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1 FOREWORD

Before you lies the report ”Regularizing GRACE mascon solutions using river run-off
data”, which tries to make a contribution to the field of GRACE data processing. The re-
search focuses on a new type of data combination to improve the quality of terrestrial
water storage variations estimations from GRACE data. This thesis is written as comple-
tion of the Geoscience and Remote Sensing Master’s program at the Delft University of
Technology. Research on this topic was conducted from April 2020 to April 2021.

In this period I learned a great deal, not only on the topic of GRACE data processing
but also about areas I was less familiar with, like hydrology. The research was really ex-
citing, dealing with a large variety of data sets and the complicated underlying physical
processes made it a real challenge. So, being able to answer all research questions, which
were formulated at the start of the research, gives me a sense of fulfillment.

The research questions were formulated together with my supervisors, Dr. P. (Pavel) Dit-
mar, Prof. R. (Roland) Klees, Prof. Dr. Ir. S. (Susan) Steele-Dunne, and Dr. M. (Markus)
Hrachowitz, and were based on an idea of Dr. P. (Pavel) Ditmar. I would like to thank all
the supervisors for their support and guidance throughout the entire process. A special
thanks to Dr. P. (Pavel) Ditmar, who spend much time and effort by attending weekly
meetings and sharing his profound knowledge on the topic. I would also like to thankmy
family and friends, who kept me motivated this entire period.

I hope you will enjoy reading my thesis.

Obbe Lucassen

Rotterdam, April 8, 2021

This thesis is submitted in partial fulfillment of the requirements for the degree Master
of Science in Geoscience and Remote Sensing at the Delft University of Technology.
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ABSTRACT

Accurate estimates of terrestrial water storage variations (TWSV) are critical for a variety
of applications, e.g., model calibration and climate studies. This study aims to find the
added value of river run-off data for regularizing GRACE mascon solution, from which
TWSV can be estimated. Most subbasins of the Mississippi Basin show an exponential re-
lationship between run-off and TWSVwith moderate to good predictive value. The mean
value of the explained variance (𝑅2) for the models is 0.4, when excluding the Lower
Mississippi and Middle Missouri subbasins the mean value increases to 0.5. The Lower
Mississippi and Middle Missouri subbasins are the only subbasins with no clear correla-
tion between run-off and storage, most likely due to aquifer depletion.

Since ready-to-used GRACE mascon solutions cannot be modified, the mascon method
developed at the Geoscience and Remote Sensing Department of the Delft University of
Technology is used in this study. This study proposes modifications to tailor this method
to the Mississippi Basin and mass anomalies of hydrological origin. After applying stan-
dard Tikhonov regularization, the exponential relationship is used to determine the most
probable model outcome for each subbasin, adding a new term to the estimator. The re-
sulting GRACE mascon solutions (Tikhonov and run-off regularized solutions) have a
root-mean-square deviation (RMSD) of around 3.5 cm when compared to ready-to-use
mascon solutions from the Jet Propulsion Laboratory and Goddard Space Flight Cen-
ter. The run-off regularized solutions show smaller deviation (on average 7 %) percent)
than the Tikhonov regularized solutions with respect to an independent validation data
set. The largest difference between the Tikhonov and run-off regularized solutions oc-
cur in the dryer subbasins (Platte, Middle, and Upper Missouri, and Upper Mississippi
subbasin). These areas show a stronger inter-annual trend in TWSV, these trends are cap-
tured better by the run-off regularized solutions. Additional research, co-estimating the
regularization bias, shows that the run-off regularized solutions induce less bias into the
solutions. This study shows that using run-off data when processing GRACE data could
be of added value, especially in semi-humid to arid areas, since the TWSV in these areas
is more susceptible to inter-annual variations.
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2 I N TRODUCT ION

Having accurate estimations of the terrestrial water storage variations (TWSV) is very
important for a wide range of applications. Terrestrial water storage (TWS) is all water
on the surface and in the subsurface of the Earth. These estimations may be used to pre-
dict floods and droughts, to study the effects of climate change on the water cycle, or
may act as boundary conditions in climatological and hydrological models. So, creating a
method to observe TWSVwith a high spatial and temporal resolution is of high relevance.

Satellite Gravimetry is a remote sensing technique thatmeasures the state of the Earth’s
gravitational field. After repeated measurements, changes in the gravity field can be in-
ferred. Changes in the water storage lead to changes in the gravitational field and this
way the Gravity Recovery and Climate Experiment (GRACE) mission can be used to de-
tect TWSV. The GRACEmission operated from 2002 to 2017, after this mission ended the
GRACE Follow-On was launched, which is still operational at this moment. The spatial
resolution of GRACE products is limited to around 300 kilometers, this is mainly due to
the altitude at which the satellites orbit (Wouters et al., 2014). Only for the few months
that are characterized by a short repeat period, ground track coverage has a minor influ-
ence on the spatial resolution. Currently, a temporal resolution of one month is the norm,
however, there is a wide effort to increase the temporal resolution (Wouters et al., 2014).
There is a trade-off between spatial and temporal resolution, an increase in temporal res-
olution results in a decrease of spatial resolution and vice versa. Another problem of the
GRACE mission is the difference in sensitivity in the East-West direction compared to
the North-South direction. The sensitivity in the East-West direction is worse since the
satellites are in a near-polar orbit. As a result, the noise in GRACE data has a strong non-
isotropic North-South character, this causes the well-known ’stripes’ in GRACE solutions
(Wouters et al., 2014).

To minimize the noise a filter or regularization technique is used. The idea of a filter is
that it drops the variance in the solutions, but as a consequence, it adds bias. So, when
calculating mass or gravity variations from GRACE data filtering is needed to smoothen
the solution, which leads to biased amplitude estimates. Filtering can be applied after
an initial solution by inversion is obtained. Regularization adds additional information
within the least-squares inversion procedure to prevent over-fitting. By replacing tradi-
tional constraints with data-based constraints within the regularization procedure, the
bias is expected to drop with respect to traditional Tikhonov regularization. This is ex-
pected because the data-based constraints are based on the psychical processes them-
selves, whereas the traditional constraints are purely mathematical.

Fromearly onGRACEdata has beenused to improve global hydrologicalmodels (Günt-
ner, 2008). It is used to estimate TWSV for basins as small as 50,000 𝑘𝑚2 (Biancamaria
et al., 2019) up to the Amazon and Mississippi basin (Klosko et al., 2009; Xavier et al.,
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2 introduct ion

2010). The link between GRACE-derived TWSV and run-off is studied for the Lena River
(Suzuki et al., 2016) and for many other large rivers (Riegger and Tourian, 2014). In the
early stage of the GRACE missions, the Earth’s gravity field was parameterized using
spherical harmonics (SH) basis functions. A later developed approach parameterizes the
mass anomalies using regional mass concentration (mascon) functions (Bridget R. Scan-
lon1, Zizhan Zhang1, Himanshu Save2, David N. Wiese3, Felix W. Landerer3, Di Long4,
Laurent Longuevergne5 and Chen2, 2016). Amethod at TU Delft is developed that trans-
forms monthly spherical harmonic solutions into mass anomaly estimates. This method
was successfully applied to Greenland and Antarctica to study regional mass loss trends
(Engels et al., 2018; Ran et al., 2018).

Previous work from Riegger and Tourian (2014) andMacEdo et al. (2019) showed that
run-off and GRACE-derived storage show a relationship. Riegger and Tourian (2014) al-
ready showed that river run-off and variations in the terrestrialwater storage estimated by
off-the-shelf GRACE solutions show a high correlation after processing the run-off data.
Their study was focused on a number of the world’s largest river basins, including the
Amazon, Niger, and Mackenzie Basin with drainage areas from more than 1.5 to 4 mil-
lion 𝑘𝑚2. Here mass changes are easier to detect given the spatial resolution of GRACE
solutions (±300km). MacEdo et al. (2019) demonstrated that there is a relationship be-
tween run-off and storage for different subbasins of theMississippi Basin. The hypothesis
is that run-off data could be used to constrain the GRACE solutions and this way create
high-resolution data-only estimates of the TWSV, if the correlation is also existing for
smaller basins.

Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC) produce
level-3 mass concentration block (mascon) solutions (Luthcke et al., 2013; Watkins et al.,
2016). Amascon is a predefined area for which gravity solutions in terms of mass anoma-
lies are calculated. As soon as off-the-shelf solutions are concerned these can not be mod-
ified, so the variant of the mascon method created at Delft University of Technology will
be used to study the effect of run-off data when applied to regularize the estimates (Ran
et al., 2018).

The main goal of this project is to analyze the added value of run-off data for high-
resolution estimation of TWSV in the study area from GRACE data. The sub-goals of the
project are:

• selection of a study area;

• adoption of the GRACE data processing technique developed earlier at the Geo-
science and Remote Sensing department at TU Delft;

• fine-tuning and validation of that technique in the context of the selected study area;

• collection of independent data to estimate TWSV in the study area;

• quantification of the relationships betweenTWSVand run-offvariations in the study
area using GRACE-based TWSV estimates;

• implementation of regularization into theGRACEdata processing technique to com-
bine GRACE data with prior information; and
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• validation of the obtained results using independent data.

The structure of the thesis is as follows: first, related previous work and background
information is discussed in Chapter 3. This is followed by a deeper look into the require-
ments for a suitable study area, the properties it should possess, and the final decision
made regarding the study area in Chapter 4. Which data is used will be laid out as well
as how these data are processed, in Chapter 5. This chapter also includes the methodol-
ogy of this project, how the run-off storage relationships are obtained, and how these are
implemented into the mascon approach. Numerical experiments were performed to find
the optimal parameter settings, these are discussed in Chapter 6. Next, the results will
be shown in Chapter 7. In the discussion (Chapter 8) an interpretation of the obtained
results is provided and a discussion on how they compare to JPL and GSFC mascon so-
lutions. Also, recommendation for further work will be given. Finally, a conclusion will
be drawn on the added value of the proposed technique in Chapter 9.





3 PREV IOUS WORK

In this chapter previouswork is discussed that is of interest for this research. First, satellite
gravimetry will be introduced, followed by an introduction to the mass concentration
block approach. Next, the theoretical and experimental relationship between river run-
off and water storage will be touched upon. Finally, independent data sets that could be
used for validation will be presented.

3.1 sat e l l i t e grav imetry

Gravity is one of the fundamental forces which results from the presence of mass. One
mass attracts another mass and vice versa, according to Newton’s law of attraction:

∣F1∣ = ∣F2∣ = 𝐺𝑚1𝑚2
𝑑2 , (3.1)

where 𝐹1 and 𝐹2 are the forces exerted on the two point masses, 𝑚1 and 𝑚2, 𝑑 is the dis-
tance between thosemasses and𝐺 is the gravitational constant. From this and the assump-
tion that the Earth is a spherical symmetric object, the acceleration amass experiences due
to mass 𝑀 to can be written as:

𝑔 = 𝐺𝑀
𝑟2 , (3.2)

where 𝑔 is the gravitational acceleration, 𝑀 the secondmass (Earth) and 𝑟 the distance be-
tween 𝑚1 and the center of the Earth. At the Earth’s surface the average gravity (𝑔) is 9.81
𝑚/𝑠2. However, this attraction is not constant over the Earth’s surface. A reason for these
regional differences in the rotation of the Earth, this is a process that is well understood
and can be accurately predicted. Water distribution and movement in the atmosphere
also cause differences in gravitational attraction. Just like the Earth’s rotation these can
be accurately measured and modeled. The non-homogeneous distribution of mass is an-
other reason for these spatial differences. This is muchmore complicated since it requires
knowledge of the Earth’s interior to model and predict this. These processes that occur
in the subsurface and interior of the Earth, like plate tectonics and changes in the density
of the interior, are very slow. This means that on a relatively short time scale they can be
assumed to be constant. All this information makes time-variable gravity measurements
very valuable since know process can be subtracted and information on less known pro-
cesses can be obtained (Wouters et al., 2014). This research focuses on mass changes due
to water in terrestrial areas, i.e. water stocks that are held in a specific river basin. Another
example of physical processes that trigger changes in gravitational attraction is the mass
loss of glaciers and ice sheets. NASA’s and DLR’s joint Gravity And Climate Experiment
(GRACE) satellite mission was launched in 2002 to observe these changes.

The processes due to the redistribution of water can cause variation in the gravitational
attraction of the order 10−8 𝑚/𝑠2. To be able to measure these changes very accurate in-
struments are needed. On a global scale, this was done by the Gravity Recovery And
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6 prev ious work

Climate Experiment (GRACE) satellites, which were launched in 2002 and operated up
to 2017. GRACE mission consisted of two satellites (separated by about 220 kilometers)
that were in a near-polar (inclination of 89 degrees) orbit. It constantly tracked the dis-
tance between the two satellites and from that information on the Earth’s gravity field is
extracted. Mass anomalies cause the satellite to change the gravitational acceleration, and
since the two satellites are in different positions this changes the inter-satellite distance.
This distance ismeasured using a very accurateK-bandmicrowave ranging system (KBR).
The satellites were also equipped with GPS receivers to track their position at all times.
From this range of data, variation in the Earth’s gravity field can be recovered. Different
background models are used to remove the known signal from; ocean tides, polar tides,
Earth tides, atmospheric effects, and the Earth’s static gravity field. The processing of
this Level-1 data (range-data) is done at different institutes. The resulting GRACE data
is generally distributed as Stokes coefficients of spherical harmonic function which can
be related to variations in equivalent water height at the Earth’s surface. The next section
discusses the main equations exploited during the conversion of Stokes coefficients into
equivalent water heights (Wouters et al., 2014).

The Earth’s gravity field is described by the gravitational potential (𝑉). Equation 3.3
shows gravitational potential in terms of Stokes coefficients:

𝑉(𝑟, 𝜃, 𝜆) = 𝐺𝑀
𝑅

∞
∑
𝑙=0

𝑙
∑
𝑚=0

(𝑅
𝑟 )

𝑙+1
𝑃̄𝑙𝑚(𝜃, 𝜆) ( ̄𝐶𝑙𝑚 cos𝑚𝜆 + ̄𝑆𝑙𝑚 sin𝑚𝜆) , (3.3)

where 𝑀 is the mass of the Earth, 𝑟 us the radial coordinate of the observation point, 𝜃
and 𝜆 are the longitude and colatitude of the observation point, 𝑅 is the semi-major axis
of the reference ellipsoid, 𝑃 are the Normalized associated Legendre functions, 𝑙 and 𝑚
the degree and order of the Stokes coefficients and 𝐶 and 𝑆 are the coefficients. To convert
this to units of equivalent water height, Fourier coefficients of equivalent water height are
computed:

( ̄𝐶𝑙𝑚 cos𝑚𝜆 + ̄𝑆𝑙𝑚 sin𝑚𝜆)(𝛿ℎ𝑤) =
( ̄𝐶𝑙𝑚 cos𝑚𝜆 + ̄𝑆𝑙𝑚 sin𝑚𝜆)(𝛿𝑠)

𝜌𝑤
=

𝑅(2𝑙 + 1)
3 (1 + 𝑘′

𝑙)
𝜌𝑎𝑣
𝜌𝑤

( ̄𝐶𝑙𝑚 cos𝑚𝜆 + ̄𝑆𝑙𝑚 sin𝑚𝜆) ,
(3.4)

where 𝑘′
𝑙 are the load Love numbers, 𝜌𝑤 the density of water, 𝜌𝑎𝑣 the average density of

the Earth and ̄𝐶𝑙𝑚 and ̄𝑆𝑙𝑚 are the temporal variations of the Stokes coefficients. Then,

𝛿ℎ𝑤(𝜃, 𝜆) = 𝑅𝜌𝑎𝑣
3𝜌𝑤

∞
∑
𝑙=0

𝑙
∑
𝑚=0

𝑃̄𝑙𝑚(𝜃, 𝜆)2𝑙 + 1
1 + 𝑘′

𝑙
( ̄𝐶𝑙𝑚 cos𝑚𝜆 + ̄𝑆𝑙𝑚 sin𝑚𝜆) . (3.5)

Equation 3.5 shows how Stokes coefficients are linked to mass changes in equivalent wa-
ter height. The spherical harmonic approach is the most common method of obtaining
information on the gravity field using GRACE data. This method is the standard method
at the beginning of theGRACE era and represents the gravity field as spherical harmonics.
Later, another approach was developed where range data is directly related to homoge-
neous density changes in predefined mass concentration blocks. The mascon approach
is used to determine mass anomalies and is not used to estimate the gravity field. This
approach, which has somemajor advantages over the traditional spherical harmonics ap-
proach, is discussed below.
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3.2 grace mascon methods

As briefly explained in the introduction, a mascon (mass concentration block) is a form
of mass anomaly basis function which can be derived from GRACE inter-satellite range
observations, in combination with other data. So, each block that is defined gets a certain
mass concentration and this mass concentration is homogeneous throughout the whole
block. This means that a discrete solution is obtained. In the last ten years, the mascon
approach caughtmoremomentum, and nowadays it is used by Jet Propulsion Laboratory
(NASA), Goddard Space Flight Center (NASA), and CSR (Wouters et al., 2014). There
are some advantageswhen using themascons approach instead of the spherical harmonic
approach. One of them is that the implementation of geophysical constraints is much eas-
ier. Furthermore, leakage is reduced from land to ocean by the configuration of mascons
(Chen et al., 2016).

3.2.1 GSFC Mascon solutions

Luthcke et al. (2013) describes how Level-1 data is processed to get GSFC mascon solu-
tions (Loomis et al., 2019). These mascons are created through SH expansion (Chen et
al., 2016). Inter-satellite K-band range-rate (KBRR), orbit location, accelerometer, and atti-
tude data are used to get global estimates of mass anomalies. Different background mod-
els are used to model and subtract different processes from the data, these are shown in
Table 3.1. The GGM02Cmodel is used to model the static gravity field. The ’GOT4.7’ tide
model is used tomodel the ocean tides. Variations in atmospheric masses aremodeled us-
ing data from the EuropeanCentre forMedium-RangeWeather Forecasts (ECMWF). The
baroclinic OceanModel for Circulation and Tides (OMCT) is used to model and subtract
ocean mass variations. ICE-5G (VM2) is used the model the glacial isostatic adjustment
(Chen et al., 2016).

Table 3.1: Background models used in GSFC mascon approach from Chen et al. (2016)
Effect Model
Solid Earth Gravity GGM02C
Solid tides IERS2003
Ocean tides GOT4.7
Solid pole tide IERS2003
Ocean pole tide IERS2010
Nontidal atmosphere and ocean dealiasing ECMWF
GIA ICE–5G

3.2.2 JPL Mascon solutions

JPL mascons are created through analytical partial derivatives (Chen et al., 2016). The
detailed data processing steps to obtain mascon solutions are provided by Watkins et
al. (2016). Similar to the GSFC mascons, background models are used to compensate
for known gravity variations. Table 3.2 provides a list of subtracted effects and which
models are used. Themean (static) gravity field is modeled using the GIF48model. Solid
Earth and pole tides are modeled by the IERS2010 nonelastic Earth model. Ocean tides
are modeled by the GOT4.7 model. Variations of atmospheric mass are subtracted using



8 prev ious work

ECMWF data. Effects from other planets, the Sun and the Moon are modeled using the
DE-421 model. Finally, the IERS2010 background model is used to mitigate the effects of
the ocean pole tides.

Table 3.2: Background models used in JPL mascon approach fromWatkins et al. (2016).
Effect Model
Solid Earth Gravity GIF48
Solid tides IERS2010 nonelastic Earth
Ocean tides GOT4.7
Solid pole tide IERS2010 nonelastic Earth
Ocean pole tide IERS2010
Nontidal atmosphere and ocean dealiasing ECMWF atmosphere and baroclinic OMCT ocean model
Third body perturbations DE-421

3.2.3 TU Delft Mascon approach

Since off-the-shelf GRACE mascon solutions can not be modified in the desired way the
method developed at Delft University of Technology is used in the thesis. The mascon
approach that was developed at TU Delft and applied to Greenland forms the skeleton of
this research (Ran et al., 2018). This method was later successfully applied to Antarctica
(Engels et al., 2018). This mascon approach transforms monthly spherical harmonic coef-
ficients (SHC) into mass anomaly estimates. The SHCs are used to get gravity anomalies
at satellite altitude, which are then transformed into mass anomalies per mascon at the
Earth’s surface. Below the exploited functional model, where this method is based, is laid
out.

The following steps are derived from Engels et al. (2018). The computations can be
split into three steps. The first step deals with the computation of gravity disturbances at
a satellite altitude from monthly spherical harmonic coefficients. These disturbances are
then linked tomascons at the Earth’s surface andfinally,mascon parameters are estimated
using least-squares techniques.
The gravity disturbance at a specific point (𝛿𝑔𝑝) and SHCs (Δ𝐶𝑙𝑚 and Δ𝑆𝑙𝑚) are related
as

𝛿𝑔𝑝 = 𝐺𝑀
𝑟2𝑝

𝐿
∑
𝑙=1

𝑙 + 1
1 + 𝑘′

𝑙
⎛⎜
⎝

𝑎
𝑟𝑝

⎞⎟
⎠

′ 𝑙
∑
𝑚=0

𝑃̄𝑙𝑚 × (sin𝜙𝑝) (Δ𝐶𝑙𝑚 cos𝑚𝜆𝑝 + Δ𝑆𝑙𝑚 sin𝑚𝜆𝑝) , (3.6)

where 𝑟 (radial distance),𝜙 (latitude) and 𝜆 (longitude) define the location of the point,
𝐿 is the maximum spherical harmonic degree, 𝑙 the spherical harmonic degree, 𝑚 the cor-
responding order, 𝐺𝑀 is the geocentric constant, 𝑎 is the semi-major axis of the reference
ellipsoid, 𝑘′

𝑙 is the load Love of degree 𝑙 and 𝑃̄𝑙𝑚 is the normalized associated Legendre
function of a specific degree and order.

For the second part, we want to link those gravity disturbances (at satellite altitude) to
mascons at the Earth’s surface. Suppose there are 𝑁 mascons 𝑀𝑖, each with a surface den-
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sity of 𝜌𝑖. Then, using almost identical quantities as Equation 3.6, the relationship can be
expressed as

𝛿𝑔𝑝 = − 𝜕
𝜕𝑟

⎛⎜
⎝

𝐺
𝑁

∑
𝑖=1

𝜌𝑖 ∫
𝑀𝑖

d𝑠
𝑙𝑝

⎞⎟
⎠

= − 𝜕
𝜕𝑟

⎛⎜
⎝

𝐺
𝑁

∑
𝑖=1

𝜌𝑖𝐼𝑖,𝑝
⎞⎟
⎠

, (3.7)

where 𝐺 is the universal gravitational constant and

𝐼𝑖,𝑝 = ∫
𝑀𝑖

d𝑠
𝑙𝑝

(3.8)

with 𝑙𝑝 as the distance between an integration point (at the Earth’s surface) and a data
point (at a satellite altitude). 𝐼𝑖,𝑝 needs to be computed using numerical integration, for
which purpose a composed Newton-Cotes formula is used. The nodes within a mascon
are located on a Fibonacci gird. When 𝐾𝑖 is the number of nodes, 𝐼𝑖,𝑝 can be written as

𝐼𝑖,𝑝 ≈ 𝑤𝑖

𝐾𝑖

∑
𝑗=1

1
𝑙𝑖𝑗,𝑝

, (3.9)

where 𝑤𝑖 = 𝑆𝑖/𝐾𝑖 with 𝑆𝑖 as the surface area of themascon i. 𝑙𝑖𝑗,𝑝 is the distance between
the node and the data point. This can be calculated as

𝑙𝑖𝑗,𝑝 = (𝑟2
𝑖𝑗 + 𝑟2

𝑝 − 2𝑟𝑖𝑗𝑟𝑝 cos𝜓𝑖𝑗,𝑝)
1
2 (3.10)

where

cos𝜓𝑖𝑗,𝑝 = sin𝜙𝑝 sin𝜙𝑖𝑗 + cos𝜙𝑝 cos𝜙𝑖𝑗 cos(𝜆𝑝 − 𝜆𝑖𝑗),

with cos𝜓𝑖𝑗,𝑝 the angle between the node and the data point.
Combining expressions 2.1-2.5 results in the functional model that relates gravity distur-
bances at satellite altitude to the surface densities of the mascons. This functional model
is then written as

𝛿𝑔𝑝 ≈ 𝐺
𝑁

∑
𝑖=1

𝜌𝑖

𝐾𝑖

∑
𝑗=1

𝑤𝑖𝑗 (𝑟2
𝑖𝑗 + 𝑟2

𝑝 − 2𝑟𝑖𝑗𝑟𝑝 cosΨ𝑖𝑗,𝑝)
− 3

2 × (𝑟𝑖𝑗 − 𝑟𝑝 cos𝜓𝑖𝑗.𝑝). (3.11)

This functional model is used together with the ’pseudo observations’ at satellite al-
titude to estimate the unknown densities. These ’pseudo observations’ are the gravity
disturbances synthesized with Equation 3.6. In matrix-form, this can be written as

𝑦 = 𝐴′𝑥 (3.12)

where 𝐴′ is the design matrix, 𝑦 the vector with gravity disturbances, and 𝑥 the vector
with surface densities. The design matrix is low-pass filtered to get a spectral consistent
functional model. Then the best-linear unbiased estimator can be extracted by

̂𝑥 = (𝐴𝑇𝐶−1
𝑑 𝐴)−1𝐴𝑇𝐶−1

𝑑 𝑦, (3.13)
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where 𝐴′ is the low-pass-filtered design matrix and 𝐶𝑑 is the data noise covariance
matrix, defined as a unit matrix in this study. So this gives the estimator that is used in
this research.

3.3 t erre str ia l water storage var iat ions a s e st imated by grace

Water can be stored in many different components of the Earth’s system; the atmosphere,
biosphere, cryosphere, and lithosphere. Water is in continuous movement through the
atmosphere, over the surface, and in the subsurface of the Earth. The total amount of
water remains fairly constant, however, the location where this water is stored is highly
variable. Hydrological analyses are done to predict where water is at a certain moment
and in what form. Almost all hydrological analyses involve the application of a mass
balance. Reynolds transport theorem can be used to derive a mass balance for any sort of
system (Margulis, 2017). After defining a certain control volume the mass balance can be
written as

𝛿𝑆
𝛿𝑡 = Σ𝑖𝐼𝑖 − Σ𝑖𝑂𝑖, (3.14)

where 𝛿𝑆
𝛿𝑡 is the derivative of the total mass with respect to time, Σ𝑖𝐼𝑖 is the sum of all

incoming mass and Σ𝑖𝑂𝑖 is the sum of all outgoing mass. This balance simply states that
the difference in storage comes from the difference in in- and outflow of the system.

A mass balance is only relevant when a certain control volume is defined since the total
water storage on Earth is constant. Often basin, subbasin, or other watersheds are used
as control volumes in hydrological studies since the groundwater flow between them is
assumed to be negligible. The main reason that a watershed is a convenient control vol-
ume is that it has only one lateral flux, the run-off at the outlet. The other, vertical fluxes,
that influence the total water storage are precipitation and evapotranspiration. Consider-
ing these fluxes, Equation 3.14 can be rewritten into Equation 3.15, where S is the total
amount of water stored in the system, P indicates the total amount of precipitation into
the system, E is the amount evapotranspiration out of the system and R is the total run-off
of water out of the system.

𝛿𝑆
𝛿𝑡 = 𝑃 − 𝐸 − 𝑅 (3.15)

Water can be stored in many different ways when considering a river basin. Mostly wa-
ter is stored on the surface (rivers, lakes, snow accumulation), in the soil (soil moisture),
or the deeper ground (groundwater).

One way of detecting variations in terrestrial water storage is by detecting changes in
the Earth’s gravity field. This is because water is the main cause of temporal changes in
the Earth’s gravity field on a short timescale, leaving out the effect of earthquakes and
assuming the possible GIA effects are accounted for. Most of the other processes, like tec-
tonic plate movement or erosion of mountainous areas, occur over a way longer period
(Rodell et al., 2007). NASA’s and DLR’s joint Gravity And Climate Experiment (GRACE)
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satellite mission was launched in 2002 to observe these changes. The spatial resolution of
GRACE products is limited by the altitude at which the two satellites orbit.

The changes that the satellites detect are the result of vertical integration of all mass
changes, including the Earth’s interior, crust, surface, and atmosphere. After applying at-
mospheric, tide, and glacial isostatic adjustment corrections, the assumption can bemade
that short-term changes are due to the redistribution of water. Gravimetry can only mea-
sure mass changes, from the GRACE estimates it is not clear which component of the
hydrological cycle caused the mass change. Only information is retrieved regarding the
total mass change within an area. The mass anomalies are found by subtracting the mean
of a given period and are often represented in equivalent water height (EWH).

Two different objectives exist when using GRACE for hydrological purposes. One uses
Equation 3.15, where the obtained storage variations are compared to the sum of the dif-
ferent processes (precipitation, evaporation, and run-off) influencing the basin. The other
technique focuses on the different components that together make up the terrestrial wa-
ter storage term. The different components are groundwater, soil moisture, snow water
equivalent, surface water, and water in the biosphere, as shown in Equation 3.16.

Δ𝑇𝑊𝑆 = Δ𝐺𝑊 + Δ𝑆𝑀 + Δ𝑆𝑊𝐸 + Δ𝑆𝑊 + Δ𝐵𝐼𝑂 (3.16)

When the second technique is used an assumption is oftenmade that the temporal changes
in the surface water and biosphere component are negligibly small. For some warmer ar-
eas, the snow component (Δ𝑆𝑊𝐸) is also absent or negligibly small. Independently of
the technique used, the GRACE TWSV estimates form amathematical constraint for both
these balances.

As mentioned in the introduction, GRACE has a limited spatial resolution. This results in
an amplification of noise as the spatial scale reduces, this requires filtering, which results
in signal leakage,when a signal at a specific location is spread over neighboring geograph-
ical locations. For large basins, GRACE has proven to give accurate estimates regarding
the total storage in the basin (Xavier et al., 2010). Seasonal variations in the stored wa-
ter mass, as well as inter-annual trends, are visible from GRACE data. For smaller basins,
GRACE estimates become less reliable due to the limited spatial resolution of the GRACE
products. Over the last decade, the spatial resolution has improved due to advanced
processing techniques (Biancamaria et al., 2019; Zaitchik et al., 2008). Biancamaria et al.
(2019) even showed that GRACEdata can be used in combinationwith hydrologicalmod-
els to obtain good estimates of TWSV for a 50.000𝑘𝑚2 basin. For this small basin, therewas
a very high correlation between the GRACE estimates and independent model outcomes
(Biancamaria et al., 2019).

GRACE data are noisy, this noise increases with higher spherical harmonic degrees or
smaller mascon blocks. So, GRACE TWSV estimates for smaller basins are less reliable.
Different methods are used during processing to filter out this noise, this always leads to
the loss of valuable signal as a side effect.
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3.4 theore t i cal re lat ionsh i p b e tween run -o f f and storage

The simple mass balance equation (Equation 3.15) shows that lateral run-off influences
the storage. The way the run-off and storage are linked depends partly on the characteris-
tics of precipitation (P) and evapotranspiration (E) for specific basins. Different climates
have a different amount of precipitation and evaporation, and different ratios between
them, and thus will have a different R-S relationship.

The superposition of coupled and uncoupled storage components plays a huge role in
identifying the relationship. For the coupled storage there is a rapid conversion through
different storage components, from canopy to soil or from soil to groundwater. Snow
accumulation is an uncoupled storage component and an example of a long-term conver-
sion; snow into meltwater. For a simple system, only considering coupled storage compo-
nents, storage will increase until a certain threshold is reached when no more water can
be stored.When there is still an inflow into the system this will then result in an increased
run-off, assuming that evaporation stays constant. Once the inflow starts to decrease, this
will first be visible as a drop in the run-off. Later the storage will start to decrease too. So,
there will be a delay between a change in run-off and the response in storage. For a trop-
ical climate, with rain all year round, there is no storage of water in the form of snow or
ice. So finding the relationship for those areas will be easier than finding the relationship
for (partly) snow-covered areas.

3.5 ex p er imental re lat ionsh i p b e tween run -o f f and storage as e st imated
by grace

Riegger and Tourian (2014) were one of the first to characterize the relationship between
run-off and storage as estimated by GRACE. They compared monthly mass changes and
run-off values for different catchments in different climatic zones. Figure 3.1 shows the
R-S relationship for tropical, boreal, and seasonally dry basins. For fully humid catch-
ments (Amazon basin), hysteresis reveals a time-invariant temporal delay from storage
to runoff, as shown in Figure 3.1. The R-S relationship, for these specific catchments, can
be characterized as a Linear Time-Invariant (LTI) system (Riegger and Tourian, 2014).
For boreal catchments (Mackenzie basin), MODIS snow data is used to separate coupled
and uncoupled components. The coupled parts of these catchments show the same rela-
tionship as the tropical catchments. The non-linear part of the R-S relationship in boreal
catchments can thus be fully linked to the uncoupled storage components (snow and ice)
(Riegger and Tourian, 2014).

Many researchers used theirwork to further study the relationship between run-off and
storage estimates from GRACE data (Sproles et al., 2015; Tourian et al., 2018). Research
of Sproles et al. (2015) focused on a watershed of the Columbia River Basin to find the
effect of climates, but also topography and geology, on the run-off storage relationship.
The results show a hysteresis relationship for all three subbasins of the Columbia River
Basin. The size and form of the ’loop’ are determined by the climate, topography, and
geology. Climate has the main control over the hysteresis loops, determining the hydro-
logic inputs into the system: more water results in a bigger loop. However, topography
influences processes like precipitation and melting. Sproles et al. (2015) conclude: ”The
climatic, topographic, and geological characteristics of each watershed explain the S−R
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Figure 3.1: Characteristics of R-S relationships displayed for several years for fully humid tropical
(Amazon), seasonally dry tropical (Niger), and boreal (Mackenzie) catchments from
Riegger and Tourian (2014).

relationship that governs the shape and size of its respective hysteresis curve.”

MacEdo et al. (2019) characterized the run-off storage relationship for different subbasins
of the Mississippi River. The stream gauges that are used in that research are shown in
Figure 3.2.

Figure 3.2: Study regionwith the location of selected USGS streamflow gauges fromMacEdo et al.
(2019)

GRACE data is applied in a streamflow recession analysis with river discharge measure-
ments across several subbasins of the Mississippi River basin. This is a technique that
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uses discharge measurements to estimate other watershed properties. This is especially
interesting since most of these sub-basins do not have a tropical or boreal climate. Expo-
nential relationships are developed betweenmonthly, non-winter discharge, and GRACE
TWSV estimates for 12 subbasins of theMississippi for 12.5 years. For a specific outlet, the
whole drainage area is used in the analysis. The assumption is made that the baseflow
portion of the run-off reflects the differences in storage. To separate base and event flow,
a forward-looking low-flow filter is used. Baseflow is the portion of the total flow that
is mostly driven by groundwater and event flow is the portion of the total flow that is
mostly driven by rainfall events (Margulis, 2017). Finally, exponential relationships are
developed between TWSV andmonthly mean baseflow. The obtained relationships show
a good fit, see Figure 3.3. Blue curves indicate the relationship between total flow and stor-
age and red indicated the relationship between baseflow and storage. For all subbasins,
the relationship showed a better fit when using baseflow instead of total flow. 𝑅2 values
ranged from 0.46 to 0.92, with a mean of 0.83. The larger subbasins had better fitting re-
lationships since small-scale influences on the water cycle are less dominant. The three
subbasins that performed the worst (lowest 𝑅2 values) are all in theMissouri area, which
is a cold area. That probably means that even with winter months (December-March) ex-
tracted, snow and ice stills play a significant role. That paper indicates that subbasins of
the Mississippi basin show a good relationship with run-off. This research does not con-
sider differential run-off for subbasins that are not upstream, so this should be further
investigated. Differential run-off the difference between run-off in and out of a specific
subbasin, so the effect of the specific subbasins is visible.

Climate, topography, and geology all play a role when it comes to defining the R-S rela-
tionship. However, for areas with sufficient data the relation can be derived empirically.
Empirical exponential relations will form the basis of this study.

3.6 indep endent data source s for val idat ion

To draw valid conclusions, an independent data set is needed for the results to be val-
idated. Previous studies used different approaches for validating the TWSV estimates
from either a model or GRACE data. Below some of these approaches are further de-
scribed for the Mississippi and European basins.

The North American Land Data Assimilation System (NLDAS) and Global Land Data
Assimilation System (GLDAS) collects and reanalyses the best possible observations to
supportmodeling activities. It is used as forcing data formany different land surfacemod-
els. Spatial and temporal resolution is lower for the global data set, but still sufficient for
the model to produce estimates of soil moisture and snow water equivalent that can be
used for validation of GRACE estimates. These forcing data form the basis of most land
surface models that are used.

Tangdamrongsub et al. (2014) and Li et al. (2012) both assimilated GRACE data into a
model for the Rhine basin andWestern and Central Europe, respectively. The model was
validated by comparing groundwater estimates from the model to in-situ groundwater
measurements. Seitz et al. (2008), which considered Central Europe, compared GRACE
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Figure 3.3: Non-winter (April–October) monthly observed discharge (Qo, y axis, in cm) and stor-
age (S, x axis, in cm represented by TWSVs); the lines represent the relationship be-
tween observed discharge (blue) or baseflow (red) and storage from MacEdo et al.
(2019).

EWHs with water storage variations computed from independent atmospheric and hy-
drological models. Results can be validated using Equation 3.15, when information on
run-off, precipitation, and evapotranspiration is obtained. The samemethod was used by
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Springer et al. (2014) and Springer et al. (2017) where the approach was to look at the
closure of the water budget using Equation 3.15.

Zaitchik et al. (2008) validates GRACE TWSV estimates for the Mississippi basin using a
network of in-situ groundwater measurements in combination with the Catchment Land
Surface Model from NASA. This approach gives a very high similarity between the two
independent estimates of TWSV. A more or less similar approach is used by Klosko et
al. (2009), where GRACE mascon solutions were compared to a Mississippi basin land
surface model (NOAH) and groundwater data from wells. The model soil moisture and
snow as parts of TWSV.

Using groundwater measurements and a soil moisture model seems like the best way
to validate the GRACE estimates. Soil moisture values from the model can be converted
to equivalent water level and combined with groundwater anomalies as done in Cai et al.
(2014). For groundwater, in-situ measurements can be used since the water table is less
variable in space and time, compared to soil moisture (Gruber et al., 2013; Zaitchik et al.,
2008). This in combination with the fact that more groundwater in-situ measurements
are present than in-situ soil moisture measurements explains why this part of the vali-
dation in-situ measurements can be used. In-situ groundwater measurements are often
used for validation.



4 STUDY AREA

This chapter discusses the similarities and differences between the Mississippi Basin and
European basins as possible study areas. First, the requirements for a suitable study area
for this project are introduced and the reasoning behind these will be explained. This is
followed by a section that goes into the character of the Mississippi and European basins
and discusses which one is a more suitable study area.

4.1 r equ i r ement s

The requirements that are discussed can be spilt in the following categories:

• drainage area;

• climate;

• boundary configuration; and

• data availability.

Drainage area is a very important factor in this study. For very large areas GRACE has
proven to give very accurate estimates (Zaitchik et al., 2008). So, for very large areas us-
ing additional run-off data to regularize the GRACE solution will not have a significant
effect, due to the already high accuracy of the estimates. A good consideration needs to
be made between having a small enough area to be able to see the effect of regulariza-
tion and having a large enough area to ensure that GRACE measurements are sensitive
to mass variations there.

As described in Chapter 3, the climate of a basin or subbasin (watershed) has a very
large influence on the overall water cycle in the area. This means that a climate will also
have a huge influence on the terrestrial water storage variations. To investigate what this
newly proposed method will result in, a significant TWSV signal needs to be present. A
very arid climate may not be suitable, since there will not be large seasonal variations in
the terrestrial water storage. Furthermore, the presence of frozen water as snow, ice, or
permafrost complicates the relationship between run-off and storage variations (TWSV)
(Riegger and Tourian, 2014). Since the main focus of this research is to investigate run-
off regularizedGRACE solutions, looking at boreal and polar catchments is not advisable.

The GRACE satellites were in a nearly circular polar orbit. This means that they orbited
the globe in a North-South direction. The result of this orbit is that the spatial sensitiv-
ity in the East-West direction is worse than the sensitivity in the North-South direction
(Wouters et al., 2014). So additional data (in this case run-off data) is most useful when
this data contains information about mass anomaly variations in the East-West direction.
This means that basins at similar longitude are less useful than basins at similar latitude.

17
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A very obvious, but not always fulfilled requirement, is the presence of sufficient run-off
data. This run-off data should be available for the same period when the GRACE mis-
sion operated (2002-2017). In-situ groundwater measurements in combination with soil
moisture and snowwater equivalent estimates will be used for validation, due to the high
spatial variability. For groundwater, the spatial variability is smaller than for soil mois-
ture, so a less dense network will be sufficient to give an accurate spatial representation.
So, the availability and quality of these measurements and models are important.

4.2 m i s s i s s i p p i ba s in

Figure 4.1 shows the Mississippi Basin. The main rivers that form this basin are the Mis-
souri, Ohio, Arkansas, and Mississippi Rivers.

Figure 4.1: Mississippi Basin in the United States of America.

The Mississippi Basin is a huge basin with a size of around 3,000,000 𝑘𝑚2. So, for the
total basin GRACE estimates will already be very accurate. A basin can be split into sub-
basins of arbitrary size, from very small to very large. So taking the Mississippi Basin as
the starting point gives the ability to extract subbasins of any desired size, where the effect
of regularization is visible.

Table 4.1: Root mean square differences (TWS) for neighboring sub-basin of the Mississippi river.

Boundary RMSD (2002-2019) [cm]
Upper Missouri-Upper Mississippi 6.42
Lower Missouri-Middle Mississippi 5.46
Middle Mississippi-West Ohio 6.68
West Ohio-East Ohio 6.29
Atchafalaya-Lower Mississippi 10.17
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TheMississippi basin encounters multiple climates since the area it covers is very large.
This will result in different behavior of TWSV within the different subbasins. This is a fa-
vorable situation as described in the previous section. When neighboring (sub)basins ex-
perience similar TWSVbehavior leakage in and out of specific subbasins cancel each other.
So, the results seem very good even though a lot of signal leakage might have occurred.
The Mississippi Basin encounters many different climates, the only class of climates that
does not occur is polar climates. In the East and South part of the basin, temperate cli-
mates are dominant, in the North part continental climates are the most common, and in
the West part, dry climates are dominant. In the Northern part snow and ice have a large
impact on the overall water cycle. Using the GRACE plotter tool the difference in signal
is investigated (The GRACE Plotter, by CNES/GRGS, February 9th, 2021). When signals
in neighboring basins are very similar the differences between high and low-resolution
estimatesmay not be very different. Figure 4.2a shows TWSV for the subbasins of theMis-
sissippi river when split up into the 8 subbasins. Table 4.1 indicates the root mean square
differences of TWSV estimates (using GRACE and GRACE-FO data) for neighboring sub-
basins for the period 2002-2019. The neighboring subbasins show a mean RMSD of 7 cm,
which indicates a significant difference in terrestrial water storage variations.

The orientation of the boundaries separating subbasins is of course dependent on the
configuration of the subbasin. As previously explained (sub)basins that are separated by
North-South boundaries are favorable. The choice of the subbasins is quite flexible, how-
ever, it is limited by the orientation of the main tributaries of the Mississippi River, the
Ohio River, and the Missouri River. Roughly speaking the basin can be split up into three
sections; Missouri basin (left), Ohio basin (right), and the Mississippi basin (middle).
This way it will be possible the generate subbasins separated by North-South boundaries.
These areas will be split further to get areas of the desired size and climates. This is to
illustrate that this requirement can be met.

(a) Mississippi basin (b) European basins

Figure 4.2: TSWV signal of the Mississippi and European (sub)basins.

Run-off data from different outlets of the sub-basins of the Mississippi are available from
the United States Geological Survey (USGS). A total of 3264 stations are present in the
Mississippi Basin, which has available data for the period 2002-2019. The time interval
for this data is 15 minutes. So this will be sufficient for this project.
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The United States, together with Europe, has some of the most advanced hydrological
models, including soil moisture models, these are further discussed in Chapter 3. The
same holds for the groundwater monitoring network, which is also operated by USGS.
So, regarding the validation of the outcome of this project, the Mississippi Basin is one of
the best-monitored river basins in the world.

4.3 european bas in s

For the European basins, the basins that are considered are the Rhine, Elbe, Oder, Vistula,
Loire, and Seine basin. The river basins are shown in Figure 4.3. The size of these basins
ranges from 79,000 𝑘𝑚2 (Seine) to 185,000 𝑘𝑚2 (Rhine). This is significantly smaller than
the main subbasins of the Mississippi River. As stated above basins can be subdivided
into infinitely smaller subbasins, however, the opposite is not the case. These European
basins can not be increased in the drainage area.

Figure 4.3: River basins in Europe.

The Rhine, Oder, Elbe, Loire, and Seine basin have the same moderate climate without
dry seasons and moderate summer. The Vistula basin has a continental climate without
dry seasons and warm summer, this difference from the neighboring Elbe basin. So, the
behavior of the TWSV in the European basins is more or less similar. Figure 4.2 shows
the signals for the European basins. Table 4.2 gives the root mean square differences for
neighboring basins. The mean RMSD for neighboring basins is 4 centimeters. The sig-
nals show not much variability, which will mean that leakage in and out of the basin will
cancel each other.
The basins in Europe are separated by North-South boundaries, this means that the

run-off data will give additional information mostly in the East-West direction. This is
favorable since the GRACE sensitivity in the East-West direction is worse than the sensi-
tivity in the North-South direction, as mentioned before.

Run-off data from the European rivers can be obtained from Global Runoff Data Base
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Table 4.2: Root mean square differences (TWSV) for neighboring European basins.
Boundary RMSD (2002-2019) [cm]
Loire-Seine 3.37
Seine-Rhine 4.33
Rhine-Elbe 4.87
Elbe-Oder 3.88
Oder-Vistula 3.60

(GRDB). This data has to be requested. All European basins have data available from the
period 2002-2019.

Europe has some of themost advanced hydrologicalmodels, including soilmoisturemod-
els, these are further discussed in Chapter 3. However, Europa has no central point for
collecting groundwater data like the United States of America. In-situ groundwater data
should be collected from different countries independently.

4.4 compar i son

Different climates within the Mississippi basin cause different TWSV behavior as indi-
cated by Figure 4.2. The European basins show more similarity in TWSV behavior. So,
adding run-off data to regularize the GRACE TWSV estimates may have a bigger effect
when applied to the subbasins of the Mississippi River. Since we want to study the effect
of using run-off data to regularize GRACE solutions, theMississippi seemsmore suitable
to do so looking at climates.

Considering the boundaries of the (sub)basins both areas can be used. For the European
basins, this is even easier, since the boundaries are mostly North-South already. For the
Mississippi basin, a certain configuration of subbasins needs to be made. Creating differ-
ent pairs of subbasins with North-South boundaries will not be a problem.

As far as the run-off data availability is concerned both the Mississippi basin and Eu-
ropean basins show very good coverage. Data from USGS can be directly downloaded,
data from GRDC needs to be requested through a few steps. Since USGS data is close to
real-time almost all data can be used directly. In the GRDC Station Catalogue, the basic
metadata of all stations is listed, including the available data.

Using a combination of in-situ measurements and model data to validate the GRACE
estimates is the most suitable option. When snow months for specific areas are not con-
sidered, the TWSV signal is the result of twomain components, variations in groundwater
storage and variations in soil moisture. To pick the most suitable area, it is important to
consider the availability of groundwater measurements and soil moisture data for the
Mississippi and European basins. Lots of different measurement techniques are used to
measure soil moisture, evenwithin the International Soil Moisture Network (ISMN). The
coverage of ISMN is different for Europe and the US. There are more in-situ soil moisture
measurements present in theUnited States than in Europe. Itwill be difficult to extract soil
moisture characteristics for European basins, from this sparse network. Since the amount
in-situ measurements in the US is larger, models representing soil moisture will be more
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reliable, since these measurements are used for calibration. Groundwater measurements
will be sufficiently available for both areas. Since there are separate networks in different
European countries, it will require additional effort to obtain those data.

Finally, the subbasins of theMississippi River aremore suitable to reach the project’s goal,
mainly because of the difference in the behavior of TWSV in neighboring (sub)basins.
Since the TWSV behavior in Europe is so similar, it will be more difficult to see the effect
of regularization using run-off data.



5 DATA AND METHODOLOGY

In this chapter, all data that is needed to regularize GRACE solutions will be discussed.
Next, the methodology of this research is described in detail. This part consists of three
main parts; finding the relationship between run-off and GRACE estimated terrestrial
water storage, the use of the obtained relationship to regularize GRACE estimates, and
the validation method.

5.1 data

This section deals with all data sets that are used. It indicates what kind of data is used,
where it is obtained, and what properties it has. Figure 5.1 shows the configuration of
subbasins within the Mississippi basin as used in this research. These subbasins were
identified based on size, the orientation of the boundaries and climate, and bounded by
drainage divides, this is explained in more detail in Chapter 4. The area size is between
180.000 (Atchafalaya) and 480.000 (Upper Missouri) 𝑘𝑚2. Table 5.1 gives an overview of
all the data used in this research and its purpose.

Table 5.1: Overview of data used in the study.
Data type Source Purpose
Run-off USGS Input: R-S relationship
GRACE TWSV estimates (storage) GSFC Input: R-S relationship
GRACE TWSV estimates (storage) JPL Input: R-S relationship
Soil Moisture NOAH-LSM (NASA) Validation
Soil Moisture VIC-LSM (NASA) Validation
Soil Moisture MOSAIC-LSM (NASA) Validation
SnowWater Equivalent NOAH-LSM (NASA) Validation
SnowWater Equivalent VIC-LSM (NASA) Validation
SnowWater Equivalent MOSAIC-LSM (NASA) Validation
Groundwater USGS Validation
GRACE SHCs ITSG Input: in-house approach

For these subbasins, two main types of data need to be collected: run-off data and
GRACE mascon solutions. The final results will give terrestrial water storage estimates
for the Mississippi subbasins. To validate these results independent data is used. Soil
moisture and snow water equivalent data are collected from different land surface mod-
els and groundwater data are collected from in-situ well measurements performed by
United States Geological Survey (USGS). These three variables will be combined into one
single time series for each subbasin, which is used to validate GRACE TWSV estimates.

5.1.1 Run-off

River run-off data is collected from the USGS, this is a scientific bureau that is part of
the United States government. Stream gauges were selected by corresponding drainage
area, data availability, and location. Figure 5.1 indicates the selected measurement sites
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Figure 5.1: The study area (Mississippi Basin) including the configuration of subbasins and run-
off data points.
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Table 5.2: Metadata stream gauge stations.
Station
Number

River Period of
record

Coordinates
[deg]

Drainage
area [km2]

form until lat lon
7374000 Mississippi Mar/2004 Apr/2020 30.4457 -91.1916 328000
3381700 Ohio Jan/2002 Jun/2020 37.6842 -88.1333 224000
3303280 Ohio Oct/1975 Jan/2020 37.8994 -86.7056 230000
5420500 Upper Mississippi Jun/1973 Mar/2020 41.7806 -90.2519 203000
6935965 Missouri Apr/2000 Jun/2020 38.7889 -90.4707 314000
6805500 Platte Jun/1963 Jun/2020 41.0153 -96.1578 230000
6601200 Missouri Oct/1987 Jun/2020 42.0072 -96.2412 322000
6342500 Missouri Oct/1927 Jun/2020 46.8142 -100.8232 483000
7249455 Arkansas Oct/1997 Jun/2020 35.3917 -94.4322 387000
5587450 Mississippi Apr/1933 Jun/2020 38.9680 -90.5123 220000
7381600 Atchafalaya Sep/1995 Sep/2015 29.6926 -91.2118 182000

of the time series collected. Each stream gauge is the outlet of a specific subbasin. Table
5.2 shows the metadata of the run-off time series that are used; their location, the period,
and drainage area. The time series consists of daily averaged discharge in cubic feet per
second (𝑓 𝑡3/𝑠) and are verified by USGS.

5.1.2 GRACE

To find the preliminary relationship between run-off and GRACE estimated storage, two
different ready-to-use GRACE mascon solutions were used. A ’mascon’ is defined as an
area of constant mass concentration on the Earth’s surface, as explained in Chapter 3. In
contrast to the traditional spherical harmonics, mascons have a specific geophysical loca-
tion. Thismakes it possible to apply prior information (constraints) during data inversion
to remove the correlated errors (North-South stripes) from the solution. For spherical har-
monics, these constraints can only be applied after inversion. For the spherical harmon-
ics, approach filters need to be applied after a solution of the gravity field is obtained.
When these filters are applied after computation a lot of ’real’ geophysical signal is lost
as well (Girotto and Rodell, 2019). This holds for all types of constraints, however when
constraints are applied during data inversion, as is the case for mascons, this is less. Fur-
thermore, mascon solutions have an improved separation of ocean and land signal, which
is especially important when looking at terrestrial water storage variations (Girotto and
Rodell, 2019). Both the Jet Propulsion Laboratory (JPL) andGoddard Space Flight Center
(GSFC) at NASA offer ready-to-use GRACEmascon solutions. Both consist of grids with
mass anomalies in equivalent water heights (𝑚) with respect to a long time mean.

The mascon solutions from JPL are derived from Level-1B data (2003/01-2020/04). In
the beginning, these solutions were computed from the GRACE data and later on from
the GRACE Follow-On data. Represented by 4551 equal-area, 3 arc-degree mascon cells
located across the surface of the earth, these solutions capture variations in the gravity
field at each localized cell (Colorado Center for Astrodynamics Research, 2020). All re-
ported data are anomalies relative to the 2004.0-2009.999 time-mean baseline.

Themascon solutions fromGSFCare derived fromGRACELevel-1Bdata (2003/01-2016/07).
This mascon solution is comprised of 41,168 equal-area, 1 arc-degree mascon cells. The
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effective resolution is similar to the JPL GRACEmascon solutions (±300km), the smaller
cells with respect to the JPL cells are used to accurately define the constraint regions (Col-
oradoCenter forAstrodynamics Research, 2020). All reported data are anomalies relative
to the 2004.0-2016.0 time-mean baseline. From these two mascon solutions time-series,
the regions of interest (subbasins) can be extracted and coupled to the river run-off of
these subbasins.

For the in-housemascon approach at TUDelft sets of spherical coefficients (SHCs) (2003/01-
2016/08) from GRAZ University of Technology are used as input. SHCs are level-2 data,
which are used to compute the in-house GRACEmascon solution (level-3 data). Chapter
3 discusses in more detail how exactly the in-house mascon solutions are created.

5.1.3 Soil moisture and snow water equivalent

To get reliable soil moisture and snow water equivalent estimates different model out-
comes are obtained. Three different land surface models are averaged to get a valid esti-
mate of both quantities throughout the Mississippi basin. The models that are used are
NOAH, MOSAIC, and VIC, which all use NLDAS as input to model different land and
subsurface properties. In Chapter 3 the decision to use these three models for validation
was further elaborated upon.
The Mosaic, NOAH, and VIC monthly data sets contain several land surface parameters
that are the outcome of each individual land-surface model, which uses NLDAS-2 as in-
put. Eachmonthly value represents a monthly average of the parameter of interest within
a calendar month. All the models are executed over the whole contiguous United States
on a 0.125-degree equiangular grid, corresponding to the grid of the input data (NLDAS-
2). For the Mosaic data set each grid point can contain up to 10 tiles which consist of
three soil layers. The total column depth is 200 centimeters. The NOAH model has four
soil layers, with a total column thickness of 200 centimeters. Vic uses three soil layers and
the thickness (up to 360 centimeters) of these layers varies spatially. The models differ in
the equations and parameterizations that are applied, however, the models compute all
most identical parameters (GSFC, 2020).

5.1.4 Groundwater

Groundwater measurements are needed for validation as an addition to the soil moisture
and snow water equivalent estimates. Groundwater measurements are obtained from
USGS National Water Information System. Variation in groundwater level and reservoir
characteristics were checked to decide whether a specific well is representative of the
groundwater in the surroundings. When a well showed too much variability or when it
was located in a small regional aquifer the well was not selected. This is based on earlier
work by Li and Rodell (2015), Rodell et al. (2007), and Zaitchik et al. (2008). Each of the
wells used was determined to be open to an unconfined aquifer, to be representative of
the surrounding groundwater level. Most of the wells in the database did not meet these
criteria so that a total of only 42wells were selected. The locations of the selectedwells are
shown in Figure 5.1. The obtained time-series consist of daily averaged depths to water
level (𝑓 𝑡).
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5.2 methodology

This section outlines the methodology that underlies this research. First, the delineation
of the subbasins is discussed. Followed by the methods used to find the relationship be-
tween run-off and terrestrial water storage variations. Next, the process of regularizing
the GRACEmascon solution is laid out. Finally, the approach for making an independent
validation data set is explained.

5.2.1 Delineation of the subbasins

The focus of this research is on the subbasin-level since GRACE estimates for larger areas
have proven to be accurate enough (Wouters et al., 2014). Masks are needed to extract
the correct areas from the JPL andGSFCmascon solutions. To get the correct outlines and
masks (polygons and TIFFS) of these subbasins, these subbasins need to be delineated
from the Mississippi Basin. The GRASS tool in QGIS is used to get the corresponding
subbasin for each stream gauge site. The process consists of 5 main steps. First, a Digital
Elevation Model (DEM) needs to be obtained for the study area. Using this DEM the
flow direction for each grid cell can be determined. Followed by the calculation of the
flow accumulations. Finally, when defining specific outlet points, in this case, the stream
gauge sites, the corresponding watershed (subbasin) can be delineated.
These watersheds are converted into TIFF, matrices, and polygons to be used throughout
the whole project. The eleven resulting subbasins are shown in Figure 5.1.

5.2.2 Relationship between run-off and GRACE TWSV estimates for the Mississippi subbasins

To investigate the specific relationship between run-off variations and mass anomalies
for the Mississippi subbasins different data sets are needed. Eleven measurement sites
were selected when defining the subbasins, these are the outlets of the watersheds (sub-
basins). More on the configuration of subbasins and the study area as a whole can be
found in Section 5.2.1 and in Chapter 4. Daily averaged discharge (𝑚3/𝑠) data is obtained
for each of the sites from the year 2000 up to 2020. To get a valuable data set, that could
show a relation to the TWSV, these data need to be processed. The method used is largely
based on earlier research fromMacEdo et al. (2019).Monthlymeans need to be computed,
area-weighted averages need to be computed and months influenced by snow need to be
mitigated. These time series will be compared to the time series of the GRACE-derived
TWSV estimates for the individual subbasins.

Using the masks created in QGIS the different subbasins can be extracted from the 4551
or 41,168 grid cells (depending on the spatial sampling of mascon solution). The grid
cells are averaged with respect to the cell size, which is included in the solution, to get
one specific value (EWH) for each subbasin for a specific month. Doing this for all the
monthly solutions results in a time series of mass anomalies (TWSV) for each subbasin
with respect to a predefined mean. The subtracted mean for the JPL solution is converted
to the same mean subtracted from the GSFC solution (2004.0-2016.0). This mean is used
throughout the research. Apart from this, the method is the same for both mascon solu-
tions. This is the only processing needed for the JPL and GSFC mascon solutions.
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For run-off data, daily values of mean discharge per second are converted to mean dis-
charge values in centimeters per month. This is done for each of the 11 subbasins, as:

𝑅𝑚𝑜𝑛𝑡ℎ =
∑𝑑𝑚𝑎𝑥

𝑑=1 𝑅𝑑
𝑑𝑚𝑎𝑥

∗ 𝑑𝑚𝑎𝑥
𝑎𝑟𝑒𝑎 ∗ 24 ∗ 60 ∗ 60, (5.1)

where 𝑅𝑚𝑜𝑛𝑡ℎ is themeanmonthly run-off in 𝑐𝑚/𝑚𝑜𝑛𝑡ℎ, 𝑅𝑑 themean daily run-off in 𝑚3/𝑠,
𝑑𝑚𝑎𝑥 the total number of days in a specific month and 𝑎𝑟𝑒𝑎 is the area of the specific sub-
basins in 𝑚2.

The Middle Mississippi, Middle Missouri, Lower Mississippi, Lower Missouri, and West
Ohio subbasin do not only have a river outflow, but also a river inflow. To get valuable
information on one specific subbasin only the difference between in- and outflow needs
to be determined. This is done by subtracting the total inflow for a certain month from
the outflow, which is later divided by the area of the subbasins. As shown by Equation
5.2, where 𝑅

𝑑𝑖𝑓 𝑓
𝑚𝑜𝑛𝑡ℎ is the mean monthly differential run-off in 𝑚/𝑚𝑜𝑛𝑡ℎ and 𝑅𝑡𝑜𝑡

𝑜𝑢𝑡 and 𝑅𝑡𝑜𝑡
𝑖𝑛

the total out- and inflow in 𝑚3 in a calendar month for a specific basin.

𝑅
𝑑𝑖𝑓 𝑓
𝑚𝑜𝑛𝑡ℎ =

𝑅𝑡𝑜𝑡
𝑜𝑢𝑡 − 𝑅𝑡𝑜𝑡

𝑖𝑛
𝑎𝑟𝑒𝑎 (5.2)

To make a valuable comparison between run-off and storage, a delay needs to be taken
into account. An increase in storagewill not immediately result in an increased run-off, as
explained in Chapter 3. The correlation between the two time series (run-off and TWSV
estimates) is used to indicate the delays for the different basins. Ninety-one different run-
off time series are computed per stream gauge, from an offset of 0 days (no delay) to an
offset of 90 days (three-month delay). The offset with the highest correlation corresponds
to the specific delay for that subbasin and that specific time series is used for further pro-
cessing.

The further processing of the run-off is based on previouswork fromMacEdo et al. (2019).
Their research showed exponential relationships between run-off and total flow (𝑄𝑡) as
well as baseflow (𝑄𝑏). Throughout the Mississippi basin, the relations between run-off
and baseflow have higher 𝑅2 values than the relationships between run-off and total flow.
However, byMacEdo et al. (2019) GRACE TWSV estimates are used to separate total flow
and baseflow. In this research that is not feasible since it will make the data added to the
mascon solutions dependent on GRACE data. This is why total flow is used to determine
the relation between run-off and storage in this research.

To extract the months influenced by snow and ice a data set is used that indicates the
average first day of thaw and frost for a period of 30 years (1975-2005) from the United
States Department of Agriculture (USDA). Using this data all subbasins were subdivided
into three categories; cold, moderate, and warm. Atchafalaya and Lower Mississippi are
considered warm, Upper Mississippi and Upper Missouri are considered cold and the
other 7 subbasins are considered to have a moderate climate. For all the warm subbasins
no months were excluded from further processing, for the moderate subbasins Decem-
ber, January and Februarywere excluded and for the cold subbasins, October up toMarch
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were excluded.

Previous studies showed the run-off and storage generally show an exponential relation-
ship when looking at non-winter discharge (MacEdo et al., 2019), (Kirchner, 2009). The
assumed relationship is as:

𝑄 = 𝛼𝑒𝛽𝑆 + 𝑐, (5.3)

where 𝑄 is discharge (run-off) in 𝑐𝑚/𝑚𝑜𝑛𝑡ℎ, 𝛼, 𝛽 and 𝑐 are constants that need to be de-
termined for each basin and 𝑆 = 𝑇𝑊𝑆𝑉 in cm/month. The time series for all subbasins
is fitted to this model and constants and the goodness of the fits are extracted, these are
further discussed in Chapter 7.

5.2.3 TU Delft mascon approach

The mascon approach that is developed at TU Delft and applied to Greenland forms the
skeleton of this approach (Ran et al., 2018). This method is later successfully applied to
Antarctica,where the so-called dynamic patch approachwas introduced (Engels et al., 2018).
This approach calculates mass anomalies for a large number of patch (mascon) config-
urations. The final result is an average of the different scenarios. In this research, this
mascon approach is adapted for the Mississippi Basin. The exploited functional model
used in this approach is described in Chapter 3. Here the adaptations made to the ap-
proach are explained. Next, the way the subbasins are divided in patches of smaller sizes
is laid out. This is followed by a description of the steps taken to distribute the pseudo-
observation points at satellited altitude and the inversion points on the Earth’s surface.
Next, the method of applying two different types of regularization to these solutions is
described. Finally, the way the validation time series is computed is explained.

5.2.3.1 Adaption of the TU Delft mascon approach

The TU Delft mascon approach needs to be adapted for this specific research. The ap-
proach needs to be tailored for the Mississippi basins. Furthermore, instead of trends,
monthly solutions need to be calculated, this requires significant changes in the existing
scripts. Finally, the delineation of the basins is not arbitrary in this research, they need to
coincide with the subbasins that were defined. Adaption to the scripts was made to make
this possible. More in-depth details of the changes made to the existing approach can be
found in Appendix A.1.

First a short overviewwill be given of the steps taken in this approach. First gravity distur-
bances at satellite altitude are computed fromSHCs. These are calledpseudo-observations,
the number of pseudo-observations depends on the resolution and the buffer zone. In Fig-
ure 5.2, a resolution of 1 degree and a buffer zone of 100 km are used. When the buffer
zone increases the number of pseudo-observations increases as well.
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Figure 5.2: Configuration of extra basins around the area of interest in order to mitigate the signal
leakage into the Mississippi basin.

Then, there is a grid on the Earth’s surface forwhich solution are computed by inversion.
Figure 5.3 shows this grid, zoomed in on all small part of the area to see the distinctive
grid points.

Figure 5.3: Configuration of extra basins around the area of interest in order to mitigate the signal
leakage into the Mississippi basin.

Using a Fibonacci grid with a specific spacing (50 km in this case) different patches are
created, shown in Figure 5.4. The patches form areas of constant mass change. From the
grid points the mass anomalies for all patches can be determined by interpolation.
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Figure 5.4: Configuration of extra basins around the area of interest in order to mitigate the signal
leakage into the Mississippi basin.

5.2.3.2 Parameterization

Eleven subbasins are defined and used as input, see Figure 5.1, each of these subbasins
is subdivided into multiple smaller patches. These smaller patches are the mascons, they
represent an area of uniform mass change. This is done by creating a Fibonacci grid with
a specific spacing in and around the subbasins. From these points, the Voronoi diagram
is extracted. The optimal setting of this grid spacing is determined using numerical ex-
periments. The results of these numerical experiments are discussed in Chapter 6. The
number of mascons in each subbasin is dependent on the Voronoi diagram and thus on
the Fibonacci grid spacing.

To limit signal leakage into the subbasins extra mascons are selected to model and miti-
gate their potential effect. All surrounding areas are covered as shown in Figure 5.5. Five
of these mascons cover the Great Lakes since fluctuation in their water level can cause a
signal significant enough to cause leakage in the subbasins. The other 25 areas cover all
sides of the Mississippi basin. Most of the signal leakage into the Mississippi basin will
be accounted for in this way.
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Figure 5.5: Configuration of extra basins around the area of interest in order to mitigate the signal
leakage into the Mississippi basin.

5.2.3.3 Distribution of pseudo-observation points

This approach computes gravity disturbances at satellite altitude from SHCs. These are
the ’pseudo-observation’ that are used to compute themascons at the Earth’s surface. The
height of the data grid needs to be determined, in a perfect situation, this would corre-
spond to the actual orbital height of the GRACEmission. This height decreased over time
from around 500 km to 480 km. Another option is to set a constant satellite altitude. The
research found that both methods produce similar results. In this research the suggestion
from Baur and Sneeuw (2011) is used: 500 kilometers. A buffer zone of 300 kilometers
(see Figure 6.2) is used, a buffer zone is needed since data points at satellite altitude are
influenced by a wider area (Baur and Sneeuw, 2011). The size of the buffer zone was
determined using numerical experiments, which are discussed in Chapter 6. The pseudo-
observation points are computed on a 1-degree ’Gauss-Neumann’ (GN) grid over the
Mississippi basin including the corresponding buffer zone area (Engels et al., 2018). A
GN-grid is a grid for which the latitude circles coincide with zeros of the Legendre poly-
nomial of degree 𝐿 + 1, where 𝐿 is the maximum degree of SHCs (Sneeuw, 1994).

5.2.4 Regularization of the TU Delft mascon approach

Twodifferent types of regularization are applied to the in-housemascon solution. Tikhonov
regularization is applied and regularization using run-off data is applied. The two meth-
ods of regularization will be described after the general approach is discussed.

As discussed in Chapter 3 the best linear unbiased estimated (BLUE) is used in order
to obtain the solution. The BLUE of the mass anomalies is

̂𝑥 = (A𝑇Cd
−1A)−1A𝑇Cd

−1d, (5.4)
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where A is the design matrix, Cd is the data noise covariance matrix and 𝑑 is the data
vector. The rows ofA are the pseudo-observation points and the columns are themascons
(patches) on the Earth’s surface for which the mass anomaly is determined. The data
vector (d) holds the gravity disturbances ate the pseudo-observation points. Equation
5.4 gives the best linear unbiased estimate of the inverse problem, which is unregularized.
The concept of statistical regularization can be used to incorporate knowledge of data noise
and the model into the estimation (Turchin et al., 1970). The full derivations can be found
in Appendix A.2 these are based on PDitmar2011. The estimator that is obtained after
applying regularization is:

̂x = (A𝑇PdA + 𝛼Px)
−1 (A𝑇Pdd + 𝛼Pxx0) , (5.5)

where, 𝑃𝑑 and 𝑃𝑥 are predefined matrices and 𝛼 is the regularization parameter which is
computed by:

𝛼 =
𝜎2

𝑑
𝜎2𝑥

. (5.6)

5.2.4.1 Tikhonov regularization

Tikhonov regularization is a form of regularization where a different type of prior infor-
mation on the model outcome is used. Constraints are applied based on the location in
the solution space. The most probable model correction (x0) in Equation 5.13 is equal to:

x0 = m0 − min, (5.7)

wherem0 is the priori model and xin the initial model. In the case of first-order Tikhonov
regularization it is assumed that the priori model is equal to the initial model xin. The
result of this assumption is that x0 equals zero. So, Equation A.11 is rewritten into:

̂x = (A𝑇PdA + 𝛼Px)
−1 (A𝑇Pdd) . (5.8)

Finally, by setting Px equal to R, the so-called regularization matrix, the final formula is
obtained.

̂x = (A𝑇PdA + 𝛼𝑅)−1 (A𝑇Pdd) . (5.9)

The spatial constraints that are applied when using first-order Tikhonov regularization
force unknowns that are close to each other in the solution space to exhibit similar behav-
ior. Which holds for this application, it is a reasonable assumption that the TWSV of two
areas next to each other is fairly similar. To determine the regularization matrix (R) the
procedure from Loomis et al. (2019) is used. Which only implies spatial constraints, no
temporal constraints. First a difference operator (D) is created with size 𝑁(𝑁 − 1)/2x𝑁,
where𝑁 is equal to the number of unknowns,which also includes the additionalmascons.
This difference operator has the following properties:

D𝑘𝑖 = 1, D𝑘𝑗 = −1, D𝑘𝑞 = 0, (5.10)

where 𝑘 is the row that constrains mascons 𝑖 and 𝑗. Then the constrain equations are writ-
ten as:

0 = D𝑥 + 𝑒, (5.11)



34 data and methodology

where e is a Gaussian distributed random error with zero mean and covariance matrix Γ.
The entries of the covariance matrix are defined by

Γ𝑖𝑗 =
⎧{
⎨{⎩

𝑒𝑥𝑝(1 − 𝑑𝑖𝑗
𝑧 ) if 𝜙𝑖 = 𝜙𝑗

0 otherwise

where 𝑧 is the correlation distance, 𝑑𝑖𝑗 the distance between the points in the centers of
the patches and 𝜙𝑖 and 𝜙𝑗 designate the constraint region for the 𝑖𝑡ℎ and 𝑗𝑡ℎ mascons. The
constrain regions coincide with the subbasins in this approach to further limit leakage
from one subbasin into another. Conservation of mass is ensured by adding an additional
constrain to Equation 5.11, this results in:

⎛⎜⎜
⎝
0
0
⎞⎟⎟
⎠

= ⎛⎜⎜
⎝
D
1T

⎞⎟⎟
⎠

𝑥 + ⎛⎜⎜
⎝
e
𝑒
⎞⎟⎟
⎠

Then the final R is defined as:

R = D
𝑇

ΓD, (5.12)

whereD isDwith a vector of ones added at the bottomand Γ is equal to Γwith an addition
10 in the lower right corner to insure the inversion.

5.2.4.2 Run-off regularization

Run-off is used as additional information in order to regularize the solutions. A specific
exponential relationship between run-off and storage for each subbasin is used. Using
these relationships and run-off data, expectations of TWSV van be estimated and added
as additional information. In this case the priori model (m0) is not equal to the initial
model (min), this means that the most probable model correction (x0) in not zero. The
regularized least-squares adjustment formula, stated as:

x̂ = (A𝑇PdA + 𝛼Px)
−1 (A𝑇Pdd + 𝛼Pxx0) , (5.13)

where Px is a priori specified weight matrix and 𝑥0 is the expectedmodel outcome, which
is in this case derived from the run-off data and the exponential relationship between run-
off and storage. Px is chosen to be equal to R, which is developed in the previous section.
The most probable model correction is given as:

xi0 =
𝑙𝑛(𝑄𝑖

𝑡𝑜𝑡−𝑐
𝛼 )

𝛽 , (5.14)

where 𝑖 indicates monthly time intervals and 𝛼, 𝛽 and 𝑐 are subbasin-specific parameters
found in the previous part of the research.
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5.2.4.3 Regularization parameter

To determine the regularization parameter the variance component estimation (VCE)
method is used.A regularization parameter for eachmonth individually is computed first.
Later the regularization parameters are averaged and one value is used for all months to
prevent fake temporal variations. As described by Odolinski and Teunissen (2019) this
method estimates the variance of the data and model components to determine the sta-
tistically optimal regularization parameter as:

𝛼 =
𝜎2

𝑑
𝜎2𝑥

. (5.15)

The approach from Ran et al. (2018) is used to obtain the regularization parameters. The
full explanation of the approach can be found in Appendix A.3. The regularization pa-
rameter is updated until a certain threshold is reached. When the new regularization
parameter differs no more than 1 percent from the previous regularization parameter the
process is stopped and this is chosen as the final regularization parameter.When choosing
appropriate initial values the regularization parameter converged to non-negative values.

To further improve TWSV estimates, the regularization parameter is also determined dif-
ferently. Solutions are computed for a wide variety of regularization parameters. From
these the RMSE (later called𝑅𝑀𝑆𝐸𝑐𝑜) remaining after co-estimating the specific yield and
regularization bias are computed. Since the specific yield and regularization bias are not
well known, co-estimating these makes sure that those factors are eliminated from the
remaining errors. The resulting error is a better representation of performance. In this
research, TWSV is composed of soil moisture, snow water equivalent, and groundwater
variation. Specific yield (see Table 5.3) is used to convert thewater table variation in awell
to variations in groundwater level, it is a constant factor that links the two. Estimating the
two coefficients as:

𝐶1 ∗ 𝐺𝑅(𝑡) − 𝐶2 ∗ 𝐺𝑊(𝑡) = 𝑆𝑀(𝑡) + 𝑆𝑊𝐸(𝑡), (5.16)

where 𝐺𝑅 is the GRACE estimated TWSV, 𝐺𝑊 the groundwater variations, 𝑆𝑀 the soil
moisture variations, 𝑆𝑊𝐸 the snow water equivalent, and 𝐶1 and 𝐶2 the constants that
capture the regularization bias and specific yield error, respectively.Using the least-square
adjustment the constants are estimated and can be used to compute the resulting error
(𝑅𝑀𝑆𝐸𝑐𝑜). These constants and errors give a better understanding of the different error
sources and the performance of the different solutions. Then, the regularization parame-
ter is chosen to minimize the 𝑅𝑀𝑆𝐸𝑐𝑜.

5.2.5 Validation

To validate the result of this new approach an independent data set is needed. Soil mois-
ture and snowwater equivalent model data are used in combination with in-situ ground-
water measurements, this is based on previous work discussed in Chapter 3. The data
that is used for this validation data set is written about at the beginning of this chapter.

Soil moisture and snow water equivalent are extracted from the grid using the masks
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of the subbasins. Both variables are given in centimeters water equivalent, so no conver-
sion is needed. Area weighted monthly averages are computed for both variables for all
subbasins individually, resulting in two separated monthly time series for each subbasin.
Now, the only term that needs to be added is groundwater. Only groundwater fluctua-
tions are of interest, so the long-term mean (2004.0-2016.0) is subtracted for all the wells
separately. This coincides with the mean subtracted from the GRACE solutions. In order
to convert water level in well to groundwater level in the surround specific yield is used,
as is discussed in Chapter 3. Regional averages of specific yield are used, based on pre-
vious work from Li et al. (2015). Since there are large scale spatial differences in ground-
water levels that are of interest, this assumption yields. The specific yields used are 0.09,
0.14, 0.14, 0.16 and 0.17 for the Ohio region, Missouri region, Lower Mississippi region,
Arkansas/Atchafalaya region and Upper Mississippi region, respectively. The number of
well and specific yield for each basin is shown in Table

Table 5.3: Specific yield and number of wells for each subbasin from Li et al., 2015.
Subbasin Number of wells Specific yield
Arkansas 4 0.16
Atchafalaya 3 0.16
East Ohio 5 0.09
Lower Mississippi 6 0.14
Lower Missouri 4 0.14
Middle Mississippi 4 0.17
Middle Missouri 3 0.14
Platte 3 0.14
Upper Mississippi 3 0.17
Upper Missouri 3 0.14
West Ohio 3 0.09

Using the 42 in-situ groundwater measurement sites groundwater levels are interpolated
over the whole basin (same grid asmodel data) using Triangulation-based linear interpo-
lation. From this point, the same method is applied for extracting soil moisture and snow
water equivalent. Masks are used to extract the correct area and then area-weighted av-
erages are applied. Equation 5.17 is used to compute the final validation set.

𝑇𝑊𝑆𝑉 = 𝑆𝑀 + 𝑆𝑊𝐸 + 𝐺𝑊 (5.17)



6 NUMER ICAL EXPER IMENTS

Several experiments are carried out to investigate the performance of the approach and to
calibrate different parameters, such as the buffer zone, correlation distance, resolution of
observations, resolution of grid points, and tomotivate certain decisions.Optimal settings
need to be determined to fine-tune the in-house approach in the context of the study area.
First, the set-up of the experiments is described in Section 6.1. In Section 6.2 the results
are discussed and the optimal choices are determined.

6.1 s e t-up of the exp er iment s

The validation data set is used as a ’true’ signal. The process of creating this validation
data set is explained in Chapter 5. In these experiments, Tikhonov regularization is used
in combination with an in-house mascon approach. Mascon solutions are compared to
this data set and correlation and RMSD are computed and used as indicators of perfor-
mance. Two types of RMSDs are calculated, the first is the standard RMSD and the sec-
ond RMSD (later called 𝑅𝑀𝑆𝐷𝑐𝑜) is the error remaining after co-estimating the specific
yield and regularization bias. Since the specific yield and regularization bias are not well-
known co-estimating these makes sure that those factors are eliminated from as much as
possible from the remaining errors. The resulting error is a better representation of perfor-
mance. The errors reported in this chapter are the mean errors overall 11 subbasins. The
parameters and decisions that need to be optimized are the buffer zone, grid spacing, res-
olution of the pseudo observations, resolution of the grid points, and correlation distance.
The ’true’ signal is shown in Figure 6.1, which is composed of soil moisture, groundwater,
and snow water equivalent variations. Finally, the different parameter selection methods
are tested and the optimal configuration is based on the outcome of those experiments.

Table 6.1: Optimal parameter settings.
Parameter Value
Buffer zone 300 km
Grid spacing 50 km
Resolution data points 1 °
Resolution grid points 0.05 °
Correlation distance 100 km
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Figure 6.1: The TWSV(black) validation data for all subbasins consisting of snowwater equivalent
(blue), soil moisture (green) and groundwater (red) variations.
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6.2 r e sult s

A buffer zone is needed to capture all signals from a specific basin (Baur and Sneeuw,
2011). The impact of the width of the buffer zone is investigated by considering five dif-
ferent sizes: 0, 100, 300, 500, and 700 km. The buffer zones are shown in Figure 6.2, only
four are shown since a 0 km buffer zone is equal to the outline of the subbasins. For all
five buffer zones, Tikhonov regularized least-squares solutions are computed. All other
parameters are set to the values listed in Table 6.1. The results are shown in Table 6.2.
From there it is clear that a 300 kilometers buffer zone gives the smallest errors, for both
𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜, and the highest correlation to the validation set.

Figure 6.2: The different buffer zones considered in the numerical experiments.

Table 6.2: Metrics of performance for different buffer zones.
Buffer zone [km] RMSD [cm] 𝑅𝑀𝑆𝐷𝑐𝑜 [cm] Correlation [-]
0 7.88 3.95 0.69
100 7.85 3.97 0.70
300 7.70 3.97 0.71
500 9.27 4.04 0.56
700 9.36 4.02 0.54

From a Fibonacci grid the Vonoroi diagram gets extracted, these are the patches on the
Earth’s surface for which themass anomalies are computed by inversion of gravity distur-
bances at the data points at 500-km altitude. Figure 6.3 shows how these points and cor-
responding patches are defined for different Fibonacci grids for the Arkansas subbasins,
as an example. The points are shown in blue and the corresponding Vonoroi decomposi-
tion is shown in red. The grid points that are inside a certain patch determine the mass
anomaly for that patch. Table 6.3 shows the results, these indicated that a grid spacing of
50 kilometers gives the best results.
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Table 6.3: Metrics of performance for different grid spacing.
Resolutions of grid points [degree] RMSD [cm] 𝑅𝑀𝑆𝐷𝑐𝑜 [cm] Correlation [-]
40 11.12 4.03 0.54
50 7.70 3.97 0.71
75 11.12 4.13 0.52

Figure 6.3: Configuration of the Fibonacci gridwith 40 (left), (50)middle and 70 (right) kilometer
grid spacing (blue) for the Arkansas subbasin, with corresponding Vonoroi decompo-
sition (red).

The resolution of the grid points on the Earth’s surface is set to values of 0.1 0.05 and
0.01 degrees. Table 6.4 shows that the different resolutions produce similar errors. A res-
olution of 0.05 degrees is chosen to limit computational time, this is also the resolution
that was used when this method was applied to Greenland and Antarctica (Engels et al.,
2018; Ran et al., 2018).

Table 6.4: Metrics of performance for different resolutions of grid points.
Resolutions of grid points [degree] RMSD [cm] 𝑅𝑀𝑆𝐷𝑐𝑜 [cm] Correlation [-]
0.1 7.70 3.97 0.71
0.05 7.70 3.97 0.71
0.01 7.71 3.97 0.71

For the pseudo observations that are generated at satellite altitude, the optimal resolu-
tion has to be determined. Resolutions of 1, 0.8, and 0.5 degreeswere investigated. Smaller
resolutions were not considered due to the huge increase in computation time. Table 6.5
shows the results of these numerical experiments, from this table it can be concluded that
there is no significant difference between different resolutions of the pseudo observations.
A resolution of 1 degree is chosen, to limit computational time.

Table 6.5: Metrics of performance for different resolutions of pseudo observations.
Resolution of pseudo observations [degree] RMSD [cm] 𝑅𝑀𝑆𝐷𝑐𝑜 [cm] Correlation [-]
1 7.70 3.97 0.71
0.8 7.69 3.98 0.71
0.5 7.69 3.98 0.71

The correlation distance in Equation ??, is set to 25, 50, 100 and 150 km. The results of
these experiments are shown in Table 6.6. From these, 100 kilometers showed the lowest
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𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜 values. The correlation is the same for a 100 and 150-kilometer corre-
lation distance and the difference in 𝑅𝑀𝑆𝐷 is not significant. However, 100 kilometers is
used to prevent over-regularization. This value corresponds to the value used in research
by Loomis et al. (2019).

Table 6.6: Metrics of performance for different correlation distances.
Correlation distance [km] RMSD [cm] 𝑅𝑀𝑆𝐷𝑐𝑜 [cm] Correlation [-]
25 7.73 4.01 0.71
50 7.70 3.98 0.71
100 7.70 3.97 0.71
150 7.72 3.98 0.71

As described in Chapter 5, two different approaches are used to find the optimal regular-
ization parameter. Table 6.7 shows the metrics of performance for the different methods
of selecting the regularization parameter. The co-estimation method produced better re-
sult, looking at the differences and correlations. So, the co-estimation approach is used to
produce further results.

Table 6.7: Metrics of performance for different methods of determining optimal regularization
parameter.

Method RMSD [cm] 𝑅𝑀𝑆𝐷𝑐𝑜 [cm] Correlation [-] 𝜆 [-]
Variance Component 8.50 4.27 0.66 2.87 ∗ 10−21
Co-estimation 7.70 3.97 0.71 5.34 ∗ 10−23

Table 6.1 summarizes the optimal settings resulting from these numerical experiments.
These settings result in 459 pseudo-observation over the basin and buffer zone and 1287
unknowns that need to be determined.





7 RE SULT S

In this chapter, the results of this study will be presented. First, the run-off-storage re-
lationships will be laid out. This is followed by the results of the Tikhonov and run-off
regularized mascon methods and how these are linked to hydrological processes in the
subbasins. All outcomes will be presented in this chapter, these will later be used to draw
conclusions in Chapter 9.

7.1 r e lat ionsh i p b e tween run -o f f and grace mas s var iat ion e st imate s

Monthly differential run-off time serieswere computedup to adelay of 90days (3months)
since there is no instant response in run-off when storage changes. Table 7.1 shows the
metrics of the relationship between run-off and storage. The optimal delay, in days, be-
tween differential run-off and storage changes is shown, these were found by looking at
the maximum correlation. Most subbasins show no or a very small delay, which is the
result of using monthly mean values. The data points are fitted to Equation 5.3. 𝑅2 gives
the ratio between the variance explained by the model and the total variance. This indi-
cates the predictive value of the model, close to 1 means that it has a very good predictive
value, and close to 0 means that it has no predictive value. For the subbasins that show
no good fit (low 𝑅2 value), the delay is not seen as valuable information, since there is no
significant relationship between differential run-off and storage for those basins. The cor-
responding correlation between the resulting differential run-off time series and storage
time series is also shown in Table 7.1, as well as the calendar months that are considered
for each subbasin. For the colder regions, only the months from April to October are con-
sidered. For the moderate areas, March to November are considered and for the warmest
areas, all months are used.

Table 7.1: Metrics of the relationship between differential run-off and storage for all subbasins.
Subbasin Delay [days] 𝑅2 Correlation RMSD [cm/month] Months Mean monthly run-off [cm/month]
Arkansas 2 0.33 0.57 0.45 Jan-Dec 0.76
Atchafalaya 2 0.35 0.60 1.80 Mar-Nov 5.07
East Ohio 14 0.75 0.86 1.48 Mar-Nov 4.87
Lower Mississippi 0 0.00 0.17 1.88 Mar-Nov 1.51
Lower Missouri 0 0.69 0.82 0.61 Apr-Oct 1.34
Middle Mississippi 0 0.63 0.78 1.27 Mar-Nov 2.78
Middle Missouri 0 0.04 0.04 0.11 Apr-Oct 0.28
Platte 10 0.45 0.68 0.09 Apr-Oct 0.28
Upper Mississippi 0 0.42 0.65 0.97 Apr-Oct 2.32
Upper Missouri 0 0.27 0.51 0.07 Mar-Nov 0.34
West Ohio 0 0.55 0.74 0.81 Mar-Nov 1.87

The 𝑅2 value ranges from 0.00 for the Lower Mississippi subbasin to 0.75 for the East
Ohio subbasin. In general, a higher 𝑅2 means a better fit for the data. It shows that for the
subbasins with larger mean monthly run-off the models have a better predictive value.
The correlation between 𝑅2 and the mean monthly run-off is 0.5, which indicates a mod-
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erate dependence. So, the goodness of the model fit is not only dependent on the mean
monthly run-off, other processes like evapotranspiration and precipitation play a role as
well. In Chapter 8, precipitation and evapotranspiration will be investigated as possible
causes for these moderate 𝑅2 values.
There are two subbasins where differential run-off and storage show no relationship

at all, these are the Lower Mississippi and Middle Missouri subbasins. The processes
that are mentioned above can explain part of this bad fit, however, the anthropogenic
influences in those subbasins are most likely to blame for the majority of this, this is fur-
ther elaborated upon in Chapter 8. The other subbasins, excluding the two mentioned
above, have an average 𝑅2 of 0.5. These subbasins show a reasonable to good relationship
between differential run-off and storage. This means that, for those subbasins, a good
estimate of TWSV can be made using only run-off data, especially in the context of this
research. This finding is further exploited by regularizing the GRACE mascon solutions
using the run-off data.

Figure 7.1 shows the differential run-off data points and the exponential fit to this data.
The large scatter of data points that are visible around the fitted model is the reason for
the moderate 𝑅2 values. The hydrological processes that play a role and can explain this
scatter are evapotranspiration and precipitation, as indicated above. The values of 𝛼 range
from 0.08 to 9.00 cm/month, these values are highly correlated to the mean monthly run-
off. The Lower Mississippi and Middle Missouri subbasins are left out of this analysis,
due to the lack of a clear relationship for those subbasins. The 𝛼 values for the subbasins
in theMissouri region significantly lower the 𝛼 values in theOhio region.Most of themod-
els are almost linear, this is determined by the value of 𝛽. The values of 𝛽 determine the
exponential behavior, these range from 0.00 for the Platte subbasin to 0.052 for the Upper
Missouri subbasin. This coefficient indicates how the run-off reacts to a change in storage.
So, for subbasins with a lower 𝛽 value (more linear), subbasins storage can increase with
only a small increase in run-off. This is the case for subbasins where there are a lot of
lakes and reservoirs where this water can be stored before run-off changes (MacEdo et
al., 2019). Subbasins with a higher 𝛼 value will show a more significant change in run-off
when storage changes since fewer reservoirs and lakes can dampen this effect.
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Figure 7.1: Experimental run-off-storage relationships for the Mississippi subbasins.

Figure 7.2 shows the goodness of the fits in a spatial context. No clear geographical
dependence is visible from this map. Relating this figure to the climates occurring in the
Mississippi Basin gives the insight that the subbasins with colder climates (Upper Mis-
souri, Middle Missouri, and Upper Mississippi subbasin) do not necessarily give rela-
tionships with a lower predictive value. Another factor that can have a large influence on
the relationship between run-off and storage is human activity. In the Lower Mississippi
subbasin, 12% of the land is used for agricultural purposes, this is 8.5% for the Lower
Missouri/Platte subbasins. Irrigation uses both surface water and groundwater, which
affects the hydraulic cycle. Possible causes for these variations in model fit are further
discussed in Chapter 8.
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Figure 7.2: Portion of the explained variance by the of the run-off storage fitted relationship.

7.2 in -hous e grace mascon solut ions

As an initial check in-house mascon solutions are compared to JPL and GSFC mascon so-
lutions, to make sure that the in-house approach does not result in clearly inappropriate
estimates of TWSV. Figure 7.3 shows the in-house TWSV estimates, for both Tikhonov
and run-off regularized mascons, and the mean of the JPL and GSFC TWSV estimates.
Generally speaking, the in-house solutions show good similarity to the JPL/GSFC mas-
con solution. The 𝑅𝑀𝑆𝐷 between the JPL and the GSFC solution is 2.01 𝑐𝑚 (correlation
0.96), the difference between the in-house Tikhonov solution and the JPLmascon solution
is 3.44 (correlation 0.89) 𝑐𝑚 and the difference between the in-house Tikhonov solution
and the GSFC mascon solution is 3.61 𝑐𝑚 (correlation 0.86). The difference between the
in-house run-off solution and the JPL mascon solution is 3.55 (correlation 0.90) 𝑐𝑚 and
the difference between the in-house Tikhonov solution and the GSFC mascon solution is
3.74 𝑐𝑚 (correlation 0.88). On average, the difference between the in-house solution and
the ready-to-use solutions is larger than between the JPL andGSFCmascon solutions. The
inter-annual variations that are visible in the JPL/GSFCmascon solutions are also visible
in the in-house solutions. Looking at annual amplitudes, the peak values are higher for
the in-house solutions, in most cases. This can be a sign of an over-regularization (’damp-
ening of physical signal’) of the JPL and GSFC mascon solutions. This is not the case for
the Lower Mississippi and Middle Missouri subbasins, here the JPL/GSFC mascon solu-
tion shows higher peak amplitudes, these are the basins for which no clear relationship
between storage and run-off data was found.
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Figure 7.3: The Tikhonov (blue) and run-off (red) regularized mascon solutions and GSFC/JPL
mascon solutions compared to the validation data (black).



48 re sult s

As described before, this comparison can not be used to identify the solution perfor-
mance. To do so the TWSV estimates have to be compared to the independent TWSV
data shown in Figure 6.1. To get a more valuable comparison the amplitude and phase of
the annual variations and the long-term trend are estimated, in addition to a comparison
of the full time-series.

Table 7.2: Differences and correlation values for the Tikhonov, run-off and GSFC/JPL mascon
solutions.

Tikhonov Run-off GSFC/JPL
Subbasin RMSD Correlation RMSD_co RMSD Correlation RMSD_co RMSD Correlation RMSD_co
Arkansas 6.40 0.58 2.70 6.33 0.64 2.76 5.33 0.70 2.93

Atchafalaya 13.61 0.48 4.95 14.45 0.46 4.92 12.31 0.60 5.33
East Ohio 3.34 0.92 3.06 3.12 0.94 2.87 3.21 0.94 2.54

Lower Mississippi 4.87 0.92 4.19 4.74 0.94 4.14 4.35 0.94 3.75
Lower Missouri 4.27 0.84 2.84 4.12 0.86 2.69 3.68 0.90 2.55

Middle Mississippi 9.16 0.81 5.60 8.83 0.85 5.46 8.52 0.90 4.82
Middle Missouri 10.26 0.65 4.85 8.93 0.73 4.81 11.38 0.46 4.05

Platte 10.75 0.61 4.99 8.80 0.69 4.81 11.12 0.50 4.12
Upper Mississippi 7.97 0.70 4.47 5.93 0.82 3.95 8.45 0.70 4.07
Upper Missouri 10.97 0.35 3.17 10.25 0.36 2.69 11.22 0.29 1.80

West Ohio 3.13 0.94 2.87 3.01 0.95 2.76 2.98 0.95 2.50

First, the complete time series are compared to the validation data. Table 7.2 shows the
𝑅𝑀𝑆𝐷, 𝑅𝑀𝑆𝐷𝑐𝑜 and correlation for the in-house mascon solutions and the GSFC/JPL
mascon solution wit respect to the validation data. The 𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜 values of
the in-house solutions are also shown in Figure 7.4. GSFC/JPL mascon solutions have
smaller deviations (𝑅𝑀𝑆𝐷) and higher correlations for most subbasins. However, for the
Upper Missouri, Middle Missouri, Platte, and Upper Mississippi subbasins the in-house
solutions have smaller errors and higher correlations. These are the subbasins with the
strongest inter-annual variation in TWSV and the lowest mean monthly run-off. Possible
causes for this difference between the in-house and ready-to-use solutions are discussed
in Chapter 8. When comparing the run-off regularized solutions to the Tikhonov regular-
ized solutions a few interesting results are visible. The run-offmethods show significantly
smaller RMSDs and higher correlation for the Upper Missouri, Middle Missouri, Platte,
andUpperMississippi subbasins. For the other subbasins, the twomethods performmore
or less the same, with often slightly smaller deviations for the run-off regularized solu-
tion. Only for the Atchafalaya subbasins, the Tikhonov regularized solutions have smaller
errors. The same patterns are visible for the correlation between the in-house solutions
and the validation data. The mean RMSD for the run-off regularized solutions is 7.13 cm
and for the Tikhonov regularized solutions 7.70 cm, so looking on basin-scale the run-off
regularized solutions perform better. The mean correlation for the Tikhonov regularized
solution is 0.71 and for the run-off regularized solution this is 0.75.

The 𝑅𝑀𝑆𝐷𝑐𝑜 are significantly smaller than the original deviations for most subbasins,
which implies that a large portion of the difference could be dedicated to the uncertainty
in specific yields and the bias that is induced by regularizing. For the GSFC/JPL solu-
tions, the absolute difference is smaller since the deviations in the first place were smaller.
Looking at the Tikhonov and run-off solutions, the difference that was visible for 𝑅𝑀𝑆𝐷
is mostly gone when 𝑅𝑀𝑆𝐷𝑐𝑜 is considered. Figure 7.4 shows the 𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜
values for the two methods for all subbasins. It also shows the values of 𝐶1 and 𝐶2 and



7.2 in -hous e grace mascon solut ions 49

their corresponding 95 percent confidence bounds. As indicated in Chapters 5 and 6, spe-
cific yield and regularization bias are two large uncertainties in the validation data. To
limit the influence of these two factors in the performance analysis of the different so-
lutions, they are co-estimated using the different components of the TWSV. Figure 7.4
shows that for all subbasins, except the Arkansas subbasin, the 95 percent confidence in-
terval intersects the value of 1. 1 is an important number, since 1 means that there is no
bias induced and all values larger than 1 indicated that the solutions are dampened. So,
the values of 𝐶1 in Figure 7.4 indicate that the signal in all subbasin could be dampened,
except the Arkansas subbasin, where the 95 % interval is below 1. For most subbasins, the
run-off regularized solutions are closer to the value of 1, which means less regularization
bias in the run-off regularized solutions. This is in line with the earlier finding. The mean
value of 𝐶1 is 1.11 for the Tikhonov regularized solutions and 1.05 for the run-off regu-
larized solutions. So, overall the run-off regularized solutions contain less regularization
bias. Looking at the confidence intervals of the 𝐶2 estimates shows that most of these
estimates are not significant. However, this does not influence the earlier findings regard-
ing 𝐶1. Also, the negative 𝐶2 estimates for the Arkansas and Atchafalaya subbasins are
not physically possible. For all subbasins, the run-off regularized solutions show values
closer to 1. This, in this case, means that the ’fitted’ specific yield is closer to the assumed
specific yield from literature. The mean values of 𝐶2, are 0.32 and 0.36 for the Tikhonov
and run-off estimates, respectively.

Figure 7.4: The 𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜 for the Tikhonov (red) and run-off (blue) regularized solu-
tions with respect to the validation data. Also, the values of 𝐶1 and 𝐶2 are shown per
subbasin with corresponding confidence intervals.

Looking at the 𝑅𝑀𝑆𝐷𝑐𝑜, the performance of the two different regularization techniques
does not differ significantly. This means that most of the difference between the twometh-
ods could be explained by the regularization bias and uncertainty in a specific field.
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To find out which of those two factors is dominant the regularization bias and specific
yield were estimated separately. Figure 7.5 shows the results when only estimating the
regularization bias. It is clear that the differences between the 𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜 are
small, this indicates that the regularization bias is small.

Figure 7.5: The 𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜 for the Tikhonov (red) and run-off (blue) regularized solu-
tionswith respect to the validation data.𝑅𝑀𝑆𝐷𝑐𝑜 is determined after co-estimating the
regularization bias (𝐶1) separately.

Figure 7.6 shows the results when only estimating the specific yield. Here a clear drop
in deviation is visible between 𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜. This indicates that most of the error
can be accounted to the specific yield used in this research, or the the uncertainty of the
groundwater time-series in general.

Figure 7.6: The 𝑅𝑀𝑆𝐷 and 𝑅𝑀𝑆𝐷𝑐𝑜 for the Tikhonov (red) and run-off (blue) regularized solu-
tionswith respect to the validation data.𝑅𝑀𝑆𝐷𝑐𝑜 is determined after co-estimating the
specific yield (𝐶2) separately.

Run-off regularized solutions show less regularization bias than the Tikhonov regular-
ized solutions, although this is not themain element in the error budget of the solutions. A
large portion of the error is accounted for by the co-estimation of the specific yield, how-
ever, the relatively low values (around 0.3) and uncertainty make it hard to draw any
conclusions from this. This is discussed further in Chapter 8. A large difference could
come from the better estimation of annual peak amplitude, which is looked into next.

The annual amplitude and long term trend are estimated by fitting the mascon TWSV
estimates to:

𝑇𝑊𝑆𝑉 = 𝐴 + 𝐵𝑡 + 𝐶 ∗ 𝑠𝑖𝑛(𝜔𝑡 + 𝜙), (7.1)
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where 𝐴 is the offset, 𝐵 is the long-term trend, 𝐶 the amplitude and 𝜙 the phase and 𝜔
the frequency of the annual variations which is determined by:

𝜔 = 2𝜋
𝑇 ,

where 𝑇 is 1 year. Table 7.3 gives the results for the GSFC/JPL, in-house mascon solutions
and the validation data set. The seasonal amplitudes are generally speaking higher for the
in-house TWSV estimates than for the GSFC/JPL TWSV estimates. The only subbasins for
which this is not the case are the Lower Mississippi and West Ohio subbasins. Validation
data capture stronger inter-annual variations (trends), as shown in Figure 7.3, this results
in underestimated annual amplitudes, since this model can only estimate a single value
over a time period. So, large negative and positive peaks will cancel each other. The fit
can only explain linear trends, when there is a trend on a smaller time scale these are not
captured. Visible in Figure 6.1 is that these short-term trends are stronger in the validation
data.
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Table 7.3: Comparison of annual variations and linear trends for mass variation estimates for the
Tikhonov, run-off, GSFC/JPL mascon solutions and the validation data.

Annual
Subbasin Amplitude [cm] Phase [months] Trend [cm/year]

Arkansas: GSFC/JPL 2.11 -0.46 -1.04
Arkansas: Tikhonov 3.45 -0.47 -0.69
Arkansas: Run-off 4.85 -0.40 -1.35

Arkansas: Validation 1.53 0.58 -0.63
Atchafalaya: GSFC/JPL 3.50 -0.23 -1.09
Atchafalaya: Tikhonov 4.24 -0.41 -0.81
Atchafalaya: Run-off 6.90 -0.25 -1.45

Atchafalaya: Validation 7.21 0.59 -0.61
East Ohio: GSFC/JPLL 4.69 -0.08 -0.18
East Ohio: Tikhonov 5.35 -0.31 -0.63
East Ohio: Run-off 7.35 -0.15 -1.11

East Ohio: Validation 4.94 -0.04 -0.64
Lower Mississippi: GSFC/JPL 6.80 -0.23 0.04
Lower Mississippi: Tikhonov 5.18 -0.36 -0.67
Lower Mississippi: Run-off 6.52 -0.20 -1.27

Lower Mississippi: Validation 7.45 -0.13 -0.89
Lower Missouri: GSFC/JPL 2.62 -0.63 0.24
Lower Missouri: Tikhonov 3.65 -0.47 -0.51
Lower Missouri: Run-off 4.92 -0.37 -1.03

Lower Missouri: Validation 2.20 -0.36 -0.29
Middle Mississippi: GSFC/JPL 3.37 -0.65 0.50
Middle Mississippi: Tikhonov 4.25 -0.41 -0.45
Middle Mississippi: Run-off 5.93 -0.32 -1.00

Middle Mississippi: Validation 5.09 -0.71 0.16
Middle Missouri: GSFC/JPL 2.73 1.41
Middle Missouri: Tikhonov 2.88 -0.69 0.03
Middle Missouri: Run-off 3.29 -0.43 -0.26

Middle Missouri: Validation 3.60 -0.47 -0.59
Platte: GSFC/JPL 2.79 -0.77 0.69
Platte: Tikhonov 2.82 -0.66 -0.17
Platte: Run-off 3.90 -0.56 -0.47

Platte: Validation 3.80 -0.25 -1.23
Upper Mississippi: GSFC/JPL 2.72 -0.76 0.06
Upper Mississippi: Tikhonov 3.56 -0.51 -0.27
Upper Mississippi: Run-off 4.77 -0.40 -0.69

Upper Mississippi: Validation 3.08 -0.78 0.37
Upper Missouri: GSFC/JPL 2.89 -7.11 1.22
Upper Missouri: Tikhonov 2.96 -0.81 0.37
Upper Missouri: Run-off 3.13 -0.58 0.63

Upper Missouri: Validation 3.96 0.03 -1.13
West Ohio: GSFC/JPL 6.30 -0.20 -0.07
West Ohio: Tikhonov 5.20 -0.33 -0.56
West Ohio: Run-off 6.13 -0.16 -1.05

West Ohio: Validation 5.51 -0.20 -0.68

Run-off regularized solutions show higher annual amplitudes compared to Tikhonov
regularized solutions, this is the case for all subbasins. Since the in-house solutions cap-
ture the same inter-annual variations this is an important finding. The phase and trend
values do not indicate any other significant differences between the two solutions.
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Figure 7.7: The time series of precipitation (black), evapotranspiration (pink), and run-off (red)
for all the subbasins..

Figure 7.7 shows the time series of the hydrological processes for the different sub-
basins. To find out the favorable condition for applying run-off regularization, the results
are compared to the different hydrological properties of the subbasins.When ignoring an-
thropogenic influences, the water storage in a subbasin is affected by precipitation, evap-
otranspiration, and run-off, as described in Chapter 3. The least amount of precipitation
falls in the Middle and Upper Missouri and the Platte subbasins, around 4 cm/month.
More precipitation falls in the East and West Ohio region, around 10 cm/month. The
Lower Mississippi subbasin has the most precipitation, 10.9 cm/month. Lower Missouri,
Middle Mississippi, Upper Mississippi, Arkansas, and Atchafalaya subbasins all have
moderate precipitation. No inter-annual trends are visible for all subbasins, the amount
of total precipitation remains fairly constant.

The smallest amount of evapotranspiration occurs at theMiddle and UpperMissouri and
the Platte subbasins, around 3 cm/month. More evapotranspiration occurs in the East
and West Ohio subbasins, around 6 cm/month. The Lower Mississippi subbasins have
the highest evapotranspiration, 6.8 cm/month. The Lower Missouri, Middle Mississippi,
UpperMississippi, Arkansas, and Atchafalaya subbasins all have moderate evapotranspi-
ration. So, the same trends are visible as for precipitation. The areas with little precipita-
tion have little evapotranspiration and vice versa. For evapotranspiration, there are no
inter-annual variations visible, just like precipitation. It is visible that for the subbasins
with less precipitation (Upper, Lower, Middle Missouri, Upper Mississippi, and Platte),
the correlation between precipitation and evapotranspiration is higher. Meaning that for
the more arid areas most of the water that enters the subbasin is immediately transpired
or evaporated.Whereas for themore humid subbasins (East,West Ohio, Atchafalaya, and
Lower Mississippi), this correlation is less, evapotranspiration is less dependent on pre-
cipitation due to the presence of water in the subbasin.
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The lowest run-off occurs in the Upper, Middle, Lower Mississippi, and Platte subbasins,
these make up the complete watershed of the Missouri River. The highest mean monthly
run-off occurs in the East andWest Ohio and Atchafalaya subbasins. Generally speaking,
the amount of water circulating through a subbasin is the largest for the Ohio subbasins
and the lowest for the Missouri subbasins. There is more precipitation in the Ohio sub-
basins which results in more evapotranspiration and run-off.

Looking at 7.2 shows that the run-off regularized solutions has a significantly lower𝑅𝑀𝑆𝐷
for theMiddle, UpperMissouri, UpperMississippi, and Platte subbasins. For the same ar-
eas the correlation is significantly higher for the run-off regularized solutions, compared
to the Tikhonov regularized solutions. In these subbasins the amount of water circulating
through the subbasins is significantly lower than for the other subbasins within the Mis-
sissippi basin. The run-off values are lower, but also the mean monthly precipitation and
evapotranspiration are lower. This is a sign that the run-off regularized approach might
be useful in less wet areas since relatively small changes in annual precipitation can cause
inter-annual variations in terrestrial water storage.
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This chapter discusses the relevance of the obtained results. It looks into the similarities
and differences between the results from this study and relevant previous studies, and
the possible causes. It indicates the shortcomings of this research andwhat possible steps
can be undertaken in order to proceed in this field of research. First, the results regarding
the run-off storage relationships will be discussed. Followed by a discussion of the TWSV
estimates from the adapted in-house approach. Finally, possible shortcomings and the
relevance of the validation data are examined. Recommendations on further work will be
given throughout each of the sections.

The values of mean monthly run-off found in this research are comparable to research
from MacEdo et al. (2019). The highest discharge values are found in the Ohio region
(East and West Ohio subbasins) and the lowest values are found in the Missouri region
(Upper, Middle, and Lower Missouri and Platte subbasin). This research found no delay
for most subbasins and a very short delay for the East Ohio and Platte subbasins. This
seems reasonable since monthly averages are used and this way the effect of possible de-
lays is mostly mitigated. The research of MacEdo et al. (2019) did not consider delay a
factor when looking at the run-off storage relationship, which supports this reasoning.
The 𝑅2 values of the obtained relationships range from 0.04 to 0.75 in this research. In
the research from MacEdo et al. (2019) the 𝑅2 values ranged from 0.40 (in the Missouri
region) to 0.80 (in the Ohio region). Important to note is thatMacEdo et al. (2019) did not
use differential run-off. The relationships were determined by relating the run-off time
series of a stream gauge to storage variations in a complete watershed related to that out-
let point. This means that not all relationships are comparable. The relationships that are
comparable show high similarity. Both studies show the highest 𝑅2 values in the Ohio
region, which coincides with the highest mean monthly run-off values. The same holds
for the opposite, the area with the lowest 𝑅2 values is the Missouri region in both cases,
where the mean monthly run-off is the lowest.

Winter months were excluded from the run-off time series to mitigate the effect of snow
and ice. The success of this approach is measured by comparing the obtained results to re-
sultswhere snowand ice are accounted for following the approach of Riegger andTourian
(2014). In this approach, MODIS snow cover data is used to determine the fraction of a
subbasin that is cover by snow or ice. This percentage is translated to a percentage of the
TWSV that is frozen. The frozen storage part ratio is:

𝐹(𝑖, 𝑡) = 1 − 𝑆(𝑖, 𝑡), (8.1)

where S is the solid storage part ratio. This is determined as:

𝑆(𝑖, 𝑡) = 𝐴𝑆(𝑖, 𝑡)
𝐴𝑖

,
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where 𝐴𝑆 is the frozen area for a specific month and subbasin and 𝐴𝑖 is the total area of
the subbasin. The frozen area is determined as:

𝐴𝑆(𝑟, 𝑡) =
3600
∑
𝑟=0

7200
∑
𝑐=0

𝑖𝑟,𝑐𝑝𝑟,𝑐𝑎𝑟,𝑐, (8.2)

with 𝑖𝑟,𝑐 ∶=
⎧{
⎨{⎩

1 if cell is within the subbasin 𝑖
0 if cell is outside the subbasin 𝑖

This way the storage time series can be split into a solid and liquid part. The liquid part
is used to fit the exponential relationships and determine the difference with the final
results. Table 8.1 shows the results for both approaches, it indicates that there is no sig-
nificant difference between the two. This means that excluding the winter months in the
first place accounts for the effects of snow and ice. Note that MODIS snow cover data is
solely used to validate this approach and not to be incorporated into the relationships.

Table 8.1: Goodness of fit from results compared to goodness of fit from the approach of Riegger
and Tourian (2014)

Subbasin 𝑅2 𝑅2
𝑙𝑖𝑞𝑢𝑖𝑑

Arkansas 0.33 0.33
Atchafalaya 0.35 0.33
East Ohio 0.75 0.71

Lower Mississippi 0.00 0.01
Lower Missouri 0.69 0.69

Middle Mississippi 0.63 0.62
Middle Missouri 0.04 0.03

Platte 0.45 0.46
Upper Mississippi 0.42 0.44
Upper Missouri 0.27 0.24

West Ohio 0.55 0.49

The Lower Mississippi and Middle Missouri are the two subbasins for which there is no
clear dependence between run-off and storage. These are 2 of the 5 subbasins for which
differential run-off is computed. The other 3 are the Lower Missouri, Middle Mississippi,
and West Ohio subbasins. For the Lower Mississippi subbasin many months exist where
the differential run-off is negative, this means that the outflow is smaller than the total
inflow into the Lower Mississippi subbasin. Meaning that water is stored or leaves the
subbasins through a different process. The latter can be either evapotranspiration or any
human-induced process. Analysis of model data showed that evapotranspiration in the
Lower Mississippi does not behave different to the other subbasins. The same holds for
the precipitation in the LowerMississippi subbasin. So, it ismost likely that the absence of
a clear correlation between run-off and storage is due to human activity, the same holds
for the Middle Missouri subbasin, where there is also no abnormal behavior of precipita-
tion and evapotranspiration.

Mississippi RiverValleyAlluvialAquifer and theOgallalaAquifer are two aquiferswithin
the Mississippi basin. 12 percent of the land in the LowerMississippi subbasin is used for
agricultural purposes. This cropland needs to be irrigated and the main source of this
water is the Mississippi River Valley Alluvial Aquifer (Massey et al., 2017). The Ogallala
Aquifer is one of the world’s largest aquifers, it underlies parts of the Arkansas, Platte,
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Lower, and Middle Missouri subbasins. The Platte and Lower Missouri subbasin also
have a high percentage of land used for agriculture, 10 and 7 percent, respectively. The
aquifer has seen large depletion over the period 1990-2012 (Scanlon et al., 2012). Deple-
tion of these natural aquifers can cause the run-off storage relationship to behave differ-
ently. For instance, when storage increases it may not results in an instant increase of run-
off, since there is more water that can be stored due to the depletion of the aquifers. Many
different processes play a role here and it is not a simple as the example states. However,
it is most likely the main cause of why these areas show a weaker correlation between
run-off and storage. In an attempt to increase the explained variance of the relationship
for the Lower Mississippi and Middle Missouri subbasins data regarding this depletion
can be gathered. Then, this effect can be accounted for in the storage time series of those
subbasins. In this research an attempt was made in order to collect these data, however,
this was not successful. The depletion of those aquifers occurs in different states and over
many different sites, this highly complicates the collection of those data. There is no cen-
tral institution that collects and distributes that data, as is the case for groundwater and
run-off data which are distributed byUSGS. Further work could be done on the collection
of useful data regard aquifer depletion in the Mississippi Basin. Taking into account the
purpose of these relationships it is very important to make sure this remains a data-only
approach. Using model data or relationships that form the basis of models, will result in
a biased TWSV estimate when using these to calibrate hydrological models or for other
hydrological purposes.

More generally speaking, the data points do show a large scatter, for all subbasins. The
twomost probable causes of this are hysteresis and evapotranspiration. Riegger andTourian
(2014) discusses the effect of hysteresis on the run-off storage relationship. The hysteresis
effect is caused by the superposition of different coupled and uncoupled storage compo-
nents, which all have a unique temporal response. Some of the components involve fast
transition, like surface water, and other components have a large time lag, like the melt-
ing process. For fully humid (Koppen class of Af) watersheds the hysteresis effect is very
small. This means that the extremes of run-off storage occur at the same time. For boreal
catchment the hysteresis effect is stronger, this is due to freezing, snow accumulation, and
correspondingmelting. Even thoughwinter months are left out for most of the subbasins,
melting is a process that can have an influence up to the summer months. Looking at the
Mississippi basin, this hysteresis will have an influence on the run-off storage relationship
aswell. TheWest and EastOhio subbasins are themost humid subbasins, here the hystere-
sis effect is the smallest. For less humid and colder subbasins this effect becomes stronger.
Since winter months are already extracted from the data points the main cause of this ef-
fect in this research will most likely be the melting process, which has an influence up to
the start of the summer for some areas. Accounting for the melting process is something
that could decrease the scatter in the data point used for extracting the run-off storage
relationships, this could be something done when further researching this approach.

As discussed above, by eliminating thewinter monthsmost of the hysteresis effect should
be accounted for, except the effect of melting water. So, the major process that causes this
scatter is presumably evapotranspiration. Run-off and evapotranspiration are the twoma-
jor processes causing water to leave the subbasin. As shown in Figure 7.7, evapotranspi-
ration accounts for most of the water that leaves the subbasin. For the more arid areas
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the correlation between precipitation and evapotranspiration is very high, in those areas
the evapotranspiration flux is way higher than the run-off flux. There is no clear season-
ality in run-off for those areas, this might be because actual evapotranspiration does not
meet potential evapotranspiration. No seasonality in the run-off time-series is what partly
causes the large scatter in the data points. Further research could look into the effect of
evapotranspiration on the run-off storage relationship in more detail. This might result
in better-fitting models.

Next, the GRACE TWSV estimates are discussed. As stated in Chapter 7, the in-house so-
lution differ from the GSFC/JPL solutions. Looking at 7.3 shows that this is not the result
of over regularization of the in-house solution. The annual peak values of the in-house
solution often coincide or surpass, the peaks of theGSFC/JPLmascon solutions. The inter-
annual variations that are captured by the GSFC/JPL mascon solutions are captured by
the in-house solution as well. A clear distinction between the in-house and GSFC/JPL
solution is visible for the Middle Missouri subbasin the in-house solutions estimates of
TWSV are significantly higher in the period 2003-2006. Another difference in the two
solutions is visible in the Arkansas subbasin, where the in-house solutions show much
higher seasonal amplitude throughout the entire period. There are a couple of possible
causes for this difference. Noise present in the SHCs obtained from ITSG could cause a
difference in the solutions, additionally, these solutions could lack spatial resolution. An-
other reason for this difference can be the statistically sub-optimal data inversion. In the
application of this method to the Greenland ice sheet, a data covariance matrix is com-
puted on a month-by-month basis from the full noise covariance of the monthly SHCs
(Ran et al., 2018). In this research, a unit matrix is used. Further work could also imply
this statistically optimal data inversion in order to eliminate this as a possible cause. This
difference between the in-house and GSFC/JPL mascon solution does not interfere with
the main goal of this research, finding the added value of run-off in regularizing GRACE
mascon solutions, which focuses on the difference between the two in-house solutions.

First, the resultswithout co-estimating specific yield and regularization bias are discussed.
It is clear from Table 7.2 that the GSFC/JPL mascons solution perform better in terms
of 𝑅𝑀𝑆𝐸. The only areas for which the in-house solution performs better are the Platte,
Middle, and Upper Missouri, and Upper Mississippi subbasins, taking into account both
correlation and 𝑅𝑀𝑆𝐸. From these, the Middle Missouri subbasin showed different be-
havior in the period 2003-2006, as indicated above. This can be a sign that the in-house
solution captures the ’true’ signal better than the GSFC/JPL mascon solution for those ar-
eas during that period. The Platte, Middle, and Upper Missouri, and Upper Mississippi
subbasins are the areas for which the run-off method preform significantly better than
the Tikhonov method. As discussed in Chapter 7, those are the areas that have strong
inter-annual trends of TWSV. This indicates that run-off is of added value in areas where
there are strong inter-annual variations, which are more dampened when run-off data is
not used.

Chapter 7 states that the higher correlation values for the run-off regularized solutions
are a strong indicator of better performance of this method. By considering correlation,
the effect of regularization bias and uncertainty in specific yield estimation is mostly mit-
igated. A study from Klosko et al. (2009) compared mascon recoveries to independent
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flux estimates in the Mississippi basin. A similar validation method is used in this re-
search. Their research divided the Mississippi basin into 4 large subbasins. The results
showed correlations between the TWSV signal derived from GRACE and the validation
data from 0.53 up to 0.92. Comparing the correlations from this research to the values
found by Klosko et al. (2009) shows large similarities.

Next, the 𝑅𝑀𝑆𝐸 after co-estimating specific yield and regularization bias are discussed.
TheGSFC/JPLmascons performbetter than the in-house solutions for all subbasins.How-
ever, an interesting difference is visible when comparing the two in-house solutions. A
large portion of the 𝑅𝑀𝑆𝐷 was accounted for by the co-estimation of the specific yield.
However the values of 𝐶2 are relatively low and the uncertainty in those estimates very
high. A 𝐶2 value of 0.3 would mean that the used specific yield from Table 5.3 should be
multiplied by a factor of 0.3. It is reasonable to assume that the actual specific yield will
differ from the specific yield used in this case, however, these low values are not reason-
able, this can be the result of over-fitting. This, in combination with the large confidence
intervals for the estimates, make it impossible to draw a conclusion from these estimates.
In further work more attention should go to the specific yield used for converting well
measurements to groundwater changes. The specific yield can be determined individu-
ally for each well, this is time consuming, but could improve the certainty of the findings
of further studies.

It is more reasonable to look at the peak amplitudes as main cause of the difference in
𝑅𝑀𝑆𝐷𝑠. Looking at 7.3 indicates that the run-off solution differs from the Tikhonov so-
lution in the peak values. This might be an indicator that run-off data can be of added
value for predicting seasonal peak values, which otherwise might be underestimated by
GRACE mascon solutions. The fact that the validation data give the lowest annual ampli-
tudes is counteractive, when looking at Figure 7.3. However, the error remaining after the
fit is the largest for the validation data. Thismeans that there is a lot of signals which is not
explained by this simple fit in the validation data. This is due to the bigger inter-annual
variation captured by the validation data, which can not be accounted for by this fitted
model. This results in the fact that the annual amplitudes are underestimated. Looking
at the three different mascon solutions shows that the run-off regularized solution shows
the highest annual amplitudes for all subbasins. Klosko et al. (2009) showed that GRACE
mascon estimates constantly underestimate the annual amplitudes. For the whole Missis-
sippi Basin, the difference is 2.4 cm, for some subbasins this difference increases to 5.1 cm.
The period used in that research was significantly shorter, which means that there is less
effect of these inter-annual variations. Looking at the basin average of this research, the
validation data gives a seasonal amplitude of 4.58 cm, the GSFC/JPL solution shows an
amplitude of 3.58, the Tikhonov regularized solution shows an average amplitude of 4.04
cm and the run-off regularized solution shows an average amplitude of 4.63 cm. So, look-
ing at the basin scale the run-off regularized solutions show the most similarities to the
validation data when looking at annual amplitudes. The shortcoming of this approach is
that it tries to capture amplitude and trends as single values. These can vary over time and
that is why it could be better to use a stochastic model. This way the problem with strong
inter-annual trends can also be mitigated. However, the simplicity of the used methods
is lost in that case, subbasin characteristics can not be represented by a single number.
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It is advisable to work with stochastic models for estimating the annual amplitudes and
trends during further research.



9 CONCLUS IONS

This chapter summarizes the foremost findings and identifies the success of the different
research objectives. First, the sub-goals of this research are examined. This is followed by a
statement on themain goal: to identify the added value of run-off data for high-resolution
estimation of TWSV in the study area from GRACE data.

First, a study area was selected. The Mississippi Basin in the United States of America
was chosen over the different basins in Europe. This choice was mainly based on the dif-
ferences in TWSV behavior. Since TWSV behavior in Europe is very similar, it will be
more difficult to see the effect of run-off data. The comparable TWSV behavior is because
most of the European basins have the same climate. In this case, the impact of run-offwill
be hard to detect, since signal leakage in and out of the basin will cancel one another out.
The subbasins in the Mississippi Basin did show very distinctive TWSV behavior, which
was the main driver for this decision.

Secondly, the in-house mascon approach was adapted to apply to be applicable to mass
anomalies of hydrological origin in general and extended with different kinds of regu-
larization. Originally this method was developed to estimate the mass loss of ice sheets.
This required a lot of effort and manipulations, not explained in detail in this report. Two
different types of regularization were implemented into the method, which is further dis-
cussed below.

Thirdly, this adapted approach was fine-tuned by several numerical experiments, which
were executed to determine optimal parameter settings and to find the best method to
determine the regularization parameter. A buffer zone of 300 km, a correlation distance
of 100 km for regularization, a Fibonacci grid of 50 km, a pseudo-observation resolution
of 1 degree, and a grid resolution of 0.05 degree are used. These are all optimized in the
context of the Mississippi basin and show similarity to the previous applications of this
approach.

Fourthly, a variety of independent data is collected to validate the results. Soil mois-
ture and snow water equivalent data are gathered from different land surface models
all driven by NLDAS. Groundwater is collected from USGS...... Together these three data
sets make up the validation set, to validate the GRACE TWSV estimates. The largest un-
certainty in the validation data set is the groundwater data. Taking regional averages for
specific yield and the possibility of selecting awell that is not representable of the regional
behavior induces some uncertainty.

Fifthly, the relationships between run-off and storage were quantified for all subbasins.
Most subbasins of the Mississippi Basins displayed a clear exponential relationship be-
tween differential run-off and storage. Winter months are left out to minimize the effect

61



62 conclus ions

of snow and ice. The results from this show good similarity, looking at explained vari-
ance, to previous research in this area (MacEdo et al., 2019). The Lower Mississippi and
Middle Missouri subbasins did not show a clear relationship, which is probably due to
the influence of human activity as outlined in Chapter 8. The effect of evapotranspiration
could explain the large relative moderated 𝑅2 values for most subbasins. This process is
not accounted for in this research, since it was not feasible for this data-only approach.

Two different types of regularization were incorporated into the in-house approach. Stan-
dard Tikhonov regularization is applied with a correlation distance of 100 km, which
constrains the neighboring solution to not differ much. Thereafter run-off derived stor-
age estimates are added in the regularization process to create a more physical-based
regularization. The addition of run-off data into the regularization is a small adaption
from standard Tikhonov regularization, resulting in one additional term in the estimator
function.

The main goal of this research is to identify the added value of run-off data for high-
resolution estimation of TWSV in the study area from GRACE data. Even though the
GSFC/JPL mascon solution showed better results compared to the validation data, run-
off data shows potential to be of added value when it comes to regularization of mascon
solutions. Compared to standard Tikhonov regularization, run-off regularized solutions
showed higher annual amplitudes. Taking into account that GRACEoften underestimates
the real hydrological signal, this might be an indication of a possible improvement. The
run-off regularized solutions perform especially better in less humid areas. In those ar-
eas, in this research the subbasins of the Missouri basin, there are stronger inter-annual
variations in TWS. Inter-annual variations are less dampened in the run-off regularized so-
lutions. For humid areas, a larger absolute change in the hydrological process is needed to
have inter-annual variations. Less dampening in the run-off regularized solutions is also
supported by the larger annual amplitudes, compared to the standard Tikhonov regular-
ized solutions. Furthermore, the run-off regularized solutions show less regularization
bias. For most of the subbasins, the regularization bias is smaller for the run-off regular-
ized solutions.

Regularization using run-off data shows potential particularly in areas with strong inter-
annual variations in TWS, semi-humid and arid areas are more susceptible to such vari-
ations. For those areas, the run-off storage relationship is less explicit than for more wet
areas. It shows that even though run-off storage relationships have moderate predictive
value when it comes to regularizing GRACE mascon solutions these are still relevant.
More research should be done to get a more definite conclusion regarding the added
value of runoff data, however, the results of this research show great promise.



A APPEND IX

a.1 adapt ion of the tu del f t mascon approach

The approach consist of 6 main scripts: part0.m, part1.m, part2.m, part3.m, computedgwn.m
and estimatexflex.m. Scripts part0.m and part1.m deal with the geometry of the different
grids, part1.m and part2.m deal with the functional model and computedgwn.m and estima-
texflex.m deal with the actual inversion.

For this project, themasconsmust coincidewith the subbasins thatwere defined.Whereas
for the other regions this method was applied, e.g. Greenland, the configuration was not
determined by (sub)basins. The script part1.m creates the outlines that form a specific
mascon, these mascons consist of a set of smaller patches. This script was adapted and
the result of this is that there are eleven mascons that all coincide with the subbasins that
were defined. The output of this script is a cell structure that contains all the geometric
information of the smaller patches within those mascons.

The script part0.m does the same thing, so creating small patches within a specific area,
only for the extra mascons, this is further discussed in Chapter 6. These are the mas-
cons created to absorb signal leaking into the basin, this script did not need adaption. So,
part0.m and part1.m create the patches within the different mascons (subbasins) and store
their locations.

The third script (part2.m) creates the functionalmodel for all patches, using the geometric
information of the patches created in the previous scripts. This model relates the gravity
disturbance at satellite altitude to amass anomaly for a specific patch. The grid that holds
the observations at satellite altitude is created in part0.m, this is not changed from the pre-
vious version.

In part3.m the design matrices from both the external and main subbasins are combined
as columns. So that there is one design matrix (A) left.

In computedgwn.m the gravity disturbances at satellite altitude for all grid points are com-
puted. This script is adapted for this project. In the original method mass trends needed
to be estimated, however for this project monthly estimates need to be determined. This
means the one-dimensional data vector (d) is converted to a two-dimensional data ma-
trix.

Finally, in estimatexflex.m inversion is applied to obtain a solution. To get a suitable solu-
tion, the inversion needs to be regularized. Different types of regularizations are applied
as discussed in a separate section.
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a.2 regular i zat ion

The approach from PDitmar2011, which is based on Turchin et al., 1970, is explained
below. Assuming that unknownmodel x satisfies the Gaussian distribution and the most
probable model outcome is x0 with covariance matrix Cx. This can be formulated as:

𝐸(x) = x0, 𝐷(x) = Cx, (A.1)

with 𝐸 and 𝐷 as the expectation and dispersion operators. This lead to the following prob-
ability density function (pdf) of this model:

𝑃(x) ∝ 𝑒− 1
2 (x−x0)𝑇C−1

x (x−x0). (A.2)

When assuming that noise in the data satisfies theGaussian distribution. This assumption
is justified by the fact that almost all data contain this type of noise. The second assump-
tion made is that the noise had zero mean, when this is not the case the data is biased. If
that is the case this bias should be estimates a model parameter as well. The data noise
will have the following characteristics:

𝐸(n) = 0, 𝐷(𝑛) = Cd, (A.3)

where Cd is the data noise covariance matrix. In the same way the data vector can also be
represented as a random vector, with these propertied:

𝐸(d) = Ax, 𝐷(d) = Cd. (A.4)

When the model equals x the conditional pdf of the data vector becomes:

𝑃(d ∣ x) ∝ 𝑒− 1
2 (d−Ax)𝑇

C−1
d (d − Ax). (A.5)

Now using the Bayes theorem, which states that

𝑃(d ∩ x) = 𝑃(d ∣ x)𝑃(x) = 𝑃(x ∣ d)𝑃(d). (A.6)

Then the pdf of the model, that is based on prior knowledge of the data noise and model,
which is the conditional probability 𝑃(x|d), can be found as follows:

𝑃(x ∣ d) ∝ 𝑃(d ∣ x)𝑃(x) ∝ 𝑒− 1
2 (d−Ax)𝑇

C−1
d (d−Ax) − 1

2 (x − x0)𝑇 C−1
x (x − x0) . (A.7)

The model for which this pdf is maximum is the optimal model estimation x̂, this model
estimation is found as the minimum of the quadratic objective function:

x̂ = argminx [(Ax − d)𝑇C−1
d (Ax − d) + (x − x0)𝑇 C−1

x (x − x0)] . (A.8)

Differentiating with respect to x and assign the result to zero gives the following expres-
sion for the optimal model estimation:

x̂ = (A𝑇C−1
d A + C−1

x )
−1

(A𝑇C−1
d d + C−1

x x0) . (A.9)

When assuming that the covariance matrices of the model and data noise can be written
as a predefined matrix multiplied by a constant factor the following holds:

C−1
d ∶= 1

𝜎2
𝑑
Pd, C−1

x ∶= 1
𝜎2𝑥

Px. (A.10)



A.3 parameter e st imat ion 65

By inserting Equations A.10 into A.9 the following is obtained:

̂x = (A𝑇PdA + 𝛼Px)
−1 (A𝑇Pdd + 𝛼Pxx0) , (A.11)

where 𝛼 is the regularization parameter which is computed by:

𝛼 =
𝜎2

𝑑
𝜎2𝑥

. (A.12)

a.3 parameter e st imat ion

As described by Odolinski and Teunissen, 2019 this method estimates the variance of the
data andmodel components in order to determine the statistically optimal regularization
parameter as

𝛼 =
𝜎2

𝑑
𝜎2𝑥

. (A.13)

The approach from Ran et al., 2018 is used to obtain the regularization parameters. Af-
ter a first initial guesstimate of both variances, a first solution can be computed. Using
this solution 𝜎2

𝑑 and 𝜎2
𝑥 can be computed again as described below. The data variance is

computed as

𝜎̂2
𝑑 = 1

N − Τ𝑑
(d − Ax̂)Pd(d − Ax̂) (A.14)

with

Τ𝑑 = 𝑡𝑟𝑎𝑐𝑒[NdN−1] (A.15)

where N is the normal matrix, considered as the sum

N = Nd + Nx (A.16)

with Nd being the part of the normal matrix related to the data vector:

Nd = 1
(𝜎2

𝑑 )0
A𝑇PdA (A.17)

and Nx being the part of the normal matrix related to the initial model vector:

Nx = 1
(𝜎2𝑥 )0

R. (A.18)

The variance of the model vector can be estimated similarly:

𝜎̂2
𝑥 = 1

𝑀 − Τ𝑥
(x0 − x̂)R(x0 − x̂) (A.19)

with

Τ𝑥 = 𝑡𝑟𝑎𝑐𝑒[NxN−1]. (A.20)

The regularization parameter is updated until a certain threshold is reached. When the
new regularization parameter differs no more than 1 percent from the previous regular-
ization parameter the process is stopped and this is chosen as the final regularization
parameter.
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