combines gaze and speech inputs with real-time multimodal
processing. This approach simplifies impedance adjustments
by eliminating the need for physical controls such as scroll
wheels, joysticks, or force sensors. By using gaze and verbal
commands, the interface allows operators to intuitively config-
ure impedance parameters without manual interventions. This
method meets the design requirements outlined in Section II-A
as follows:

The interface combines eye-tracking with verbal interaction
to generate the impedance parameters, adhering to a human-
in-the-loop shared control paradigm (R1). The vision-language
model (VLM) aids in defining and orienting the impedance
ellipsoid while allowing the operator to refine configurations
verbally. This balance effectively bridges automation with
manual input, overcoming limitations found in fully automated
or entirely manual control methods [24].

The system provides operators with full control over the
3D translational endpoint impedance (R2). Unlike EMG-based
interfaces, which mostly scale impedance magnitude without
providing precise control over orientation, the proposed system
allows real-time modifications of the impedance ellipsoid’s
size, shape, and orientation, significantly enhancing flexibility
and task-specific adaptability.

Additionally, the interface ensures operators maintain visual
focus on the primary teleoperation task, avoiding distractions

5
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caused by interacting with external graphical interfaces or
additional manual controls (R3). Leveraging gaze tracking
eliminates the need to shift visual attention away from the
task, promoting uninterrupted workflow, particularly crucial
during precise telemanipulation operations.

By relying solely on gaze tracking and speech recogni-
tion, the proposed system reduces the necessity for extensive
calibration and lengthy setup procedures, providing fast de-
ployment and immediate readiness compared to EMG-based
interfaces that require complex sensor placement and frequent
recalibration (R4) [17]–[19].

Lastly, the interface circumvents neuromechanical coupling
effects between commanded impedance and force feedback
(R5). Since the system does not depend on biomechanical
signals such as muscle activation or grip force, it prevents
unintended impedance alterations resulting from reflexive re-
sponses. This decoupling maintains precise impedance control
and avoids unintended adjustments common in coupled inter-
faces [18], [19].

The proposed visio-verbal teleimpedance command in-
terface addresses the key gaps identified in existing
teleimpedance methods, as detailed in Section I. Current man-
ual methods, including EMG-based interfaces, force grip sen-
sors, and push-button systems, generally suffer from complex
setup processes, limited degrees of freedom, or unintended
coupling effects. On the other hand, fully automated systems,
such as vision-based methods, completely remove human
oversight, reducing adaptability in unpredictable environments.
Additionally, current approaches frequently fail to offer intu-
itive, full 3D impedance control without compromising the
operator’s visual attention on the primary task.

To overcome these limitations, this work introduces the first
visio-verbal teleimpedance interface, combining gaze-based
contextual awareness with reasoning capabilities from a large
language model (LLM) to dynamically adjust impedance. By
removing the reliance on direct manual controls, the inter-
face significantly reduces the physical and cognitive demands
placed upon the operator. Simultaneously, the system main-
tains necessary human oversight through its shared control
approach, striking an effective balance between automation
and operator refinement. The interface facilitates full 3D
impedance control, providing flexibility that does not depend
on restrictive hardware or extensive training. Furthermore,
by circumventing biomechanical coupling, the system ensures
predictable and stable impedance behaviors, eliminating invol-
untary adjustments. Collectively, these innovations represent a
significant advancement in teleimpedance control, effectively
bridging the gap between manual and automated solutions
while ensuring intuitive, efficient, and adaptable impedance
configuration.

C. Hardware Setup
Figure 4 illustrates the hardware architecture of the

teleimpedance interface. The system is divided into two main
locations: the remote site (green block) and the local site,
where the operator is positioned (outside of the green block).

At the local site, the operator monitors the remote envi-
ronment via a display screen (right side of Figure 4), which
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Fig. 4. Connection diagram showing hardware components and their com-
munication links.

presents the live feed from a camera mounted directly on top of
the robot’s end-effector (top right). Positional commands are
issued through a haptic device (bottom right), while impedance
adjustments are determined based on the operator’s gaze,
recorded by an eye-tracking system (bottom left), and the
operator’s verbal commands, captured by the laptop’s built-in
microphone (bottom center). The operator’s laptop serves as
the central processing unit, receiving gaze input, processing
verbal commands, and transmitting all relevant data to the
remote site.

To ensure transparency and confirm successful impedance
adjustments, the system provides multimodal feedback. The
selected stiffness matrix is conveyed through both a verbal
notification via the laptop’s speakers and a visual represen-
tation in the form of a stiffness ellipsoid displayed on the
laptop screen. This setup ensures that impedance control is
intuitive, allowing the operator to dynamically adjust stiffness
parameters without disrupting task execution.

For detailed specifications of the hardware components
used in this implementation, refer to Appendix G. While the
hardware forms the system’s physical foundation, the software
architecture unifies its components, integrating multimodal
inputs and outputs to enable on-demand stiffness updates
and ensure seamless interaction between the operator and the
remote robot to achieve a human centric interface. The next
section provides an overview of the software framework that
enables on demand teleimpedance control.

D. Software Architecture

One of the key strengths of the proposed visio-verbal
teleimpedance interface is its rapid startup and modular design,
made possible by a Docker-based architecture. By using
docker-compose, the whole system is already up and
running on laptop startup, provided the hardware connections
are ready (see Figure 4). Each subsystem runs in its own
container, isolating software dependencies and preventing ver-
sion conflicts. This design minimizes setup time and technical
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nication links. A full page version can be found in appendix A

overhead, aligning with the minimal setup requirement (Sec-
tion II-A).

Before deployment, environment variables (e.g., port map-
pings, authentication tokens for OpenAI or Ngrok) can be
adjusted to suit specific teleoperation scenarios. If the operator
opts not to use an eye tracker, for instance, excluding that
container from the docker-compose run command imme-
diately removes its functionality without affecting other com-
ponents. Using docker containers, different Ubuntu versions
or library configurations can therefore coexist across contain-
ers, enabling seamless experimentation and simple subsystem
swaps.

The Eye Tracker Container handles instant eye tracker
calibration, captures gaze data, and overlays gaze estimates on
snapshots. Its hardware dependencies require that eye trackers
are powered on and connected to the laptop via an external Wi-
Fi adapter. Similarly, the Haptic Interface Container manages
the calibration procedure for the haptic device and coordi-
nates UDP transmissions to the robot controller, including
position commands and real-time stiffness updates. It provides

start/stop control for UDP messages, preventing unintended
robot movements when the operator is away, and includes a set
zero feature to align the haptic device’s zero position with the
robot’s position, avoiding sudden positional jumps. The haptic
interface must be plugged in, powered on, and connected to
the laptop via USB.

The Local Static Server stores and serves generated stiffness
matrices and ellipsoids, making them accessible to both the
frontend and central backend. The frontend retrieves these
ellipsoids to visually inform the operator of the current
impedance configuration, while the central backend utilizes
stiffness matrices to maintain and contextualize the conver-
sation history with the vision-language model (VLM). This
server requires the operator’s laptop to be powered on.

The Public Static Server stores and serves snapshots of the
remote site, which are overlaid with gaze estimates represented
by red circles. It establishes an internet-accessible tunnel
via ngrok, enabling the online vision-language model (VLM)
to retrieve gaze images through web-accessible URLs. This
server also requires the operator’s laptop to remain powered
on.

The Central Backend routes requests from the frontend to
relevant containers (eye tracker, haptic interface, local/public
servers), manages conversation history, and interfaces with the
VLM for stiffness matrix generation. It also provides speech-
to-text and text-to-speech capabilities, and similarly depends
on the laptop being powered on.

Finally, the Frontend Container delivers the user interface,
including controls for calibration, image capture, audio record-
ing, and haptic device status, with the primary hardware
requirement again being that the laptop is powered on.

By containerizing each subsystem, operators can effortlessly
adapt the system to various teleoperation tasks while avoid-
ing software conflicts (e.g., Python or Ubuntu version mis-
matches). Rather than juggling multiple virtual environments,
docker-compose launches every component with its spe-
cific software stack, thereby reducing maintenance time and
complexity. The next section zooms into the VLM interaction
as this requires additional explanation.

E. VLM Interaction: Prompt Engineering
The rapid advancements in Deep Learning, particularly the

transformer architecture [27] and the increasingly larger model
sizes [28], have enabled breakthrough applications in speech-
to-text (STT), text-to-speech (TTS), and natural language
processing combined with computer vision through vision-
language models (VLMs). A popular example is ChatGPT,
which uses a VLM to process both textual and visual in-
puts [29]. While these models can generate highly contextual
responses, they typically lack direct awareness of user focus
unless extensively prompted. Recently, researchers proposed
GazeGPT, which incorporates mobile eye-tracking to enhance
AI’s context-awareness by identifying where a user is look-
ing [30]. Building on their findings, integrating eye tracking
into a visio-verbal impedance system emerged as a natural
progression to attempt VLM driven teleimpedance control.

Vision-language models (VLMs) extend the capabilities
of large language models (LLMs) by incorporating image

7
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processing alongside textual input. Research on LLMs has
demonstrated that increasing model size leads to improved
performance [28]. A key discovery with these larger models
was their ability to perform few-shot learning, where instead
of fine-tuning a model for a specific task, researchers provide
a small set of example question-answer pairs alongside the
user’s prompt. This approach enables the model to generalize
the task and its corresponding labels more effectively than
fine-tuning on a dedicated dataset [31].

The introduction of VLMs naturally extended this few-
shot learning paradigm to multimodal tasks, where models
benefit from contextual examples in both text and vision-based
applications. Studies have shown that few-shot prompting
significantly improves VLM performance compared to zero-
shot prompting, in which the model is asked to complete
a task without prior examples [32]–[34]. This research sug-
gests a natural extension of few-shot learning in VLMs by
incorporating gaze-estimate images alongside a curated set
of labeled examples that define the corresponding stiffness
matrices. This approach leverages the few-shot paradigm to
enhance the model’s ability to infer appropriate impedance
configurations based on visual and contextual cues.

Figure 6 illustrates the structure of the prompt used for
communication with the vision-language model (VLM). The
prompt comprises three core components. First, the system
role defines the task by instructing the VLM to operate as a
specialized ”stiffness matrix generator.” This ensures the user’s
input is consistently interpreted in the context of stiffness
matrix updates rather than general dialogue. The term ”system
role” originates from deep learning terminology and can be
understood as the task description. These terms are used in-
terchangeably throughout the paper. Second, an optional few-
shot demonstration can be provided. This consists of a concise
set of example queries along with their corresponding outputs,
effectively acting as a ”lookup table” to guide and enhance the
model’s task-specific response capability by enabling it to infer
patterns from prior demonstrations. Finally, the conversation
history component maintains a record of the operator’s past
commands and contextual information, including snapshots
with gaze estimates. This ongoing history allows for iterative
refinement of the stiffness matrices, preventing the model from
resetting after each interaction and thus ensuring continuity
and consistency in impedance adjustments.

Additionally, the vision-language model’s (VLM) image-
processing detail level significantly influences system perfor-
mance, and two modes are available to balance accuracy and
responsiveness. The low-detail mode downscales images to
512× 512 pixels and allocates 85 tokens for their description.
This approach reduces computational overhead and acceler-
ates response time, though at the expense of finer-grained
feature detection. Conversely, the high-detail mode provides
more detailed image analysis by allocating additional tokens
(approximately 170 per image tile). This enhances the model’s
ability to accurately extract gaze-based visual features, but also
introduces increased latency and token consumption.

These prompt components collectively define how the VLM
processes gaze and verbal input to generate an appropriate
stiffness matrix, allowing for a trade-off between computa-
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Fig. 6. Illustration of the multi-part prompt, which consists of repurposing the
general VLM with a task-specific system role (blue), an optional conversation
primer containing examples of desired behavior for few-shot learning (green),
and an ongoing conversation history (yellow). Maintaining this conversation
history enables continuity in interactions and refinement of responses. Image
resolution is also highlighted which can be set to high or low depending on
the level of detail needed to perform the vision task.

tional efficiency and interpretability based on task require-
ments.

The next section discusses the experiments and their results.

III. EXPERIMENTS

To validate and optimize the proposed visio-verbal
teleimpedance interface, two experiments were conducted.
Experiment 1 involved prompt optimization to identify optimal
parameters for effectively prompting the proprietary vision-
language model (VLM), GPT-4o from OpenAI. [29] Parame-
ters included the complexity of the task description, ranging
from minimal instructions to elaborate context with explicit
stiffness matrix labels, the presence or absence of prior exam-
ples, and image detail levels, all significantly influencing the
VLM’s accuracy. Experiment 2 consisted of two parts: Experi-
ment 2a established a baseline by demonstrating the interface’s
functionality using only verbal commands, without gaze-based
inputs, while Experiment 2b tested the selected optimal prompt
configuration within the complete teleimpedance setup to
evaluate practical feasibility and real-time performance. Both
experiment 2a and 2b utilized the same 3D-printed groove
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Fig. 7. Groove structure detailing each section for which the impedance in-
terface predicts stiffness configurations. The two-dimensional ellipses indicate
the desired stiffness shapes and orientations for each groove section in the x-y
plane. Because stiffness configurations are three-dimensional, these ellipses
provide only partial representations, excluding the z-axis component. For a
complete visualization of the 3D stiffness configurations, ellipsoids are used,
as illustrated in Figure 8. All corresponding 3D stiffness ellipsoids for each
groove section are detailed in Appendix H.

structure to systematically assess how effectively the interface
could generate and adjust impedance parameters in a realistic
slide-in-the-groove teleoperation scenario.

A. Motivation: The Slide-in-the-Groove Task

Consider the groove structure illustrated in Figure 7, de-
signed specifically to evaluate variable impedance control
capabilities of the proposed interface. Throughout the task,
impedance properties must be dynamically adapted to the
groove’s distinct sections. At the groove’s entrance, the robot
arm is carefully lowered and aligned without exerting exces-
sive force. This gentle alignment is facilitated by setting a
low and equal stiffness in the x and y directions, allowing
the peg to naturally self-align within the horizontal plane,
while assigning a high stiffness in the z direction to maintain
precise vertical position tracking. Once fully inserted into the
groove, stiffness in the forward direction is increased to ensure
accurate tracking of the reference trajectory, whereas stiffness
in the lateral directions remains low to allow compliance with
groove walls. This configuration prevents excessive normal
forces, reducing risks of jamming or structural damage. An
example of the full 3D stiffness configuration, depicted as a
3D stiffness ellipsoid for traversal along the y-direction, is
provided in Figure 8. Appendix B-B provides the derivation
of the ellipsoid, along with the corresponding ellipsoids for
all other stages of the groove structure, and includes their
respective plots.

This explanation illustrates why variable stiffness control
is essential for effectively traversing the groove structure
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Stiffness Ellipsoid

Fig. 8. An example of a stiffness ellipsoid derived from a VLM-generated
stiffness matrix, providing a graphical representation of the robot’s endpoint
translational stiffness. Larger radii correspond to higher stiffness, while
smaller radii indicate lower stiffness. This particular ellipsoid represents an
endpoint stiffness matrix of diag(100, , 250, , 100), corresponding to a groove
aligned with the y-axis, along which the robot endpoint moves. Stiffness is
highest along the y-axis (elongated shape), ensuring good position tracking in
that direction, while lower stiffness along the x- and z-axes (narrower shape)
minimizes high unwanted interaction forces with the groove to minimize
friction and to prevent potential damage.

and successfully completing the slide-in-the-groove task. The
primary evaluation criterion for the feasibility of the pro-
posed visio-verbal impedance interface is the capability of the
impedance interface to generate stiffness matrices matching
those illustrated in Figure 7 for each specific section of the
groove structure.

B. Experiment 1: Prompt Optimization

As discussed in Section II-E, the way the VLM is prompted
significantly influences the quality of its outputs. To ensure
optimal performance, we conduct a parameter optimization
experiment to identify the most effective combination of
prompt parameters, including the task description, example
demonstrations, and image detail.

The experiment aimed to identify the optimal combination
of parameters for generating accurate stiffness matrices. Three
distinct system roles were tested, each progressively includ-
ing more information. First, a minimal task description was
provided, offering only basic context. Second, an elaborate
task description was tested, adding extra details to clarify the
task. Finally, the third approach combined the elaborate task
description with explicit labels, presenting example stiffness
matrices to further guide the model. The complete descriptions
of these roles can be found in Appendix F.

Beyond the system roles, another critical factor evaluated
was the inclusion of a prior message list containing ex-
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ample prompts and corresponding desired stiffness matrices.
As discussed in Section II-E, large language models are
inherently few-shot learners and typically demonstrate im-
proved performance when provided with representative task
examples. [31] Thus, the experiment investigated whether
this principle also applies to a vision-language model tasked
with generating accurate stiffness matrices in a teleimpedance
context. Three conditions were tested. The first condition
excluded a prior message list, meaning the model operated
without any examples. The second condition incorporated a
prior list derived from an ideal environment to examine the
impact of environmental variability on model performance.
The third condition used a prior list from the lab environment
to determine whether familiarity with the specific operational
context improved stiffness matrix accuracy.

Lastly, the image detail was adjusted between low and high
settings to assess its impact on performance. The low-detail
mode resulted in faster model responses, while the high-detail
mode allowed the extraction of finer image features at the cost
of increased computational demand and processing time, as
detailed in Section II-E. Combining the three task description
variants, three prior message list conditions, and two image
detail levels resulted in 18 parameter combinations, systemat-
ically evaluated to determine their effect on the accuracy of
the generated stiffness matrices.

Since the groove structure consists of four distinct stages,
each parameter combination required four predictions, one per
stage, to evaluate its performance throughout the groove struc-
ture. However, as discussed in Section II-E, vision-language
models exhibit stochastic behavior, meaning that repeated runs
with identical inputs may yield different outputs. To account
for this variability, each combination was tested five times per
stage.

Performance was quantified using an accuracy metric.
Even minor deviations from the correct stiffness configuration
would necessitate corrective intervention from the operator via
additional voice commands, making numerical proximity less
relevant. Subsequently, to establish statistical significance, a
95% confidence interval analysis identified the top-performing
combinations. Those combinations whose confidence intervals
overlapped with the most accurate configuration underwent
a second evaluation, comprising 20 predictions per stage.
This expanded evaluation narrowed the confidence intervals,
thereby enhancing the statistical robustness and reliability of
the experimental results.

1) Prompt Optimization - Results: Figure 9 illustrates the
confidence intervals for all 18 tested parameter combinations.
Each combination was evaluated across four test images, cor-
responding to the four groove structure stages, with five trials
per image, resulting in a total of 20 trials per combination.
The accuracy results show variability across different configu-
rations. While the highest-performing combination cannot be
statistically distinguished from several others at a 95% confi-
dence level (p-value = 0.05), 10 of the 18 combinations exhibit
significantly lower accuracy and fall outside the confidence
interval of the top-performing configuration, highlighted in
red in Figure 9. These lower-performing combinations were
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Fig. 9. Confidence intervals of accuracy for the 18 tested prompt config-
urations. Each interval represents a specific parameter combination, with
system role, prior, and image detail indicated above the corresponding
interval. The red configuration highlights the best-performing combination.
All configurations that fall within the red interval, as indicated by the red
dotted line, were selected for further evaluation to establish a more statistically
significant distinction between them.

excluded from further evaluation, narrowing the selection to
the top eight statistically competitive configurations.

In the second evaluation, the eight best-performing parame-
ter combinations were further tested by predicting the stiffness
matrix for each groove stage 20 times. The resulting rankings
are presented in Table I. The last column of the table presents
accuracy scores excluding the slant stage, as all combinations
performed poorly on this segment. This is particularly relevant,
as discussed in Section IV, where we examine this result
in greater depth. We propose a hypothesis to explain the
poor performance on the slant, evaluate supporting evidence
for its validity, and discuss its implications for assessing the
feasibility of the proposed impedance interface.

At the conclusion of this experiment, we determined the
optimal prompt configuration: an elaborate task description
with labeled examples for the system role, high-detail image
processing, and the inclusion of lab-based exemplars as a
primer. This refined configuration was then applied in the
second phase of experimentation, where the interface was
tested in a real-time teleimpedance setup.

C. Experient 2: Demonstration of the Visio-Verbal
Teleimpedance Interface

After determining the optimal prompt configuration, it was
integrated into the visio-verbal teleimpedance interface. Before
demonstrating the full setup with this integration, an initial
baseline experiment was conducted using a verbal-only in-
terface, temporarily excluding the eye tracker. This speech-
only demonstration served as both a minimal working example
and a baseline for comparison while also showcasing the
modularity of the interface, which allows seamless transitions
between visio-verbal and verbal-only modes.

1) Verbal-only Impedance Interface: In this configuration,
the operator interacts with the system exclusively through
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Role Prior Detail Entrance Y-traverse X-traverse Slant Overall Accuracy Overall Accuracy (No Slant)
role3 lab high 1.00 ± 0.00 0.93 ± 0.06 1.00 ± 0.00 0.00 ± 0.00 0.73 ± 0.06 0.98 ± 0.02
role1 lab high 1.00 ± 0.00 0.67 ± 0.12 0.93 ± 0.06 0.13 ± 0.09 0.68 ± 0.06 0.87 ± 0.05
role2 lab high 0.93 ± 0.06 0.67 ± 0.12 1.00 ± 0.00 0.07 ± 0.06 0.67 ± 0.06 0.87 ± 0.05
role3 ideal high 0.93 ± 0.06 0.67 ± 0.12 0.93 ± 0.06 0.00 ± 0.00 0.63 ± 0.06 0.84 ± 0.05
role1 lab low 1.00 ± 0.00 0.27 ± 0.11 1.00 ± 0.00 0.00 ± 0.00 0.57 ± 0.06 0.76 ± 0.06
role2 lab low 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.06 0.67 ± 0.07
role3 lab low 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.06 0.67 ± 0.07
role1 ideal high 0.73 ± 0.11 0.40 ± 0.13 0.60 ± 0.13 0.00 ± 0.00 0.43 ± 0.06 0.58 ± 0.07

TABLE I
SECONDARY EVALUATION OF THE 8 BEST-PERFORMING PARAMETER COMBINATIONS. THE VALUES REPRESENT ACCURACY WITH STANDARD

DEVIATIONS (MEAN ± STD, ROUNDED TO TWO DECIMALS). ACCURACY FOR EACH INDIVIDUAL SECTION IS CALCULATED OVER 20 TRIALS, WHILE THE
OVERALL ACCURACY IS DETERMINED FROM ALL 80 TRIALS COMBINED. THE LAST COLUMN REPORTS OVERALL ACCURACY EXCLUDING THE SLANT

SECTION, THEREFORE BASED ON 60 TRIALS.

voice commands, without providing gaze snapshots. Without
visual input, the operator must provide more detailed verbal
instructions, explicitly specifying the groove section or ori-
entation that would otherwise be inferred from the image.
The model infers the appropriate stiffness matrix based on
a custom system role designed for the VLM, which provides
a structured task description with predefined section labels to
guide its predictions. For example, a label such as ”A groove
along the X-axis” corresponds to the diagonal stiffness matrix

K =

250 0 0
0 100 0
0 0 100

 (1)

The user can leverage this structure by stating, for instance,
”I need the stiffness matrix for a groove along the X-axis.”

Since no images are involved in this setup, it did not include
an image list prior or a detail parameter. This demonstration
validates the interface’s functionality without visual input,
highlighting its adaptability by relying solely on explicit user-
defined axis and stage names instead of gaze-based visual
context.

2) Verbal-only Impedance Interface - Results: The results
of this experiment are presented in Figure 10. The top section
of the figure illustrates the groove structure, highlighting
the specific section for which the interface must predict the
stiffness matrix. Beginning at the entrance stage, the operator
issues a voice command such as, ”Please provide the stiffness
matrix for the entrance.” In response, the interface sets the
stiffness to be high along the z-axis at 250 N/m while main-
taining compliance in the x- and y-axes with a stiffness of 100
N/m. Using similar voice commands, the operator sequentially
specifies the stiffness matrix for subsequent stages, progressing
through the y-path, x-path, and slanted section.

The bottom plot of Figure 10 confirms that the impedance
was adjusted correctly for each section of the groove structure,
demonstrating the system’s ability to apply task-specific stiff-
ness values as instructed. The second plot from the bottom
indicates that the highest interaction force recorded during
the task was approximately 10 N, which is well within the
acceptable range for this application [22].

The top two plots depict the reference position and the
measured position. Discrepancies between these plots typically
occur when the reference position lies within the groove struc-
ture’s wall, preventing the peg from reaching it. In such cases,
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Fig. 10. Variable impedance control for the audio only setup through the
groove structure, including entrance, ytraverse1, xtraverse and the slant.

the interaction force between the peg and the wall increases.
However, with the appropriate stiffness matrix applied, these
forces remain within the acceptable threshold of 10 N.

3) Visio-verbal Impedance Interface: Following the suc-
cessful demonstration of the verbal impedance interface in
the previous section, the next step is to integrate the optimal
parameters identified in Experiment 1, as described in Section
III-B, and evaluate the visio-verbal impedance interface. In this
setup, the operator’s gaze estimate, overlaid on a remote scene
snapshot, is incorporated into the VLM prompt to provide
stiffness matrix prediction. The operator selects a section of the
groove structure by directing their gaze and capturing a snap-
shot. They then issue a stiffness update request (e.g., “Please
provide the stiffness for this part of the groove structure”),
enabling the VLM to utilize both the voice transcription and
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the remote scene snapshot with the gaze estimate to generate
the corresponding stiffness matrix.

During the demonstration, the operator traverses from the
entrance stage through the y-path, concluding at the x-path.
The slanted section is excluded due to the suboptimal perfor-
mance of the optimal configuration in this region, as indicated
in Table I. Further discussion on this limitation is provided
in Section IV. Upon reaching the x-path, the demonstration
highlights the memory capabilities of the interface by guiding
the operator back through the groove structure along the same
path. Without capturing additional snapshots, the operator
retrieves previously generated stiffness matrices and applies
them to the robot using commands such as, ”I would like
to move back through the groove structure, please apply the
previous stiffness matrix.”

4) Visio-verbal Impedance Interface - Results: Figure 11
presents the results of the visio-verbal impedance interface
demonstration. Similar to the verbal-only experiment, the top
section of the figure highlights the selected sections of the
groove structure as the operator progresses from the entrance
to the x-path and back. Below this, the issued prompts are
displayed, where the first three prompts include gaze images,
while the last two exclude them to emphasize the system’s
memory capability.

The bottom plot of the figure shows a symmetric stiffness
progression, which already suggests a desirable outcome, as
the operator follows the same path in both directions. Notably,
the last two stiffness adjustments, made while leveraging
the system’s memory, correctly matched the previously set
stiffness values, demonstrating the interface’s ability to recall
and reapply prior settings without requiring additional visual
input.

The lowest plot in the figure represents the stiffness settings
applied to the robot during the demonstration. Initially, the
system sets a high stiffness of 250 N/m along the z-axis while
maintaining low stiffness (100 N/m) in the x- and y-directions.
This configuration is ideal for the entrance stage, where the
operator needs to lower the peg into the groove, requiring pre-
cise position tracking in the z-direction. As the operator moves
along the y-path, the system adjusts to prioritize stiffness along
the y-axis to ensure stable movement while maintaining com-
pliance in the other directions. Similarly, upon reaching the
x-path, the system shifts its primary stiffness direction to the x-
axis. When retracing the path, the system correctly restores the
previously applied stiffness settings, ensuring smooth traversal
back through the y-path and ultimately increasing stiffness in
the z-axis again to facilitate the peg’s exit from the groove.

Additionally, the interaction forces remain below 10 N,
which falls within the acceptable range for this task [22]. The
close alignment between the reference and measured positions
further supports this result, indicating that the reference posi-
tion remained outside the groove walls for most of the task,
minimizing unintended contact forces.

The next section analyzes the results presented here, exam-
ining the interface’s contributions, strengths, and limitations
in the context of existing teleimpedance interfaces.
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Operator: Can you help
me determine the
stiffness matrix of this
part of the groove?
Interface: The red circle
appears to mark the
entrance. To move in or
out of that we want to
move in a direction
normal to the table, so
we want high stiffness in
z direction and low in
others to avoid
damaging the groove. 

Operator: I need the
stiffness matrix for this
next area of the groove.

Interface: The red circle
indicates a groove
primarily running along
the Y-axis.
Assumptions:
1. High stiffness aligned
with Y.
2. X and Z remain at
100 N/m.

Operator: Would you
help me find the right
stiffness for this groove
section?

Operator: I would now
like to move back through
the structure. Give me the
previous stiffness.

Interface: Sure, here is
the previous stiffness
matrix for the groove
section primarily running
along the Y-axis.

Operator: Now give
me the first stiffness
matrix.

Interface: Certainly,
here is the first
stiffness matrix for the
entrance at the
bottom.

Interface: Here, the red
circle indicates a groove
oriented along the X-
axis.
Assumptions:
1. High stiffness along
X.
2. Y and Z remain at
100 N/m.

Text

Fig. 11. Variable impedance control through the groove structure, including
entrance, ytraverse1 and xtraverse

IV. DISCUSSION

This section provides an in-depth analysis of the results
presented in the previous section, beginning with the prompt
optimization experiment, focusing on, but not limited to, the
best-performing combination of prompt parameters. It then
examines the performance of the verbal-only impedance inter-
face, assessing its effectiveness and limitations in the absence
of visual input. Finally, the discussion focuses on the full visio-
verbal impedance interface, analyzing its ability to integrate
gaze-based context and memory recall in stiffness prediction
for the slide-in-the-groove task.

Key aspects explored in this section include the implications
of stiffness matrix accuracy, the effectiveness of gaze input in
reducing verbal instruction complexity, and the role of memory
in enhancing task continuity. Additionally, potential sources of
error, system limitations, and areas for further optimization are
discussed.

A. Prompt Optimization

The results in table I indicate that the top four configurations
all utilize high image detail. This suggests that the VLM
performs better with the high-detail setting, as described
in Section II-E. Next, table I also shows that the best 3
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Fig. 12. Plot of the trials of the best-performing prompt configuration: Role
3, lab prior, and high image detail. This combination achieved near-perfect
accuracy, with only one error across 45 trials spanning the entrance, y-path,
and x-path sections.

performing combinations utilize the lab prior in which the
examples contain images made with the lab setup on which
the prompt combinations were also tested. This indicates that
one can get a performance boost by making sure that the prior
message list contains image examples that are very similar
to the images on which the model needs to perform the
task. Although the ideal prior message list contains images
with better lighting the fact that it was different from the
test images caused it to perform worse. Finally there is a
significant difference between role 3 with respect to role 1
and 2 emphasizing the importance of including a list of labels
in the task description of the VLM when subjecting it to this
task. This list of class labels including the 4 different stages of
the groove structure is therefore considered as a performance
booster. Figure 12 illustrates the performance of the best-
performing configuration, which utilizes Role 3 as the VLM’s
task description, the lab prior message list, and high image
detail. The figure demonstrates near-perfect accuracy across
the first three stages of the groove structure. However, like
most other configurations (as detailed in Appendix D), it fails
entirely in the slant section, achieving 0

Examining this behavior further, it was observed that for
the best-performing combination, Role 3, lab prior, and high
image detail, the VLM consistently predicted the stiffness
matrix corresponding to the y-path in 100% of trials. A visual
inspection of the prior message list images, as shown in
Appendix E, reveals a likely cause for this outcome. The
camera angle, determined by the endpoint-mounted camera,
captures the groove structure from a nearly top-down perspec-
tive. Figure 13 provides an example of how the slant section
appears from this viewpoint.

To validate the hypothesis that the camera angle contributed
to the poor accuracy for the slant section, the best-performing
combination was retested using the slant image from the ideal
setup. While this angle still lacks optimal height perspective,
as shown in Figure 14, it significantly improved accuracy
to 66.66%, supporting the hypothesis that the camera angle
affected the model’s ability to recognize the slant.

Fig. 13. Image of the slant section captured by the robot’s endpoint-mounted
camera, illustrating the top-down camera angle. This perspective limits depth
cues, making it difficult for the VLM to distinguish the slant from the y path.

B. Visio-verbal Impedance Interface

The results of the verbal-only impedance interface exper-
iment demonstrate that the system effectively applies task-
specific stiffness values based solely on spoken commands.
The successful impedance adjustments at each stage of the
groove structure, as shown in Figure 10, indicate that the
interface can operate without gaze-based input while still
generating appropriate stiffness matrices.

The interaction forces remained within acceptable limits,
with a peak force of approximately 10 N, confirming that the
selected stiffness configurations allowed for smooth traversal
through the groove structure. The minimal force deviations
observed suggest that the interface provided sufficient compli-
ance to prevent excessive interaction forces.

Despite these positive results, the verbal-only approach has
certain limitations. The operator must explicitly specify the
groove section or its orientation for each command, adding
cognitive load compared to the visio-verbal interface, where
gaze input inherently provides this contextual information.
This eliminates the need for verbal orientation descriptions,
making interactions more fluid. Additionally, while the system
accurately predicted stiffness values for all sections, the lack
of visual cues may hinder adaptability in more complex or
dynamic environments where the operator may struggle to ac-
curately judge the groove orientation. These findings confirm
the verbal-only interface as a viable fallback option while
underscoring the advantages of integrating gaze input for a
more intuitive and efficient teleimpedance control experience.

The results of the visio-verbal impedance interface demon-
stration highlight the benefits of integrating gaze-based input
with verbal commands for teleimpedance control. Compared
to the verbal-only interface, the visio-verbal system reduces
cognitive load specifically for providing context regarding
the groove orientation by allowing the operator to specify
stiffness adjustments more intuitively through gaze, without
the need for explicit section naming or orientation naming. The
ability to leverage gaze images provides additional contextual
information, enabling the model to infer the correct stiffness
configuration more efficiently without verbal help from the
operator.

Another key strength of the interface is its memory capa-
bility, as demonstrated in the last two stiffness adjustments,
where previously set values were recalled and applied without
requiring new gaze inputs. This feature streamlines interaction

13



13

Fig. 14. Image of the slant section captured from a more favorable camera
angle. This perspective enhances depth cues, improving the VLM’s ability to
differentiate the slant from the y-path.

by reducing redundant commands, allowing for a more fluid
and efficient teleoperation experience. The symmetric stiffness
progression shown in Figure 11 further validates the system’s
consistency, as stiffness settings were correctly restored when
retracing the path. Additionally, the return path was completed
in less time than the initial traversal, indicating improved
efficiency and adaptability in repeated operations.

Additionally, the interface maintained interaction forces
below 10 N, ensuring safe and stable operation throughout
the task. The close match between reference and measured
positions suggests that the system successfully adjusted stiff-
ness to avoid unintended contact forces while maintaining
trajectory accuracy. These results confirm that the visio-verbal
impedance interface offers an effective and intuitive solution
for on-demand teleimpedance control, improving both usabil-
ity and task efficiency compared to a speech-only approach.

Both experiments validate that carefully designed prompts
enable the proprietary VLM to generate appropriate stiffness
matrices for the slide-in-the-groove task. Experiment 1 identi-
fied an effective prompt configuration, while Experiment 2
evaluated the interface’s practical performance in real-time
teleimpedance control. Together, these findings demonstrate
that the visio-verbal interface can dynamically generate adap-
tive stiffness configurations in response to user commands and
visual input, addressing the need for intuitive interaction in
unstructured robotic environments.

Revisiting the requirements outlined in Section II, which ad-
dress gaps in current teleimpedance interfaces, the results con-
firm that the visio-verbal teleimpedance interface successfully
meets all specified criteria, demonstrating its feasibility. By
fulfilling these requirements, the interface also establishes its
relevance within the broader context of existing teleimpedance
research.

C. Limitations

The most evident limitation is the interface’s poor per-
formance on the slant section of the groove structure. As
previously discussed, this issue is likely due to the top-down
camera view, which lacks the necessary visual cues for height

perception. However, further testing with the ideal setup image
demonstrated that a more favorable camera angle significantly
improves performance. This suggests that, given sufficient
visual cues, the interface could achieve accuracy comparable
to that of other sections.

Another key limitation of this study is the reliance on a mo-
bile eye tracker, which requires additional image-processing
steps to isolate the display screen from its surroundings.
While an automatic cropping function was implemented to
mitigate this issue, its performance was inconsistent. In some
instances, it successfully captured the 3D-printed structure and
gaze estimate, while in others, it excluded both entirely. The
final iteration of the interface therefore excluded the cropping
functionality and used the uncropped images as taken by the
eye trackers.

Additionally, streaming was not incorporated into the
pipeline. Although the VLM generates responses as a stream
of words, each word could theoretically be sent directly to
the text-to-speech algorithm upon arrival. However, given
the brevity of the verbal notifications, this approach is un-
likely to significantly reduce response time. Consequently,
investing substantial effort in implementing streaming is not
recommended. While streaming can enhance response time
in systems that generate long textual outputs, it was deemed
unnecessary for this teleimpedance interface. The VLM was
explicitly prompted to produce concise responses, consisting
mainly of a stiffness matrix (filtered out before speech syn-
thesis) and a short confirmation message. Since the text-to-
speech system processes only a brief, predefined phrase rather
than a long, dynamically generated response, the benefits of
streaming would be negligible.

Finally, the interface does not account for adaptive rota-
tional stiffness. The slide-in-the-groove task primarily relies
on translational compliance to ensure smooth insertion and
movement along the constrained path, with no peg rotations
required. By maintaining a fixed rotational stiffness, the system
simplifies computation and interaction, allowing full focus on
translational adjustments. However, in tasks involving rota-
tional movements, extending the interface to accommodate
rotational stiffness adjustments would be a necessary step for
broader applicability.

The next section outlines the key findings, explores the
broader impact of this research, and proposes directions for
future work.

V. CONCLUSION

The visio-verbal teleimpedance command interface pre-
sented in this study advances the field of teleimpedance by
introducing an intuitive, shared-control paradigm that balances
automation with human intent. By integrating gaze and speech
as natural input modalities, the interface allows operators to
adjust 3D translational stiffness in real-time without diverting
visual attention from the teleoperation task. This hands-free
control method reduces cognitive load and eliminates the
need for additional physical input devices, making stiffness
modulation more seamless and accessible.

The experiments validate the feasibility of this approach.
The system was capable of generating task-appropriate stiff-
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ness matrices with high accuracy, demonstrating its effective-
ness in an experimental slide-in-the-groove task. Conversation
history management further improved usability by enabling
iterative refinement and memory-based stiffness adjustments,
reducing the need for redundant commands. Additionally, the
interface maintained stable interaction forces within acceptable
limits, reinforcing its suitability for real-world teleoperation
scenarios.

The interface was validated through a 3D test groove
structure, demonstrating its functionality and robustness in a
realistic teleoperation scenario. This successful demonstration
highlights the potential of combining visio-verbal interaction
with teleimpedance control for intuitive and task-specific robot
command.

While the interface performs well across most groove sec-
tions, challenges remain in recognizing slanted surfaces due to
limitations in depth perception from the current camera setup.
Future research should focus on optimizing camera placement
or integrating depth-sensing technologies to address these
limitations. Moreover, further studies should compare this
interface against traditional teleimpedance methods through
systematic user evaluations to assess its practical advantages
in real-world applications.

Beyond teleimpedance, this approach could have broader
implications in human-robot collaboration, particularly in sce-
narios requiring precise stiffness adaptation, such as robotic
assembly, minimally invasive surgery, or remote maintenance
tasks. By leveraging vision-language models and multimodal
inputs, this interface represents a step toward more adaptive,
user-friendly robotic impedance control systems.

A. Future Work

As just mentioned, future research should focus on opti-
mizing camera placement to enhance depth perception and
improve the interface’s performance on slanted surfaces. Ex-
ploring alternative camera mounting positions or integrating
depth-sensing technology could provide the VLM with richer
visual cues, addressing the limitations observed in the top-
down perspective.

Additionally, systematic user studies should be conducted to
assess the interface’s ability to configure 3D stiffness during
teleoperation compared to previously proposed methods. Such
studies will offer valuable insights into its usability, effec-
tiveness, and potential impact in real-world telerobotics ap-
plications. Further research could also extend the visio-verbal
interface to adaptive control of rotational stiffness, expanding
its capabilities beyond translational impedance regulation.

Rather than refining the preprocessing steps for cropping
images from the mobile eye tracker, a more effective solution
would be to utilize a static eye tracker, eliminating the need
for extensive cropping and minimizing potential errors.

Finally, future work could explore the integration of stream-
ing in scenarios where real-time feedback is more critical or
where VLM-generated responses are more extensive, ensuring
faster and more responsive system interactions.
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APPENDIX B
DETAILED MATHEMATICAL FOUNDATIONS

TELEIMPEDANCE

This appendix provides an extensive mathematical expla-
nation of how the stiffness ellipsoid is constructed, how it
influences endpoint impedance, and how it ultimately relates
to the joint-level dynamics of the robot. The derivations here
offer a rigorous foundation, allowing the main text to remain
focused on higher-level system design and implementation
details.

A. Endpoint Stiffness and Hooke’s Law

In robotic interaction tasks, the relationship between the
applied force and the displacement at the robot’s endpoint can
be modeled using an extension of Hooke’s law:

F = Kx,

where:
• F ∈ R3 is the force vector acting on the end-effector,
• K ∈ R3×3 is the translational stiffness matrix,
• x ∈ R3 is the displacement from the desired equilibrium

position.
In our teleimpedance framework, K is controlled by the pro-

posed visio-verbal interface, ensuring that the robot’s endpoint
stiffness is dynamically adjustable based on operator inputs
(gaze and speech).

B. Representing K as a Stiffness Ellipsoid

1) Eigenvalue Decomposition of K: Since K is assumed to
be symmetric and positive semi-definite, it can be diagonalized
via eigenvalue decomposition:

K = QΛQT ,

where:
• Λ = diag(λ1, λ2, λ3) contains the eigenvalues of K.
• Q ∈ R3×3 is an orthogonal matrix whose columns are

the normalized eigenvectors {q1,q2,q3}.
Each eigenvalue λi is non-negative (since K is positive semi-
definite) and corresponds to a principal stiffness direction. The
eigenvectors qi give the orientation of these principal axes in
the robot’s Cartesian space.

2) Ellipsoid Definition: A stiffness ellipsoid is defined
implicitly by: {

x ∈ R3 | xTKx = 1
}
.

Substituting K = QΛQT yields:

xTQΛQTx = 1 ⇐⇒
3∑

i=1

λi (q
T
i x)

2 = 1.

Hence, the ellipsoid’s principal axes align with the eigen-
vectors qi, and the axis lengths are inversely proportional to√
λi. Thus, larger λi indicates stiffer behavior along that axis,

yielding a shorter ellipsoid radius in that direction.

C. Connection to the Robot’s Impedance Controller

In Cartesian space, the robot’s impedance controller regu-
lates the endpoint force F using:

F = Krobot(xd − xa) +D
(
ẋd − ẋa

)
,

where:
• xa, ẋa denote the actual pose and velocity of the end-

effector,
• xd, ẋd denote the desired (reference) pose and velocity,
• Krobot ∈ R6×6 is the complete stiffness matrix (including

both translational and rotational components),
• D ∈ R6 (or R6×6, depending on notation) represents the

damping.
In our design, we assume Krotation (the rotational compo-

nent) is fixed, leaving Ktranslational ∈ R3×3 subject to real-time
updates from the visio-verbal interface. This approach suits
tasks like slide-in-the-groove, where adapting translational
stiffness alone proves sufficient for improved performance.

D. Joint-Level Dynamics and Robot Control

While the impedance controller operates in Cartesian space,
the underlying robot dynamics are governed in joint space. Let
q ∈ Rn denote the joint angles (with n typically 6 or 7 for
a manipulator), then the robot’s equation of motion can be
written as:

M(q) q̈+C(q, q̇) q̇+ g(q) + JT (q)F = τ ,

where:
• M(q) is the joint-space mass (inertia) matrix,
• C(q, q̇) captures Coriolis and centrifugal effects,
• g(q) is the gravity torque,
• J(q) is the Jacobian mapping joint velocities to Cartesian

velocities,
• F ∈ R6 includes the interaction force/torque at the end-

effector,
• τ ∈ Rn is the vector of joint torques.

Here, F comprises both the task-related forces Ftask and the
impedance forces Fimp, ensuring that the end-effector behavior
aligns with the stiffness parameters set by the visio-verbal
interface.

E. Concluding Remarks

By unifying the stiffness ellipsoid representation in Carte-
sian space with joint-space dynamics, this framework offers a
powerful and intuitive approach to teleimpedance. The visio-
verbal interface dynamically updates Ktranslational, ensuring the
robot’s endpoint compliance is continually optimized for the
given task—e.g., slide-in-the-groove—without burdening the
operator with complex calibration or additional hardware.
Eigenvalue decomposition simplifies stiffness visualization,
while the underlying Cartesian impedance controller and joint-
level equations ensure stable, precise motion execution.
Note: This appendix summarizes the mathematical underpin-
nings. See Section II for a practical discussion on visualizing
stiffness ellipsoids within our teleimpedance framework.
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APPENDIX C
STIFFNESS MATRIX DECOMPOSITIONS FOR THE GROOVE

STRUCTURE

This appendix provides detailed eigenvalue decompositions
for the stiffness matrices used in different sections of the
groove structure (Figure 7 in the main text). Each decomposi-
tion illustrates how the matrix’s principal axes (eigenvectors)
and principal stiffnesses (eigenvalues) define the shape and
orientation of the corresponding stiffness ellipsoid.

A. Entrance
The stiffness matrix for the entrance is the diagonal matrix:

Kentrance =

100 0 0
0 100 0
0 0 250

 .

1) Eigenvalue Decomposition: Since Kentrance is already
diagonal:

Λ =

100 0 0
0 100 0
0 0 250

 , Q =

1 0 0
0 1 0
0 0 1

 .

The principal axes align with the coordinate axes, but the z-
axis is stiffer at 250 N/m, leading to an “elongated” shape
along z.

2) Ellipsoid Plot: At the entrance, the stiffness ellipsoid is
elongated along z as presented in figure 16:
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Fig. 16. Stiffness ellipsoid for the entrance, with K = diag(100, 100, 250).

B. y path
The groove section right after the entrance is oriented

along the y-axis, and therefore requires higher stiffnes in that
direction with stiffness matrix matrix:

Ky-path =

100 0 0
0 250 0
0 0 100

 .

1) Eigenvalue Decomposition: Again, Ky-path is diagonal:

Λ =

100 0 0
0 250 0
0 0 100

 , Q = I3×3.

The principal axes align with the coordinate axes, but the y-
axis is stiffer at 250, leading to an “elongated” shape along
y.

2) Ellipsoid Plot: Figure 17 shows the ellipsoid, which is
elongated in the y direction compared to the x and z directions.
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Fig. 17. Stiffness ellipsoid for the y-path, diag(100, 250, 100).

C. x-path

This matrix is a 90◦ rotated version of the y-path:

Kx-path =

250 0 0
0 100 0
0 0 100

 .

Again, diagonal but now with a higher eigenvalue of 250 N/m
on the x axis.

1) Eigenvalue Decomposition:

Λ =

250 0 0
0 100 0
0 0 100

 , Q = I3×3.

Higher stiffness occurs along the x axis.
2) Ellipsoid Plot: The ellipsoid for x-path elongates along

x relative to the y and z axes. Figure 18 illustrates its shape.
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Fig. 18. Stiffness ellipsoid for the x-traverse, diag(250, 100, 100).

D. Slant

The “slant” section is more complex due to off-diagonal
terms:

Kslant =

100 0 0
0 175 −75
0 −75 175

 .

Here, x remains decoupled with 100 N/m , but y and z are
coupled via off-diagonal elements of −75 N/m.

1) Eigenvalue Decomposition: Let

Kslant =

100 0 0
0 175 −75
0 −75 175

 .

It can be shown that the eigenvalues are [100, 100, 250], and
the eigenvectors are rotated relative to the y-z axes with 45
degrees.

Denoting Λslant = diag(100, 100, 250) and Qslant ∈ R3×3

as the matrix of orthonormal eigenvectors, we have:

Kslant = Qslant Λslant Q
T
slant.

The eigenvectors reflect a rotation in the y-z plane due to the
off-diagonal −75 terms.

2) Ellipsoid Plot: Figure 19depicts the ellipsoid after ap-
plying the rotation Qslant. Notably, two axes share the same
stiffness (100) but are rotated relative to the global axes, while
one axis has a higher stiffness (250).
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Fig. 19. Stiffness ellipsoid for the slant region, illustrating a rotation in the
y-z plane.

E. Summary of Matrix Groupings

Table II summarizes each matrix and its key eigenvalue
characteristics:

TABLE II
SUMMARY OF GROOVE STIFFNESS MATRICES AND PRINCIPAL

EIGENVALUES

Location Stiffness Matrix Eigenvalues Diagonal/Off-Diagonal?
Entrance diag(100, 100, 250) (100, 100, 250) Diagonal
Y-path diag(100, 250, 100) (100, 250, 100) Diagonal
X-path diag(250, 100, 100) (250, 100, 100) Diagonal

Slant

100 0 0
0 175 −75
0 −75 175

 (100, 250, 100) Off-Diagonal in y-z

This grouping reflects that the system has distinct “modes” of
stiffness (elongated in x, y, or z or along a direction 45 degrees
rotated within the y-z plane), each corresponding to a specific
region of the groove structure. The visio-verbal impedance
interface allows the operator to seamlessly switch between
these configuration using voice and gaze.

In this appendix, we have carried out explicit eigenvalue
decompositions for each stiffness matrix used within the
groove structure. By plotting the corresponding ellipsoids
during teleoperation, operators are able to quickly check the
current stiffness configuration using these visualizations. This
appendix also provides the reader with this visual understand-
ing of the stiffness matrices for the sections in the groove
structure.

APPENDIX D
PROMPT OPTIMIZATION - EXPERIMENT DETAILS

This appendix gives additional results from the prompt
engineering experiment.
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Fig. 20. Trial count distribution for Role 1 under different prior conditions
and resolution settings.
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Fig. 21. Trial count distribution for Role 2 under different prior conditions
and resolution settings.
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Fig. 22. Trial count distribution for Role 3 under different prior conditions
and resolution settings.

APPENDIX E
PRIOR MESSAGE LIST IMAGES

Figure 23 presents the ideal and lab setup data and the test
data that were used to aquire the results based on the first
experiment described in section III.

Ideal Setup Lab Setup Test Set

Fig. 23. Listing of images used in different experimental conditions. The
first column represents images captured in the ideal setup for few shot
prompting, the second column represents images from the lab setup used
for few shot prompting, and the third column contains the test set images
used for evaluation of the different prompt combinations.

APPENDIX F
TASK DESCRIPTIONS

This appendix presents the task descriptions (also knows as
system roles in the deep learning field) used in the experiment.
Each role builds upon the previous one, progressively adding
more context and structured guidance to the vision-language
model (VLM) for generating the stiffness matrix.

A. Role 1

System Role Content: You are able to analyze and process
images. You are an interface designed to determine the stiff-
ness matrix. Unless instructed otherwise, the only output you
should provide is a 3 by 3 stiffness matrix formatted using
the structure below **without any extra text or comments**
between the header and the matrix.
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Stiffness Matrix Format:

K =

Kxx Kyx Kzx

Kxy Kyy Kzy

Kxz Kyz Kzz


You must determine this stiffness matrix based on the most

recently provided image. The conversation history contains
prior messages simulating an interaction between you and the
user, each associated with an image and its corresponding
stiffness matrix. If such references exist, use them to derive
the stiffness matrix for the current image.

B. Role 2

System Role Content: You are able to analyze and process
images. You are an interface designed to determine the stiff-
ness matrix. The only output you should provide is a 3 by 3
stiffness matrix formatted using the structure:

K =

Kxx Kyx Kzx

Kxy Kyy Kzy

Kxz Kyz Kzz


The stiffness matrix represents a virtual 3D spring between

the robot’s endpoint and the operator’s set reference position
in a slide-in-the-groove task. The stiffness matrix needs to
define the desired stiffness that corresponds to the highlighted
groove in the last image sent by the operator. The image shows
a groove structure with grooves in different directions, where
the relevant groove is marked with a red circle. Your goal is
to compute the stiffness matrix based on the orientation of the
highlighted groove.

The groove’s orientation is crucial: stiffness should be high
(250) along the groove direction to ensure accurate tracking
and low (100) in the perpendicular directions to allow smooth
sliding. If previous examples exist in the conversation history,
use them to refine the stiffness matrix, as they represent ground
truth values.

C. Role 3

System Role Content: You are able to analyze and process
images. You are an interface designed to determine the stiff-
ness matrix. The only output you should provide is a 3 by 3
stiffness matrix formatted as:

K =

Kxx Kyx Kzx

Kxy Kyy Kzy

Kxz Kyz Kzz


The stiffness matrix represents a virtual 3D spring between

the robot’s endpoint and the operator’s set reference position
in a slide-in-the-groove task. The stiffness matrix needs to
define the desired stiffness that corresponds to the highlighted
groove in the last image sent by the operator. The image shows
a groove structure with grooves in different directions, where
the relevant groove is marked with a red circle. Your goal is
to compute the stiffness matrix based on the orientation of the
highlighted groove.

The groove’s orientation is crucial: stiffness should be high
(250) along the groove direction to ensure accurate tracking

and low (100) in the perpendicular directions to allow smooth
sliding. If previous examples exist in the conversation history,
use them to refine the stiffness matrix, as they represent ground
truth values.
Predefined Stiffness Matrices for Groove Orientations:
**Groove along X-axis (left-to-right):**

K =

250 0 0
0 100 0
0 0 100


**Groove along Y-axis (bottom-to-top):**

K =

100 0 0
0 250 0
0 0 100


**Groove diagonal in the YZ-plane:**

K =

100 0 0
0 175 −75
0 −75 175


**Entrance at the left-bottom of the structure:**

K =

100 0 0
0 100 0
0 0 250


If the groove does not match any of these predefined

cases, determine the stiffness matrix by analyzing the groove’s
orientation and applying the appropriate high (250) and low
(100) stiffness values accordingly.

APPENDIX G
HARDWARE COMPONENTS
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TABLE III
OVERVIEW OF HARDWARE COMPONENTS

Component Details Notes
Mobile Eye-Trackers Tobii Pro Glasses 2

• Reason for Choice: Eye tracking capability; available
at the lab. A static display-based eye tracker would have
been preferred for better stability.

• Connection Details: Communicates with the laptop via
an external USB Wi-Fi adapter, as the internal Wi-Fi
adapter is reserved for internet access to send requests
to OpenAI.

External Wi-Fi Adapter TP-Link USB Wi-Fi Adapter
• Reason for Choice: Needed to connect the eye tracker

to the laptop while freeing the internal Wi-Fi adapter
for internet access.

• Connection Details: Connected to the laptop via USB
and to the eyetrackers via WIFI.

Sigma7 Device Force Dimension sigma7
• Reason for Choice: Available at the TU Delft robotics

lab; provides high-precision haptic feedback for teleop-
eration tasks.

• Connection Details: Connected to the laptop via USB.

KUKA Robot Arm KUKA LBR iiwa
• Reason for Choice: Available at the lab; collaborative

design with 7 DoF.
• Connection Details: Connected to a switch via Ether-

net, which links the robot arm to a desktop running the
KUKA controller.

Desktop Hosting KUKA
Controller

Dell Precision Workstation
• Reason for Choice: Required to interface with the

KUKA robot arm.
• Connection Details: Connected to the switch via Eth-

ernet. Displayed on the monitor via HDMI.

Camera Depth Camera (e.g., Intel Re-
alSense) • Reason for Choice: Already available in the lab with

a 3D-printed mount for the robot.
• Connection Details: Mounted on the robot’s endpoint

and connected to the desktop hosting the KUKA con-
troller via USB.

Display Screen Dell Monitor
• Reason for Choice: Already positioned in the lab.
• Connection Details: Connected to the desktop hosting

the KUKA controller via HDMI.

Switch D-Link Ethernet Switch
• Reason for Choice: Available in the lab for networking

multiple devices.
• Connection Details: Connects the laptop, robot arm,

and desktop hosting the KUKA controller via Ethernet.

Computational Setup Laptop (Lenovo P15v)
• Reason for Choice: Personal laptop; communicates

with OpenAI over the internet via the internal Wi-Fi
adapter.

• Connection Details: Connected to a switch via Eth-
ernet to communicate with the KUKA controller, con-
nected to the external wifi adapter via USB and con-
nected to the Sigma7 via USB.
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