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Compared with the other components of the total damping, the characterization
and modelling of soils damping is more complex and less well established.
...the soils damping estimate is the least certain.

M.F. Cook - 1982

Shift Happens..

Cover page: Burbo Bank offshore wind farm



Summary

In today’s cutting costs environment in the offshore wind industry, significant
achievements can be made with a better assessment of dynamic soil-pile in-
teraction. More knowledge regarding the contribution of the dynamic soil-pile
interaction to damping of an offshore wind turbine structure (OWT) could per-
ceptibly reduce the fabrication costs of an OWT.

Currently, not much is known about the contribution of soil to the total damping
of the vibration of an OWT which consists of five main damping mechanisms:
aerodynamic-, hydrodynamic-, structural-, soil- and a passive sloshing damper
in the nacelle.
The values for this contribution applied in the industry today - mostly calculated
analogously to a study performed in 1980 by M.F. Cook - can be expected to be
on the low side (conservative), and it is acknowledged that it might be higher.
More research on the topic is recommended.

Increased damping of the vibrations of an OWT decreases the occurring stresses
in the structure which in turn results in lower (often design driving) fatigue
damage accumulation. Presence of more damping than currently assumed would
justify either designing more light-weight structures using less construction steel,
or allowing for longer (insured) OWT lifetimes than the currently applied 20
years. Both measures significantly reduce costs of offshore generated wind
power.

This research evaluates measured signals of twelve ’rotor stop’ - tests on an
offshore wind turbine at the Dong Energy owned - Burbo Bank wind farm in
the Irish Sea. The recorded data comprises the vibration decay of the structure,
measured with an accelerometer and strain gauges along the tower.

An analytical model has been developed enabling analyses of the origin of the
measured signals.
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Two main frequencies were identified in the measurements and, using the dif-
ferent measurement locations and the model, the corresponding modal shapes
were identified.

A crucial distinction between the two modal shapes is the difference in mo-
tion of the lower part of the structure. The amplitudes of displacement and
velocity at this location are much smaller for the second observed modal shape
than for the first.

A large difference in damping ratio between the two frequencies was identi-
fied.

The difference in damping is attributed to the different effect the soil can have
on the damping of these two frequencies. This can be explained by the varying
amplitudes of their modes in the soil embedded part of the structure.

The measured total damping (19 % logarithmic decrement which is 3 % ratio
of critical) for the first natural bending frequency of the tower, and the possible
order of magnitude of the found contribution of soil on this damping (∼ 9.5 %
log. decr. or 1.5 % ratio) of this particular OWT is significantly larger than the
order of magnitude used in the industry today (respectively ∼ 2.5 % log. decr.
and ∼ 0.44 %).
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Nomenclature

Abbreviations

API American Petrolium Institute
Au Text included by the author (used when quoting)
BB Burbo Bank wind farm
BB16 Test turbine for this research in Burbo Bank wind farm
BC Boundary Condition
DFT Discrete Fourier Transform
EOM Equation of Motion
FFT Fast Fourier Transform
FR Frequency Response
IEA Internation Energy Association
IC Interface Condition
log. decr. Logarithmic Decrement
MP monopile
NIMBY Not In My Backyard
OWT Offshore Wind Turbine support structure
Q-factor Quality-factor
RNA Rotor Nacelle Assambly
SDOF Single Degree Of Freedom
SPI Soil-Pile Interaction
SSI Soil-Structure Interaction
TP Transition Piece



Contents

Abstract i

Acknowledgement iii

Nomenclature v

Contents v

1 Introduction 1
1.1 The Offshore wind industry . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Sustainable Consensus . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Renewable Energy Sources . . . . . . . . . . . . . . . . . 2
1.1.3 Wind Power . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Offshore Wind Power . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research & Development in Offshore Wind Power . . . . . . . . . 6
1.2.1 Cutting Life Cycle Costs . . . . . . . . . . . . . . . . . . . 6
1.2.2 Siemens Wind . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Motivation for this Research . . . . . . . . . . . . . . . . . 10

1.3 Thesis Objective, Scope & Approach . . . . . . . . . . . . . . . . 12
1.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Scope & Approach . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Literature on Damping in Soil-Pile Interaction & State of the Art in
the Offshore Wind Industry 15
2.1 Types of Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Measuring Damping . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Developed models for Soil-Pile interaction . . . . . . . . . . . . . 26
2.4 Current Design Practice and Damping Determination in the Off-

shore Wind Industry . . . . . . . . . . . . . . . . . . . . . . . . . 33



2.5 Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Offshore Measurements 36
3.1 Performed Experiment . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Obtained Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Data Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Damping Assessment . . . . . . . . . . . . . . . . . . . . . 46

3.4 Patterns in Signal Output . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Modeling the Support Structure 62
4.1 Constrained Beam Model . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Aspects of the Model . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 The Governing Equations . . . . . . . . . . . . . . . . . . 67
4.1.3 Solving the Problem in the Frequency domain . . . . . . . 71

4.2 Model Implementation . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Model Variables . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Frequency Equation . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Modal Shapes . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.3 Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.4 Timedomain comparison . . . . . . . . . . . . . . . . . . . 91

4.4 Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusions and Recommendations 96
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Appendices 101

A An Introduction to Damping in System Dynamics 102



viii

B Measuring Soil Damping 108
B.1 In situ measurements . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2 Laboratory experiments . . . . . . . . . . . . . . . . . . . . . . . 111

C BB16 Rotor Stop Measurement Specification Documents 113
C.1 Overview Morning Tests . . . . . . . . . . . . . . . . . . . . . . . 114
C.2 Location and Orientation of Strain Gauges BB16 . . . . . . . . . . 115
C.3 Soil Profile at BB16 OWT . . . . . . . . . . . . . . . . . . . . . . 119

D The Fourier Transform and Signal Processing Basics 122

E Damping Assessment Results 129

F Test Opportunities and Roadmap 135

G Pinned Beam Model 143

H Applied Values for Model Parameters 157

I Finding the sign of terms in the Equation of Motion 160



1
Introduction

This first chapter starts with a description of the background of this thesis; the
offshore wind industry. The incentive for this research is given in the second section,
and a formulation of the objective, the scope and approach are described in the
third section. The chapter is finalized with an outline of the structure of this report.

1.1 The Offshore wind industry

The offshore wind industry is the background of this research. This section
describes this setting.

1.1.1 Sustainable Consensus

It has become a well known topic; we are running out of easily accessible fos-
sil fuels, accelerated global warming probably has something to do with our
increased CO2 emission, while at the same time energy demand grows expo-
nentially because of increased population and economic wealth. Sustainability
- in all its forms - is the word on the streets.
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As popular as this motto might be, its relevance is quite eminent. Mankind
has now acquired the technology and moral awareness that can let him attain
his needs in a more responsible and challenging way, in the mean time maybe
benefiting the environment while doing so.

Fortunately world wide politics and policy are reaching consensus on stimu-
lating sustainable developments. The EU’s ‘20-20-20’-initiative is an example
of such a policy. By the year 2020, EU-countries want to reduce CO2 emis-
sion with 20% (taking the year 1990 as reference), reduce energy consumption
with 20% and 20% of all the energy has to originate from renewable sources.
Each member-state has its own way of reaching this goal, but overall this aim
significantly stimulates the development of renewable energy industries [12].

1.1.2 Renewable Energy Sources

In the pursuit towards inexhaustible1 energy supply for society, various paths
lead to victory. Solar-, nuclear- (both fission and fusion), wind-energy, bio fuels
and hydropower are some of the realistic ones.

Nuclear fusion is a very promising form of energy generation, but expected
to become economically interesting after 2050. Hydropower is clean and effi-
cient but besides geographic requirements and impacts, its growth potential is
limited to three times the current globally installed power. Large scale produc-
tion of bio-fuels needs vast surface areas competing with agricultural land us-
age. These are some of the reasons that governments tend to focus on nuclear-
(fission, with its danger and waste disadvantage taken for granted), solar and
wind power. These last two are seen as very promising on the relatively short
term [1]. Figure 1.1 depicts a scenario of future global usage of energy sources,
developed by the International Energy Agency (IEA) [21]. The IEA included a
prospective called the ‘450-scenario’ which will mitigate the effects of climate
change due to greenhouse gas concentrations in the atmosphere; no more than
450 greenhouse gas parts per million in the atmosphere. In this scenario, the
use of carbon-rich energy sources is limited.

1Inexhaustibility in this context is disputable - each renewable source needs their own materials
and chemicals, which are in turn exhaustible. But the distinction of these sources with respect to
most conventional sources, or rather techniques, is that they do not convert scarce carbon-rich
fossil fuels into energy. It has to be mentioned that also the scarcity of these fossil fuels is subject to
discussion.
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Figure 1.1: Current and future sources of global energy use according to the ‘450-
scenario’: 450 greenhouse gas parts per million in the atmosphere. CCS=CO2

Capture & Storage. Source: International Energy Agency (IEA) - [21].

1.1.3 Wind Power

Energy capture from wind is an old proven art. The Persians introduced the first
documented windmills in the tenth century A.D. Today global wind power com-
prises around 198 GW and an energy delivery2 of 435 TWh in the year 2010.

To put this number in perspective; a proper coal-powered power plant has on
average power of 1000 MW (1 GW) and a Boeing 747 powers up to 250 MW
during take off. In 2008 the world was consuming energy at a rate of 15 TW
(15000 GW) of which about 2.2 TW was electric power.

Figure 1.2 gives figures for different scenarios of future wind power develop-
ments. The Reference scenario is developed by the International Energy Agency
(IEA) based on current policies. But including the latest developments, this
scenario has already been proven to be too conservative with respect to the
expected wind power growth.

2Attention should be payed to the fact that talking about a power capacity (in
Watts=energy/time [J/sec]) has a limited information yield. This is the power a powerplant could
produce. The actual energy that is produced or consumed is usually expressed in KWh; a thousand
Joules times 60 minutes times 60 seconds (one hour).
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Figure 1.2: Projection of globally installed wind power. Source: Global Wind Energy
Council (GWEC) - [7].

An extensive number of locations and amount of surface area is available for
more wind turbines, especially in remote windy areas such as deserts. In more
crowded regions available space is running out, and despite of being abso-
lutely in favor of ’green’ energy, most people will raise their NIMBY (Not In
My BackYard) billboard when threatened to experience close encounters with
these green giants.
Where to go? To sea! Besides space, this environment is characterised by
stronger and more frequent winds.

1.1.4 Offshore Wind Power

Europe is pioneer and leader in offshore wind farm development, and lately
enthusiastically followed by China. By July 2010 Europe’s offshore wind power
capacity mounted up to 2396 MW with a total of 948 turbines in 43 wind farms.
Denemark’s Vindeby wind farm was the World’s first offshore wind farm to be



The Offshore wind industry 5

built in 1991. Needless to state the fresh pioneering atmosphere in this indus-
try; new technology is constantly being developed and new ideas are quickly
implemented. Political ambitions on this front are strong; by the year 2020,
12-14% of Europe’s electricity has to be generated by wind, and 25-29% of this
will be generated offshore, which comes down to 3-4% of Europe’s total elec-
tricity generation [13]. For the Netherlands this was translated to 6000 MW
of offshore installed power. With currently 228 MW installed, the Dutch have
given themselves a fair challenge.

To give some more feel of the current relative capacity of offshore wind power
in the Netherlands: over the years 2008, 2009 and 2010, the two offshore wind
farms in the Netherlands (Prinses Amalia and Egmond aan Zee) have produced
an average of 670 GWh per year. As a ballpark figure, it is said that an aver-
age household uses 3500 kWh per year. So the two Dutch offshore farms have
generated electricity for about 191.000 households each year. The potential of
offshore wind energy in the Dutch North Sea is estimated to be able to provide
twice the required electricity in the Netherlands [4].

Costs for offshore wind generated electricity in Europe currently (December
2010) runs about 6-8 e cents/kWh compared to 5.3-6.1 ec/kWh for onshore
wind. Most European countries still have a subsidy system guaranteeing a fixed
buying price to the wind-generated electricity. In the Netherlands this so called
’feed-in’ tariff is 11.8 for onshore and 18.6 ec/kWh for offshore wind. Domestic
consumers pay 24.1 e c/kWh for their electricity [20]. Installing wind energy
onshore currently costs around 1.23 million e/MW and 2.1 million e/MW off-
shore. As every new industry, governmental stimulation results in rapid techno-
logical development and decreasing costs because of industry investments and
research studies. Expectations for future wind energy prices and competiveness
with conventional sources are rosy.

Figure 1.3 depicts a cost-comparison histogram, comparing the cost of energy of
wind power with that of conventional fossil sources. The extra costs of carbon-
capture for the conventional sources are depicted with purple (extra) bars.
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Figure 1.3: Comparison of total life cycle energy costs with increasing coal and gas prices
included. A European inland and coastal onshore case is taken as reference.
Offshore generated electricity also runs between 60 to 80 e/MWh depending
mainly on depth, distance to shore and investment costs. Regulation costs
are the costs of integrating the variable wind energy into the grid. Source:
European Wind Energy Association (EWEA) - [13].

1.2 Research & Development in Offshore Wind
Power

The main motivation for most research in the offshore wind industry is to reduce
the overall costs. The young character of this industry allows for many oppor-
tunities to do so. This section is devoted to briefly describe these developments,
and to report the motivation for the research presented in this thesis.

1.2.1 Cutting Life Cycle Costs

Wind power can become as cheap as electricity generated from coal, but in or-
der to do so, some major costs have to be reduced. Fortunately there are enough
components in the life cycle of an offshore wind turbine structure (OWT) where
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money can be saved. Most costs are made during construction and maintenance
during the lifetime of the OWT.

To decrease maintenance costs, the industry is looking into the development
of turbines with significantly less components. ‘Direct Drive’ turbines are an ex-
ample of this; lacking a gearbox, these turbines have up to 50% less parts than
conventional turbines.

Another maintenance cost driver is the limited accessibility of OWTs. The con-
ventional way of accessing an OWT is by use of a vessel. Such a way of ac-
cessing requires calm sea states, and this requirement seriously narrows the
time-window of possible access in rough seas like the North Sea. Long turbine
down-times are the result. Increasing the accessability of the OWTs by access
systems that can still be used in rougher seas is another way of decreasing ser-
vice costs.

In the construction phase, there is room for applying less construction steel.
The foundation of the tower and nacelle mounts up to about 20% of the total
capital costs [32]. During the 20-year lifetime of the structure, the on average
80m long tower and nowadays 120m rotor diameter are constantly exposed to
wind and wave forces. All these forces have to be transferred to the ground by
the foundation. Various foundation solutions exist, but the most popular one for
shallow water (up to 30m deep) is the monopile (MP). A MP is a long tubular
cylinder with typical dimensions of 45m length, 5m diameter and 60mm wall
thickness. An impression of the cross-section of such a MP is given in figure 1.4.

1.2.2 Siemens Wind

Siemens is a considerable participant in this growing industry. In 2004 Siemens
bought the Danish wind turbine manufacturer Bonus Energy. Now Siemens has
a 6000 employee-strong wind department with its head office in Brande, Den-
mark. Siemens designs and constructs the complete turbine and tower. In its
attempt to improve its product and to cut costs, Siemens has a sizeable R&D
department providing also MSc and PhD students the opportunity to dedicate
their thesis on various of these improvement-focused subjects. The next para-
graph gives a brief description of some topics that have been studied by students
at the Siemens offshore Center of Competence in The Hague.
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Figure 1.4: The author standing inside a monopile which is ready to be shipped out and
installed at Sheringham Shoal wind farm. The cross section of this particular
monopile has a diameter of 5.5m and a wall thickness of 6.5cm.

A promising production cost reducing area, is construction steel mass-reduction
by integral and optimized design ([15] & [17]).

Loads-reduction on the entire structure can be achieved by System Identification
(SI). SI is a tool for better control design, that can reduce loads on the struc-
ture. SI can yield more accurate dynamic (sub-)models that allow for enhanced
model-based System Control. Examples of control variables are for instance the
blade pitch angle and the generator speed. By for example varying the pitch
angle with accordance to the wind speed, loads on the blades and thus overall
loads on the structure can be reduced. ([29] , [31] , [2] and [34]).

Another research field is that of Dynamic Substructuring. As opposed to global
dynamic approaches, in these studies the local dynamics of components is con-
sidered. Global dynamic analyses can lead to underestimation of the loads on
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a local scale. In these approaches, Model Reduction techniques are studied and
incorporated in order to reduce the computation time needed to model and in-
tegrate all sub-systems ([38], [36] and [8]).

Besides studies on more efficient maintenance [35] and production & instal-
lation [24] strategies, lately a focus is also laid upon the soil-pile interaction
(SPI) phenomena that occur at the embedded monopile foundations. A MSc
thesis has been dedicated on the static initial stiffness of soil, where a critical as-
sessment was made on the currently used p-y curves of the American Petroleum
Institute (API), which are extrapolated onto the large diameter piles of the MP
foundations of OWTs. Underestimating the initial stiffness can lead to too con-
servative designs dictating too large dimensions for the piles. [39]

Where this latest study focused on the stiffness of soil, this thesis focuses on
another dynamic property of soil; the damping effect caused by soil in the soil-
pile interaction process.

Figure 1.5: The construction of an offshore wind farm; the towers are placed on top of
the transition pieces, they are connected at the platform at interface level.
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1.2.3 Motivation for this Research

Offshore wind turbine support structures are currently designed to survive at
least twenty years of environmental ’assaults’. In most cases, the fatigue life-
time of the structures is design driving. Steel fatigue damage is determined by
the number of cycles at a particular stress range during the lifetime of the struc-
ture. These stress ranges are caused by the wind and waves hitting the struc-
ture, causing overturning moments and oscillating back- and forth movement
of the tower. The structure loses this dynamic energy via 5 different damping
mechanisms. These are from top to bottom of the structure:

• Aerodynamic damping of the rotor and tower moving through the air

• A calibrated sloshing damper in the nacelle, a passive counter-moving
mass.

• Structural damping; heat generation because of stress cycles in the con-
struction materials

• Hydrodynamic damping of the foundation moving in the water

• Damping caused by the interaction of the soil and the foundation

The aerodynamic damping of the turning rotor during production is one of the
largest of these influences. The blades turn fast enough to behave as if a large
disc (120m diameter) is moved forth and aft through the air (wind). This gen-
erates large damping forces. A similar example of this which might be easier
to imagine, is the force you feel when you move your flat hand (rotor disk)
through the water. This force might be smaller if you spread your fingers (rotor
disc standing still) and perform the same movement.

The installation of the sloshing damper in the nacelle is a more recent devel-
opment, which has not always been applied in the past. A sloshing damper is a
tuned counter moving mass, in this case a large bucket with water. Tuned mass
dampers (in the form of large moveable steel spheres) are also often placed in
the top of high-rise buildings to counter-act the displacements at that location.

The more damping the structure is subjected to, the smaller the amplitudes
of the oscillations, thus the lower the fatigue damage accumulation. In the
design and modeling of offshore wind turbines, the magnitude of these five
mechanisms of damping is an important influential factor to determine the di-
mensions of the structure.



Research & Development in Offshore Wind Power 11

Of these mechanisms, least is known about the magnitude of the effect that
soil has on the damping of the OWT.

The offshore wind industry mostly refers to a paper of M.F. Cook from 1982
[37] who performed measurements on a single pile platform with a pile di-
ameter of 1.22m. Chapter 2 elaborates on Cook’s paper and explains dynamic
damping in more detail.

The assessment of the magnitude of the damping influence of the soil that is
presently performed analogously to Cook’s paper, yields conservative values; a
low percentage for soil damping3 is incorporated in the design. Both Cook and
the designers acknowledge that the real soil damping ratio is probably higher,
but scientific proof of this is still absent. “The characterization of soils damp-
ing is more complex - than the other damping mechanisms [Au] - and less well
established....This technique - Cook’s technique to determine soil damping [Au] -
is approximate and research leading to the development of new techniques is
warranted.”

To shortly summarize the above: higher proven damping ratios justify more
slender designs or longer lifetimes of OWTs because of lower fatigue damage
accumulation, resulting in cost reduction because of steel savings or longer life-
times of the OWTs. There is a belief in the industry that a large gain in proven
damping can be found due to effect of the soil.

3Strictly speaking, one should use the term of ’the effect of soil on the vibration decrement of
an oscillating pile’ instead of soil damping. Soil damping actually refers to energy dissipation within
a specific soil specimen, and not what is meant in this context; the damping in soil-pile interaction.
For reasons of simplicity, the term ’soil damping’ will be used to indicate this phenomenon in this
thesis.
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1.3 Thesis Objective, Scope & Approach

1.3.1 Objective

The scientific basis of this research is the data collected from an offshore ‘ro-
tor stop’ experiment. During these tests the decaying for-aft movement of the
nacelle was measured. Naturally, the results found for this test only apply to
the specific soil conditions at the location of the used turbine. The vibrations
of the structure itself were measured via strain gauges and an accelerometer.
The soil’s reaction was not measured. This is further explained in chapter 3.
Because of these reasons, this thesis is focused on stating the magnitude of soil
damping which the considered test turbine receives of the complete soil profile
at its location. The objective (like the title of this thesis) is stated as

The estimation of the vibration decrement of an offshore wind turbine sup-
port structure, caused by its interaction with soil.

This research is a first phase of a larger damping assessment project. A re-
spectable ultimate objective for this damping assessment project that Siemens
has initiated would be

The ability to predict the amount of damping experienced by an offshore wind
turbine-supporting structure due to interaction with a certain type of soil present
at a certain location.

To reach such an objective, extensive in situ experiments have to be performed.
Appendix F elaborates on the setup of such experiments, and reports on the
used selection procedure for choosing the proper experiment for this thesis. In
this appendix, also a roadmap is suggested towards reaching the stated ultimate
objective.

1.3.2 Scope & Approach

As stated in the previous paragraph, time signals of in total twelve rotor stops
will be evaluated. These time series are recorded with strain gauges at different
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vertical levels on the tower, and with a accelerometer in the nacelle.

Different techniques exist to distill information from measured time series. In
this thesis most analyses of the measured response of the turbine will be per-
formed in the frequency domain. The collected time signals are hence Fourier-
transformed to the frequency domain. Applying the Fourier transform on a
time signal, renders the occurring frequencies with their energy. Performing
this analysis on strain gauges at different heights can show the difference in
energy-level of certain frequencies between these locations, yielding (some) in-
formation about the corresponding modal shapes of these frequencies. This will
be further explained in chapter 3.

The total damping (composed of the five damping mechanisms named in §1.2.3)
on the occurring frequencies in the measurements will be determined using the
Quality factor technique in the frequency domain.

A simplistic analytical model is developed to be able to analyze the measured
responses and possibly reveal the occurring phenomena that cause these re-
sponses.

With both the measurements and the model, it is investigated if an opportunity
exists to assess the contribution of soil to the total damping of the structure. If
it is found to be possible, this effect will be quantified.

1.4 Thesis Outline

This report has roughly the same structure as the approach, which is as follows:

This Introduction chapter serves to make the reader, possibly a layman, ac-
quainted with some facets of the offshore wind industry, in order to explain the
motivation of this research. It also states what will be studied, and thus implic-
itly, equally important, what not. Finally, the structure of this report is given,
which is in line with the approach.

The second chapter, Literature on Damping in Soil-Pile Interaction & State
of the Art in the Offshore Wind Industry, relates a part of the literature study
that was performed prior to performing the experiments. This chapter describes
different types of damping, it reports the damping identification technique used
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in this research and it names some other techniques for measuring damping.
The third section describes two models for soil-pile interaction from literature,
followed by a section on the currently applied practice in the offshore wind in-
dustry for estimating the amount of soil damping. Each chapter is closed with
a section giving a summary and discussion. Appendices A, ?? and B serve as
supporting material to this chapter

In the succeeding chapter, Offshore Measurements, the performed experiment,
the acquired data and analyses of this data are reported. Damping values and
motion patterns in the structure are listed in sections 3.3 and 3.4. Background
information on matters discussed in this chapter are given in appendices D and
F.

In the fourth chapter, Modeling the Support Structure, the next step in the
analyses of the measurements is performed: a simplistic analytical Euler-Bernoulli
beam model is developed, serving better insight in the physics behind the mea-
sured phenomena. The aspects and parameters are reported and the results of
the simulation of the measured response are depicted in the third section.

Chapter Conclusions & Recommendations closes this report. Here the main
found trends and results are connected with the possible physical phenomena
causing these responses. Conclusions are drawn on the opportunity to deter-
mine the effect of soil on the vibration decrement of the measured structure ,
and a possible magnitude of this effect is stated. The report ends with recom-
mendations for further research on this topic.



2
Literature on Damping in Soil-Pile

Interaction & State of the Art in the
Offshore Wind Industry

This chapter starts with a brief description of the main types of damping in struc-
tural dynamics and how these occur in the soil-pile interaction (SPI) of a monopile
support structure of an offshore wind turbine. In the second section different damp-
ing measurement techniques are discussed. The third section elaborates on damp-
ing in dynamic soil-pile interaction as described in literature. The last section gives
a rendition of the way the amount of soil damping is assessed in the offshore wind
industry today. Appendices A and B serve as supporting material to the topics of
this chapter.

2.1 Types of Damping

The field of structural dynamics studies the oscillatory behavior of structures
(buildings, but also cars, aeroplanes etc.) subjected to dynamic loading. Dy-
namic in the sense of change of magnitude and direction in time. Some first

15
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basic terms of structural dynamics are explained in appendix A.

In this context, damping is the dissipation of energy from the system (structure)
to its environment. There are numerous ways in which a system can lose its (vi-
brational) energy to its surroundings. The main damping mechanisms present
in the soil-pile interaction of OWT’s are explained in the next paragraphs.

Viscous damping

The magnitude of a viscous damping force is proportional to velocity. It is gen-
erally symbolized with a dashpot in dynamic model depictions. As it is velocity
dependent, it is also dependent on the combination of amplitude and frequency.

A well-known viscous damper is the shock-absorber within the spring attached
to each wheel in a car-suspension, as shown in figure 2.1. This damper absorbs
shock energy every time the wheel hits a bump in the road, and causes the ver-
tical vibrations of the car to decrease in time.

Figure 2.1: The suspension of a car; a viscous dashpot is installed within the spring to
absorb the shock-energy. This parallel combination of a spring and dashpot
is called a Kelvin-Voigt configuration.
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Viscous damping in SPI of an OWT

The water trapped in the saturated granular soil structure in which a monopile
of an OWT is imbedded, could cause viscous damping forces on the monopile
when excited at a certain speed (and forced to flow within the granular struc-
ture) by the oscillatory motion of the monopile. So viscous damping could very
well play a role in the soil-pile interaction of an OWT.

Hysteretic damping

A type of damping which is not frequency dependent, is called hysteretic or
material damping. Hysteretic (or intrinsic) damping is the dissipation of en-
ergy caused by friction of the system with its surroundings. Hysteretic damping
is in phase with the velocity and proportional to the displacement of the system.

The stress-strain curve of an hysteretic material during unloading is not the
same as the one during loading. This is called a hysteresis loop. The area en-
closed by the two curves (loading and unloading) is equal to the amount of
energy lost during one loading cycle. Figure 2.2 gives an impression of such a
loop and the area between the curves.



18
Literature on Damping in Soil-Pile Interaction & State of the Art in the Offshore

Wind Industry

The damping ratio is often 
presented as a percentage 
of the fraction of critical 
damping or percent critical 
damping, %Cr. A system is 
classified as underdamped 
if ζ < 1, critically damped 
if ζ = 1, and overdamped if 
ζ > 1. Vibratory motion 
will only exist for an 
underdamped system. In 
all the cases above, the 
response of a system set 
into motion will eventually 
decay to zero with time, 
except when ζ = 0.

Damping estimates can be 
made from this transient 
response. A SDOF 
underdamped system 
subjected to an impulsive 
force at t = 0 will exhibit 
the displacement response 
x(t) as shown in Figure 4. 
A measure of damping can 
be made from the rate of 
decay of the response for 
consecutive cycles of 
vibration, referred to as the 
log decrement, δ, and 
defined in this equation:

The selection of a viscous 
damping model is 
primarily used for ease of 
analysis. However, the 
behavior of a viscoelastic 
material is better described 
through the use of the 
hysteretic model, in which 
the damping is 
proportional to strain and 
is independent of rate. 
This is achieved by 
eliminating the viscous 

dashpot, and representing 
the energy dissipation in 
the system by a complex 
spring element, k*, 
resulting in a complex 
modulus, E*.

The hysteretic model can 
be used for damping 
estimates made from the 
response characteristics of 
steady-state vibrating 
systems. The SDOF system 
of Figure 3b is shown to 
be subject to a harmonic 
forcing function, F(t), 
applied to the mass, m. 
The equation of motion 
for this system can be 
solved to yield the transfer 
function of the nature 
shown in Figure 5. This is 
a graph of compliance for 
a SDOF system having a 
single resonance at ωo. 
The level of damping can 
be subjectively determined 
by noting the sharpness of 
the peak — the more 
rounded the shape, the 
more damping present.

A quantitative measure of 
damping is achieved by 
using the Half-Power 
Bandwidth method, shown 
graphically in Figure 5 and 
given by the following 
equation:

The material damping, η, 
of the complex spring 
element can be 
determined by the ratio of 
∆ω to ωo with ∆ω 
determined from the half-
power point down from 
the resonant peak value, 
Amax. On a decibel scale, 
this corresponds to –3 dB 
down from the peak 
value. For that reason, this 
damping estimation is also 
referred to as the 3 dB 
method.

Another representation of 
damping for this SDOF 
system is called 
Amplification Factor, Q. 
As illustrated in Figure 5, 
Q is the ratio of the 
response amplitude at 
resonance, ωo, to the static 
response at ω = 0.
Yet another estimate of 
damping can be achieved 
by calculating the energy 
loss per cycle of oscillation 
due to steady state 
harmonic loading. For a 
viscoelastic material 
subject to the cyclic 
loading as shown in Figure 
1c, the hysteresis of the 
material can be defined by 
plotting the input stress σ 
(t) versus responding 
strain ε(t) for one cycle of 
motion. The elliptical 
shape shown in Figure 6 is 
defined as the hysteresis 
loop. The area captured 
within the hysteresis loop, 
D, is equal to the 
dissipated energy per cycle 
of harmonic motion by the 
material. For reasonable 

levels of damping, this 
relationship between 
material damping and loop 
area can be defined by 
this equation:

Relationship Between 
Measures of Damping

For low levels of damping 
(η < 0.2), and within the 
linear region of the 
viscoelastic material, the 
different measures of 
damping discussed above 
can be equated using the 
following relationship as 
shown in Figure 7.

Figure 4. Transient Response 
of a Classically 

Underdamped SDOF System

Figure 5. Compliance Transfer Function of a SDOF System

Figure 6. Typical Hysteresis
Loop for a Viscoelastic

Material

Figure 7. Interrelationship of Damping Measures

continued from page 11

δ = 1
m

xn+m

xn
In

η = ∆ω
ωο

For  n=√2
(Half-Power)

η = D
πσοεο

Figure 2.2: A Hysteresis loop, where σ is the loading (stress), ε the extension (strain)
and D is the energy lost during one loading cycle.

Hysteretic damping in SPI of an OWT

A monopile of an OWT dissipates energy through hysteretic damping caused
by the friction in the granular structure of the soil (a hysteretic loss), dependent
on the strain (displacement) and in phase with velocity of the pile. Hysteretic
or material damping is always present at these soil-pile interactions.

Radiational damping

Besides friction and viscosity, a system can also lose its energy to geometric
damping. Geometric damping is the spreading of local energy over the geome-
try of a system and its environment.

A well-known example clarifies this description; when throwing a stone onto
the water surface (a point source): the waves travel from this point in all direc-
tions (x-,y- and z-axis). The energy released in the point source is distributed
over an increasing geometric space with time, resulting in lowering wave am-
plitudes with further distance from the point source. Figure 2.3 clarifies this
example.
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So geometric damping is the phenomenon of energy distribution over an ever
growing volume of the environment by the transmitting, radiating waves. That
is why it is sometimes referred to as ‘wave-making’ or ‘radiational’ damping.
The magnitude of this type of damping is, amongst others, dependent on the
amount of energy that waves can obtain in the surrounding medium of the sys-
tem: an oscillating mass loses less energy to waves when surrounded by air than
when surrounded by water.

Figure 2.3: The energy of a point source is spread via radiational damping

Radiational damping in SPI of an OWT

A monopile dissipates energy into the ground in a radiational way by the trans-
mittal of elastic waves. As the energy of these waves in most media depend on
frequency, this radiational damping is usually frequency dependent.

The (horizontal) cut off frequency of the surrounding soil layer can be approxi-
mated with [18]

fH =
Vs
4H

(2.1)

In which H is the soil layer thickness, and Vs is the shear wave velocity.1

Radiation damping can be of a large magnitude, but it only becomes significant
above a certain threshold frequency value of the vibration. Only when the fre-
quency of the pile vibration comes close or is larger than the cut off frequency of
the surrounding soil layer (given by equation 2.1), radiation damping becomes
significant and dominant. This is however not the case for the low frequencies

1A list of used symbols of the model developed in this thesis is printed in appendix H. All the
other variables and symbols in this report will be explained and named when they are mentioned
in the text.
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of oscillations of OWT’s. For OWT’s material damping is seen as dominant, and
radiational damping as insignificant [37]. In figure 2.4 a graphical indication
is depicted for the radiational and material damping components in soil-pile in-
teraction and their dependency on frequency of the pile.

Frequency, f

D
am

p
in

g
 R

at
io

, D

Radiation (viscous) damping ratio

Material (Hysteretic) damping ratio
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Figure 2.4: Soil damping components and frequency-dependancy. Dm is the material
damping, fn the natural frequency of the surrounding soil layer. [9]

2.2 Measuring Damping

The magnitude of a certain damping mechanism can be identified from mea-
sured responses of systems. These experiments or measurements can be per-
formed on full-scale structures that are given a certain excitation (a force is
applied, or an initial displacement is given to the structure) or on scale models
in a laboratory. The vibration decrement can subsequently be recorded with, for
instance, the use of accelerometers or strain gauges that measure the response
of the structure in time.

The identification of damping is not a straightforward and unambiguous ex-
ertion. Each identification technique has its limitations and subjective aspects.
Stating a certain range of magnitude of the present damping is usually the best
achievable result.
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Some damping identification techniques can be used directly on the acquired
time-signals (time-domain), and other techniques are applicable in the fre-
quency domain of the measured signal. For the latter techniques, the time
domain signal is transformed to the frequency domain by applying for instance
a Fourier or Laplace transform on the original measured time-series. A brief
explanation of the Fourier and Laplace Transforms is given in respectively ap-
pendix D and section 4.1.3.

One can also measure the magnitude of damping in a certain material (rather
than in a system or process as soil-pile interaction), such as for instance soil.
Different in situ and laboratory tests exist yielding mainly the material damping
potential of the soil. These tests are described in appendix B.

In this research, most damping assessments on the measured data were done us-
ing the Quality factor (Q-factor) technique in the frequency domain. This tech-
nique is sometimes also called the Half-power Bandwidth method. A brief expla-
nation of time-domain techniques and the frequency-domain Q-factor technique
is given here.

Time-domain Techniques

In these paragraphs, three time-domain techniques will be discussed without
going into (mathematical) detail.

A way of quantifying viscous damping in an under-damped system is by cal-
culating the logarithmic damping decrement usually denoted as δ. This is a fre-
quently used technique to determine the damping of a system from a measured
response in the time domain. In figure 2.5 the dotted line through the peaks of
the curve is the exponential relation between these peaks. One takes the natu-
ral logarithm of the ratio of subsequent ’peaks’ or amplitudes (x0 and xn in the
figure) and divides it over the amount of periods ’n’. In formula form;

δ =
1

n
ln
x0

xn
(2.2)

The relation between the damping ratio and the logarithmic damping decrement
is as follows:

ζ =
1√

1 + ( 2π
δ )2

(2.3)
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Figure 2.5: Typical displacement-time relation of an under-damped (red) and a super-
critically damped (green) system after an initial excitation. The amplitude
peaks are used for logarithmic decrement determination.

Looking at this relation, one could say that as an approximation ζ ≈ δ
2π if δ �

4π2 which is usually the case for wind turbines.

The dotted decrement line in figure 2.5 can be described with

u(t) = Ae−ζωt (2.4)

with ω the frequency (in radians per second) of the oscillations of the red line
in the same figure, and A the initial amplitude of the oscillation. Plotting this
decrement line in the measured time response can serve as a check on the found
damping ratio ζ for the main present frequency in the response. This also re-
veals a limitation of this technique: it is limited to identifying the damping of
the total response, which is usually a summation of numerous harmonics with
different frequencies. This technique can only be used if the total response is
strongly dominated by a specific frequency, and is thus limited to identifying
only the damping of the vibrations of that specific frequency.

Another time domain technique is the Hilbert damping analysis. Unlike other
damping identification techniques, this technique does not assume viscous damp-
ing, and can also identify non-linear damping mechanisms. The Hilbert trans-
form can compute the transient decay envelope of a signal from which the
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damping ratio can be derived. The transform is a convolution integral giving
the original signal a 90◦ phase shift. Other products of the Hilbert transform are
the the instantaneous phase angle and the instantaneous frequency which are of
benefit when studying non-linear damping [33] .

The final damping identification technique that is discussed here is the Moving
Block damping analysis. In this approach basically a shifting Fourier Transform
is applied; a FFT (Fast Fourier Transform, very similar to the DFT) is performed
over a certain block of data, after which the block is moved forward a single
point in time. For each block the transient response amplitude is calculated.
All these amplitudes are plotted in time. The damping is estimated from the
natural logarithm of the slope of the linear least mean square fit through the
amplitude peaks. Because of this ‘careful sliding’ (of the time window/block),
this technique is especially well suited for distinguishing between closely posi-
tioned neighboring natural frequencies [33].

Frequency-domain Technique

When looking at a response signal in the frequency domain, one can see the
occurring frequencies in the signal as peaks with their associated energy and
dissipation of this energy. Such a graphical representation is called a power
spectrum. A power spectrum is found by taking the square of the absolute value
of the Fourier-transformed signal.

The skewness (height/width ratio) of such a frequency peak is a measure for
the way that frequency is damped; the higher and narrower the peak, the lesser
the vibration is damped at this frequency. The Quality factor (Q-factor) tech-
nique incorporates this characteristic to determine the magnitude of damping.
Physically, Q is 2π times the ratio of the stored energy over the dissipated energy
in one period.

Figure 2.6 shows how to determine the Q-factor. In this figure, the power spec-
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trum of a modeled rotor stop response is taken as an example.
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Figure 2.6: Determining the Quality factor (Q) and the damping ratio ζ in the power
spectrum of a signal.

One finds the maximum of the (normalized) peak, and determines the band-
width between the two frequencies of the peak (left (fl) and right (fr)) at the
half of this maximum. The center frequency, fc lies in the middle between these
two frequencies.

Note that normalized in this context means that the peak under investigation
should be normalized so that the left hand side (where frequency = 0 Hz) of
the peak equals one (1), as can be seen in figure 2.6. The Q-factor is then simply
calculated by;

Q =
fc
∆f

(2.5)
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from which then the viscous damping ratio (of critical damping) is calculated
by

ζ =
1

2Q
(2.6)

If the power spectrum is properly derived and normalized, the Quality factor
technique is seen as an accurate and exact technique to determine the equiv-
alent viscous damping ratio for the damping in the measured signal. It is a
relatively fast-technique that directly differentiates the damping magnitude per
frequency. The time-domain techniques were seen as more cumbersome be-
cause this differentiation is not directly applicable as the signal is a summation
of frequencies and noise. Also, the previously described last two time-domain
techniques involve a significant amount of processing. But more importantly,
the Q-factor technique allows to asses damping identification of all frequencies
that are present in a response, as opposed to the logarithmic decrement tech-
nique which is limited to assessing only a single frequency-dominated signal.
Because of these reasons, the Q-factor technique was chosen to identify the
damping in the acquired measurements.

It has to be noted that the Q-factor technique is limited to linear systems which
are sub-critically damped. Also its reliability is reduced by the presence of white
noise and closely spaced modal frequencies. The latter can be understood when
looking at figure 2.6: if for instance a third peak (modal frequency) would be
present at 3.5 Hz, both peaks of the natural frequencies of fc (3 Hz in the fig-
ure) and the third peak of 3.5 Hz could be mistaken for being one peak with an
averaged center frequency and a wider bandwidth, yielding a larger identified
damping for a non-existing frequency.
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2.3 Developed models for Soil-Pile interaction

In this section the focus is placed more upon the dynamic process, and more
specifically on damping of a horizontally vibrating vertical pile in a soil profile
- the focus of this thesis. The section is a short survey of part of the literature
on SPI. It has to be noted that not much literature was found on the focus of
this study, especially damping in soil-pile interaction in offshore saturated condi-
tions was scarcely encountered. Two developed ‘beam on Winkler foundation’
models (one by Badoni et al. and one by Gazetas et al.) will be discussed. The
models are quite similar, but the way of modeling the soil damping is different.

Various models have been developed to simulate the complex phenomenon of a
vibrating pile in a soil profile in order to analyze the processes that play a role.
The models vary in complexity and in fundamental way of solving, from simple
single degree of freedom (SDOF)-systems to full Finite Element Method (FEM)
models. An example of a FEM model of a pile in soil is given in figure 2.7.

82 SSI Model 2: Cylinder in an elastic foundation

a b

Figure 5.17: a) Shear rotation: pure translation of the cross sections. b) Rigid rotation: all
nodes rotate around one rotation point.

(5.8). When we try to solve the system of equations of (5.9) for the vector containing the
equivalent stiffnesses K∗xx, we found out that the results are heavily distorted. This is because
the method does not allow taking into account the edge effects. However, the force vector
to be used does contain the peak forces at the edges. Therefore we will solve equation (5.8),
but not taking into account the force-displacement relations at the edges. This is iteratively
done: First only leaving away the first and the last term of the force and displacement vector,
then also the second, etc. It is iterated until a certain steady value is found on the main
diagonal of the resulting matrix. It turns out that for not regarding the first and last 15% of
the pile length, the values were more or less steady. Only for the case of the rotation point
in the middle, this method seemed not to work: only unrealisticly high values came from the
calculations.

After the iterations, the steady value for the main diagonal, responsible for the local stiffness,
can be used as a measure for the equivalent uncoupled stiffness. The off diagonal terms, de-
scribing the coupling between the different element layers, will be set to zero. The resulting
uncoupled equivalent stiffness matrix needs to be adjusted for the edge effects, which will be
done by comparing the re-calculated reaction forces using the found stiffness matrix with the
original reaction forces, found by ANSYS.

In Table 5.2 an overview can be found of the dimensionless values of the found equivalent
uncoupled stiffness for the different cases of L/D ratios and zrot. The trend of a larger L/D
results in larger equivalent stiffness is noticeable. Also, the values increase when the rota-
tion point moves more to the middle of the pile. Shear rotation or rigid rotation both gave
comparable results, which means that vertical stiffness does not contribute that much to the
resulting equivalent stiffness values.

Finally, we can compute the total equivalent stiffness with equation (5.10). The values found
for that can be found in Table 5.3. Again the same trend is visible, but now the values are
higher. Probably, this is because the edge effects are included in this calculation. Again,
results for rigid or shear rotation were comparable.

Confidential

Figure 2.7: An example of a FEM model where the mesh size (element size) is adjusted
according to desired accuracy in specific regions [39].).

A popular model for the soil reaction is the Winkler foundation model, which
comprises a beam attached to distributed springs and dashpots. The way the
foundation is modeled in figure 2.8 is an example of a Winkler foundation.
Often the springs have a stiffness according to the so called p-y curves, where
p stands for the soil reaction force caused by the induced displacement y of the
specific soil layer at a certain depth which the spring represents [3].



Developed models for Soil-Pile interaction 27

Figure 2.8: Soil-pile model with distributed non linear (hysteretic) springs and linear vis-
cous damping (dashpots) [26]

For such a model, one can derive an equation of motion (EOM). An EOM is a
mathematical description of the dynamic behavior of system, and it is basically
a form of Newton’s second law: F = ma. The homogeneous version (the right
hand side of the equation equalling zero) of such an EOM of a beam on a Win-
kler foundation including damping and stiffness from the soil, and axis direction
as in figure 2.8 reads

EpIp
∂4y

∂z4
+mp

∂2y

∂t2
− Fs (z, t)− Fd (z, t) = 0 (2.7)

with Ep, Ip and mp respectively the Young’s modulus, the moment of inertia
and the mass of the pile per unit length. Fs and Fd are the spring and damping
forces. The first two terms in this equation are respectively the deflection or
bending term because of the applied load, and the second term is the inertial
reaction force. This equation was developed around 1750 by Daniel Bernoulli
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and Leonhard Euler and this model of a beam is thus called the Euler-Bernoulli
beam. For the derivation of this EOM, reference is made to the relevant litera-
ture, for instance [16] or [27].

Now the major question is what formulations one can apply for the dynamic
reaction forces of the soil-pile system; how to model the spring stiffness and for
this study even more relevant, the damping term of this equation. Methods to
do so in literature slightly vary in this respect.

Badoni et al.

In the model of figure 2.8 an attempt is made to simulate the linear response of
soil for small amplitudes and the occurring material energy dissipation with hys-
teretic springs. The coefficients for these springs also incorporate the character-
istic transition of linear elastic to more plastic reaction after a certain threshold
displacement y0 of the soil. Via the frequency dependent dashpots the radiation
damping is included.

This model turned out to be realistic and gave good correspondence with full
scale (in the field) experiments, although it has to be said the solution has two
empirical parameters that have to be fitted from experimental data.
The model was developed by D. Badoni and N. Makris [26].

It is important to note that the experiments were performed on slender (large
embedded length over diameter ratio: L/D) piles with diameters smaller than
one meter in saturated submerged soil. The phenomena in SPI occurring at
piles with diameters in the range of monopiles can not be linearly extrapolated
from that of slender piles [39].

In this case, it was found that the non-linear soil stiffness could be represented
by

Fs(z) = λ(z)S(z)dζ for cohesive soil (2.8)

Fs(z) = µγsd
1 + sinφ

1− sinφ
zζ for cohesionless soil (2.9)

where λ is a dimensionless term indicating the roughness of the pile according
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to the soil pressure. λ varies between 3 and 9 with the following relation

λ(z) = 3 +
σz
S(z)

+ J
z

d
, for z <

6d
γsd
S(z) + J

(2.10)

λ(z) = 9, for z ≥ 6d
γsd
S(z) + J

(2.11)

Further, S(z) is the shear strength of the soil varying with depth (z), d is the
pile diameter, γs is the specific weight of the soil in question (γs = ρsg), φ is the
internal angle of friction of cohesionless soil and µ is an empirical parameter
that has to be calibrated. Usually µ = 3 is assumed. J is a variable that has to be
determined by fitting to experimental data. Finally ζ is a dimensionless quantity
that gives the hysteretic (damping) character to this spring. ζ is determined by
the following relation;

y0ζ̇ + γ|ẏ|ζ|ζ|n−1 + βẏ|ζ|n −Aẏ = 0 (2.12)

in which β, γ, n and A are dimensionless quantities that shape the hysteretic
loop, and y0 the threshold displacement where the spring’s reaction changes
from linear elastic to more plastic behavior. In the above equations n also has
to be determined by fitting to experimental data.

The damping force can be represented by

Fd = [Qa−0.25
0 ρsVsd]ω〈y〉 (2.13)

with
〈y〉 = y0 for y > y0

and
〈y〉 = y for y ≤ y0

In this equation a0 is the dimensionless frequency given by a0 = ωd/Vs, and a
variable Q is introduced, which in turn is given by the expression

Q = 2[1 +
3.4

π(1− νs)
]1.25(

π

4
)0.75 (2.14)
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In this equation the Lysmer’s analog wave velocity is used which is equal to VLa =
3.4Vs
π(1−νs) . This velocity is applied instead of the pressure wave velocity to take
into account that a pure compression (wave) velocity Vp is only applicable in
exactly the same direction as the oscillation of the pile [9]. This more realistic
assumption is based on an adjusted Plane-Strain model of Novak [28] where the
radiation field is split up in four planes with shear waves in the perpendicular
planes and ’Lysmer’ waves in the two planes in line with the oscillation. This
model is clarified in figure 2.9.

VLG VLG

Vs

Vs

P&S 
waves

Figure 2.9: Plane-Strain radiational model originally proposed by Novak et al. (left) and
adjusted model by G. Gazetas et al (right)[9]

Note that the part in between the brackets [Qa−0.25
0 ρsVsd] in 2.13 is similar to

a frequency dependent dashpot coefficient c, as for example given in equation
A.1.0 in appendix A.

The total damping (both radiation and hysteretic), or the so called equivalent
damping of the system, can be computed by looking at the area under the force-
displacement loop Wd of the pile-head (the work performed by the damping
force = energy) ;

c(ω) =
Wd

πωy2
max

(2.15)

where ymax is the maximum pile-head displacement.
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Gazetas et al.

A similar, but slightly different approach can be found in other literature, for
instance G.Gazetas [9];

Assume a pile head is subjected to a dynamic lateral load F (t) = F0e
iωt, then

the impedance function of the pile-head can be given by

K + iωC =
F0

yd
(2.16)

where yd is the amplitude of the displacement, K is the equivalent spring stiffness
and C the equivalent dashpot coefficient of the total system. Impedance here
means ’resistance’, so this function is a measure of how much the system opposes
an induced forcing or displacement. The complex nature (the ’i’ in 2.16) of this
function originates from the presence of damping: it causes the induced force
and the resulting displacement to be out of phase. The dashpot coefficient C
here represents the energy loss due to both material and radiation damping.
The equivalent damping ratio D from this impedance function can be computed
by

D =
ωC

2K
=
πfC

K
(2.17)

Instead of modeling the material and radiation characteristics via a hysteretic
spring and frequency dependent dashpot as was done in the previous section,
one can also apply two dashpots: a material and a geometric (radiation) one.
These, together with the springs, can be distributed over the pile length.
The expression for the radiation dashpot coefficient cr is similar to the one in
between rectangular brackets in equation 2.13, so [Qa−0.25

0 ρsVsd]. Though in
this model it is taken into account that the dashpots for the shallow soil depths
are more influenced by surface waves rather than body waves (the shear and
Lysmer waves). Surface waves have lower velocities than shear waves, so the
expression in 2.13 overestimates the dashpot coefficient for shallow regions of
the soil. Instead, for the region up to 2.5× d it is suggested to use

cr = 2(
π

4
)0.75a−0.25

0 ρsVsd for z < 2.5d (2.18)

The material dashpot coefficient cm is dependent on the hysteretic damping
ratio β(z) which in turn is a function of the amplitude of the induced shear
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γe 10−5 10−4 10−3

β 0.02 0.05 0.10− 0.15

Table 2.1: Material damping ratio’s β dependent on strain amplitudes γe

strains in the soil because of the oscillations. If a pile oscillates at a depth z with
an amplitude yd(z), then the average shear strain amplitude can be computed
by

γe(z) ≈
1 + ν

2.5d
yd(z) (2.19)

The relation between damping ratio β and strain amplitude γe is empirically
determined and numerous curves are available. Typical values can be found in
table 2.1.

The material dashpot coefficient can then be computed by

cm ≈ 2k
β

ω
(2.20)

which is quite similar to equation 2.17. The difference here is that this expres-
sion is for a local dashpot which is part of the total distributed dashpot system,
and expression 2.17 concerns the equivalent dashpot coefficient of all the dis-
tributed dashpots together. The relation between this total dashpot coefficient
and the distributed dashpot values is given in equation 2.21. So k in the lat-
ter expression represents the local reaction stiffness of the soil to the induced
deflection according to, for instance, p-y curves.

C =

L∫
0

(cr + cm)Υ2
s(z)dz (2.21)

in which Υs(z) = ys(z)/ys(0) is the static deflection profile normalized to a unit
top amplitude and L the length of the embedded part of the pile.

This model of Gazetas and Dobry was compared to FEM models and gave good
correspondence. Also here the modeled piles were flexible beams; high L/D-
ratio’s, with pile diameters from 0.35m to 1.4m. The question remains if these
models also apply for rigid behavior of piles with small L/D ratio’s as is the case
for the average MP in the offshore wind industry.
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2.4 Current Design Practice and Damping
Determination in the Offshore Wind Industry

In the offshore wind industry, the total damping acting on an OWT is calculated
as the linear summation of the tuned passive sloshing damper in the nacelle,
the aerodynamic damping acting on the rotating rotor and tower, hydrodynamic
damping acting on the MP and transition piece (TP), structural damping in the
entire construction and soil damping. These damping mechanisms are mainly
assessed for the first natural bending frequency of the support structure. The
foundation designer assesses all of these damping influences, except for the
aerodynamic damping which is assessed by the turbine manufacturer.

For the determination of soil damping and these other mechanisms, the founda-
tion designers often apply a calculation method developed by M.F. Cook ([37]
and [6]).

Cook’s method

In this study from 1980, measurements of a single-pile platform in the Gulf
of Mexico with a pile diameter of 2.13m are the basis of the model validation.
In Cook’s method to quantify the soil damping [6], an energy approach is ap-
plied: the total energy dissipated into the soil is linked to a soil material damp-
ing ratio, and the ratio of the soil-dissipated energy to the total energy in the
pile platform is assessed. Cook also neglected radiational damping because of
the low frequencies of excitation of the platform.

First of all a ‘damping capacity parameter’ ψ(z) is introduced which is a rep-
resentation of the material damping ratio specified as the soil strain energy
dissipated per cycle. It is expressed as 4π times ζsmd, which is a constant soil
damping ratio. ζsmd is believed to have a value somewhere in between 3 to
10%.

ψ(z) =
Dz(z)

Uz(z)
= 4πζsmd (2.22)

in which Dz(z) is the energy dissipated per cycle per unit length along the pile,
and Uz(z) is the peak strain energy stored in the soil per cycle per unit length;
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Uz(z) =
1

2
ksoil(z)X

2
p(z) (2.23)

where ksoil(z) is the modeled soil spring stiffness per unit length and Xp(z) is
the peak lateral displacement of the pile. When combining equations 2.22 and
2.23, and if the displacement of the top of the pile is A0 and integrating over
the pile’s length, one obtains the total energy dissipated within the soil, DTS

DTS = 2πζsmdA
2
0

z∫
0

ksoil · ψ(z)dz (2.24)

where ψ(z) is the value of the modeshape at depth z.
Of an equivalent SDOF system the energy loss per cycle because of the soil
damping coefficient Rsoil would be

Deq = πA2
0ωRsoil (2.25)

Now combining equations 2.24 and 2.25 and solving for Rsoil, one gets

Rsoil =
2ζsmd
ω

z∫
0

ksoil · ψ(z)dz (2.26)

Taking the definition of damping ratio given in appendix A into account, expres-
sion 2.26 corresponds to a SDOF equivalent damping ratio of

ζsoil =
ζsmd
Mω2

z∫
0

ksoil · ψ(z)dz (2.27)

With M the modal mass of the structure.
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2.5 Summary & Discussion

In this chapter three types of damping were discussed: viscous, hysteretic and
radiational damping. It is expected that mainly the first two of these are present
in the dynamic soil-pile interaction of a monopile based OWT.

In the second section different damping identification techniques are explained,
with a focus on the Quality (Q) factor technique which is the technique used in
this research. It is thought to be an accurate technique which is relatively fast
and simply applied. The Q-factor technique renders the amount of damping
related to each frequency in a signal.

In the third section, descriptions of two beam-on-Winkler foundation models
from literature were given. In those models an attempt was made to express the
coefficients of the damping dashpots and spring stiffness in soil parameters and
some empirical-derived constants. In those studies, results of the models were
compared with full-scale tests and FEM models, and gave good correspondence.

An important note to these models is that they are developed for slender flexible
bending beams with L/D ratio of greater than 20, while the monopile founda-
tions in the offshore wind industry have L/D ratio’s of L/D smaller than 10
which cause a rather rigid behavior. The phenomena (both stiffness and damp-
ing) in soil-pile interaction occurring with rigid piles is not the same as with
slender piles.

The last section renders the method in which the offshore wind industry cur-
rently assesses the amount of soil damping. The method was developed by M.F.
Cook in 1980, and the paragraph on soil damping from the paper he wrote
about his MSc thesis is the main reference today.

Soil damping values found with this method are low, and both Cook and the
industry acknowledge that the actual values are expected to be higher. They
recommend more research on this topic.

A first step in this further research is done in the next chapters which form
the basis of this research. The results of the offshore field-tests are reported in
the following chapter, and the model that was developed to analyze the mea-
surements is described in chapter 4.



3
Offshore Measurements

This chapter starts with a description of the offshore rotor-stop tests that were
performed. The acquired data is reported, after which the third section renders the
output of the signal analyses: power spectra and identified damping values. The
patterns in the power spectra of the signals are then discussed in the fourth section.
The chapter is closed with a summary and discussion. In appendix D some first
basics in signal analyses and the Fourier Transform are explained. Other studied
offshore test opportunities and a possible roadmap towards the ultimate objective
(see section 1.3.1) are given in appendix F.

3.1 Performed Experiment

After exploring different opportunities for full scale offshore tests that were
possible within Siemens Wind and their business partners, it was chosen to
request performing rotor stop tests on the ’BB16’ OWT structure of the DONG
Energy-owned Burbo Bank (BB) windfarm.
Burbo Bank windfarm is a fully operational farm offshore the west coast of
England close to Liverpool in the Irish sea. It consists of 25 Siemens SWT-3.6
MW turbines with a rotor diameter of 107m. BB16 (or sometimes called A6) is

36
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one of the two OWTs in this farm equipped with strain gauges on the tower and
an accelerometer in the nacelle.

Figure 3.1: Location of the BB16 offshore wind turbine on with which the rotor stops
were performed.

A rotor stop is a relatively low cost test in which the operational turning ro-
tor blades are pitched out of the wind with a relatively fast pitch speed. This
fast pitching (six degrees per second) of a large blade angle causes the rotor
to ‘suck’ itself forward into the wind. This movement and the gyroscopic effect
of stopping the mass of the turning blades makes the nacelle initiate a mainly
fore-aft movement that subsequently damps out (vibrational decrement). It is
this vibrational decrement that is of interest for this research.

It was uncertain how valuable the information yield would be of such an ex-
periment. Since measurement devices are only installed on the structure itself,
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and no soil reaction is directly recorded, the possibility of actually stating some-
thing about the soil-pile interaction might be doubtful.
However, considering the low threshold (only costs of energy-loss due to the
short shut downs, and the fact that the rotor stops are remotely controllable
from the Siemens Wind main office in Brande, Denmark), performing these
tests was seen as an appropriate first step for the roadmap that is described in
appendix F. This appendix also elaborates on other test opportunities.

7 rotor stops were performed during low tide starting at 8:00AM (GMT+1)
on the 29th of October 2010, and another 8 stops were done in the afternoon
starting at 13:10 (GMT+1) of the same day during high tide. Having a tidal dif-
ference between the tests might allow for assessing the difference in damping
of the seawater. Of these 15 tests, 3 tests involved the activation of a mechan-
ical break on the rotor shaft during the final interval of blade pitching. The
data of these tests was not used in this research, as the effect of the mechanical
break was considered to have a disturbing effect on the vibration decrement
of the structure. Effectively 6 useable tests were performed in the morning,
and another 6 during the afternoon. After each stop, about a 13 minute pause
was taken to let the structure reach steady state, damp out and start up the
production again before initiating another stop. Figure 3.2 and table 3.1 give
information of the test turbine, locations of the measurement devices and the
environmental conditions during the rotor stops. In appendix C more details
are given on the measurements.
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Figure 3.2: Schematic view of the OWT ’BB16’ used for the rotor stop.

Wind speed @ nacelle Sign. Waveheight Wind direction Wave direction
Morning 10.96 m/s 0.62 m* 196◦ 158◦∗

Afternoon 19.7 m/s 0.59 m* 202◦ 160◦∗

Table 3.1: Environmental data during the experiment. All numbers with ’*’ are forecasted
data. It has to be noted that the windspeed during the afternoon was con-
siderably higher then this predicted value, so the significant waveheight was
probably higher then 0.59 m.
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3.2 Obtained Data

BB16 is equipped with a PLM (Power Load Monitoring) system which has a
sampling frequency of 25 Hz and has 34 synchronised channels of measured
time signals.

Of these channels, 11 were of main interest for this research:

• the time line

• x- (fore-aft) and y- (side-side) directions accelerations of the nacelle

• x- and y-directions bending moment and the torque (torsional moment)
at tower top

• x- and y-directions bending moment at the tower bottom

• pitch angle of the blades to be able to follow the advancement of the rotor
stop.

• yaw angle of the nacelle (direction in which the rotor is faced), to be able
to determine resulting bending moments.

• windspeed at the nacelle

Figure 3.2 depicts the locations of the strain gauges of the bottom and top lo-
cations. The y-bending moment corresponds with the binding of the structure
about its East-West bounded axis. Likewise, the x-bending is the bending mo-
ment about the North-South directed axis. Documents with more details of the
strain gauges and their location can be found in appendix C. The accelerometer
in the nacelle is fixed to the nacelle which implies that its axes are fixed relative
to the direction in which the rotor is faced, so fixed to the yaw-angle. That
is why the x-direction of this accelerometer always corresponds to the fore-aft
direction motion of the nacelle. Idem for the y-direction corresponding to the
side-side accelerations.

The strain gauges are fixed to the tower having thus fixed axes relative to the
tower. The total bending moment over the dominant axis was determined from
the bending moment signals of x- and y- directions, incorporating the yaw an-
gle. The maximum bending moment mostly exists over the axis perpendicular
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to the rotor direction (yaw angle), as the fore-aft direction of the nacelle is the
main direction of motion after a rotor stop. When mentioning the bending mo-
ment, it is this total moment which is always referred to in this report.

Each of the 12 tests are 10 min records, including a period of production, pitch-
out (which causes the rotor to stop turning), vibration decrement, rotor stand
still with blades in feathering position and pitch-in going back in production.
These regions are shown in figure 3.3. In appendix C an overview of the time
line of the morning test is given. An impression of the time series of the pitch
angle and its effect on the moment at the tower bottom is given in figure 3.3.

blades in feathering 
position

blades pitch in

turbine in production

rotor    
stop

blades in feathering 
position

Figure 3.3: Time series of the last rotor stop during the morning, test nr. 6. The influence
of the pitch angle on the moment in the tower bottom is clearly seen. The red
encircled part is of interest for this research: the decaying fore-aft movement
of the tower.

A zoom-in on the red encircled vibration decrement region, the focus of this
research, is given in figure 3.4.
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Figure 3.4: A zoom in on the red encircled part in figure 3.3 which is of interest for this
research. The red line is the mean value of the first 10 oscillations of the
linearly decaying vibrations after the rotor stop.
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3.3 Data Analyses

In this section, the output of the Fourier analyses will be given, followed by the
damping value results of the Q-factor analyses.

3.3.1 Power Spectra

Figures 3.5 and 3.6 depict the power spectra of the morning test for the fore-aft
acceleration of the nacelle, the side-side acceleration of the nacelle, the bend-
ing moment at the tower top, the bending moment at the tower bottom and the
torque at the tower top. Figures 3.7 and 3.8 show the same for the afternoon
tests.

The power spectra were obtained by taking the absolute value of the Fast Fourier
Transformed (FFT) time signal, and subsequently taking the square of this value.
40.96 seconds of time signal was taken of all the signals (similar regions as in
figure 3.4) which was then multiplied with the Hanning window before per-
forming the FFT. Also, the time signal was zero-padded by adding trailing zero’s
at the end of the time signal in order to increase the resolution of the frequency
response.

Two main frequencies are present in the signal: the first natural frequency with
an average of 0.296 Hz, and a second frequency at 0.825 Hz1.

1The true measurement resolution for the FFT is 0.0244 Hz. Frequency resolution = sampling
frequency / sampling points, with sampling freq.= 25 Hz, and sampling points = 1024 (40.96 sec
time window x sampling freq.). However, the FFT was zero-padded (adding zero’s at the end of the
time window) to increase the frequency resolution
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Morning tests
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Figure 3.5: Power spectra of nacelle accelerations of the six morning tests .
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Figure 3.6: Power spectra of the moments along the tower of the six morning tests.
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Afternoon tests
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Figure 3.7: Power spectra of nacelle accelerations of the six afternoon tests .
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Figure 3.8: Power spectra of the moments along the tower of the six afternoon tests.
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These plots were obtained incorporating the signal processing precautions and
techniques (applying a Hanning Window, Nyquist frequency, folding etc.) as de-
scribed in appendix D. As can be seen in the plots, the energy of the power spec-
tra (y-axis) is not given a dimension. The calibration constants for especially the
acceleration measurements were considered doubtful, and the numerical value
of this energy is not important for the purpose of this research. It is more the
patterns and the relative value that matters.

3.3.2 Damping Assessment

The damping of the measured signals was assessed several times with varying
techniques. As previously stated, the identification of damping is not straight-
forward, and the derivation of the power spectrum, the basis for the applied
damping identification technique (Q-factor), is also not unambiguous. As will
be discussed: there is no one true power spectrum, but rather different versions
that depend on the application of window functions, that are again chosen with
accordance of the goal of the research. In the next two sections, the results of
two damping assessments will be discussed, of which the results of the second
assessment are believed to be more realistic values for the damping that we are
in search of: the effective equivalent viscous damping after a rotor stop excita-
tion. The difference between the two assessments lies in the different approach
of deriving the power spectrum.

Damping results of Hanning-windowed sections of 41 seconds length

From the acquired power spectra (as described and depicted in the previous
paragraph §3.3.1), the damping was identified of the first two frequencies of all
signals using the Q-factor technique. The application of the Q-factor technique
is explained in §2.2.

The results of these analyses are summarized in the table shown in figure 3.9.
The detailed results of all tests are given in appendix E.
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Average Frequency 
[Hz]

Average damp ratio ζ   
[%] of crit.

Av. overall 
Freq.

Av. overall 
Damp ratio ζ   

[%] of crit.

Log decr  
[%]

Acc      1st 0.302 6.309

Mtop   1st 0.295 6.120

Mtor    1st 0.294 5.973

Mbot   1st 0.294 6.138 0.296 6.135 38.62

Acc    2nd 0.772 2.338

Mtop  2nd 0.880 2.115

Mtor   2nd 0.776 2.857

Mbot  2nd 0.873 2.181 0.825 2.372 14.91

∆   = 3.762 23.66Difference in damping between two main frequencies:

Figure 3.9: Average frequencies and corresponding damping of the different signals of all
tests. These values are again averaged, to derive the average difference in
damping between the two measured frequencies.
Only the fore acceleration is assessed, Mtop indicates the bending moment
at the tower top, Mtor the torque at tower top, and 1st and 2nd refer to the
1st and 2nd frequencies.

The identified damping values proved to be insensitive to shifting the time win-
dow of investigation (as red-encircled in figure 3.3). The found values for damp-
ing for pitch-out angles of 40 degrees (not entirely pitched out) were not gen-
erally more nor less than over a time window starting at pitch-out angle of 80
degrees (entirely pitched out, see figure 3.3 for better understanding).

The average bandwidth (deviance) of these averaged damping values over all
tests was ± 7.5%. To evade ambiguity: a percentage of a percentage is meant
here. The damping percentages of all tests deviated with an average of ± 7.5%
of the average value given in the table of figure 3.9.

The influence of the tidal difference is not reflected in the identified damping
values. Although some extra hydrodynamic damping might be expected, the
damping values were found to be even slightly lower in the afternoon during
high tide (2.3m difference with respect to the morning tests). The hydrody-
namic damping seems to be of minor significance as compared to other mecha-
nisms that are active in the damping of this structure. The expected magnitude
of the hydrodynamic damping is discussed in chapter 4.

These acquired damping values have been derived with non-normalized power
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spectra. Normalizing a power spectrum of a measured signal is not very straight-
forward. However, after having normalized part of the power spectra, the found
damping values were usually higher, with a maximum deviation of 5% of the
found values in the depicted table (the non-normalized values). So the here
presented values could be seen as a lower limit.

Damping results of Rectangular windowed first linear decaying cycles

However, the given values in figure 3.9 are most likely overestimates of the
actual present damping directly after the rotor stop, because of the following
three reasons.

First of all, note that the here presented damping values have been identified
on power spectra of a 41 seconds long-time window that was multiplied with
a Hanning window. However, a dependency exists of the shape of the power
spectrum on the amount of periods (cycles) of vibrations that are incorporated
in the analyses. This is caused by the fact that the pure Fourier transform is
meant to be performed on an infinite time signal, and in practice we only incor-
porate an N amount of periods that we transform to the frequency domain. It
can be proven that in doing so, the peak of a frequency ω in a power spectrum
is underestimated with an amount of

e
−2Nπ(ζω+iΩ)

ω
√

1−ζ2 (3.1)

times the theoretical value of a power spectrum (PS) when derived from an
infinite time series, which is given by

PS = |A ω
√

1− ζ2

ω2 − Ω2 + 2iΩωζ
|2 (3.2)

with Ω the running frequency along the x-axis of the spectrum, A the amplifica-
tion giving the height of the peak and ω the central frequency of the frequency
in question. So the total analytical description of the corrected (for only incor-
porating N amount of periods) peak in the power spectrum derived from a finite
time series is given by

PS = |A ω
√

1− ζ2

ω2 − Ω2 + 2iΩωζ
|2 · |1− e

−2Nπ(ζω+iΩ)

ω
√

1−ζ2 |2 (3.3)
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So if this factor is not incorporated in shaping the power spectrum of the finite
time series, the peaks of the frequencies are depicted lower than they are in
reality resulting in an overestimation of the damping values with the quality
factor technique. This is the case for the damping values given in figure 3.9.

Secondly, apart from this factor, in this case also the timing and length of the
selected time window has an influence on the eventual identified damping mag-
nitude. First again the length: windows of 41 seconds have been taken for the
identification. Further inspection on these windows indicate non-linearities to
be seen in these time windows: only the first few periods (5 to 10 cycles) af-
ter the full rotor stop have a linear decaying trend. After these periods, the
time series indicate a possible influence of another excitation of the structure or
some other non-linearity. The 41 second-long time window cover both these lin-
ear decaying vibrations as the latter disturbances and non-linearities. Because
of this reason, identifying the damping over this window will yield a different
value than the linear equivalent viscous damping which is sought for in this re-
search.

Last but not least, as mentioned, the Hanning window function has been applied
on the time windows before taking the FFT. Application of the Hanning window
yields a clean power spectrum without noise and spectral leakage. The peaks of
the dominant frequencies are correctly depicted, both height and location-wise
(location of the center frequency). However, the Hanning window does amplify
the width of these peaks. This fact results in higher identified damping values
when using the Q-factor technique. An assessment on the overestimating effect
caused by the Hanning window on a modeled signal, indicated an overestima-
tion of about 7 - 10% of the actual damping value. More explanation for the
motivation for applying a window function and its effect is given in appendix D.

A further assessment was performed on tests 5 and 4 incorporating these three
effects and measures (an analytical correction for taking a finite time record,
only assessing the first few linear decaying cycles after the rotor stop and not
applying a Hanning window function, but simply a rectangular window (which
corresponds to not applying any window function)). Tests 5 and 4 are charac-
terized by having frequency and damping values that are close to the average
values of all tests presented in figure 3.9.

Figure 3.10 depicts the frequency domain assessment on the first 6 oscillation
cycles after the rotor stop of the bending moment at tower bottom of test 5.
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Only the first natural frequency is present at the bottom of the tower. A 3 %
damping ratio fit gives best correspondence. This is confirmed by figure 3.11
in which time domain logarithmic decrement fits are depicted for this signal. It
can be concluded that 3 % damping ratio is a good estimate for this time section
of the signal.
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Figure 3.10: Measured and analytical fitted power spectrum for first 6 cycles of the bend-
ing moment at tower bottom for test 5. Only the first natural frequency is
present in this signal at the tower bottom. The fit with 3% damping ratio
is found to be the closest fit.
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Figure 3.11: Measured time response of first 6 cycles of the bending moment at tower
bottom for test 5. The same fitted damping ratio’s are plotted as logarithmic
decrement. Again, the 3% damping ratio is found to be the best fit. The
first natural frequency clearly dominates the time response.

To assess the second frequency, the signal of the bending moment at the tower
top is analyzed. Figure 3.12 depicts good fits for the first natural frequency of
again 3% and 1.6% for the second frequency. It considered not to be valuable to
fit a logarithmic decrement on a signal which is dominated by two frequencies,
so that is why in figure 3.13 only the time response is given of the signal that
was used for deriving this power spectrum.
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Figure 3.12: Measured and analytical fitted power spectrum for first 7 cycles of 1st natural
frequency and 21 cycles for the second frequency of the bending moment at
tower top for test 5.
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Figure 3.13: Time series taken for deriving the power spectrum for the first 7 cycles of
1st natural frequency and 21 cycles for the second frequency of the bending
moment at tower top for test 5.

Similar analyses plots for test 4 can be found in appendix E. A summary of the
results of these assessments on the initial vibrations of test 4 and 5 are given in
figure 3.14.
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Frequency 
[Hz]

Damp ratio ζ   
[%] of crit.

Log decr  
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Frequency 
[Hz]

Damp ratio ζ   
[%] of crit.

Log decr  
[%]

Mtop   1st 0.293 3 18.86 0.292 3 18.86

Mbot   1st 0.293 4 25.15 0.292 3 18.86

Mtop  2nd 0.877 1.5 9.43 0.883 1.6 10.05

∆   ≈ 1.5 9.43

Test 4 Test 5

Difference in damping between two main frequencies:

Figure 3.14: Damping values of rectangular windowed initial vibration cycles of tests 4
and 5. These vibrations are characterized by a linear decay pattern with low
relative influence of other disturbances.

The identified damping values that are presented here are in the same order as
those found in a previous research of LAC engineering in 2009, [30] which was
performed on the same test turbine (BB16). The values that were identified in
that research were in the range of 11 to 17 % log. decr. (1.75 - 2.71 % ratio
of critical) for the first fore-aft bending frequency. This was identified using the
Hilbert Transform technique on the time-series of 4 rotor stop experiments.

Recommended Value

Based on the previous discussion on the influences of different signal process-
ing aspects and the dependancy of the time-region taken for analyses, the values
found with the second presented analyses are expected to be more representa-
tive for the damping of the initial 5 to 7 vibration cycles after a rotor stop. These
time regions seem to be dominated by linear decaying oscillations, with relative
low influence of other disturbances or non-linear influences. This yields the
opportunity to identify the equivalent linear viscous damping of the vibrations
induced by a rotor stop. The magnitude of this damping is given in figure 3.14.
These magnitudes are representative for all tests, as the values of tests 4 and
5 are close to the average values of all 12 tests. Summarizing it is stated that
the first natural bending frequency is damped with 3% ratio of its critical
damping, and the second present frequency with 1.5% of critical. The dif-
ference in damping between the vibrations at these two frequencies is thus
1.5%.



Patterns in Signal Output 55

3.4 Patterns in Signal Output

When looking at the depicted power spectra, some main phenomena are notice-
able, which in turn give rise to some questions.

• Every sensor/location shows the first natural frequency at an expected
position; 0.296 Hz is within the usual frequency bandwidth of the first
bending frequency of such a tower and top mass. However, the frequency
of the second bending mode2 of a beam is as a rule of thumb at least a
factor 4 higher than the first. So if the first natural frequency would be
found at 0.29 Hz, the second bending frequency would be expected to
be found at no lower than 1.2 Hz. Nevertheless, a second resonant fre-
quency is present at 0.825 Hz. This cannot be associated with the second
bending mode, therefore giving rise to question what causes this second
resonant frequency? What motion is associated with it?

• The second frequency is only present at the top of the structure (Ac-
celeration nacelle, bending moment tower top, torque tower top)

• This second frequency is always present in side-side acceleration of the
nacelle, less so in Fore-Aft directed acceleration.

• This second frequency is always present in the Bending moment at the top
during the morning, little so during the afternoon.

• A third peak exists in the measurements at 1.213 Hz. This can be seen in
the side-side acceleration power spectrum in the lower plot of figure 3.5,
but is more noticeable in the logarithmic plot for the side-side acceleration
measured in test 2 shown in figure 3.15. This third peak is expected to
correspond to the second natural bending frequency and modal shape.

2Every natural frequency has its associated modal shape (or vice versa): the way the entire
structure moves. More is explained in section 4.3
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Figure 3.15: Logarithmic plot of power spectrum of side-side nacelle accelerations of the
test 2. The third peak corresponding to the second natural bending fre-
quency can be clearly seen (1.213 Hz).

When interpreting the outcome of the damping identification given in figure
3.9, the main question is

• Why is the second measured resonant frequency damped much less than
the 1st natural frequency?

The combination of these trends and associated questions, raises the following
question:

• What possibilities give these phenomena for the determination of the con-
tribution of soil on the total damping of this structure?
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3.5 Summary & Discussion

This section contains a summary that sums up what has been covered in this
chapter and states the damping results. In the Discussion part, some more
facts are stated that are then also interpreted, yielding possible causalities for
patterns in the power spectra and the identified damping.

3.5.1 Summary

This chapter discloses the type of offshore tests that were performed and data
that was acquired.

The power spectra of the fore-aft vibration decay recorded on different loca-
tions on the structure are depicted, and the results of damping analyses are
summarized. Two damping assessment approaches were applied. The main
difference between these approaches was the application of a window function
and the length of the time signal to derive the power spectrum.

The found damping values of the analyses on only the first few linearly de-
caying vibration cycles without the use of a window function are found to be
most representative for the equivalent viscous damping present on the vibra-
tions of an OWT after a rotor stop. These identified damping values are quite
high: 18.86% log. decr. (3% ratio) for the first natural bending frequency, and
9.43% log. decr. (1.5% ratio) for the blade frequency. A large difference (a ∆ of
9.43% log. decr.) in damping exists between the two main measured frequen-
cies. The appraisal of the average measured damping value for the first natural
frequency of almost 18.86 % log. decr. becomes more vivid in contrast to the
2.5 % log. decr. that was used to design the BB16 structure at the time. This
2.5 % was taken as the total damping without aerodynamic damping, which
is basically the situation after a rotor stop after which the measurements were
performed: the aerodynamic damping for completely pitched-out blades (idling
position) is considered to be negligible. It has to be noted that nowadays (5
years later) larger values in the range of 6 to 8% log. decr. are applied for this
damping are applied

The patterns in the depicted spectra and the large difference in damping value
between the two frequencies give rise to some questions.
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3.5.2 Discussion

Modal frequency of the blades

All records depict the first natural tower bending frequency at an expected
value of 0.296 Hz. The second main frequency present in the signals has an
unexpected center frequency of 0.825 Hz. The second main frequency for a
tower (beam)-dominated structure would be expected to be associated with the
second bending mode of the beam. The second bending mode of a beam (de-
pending on its boundary conditions3) has a frequency of at least 4 times the first
bending frequency. A closer look at the power spectra do indeed reveal a third
peak at 1.213 Hz, which is expected to be associated with the second bending
mode.

Also, this second identified resonant frequency seems to be localized at the top
of the structure; only the nacelle accelerations and strain gauges at the top of
the tower are associated with it.

Finally, the motion of this frequency is more side-side than fore-aft directed,
as can be interpreted from the power spectra of the nacelle accelerations in
these directions. Also the presence of this frequency is less pronounced during
the afternoon than in the morning.

Considering these 3 phenomena, this second frequency is expected to be asso-
ciated with modal frequencies of the rotor blades.

More explanation and justification for this statement is given in the next 4 para-
graphs.

The blades are excited by the fast pitching over a large pitch angle. This causes
a dominant forcing in the side-side direction of the nacelle. The main differ-
ence between morning and the afternoon test was the difference in wind speed.

3Boundary conditions are the conditions at the edges of a system; whether for instance the
bottom of a tower is clamped (fixed for bending moment, horizontal and vertical movement) or if
it has a top mass.
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The wind speed in the morning, 10.96 m/s, was below nominal speed4 for the
turbine (13-14 m/s). In the afternoon the wind speed went up to 19.7 m/s,
forcing the turbine to already partly pitch out its blades to reduce loads on the
structure. The pitch-out angle for the rotor stops in the morning was about 82◦,
and 65◦ in the afternoon. This smaller difference in pitch angle (∆ pitch) in
the afternoon induces a lower excitation to the blades (despite the higher wind
speed).

The vibration of the blades causes the top parts of the structure (nacelle and
tower top) to vibrate. It is expected that a localized mode shape is present at the
top of the structure. The transmittal of the motion of the blades to the lower part
of the structure is limited, only the top part of the structure is excited.

More study on the B52 (52 meters long) blades this test turbine confirmed that
their natural frequencies of 0.78 Hz is indeed closely located to the average
measured frequency of 0.825.

Also Siemens’ BHawC aero-elastic design model was consulted and simulations
confirmed blade dominated trapped modes at the top of the structure with
closely spaced frequencies at 0.783 Hz, 0.790 Hz and 0.835 Hz. This again
is confirmed by the small spreading of frequencies between the tests that can
be seen in the power spectrum of the torque at the tower top in figures 3.6 and
3.8.

Damping caused by the soil pile interaction

The existence of these two different main modal shapes in the signal yields
an opportunity to assess the influence of soil on the total damping of the struc-
ture. This is discussed in the next paragraphs.

The large difference in damping between the first natural frequency and this
resonant frequency is remarkable, but by investigating the vibrational behavior

4A turbine has a nominal speed at which it starts producing its maximum design power output
(in this case 3.6 MW). If the wind speed increases beyond this speed, the blades are partly pitched
out according to the increase of wind speed with respect to the nominal speed. This ensures that
the loading from the blades on the structure does not surpass the design loads. If the wind speed
increases beyond ’cut-out’ speed (25 m/s for this SWT 3.6 MW), the blades are fully pitched out to
idling position, and the turbine stops operation.
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of the entire structure that is associated with these frequencies, this difference
in damping might be understood.

Where the first natural bending frequency has a mode shape with horizontal
motion over its full height, with increasing amplitude from bottom to top (this
mode shape is depicted in the next chapter in §4.3), the mode of the second
resonant frequency has its main (both displacement and velocity-)amplitudes
at the top of the structure. This implies that the different damping mechanisms
cannot have the same influence on these different modes.

The main difference in possible contribution is expected to be associated with
the soil; amplitudes caused by the blade-modes are small in the lower part of
the structure at mudline. Because of this, the damping mechanisms working
in this lower part of the structure (structural, hydrodynamic and soil damping)
have negligible magnitude. Hydrodynamic and structural damping in general
cause low damping ratios (in the order of respectively 0.18 and 0.22 % ratio of
critical for the first bending mode5), so that is why

the difference in measured damping between the two frequencies is mainly at-
tributed to the difference in possible soil contribution.

This difference of 9.43 % log. decr. (1.5 % ratio) indicates an order of mag-
nitude for the amount of soil damping in soil-pile interaction on the motions
associated with the first natural bending frequency. Apart from a global op-
posed to local dominance of the motions of the two main frequencies, the mode
shapes of these frequencies are similar: the OWT structure is shaped in the first
natural bending mode at these two frequencies. This is shown in figure 4.6 in
chapter 4. The order of magnitude for this soil damping applied in the offshore
wind industry today lies in the region of 0.44 % log. decr.6 (0.07 % ratio) for
the first natural frequency.

The influence of the timing of the time window taken for analyses on the damp-
ing that is subsequently identified, can possibly indicate the presence of non-

5These damping values are averages from industry design documents of comparable designs
based on M.Cook’s method [37] and a literature example reference case [11]

6This is an example value taken from an industry foundation design document.
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linear damping mechanisms in soil-pile interaction. One expected factor of in-
fluence is the reaction caused by pre-stressed soil: during high wind and wave
loads on the structure in a certain direction, the soil is pre-stressed in that direc-
tion. The (homogeneous) soil will react differently than in situations with lower
environmental loads coming from other directions. Different amplitudes of dis-
placement cause different damping magnitudes. If the time window is shifted
up or down the time-line of the signal, different damping values are identified.
So stating one certain general damping value is in that case not possible: it is
related to the magnitude of displacement of the OWT structure. In this respect
we can ask ourselves if the damping of the vibrations after a rotor stop is as
relevant as that of the vibrations occurring during production of the turbine.
After all, the OWT is designed to be in production during most of its lifetime.

In the assumption of relating the difference in damping between the two fre-
quencies to be caused by the soil, it has to be noted that a part of the experi-
enced damping is frequency-dependent, so stating that the difference in mea-
sured damping is exactly equal and due to soil damping is not strictly correct.

The damping caused by the passive sloshing damper is another effect limiting
this statement. The sloshing damper is tuned to only damp the motions corre-
sponding to the dominant first natural bending frequency with a ratio of 0.32
% of critical, for motions of the turbine when it is in production. The damping
influence the slosher has during a vibrational decay as in the measurements is
not known in this research, but it will surely have an effect on both frequencies.

In this chapter some first main conclusions and assumptions have been stated.
To further analyze and possibly confirm these assumptions, a model has been
developed to simulate the response of BB16. The next chapter gives a detailed
description of this model.



4
Modeling the Support Structure

Where chapter 2 discussed developed models from literature for soil-pile interac-
tion, and chapter 3 described measurements on an actual monopile based-offshore
wind turbine, this chapter describes the developed analytical model and its output
for this research. The included features are discussed and the governing equations
are explained and solved. The second section discusses the way the model was im-
plemented; what values were used for the variables in the model and why. The
output of the model is depicted in various figures in the third section; the frequency
equation giving the modal frequencies is plotted, followed by the modal shapes of
the first 4 frequencies and finally the responses of the model in both frequency and
time domain are depicted. The final section recapitulates and relates the content of
the chapter in the form of a summary & discussion.

The presented model is the product of a development trajectory, of which this final
model was considered to be adequate for the purpose of this research. Appendix G
describes one of the predecessing models, and appendices H and I provide further
supporting material for this chapter.

62
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4.1 Constrained Beam Model

To be able to analyze the measured data properly, a modeled response is created
by simulating a strongly simplified rotorstop on a continuous analytical model.
The developed model used to represent the BB16 OWT can be seen in figure 4.1.

The ’Euler-Bernoulli’ approach of modeling the bending of a beam is used to
derive the equation of motion and conditions for this constrained beam. For the
derivation of these expressions of the bending of an Euler-Bernouilli beam, the
reader is referred to literature, for instance [16] or [27].
The model is seen as a constrained beam, because it is not clamped or pinned at
one of its ends, but rather a free-free beam which is constrained by significant
stiffness and damping at its soil-embedded part.

In the next subsections, a description of the aspects in the model is given, fol-
lowed by the equation of motion, the initial-, boundary- and interface condi-
tions. The final subsection describes how these governing equations can be
solved to find the modal shapes with their frequencies, the natural frequencies
of the system and the frequency response.
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Figure 4.1: Extended model used to represent the performed rotor stops. xwl =
12.5meter was the mean sealevel (waterline) during the tests.
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4.1.1 Aspects of the Model

This section explains and refers to the graphical representation of the model
which is depicted in figure 4.1. It discusses all the facets of this model from the
bottom upwards.

The entire length of the support structure (from monopile tip under mudline
up to tower top) of the BB16 turbine is modeled as a beam constrained in the
soil by distributed springs with stiffness ks, and damping dashpots, Cs repre-
senting respectively the soil stiffness and damping.

At the pile tip (22m under mudline) an extra stiff spring, kt, is included to
incorporate the extra stiffness of this transition and the extra shear force that is
generated at the lateral sliding pile tip cross-sectional surface.

Further in the soil-embedded part of the beam, added mass of the seawater
and the soil pile plug (Ma,w+s) is incorporated. The soil pile plug is formed
during the piling of the monopile: the hollow inside is filled with soil up to a
height at which the total shaft-friction on the inside of the pile becomes larger
than the pressure force on the full (solid) surface area of the cross-section at the
pile tip.

The beam has a bending stiffness per unit vertical length of EIzz or simply
EI, with E the Young’s modulus of the applied construction steel, and Izz

1 the
average moment of inertia, or more correctly the second moment of area, incor-
porating the average cross-sectional surface areas of the steel and grout of the
MP, grouted connection, TP and tower.

The mass of the beam is ρA in which ρ is the unit weight of the construc-
tion steel, and A the average cross-sectional surface area of the steel along the
height of the structure (as described here above for the moment of inertia).

From mudline up to water surface, the effect of the seawater is incorporated
by hydrodynamic damping, modeled by distributed dashpots with coefficient
Cw, and added mass of the water, Ma,w.

The structural damping that can be expected in the construction materials in

1The ’zz’ subscript of Izz indicates that it concerns the bending moment of inertia around the
z-axis (see figure 4.1).
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the entire structure is included as an extra dashpot coefficient-value in the dis-
tributed soil damping Cs, and water damping Cw (not depicted in figure 4.1).

At the waterline, the extra mass of the grouted connection (an overlap of the MP
and TP of 7.55m with a 83mm thick grout layer between them) is modeled as a
point mass, mcon. To simplify finding the mathematical solution of this model,
the center of gravity of this mass is layed on the interface level at the waterline.
In reality this center of gravity is situated 2.2m lower, but this difference is not
expected to have major influence in the model’s behaviour.

The nacelle is modeled as a point mass, mtop, having a mass moment of in-
ertia, Jzz or simply J.

At the nacelle a dashpot, Ctop, is included that represents the passive sloshing
damper which is installed in the nacelle of BB16. The aerodynamic damping
after a rotor stop with blades pitched out of the wind is considered to be negli-
gible.

The rotor with blades attached to the nacelle is modeled by an auxiliary mass-
dashpot-spring system having a point-mass, mbl, equalling the mass of the three
blades, a blade stiffness, kbl, and a damping dashpot, Cbl.

A frequency response as that of the measured tests can only be modeled by
including this blade system. If this is not included, it is impossible to get the
second resonant frequency as closely located to the first frequency as is the case
in the measurements. See the discussion on second bending mode frequen-
cies in section 3.4 and 3.5. Without this auxiliary system, the second resonant
frequency of the system would be the second bending modal frequency of the
beam, which has a frequency which is at least a factor 4 higher than the first
natural bending frequency.

The rotor stop is modeled in a simplistic way by giving the rotor an initial ve-
locity V0.

Finally also the compressional force in the beam because of the weight of the
rotor-nacelle-assembly (RNA) and the weight of the beam itself is modeled as a
pressure force T. T is simplistically modeled as having three different constant
values for three regions of the beam: T1 is the average pressure force in the
top part of the beam up to waterline. This part of the beam is thus modeled
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as being subject to this average pressure force, T1. The same applies for T2

for the water-submerged part of the beam from waterline up to mudline. The
decreasing effect of the buoyancy force of the water is incorporated in this av-
erage pressure force. In the pressure force for the soil-embedded part, T3, the
decreasing effect of both the water buoyancy force as the soil shaft friction, qs,
on the MP are included.

The values for all the applied physical variables are given in section 4.2 and
appendix H.

4.1.2 The Governing Equations

The model presented in the previous subsections can be described with an equa-
tion of motion (EOM), the initial conditions, the conditions at the boundaries of
the beam, and by the conditions at the interfaces between two subsequent sec-
tions of the beam. These sets of equations are called the governing equations.
These are all mathematically described and explained in this subsection. The
variables in these equations are all described in section 4.1.1.

The beam-model is split up in three parts, see figure 4.1;

1. The soil-embedded part from the pile tip at x=-22 m to x=0 m at mudline

2. The water submerged part from mudline up to watersurface at x=12.5m

3. and a top part from waterline up to nacelle height at x=94.98m.

The horizontal displacement of these three parts are respectivelyw1(x, t), w2(x, t)
and w3(x, t). This seperation is included to simplistically incorparate the fact
that the values of the terms in the here presented EOM (m(x), T (x), C(x) and
ks(x) in eq’s G.3 to 4.6) vary along the height of the beam. The method used
to solve the subsequent governing equation, requires the values of the terms in
the EOM to be kept constant over the length of these three distances. This gives
the EOM the following form:
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The Equation of Motion

EI
∂4w(x, t)

∂x4
+m(x)

∂2w(x, t)

∂t2
+ T (x)

∂2w(x, t)

∂x2
(4.1)

+C(x)
∂w(x, t)

∂t
+ ks(x)w(x, t) = 0

where

w(x, t) =

 w1(x, t) xtip < x < 0
w2(x, t) 0 < x < xwl
w3(x, t) xwl < x < L

(4.2)

m(x) =

 m1 = ρA+Ma,w+s xtip < x < 0
m2 = ρA+Ma,w 0 < x < xwl
m3 = ρA xwl < x < L

(4.3)

T (x) =

 T1 xtip < x < 0
T2 0 < x < xwl
T3 xwl < x < L

(4.4)

C(x) =

 C1 = Cs xtip < x < 0
C2 = Cw 0 < x < xwl
C3 = 0 xwl < x < L

(4.5)

ks(x) =

 ks,1 = ks xtip < x < 0
ks,2 = 0 0 < x < xwl
ks,3 = 0 xwl < x < L

(4.6)

The Initial Conditions

As a rotor stop is a complex excitation force to model, it was chosen to give
an initial velocity, V0 to the auxiliary rotor mass, mbl, of which the horizon-
tal motion in time is described with U(t). The system is not given any initial
displacements, and also the initial velocity of the beam equals zero. In mathe-
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matical form, this is stated as:

w(x, 0) =
∂w(x, 0)

∂t
= 0 (4.7)

u(0) = 0 (4.8)
∂u(0)

∂t
= V0 (4.9)

The Boundary Conditions

The boundary conditions of this model are as follows:

EI
∂3w(xtip, t)

∂x3
+ ktw(xtip, t) + T

∂w(xtip, t)

∂x
= 0 (4.10)

EI
∂2w(xtip, t)

∂x2
= 0 (4.11)

EI
∂2w(L, t)

∂x2
+ J

∂3w(L.t)

∂t2∂x
= 0 (4.12)

EI
∂3w(L, t)

∂x3
+ T

∂w(L, t)

∂x
−mtop

∂2w(L, t)

∂t2
− Ctop

∂w(L, t)

∂t
(4.13)

= kbl(u− w(L, t)) + Cbl
∂(u− w(L, t))

∂t

mbl
∂2u

∂t2
+ kbl(u− w(L, t)) + Cbl

∂(u− w(L, t))

∂t
= 0 (4.14)

The structure is constrained at its bottom tip by a horizontal translational spring
kt to incorporate the extra shear force that is generated at the lateral sliding pile
tip cross-sectional surface. At this tip, a shear force equilibrium must exist with
the pressure force T, and the bending stiffness EI of the beam. This condition is
given in the first boundary condition (BC) of eq. 4.10.
Also, this tip of the pile should be bending moment-free, as stated in eq. 4.11.

The top free end of the beam is conditioned by the fact that the resulting bend-
ing moment (eq. 4.12) and shear force (eq. 4.13) should equal zero. The
bending stiffness EI, the compressional force T, the inertia of the nacelle asso-
ciated with mtop, the damping force associated with Ctop and the forces of the
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auxiliary spring and dashpot, kbl and Cbl, should be in shear force equilibrium.

Lastly, the fifth BC gives the equation of motion of the auxiliary system rep-
resenting the blades with their mass, stiffness and damping.

The Interface Conditions

As the horizontal motion of the beam is described by three motions (eq. G.2),
two sets of interface conditions are pertinent. The first set at location x=xml=0
being:

w1 − w2 = 0 (4.15)
∂w1

∂x
− ∂w2

∂x
= 0 (4.16)

∂2w1

∂x2
− ∂2w2

∂x2
= 0 (4.17)

EI(
∂3w1

∂x3
− ∂3w2

∂x3
) + T1

∂w1

∂x
− T2

∂w2

∂x
= 0 (4.18)

These equations from top to bottom state that respectively the displacement,
the slope, the moment (bending) and the shearforce in the lower part (w1) and
the upper part (w2) at the interface are equal.

Analogously at location x=xwl=12.5, the following interface conditions apply:

w2 − w3 = 0 (4.19)
∂w2

∂x
− ∂w3

∂x
= 0 (4.20)

∂2w2

∂x2
− ∂2w3

∂x2
= 0 (4.21)

EI(
∂3w2

∂x3
− ∂3w3

∂x3
) + T2

∂w2

∂x
− T3

∂w3

∂x
= mcon

∂2w2

∂t2
(4.22)
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4.1.3 Solving the Problem in the Frequency domain

The above stated time-dependent governing equations will be solved in the fre-
quency domain. To do so, the equations have to transformed to the frequency
domain by either a Fourier or Laplace transform. Because of the presence of
initial condition, the Laplace transform is applied.

In the next paragraphs a brief explanation of the Laplace Transform is given,
followed by its application on the governing equations and the derivation of the
solution.

The governing equations of this model can also be solved in the time domain.
When interested in this technique, the reader is refered to appendix G, where a
similar model is solved in the time domain.

The Laplace Transform

The Laplace transform is very similar to the Fourier Transform, and going into
detail about their differences is beyond the scope of this report. Though worth
mentioning is that when dealing with initial conditions, preference is given to
the Laplace Transform. Where the Fourier transform (usually) integrates a func-
tion from minus infinity (−∞) to plus infinity (+∞), the unilateral Laplace
transforms the function (which is often a function of time) from 0 to +∞.

If the original function is f(t), its Laplace Transform, F̃ (s), is defined as

F̃ (s) = Ł{f(t)} =

∫ ∞
0

f(t)e−stdt (4.23)

In literature, Laplace transform tables can be found, which give general prop-
erties of the transform. For this case the following list is of concern, where the
original function is given on the left hand side, and its Laplace transform on the
right hand side of the arrow:

f(t) =⇒ F̃ (s) (4.24)

ḟ(t) =⇒ sF̃ (s)− f(0) (4.25)

f̈(t) =⇒ s2F̃ (s)− sf(0)− ḟ(0) (4.26)

where f(0) is the initial condition/value of the original function at t=0, and ḟ(0)
is the value of the first derivative to time at t=0 of the original function f(t).
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These expressions can be obtained by using the given definition of the Laplace
transform and using integration by parts, or using the general formulation that
is given by;

fn(t) =⇒ snF̃ (s)− sn−1f(0)− ...− fn−1(0) (4.27)

Shifting to the Frequency domain

The Laplace transform is applied on the above stated governing equations, with
the opperator s in eq. 4.27 equal to −iωt. Doing so for the EOM of eq. 4.2, we
get for the bottom part described by w1(x, t):

EIW ′′′′1 −m(x)ω2W1 + T (x)W ′′1 + iωCsW1 + ksW1 = 0 (4.28)

the middle part described by w2(x, t):

EIW ′′′′2 −m(x)ω2W2 + T (x)W ′′2 + iωCwW2 = 0 (4.29)

and the top part described by w3(x, t):

EIW ′′′′3 −m(x)ω2W3 + T (x)W ′′3 = 0 (4.30)

Doing the same for the boundary and interface conditions, we get:

EIW ′′′1 (xtip) + ktW1(xtip) + TW ′1(xtip) = 0 (4.31)

EIW ′′1 (xtip) = 0 (4.32)

EIW ′′2 (L)− ω2JW ′2(L) = 0 (4.33)

EIW ′′′2 (L) + TW ′2(L) + ω2mtopW2(L)− iωCtopW2(L) (4.34)

−kbl(U −W2(L))− iωCbl(U −W2(L)) = 0

mbl(−ω2)U + kbl(U −W2(L)) + iωCbl(U −W2(L)) = mblV0 (4.35)
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In this last boundary condition (4.35), the Laplace transform properties given in
equations 4.25 to 4.26 and the initial conditions of equations 4.7 to 4.10 have
been used. For reasons of simplicity, the dependancy of U and W on s(= iω) is
not depicted here.

Doing the same for the interface conditions at location x=xml=0:

W1(xml)−W2(xml) = 0 (4.36)

W ′1(xml)−W ′2(xml) = 0 (4.37)

W ′′1 (xml)−W ′′2 (xml) = 0 (4.38)

EI(W ′′′1 (xml)−W ′′′2 (xml)) + T1W
′
1(xml)− T2W

′
2(xml) = 0 (4.39)

and the interface conditions at location x=xwl=12.5:

W2(xwl)−W3(xwl)= 0 (4.40)

W ′2(xwl)−W ′3(xwl)= 0 (4.41)

W ′′2 (xwl)−W ′′3 (xwl)= 0 (4.42)

EI(W ′′′2 (xwl)−W ′′′3 (xwl)) + T2W
′
2(xwl)− T3W

′
3(xwl) (4.43)

+ω2mconW2(xwl)= 0

Finding the Solution

In this section the general solution for the location-related part W(x) is sought,
which is then substituted in the governing equations to find the undamped nat-
ural frequencies of the modal shapes. Once these are found (to be correct),
the damped natural frequencies of the system can be found by including the
damping influences, yielding the frequency responses and the corresponding
damping of the system. This all is done in the next paragraphs.
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For W(x) we now presume the form W (x) = eiβx. Using this in the acquired fre-
quency domain expressions for the EOM (equations 4.28 and 4.30) and dividing
by eiβx, we get the characteristic equations for the bottom part:

EI βbot
4 −m1 ω

2 − T1 βbot
2 + iωCs + ks = 0 (4.44)

for the middle part:

EI βmid
4 −m2 ω

2 − T2 βmid
2 + iωCw = 0 (4.45)

and for the top part:

EI βtop
4 −m3 ω

2 − T3 βtop
2 = 0 (4.46)

This yields us three times four relations for the βs.

For the βs of the embedded part at the bottom we get;

βbot,1 =
1

2

√
−2EI(−T1 + i

√
−T 2

1 − 4EIm1ω2 + 4iEICsω + 4EIks)

EI
(4.47)

βbot,2 = −1

2

√
−2EI(−T1 + i

√
−T 2

1 − 4EIm1ω2 + 4iEICsω + 4EIks)

EI
(4.48)

βbot,3 =
1

2

√
2
√
EI(T1 + i

√
−T 2

1 − 4EIm1ω2 + 4iEICsω + 4EIks)

EI
(4.49)

βbot,4 = −1

2

√
2
√
EI(T1 + i

√
−T 2

1 − 4EIm1ω2 + 4iEICsω + 4EIks)

EI
(4.50)

for the middle part:

βmid,1 =
1

2

√
−2EI(−T2 + i

√
−T 2

2 − 4EIm2ω2 + 4iEICwω)

EI
(4.51)

βmid,2 = −1

2

√
−2EI(−T2 + i

√
−T 2

2 − 4EIm2ω2 + 4iEICwω)

EI
(4.52)

βmid,3 =
1

2

√
2
√
EI(T2 + i

√
−T 2

2 − 4EIm2ω2 + 4iEICwω)

EI
(4.53)

βmid,4 = −1

2

√
2
√
EI(T2 + i

√
−T 2

2 − 4EIm2ω2 + 4iEICwω)

EI
(4.54)
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and the βs of the top part:

βtop,1 = 1/2

√
2

√
EI

(
T3 +

√
T3

2 + 4EI m3 ω2
)

EI
(4.55)

βtop,2 = −1/2

√
2

√
EI

(
T3 +

√
T3

2 + 4EI m3 ω2
)

EI
(4.56)

βtop,3 = 1/2

√
−2EI

(
−T3 +

√
T3

2 + 4EI m3 ω2
)

EI
(4.57)

βtop,4 = −1/2

√
−2EI

(
−T3 +

√
T3

2 + 4EI m3 ω2
)

EI
(4.58)

Because we presumed (and know) that the general solution has a harmonic
form, and incorporating these different values for β, we can now write the
general solutions for the location-related part W(x) as:

W1(x) = A1e
(i·βbot,1·x) +B1e

(i·βbot,2·x) + C1e
(i·βbot,3·x) +D1e

(i·βbot,4·x) (4.59)

W2(x) = A2e
(i·βmid,1·x) +B2e

(i·βmid,2·x) + C2e
(i·βmid,3·x) +D2e

(iβ·mid,4·x) (4.60)

W3(x) = A3e
(i·βtop,1·x) +B3e

(i·βtop,2·x) + C3e
(i·βtop,3·x) +D3e

(iβ·top,4·x) (4.61)

Finally, these general solutions have to be substituted in the thirteen boundary
and interface conditions (eq. 4.31 to 4.47), to get a linear system of equations
for each ω that can be solved for the thirteen unknown coefficients (A1 to D3 in
4.59 to 4.61 and U in eq. ??) by computing Ax=b

Here A is the coefficient matrix of the thirteen conditions, b is the forcing vector
which equals the right hand side of the BC and ICs and x the vector of thirteen
unknown coefficients.
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So b=



0

0

0

0

mblV0

0

0

0

0

0

0

0

0



, and x =



A1

B1

C1

D1

U

A2

B2

C2

D2

A3

B3

C3

D3



A is too large to be printed here, but a similar but slightly smaller of such a
coefficient matrix can be found in appendix G.

When the coefficient matrix is found, the natural frequencies of the modal
shapes can be found by calculating the determinant of the coefficient matrix
for each frequency ω. This expression of this determinant is called the frequency
equation. The natural frequencies can be found at the zero crossings of the fre-
quency equation. It has to be noted that this has to be done for the undamped
system. So to find the modal shapes, one has to equal all damping terms to zero.

So in short, if A is the coefficient matrix (without damping terms), the natu-
ral frequencies of the modal shapes can be found by;

Frequency equation = det(A) = 0 (4.62)

The modal shapes can now be found by solving the above mentioned equation
of A.x=b and eq.’s 4.47 to 4.61 for each location, x (in eq.’s 4.59 to 4.61), for
the acquired natural frequencies (ω’s) of the modal shapes.
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Once the modal shapes are found to be correct (having the shape that we would
more or less expect), the frequency response of the system (including the damp-
ing terms) can be found by solving the above mentioned equation of A.x=b for
each ω.

4.2 Model Implementation

4.2.1 Model Variables

In general only realistic values (as found in the design documents from BB16
and industry and literature documents) were applied for all physical variables
as discussed in §4.1.1. This section elaborates on the - mostly dynamics-related -
parameters that deserve more attention on the way their value was determined.

The top dashpot, Ctop

The top dashpot at the nacelle, Ctop was initially tuned to model the passive
sloshing damper which is designed to induce a damping of 2% log. decrement
(0.32 % ratio of critical) on the first natural bending frequency. The dashpot
value was later on increased, as will be explained in the final paragraph of this
section.

The auxiliary blade system, kbl and Cbl

The dashpot modeling the damping of the blades, Cbl, was set to 1.73 % of
its critical damping (Ccr = 2

√
kblmbl, see appendix A). This dashpot value re-

sulted in the same damping as was identified in the test signals for this second
frequency.
mbl is found in design document and kbl is set to reach the average measured

modal frequency of the blades at 0.825 Hz: ω =
√

kbl
mbl

The hydrodynamic damping, Cw

The distributed dashpots, Cw modeling the hydrodynamic drag damping were
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tuned to cause a hydrodynamic damping of 1.13 % log. decrement (0.18 %
ratio of critical). This is the average value from the M.Cook-based damping
assessment [37] from the industry and a value taken from literature of a com-
parable design [11].
When using a simplified expression assuming a viscous drag dashpot coefficient
based on the Morrison equation, reading:

Cw =
1

2
ρwCdDo (4.63)

with Cd the drag coefficient equalling 1, the resulting damping in the model
was too low compared to the above mentioned expected value. A more real-
istic variable expression for the drag coefficient should be used, based on the
Keulegan-Carpenter number (relation of the displacement amplitude of the pile
and its diameter) and the Stokes parameter (relation of outer diameter-squared,
the kinematic viscosity of the water and the period of oscillations)[14].
Applying this in a correct manner might yield expected values for this hydro-
dynamic drag damping. Instead, the dashpots were simply tuned to yield the
expected values.

The soil stiffness, ks and kt

The distributed stiffness of the soil springs, ks, is based on the MSc thesis of
Philip Wegener [39]. In this study a critical evaluation was performed on the
way the initial soil stiffness is currently assessed. The p-y curves of the API, de-
veloped for slender flexible piles with L/D ratios of more than thirty (L/D > 30,
L is the embedded pile length), are still the basis for this assessment. Wegener
showed that the initial stiffness is not comparable for the currently used large
diameter monopiles with L/D ratio’s smaller than ten (L/D < 10) which also
behave rather rigid than flexible. He suggested to - although two different pa-
rameters but with the same dimensions - couple the distributed stiffness, ks, to
the (constant) Young’s modulus of the saturated soil, Es, by introducing ratios
for different L/D values. The soil is assumed to be homogeneous. For BB16,
with L/D=4.68, a ks value of

ks = 1.48Es (4.64)

is applied. This is the ratio that Wegener proposed for L/D = 5. These ratios
were based on comparison and matching between a Winkler-foundation based
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model (as is applied in this model) and an elastic FEM model.

Modeling the distributed stiffness by one constant average value ks which is
applied for all depths, is quite a major simplification of reality. The stiffness
should increase with depth, because of the pressure increase. But for the pur-
pose of this model, this is an acceptable simplification.

The Young’s modulus of the saturated sand (in this case) of the above stated re-
lation is somewhat arbitrary in the way that it is not very straightforward to find
this modulus. Especially considering the fact that an on average 12.5 m water
column increases the pressure. Without this water column, the Young’s modu-
lus might lie in the range of 60 to 130 MPa. This is based on lower boundary
and upper boundary densities for saturated sand and lower and upper bound-
ary shear wave speeds [19]. In this model, a value of Es=130 MPa is taken.
Further on in this section a discussion is devoted to this.

The second suggestion of Wegener’s work was to incorporate a pile tip cor-
rection factor because of the nowadays quasi-rigid pile behavior. As previously
explained, the transition at the pile tip and the shear forces caused by the slid-
ing tip make for the pile to locally experience an extra stiffness from the soil at
its tip.
In this model, an extra stiff spring, kt, is incorporated. kt was set to be 11.5
times larger than ks. Also this will be discussed further on in this section.

It has to be noted that Wegener’s research naturally also includes assumptions
and simplifications that limit its generic applicability. However, as this is one of
the latest studies on the increased initial stiffness of soil in soil-monopileinteraction,
incorporating part of his work is seen as a step in the right direction, and is thus
taken as a starting point with respect to the soil stiffness.
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The soil damping, Cs

Finally, one of the major important variables in the model: the distributed dash-
pot value inducing the soil damping, Cs. Cs is linked to the distributed stiffness
ks by multiplying it with a value of 3.9 ∗ 10−2 times ks. This value (in combina-
tion with other parameter values, as will be explained later on) gave the desired
damping value of the soil. This value is the difference in damping measured be-
tween the two main frequencies as was identified in the assessment with longer
time windows that were multiplied with a Hanning window. This difference is
23.66 % log. decr. (3.76 % ratio).

It should be understood that there is an interaction between the stiffness in
the soil (kt and ks) and the amount of damping that can be generated. From
the measurements, an idea of the possible magnitude of soil damping is derived.
The factor of Cs to ks which has been applied is quite an upper level. A more
usual measured factor of soil damping with respect to its stiffness would be in
the order of Cs=1 ∗ 10−3ks [23] and [10].
Besides increasing this factor even more, the soil stiffness can be decreased to al-
low for larger motion and velocity amplitudes in the soil, thus allowing for more
damping being generated. But then again, this stiffness can’t be decreased too
much, as then the frequency of the entire system becomes too low.

In short, the measured frequencies and damping values are a given, and the
interacting variables of Cs, kt and ks have been given values that were aimed
at still - to a certain extent - being realistic.
To this extent, the average moment of inertia, Izz, of the entire beam has been
increased with 15% to match the measured frequencies. This might be justified,
as the very stiff grouted connection has only been incorporated as an extra point
mass and an increased weighted average cross section of the entire beam, but
not, for instance, an increased Young’s modulus, E.

But an important question that remains is:

parameter Why is it challenging to model the measured soil damping in this way?

It has to be noted that among the various models that were developed before
the here presented model, a pinned beam model was developed. The effective
stiffness and damping of the soil were modeled with a rotational and transla-
tional spring and a rotational dashpot. This model is described and solved in
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appendix G. After adding also a translational dashpot, it was still not possible
to model the amount of soil damping that is expected to be measured. The
dashpot coefficients were given inrealistically high values, which were found to
have an optimum value. Increasing the coefficient value beyond this optimum,
decreased the amount of damping generated in the model. This way of mod-
elling effective soil behavior (total generated stiffness and damping represented
by single rotational and translational springs and dashpots) can for many stud-
ies be a sufficiently accurate way of modeling, but in this case it was too limited.
Ignoring the mass of the imbedded beam, and the fact that more damping can
be generated by the soil via distributed dashpots over a certain vertical height
than one translational and rotational dashpot at one location, are already two
limiting features of modeling effective behavior.

The soil damping in the final presented model is modeled as distributed viscous
damping. These dashpots have been given values that are significantly larger
than usual values in order to be able to model the measured soil damping of
the tests. This way of modeling is thus limiting for representing the actual real
phenomena in the soil-pile interaction.

It is expected that the solution to this limiting modeling problem can be found
by incorporating other types of damping. As discussed in sections 2.1 and 3.3.2
and expected in literature, also hysteretic and to a lesser extend radiational
damping might play an important role in the total damping contribution. Ex-
actly what types of damping are present in soil-pile interaction is not known,
but non-linear soil reactions most likely play an important role.

Another reason might be the simplistic constant distributed dashpot value that
is applied for all depths in this model. Like the distributed spring stiffness to
which it is linked, this is quite a rigorous simplification of reality. The stiffness
should increase with depth.

Also the three-dimensional effect of displaced soil causing consolidation (and
increased stiffness and possibly damping)) of surrounding soil in all directions
is not taken into account in this way.

Combined effect

As explained in this section, the different damping influences (dashpots) in the
model have been tuned to correspond to that the damping that was measured.
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This was done by considering them one by one and excluding the others while
doing so. However, the combined damping effect of all the dashpots is not
necessarily equal to the sum of the individual dashpots. For instance, it can
be understood that the damping force induced by the hydrodynamic damping
reduces the amplitudes in the lower part of the structure, resulting in less damp-
ing generation of the soil dashpots.

In order to match the total measured damping, this diminishing effect was com-
pensated with the use of the top dashpot, Ctop which has less effect on other
dashpots because of its isolated position. This dashpot was tuned to generate 10
% log. decr. instead of the initial 2 % for the sloshing damper. 10% damping ef-
fect of the sloshing damper in combination with the applied values for the other
damping influences, gave the same total damping for the two main frequen-
cies as was identified from the measurements. This increase of the effect of the
sloshing damper is, at least partly, justified by the fact that it is unknown what
kind of damping effect the sloshing damper has during rotor-stop associated
motions. This effect could be substantial.

4.2.2 Software

A combination of Maple and MATLAB was used to implement the given analyt-
ical description of the model.

Maple is useful for symbolically deriving the coefficient matrix which can then
be used in MATLAB to numerically solve the frequency equation, plot and check
the normal mode shapes and calculating the frequency responses of the mod-
eled system.

4.3 Model Results

4.3.1 Frequency Equation

The frequency equation is solved for the undamped system for frequencies up
to 2 Hz. The modal shapes, are found with these undamped modal frequencies
found with the frequency equation (eq. 4.62).

Figure 4.2 depicts a plot of the solved frequency equation to give an idea of
its exponential oscillations. The zero-crossings are the resonant frequencies.
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Because of these exponential increasing peaks, lower zero-crossings can’t be
seen. That is why also a logarithmic plot of the absolute value of the frequency
equation is plotted in figure 4.3, showing also higher resonant frequencies. The
model frequencies are solved in radians/sec, so this unit is used for the horizon-
tal frequency axis. Hertz (Hz) is a factor 2π smaller than radians/sec.
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Figure 4.2: Plot of the frequency equation solved for the frequencies of interest. The first
three zero-crossings are the three frequencies of the first three modal shapes.
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Figure 4.3: Logarithmic plot of the absolute value frequency equation solved for the fre-
quencies of interest. The first three frequency peaks can be clearly seen.

4.3.2 Modal Shapes

This section depicts the undamped normalized modal shapes. The normaliza-
tion is done with respect to the deflection at the top of the structure. Figures
4.4 to 4.8 depict respectively

1. the first natural bending modeshape at 1.84 rad/sec = 0.29 Hz

2. the modeshape associated with the blades at 5.15 rad/sec = 0.82 Hz

3. a comparison plot of these two latter modes

4. the second bending modeshape (which is thus the third frequency of the
system) at 7.67 rad/sec = 1.22 Hz

5. the third bending modeshape (fourth frequency of the system) at 18.49
rad/sec = 2.94 Hz
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Figure 4.4: The modal shape corresponding to the first natural bending frequency.
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Figure 4.5: The modal shape corresponding to the second resonant (blade) frequency.
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Figure 4.6: A comparison of the unnormalized modal shapes of the first bending mode
and the second resonant (blade) mode.
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The modeshapes of the first two first frequencies look very similar on first
glance, that is why a non-normalized comparison plot is given in figure 4.6.
In this comparison plot it can be seen that the blade mode does comprise more
deflection-dominance at the top of the structure than the first bending mode.
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Figure 4.7: The modal shape corresponding to the second natural bending frequency.
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Figure 4.8: The modal shape corresponding to the third natural bending frequency.
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4.3.3 Power Spectra

This section depicts the obtained power spectra of the model. The locations for
the acceleration, bending moment tower top and bending moment tower bot-
tom are the same as in the tests (see figure 3.2). These power spectra are the
responses to the initial velocity V0 that was previously described. The displace-
ment spectrum is found by solving equations 4.59 to 4.61 for each frequency of
interest. Along the y-axis of the other spectra, the way of finding the depicted
physical quantity related to the displacement is printed.

0 0.5 1 1.5
0

2

4

6

8

10

12
Powerspectrum Displacement tower top

Frequency [Hz]

D
is

pl
ac

em
en

t2

0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

Log Powerspectrum Displacement tower top

Frequency [Hz]

D
is

pl
ac

em
en

t2

0 0.5 1 1.5
0

500

1000

1500

2000
Powerspectrum Acceleration Nacelle

Frequency [Hz]

(o
m

eg
a2 *D

is
pl

ac
em

en
t)

2

0 0.5 1 1.5

10
−10

10
−5

10
0

10
5

Log Powerspectrum Acceleration Nacelle

Frequency [Hz]

(o
m

eg
a2 *D

is
pl

ac
em

en
t)

2

Figure 4.9: Power spectra for the displacement of the tower top and the acceleration of
the nacelle.
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Figure 4.10: Power spectra for the bending moment at the tower top and bottom.

Both frequencies have the same value and are damped with the same magni-
tude as in the measurements.

The figures show that the second frequency corresponding to the blades has
more energy in the accelerations of the nacelle, and the difference in its energy
between the moment at the tower top and at the bottom indicates the pattern
of a localised mode at the top.

In the logarithmic plots, the third (anti-resonant) peak corresponding to the
second bending mode of the beam can be seen at 1.26 Hz.
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In figures 4.11 and 4.12 the powerspectra of the morning tests are depicted
again for comparison reasons. The torque is left out, as this was not modeled in
the 1-dimensional model.
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Figure 4.11: Power spectra of nacelle accelerations of the six morning tests.
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Figure 4.12: Power spectra of the bending moments along the tower of the six morning
tests.
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The correspondance is considered satisfactory. The bending moments at tower
top and bottom of the model show similar patterns as in the measurements. The
fact that the modeled second resonant blade frequency in the bending moment
at the tower bottom is relatively more present than in the measurements, could
be due to the fact that the extra stiffness of the grouted connection was not suf-
ficiently incorporated. This extra stiffness could cause the motions in the tower
bottom to further diminish.

Also a deviance between the modeled and measured signal is seen in the re-
sponse of the fore-aft acceleration of the nacelle: the modeled signal indicates
more energy in the blade frequency than the first natural bending frequency,
while the measured signal shows the reverse of this. This could be reasoned by
the fact that the auxiliary rotor mass was given an initial velocity, V0. This is a
simplistic way of modeling the rotor stop, and it may be clear that this is not
physical. In this way, relatively more energy is put in the auxiliary system (as
can be seen in figure 4.9) than in the bending of the entire system. An initial
displacement of the top mass in the model might result in a better resemblance
of the powerspectrum of the measurements.

4.3.4 Timedomain comparison

The acquired frequency response can be inversely Fourier transformed to the
time domain. The modeled time series can then be compared with the mea-
sured time series. This is done in figures 4.13 and 4.14, in which a comparison
plot of the measured (test 1) and modeled signal of the bending moment at
tower top and respectively at tower bottom are depicted. Note that this is a
comparison of a modeled signal based on averaged values of all tests with a
signal of only one test.

It can be seen that the attenuation rate of the two plotted signals in figure 4.13
is roughly the same. Both the measured and modeled signal at the tower top are
dominated by the first two frequencies. The measured signal in this case clearly
shows an other excitation/disturbance after Time=45 sec: the mean value of
the oscillations is shifted downwards.
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Figure 4.13: A comparison plot of the modeled signal (red) and the measured signal (blue)
which is in this case the bending moment at the tower top of test 1.

Also the attenuation rate of the modeled signal of the bending moment at tower
bottom is similar to that of the measured signal during test 1, although maybe
the first two oscillations of the modeled signal have a somewhat higher damping
pattern than the measured signal. The second frequency, although less than at
tower top, is more present in the modeled signal as in the measured signal. This
is also confirmed by the power spectra of these signals: in the power spectra of
the measured signals at the tower bottom, no second frequency peak is present.
In the modeled power spectrum of this location, still a small peak is to be seen.
So the model does not entirely successfully model the localisation of the blade
frequency at tower top. Again, the measured signal shows a disturbance after
Time=45 sec: the mean value of the oscillations is shifted upwards.
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Figure 4.14: A comparison plot of the modeled signal (red) and the measured signal (blue)
which is in this case the bending moment at the tower bottom of test 1.

4.4 Summary & Discussion

Again, in this section some paragraphs are devoted to summarize the material
reported in this chapter, afterwhich a more in depth analysis on the acquired
information is given in the discussion-paragraphs.

4.4.1 Summary

In this chapter a simplistic continuous model has been derived, incorporating
enough aspects of the real BB16 structure to be able to model its behaviour up
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to an extent that is sufficient for the objective of this research.

The parameters and their values have been discussed, and limitations of the
model were reported.

The model output, in the form of modal shapes and power spectra with fre-
quencies and damping values that correspond to the measurements, is consid-
ered satisfactory. The model exhibits the same behavior as BB16, in the way
that it renders a second resonant frequency corresponding to a mode giving
more deflections in the top of the structure.

A comparison of the modeled signal with that of a measured signal in the time
domain revealed generally similar attenuation patterns.

As every model, implicit in its definition, some features and parameter values
are debatable.

4.4.2 Discussion

The dominant questions arise in modeling the soil. This is not surprising seen
the focus of this study and the fact that literature confirms the complex nature
of soil-pile interaction which make it challenging to model.

An interacting relation exists between the soil stiffness, modeled with ks and
kt, and the generated soil damping potential. The soil stiffness has a large in-
fluence on the natural frequencies of the system, and it is found that the soil
should be modeled quite stiff to reach the real frequencies of the measured sig-
nals. This fact has also already been indicated in previous work on soil-pile
interaction by P. Wegener, whose findings have been incorporated in the model
of this thesis. Modeling the soil too stiff, limits the potential of the dashpots
to generate enough damping because of the lower resulting amplitudes. This
is also a ‘real-life’ interaction phenomenon: if a pile is limited in its oscillation
amplitudes in the soil because of a very large soil-stiffness, less damping can be
generated.

The measured frequencies and their corresponding damping are a given and
form the benchmark. The soil stiffness is modeled having an upper boundary
Young’s modulus of 130 MPa for saturated sand. This Young’s modulus could be
even on the low side, considering the 12.5 m seawater column above mudline
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inducing extra pressure on the soil.

As previously stated, the Young’s modulus is not further increased, as the poten-
tial of damping generation (the possible work done by the dashpots) is limited.
To be able to match the expected measured soil damping, the distributed dash-
pots are given a value of a factor 3.9∗10−2 of the distributed stiffness ks. This is
already a factor which is quite a bit higher than the expected relation between
these two soil parameters.

Modeling the soil damping as was done in the simplistic way proves to be limit-
ing.

The limitations of the model might be found in the simplistic constant dis-
tributed dashpot value that is applied for all depths in this model. Like the
distributed spring stiffness to which it is linked, this is quite a rigorous sim-
plification of reality. The stiffness should increase with depth. This allows for
relatively larger displacements at mudline.

Another limitation is the fact that the three-dimensional effect of displaced soil,
causing consolidation of surrounding soil in all directions, which is not taken
into account in this one dimensional model.

Lastly and maybe the most important improvement to the model, would be
the inclusion of other types of damping in the model. As discussed in section
2.1 and expected in literature, also hysteretic and to a lesser extent radiational
damping might play an important role in the total damping contribution. Ex-
actly what types of damping are present in soil-pile interaction is not known,
but non-linear soil reactions, and thus non-linear damping mechanisms, most
likely play an important role.



5
Conclusions and Recommendations

This chapter seeks to draw the main conclusions from this research, but also gives
a discussion on these conclusions. Recommendations are given in the last section
of this report.

5.1 Conclusions

The objective of this thesis as it is stated in the first chapter is:

The estimation of the vibration decrement of an offshore wind turbine sup-
port structure, caused by its interaction with soil.

1. The estimation of the vibration decrement caused by equivalent linear vis-
cous damping generated by soil-pile interaction of the ‘BB16’ test turbine
support structure lies in the range of 9.5 % logarithmic decrement, which
equals 1.5 % ratio of critical damping of the first bending mode. The
order of magnitude for this value applied in the offshore wind industry
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today lies in the region of 0.44 % log. decr. (0.07 % ratio) for this first
natural frequency.

2. Considering the fact that the average magnitude of the total identified
damping in the measurements of the ‘BB16’ OWT is

• 19 % logarithmic decrement (3 % ratio of critical) for the first natural
bending frequency of 0.296

• 9.5 % log. decr. (1.5 % ratio) for the second main present frequency
of 0.825 Hz

it is concluded that, compared to the design value for BB16 of 2.5 % log.
decr. (0.4 % ratio) of damping for the first natural frequency, the identified
value in the measurements is relatively high.

3. Besides linear viscous damping, non-linear soil reactions and damping
mechanisms are expected to play an important role in soil-pile interaction.

4. In this thesis, a tool has been developed to simplistically assess the influ-
ence of soil on the damping of an OWT. A difference in displacement in
the soil profile between the vibrations of two different frequencies allows
for identifying the influence of soil on these vibrations.

The mode shapes that correspond to the first and second measured frequencies
have been identified via a combination of analyses of power spectra of signals
at different measurement locations, the development of an analytical model,
and a confirmation with the Siemens-design model BHawC. A difference in dis-
placements of these mode shapes in the soil profile and a difference in damping
of the vibrations of these two modes was identified. This allowed for assess-
ing the influence of the structure’s interaction with soil on the total damping of
the structure. The second frequency in the signal is associated with a localized
mode in the top of the structure caused by the closely spaced natural modal
frequencies of the blades. The amplitudes in the soil profile of this modal shape
are smaller than those of the first bending mode shape. Because of the varying
amplitudes of the vibrations of these two modes in the soil profile, the differ-
ence in identified damping is attributed to the difference in possible influence
that the soil can have on this damping.

Caution should be taken in generalizing the above stated order of magnitude
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for the damping caused by soil-pile interaction. Generalization of the results of
this research is limited by some factors of which some are discussed here.

The research is based on 12 rotor stops on a specific turbine during one day.
Except for changing soil conditions, also changing environmental conditions
(in particular wind speed) have influence on the magnitude of damping. For
instance, displacement dependent damping is expected to be active in the soil-
pile interaction process, the initial amplitude of vibration after a rotor stop has
an important influence on the experienced damping of the structure. In this
respect, the damping associated with vibrations induced by a rotor stop, might
not be representative for the damping experienced during most of the lifetime
of the OWT: the damping occurring during vibrations while the turbine is in
production.

Another factor limiting the general validity of the results can be the unknown
effect of the sloshing damper on the damping of vibrations after a rotor stop. A
part of the identified difference in damping between the two dominant modes
can possibly be attributed to a difference in sloshing damping influence on the
vibrations of these modes. Lastly, it should be noted that the amplitudes of vi-
bration after a rotor stop are relatively large compared to those occurring during
production time of the turbine. As the experienced damping might be propor-
tional to these amplitudes, the presented values can not directly stated to be
representable for the situation in which the turbine is in production.

5.2 Recommendations

This MSc thesis is considered as a first step on a longer trajectory to reach the
objective of

The ability to predict the amount of damping an offshore wind turbine support
structure will receive of a certain type of soil present at a certain location.

Here some suggestions are given as possible next steps.
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• Other active OWTs are currently equipped with similar PLM set-ups as was
used for this thesis. The same tests and analyses can be performed with
these turbines. This research yielded a tool for assessing the influence of
soil on the damping of an OWT, which might be used on other OWTs.
Comparing results is expected to yield interesting information. Whether
comparable soil and pile combinations give comparable results as found
in this research, and the effect of different soil profiles might be assessed.

Besides these PLM setups, all nacelles are nowadays equipped with so
called ’G-sensors’. These are a type of accelerometer with a non-fixed
sampling frequency. If the data of these sensors are found to be usable, a
very large array of test turbines lies within grasp.

• Further analyses of the acquired data of the performed tests is a low
threshold first action. A different approach might be interesting. Data
analysis techniques like the Wavelet Transform and Cross Correlation can
be used to see if it is possible to measure (wave-) energy transmittal
throughout different parts of the structure in the transient region of the
signal. The analysis of soil-reflected waves back into the structure can
generate insight in energy dissipation in the soil.

Also the model-based approach of this thesis can be enhanced by a more
complete model, integrating other types of damping. The data can be an-
alyzed with other damping identification techniques as a check upon the
here presented values. Also techniques that are not limited to identify the
equivalent viscous damping in the signal should be applied.

• More full scale offshore experiments are required to generate insight in
the complex soil-pile interaction phenomena. These tests should be per-
formed on monopile foundations, as the processes playing a role at these
rigid large-diameter piles in offshore soil (saturated and pressured) are
not comparable with those of slender piles which were the focus of previ-
ously performed research.
Both stiffness (updated p-y curves) as damping assessments should be per-
formed. To this end, it is recommended to also measure the soil’s reaction
with, for instance, the use of accelerometers installed at mudline. Ap-
pendix F and figure F.2 elaborate more on possible measurement set-ups.

• In combination with these full scale experiments, a proper soil-pile in-
teraction model should be developed incorporating as many aspects as
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possible.
It is suggested to define a PhD research project focused on the develop-
ment of this model in combination with full scale offshore experiments.

With respect to the design of OWT support structures, this research has indi-
cated that there is room for increasing the value of experienced damping. Do-
ing so, will enable using less construction steel because of smaller diameters
and wall thickness of the monopile. An other option can be to extend the life-
time beyond the currently applied 20 years. More research must indicate up to
what extend the design damping value may be increased.

It could also be considered to adjust the conventional design of these uniform
tubulars. If indeed the damping generated in the soil is so substantial, we could
think of thickening the outer diameter of the monopile at mudline, or maybe
welding flaps or wings on the outer skin to mobilize more soil. Obviously this
in turn can be un-beneficial for other aspects as fatigue hotspots or transporta-
tion and installation procedures. However, knowledge on the damping effect
of soil could motivate new designs for the support structures of offshore wind
turbines.
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A
An Introduction to Damping in

System Dynamics

’Panta Rhei’ - ’Everything moves’ as the Greek philosopher Heraclitus once said.
This was already the case in Greek times and is still a fact today; every thing -
cars, houses, people, offshore wind turbine constructions - can obtain a certain
dynamic movement. Structures or objects can vibrate or oscillate in a cyclic way
in which they return to a certain position with an interval time which is called
the period (T) of that vibration. The magnitude of these oscillations is called the
amplitude (A).

Fortunately systems in the real world do not vibrate for ever (which could be
quite destructive in many cases), because they lose their dynamic energy to their
environment. This dissipation of energy is called damping. The amplitude of a
dynamic vibration becomes smaller with each period, the vibration is damped
until the equilibrium position is reached. In the displacement-time plot given
in figure A.2 one can see a typical decay of the amplitudes (the peaks of this
sinusoidal curve) of the displacement over each period T.

Basic features of a Single Degree of Freedom System The simplest model
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for simulating the vibrations of a system is a Single Degree of Freedom model
(SDOF). A schematic view of a SDOF is given in figure A.1. The block with
mass m is excited by an external time-varying force f(t). The displacement in u-
direction u(t) is counteracted by the spring restoring force caused by the spring
which has spring coefficient k in [N/m]. The spring force always acts in the op-
posite direction of the displacement of the mass. As stated before, this system
eventually stops vibrating (in the case the external force is removed) because
of the damping caused by the dashpot. The dashpot has a damping coefficient
c, having dimension [ N

m/s], creating a counter force in the opposite direction of
the velocity of the mass. The above textual description of the situation can be

Figure A.1: Single Degree of Freedom
model

Figure A.2: Typical displacement-time rela-
tion of an underdamped (red)
and a super-critically damped
(green) system after an initial
excitation

mathematically described with an equation of motion (EOM) which results from
Newton’s second law F=ma. The EOM for this example with a mass, a spring
stiffness, damping and a time dependent forcing has the form

mü+ cu̇+ ku = f(t) (A.1)

The mass will oscillate with a certain frequency ‘f ’ in [Hz], which is the amount
of oscillations it makes in 1 second, so f = 1

T . In Dynamics usually the angular
frequency ‘ω’ is used which states the amount of radians per second: ω = 2π

T .



104 An Introduction to Damping in System Dynamics

A dynamic system can be characterised by a couple of parameters. For instance:
every object has its own natural frequency, ω0, which is the frequency with
which the object will vibrate if it is given only an initial excitation (free vibra-
tion without influence of external forces) In this case the natural frequency can
be computed by

ω0 =

√
k

m
(A.2)

If a system is excited at this frequency, it will resonate: it will oscillate with
larger amplitudes than at other frequencies. Figure A.3 shows the amplification
factors of the amplitude according to the ratio of the exciting frequency ω and
the natural frequency ω0.

What is also of interest is how the system is damped. There are numerous
ways of quantifying damping. One way is by stating the damping factor n [27]:

c

m
= 2n (A.3)

The general solution of the homogeneous version of A.1 (the right-hand side of
the equation equals zero, so without external force) can be found in the form of

u(t) =

2∑
k=1

Uke
skt (A.4)

with Uk and sk the complex amplitude and eigenvalues respectively. When
inserting this general solution in the EOM of A.1, deviding by Ukexp(skt) and m,
and incorporating the expressions of A.2 and A.3, one obtains the characteristic
equation

s2 + 2ns+ ω2
0 = 0 (A.5)

As stated before, s1 and s2 are the eigenvalues of the system which can then be
computed by

s1 = −n+
√
n2 − ω2

n and s2 = −n−
√
n2 − ω2

n (A.6)

Eigenvalues give important information about the stability of a system. A system
is unstable if the real part of the (possibly complex) eigenvalues are positive.
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The more specific solution of the homogeneous EOM with damping of an under-
damped (explained further on) SDOF in free motion is

u(t) = e−nt(Acos(ωdt) +Bsin(ωdt)) = A0e
−ntcos(ωdt− ϕ) (A.7)

where the amplitudes A and B or A0 can be found by incorporating the initial
conditions u0 - the initial displacement and u̇0 - the initial velocity. In A.7 ϕ
is the phase angle which (when multiplied by the damped angular frequency
of the system ωd) is the timelag that the system lags behind the exciting force.
This phase difference is caused by the damping.
Note that in dynamics the following goniometric relation is frequently used:

eiωt = cos(ωt) + isin(ωt) (A.8)

which is called ‘Euler’s Formula’, after Leonhard Euler who first published this
relation in 1748.
The reason why the form of equation A.4 is sought for as a possible solution
is connected to this relation; the solution must be some form of a goniometric
function.

Now elaborating more on damping, some more expressions will be introduced.
A system is said to be critically damped when the free motion does not oscillate:
the mass of the object does not pass its equilibrium point. From an initial dis-
placement, it moves towards its equilibrium point without passing by that point.
Schematically the decay of a critically damped motion is given by the green line
in figure A.2. The value of the damping coefficient of a critically damped system
is

ccrit = 2
√
km = 2mω0 (A.9)

The damping in a system is usually quantified with the damping ratio which in
literature is commonly denoted by ζ. The damping ratio of a system is the ratio
between the occurring damping coefficient c and the critical damping of that
system. So in formula form:

ζ =
c

2
√
km

=
c

2mω0
(A.10)

If a system has a damping ratio of ζ < 1, it is said to be under or sub-critically
damped. If ζ = 1, it is critically damped (as explained in the definition of critical
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damping), and when ζ > 1, the system is super-critically damped. The influence
of different values for the damping ratio on the amplitude amplification close
to resonant-exciting frequency is given in figure A.3.

Figure A.3: The influence of damping ratio on the (amplitude) frequency response of a
system. A/F0 is the amplitude amplification factor with A the amplitude of
the response, and F0 the static induced displacement of the system.

As mentioned before, the presence of damping also influences the undisturbed
natural frequency of the system, and thus causes the phase shift in the time do-
main in equation A.7. The relation between the undisturbed natural frequency
and the damped frequency is as follows:

ωd = ω0

√
1− ζ2 (A.11)

Here ωd is the damped frequency of the system.

Another way of quantifying damping in an under-damped system is by calcu-
lating the logarithmic damping decrement usually denoted as δ. This is also a
frequently used technique to determine the damping of a system from a mea-
sured response in the time domain. In figure A.2 the dotted line through the
peaks of the curve is the exponential relation between these peaks. One takes
the natural logarithm of the ratio of subsequent ’peaks’ or amplitudes (x0 and
xn in the figure) and divides it over the amount of periods ‘n’:
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δ =
1

n
ln
x0

xn
(A.12)

The relation between the damping ratio and the logarithmic damping decrement
is as follows:

ζ =
1√

1 + ( 2π
δ )2

(A.13)

Looking at this relation, one could say that as an approximation ζ ≈ δ
2π if δ �

4π2 which is usually the case for wind turbines.



B
Measuring Soil Damping

Models and resulting computations of damping ratios have to be validated by
performing experiments. Besides validation, some in situ soil parameters in the
model have to be found by measuring.
When interested in the damping during soil pile interaction, one can look into
real-sized experiments where a pile is given an excitation and accelerometers at
various locations are used to analyse the response of the pile, and possibly the
response of the soil. Also laboratory test with models of the system on shaking
tables or in centrifuges are a possibility for this objective.
This thesis comprises an experiment where the damping of a complete OWT is
assessed. The description of this setup and the processing of the measurement
data is treated in chapter ’Offshore Measurements’. In this section, various mea-
suring techniques for pure dynamic properties of the soil only (so without a pile)
are described. These techniques can be distinguished in laboratory test and in
situ (real size, out in the field) experiments.
Laboratory tests tend to render lower damping values than in situ tests, but
it might be questionable how realistic the perfect homogeneous soil samples
and the confining pressures in laboratories are. On the other hand, severe in-
homogeneities like a big rock in the soil can generate biased outcomes when
measuring in situ. In both types of experiments, mostly the material damping
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is measured. As can be understood from the previous paragraphs, this type of
damping is more dependent on varying soil characteristics like shear strain and
confining pressure which have to be measured. Because performing these type
of (pure soil-) measurements is not within the scope of this thesis, the following
section will only briefly describe the existing in situ and laboratory techniques
without elaborating in too much detail.

B.1 In situ measurements

Depending on exactly what parameter is of interest, various (non-/)invasive and
(non-/)disturbing measurement setups exist.
For instance the Seismic reflection/refraction tests (echosounders or radars and
at some distance a receiver), and Seismic cross-hole, down-hole and up-hole
tests where a vibration source (e.q. an explosive) and a receiver at a certain
distance are used to measure the velocity of P- and S-waves. The relative loca-
tion of the vibrating source to the receiver make it either a cross-hole- (both are
underground), up-hole- (explosive at soil surface) and down-hole- (explosive is
underground, receiver at soil surface) test.
However, two techniques which can be more interesting for the scope of this
research are the Seismic Cone Penetration test and the Spectral Analysis of Sur-
face Waves-technique.

Seismic Cone Penetration Test (SCPT)
A form of an invasive soil measurement is the Seismic Cone Penetration Test
(SCPT). SCPT is used to determine the shear and pressure wave velocity and
the material damping ratio variation with depth. Figure ?? shows the SCPT
measurement set-up. [25]
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Figure B.1: Front and side view of SCPT measuring set-up

A beam on the soil surface is simultaneously hit on its side by a sledge ham-
mer to induce the shear wave, and on its top by a mechanical hammer cre-
ating the pressure wave. The different arrival times of the waves at the two
accelerometers in the down-hole cone enables us to compute the velocities of
the different waves. Here the cross correlation technique has turned out to give
good results. From a Fourier transform of the signal, a Spectral Ratio Slope
(SRS) method can be used to determine the variation of material damping with
depth. The SRS method is also based on the slope of the logarithmic ratio of
consecutive amplitude peaks (from the two accelerometers). The method only
measures material damping, not radiation damping. With this test, the material
damping ratio ζm can be computed by

ζm =
Vs
2π

(
∂2ln(x1/x2)

∂f∆z
) (B.1)

in which the part in brackets is the slope of the logarithmic ratio of two consec-
utive amplitude peaks in a selected frequency range.

Spectral Analysis of Surface Waves (SASW)
In this setup wave measurements are performed to measure the shear wave ve-
locity and the material damping.
These surface wave tests are a non-invasive seismic technique (as opposed to
cone penetrating-techniques), using an array of accelerometers on the soil sur-
face at some distance away from the wave-making source.
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Figure B.2: SASW multi-station measurement set-up

With the Spectral Analysis of Surface Waves (SASW) method the measured
signals are simultaneously turned into an attenuation and a dispersion curve
with a displacement transfer function. These curves are then inverted to ob-
tain the shear wave velocity and shear damping ratio using a newly developed
algorithm [5] for the solution of the coupled Rayleigh eigenproblem in linear
viscoelastic media. This method accounts for the relationship between the phase
velocity and the damping of the seismic waves propagating in linear viscoelastic
media as these are measured simultaneously from the same measurement setup
and computed with the same displacement transfer function. This is unlike most
other techniques where two measurements are performed; one for determining
the shear wave velocity and one for the shear damping ratio.

B.2 Laboratory experiments

Various laboratory tests have been developed to - among others - determine the
material damping ratio of a homogeneous soil sample. The main ones are the
Resonant Column test, the Free Torsion Pendulum, the Bender Element Test and
the Cyclic Triaxial Test. The Free Torsion Pendulum is very similar to the Reso-
nant Column Test and will thus not be separately discussed. These tests can be
distinguished in low strain tests where the range of elastic soil reaction is simu-
lated (the first three tests of the above mentioned), and experiments where the
plastic range of soil reaction is considered for seismic earthquake engineering
purposes (Cyclic Triaxial Test).
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Resonant Column test
In the Resonant Column test procedure a cylindric soil specimen is excited in its
fundamental (eigen-) mode of vibration. This can be either a torsional or a lon-
gitudinal motion. From the resonance frequency and the subsequent amplitude
decay after stopping the excitation, the wave velocities, strain amplitudes, shear
modulus and damping ratio are calculated. Limitations of this test are that the
calculation procedure is a back-calculation. The measured reaction is not the
pure reaction of the soil, but rather of the system of soil sample plus apparatus.

Bender Element Test
In this test a cylindrical sample is equipped with a sender and a receiver el-
ement at its ends [22]. These elements can change its form and dimension
because of electric pulses. This causes shear waves or compression waves to
propagate through the sample. The arrival time is measured at the reveiving
element. This setup provides determination of the dynamic shear modulus and
the dynamic elasticity modulus. The advantage of this setup is that the sample
is subjected to minor disturbance.

Cyclic Triaxial Test
This test setup is very similar to the soil Triaxial test, but extended with a cyclic
loading element. It falls in the category of high strain tests to study the plastic
liquefaction reaction of soil. Other similar cyclic tests are the Cyclic simple
Shear test and the Cyclic torsional Shear test, which also focus on the plastic
deformation of soil, usually for earthquake engineering purposes.
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BB16 Rotor Stop Measurement
Specification Documents

C.1 Overview Morning Tests

Figure C.1: An overview of the rotor stop tests that were performed during the morning.
Only stops without mechanical break were used for this research: a mechanical
break applied at the end of a rotor stop induces extra undesired excitations
to the decaying structure. From top to bottom the graphs depict the active
power, the generator rotations per minute, the pitch angle of blade A, G-
sensor force in x-direction, G-sensor force in y-direction and the mechanical
break activity of the turbine.



Location and Orientation of Strain Gauges BB16 115
C.2 Location and Orientation of Strain Gauges

BB16

Figure C.2: Location of used strain gauges at BB16 tower top. TTBX=strain gauge
measuring bending moment x-axis. Idem for TTBY. TTT1 en TTT2 are
the strain gauges for measuring the torque. Also see figure 3.2 for better
understanding.
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Figure C.3: Location of used strain gauges at BB16 tower top. TTBX=strain gauge
measuring bending moment x-axis. Idem for TTBY. Also see figure 3.2 for
better understanding.
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Figure C.4: Location of used strain gauges at BB16 tower top. TTBX=strain gauge
measuring bending moment x-axis. Idem for TTBY. TTT1 en TTT2 are
the strain gauges for measuring the torque. Also see figure 3.2 for better
understanding.



118 BB16 Rotor Stop Measurement Specification Documents

Figure C.5: Location of used strain gauges at BB16 tower bottom. Also see figure 3.2
for better understanding.



Soil Profile at BB16 OWT 119

C.3 Soil Profile at BB16 OWT

Figure C.6: The soil profile at in the region of BB16 OWT.
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Figure C.7: Soil parameters at the BB16 (=A6) OWT.
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D
The Fourier Transform and Signal

Processing Basics

The total dynamic motions of a system are often a summation of (an infinite
number of) different harmonics with different wavelengths and periods, differ-
ent harmonics. So the sinusoidal time domain pattern is a summation of an
infinite amount of different sinusoidals with each their own frequency. Usually,
the lowest frequency governs the time domain pattern, and the ’higher harmon-
ics’ oscillate around or on top of that sinusoidal. An example of such a pattern
is given in figure D.1.

122
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Figure D.1: A modeled signal of the horizontal motion of a beam at two different vertical
locations along the beam. The bottom-clamped beam was given a horizontal
excitation at its top, the blue signal is the motion of the higher location, the
green signal is the horizontal motion of the lower location (and thus has lower
amplitude). Six different modeshapes and frequencies were incorporated in
this signal, and the above explained summation of sinusoidals can be clearly
seen. We also see that the higher frequencies undergo more damping than
the lower ones.
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If one models a certain continuous signal f(t) one can perform a Continuous
Fourier transform on it by

f̂(ω) =

∫ +∞

−∞
f(t) · e−iωtdt (D.1)

Here we see that the original function is transformed from the time domain (t)
to the frequency domain (ω).

A way to display the result of this Fourier transform is to plot the power spec-
trum. A power spectrum shows how the energy of a system is distributed over
the occurring frequencies in that signal. The spectrum is found by taking the
square of the product of the Fourier transform. Figure D.2 gives a schematic
overview of how the Fourier Transform decomposes a certain time signal into
its frequencies and how each frequency has its own energy in the energy density
spectrum, a form of a power spectrum. This figure is an example in which this
is done for ocean waves.

Figure D.2: Breaking up a wave record into its frequency components with their energy,
and plotting this in a energy density spectrum.
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However, in real-life measurements, recorded signal are never continuous, but
discrete. A signal can only be recorded with a certain sampling frequency; the
amount of recordings per second. This frequency can be very high, but of course
never continuous. For that extend, we can also use the Discrete Fourier Trans-
form (DFT). The algorithm is given by;

f̂(ω) =

N∑
n=1

f(n)e
−2πi
N ωn with ω = 1, ..., N (D.2)

N is the amount of sampled points in the recorded vector of the signal in time.
So N equals the time length divided by the sampling frequency. Small ’n’ indi-
cates the n-th index number in this vector.

Hanning Window

Before any transform is applied, the set of data of interest should be selected
from the raw data. Once this is done, the selected set can be multiplied with a
window function to decrease spectral leakage and to suppress noise.

Noise in signal analyses refers to the low-amplitude and high frequency dis-
turbance caused by the environment where and the equipment with which the
measurements were performed.

Without going into the mathematical background, spectral leakage is the effect
that energy of a frequency leaks or shifts towards other frequencies when ap-
plying a discrete Fourier transform on a finite signal towards a finite frequency
spectrum. This has to do with the fact that the Fourier transform assumes an
infinite periodic signal. This is in real life usually not the case: a finite time
window of a signal is analyzed, of which the start of the window is not neces-
sarily the same as the end (non-periodic), and the window length does usually
not equal exactly an integer amount of cycles of the vibrations of each present
frequency. Nevertheless, these conditions for successful transformation can be
met by multiplying the finite time window of interest with a window function
which forces the signal to be periodic within the time frame of interest. Most
window functions result in zero valued beginning and end of the frame, and a
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scaled value between 0 and 1 of the middle section of the time frame.

The Hanning Window function is a function with the shape of half a sinus; a
wide lobe with sides moving towards zero. When multiplying this window with
the selected set of data, the effect is that most of the important middle part
of the signal is (almost) unaffected and the side-values turn to zero. If these
values wouldn’t be zero, the DFT would shift this ’initial’ energy onto other
frequencies. The frequency spectrum that is derived after a Hanning window
is applied on the time-signal, is a ‘clean’ spectrum (without noise and spectral
leakage) revealing only the main present frequencies with their peaks at the
right frequency locations and with correct heights. However, multiplying the
time response with this window, does have an influence on the width of the
frequency peaks.

If the Hanning window is used to sample a signal in order to convert to the fre-
quency domain, it is complex to reconvert to the time domain without adding
distortions.

Aliasing, Nyquist Frequency and Folding

The frequency bandwidth of a recorded signal that can be analyzed is limited
by the frequency with which the signal is sampled, fs.
If a signal is reproduced with a too low resolution (frequency), this recon-
structed image will form an Alias of the original, real signal. An alias differs
from the original signal.
The most famous example of this is the wagon-wheel effect; the spokes of the
wheel seem to turn too slowly or even backwards. This is because our eyes or
brain sample the spinning wheel at a rate that is too low to portray the real fre-
quency at which the spokes pass. Another example is given in figure D.3, where
for a certain sampling frequencies, two possible ’real’ sinusoidals are plotted.
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Figure D.3: A well sampled signal, and an undersampled frequency. A different sinusoidal
can be fitted through the under sampled points; an alias is formed.).

To prevent aliasing from occurring, one can only analyze frequencies up to half
the sampling frequency. This frequency is called the Nyquist frequency:

fNyq =
1

2
fs (D.3)

Reversibly one can say that the sampling frequency fs should be at least twice
the highest frequency that one wants to analyze. The mathematical proof of the
Nyquist-Shannon sampling theorem is left to the reader to be found in literature.

Related to this, is another signal processing phenomenon called Folding. Positive
valued frequencies also have aliases on the negative-frequency axis. So when
the absolute value or square is taken from a DFT, an image of the frequencies
from 0 to fs/2 is produced which runs from fs to fs/2. So a mirror image of the
frequencies is portrayed with the mirror line lying at fs. This is called folding.
An example of folding is given in figure D.4.

The energy of all the frequencies is evenly split over the real frequency and its
mirrored alias at f > fs, so when processing a signal, all the alias frequencies
f > fs are discarded, and the original frequencies (f < fs) are multiplied by
factor two.
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Figure D.4: An example of folding. In this case the Nyquist or Folding frequency was
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Damping results of Hanning-windowed sections of 41 seconds length
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Figure E.1: Results of Q-factor analyses on all 12 tests, based on 41 second Hanning
windowed sections. These numbers were averaged to give the values given in
figure 3.9.



131

Damping results of Rectangular windowed first linear decaying cycles
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Figure E.2: Measured and analytical fitted power spectrum for first 5 cycles of the bending
moment at tower bottom for test 4. Only the first natural frequency is present
in this signal at the tower bottom. The fit with 4% damping ratio is found
to be the closest fit.
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Figure E.3: Measured time response of first 5 cycles of the bending moment at tower
bottom for test 4. The same fitted damping ratio’s are plotted as logarithmic
decrement. Again, the 4% damping ratio is found to be the best fit. The
first natural frequency clearly dominates the time response.
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Figure E.4: Measured and analytical fitted power spectrum for first 6 cycles of 1st natural
frequency and 18 cycles for the second frequency of the bending moment at
tower top for test 4. The fit with 1.5% damping ratio for the second frequency
is found to be the closest fit. The first natural frequency is well fitted with
3% damping ratio.
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1st natural frequency and 18 cycles for the second frequency of the bending
moment at tower top for test 4.



F
Test Opportunities and Roadmap

This appendix covers different opportunities for in situ experiments that were
possible at the start of this thesis, it describes the selection procedure which
led to the choice of the performed in situ experiment, and finally a roadmap
towards the ultimate goal is suggested. To remind the reader, the ultimate goal
is to predict the amount of soil damping an OWT will receive for a certain loca-
tion, related to the types of soil present at that location.

Opportunities

Two different wind farms were suitable for performing measurements:

• Burbo Bank wind farm (BB) - a fully operational farm offshore the west
coast of England at the height of Liverpool in the Irish sea

• Sheringham Shoal wind farm (ShSh) - currently under construction off-
shore the east coast of England, above Norwich

Figure F.1 shows their geographic locations.
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Figure F.1: Locations of Burbo Bank (red cross) and Sheringham Shoal (yellow cross)
wind farms.

The main difference between these farms is their state of construction comple-
tion.

The construction phase of Sheringham Shoal creates a situation where mea-
surements can be performed on the foundation (MP+TP) without the tower
and RNA on top. As we are only interested in what happens in the soil, this is
beneficial because the obtained signal from strain gauges or accelerometers on
the foundation will be free of dynamic influence of the top part.
ShSh wind farm is owned by the Norwegian oil company Statoil, and they
launched a fatigue monitoring project involving the full time measurement of
occurring stresses (via strain gauges) on two of the foundations. This implies
that two of the foundations already had a Power Load Monitoring (PLM) system
installed on them.
To be able to measure a dynamic decaying amplitude signal (as the one plotted
in figure 2.5) on such a foundation, it has to be given an initial excitation or
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disturbance. This could for instance be done by attaching a cable to the top
of the foundation which is then tensioned by a tugboat. The cable would have
a quick release mechanism and a tension measurement device. After the ten-
sioned cable is ’snapped’ by the quick release mechanism, the foundation will
start to vibrate in its natural modeshapes and corresponding natural frequen-
cies. Another way of exciting such a structure is by installing a shaker. This
is an installation that can vibrate a structure with a controllable frequency and
amplitude by means of rotating masses or dynamic hydraulic forces applied on
the structure. Advantage of a shaker over a snapping tension cable is that you
can decide which frequencies you want to evaluate. Nevertheless, installing a
heavy shaker on top of a TP will require a costly offshore crane on a barge,
being more costly than a tugboat.

Figure F.2 visualizes this measurement setup with the two excitation methods.
It is expected that this setup will yield large scientific knowledge.
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Figure F.2: Schematic view of the experimental setup with most expected ’knowledge
gain’, in which using a shaker would be more favorable than using a tensioned
cable as excitation method.

Performing measurements on the operational OWTs of Burbo Bank will include
the dynamic effect of the tower and RNA which is less desirable.
Though a benefit of performing measurements on this site is that a ’rotor stop’
procedure can be used to give the structure its initial excitation. During a rotor
stop, the fully operational and turning rotor blades are pitched out of the wind
at a speed of about 6 degr/sec up to an angle of 80 degrees with respect to the
angle in which they were during full operation. This makes the 107m diameter-
rotor brake fast enough to give the nacelle a certain (mainly-) for-aft vibration.
This vibration is mainly caused by a relatively sudden removal of the thrust
force, where even some suction towards the wind direction occurs because of
the sudden change in angle of the wind with respect to the blades. Also the law
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of constant rotational momentum in a system and the gyroscopic effect play a
role in the vibrations after such a rotor stop.
Besides the advantage of relatively easy excitation method (rotor stop), Burbo
Bank wind farm has the advantage that two OWTs were already equipped with
strain gauges and accelerometers during installation of the WF. Because of these
reasons, the measurement set up at Burbo Bank is ready to go and costless; the
rotor stop procedure and the data acquisition is all software controlled and can
be done so to speak from behind the desk.

The critical reader might still miss something in the described measurement set
ups. Since we are interested in how much energy is dissipated in the soil, mea-
suring the reaction of that soil is recommended. Besides measuring the reaction
of the steel structure via strain gauges and accelerometers, placing an array of
accelerometers on the soil surface to measure the soil waves is even more es-
sential. Unfortunately this would require a costly operation; a diver would have
to install rods on the soil surface and equip these rods with accelerometers.

From all this we can conclude that quite some good possibilities and combi-
nations of these measurement facets exist. From a scientific point of view, the
most knowledge gain is expected to be received from the experimental set up
as drawn in figure F.2; measuring the behavior of only a foundation, measur-
ing the soil reaction through an array of accelerometers on the soil surface and
exciting the structure by means of a shaker. Coincidence has it that this set up
also happens to be the most expensive one.

The different experimental options at the two locations were combined to form
nine different set ups, of which one was to be selected on basis of estimated
scientific knowledge gain, financial cost and relative short term achievability.
Figure F.3 gives a visual representation of these options.
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Figure F.3: Schematic view of the nine possible experimental set ups and result of the
cost benefit analysis.

Since the PLM system at ShSh consists only of uncalibrated strain gauges, it was
considered expanding the system with accelerometers. This explains the differ-
ence between options ’2’ and ’3’, and ’6’ and ’7’. From the cost-benefit graph
it can be concluded that only options ’9’, ’4’, ’8’ and ’5’ have to be taken into
consideration. The only difference between options 4 and 9 is that option ’9’ is
ready to be used, and performing a rotor stop at ShSh will have to wait untill
summer 2011 when the turbines are expected to be installed. That leaves only
options 9,8 and 5 for realistic experimental set ups.

Roadmap
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The previous section was part of the output of the first trajectory of this the-
sis, in which numerous meetings were held with Statoil and internally within
Siemens concerning the choice of experiment. Eventually the author suggested
a two-phase-roadmap to reach the ultimate goal.

The first phase of this roadmap is the nearly costless experiment ’number 9’
which is performing a rotor stop on one of the two OWTs at BB which is equiped
with a PLM system. Performing this experiment, making a model serving the
analysis of the obtained experimental data, and analysing the obtained data to
try and make an educated guess about the soil damping at the location of the
used OWT is the scope of this thesis. It has to be noted that this experiment is
limited in its possible information output since only the structure’s reaction is
measured. Since the soil’s reaction is not measured, it will not be possible to
map how this energy dissipation is related to soil types.
Another limitation of the obtained signal from this experiment will be the influ-
ence of the dynamics of the tower and RNA. Also, a rotor stop is a less precise
definable forcing than a shaker or snapping tension cable.
Nevertheless, this experiment will yield valuable learning on this subject and
the fact of it being a very low-cost experiment, makes it an evident first step. An
important side note must be mentioned; all OWTs at BB are equipped with so
called G-sensors in their nacelle which are a type of accelerometer with a non-
constant sampling frequency. Nowadays all Siemens turbines are equipped with
these G-sensors, so if these signals turn out to be useable for analysis, many of
these low-cost experiments can be performed on all locations with relative new
Siemens turbines.

The second phase will consist of expanding the measurement locations. Apart
from the structure itself, also the soil reaction will be measured via accelerom-
eters installed on the soil surface. This will render information on the propa-
gation and dispersion of waves in the soil surface. Knowing exactly the type of
soil on which these accelerometers are installed, lets us connect the properties
of that soil to the attenuation of waves or energy in that specific soil. This ex-
pansion of measurement locations might be done at a complete OWT on which
a rotor stop can be performed, or on a foundation only which lacks the dynamic
influence of the tower and RNA. This choice depends on the outcome of the first
phase. If the influence of the dynamics of the tower and RNA really turn out
to be blocking proper analysis of the damping in soil-structure interaction, then
performing measurements on a foundation without tower is a logical second
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step. This path or roadmap is indicated with the red arrow in the cost-benefit
graph in figure F.3.



G
Pinned Beam Model

One of the models that was developed in the process of attempting to develop a
satisfactory model was a pinned beam model. The pinned beam is constrained
at its bottom by equivalent stiffness (a rotational and translational spring) and
damping of the soil. The facets of this model are visualized in figure G.1.
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Figure G.1: Second model used to represent the performed rotor stops. xwl = 12.5 was
the mean sealevel (waterline) during the tests.

This model, other than the finally used ’constrained beam’ model presented in
chapter 4, is solved in the time domain. It was thought that this second way of
solving might serve as an extra piece of material for those interested in modal
analysis.

Solution in the Time domain

The governing equations
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This model’s behavior can be summarized by three sets of equations; the equa-
tion of motion, the boundary conditions and the interface conditions.

Equation of Motion

The EOM has the following form:

EI
∂4w(x, t)

∂x4
+m(x)

∂2w(x, t)

∂t2
+ T (x)

∂2w(x, t)

∂x2
+ cw(x)

∂w(x, t)

∂t
= (G.1)

f(x, t)−mtop
∂2w(x, t)

∂t2
δ(x− L) + J

∂3w

∂t2∂x
δ′(x− L)

−Ctop
∂w(x, t)

∂t
δ(x− L)−mcon

∂2w(x, t)

∂t2
δ(x− xwl) + Cr

∂2w(x, t)

∂t∂x
δ′(x)

where

w(x, t) =

{
w1(x, t), 0 < x < xwl
w2(x, t), xwl < x < L

(G.2)

m(x) =

{
m1 = ρA+Ma, 0 < x < xwl
m2 = ρA, xwl < x < L

(G.3)

T (x) =

{
T1 0 < x < xwl
T2 xwl < x < L

(G.4)

cw(x) =

{
cw,1 = Cw, 0 < x < xwl
cw,2 = 0, xwl < x < L

(G.5)

f(x, t) = Pδ(x− ξ)p(t) (G.6)

As can be seen in G.2 to G.5 in the EOM, this model contains some conditions
for the mass per meter length, m(x), the compressional force, T(x) and the dis-
tributed hydrodynamic damping, cw(x), as these values change over the height
of the structure. This requires us to consider two horizontal movements w1(x,t)
and w2(x,t).
The compressional force is split up in two values T1 and T2. T2 is the compres-
sion force acting at the point half way between xwl and xtop (see G.1, so it is
caused by the dead weight of the RNA and of the tower part above this point.
This T2 is taken to apply for the entire top part of the beam, from xwl upwards.
T1 then consists of T2 plus the dead weight of mcon and half of the beam from
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mudline untill xwl. T1 is again considered to be the constant compressional
force in the beam from xwl downwards.

The Boundary Conditions

The structure is constrained at it’s bottom by a horizontal translational spring
which opposes horizontal movement. This is incorporated by introducing a
shear force equilibrium at this location (eq. G.7). The moment at its bottom is
in equilibrium with the rotational spring (and rotational dashpot, but that has
already been included in the EOM). The top free end of the beam is conditioned
by the fact that a shear force equilibrium exists with the compressional force
caused by the RNA, and there can’t be a moment. These four conditons result
in the boundary conditions having the following form:

EI
∂3w(0, t)

∂x3
+Ktw(0, t) + T1

∂w(0, t)

∂x
= 0 (G.7)

EI
∂2w(0, t)

∂x2
−Kr

∂w(0, t)

∂x
= 0 (G.8)

∂2w(L, t)

∂x2
= 0 (G.9)

EI
∂3w(L, t)

∂x3
+ T2

∂w(L, t)

∂x
= 0 (G.10)

Note that the boundary conditions are kept free of time dependent items (no
derivatives to time). This is necessary in order to be able to find the natural
frequencies and normal modes in the same manner as was done with the first
model. So it is chosen to ’shift’ all the time dependent factors to the EOM in
stead of placing them in the BC’s.

The Interface Conditions

Finally the conditions have to be stated to govern the interface between the
upper and lower part at xwl = 12.5, the Interface Conditions (IC):
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w1 − w2 = 0 (G.11)
∂w1

∂x
− ∂w2

∂x
= 0 (G.12)

∂2w1

∂x2
− ∂2w2

∂x2
= 0 (G.13)

EI(
∂3w1

∂x3
− ∂3w2

∂x3
) + T1

∂w1

∂x
− T2

∂w2

∂x
= 0 (G.14)

In words they are respectively; the same horizontal movement between upper
and lower part of the beam, the same slope, the same bending moment and the
same shear force.

Now we shall look for the solution for w(x,t) in the form of a summation of
the location-dependent part times a time dependent part:

w(x, t) =

∞∑
n

qn(t)Wn(x) (G.15)

These two parts will be found in the next sections. This form is also the basis of
the ’separation of variables’ technique, in which an expressions is solved by look-
ing for the solutions of the individual variables and combining these solutions to
find the total solution. But because of the extra time dependent elements in the
EOM (the mass of the nacelle, the top damper and the rotational damper), we
will see it is not possible to solve the time-dependent part of the solution with
the separation of variables technique. The time dependent variable is coupled
to the normal modes, so here separation of variables is not possible.

The Location function

We will look for the normal modes Wn(x) making the same assumptions as was
previously done; we have to presume to have a homogeneous EOM (equalling
the right hand side of equation G.1 to zero) without damping. Then filling in
the general solution of G.15 with qn(t) = eiωt to get

EIW ′′′′n −m(x)ω2
nWn + T (x)W ′′n = 0 (G.16)
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The dispersion equation gives us the relation between the wavenumber βn
and the natural frequencies of the normal modes ωn. To derive the disper-
sion equation we also presume a general form for the location dependend
part:W (x) = eiβnx and insert it in the above expression to get the following
expression:

EIβ4
n −m(x)ω2

n − T (x)β2
n = 0 (G.17)

As now the top part of the tower has a different mass than the bottom part, we
get four different (usable) βn ′s:

βn,1,t = +

√
T2 +

√
T 2

2 + 4EIρAω2
n

2EI
(G.18)

βn,3,t = +

√
−T2 +

√
T 2

2 + 4EIρAω2
n

2EI
(G.19)

βn,1,b = +

√
T1 +

√
T 2

1 + 4EI(ρA+Ma)ω2
n

2EI
(G.20)

βn,3,b = +

√
−T1 +

√
T 2

1 + 4EI(ρA+Ma)ω2
n

2EI
(G.21)

The general solution of this dispersion equation distinguishes the top and the
bottom part of the beam, yielding two equations with in total eight unknown
constants:

W1(x) = A2cosh(βn,3,bx) +B2sinh(βn,3,bx) + C2cos(βn,1,bx) +D2sin(βn,1,bx)

W2(x) = A1cosh(βn,3,tx) +B1sinh(βn,3,tx) + C1cos(βn,1,tx) +D1sin(βn,1,tx)

(G.22)

We also have eight conditions (the BCs and the ICs) to find these constants.
Filling these general solutions in in the BCs and ICs of equations G.7 to G.14,
we can derive the following coefficient matrix:
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Kt

β2
n,3,b

0

0

cosh (βn,3,b xwl)

sinh (βn,3,b xwl)βn,3,b

cosh (βn,3,b xwl)β
2
n,3,b

EI sinh (βn,3,b xwl)β
3
n,3,b + sinh(βn,3,b xwl)βn,3,bT1 − sinh(βn,3,b xwl)βn,3,bT2

EIβ3
n,3,b + T1βn,3,b

−Krβn,3,bEI

0

0

sinh (βn,3,b xwl)

cosh (βn,3,b xwl)βn,3,b

sinh (βn,3,b xwl)β
2
n,3,b

EI cosh (βn,3,b xwl)β
3
n,3,b + cosh(βn,3,b xwl)βn,3,bT1 − cosh(βn,3,b xwl)βn,3,bT2

Kt

−β2
n,1,b

0

0

cos (βn,1,b xwl)

− sin (βn,1,b xwl)βn,1,b

− cos (βn,1,b xwl)β
2
n,1,b

EI sin (βn,1,b xwl)β
3
n,1,b − sin(βn,1,b xwl)βn,1,bT1 + sin(βn,1,b xwl)βn,1,bT2
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−EIβ3
n,1,b + T1βn,1,b

−Krβn,1,bEI

0

0

sin (βn,1,b xwl)

cos (βn,1,b xwl)βn,1,b

− sin (βn,1,b xwl)β
2
n,1,b

−EI cos (βn,1,b xwl)β
3
n,3,b + cos(βn,1,b xwl)βn,1,bT1 − cos(βn,1,b xwl)βn,1,bT2

0 0

0 0

cosh (βn,3,t L)β2
n,3,t sinh (βn,3,t L)β2

n,3,t

EI sinh (βn,3,t L)βn,3,t
3 + T2sinh(βn,3,tL)βn,3,t EI cosh (βn,3,t L)β3

n,3,t + T2cosh(βn,3,tL)βn,3,t

− cosh (βn,3,t xwl) − sinh (βn,3,t xwl)

− sinh (βn,3,t xwl)βn,3,t − cosh (βn,3,t xwl)βn,3,t

− cosh (βn,t,b xwl)β
2
n,3,t − sinh (βn,3,t xwl)β

2
n,3,t

cosh (βn,3,b xwl)β
2
n,3,b sinh (βn,3,b xwl)β

2
n,3,b

−EI sinh (βn,3,t xwl)β
3
n,3,t −EI cosh (βn,3,t xwl)β

3
n,3,t
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0 0

0 0

cosh− cos (βn,1,t L)β2
n,1,t − sin (βn,1,t L)β2

n,1,t

EI sin (βn,1,t L)β3
n,1,t − T2sin(βn,1,tL)βn,1,t −EI cos (βn,1,t L)β3

n,1,t + T2cos(βn,1,tL)βn,1,t

− cos (βn,1,t xwl) − sin (βn,1,t xwl)

sin (βn,1,t xwl)βn,1,t − cos (βn,1,t xwl)βn,1,t

cos (βn,1,t xwl)β
2
n,1,t sin (βn,1,t xwl)β

2
n,1,t

− cos (βn,1,b xwl)β
2
n,1,b − sin (βn,1,b xwl)β

2
n,1,b

−EI sin (βn,1,t xwl)β
3
n,1,t EI cos (βn,1,t xwl)β

3
n,3,t
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A1

B1

C1

D1

A2

B2

C2

D2


Solving the determinant of this matrix yields the frequency equation. In this
case this expression is too long and it has no added value being printed here.
Solving it with the use of expressions G.18 to G.21 yields the values for ωn.

The expression for the normal modes, Wn(x) is found by expressing one of
the unknowns in the other seven. Here again, this expression covers a couple of
pages and doesn’t add value being depicted here.

The Time function

On our quest for an expression for the time dependent part, (qn(t)), we fill
in the general solution (G.15) in the EOM to find
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EI

∞∑
n

qnW
′′′′
n +m(x)

∞∑
n

q̈nWn + cw(x)

∞∑
n

q̇nWn + T (x)

∞∑
n

qnW
′′
n =

f(x, t)−mtop

∞∑
n

q̈nWnδ(x− L) + J

∞∑
n

q̈nW
′
nδ
′(x− L) (G.23)

−Ctop
∞∑
n

q̇nWnδ(x− L)−mcon

∞∑
n

q̈nWnδ(x− xwl) + Cr

∞∑
n

q̇nW
′
nδ
′(x)

The first and fourth term on the left hand side of this equation can be simplified
by using the relation of G.16 to get

m(x)

∞∑
n

q̈nWn + cw(x)

∞∑
n

q̇nWn +m(x)

∞∑
n

qnω
2
nWn = (G.24)

f(x, t)−mtop

∞∑
n

q̈nWnδ(x− L) + J

∞∑
n

q̈nW
′
nδ
′(x− L)

−Ctop
∞∑
n

q̇nWnδ(x− L)−mcon

∞∑
n

q̈nWnδ(x− xwl) + Cr

∞∑
n

q̇nW
′
nδ
′(x)

Now to fulfill the orthogonality property, we have to multiply the terms with
another mode Wm, and integrate the products over the full length of the beam,
to get

q̈m

∫ L

0

m(x)W 2
mdx+

∞∑
n

˙qm

∫ L

0

cw(x)WnWmdx+ ω2
mqm

∫ L

0

m(x)W 2
mdx

=

∫ L

0

f(x, t)Wmdx−mtop

∞∑
n

q̈n

∫ L

0

WnWmδ(x− L)dx (G.25)

+J

∞∑
n

q̈n

∫ L

0

W ′nWmδ
′(x− L)dx− Ctop

∞∑
n

q̇n

∫ L

0

WnWmδ(x− L)dx

−mcon

∞∑
n

q̈n

∫ L

0

WnWmδ(x− xwl) + Cr

∞∑
n

q̇n

∫ L

0

W ′nWmδ
′(x)dx

Working out some of these integrals, we get
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q̈m

∫ L

0

m(x)W 2
mdx+

∞∑
n

˙qm

∫ L

0

cw(x)WnWmdx+ ω2
mqm

∫ L

0

m(x)W 2
mdx

=

∫ L

0

f(x, t)Wmdx−mtop

∞∑
n

q̈n(WnWm)x=L (G.26)

−J
∞∑
n

q̈n(W ′nWm)′x=L − Ctop
∞∑
n

q̇n(WnWm)x=L

−mcon

∞∑
n

q̈n(WnWm)x=xwl − Cr
∞∑
n

q̇n(W ′nWm)′x=0

Because the m(x) and cw(x) terms in G.25 have different values for the lower
and upper part of the tower, these integrals are split up in a part from 0 to xwl
and a part from xwl to L. These terms will be indicated with a ’*’ from now, and
thus have the following value;

m∗m =

∫ L

0

m(x)W 2
mdx = m1

∫ xwl

0

W 2
1,mdx+m2

∫ L

xwl

W 2
2,mdx (G.27)

∫ L

0

cw(x)WnWmdx = Cw

∫ xwl

0

W1,nW1,mdx (G.28)

and

f∗ =

∫ L

0

f(x, t)Wmdx =

∫ L

0

Pδ(x− L)δ(t)Wmdx = PW2,m|x=Lδ(t)

Further, m2 and m1 in the last four terms in G.26 represent the mass value at
respectively x=L and x=0 because of condition G.3.
The last two terms were simplified with the following rule for integrating the
product of a function and the derivative of a Dirac Delta function:∫ ∞

−∞
f(x)δ(n)(x− xwl)dx = (−1)nf (n)(xwl) (G.29)

Now, once again, if all terms proportional to q̈, q̇ and q are collected in equation
G.25, this equation can be written in the following form:
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Mq̈ + Cq̇ + Kq = f(t) (G.30)

If we consider three modes, these matrices would look like

M=


m∗1 +mtopW1W1|x=L + JW ′1W1|′x=L +mconW1W1|x=xwl

mtopW1W2|x=L + JW ′1W2|′x=L +mconW1W2|x=xwl

mtopW1W3|x=L + JW ′1W3|′x=L +mconW1W3|x=xwl

mtopW2W1|x=L + JW ′2W1|′x=L +mconW2W1|x=xwl

m∗2 +mtopW2W2|x=L + JW ′2W1|′x=L +mconW2W2|x=xwl

mtopW2W3|x=L + JW ′2W3|′x=L +mconW2W3|x=xwl

mtopW3W1|x=L + JW ′3W1|′x=L +mconW3W1|x=xwl

mtopW3W2|x=L + JW ′3W2|′x=L +mconW3W2|x=xwl

m∗3 +mtopW3W3|x=L + JW ′3W3|′x=L +mconW3W3|x=xwl


or M= mtopWiWj|x=L + J(W′

iWj)
′
x=L + m∗ with m∗i,i = m∗i & m∗i,j = 0

C =


Cw[W1W1]xwl0 + CtopW1W1|x=L + CrW

′
1W1|′x=0

Cw[W1W2]xwl0 + CtopW1W2|x=L + CrW
′
1W2|′x=0

Cw[W1W3]xwl0 + CtopW1W3|x=L + CrW
′
1W3|′x=0

Cw[W2W1]xwl0 + CtopW2W1|x=L + Cr(W
′
2W1)′x=0

Cw[W2W2]xwl0 + CtopW2W2|x=L + Cr(W
′
2W2)′x=0

Cw[W2W3]xwl0 + CtopW2W3|x=L + Cr(W
′
2W3)′x=0
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Cw[W3W1]xwl0 + CtopW3W1|x=L + Cr(W
′
3W1)′x=0

Cw[W3W2]xwl0 + CtopW3W2|x=L + Cr(W
′
3W2)′x=0

Cw[W3W3]xwl0 + CtopW3W3|x=L + Cr(W
′
3W3)′x=0


or C= Cw[WiWj]

x0
0 + CtopWiWj|x=L + Cr(W

′
iWj)

′
x=0

K=


ω2

1m
∗
1 0 0

0 ω2
2m
∗
2 0

0 0 ω2
3m
∗
3


and the forcing vector

f(t)=


PW1|x=L

PW2|x=L

PW3|x=L

 ·p(t) with p(t) = 1
∆t
√
π
e−

(t−t0)2

∆t2

The Dirac Delta function of time (δ(t)) has been replaced by an exponential
function in the forcing vector.

To find the natural frequencies of this system, we look at the homogeneous case
of equation G.30 where the external forcing is put to zero, and we presume for
q=Qeiωt, to get

−ω2M + iωC + K = 0 (G.31)

Solving the determinant of this summed up matrix yields the natural (eigen-
)frequencies of this sytem. For simplicity, in a system with relatively low damp-
ing, the second term in the above summation can be put to zero since it has little
influence on the values of the frequencies, so solving the following statement
yields the natural frequencies of this system:

det| −Mω2 + K| = 0 (G.32)



156 Pinned Beam Model

The coupled set of differential equations which is now defined by G.30 can be
solved to find qn(t). Multiplying this value by the nth normal mode Wn and do-
ing so for more modes and summing up the products (as according to equation
G.15), gives us the total horizontal movement response w(x,t) during a certain
moment in time t and at a certain location x along the tower.
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Applied Values for Model Parameters

Symbol Description Value SI unit

A Weighted average cross-sectional surface area 0.732 m2

over entire vertical length of the structure

Cd Hydrodynamic drag coefficient 1 -

Ca,w Added mass coefficient for sea water 2 -

Ca,w+s Added mass coefficient for sea water and pile plug 1 -

Di Weighted average inner diameter of MP, 4.253 m
TP and Tower

Do Weighted average outer diameter of MP, 4.359 m
TP (plus overlap) and Tower

Do,mp,sub Outer diameter MP water-submerged 5.036 m
(for added mass of water calculation)

Do,mp,emb Outer diameter MP soil-embedded 4.7 m
(for added mass of water and soil plug calculation)

E Young’s modulus of construction steel 2.100.1011 N
m2

Es Young’s modulus of soil 1.300.108 N
m2

Izz Second moment of area 1.926 m4

Ma,s Added mass of the sea water 4.083.104 kg

Ma,s+w Added mass of the sea water 2.325.104 kg
and soil plug in the monopile tip

mbl Mass of the 3 blades 5.550.104 kg

mcon Mass of the grouted connection 8.510.104 kg

mtop Mass of the nacelle 1.745.105 kg
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qs Shaft skin friction along the outer 1.200 N
m2

skin surface of the monopile

ρs Unit weight of construction steel 7850 kg
m3

ρw Unit weight of sea water 1025 kg
m3

T1 Constant compressional force of lower 6.157.106 N
part of the structure

T2 Constant compressional force of middle 7.380.106 N
part of the structure

T3 Constant compressional force of top 3.960.106 N
part of the structure

V0 Initial velocity of auxiliary rotor mass 3 m
s

Impedance coefficients

cbl Dashpot coefficient for damping of the blades 1.087.104 Ns
m

cs Distributed dashpot coefficient for damping of the soil 7.504.107 Ns
m2

ctop Dashpot coefficient for sloshing damper 1.209.104 Ns
m

cw Distributed dashpot coefficient for 9.291.104 Ns
m2

hydrodynamic damping

kbl Spring stiffness coefficient of the blades 1.780.106 N
m

ks Distributed spring stiffness coefficient of the soil 1.924.108 N
m2

kt Spring stiffness coefficient at the pile tip 2.216.109 N
m



I
Finding the sign of terms in the

Equation of Motion

Here we initially presume that the sign of the mass moment of inertia term
(M=+J ∂3w

∂t2∂x) of the top mass in the boundary condition of the model (eq.
4.12) on the right side of the equal sign is positive, then the following relation
around x=L where the top mass is situated must hold:

EI

∫ L+ε

L−ε
W ′′′′(x− L)dx =

∫ L+ε

L−ε
Mδ′(x− L)(x− L)dx = 0 (I.0)

where ε << 1, and the EOM is multiplied by (x-L).
First working out the integral on the left hand side with the use of integration
by parts (

∫
udv = uv −

∫
duv and u = (x − L), du = dx, dv = W ′′′′dx and

v = W ′′′): ∫ L+ε

L−ε
W ′′′′(x− L)dx = W ′′′(x− L)|L+ε

L−ε −
∫ L+ε

L−ε
W ′′′dx = (I.1)

W ′′′(L+ ε)(L+ ε− L)−W ′′′(L− ε)(L− ε− L)−W ′′|L+ε
L−ε = (I.2)

−W ′′′(L) · −ε−W ′′(L+ ε) +W ′′(L− ε) = +W ′′(L)

160
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where ε → 0 is used and the fact that L + ε does not exist so terms for this
region are equaled to zero. And then the right hand side of the first equation
becomes: ∫ L+ε

L−ε
Mδ′(x− L)(x− L)dx = −M (I.1)

where the previously explained derivation rule of the Dirac Delta function is
used. Now equaling the left hand side and the right hand side gives us:

+W ′′(L) = −J ∂3w

∂t2∂x
(I.1)

So this means that the first assumption of the mass moment of inertia having
a positive sign on the right hand side of the equal sign is correct: it should be
positive if the left hand side term with EIW ′′′′ is also positive.
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