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Abstract

The rapid proliferation of the Internet of Things (IoT) has introduced significant security challenges,
primarily due to the widespread reuse of open-source software (OSS) components. This practice leaves
IoT projects particularly vulnerable to 1-day vulnerabilities especially when developers customize the
reused OSS code, rendering template patches inapplicable.

In this thesis, we propose 1DRep, a repair tool designed to automatically detect and repair 1-day
vulnerabilities in reused C/C++ IoT OSS components. First, 1DRep integrates with the vulnerability
detection tool V1SCAN to identify vulnerable code snippets in target programs. It then employs a large
language model (LLM), GPT-4o, to generate and apply tailored fixes, addressing both exactly reused
and modified vulnerable code without altering developer-customized functionality.

Our evaluation demonstrates that 1DRep effectively repaired 39 out of 40 CVEs (97.5%) in 11
target vulnerable IoT projects, including 14 out of 15 modified CVEs (93.3%), and effectively fixed 81
out of 90 artificially created vulnerable reuses (90%). We constructed an IoT-specific dataset containing
1,020 C/C++ libraries which supplements an exisiting dataset Centris to enhance the detection of OSS
components commonly reused in IoT projects. Additionally, we provided security reports containing
customized patches for the modified CVEs by creating GitHub issues or pull requests in the affected
projects.

The results indicate that 1DRep is a promising tool for automatically repairing 1-day vulnerabilities in
IoT projects, particularly in scenarios where developers’ customized reuses make traditional patching
techniques ineffective.

Lastly, despite the promising outcomes, limitations such as reliance on the precision of the detection
model and challenges with complex vulnerabilities highlight areas for future research. Enhancing the
detection mechanisms, expanding the CVE dataset, and refining repair strategies are critical steps
toward improving the tool’s effectiveness.

ii



Contents

Preface i

Abstract ii

1 Introduction 1
1.1 Motivation and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Gap and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Writing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Reused code classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Vulnerable code classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 1-day Vulnerability Detection Tool: V1SCAN . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Related Work 10
3.1 1-day Vulnerability Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Software Composition Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Vulnerable Code Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 LLMs for Vulnerability Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 1DRep: The APR Tool 12
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Overview of 1DRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Function-based repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Code-based repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4.2 Extracting Context and Crafting the Prompt . . . . . . . . . . . . . . . . . . . . . 14
4.4.3 Prompt and response of GPT-4o . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 Modification on V1SCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 The new OSS dataset IoT-1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Evaluation 22
5.1 Datasets for V1SCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 OSS dataset and CVE dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Effectiveness of the new IoT dataset IoT-1000 . . . . . . . . . . . . . . . . . . . 23

5.2 Target IoT projects and complexity of the detected vulnerabilities . . . . . . . . . . . . . 26
5.2.1 Complexity of the vulnerabilities detected in target IoT projects . . . . . . . . . . 28

5.3 RQ1. Vulnerability Detection Performance: How precisely does V1SCAN detect and
classify vulnerabilities in the 40 target IoT projects? . . . . . . . . . . . . . . . . . . . . . 30

5.4 RQ2. Repair Effectiveness: How effective is our repair tool in addressing the detected
vulnerabilities? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 RQ3: Repair Capability: How does 1DRep perform among the artificial vulnerable reuses? 31
5.5.1 Generating artificial vulnerable reuses . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 Security Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



Contents iv

6 Discussion 43
6.1 Significance of the Repair Tool 1DRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Handling Modified Reused Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.2 Contribution to IoT Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.1 Applicability to Short Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2.2 Dependence on V1SCAN’s Performance . . . . . . . . . . . . . . . . . . . . . . 43
6.2.3 V1SCAN’s limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.4 Assumptions on Code Customizations . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.5 Limited Detected Dataset for Evaluation . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.6 Limitations of Code-Based Repair . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3 Future work of the repair tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Threats to validity 46
7.1 Internal Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 External Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.1 Construct Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Conclusion 48

References 49



1
Introduction

1.1. Motivation and Implications
The Internet of Things (IoT) is rapidly growing, with a forecasted compound annual growth rate of 17%
until 2030 [17]. It connects millions of heterogeneous devices to provide advanced intelligent services,
which impacted our daily lives profoundly [28].

However, this widespread adoption has also introduced significant security challenges: the design of
IoT systems often prioritizes connectivity over security, creating a blind spot that has made IoT devices
lucrative and easy targets for attackers [28]. Since 2021, cybersecurity has been recognized as the
top enterprise technology priority globally for companies adopting IoT software, according to recent
research from IoT Analytics [18]. It was also found by IoT Analytics that in terms of end-user adoption
of enterprise IoT initiatives, 84% of businesses who custom-built their IoT solutions did so because
they believed that approach would better handle IT security concerns. Furthermore, they showed that
of the companies who adopted off-the-shelf IoT solutions and used a systems integrator (comprising
42% of those surveyed), 100% shared that a solid IT security track record or reputation was either
very important or important. This heightened focus on cybersecurity reflects the growing awareness
of the risks associated with connected IoT devices, as organizations across all regions and industries
prioritize securing their digital assets.

One of the most pressing issues in IoT security is the widespread use of reusable open-source
software (OSS) components [28], which are often integrated into IoT devices without thorough vetting
or security testing. The reuses are prevalent because reusing OSS can significantly accelerate devel-
opment processes [34, 37, 45, 5]. The 2023 Open Source Security and Risk Analysis (OSSRA) report
[29] revealed that 96% of 1,703 codebases across 17 industries such as IoT, Energy, Retail and eCom-
merce and Clean Tech, contained OSS components, illustrating the pervasive nature of reusing OSS
components in modern software development.

The reliance on reusing OSS components, coupled with inadequate patch management, leaves
IoT devices particularly susceptible to 1-day (or N-day) vulnerabilities [13, 14, 36, 45, 41, 28]. A 1-day
vulnerability refers to a known vulnerability for which a patch is available [36, 5] but has not yet been
applied. The threat is further supported by Zhao et al.’s empirical study on 1,362,906 IoT devices found
that 385,060 (28.25%) were affected by at least one N-day vulnerability [48].

Even tech giants such as Apache, Oracle, VMware, and Microsoft suffered from known vulnerabil-
ities such as Common Vulnerabilities and Exposures (CVEs), which malicious cyber actors routinely
and frequently exploit, showed by the report 2022 Top Routinely Exploited Vulnerabilities [4]. Google
warned that 1-day vulnerabilities are still as dangerous as 0-days, or even more so, since attackers can
exploit the publicly available technical details, considering that there is often a lengthy delay before de-
vice manufacturers deploy this fix in their respective versions [30]. For example, the CVE-2022-22706
flaw in the ARM Mali GPU, patched by the vendor in January 2022, was exploited in December 2022
infecting Samsung Android devices with spyware, but it was only addressed by Google and Samsung
in May and June 2023, respectively, resulting in a 17-month delay [30].

In view of the above circumstances, it is clear that, even though patches are available, effectively
repairing the 1-day vulnerabilities is still a significant problem for developers due to the identified issues
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listed below:

1. Increasing prevalence of the 1-day vulnerabilities across various industries: the 2023 OS-
SRA report [29] found that 84% of examined codebases contained at least one known vulnerability
and 48% of them contained high-risk 1-day vulnerabilities. In addition, it also showed that since
2019, among the 17 industries as mentioned above, the Retail and eCommerce sectors have
experienced a 557% increase in high-risk vulnerabilities and the IoT vertical has seen a 130%
rise in such vulnerabilities, with 53% of examined applications in this sector containing high-risk
issues this year.

2. Lack cybersecurity skills: Since most developers are not skilled in cybersecurity [20, 19, 46,
22], it is error-prone and time-consuming [1, 50] for them to identify and repair a vulnerability
manually.

3. Customizations on reused code: Developers often customize reused OSS code to fit the spe-
cific needs of their programs [36, 34, 5]. As a result, simply updating the reused OSS components
to the latest version may not be feasible, as it could lead to the loss of their customizations or
cause context mismatches.

In-view of the above issues, automatically detecting and repairing 1-day vulnerabilities in reused
IoT OSS components can significantly help developers and users.

1.2. Research Gap and Problem Statement
To address the problem of 1-day vulnerabilities in IoT systems, in this thesis we will explore the use of
Automated ProgramRepair (APR) techniques. Various traditional APR approaches exist [9, 24] and can
be categorized as search-based, template-based, constraint-based and learning-based tools. Among
these techniques, template-based tools, which was regarded as state-of-the-art, use handcrafted or
mined repair templates to fix vulnerable code. However, they cannot generalize to patterns and bugs
not included in the predefined templates due to the lack of continuous learning capability [38, 9]. On the
other hand, they often overlook defect classes that are complex, specialized, or not widely applicable
[9].

To address the limitations of traditional template-based APR methods, which lack the capacity
for continuous learning and adaptation, learning-based approaches utilizing Large Language Models
(LLMs) or Neural Machine Translation (NMT) have been proposed [3, 16, 11, 38]. However, NMT-
based APR tools may suffer from noisy training datasets [12] and may not generalize to bug fix types
not represented in their training data [38]. This limitation arises because these tools rely heavily on
training data built by searching open-source repositories for commits that fix bugs.

Recently, LLM-based methods have gained favor for APR, as they can automatically learn features
from known vulnerabilities, demonstrating excellent outcomes in the vulnerability repair task [38, 49].
AlphaRepair [39], which can be considered as the current state-of-the-art, directly predicts correct code
based on the context information around the vulnerable code, proposing the first cloze-style (or infilling-
style) APR using an LLM.

However, a significant problemwith these approaches is that they focus only on the exact vulnerable
lines or functions reported by vulnerability detection tools, ignoring reused code that has been modified
by developers to satisfy their customization needs, which might still be vulnerable [6].

Our repair tool, 1DRep, is designed to automatically generate and apply tailored fixes for vulnerable
reuses detected in the target program without altering developer-customized code. To achieve this, we
propose developing and implementing an automated tool to identify and repair 1-day vulnerabilities
caused not only by exact vulnerable code but also by modified vulnerable code—that is, code reused
and customized by developers but still vulnerable.

The idea is to deploy a 1-day vulnerability detection tool on a target IoT project to identify vulnerable
code snippets that have already existed in other OSS components. We then launch the LLM-based
repair module to automatically generate correct code for developers based on our handcrafted instruc-
tions combined with information extracted from template security patches in the CVE dataset provided
by the chosen vulnerability detection tool, V1SCAN [36]. V1SCAN is a state-of-the-art tool designed
to detect 1-day vulnerabilities in reused C/C++ OSS components, classifying vulnerable functions into
exactly reused, modified, and unused categories, as explained further in Chapter 2.
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To automatically repair the modified vulnerable functions in the target file detected by V1SCAN, we
identify two main challenges (Cs):

• Identifying Correct Insertion Points (C1): Determining the correct locations to insert the patch
lines within the vulnerable function in the target file, especially when the context has been changed
due to customizations.

• Adapting Patches to Changed Context (C2): Transforming the template patches into correct
ones that fit the changed context in the modified vulnerable function, ensuring that the fix does
not disrupt the customized functionality.

Addressing these challenges is crucial for the effectiveness of a APR tool. We designed a methodol-
ogy to deal with them in section 4.4.1. In chapter 5, we provide an analysis of the solutions implemented
to overcome these challenges and evaluates their effectiveness in real-world scenarios.

1.3. Contribution
In this thesis, we have the following research contributions:

• We developed a tool, 1DRep, to automatically repair 1-day vulnerabilities arising from the reuse
of C/C++ IoT OSS components. These vulnerabilities were detected using the vulnerability de-
tection tool V1SCAN [36]. The details are illustrated in chapter 4.

• We constructed a dataset, IoT-1000, containing 1,020 IOT-specific libraries for identifying more
OSS components that might be reused in open-source C/C++ IOT projects. This dataset was
built with the team from University of New South Wales(UNSW) as detailed in section 4.6. Its
effectiveness is evaluated in section 5.1.2.

• In section 5.2, we listed the 40 IoT C/C++ projects on GitHub that were scanned to identify 1-day
vulnerabilities in real-world IoT applications. In addition, we investigated the complexity of the 15
modified CVEs in section 5.2.1.

• In section 5.3, we evaluated the effectiveness of V1SCAN based on 40 detected CVEs from the
target IoT projects.

• Targeting 40 IoT projects, the repair tool 1DRep successfully repaired 39 out of 40 detected CVEs
(97.5%), including 14 out of 15 modified CVEs (93.3%) as detailed in section 5.4.

• 1DRep effectively repaired 81 out of 90 artificially created vulnerable reuses (90%). These reuses
were derived from 10 selected CVEs and were modified in 9 levels of complexity as shown in
section 5.5.2.

• We provided security reports with patches for the 15 modified CVEs in 5 IOT projects on GitHub
by creating pull requests or opening issues with necessary patch information as illustrated in
section 5.6.

1.4. Research Objectives
To validate the effectiveness of our proposed tool, 1DRep, we conducted a evaluation focusing on both
the vulnerability detection phase using V1SCAN and the automated repair process. Our evaluation
addressed the following key research questions:

• RQ1. Vulnerability Detection Performance: In section 5.3, we assessed how well V1SCAN
detects and classifies vulnerabilities in 40 target IoT projects.

• RQ2. Repair Effectiveness: We evaluated the effectiveness of our repair tool in addressing the
exact and modified vulnerable reuses respectively in section 5.4.

• RQ3. Repair Capability: We explored the tool’s performance on both detected vulnerabilities
and hand-crafted artificial vulnerabilities in section 5.5.

The evaluation highlights the strengths of 1DRep in repairing 1-day vulnerabilities, particularly in
scenarios where code has been modified by developers. It also points to areas for future improvement,
such as enhancing vulnerability detection for modified vulnerable code.
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Figure 1.1: Refine Writing with GPT

1.5. Structure
The remainder of this thesis is organized as follows:

• chapter 2: Background. This chapter provides a comprehensive overview of the fundamental
concepts and context necessary to understand the research presented in this thesis. It covers
topics such as 1-day vulnerabilities and an introduction to the vulnerability detection tool V1SCAN.

• chapter 3: Related Works. In this chapter, we delve into existing research and developments in
the field of automated vulnerability detection and repair.

• chapter 4: 1DRep: The APR Tool. This chapter illustrates the design details of the APR tool
1DRep.

• chapter 5: Evaluation. This chapter describes the methodology used to evaluate the perfor-
mance and effectiveness of both V1SCAN and our repair tool, 1DRep.

• chapter 6: Discussion. In this chapter, we discuss the implications of our findings and address
the challenges encountered during the development and evaluation of our repair tool.

• chapter 7: Threats to Validity. This chapter identifies possible factors or issues that may have
influenced the results of this research.

• chapter 8: Conclusion. The final chapter summarizes the key findings and contributions of the
thesis.

1.6. Writing process
We employed GPT-4o as a tool to enhance the clarity and coherence of our thesis writing. Specifically,
we initially drafted the sentences ourselves and then utilized GPT-4o to suggest improvements. After
receiving the suggestions, we carefully reviewed and selectively applied them to ensure they aligned
with the intended meaning. An example of this interaction is illustrated in figure 1.1.



2
Background

This chapter provides background information on the detection and repair of 1-day vulnerabilities in
reused OSS components. It begins by defining key terminology in section 2.1, followed by an introduc-
tion on the reused code classification. The chapter then introduces V1SCAN in section 2.2, a state-of-
the-art tool for vulnerability detection, and illustrates its functionality through a motivating example in
section 2.3.

2.1. Terminology
To ensure clarity and consistency throughout this report, the following terms are defined:

• OSS reuse: The practice of reusing all or part of OSS functions, for example, by copying and
pasting code from third-party OSS projects [36, 34, 5].

• OSS component: An entire OSS package or specific functions within the OSS project that are
reused in a target program [34, 36].

• 1-day (or N-day) vulnerability: A vulnerability that is known and has a patch available, but the
patch has not yet been applied [36, 5]. Due to OSS reuse, these vulnerabilities can exist in other
software, potentially compromising the security of the systems.

• Common Vulnerabilities and Exposures (CVEs): A standardized, unique identifier assigned
to known security vulnerabilities. Managed by the MITRE Corporation with authority delegated
to CVE Numbering Authorities (CNAs), CVE provides a reference-method for known information-
security vulnerabilities and exposures, facilitating easier sharing and management of vulnerability
among security professionals [10].

2.1.1. Reused code classification
As mentioned before, developers can reuse OSS with code or structural modifications [36, 34, 5]. This
might be a possible reason why recent studies [47, 42, 43] have shown that developers are prone to
postponing the updating of outdated OSS components in applications. Such delays occur even when
these OSS components contain critical vulnerabilities that could pose significant risks to mobile devices
or users.

Developers may be disinclined to update their libraries for two reasons:

1. Newer versions of libraries, including updates for security patches, may introduce breaking changes.
2. The update might block the customized functionality of the adjusted library.

Therefore, we follow the same reused code classification approach defined in V1SCAN [36], as
explained below in section 2.2, in order to provide developers more information of what changes will
the repair bring to help them make decisions:

• Exactly reused: OSS code, for instance functions or entire files, is reused without any code
changes.

• Modified: OSS code is reused with code modifications.
• Unused: OSS code is not reused at all.

5
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2.1.2. Vulnerable code classification
Also, V1SCAN classifies the code locations where vulnerabilities exist and considered four code loca-
tions: (1) structure, (2) macro, (3) variable, and (4) function. Our tool focuses on repairing vulnerabil-
ities within functions. This is because we assume modifications are more likely in reused functions,
and such modifications are harder to repair as they require considering more contextual information.
Furthermore, if we can repair such vulnerabilities, we believe that 1DRep can be easily extended to
deal with vulnerabilities in the other three locations.

The code classification facilitates the identification of the nature of reused code, thereby informing
appropriate strategies for vulnerability repair.

Figure 2.1: High-level overview of V1SCAN (The same figure copied from V1SCAN [36])

2.2. 1-day Vulnerability Detection Tool: V1SCAN
In this section, we introduce briefly the vulnerability detection tool V1SCAN [33] provided on GitHub,
which is the prerequisite for our repair tool. Its design details are in the paper [36]. V1SCAN is a state-
of-the-art tool that can detect and classify 1-day Vulnerabilities in reused C/C++ OSS components.

It integrates both version-based and code-based methodologies to effectively identify reused and
vulnerable code segments in software projects. The tool operates through three main phases as de-
picted in figure 2.1.

1. Classification (P1): V1SCAN classifies reused code fromOSS components and vulnerable code
locations within the target program using code classification techniques. The detected vulnera-
bilities are classified into three categories: exactly reused, modified and unused as explained in
section 2.1.1.

2. Detection (P2): It detects vulnerabilities by applying enhanced version- and code-based strate-
gies. A key feature in this phase is the use of Locality Sensitive Hashing (LSH) in the code-based
approach, which efficiently handles code modifications by hashing similar code snippets into the
same “buckets” with high probability [31]. LSH utilizes a distance function (Φ) and a cutoff thresh-
old (θ) to categorize code pairs as identical, similar, or different (the output of Φ is an integer):

• Identical: If Φ(f1, f2) = 0, f1 and f2 are identical.
• Similar: If 0 < Φ(f1, f2) ≤ θ, f1 and f2 are similar.
• Different: If Φ(f1, f2) > θ, f1 and f2 are different.

3. Consolidation (P3): V1SCAN reviews the detection outcomes from both approaches to verify
the vulnerabilities in the target program.

Since we are interested in repairing the modified vulnerabilities, we just introduce briefly the core
step of V1SCAN, which is the code-based approach in P2. At this step, vulnerability signature genera-
tions are generated first, which are then utilized to detect vulnerabilities.

Vulnerability signature generation. V1SCAN generates vulnerability signatures for each collected
CVE patches, which are used detect propagated vulnerabilities. All the code lines added and deleted in
the security patch were stored. The LSH hash value of functions is also stored. An example vulnerability
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signature is shown in figure 2.2. The hash value of the entire function is used for reducing false alarms
in vulnerability detection.

Figure 2.2: The same picture copied from V1SCAN to illustrate the vulnerability signature. (We focus on vulnerability within
functions)

Then, V1SCAN can detect and classify modified vulnerabilities through the two-step process below:

S1. Hash comparison (exactly reused vulnerability detection): Initially, V1SCAN identifies poten-
tial vulnerabilities in the target program by matching hash values of its functions with those listed in
known vulnerability signatures. If an exact match is found, V1SCAN confirms the vulnerability’s pres-
ence in the target program. Otherwise, if a hash value is found similar, V1SCAN proceeds to the next
step, line comparison, to determine vulnerability propagation. (paraphrased the step in the V1SCAN
paper)

S2. Line comparison (modified vulnerability detection): When a similar function is detected be-
tween the vulnerability signature and the target program, the number of times deleted (added) code
lines appear in the target function is checked to determine if the target program contains a similar vul-
nerable function. If the numbers are the same as those appear in the vulnerable function, the target
function is considered as a vulnerable function and classified as modified.

Two key datasets are utilized and how they are used is explained below:

• OSS Dataset (Centris dataset [34]): Consists of all versions of 10,241 popular C/C++ OSS
projects on GitHub, available in the Centris-public repository [32]. V1SCAN took advantage of
Centris because it can precisely identify OSS components that have been modified and its source
code and dataset are publicly available. Using Centris, V1SCAN extracted the names of OSS
components included in the target program. Note that this dataset is only concerned with compo-
nent identification, and does not directly participate in vulnerability detection.

• CVE Dataset: Contains 4,612 C/C++ security patches collected from the National Vulnerability
Database (NVD), available in the V1SCAN-public repository [33]. This CVE dataset consists
of the vulnerabilities and patches that V1SCAN can detect, which can be utilized to generate
vulnerability signatures as introduced before.

In summary, V1SCAN utilizes the Centris dataset to identify OSS components within target pro-
grams and the CVE dataset to detect known vulnerabilities by comparing the generated vulnerability
signatures.

However, there are limitations to these datasets. The CVE dataset was found incomplete. The OSS
dataset, while extensive, does not cover all OSS components commonly reused in IoT projects, so we
build a new OSS dataset, IoT-1000, as a contribution detailed in section 4.6, aiming to provide more
IoT-specific libraries so that V1SCAN might detect more vulnerabilities. More analysis about the two
datasets are described in section 5.1.1
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2.3. Motivating Example
To illustrate the challenges in repairing vulnerabilities in reused OSS components, we need to know
the distinction between exactly reused and modified vulnerable functions.

For exactly reused vulnerable functions, it is easy to repair by just applying the template patch since
the same vulnerable functions are detected in the target file.

However, it is challenging to repair the modified vulnerable functions in the target file. For these
functions, if we simply apply the template security patch to the target vulnerable functions by deleting
the vulnerable functions and inserting the patch functions, the customized functionality made by the
developers on the target function might be lost. It is also infeasible if we try to repair by deleting
vulnerable lines and inserting patch lines based on the template security patch, because the context
in the modified vulnerable functions might be different in the target file. For example, listing 2.1 shows
the template patch snippet for CVE-2020-5235 in FastBee. It shows that the vulnerable line (line 12)
and the patch line (line 13) both use *(uint8_t**)iter->pData. However, as shown in listing 2.2, which
presents the differences between the vulnerable file and the target file, a similar vulnerable line (line
13) in the target file uses *(char**)iter->pData. In this case, the vulnerability might not be repaired
successfully by simply applying the template security patch.

Therefore, to address such scenarios, we utilized GPT-4o [25] to generate patches that can fit the
modified code context in the target file. More details are presented in section 4.4.3.
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Listing 2.1: The template patch snippet for CVE-2020-5235 in FastBee

1 //air780e/csdk/luatos-soc-2022/thirdparty/nanopb
2 --- ./template_vulnerable_pb_decode.c
3 +++ ./template_patch_pb_decode.c
4 @@ -636,14 +636,14 @@
5 size_t *size = (size_t*)iter->pSize;
6 void *pItem;
7

8 - (*size)++;
9 - if (!allocate_field(stream, iter->pData, iter->pos->data_size , *size))

10 + if (!allocate_field(stream, iter->pData, iter->pos->data_size , (size_t)
↪→ (*size + 1)))

11 return false;
12 - pItem = *(uint8_t**)iter->pData + iter->pos->data_size * (*size - 1);
13 + pItem = *(uint8_t**)iter->pData + iter->pos->data_size * (*size);
14 + (*size)++;
15 initialize_pointer_field(pItem, iter);
16 return func(stream, iter->pos, pItem);

Listing 2.2: The diff between vulnerable file the target file for CVE-2020-5235 in FastBee

1 //air780e/csdk/luatos-soc-2022/thirdparty/nanopb
2 --- ./template_vulnerable_pb_decode.c
3 +++ ./target_pb_decode.c
4 @@ -626,14 +636,14 @@
5 - size_t *size = (size_t*)iter->pSize;
6 + pb_size_t *size = (pb_size_t*)iter->pSize;
7 void *pItem;
8

9 + if (*size == PB_SIZE_MAX)
10 + PB_RETURN_ERROR(stream, "too many array entries");
11

12 - pItem = *(uint8_t**)iter->pData + iter->pos->data_size * (*size - 1);
13 + pItem = *(char**)iter->pData + iter->pos->data_size * (*size - 1);
14 initialize_pointer_field(pItem, iter);
15 return func(stream, iter->pos, pItem);



3
Related Work

In this chapter, we discuss the related work in areas pertinent to our research, focusing on methods for
detecting 1-day vulnerabilities in reused OSS components, and on LLMs for automated vulnerability
repair.

3.1. 1-day Vulnerability Detection
Identifying andmitigating 1-day vulnerabilities in software systems, especially those arising from reused
OSS components, is a critical challenge in software security. The detection of such vulnerabilities
involves two key aspects: software composition analysis and vulnerable code detection.

3.1.1. Software Composition Analysis
Software composition analysis (SCA) involves identifying the third-party OSS components reused in
a target program. Accurate identification of these components is essential for vulnerability detection
and compliance management. Several approaches have been proposed to detect OSS components
in software systems.

CENTRIS [34], proposed by Woo et al., aims to identify modified OSS components by focusing on
the unique functions. It uses code segmentation and redundancy elimination techniques to significantly
reduce false positives.

OSSPolice [7], introduced by Duan et al., detects the reuse of vulnerable OSS versions in Android
apps by comparing similarities between binaries.

LibD [15], developed by Li et al., identifies third-party libraries in Android apps by hashing features.
When name-based obfuscation is present, it performs better when handling multi-package third-party
libraries, resulting in higher precision without sacrificing scalability.

ATVHunter [44], developed by Zhan et al., utilizes Control Flow Graphs to accurately identify exact
versions of third-party libraries. It can confirm whether the target program has any 1-day vulnerabilities
by identifying the particular library versions.

While these methods have advanced the field of SCA, they often face challenges when dealing with
modified OSS components. Modifications made by developers to fit their specific needs can hinder the
accurate identification of reused components, potentially leading to false alarms or missed vulnerabili-
ties.

3.1.2. Vulnerable Code Detection
Vulnerable code detection aims to discover code segments in the target program that are susceptible to
known vulnerabilities. This is particularly challenging when the code has been modified from its original
form.

VUDDY [13], developed by Kim et al., focuses on scalable detection of vulnerable code clones
in large software systems. VUDDY employs a function-level granularity approach, combined with a
length-filtering technique, to optimize the efficiency of signature comparisons.

MOVERY [35], developed by Woo et al., is a method for precisely detecting modified vulnerable
code clones. It improves upon previous techniques by accounting for code modifications that can

10
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obscure traditional clone detection methods.
MVP [40], introduced by Xiao et al., focuses on detecting recurring vulnerabilities even when the

vulnerable code has undergone syntax changes. MVP utilizes program slicing techniques to generate
vulnerability signatures and match them against unpatched target functions.

While these approaches have made significant contributions to vulnerable code detection, they
may not fully address the detection of vulnerabilities in modified OSS components reused in target
programs. The challenges arise from significant code changes due to modifications, which can lead to
false negatives in detection.

3.2. LLMs for Vulnerability Repair
Recent advancements in LLMs have significantly impacted the field of APR, particularly for repairing
security vulnerabilities. Traditional APR approaches, which often rely on generate-and-validate cy-
cles [23], may struggle with context-awareness and scalability.

LLMs such as OpenAI’s GPT-4o [25] have demonstrated strong capabilities in understanding and
generating code, making them suitable for generating security patches. These models can interpret
the context of the code and the nature of the vulnerability to suggest appropriate fixes.

AlphaRepair [39], introduced by Tufano et al., is an approach that uses a cloze-style (infilling)
method for APR by leveraging a pre-trained LLM. It directly predicts the correct code based on the con-
text around the vulnerable code, effectively repairing vulnerabilities by filling in the missing or corrected
code.

LLMs offer the advantage of performing zero-shot or few-shot learning, allowing them to repair code
with minimal examples or instructions. For example, models like Codex [2, 26] and CodeBERT [8, 21]
have shown strong performance in generating code completions and repairs, even without extensive
task-specific training.

However, while LLMs have shown great potential, they also face limitations. One challenge is that
they may not always produce correct or secure code, especially in complex scenarios or when the
context is insufficient.

Our work builds upon these advancements by integrating LLMs with a vulnerability detection tool
specifically designed for 1-day vulnerabilities in reused OSS components. By combining vulnerability
detection with context-aware repair suggestions generated by LLMs, we aim to address the challenges
of repairing vulnerabilities in modified code while preserving developers’ customizations.



4
1DRep: The APR Tool

4.1. Introduction
In this chapter, we introduce our APR tool 1DRep that is designed to detect and repair 1-day vulner-
abilities in software projects by leveraging template security patches, and the capabilities of the LLM
GPT-4o. The primary goal of 1DRep is to streamline the process of identifying 1-day vulnerabilities in
reused C/C++ OSS components and to automate the repair process, thereby reducing the window of
exposure to known vulnerabilities.

We begin by providing an overview of the 1DRep approach, outlining its key components and work-
flow in section 4.2. We then delve into the specific methodologies employed for function-based repair
in section 4.3 and code-based repair in section 4.4, which address exactly reused and modified vulner-
able code, respectively. We discuss the modifications made to the existing vulnerability detection tool
V1SCAN to enhance its functionality for our purposes in section 4.5.

4.2. Overview of 1DRep
Figure 4.1 provides a high-level overview of 1DRep’s pipeline. The process begins by deploying the
vulnerability detection model V1SCAN [36] on the target programs to identify potential 1-day vulnerabili-
ties. The detected vulnerabilities are then classified into two categories: exactly reused andmodified,
as described in section 2.1.1. Based on this classification, we employ two distinct repair strategies to
address the vulnerabilities.

For exactly reused vulnerabilities, we apply a function-based repair method that involves replacing
the vulnerable functions in the target files with the corresponding patched functions from the template
security patches. For modified vulnerabilities, where the code has been altered from its original form,
we utilize a code-based repair method. This method first extracts the necessary context from both the
target file and the template security patch. Then it combines the context with a predefined instruction
as the prompt to query a LLM (e.g., GPT-4o) to generate a customized patch that fits the modified
context in the target file. Note that the correctness of generated patches is not evaluated automatically;
instead, each patch is manually reviewed.

4.3. Function-based repair
The function-based repair method addresses exactly reused vulnerabilities detected in the target files,
as shown in step 2 in the figure 4.1. In this scenario, the vulnerable functions in the target file are
identical to those in the template vulnerable code. Therefore, we can repair the vulnerabilities by directly
replacing the vulnerable functions in the target file with the corresponding patched functions from the
template security patch.

It is important to preserve the order of function declarations and definitions in C and C++ to avoid
compilation errors due to undefined functions being called before they are declared. Therefore, we
parse the functions in both the target file and the patch file to determine the correct insertion points for
the patched functions.

To achieve this, we perform the following steps:

12
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Figure 4.1: Workflow of the APR tool: Step 1 - Detect and classify vulnerable functions in target projects using the vulnerability
detection tool V1SCAN. Step 2 - Exactly reused vulnerable functions are fixed by applying template security patches,

preserving the context of the target file. Step 3 - For modified reused code, extracted context combined with predefined
instructions are sent to GPT-4o for repair suggestions.

1. Locate the Vulnerable Functions: Identify and locate the vulnerable functions in the target file
by matching their function signatures with those in the template vulnerable code.

2. Delete the Vulnerable Functions: Remove the located vulnerable functions from the target file.
3. Insert the Patched Functions: Insert the patched functions from the template security patch

into the target file at the appropriate locations, ensuring the correct order of function declarations
and definitions.

Algorithm 1 outlines the steps involved in the function-based repair process.
Algorithm 1: Function-based Repair
Input: V ul_Funcs: List of vulnerable function signatures from the template vulnerable file.

Patch_Funcs: Corresponding patched functions from the template patch file.
Target_File: The target file containing the vulnerable functions.

Output: Repaired_File: The target file with vulnerabilities repaired.
1 begin
2 foreach func ∈ V ul_Funcs do
3 loc← find_function_location(Target_File, func); if loc exists then
4 delete_function(Target_File, loc);
5 end
6 end
7 foreach patch_func ∈ Patch_Funcs do
8 insert_loc← determine_insertion_point(Target_File, patch_func);

insert_function(Target_File, insert_loc, patch_func);
9 end
10 Repaired_File← Target_File;
11 return Repaired_File;
12 end
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4.4. Code-based repair
For modified vulnerabilities, where the code in the target file has been altered from the original vul-
nerable code, the function-based repair method is insufficient. As shown in Step 3 of Figure 4.1 , we
address these cases using a code-based repair method that leverages GPT-4o to generate customized
patches that fit the modified context.

4.4.1. Methodology
The code-based repair process involves the following steps:

1. Extracting context for the prompt (elaborated in section 4.4.2)

• Extract Code Blocks of Template Patch With Their Context
• Identify Similar Vulnerable Code in Target File

2. Prepare Prompt for GPT-4o: Collect all the extracted information at step 1 and combine it with
a predefined instruction to construct a prompt for GPT-4o, aiming to obtain a repair suggestion
that can fit the modified context in the target file. The details are presented in section 4.4.3.

3. Apply the Suggested Patch: Generate the patched file by applying the repair suggestions to the
target file while preserve the target file so that developers can choose not to accept the generated
patch. Additionally, two more things are provided here to help developers manually assess the
correctness of patched file: (1) an security report, which are detailed in section 5.6, and (2) the
template security patches, which are extracted from the CVE dataset of V1SCAN and output into
a separate folder. We believe that the two things can effectively inform developers, enabling them
to place greater trust in the tool and to better decide whether to accept the generated patch.

To ensure consistent responses, we set the temperature of GPT-4o to 0. Specifically, we used the
model version GPT-4o-2024-05-13.

4.4.2. Extracting Context and Crafting the Prompt
This section elaborates how we extract necessary context for crafting the prompt in two steps and the
Algorithm 2 is shown below.
Algorithm 2: Extracting context to craft the prompt for GPT-4o
Input: vul_file: The vulnerable file containing the vulnerable lines.

patch_file: The patch file containing the lines of code intended to repair the
vulnerabilities in the vul_file.
target_file: Target file containing modified vulnerable code.

Output: code_snippets_tobePatched: Vulnerable code snippets with context lines around them
in the target_file that might need customized patches suggested by GPT-4o.
removed_lines : Vulnerable lines with line numbers extracted from the vul_file.
vul_with_context : Vulnerable lines with line numbers and context lines around them
extracted from the vul_file.
added_lines : Patch lines with line numbers extracted from the patch_file.
patch_with_context : Patch lines with line numbers and context lines around them
extracted from the patch_file.

1 begin
2 Step 1: Extract Code Blocks of Template Patch With Their Context
3 removed_lines, added_lines← extract_template_patch(vul_file, patch_file);
4 vul_with_context, patch_with_context← extract_context(vul_file, patch_file);
5 Step 2: Identify Similar Code in Target File
6 code_snippets_tobePatched← find_similar_code(target_file, vul_with_context,

patch_with_context);
7 return code_snippets_tobePatched, removed_lines, added_lines,
8 vul_with_context, patch_with_context;
9 end
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In Algorithm 2, we start by performing a diff between the template vulnerable file (vul_file) and
the template security patch file (patch_file). This diff operation yields two lists: removed_lines and
added_lines, which are the vulnerable/patch lines with line numbers respectively.

We then add context around these lines to form vul_with_context and patch_with_context. We
experimentally set context size as 5, so the context comprises 5 lines preceding and 5 lines succeeding
each code block, facilitating the identification of analogous code segments in the vulnerable target
function during step two. An example of the context lines is shown in figure 4.2.

Figure 4.2: Example picture of the context lines.

Next, we analyze the target_file to find code snippets that are similar to the vulnerable code blocks
extracted from vul_file. We use a sliding window approach in combination with the SequenceMatcher
class of the difflib module [27] to compare segments of the target file with the vulnerable code plus
context. Here we experimentally set the sliding window size as 16, so the sliding window comprises
of 16 lines of code during the similarity identification process. If a segment in the target file has a
similarity ratio above a predefined threshold of the SequenceMatcher, we consider it a match and add
it to code_snippets_tobePatched. By doing so, we can collect all potentially vulnerable code blocks and
code blocks that might require a patch into code_snippets_tobePatched.

However, it is possible that no matches are found. When this occurs, no patch will be generated.
This situation can occur under an extremely strict condition: when the target file still contains vulner-
able lines but the surrounding context has changed significantly. Since such cases are rare (i.e., not
observed in our datasets) and too complex to repair automatically, we decide that this issue can be
mitigated by the additional two things as mentioned at the step 3 in section 4.4.1, which can assist the
developers repair such files manually.

Finally, all the output of the Algorithm 2 is utilized as part of the prompt for GPT-4o, aiming to
generate customized patches that fit the modified context of the target file. The prompt and its response
is illustrated in the following section.

4.4.3. Prompt and response of GPT-4o
The prompt provided to GPT-4o is a predefined instruction combined with the output in section 4.4.2.
An example of the prompt structure is shown in listing 4.1 and figure 4.3. Note that both contain ex-
actly the same prompt: figure 4.3 visually explains the code injection, while listing 4.1 is provided for
reproducibility, allowing the reader to copy and paste the prompt.

For our running example (section 2.3), after providing the prompt, GPT-4o generates the repair
suggestion for a vulnerable target file in FastBee containing the CVE-2020-5235 as shown in listing 4.2.
From this lisitng, we can see that the repair suggestion provided the line range (at line 1) for inserting
the patch lines in the correct location. Specifically, the line numbers are extracted by utilizing regular
expression to locate the insertion points. After our manual inspection, the insertion points are correct,
which implies the C1 (Identifying Correct Insertion Points) as identified in section 1.2, is addressed.

The diff result between the vulnerable target file and the patched file is shown in listing 4.3. Also,
the template patch is placed right after the diff result to for comparison in listing 4.4.

We combined the the two listings as the figure 4.4 with remarks to better illustrate why the generated
patch is correct that can fit the customized context. From this figure, we can see that customized
expressions are retained as pb_size_t at line 5 and 12 and *(char**) at line 15 in the generated patch
(listing 4.3), although they are size_t at line 5 and 10 and *(uint8_t**) at line 13 in the template patch
(listing 4.4). Therefore, since the customized expressions are retained and other parts are the same
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as the template patch by observing the diffs, we decide the generated patch is a correct customized
patch. This shows that the GPT-4o can indeed take into account the possible changes on the context
by following part of the prompt (lines 9-12 of the listing 4.1), which addresses the C2 (Adapting Patches
to Changed Context) as identified in section 1.2.

Design of the prompt. Here we provide a step-by-step breakdown of how the GPT-4o might take into
account the given instructions, which are designed to augment its ability to generate a correct patch
that can fit customized context:

1. Role Setting and Context Narrowing (lines 1-2). We assign GPT-4o the role “a cyber security
expert in 1-day vulnerability repair.” to help it focus on a specific knowledge domain. Specifically,
we aim to make it focus less on general programming principles and more on remediation of
known or similar vulnerabilities.

2. Task Description (lines 3-6). This part introduces the specific task: GPT-4o will receive the code
of a “target file” containing a 1-day vulnerability due to similarities with a “template vulnerable file.”
The prompt indicates that the model needs to examine these similarities and apply a repair to the
target file based on the instructions provided below.

3. Repair Instructions (The important notes at lines 8-14). By lines 8-14, GPT-4o is given two
specific instructions for making the repair:

• Context Preservation (lines 9-12). Here, GPT-4o is instructed to “Be careful with the pos-
sible changes on the context” and “ensure the context/functionality remains correct.” This is
critical because it reminds GPT-4o to carefully generate a patch without disrupting any cus-
tomized functionality. Furthermore, it requires GPT-4o to focus on details, minimizing the risk
of oversight. Note that the listed possible changes do not cover all kinds of modifications in
the real world projects.

• Output Requirements (lines 13-14). The two lines instruct GPT-4o to omit explanatory text
or extra details, producing a concise response that includes the patched code and the line
numbers only. This facilitates automatically applying the patch in the target file.

4. Contextual code injection (lines 16-31). By code injection, this part first provides GPT-4o with
the code snippets that need to be patched. Then it provides GPT-4o with vulnerable lines and
surrounding context, as well as patch lines with their context, guiding the model to recognize
vulnerability and patch patterns to construct a compatible repair.

Effectiveness of the repair instructions. Here we examines the effectiveness of the repair instruc-
tions. Whenwe submitted the prompt, which was identical to that for the vulnerable target file introduced
in this section but without the context preservation instruction (lines 9–12), to GPT-4o, the response
was the same as the template patch. Therefore, the generated patch is not correct because it does not
fit the context in the target file, overlooking the customizations that developers made. From this case,
we conclude that that C2 will not be addressed without the instruction specifying context preservation.

Furthermore, when we submitted the same prompt but without the output requirements instruction
(lines 13–14), the response became excessively verbose, with no line information. From this case, we
conclude that C1 will not addressed without the instruction specifying output requirements.
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Figure 4.3: Example picture of the prompt.
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Listing 4.1: Prompt sent to GPT-4o

1 Remember you are a cyber security expert in repairing 1-day vulnerability and you
2 need to repair vulnerability following my instructions below:
3 First, I will give you the code of a target file that contains 1-day vulnerability
4 because similar vulnerable functions from the template vulnerable file are
5 detected in the target file.
6 After reading the information provided in the end, please repair the target file.
7

8 Important notes for repairing the code:
9 Be careful with the possible changes on the context like: allocation logic,

10 allocated data type, data type, the functions and the calling logic etc.,
11 since YOU MUST ensure the context/functionality remains correct after
12 repairing the target file by deleting and adding lines.
13 You should only output the repaired code without explanation and you should
14 include the line information to indicate where the patch blocks are.
15

16 Code snippets of the function containing potential vulnerable lines in the target
17 file is given below:
18 {code_snippets_tobePatched}
19

20 Here are the template vul lines and patch lines:
21 # Vul Lines #
22 {''.join(removed_lines)}
23

24 ## VulLines and context lines around them ##
25 {''.join(vul_with_context)}
26

27 ### Patch Lines ###
28 {''.join(added_lines)}
29

30 #### PatchLines and context lines around them ####
31 {''.join(patch_with_context)}

Listing 4.2: Repair Suggestion generated by GPT-4o for CVE-2020-5235 in FastBee.

1 ###### line 632 to line 652 ######
2 return status;
3 }
4 else
5 {
6 /* Normal repeated field, i.e. only one item at a time. */
7 pb_size_t *size = (pb_size_t*)iter->pSize;
8 void *pItem;
9

10 if (*size == PB_SIZE_MAX)
11 PB_RETURN_ERROR(stream, "too many array entries");
12

13 if (!allocate_field(stream, iter->pData, iter->pos->data_size , (
↪→ pb_size_t)(*size + 1)))

14 return false;
15

16 pItem = *(char**)iter->pData + iter->pos->data_size * (*size);
17 (*size)++;
18 initialize_pointer_field(pItem, iter);
19 return func(stream, iter->pos, pItem);
20 }
21

22 default:
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Figure 4.4: Example of why the generated patch is correct that can fit the customized context.
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Listing 4.3: The diff between the patched and original version of the CVE-2020-5235 in FastBee.

1 //air780e/csdk/luatos-soc-2022/thirdparty/nanopb
2 --- ./target_pb_decode.c
3 +++ ./patched_pb_decode.c
4 @@ -636,14 +636,14 @@
5 pb_size_t *size = (pb_size_t*)iter->pSize;
6 void *pItem;
7

8 if (*size == PB_SIZE_MAX)
9 PB_RETURN_ERROR(stream, "too many array entries");

10 - (*size)++;
11 - if (!allocate_field(stream, iter->pData, iter->pos->data_size , *size))
12 + if (!allocate_field(stream, iter->pData, iter->pos->data_size , (pb_size_t)(*size

↪→ + 1)))
13 return false;
14 - pItem = *(char**)iter->pData + iter->pos->data_size * (*size - 1);
15 + pItem = *(char**)iter->pData + iter->pos->data_size * (*size);
16 + (*size)++;
17 initialize_pointer_field(pItem, iter);
18 return func(stream, iter->pos, pItem);

Listing 4.4: The template patch snippet for CVE-2020-5235 in FastBee.

1 //air780e/csdk/luatos-soc-2022/thirdparty/nanopb
2 --- ./template_vulnerable_pb_decode.c
3 +++ ./template_patch_pb_decode.c
4 @@ -636,14 +636,14 @@
5 size_t *size = (size_t*)iter->pSize;
6 void *pItem;
7

8 - (*size)++;
9 - if (!allocate_field(stream, iter->pData, iter->pos->data_size , *size))

10 + if (!allocate_field(stream, iter->pData, iter->pos->data_size , (size_t)(*size +
↪→ 1)))

11 return false;
12 - pItem = *(uint8_t**)iter->pData + iter->pos->data_size * (*size - 1);
13 + pItem = *(uint8_t**)iter->pData + iter->pos->data_size * (*size);
14 + (*size)++;
15 initialize_pointer_field(pItem, iter);
16 return func(stream, iter->pos, pItem);
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4.5. Modification on V1SCAN
To integrate V1SCAN effectively into 1DRep’s pipeline, we needed to modify the existing vulnerability
detection tool V1SCAN [33]. The original V1SCAN prototype reports the presence of specific CVEs in
the target program but does not provide the exact locations of the vulnerabilities within the code.

We extended V1SCAN to:

• Output Vulnerability Locations: Modify V1SCAN to provide precise locations (file names and
line numbers) of the detected vulnerabilities in the target file. Also, the vulnerable target file and
template security patches are moved into a directory for the repair process.

• Integration with 1DRep: Ensure that the output format of V1SCAN aligns with the requirements
of 1DRep’s repair mechanisms, facilitating seamless data flow between detection and repair
stages.

4.6. The new OSS dataset IoT-1000
To identify more C/C++ IoT OSS components, we built a new OSS dataset called IoT-1000, containing
1,020 C/C++ libraries. This contribution is significant as it complements the Centris dataset by improv-
ing the coverage of OSS components relevant to IoT as evaluated in section 5.1.2, which addresses
the limitation of the Centris dataset presented in section 5.1.1.

Construction process. The first step was done by a PhD student from UNSW, Shangzhi Xu: he col-
lected all prevalent repositories from GitHub, OpenWRT, stm32duino, awesome-cpp, awesome-c, and
mongoose-os-libs in C/C++, and then conducted a selection to choose the specific OSS components.
Then we did the second step: filter the repositories via keywords. The keywords were crafted manu-
ally by us selecting which are more likely to occur in the tag and title of the IoT projects, and 19,057
libraries were left. The third step is done by Shangzhi Xu, who further filtered the libraries by identifying
the dependent libraries and only retaining the parent OSS components and 1,872 IoT-specific libraries
were left. Finally, we randomly selected 1,020 libraries from the list to form the IoT-1000 dataset. Our
aim was to investigate whether a smaller dataset could provide significantly better results than the
Centris dataset for detecting reused OSS components in IoT projects. Additionally, using a smaller
dataset saves considerable time, as utilizing Centris-public [32], which is built from source code, is
time-consuming and resource-intensive. Furthermore, since we found that the IoT-1000 dataset signif-
icantly improves the detection of reused OSS components in IoT projects, we decided not to add more
data for further experiments, as detailed in section 5.1.1.

The statistics for the IoT-1000 and Centris datasets are shown in table 4.1. For the Centris dataset,
the number of stars (#stars) is not provided in the Centris paper [34]. All IoT-1000 results were obtained
by sending requests to the GitHub API. For the #versions in IoT-1000, there are notably many versions
across the 1,020 GitHub repositories. This is possibly because Centris extracted versions by tags,
while we counted these by following a series of requests to GitHub as outlined below:

• Step 1: Attempt to get the number of tags. If found, return that number.
• Step 2: If no tags, attempt to get the number of releases. If found, return that number.
• Step 3: If no releases, fetch the default branch name.
• Step 4: Get the number of commits on the default branch.
• Step 5: If all else fails, set versions to 1.

Dataset #Repositories #Lines of code #Versions #Stars #Shared repositories between them
IoT-1000 1020 892484140 174428 2184149 415Centris 10241 80388355577 229326 Not given

Table 4.1: Statistics of Centris dataset and IoT-1000



5
Evaluation

This chapter presents a comprehensive evaluation of our automated repair tool, 1DRep, and the vul-
nerability detection tool, V1SCAN [33], upon which our tool relies. We aim to assess the performance
and effectiveness of V1SCAN in detecting and classifying 1-day vulnerabilities in IoT projects, as well
as the capability of our repair tool in addressing these vulnerabilities.

Before evaluating V1SCAN and our repair tool, we introduce the datasets used for vulnerability
detection. Recognizing that the first step of V1SCAN involves uncovering OSS components within the
target program—and given our focus on 1-day vulnerabilities in reused C/C++ IoT OSS components—
we constructed a new IoT-specific dataset and combined it with an existingOSS dataset. This combined
dataset, utilized by V1SCAN to detect vulnerabilities in IoT projects, is detailed in Section 5.1. Then
the target IoT projects and complexity of the detected vulnerabilities are presented in section 5.2.

To structure this evaluation, we pose specific research questions, outline our methodology for
dataset creation and analysis, and present the results corresponding to each research question. Our
evaluation is guided by the following research questions:

• RQ1. Vulnerability Detection Performance: How precisely does V1SCAN detect and classify
vulnerabilities? (section 5.3)

• RQ2. Repair Effectiveness: How effective is our repair tool in addressing the detected vulnera-
bilities?(section 5.4)

To explore the limits of 1DRep’s repair capability, we generated 90 artificial vulnerable cases by
manually modifying existing CVEs and tested the tool on these cases answering the following RQ3:

• RQ3. Repair Capability: How does the repair tool perform across our hand-crafted vulnerabili-
ties? (section 5.5)

Finally, in section 5.6, we present the security reports submitted to developers with the expectation of
receiving feedback.

5.1. Datasets for V1SCAN
5.1.1. OSS dataset and CVE dataset
In order to deploy the vulnerability detection tool V1SCAN [36] to detect and classify vulnerable func-
tions in target programs, the first step is to get an OSS dataset for identifying OSS components and
a CVE dataset for classifying and detecting the vulnerable codes. Fortunately, the two datasets are
available, which are the same as those described in the paper of V1SCAN [36]. More specifically,
the OSS dataset utilized by V1SCAN (Centris dataset) consisting of all versions of the 10,241 popular
C/C++ OSS projects on GitHub, is available in the GitHub repository Centris-public [32], and the CVE
dataset containing 4,612 C/C++ security patches from the NVD is available in the GitHub repository
V1SCAN-public [33].

However, we found two limitations for the two datasets summarized below:

22
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Figure 5.1: CVE dataset disappeared description in the V1SCAN-public repository on GitHub

• Incomplete CVE Dataset: When we did some experiments using the prototype of V1SCAN [33],
we obtained different results compared to those reported in their paper. After we reported the
issues to the authors of V1SCAN through emails, we got a reply that: “almost half of the CVE
data disappeared during the refactoring phase.” as noted in the figure 5.1.

• Limited Applicability of the Centris Dataset for IoT Projects: Although the Centris dataset
contains many popular C/C++ OSS projects on GitHub, it is still possible that just a few of them
are reused in IoT projects. Our experimental findings suggest that this dataset is not particularly
effective for identifying OSS components in IoT projects as illustrated in section 5.1.2.

For the first limitation, given that creating a complete CVE dataset is time-consuming and the dataset
only impacts the detection phase, we opted to continue to use the incomplete version, although this
might be one of the reasons why the detection performance is unsatisfying (see section 5.3) regarding
to the precision metric.

For the second limitation, we built the new dataset IoT-1000, which complements the Centris dataset,
as detailed in section 4.6.

5.1.2. Effectiveness of the new IoT dataset IoT-1000
As shown in table 4.1, we found only 415 OSS components are common across both datasets, sug-
gesting that our new OSS dataset, IoT-1000, indeed provides more IoT-specific libraries. Then we
tested the practical effectiveness of IoT-1000 by applying Centris [34], which is used for component
identification, to 40 C/C++ IoT projects as shown in figure 5.2 and detailed in section 5.2. We utilize
Centris because it can precisely identify OSS components that have been modified and its source code
and dataset are publicly available (the same reason as V1SCAN provided as described in section 2.2).
By using Centris, we can extract the names of OSS components included in the target program.

Here we show howmany reusedOSS components can be detected respectively by using the Centris
dataset and IoT-1000 dataset respectively. As shown in figure 5.2, 132 reused OSS components were
detected across the 40 IoT projects using the IoT dataset, representing a 45% increase compared to the
Centris dataset, which identified only 91 reused components. Additionally, the figure shows that only
32 identified OSS components overlap, suggesting minimal overlap in their detection capabilities in IoT
projects. This result demonstrates that we successfully expanded the dataset to identify C/C++ OSS
components within target IoT programs. Although the Centris dataset includes 10 times more libraries
and 100 times more #lines of code than our dataset, as shown in table 4.1, our IoT-1000 dataset can
detect significantly more reused OSS components in IoT projects.

To provide more details for the 11 projects that contain at least one detected CVE by V1SCAN,
we show the number of reused OSS components identified by using the Centris and IoT dataset re-
spectively in figure 5.3 and their distribution in figure 5.4. Among the 11 projects, V1SCAN detects 30
additional OSS components with the IoT dataset, a 46.9% increase compared to the Centris dataset.
Note that we did not count the number of false positives (FPs), since it is time-consuming and our focus
is building a tool can repair vulnerabilities automatically.
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Figure 5.2: The number of reused OSS across 40 IoT projects
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Figure 5.3: The number of reused OSS across 11 vulnerable IoT projects

Figure 5.4: Distribution of the number of reused OSS across 11 IoT projects that contain at least one CVE
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5.2. Target IoT projects and complexity of the detected vulnerabili-
ties

To collect 1-day vulnerabilities in reused C/C++ IoT OSS components without loss of generality, we
randomly picked 40 IoT C/C++ projects, which are the same ones used in section 5.1.2, as input for
V1SCAN based on the stars of the repos on GitHub that have IoT tag and their main languages are
C or C++. We present all the 40 projects with their commit SHAs in the table 5.1. The commit SHAs
indicate the versions of the projects that are used to detect vulnerabilities by V1SCAN. Only 11 of the
target projects detected by V1SCAN that contain CVEs are summarized in the table 5.2.

# Project Name Commit SHA
1 SIDN/spin a5185b76c5f39220657ffaedbb1ce7724bce820f
2 openLuat/LuatOS d4aaca0a011228ab4ed908fdfca1be5010618c6e
3 Samsung/TizenRT 1601a36b77dc7bdee54f3b72876213b6b56c2e8e
4 alibaba/AliOS-Things a99f20706f9c666903a12a205edce13263b1fadb
5 LiteOS/LiteOS 2f8fdf9c444339262f03f61f6652af2d8a4b4255
6 pikasTech/PikaPython d8cc0b046552c14eff8a9d84feda01c7b04a6d2c
7 chino-os/chino-os e4b444983a059231636b81dc5f33206e16a859c2
8 taosdata/TDengine 9186035c014694d83e70ea8058c7d083142d7f4b
9 Awesome-HarmonyOS/HarmonyOS 5d2008e97ea2547dfb3d0b4c9409953e1bf633fc

10 fenwii/OpenHarmony b5c261646c019f9b7dcd9f0b5aba6b7d452391eb
11 kerwincui/FastBee 3d44f4674c6eaecf12232ae96bb5256cb63a5403
12 RIOT-OS/RIOT 6a59642a1eb74af3671c904b1754acc3a824b0b5
13 arendst/Tasmota 95f7d33c206e6b56346ca529972e2f89df1f417a
14 zephyrproject-rtos/zephyr ddb147d0a45df2b52af1065a49770566847ab975
15 armink/FlashDB 24305a9c76e735e89ad0d973a09f161edbc4279e
16 timmbogner/Farm-Data-Relay-System d3cefe9851804bf2ac04c55f2bf51db1261a2b07
17 openairproject/sensor-esp32 374e28ed91679678e267c937e63ae3dcc64d7818
18 sysprogs/PicoHTTPServer b116dd821a208dc3f41d6041d933136e97ff1310
19 dontsovcmc/waterius fdfecc5f93b94369dfadd142dccf43055aac3f38
20 gmag11/EnigmaIOT 113c4a72dc44ef6915a97bf68cdef2824c01cb3a
21 halfgaar/FlashMQ cd631dfab01fce4041b17929841dacb64e833ceb
22 phodal/smart-home c221303473985207d0f010eb590e35bebfc4d3c8
23 metriful/sensor e1ce8a0b99acbbded89027702b3aa6e3e5c10629
24 anklimov/lighthub 242db1552e0e6aa5b251a6468ae1c97f79387b28
25 timescale/timescaledb ecf6beae5db1fb0cef93230e46dc7faf305cb5ef
26 cesanta/mongoose be5d8b1d4f3b196ae0ee8e66525e743ed587d35f
27 supergreenlab/SuperGreenOS 13b2c711086fee2a62390bbb0e3abbda094c8ea0
28 SMotlaq/open-watch d742a95125eeb9999e190d81bcfb1ffff49144aa
29 lupyuen/stm32bluepill-mynewt-sensor c52dacb486bdc50b31bedf161a316ee61ca71cf9
30 EDI-Systems/M7M01_Eukaron 9ffc6cc82b3b773b5b18d98b828b014ecec2b5cb
31 RT-Thread/IoT_Camera 1d4eccb6468556a79ebae1b311bf7bd0817ba3b6
32 SRA-VJTI/Wall-E 803db2d46313b534094a5ee3eb455927051151fb
33 ARMmbed/mbed-os baf6a3022a328b91713e03fd88f65126a9a53f01
34 lithiumice/XTerminal bbcbd4887dfad404889f73c51f8315bd9c2166bd
35 oosmos/oosmos 2a308310deb9727ae5a638795d2f35fe298d8729
36 At-EC/At-RTOS 15ae539784cbd1d3a83e2f08c4cf5c4d7e6a71e8
37 ljalves/hfeasy ae1b59fb6a4fac6fac5c8fc47a1cdf20d8e34f2e
38 SmingHub/Sming ffb1b3a336a1a49cd97681720a7bf4b23821b3ca
39 alf45tar/PedalinoMini 7fa5ecb1f9bf3023889be7917817361f56aecba4
40 younghyunjo/esp32-homekit fb7392db400e7ed218936400f844426422ce9d1f

Table 5.1: Target projects with their commit hashes



5.2. Target IoT projects and complexity of the detected vulnerabilities 27

# Project Name #CVE #OSS #Stars #C/C++ Lines
1 SIDN/spin 1 4 76 538 517
2 openLuat/LuatOS 1 45 444 367 457 255
3 Samsung/TizenRT 13 64 557 143 865 023
4 alibaba/AliOS-Things 14 60 4551 230 374 199
5 LiteOS/LiteOS 3 29 4770 78 490 628
6 pikasTech/PikaPython 2 49 1435 349 786 612
7 chino-os/chino-os 1 7 147 3 445 133
8 taosdata/TDengine 1 5 22 906 22 469 533
9 Awesome-HarmonyOS/HarmonyOS 5 20 19 168 33 470 470

10 fenwii/OpenHarmony 18 81 785 53 769 724
11 kerwincui/FastBee 3 4 1381 9 513 145

Total 11 vulnerable IoT projects 62 368 56 220 1 293 180 239

Table 5.2: Overview of the metrics of the 11 projects with at least one detected CVE.
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5.2.1. Complexity of the vulnerabilities detected in target IoT projects
Since repairing modified vulnerabilities is considerably more complex, we focused this section on an-
alyzing the true positive (TP) modified vulnerabilities used to evaluate the effectiveness of 1DRep, as
detailed in section 5.4. Specifically, we examined all 15 TP modified vulnerabilities, which include the
10 “modified only” TPs and the 5 “exactly reused & modified”” TPs, detailed in section 5.3. Upon ex-
amining the 15 TP modified vulnerabilities in detail, we classified them into three categories based on
the repair effort required:

• Old version: Target file contains a vulnerability that can be repaired by updating it to the latest
version, because the target file is reused without any extra functionality.

• Unchanged context: Target file contains a vulnerability that can be repaired by adding/deleting
vulnerable lines and patch lines based on the template security patch, since the context does not
change even if some modifications on the vulnerable functions still exist.

• Changed context: Target file contains a vulnerability that cannot be repaired directly by using the
template patch lines, because the context is changed in the target file. Therefore, a transformed
patch suggested by GPT-4o is required for this case.

The distribution of the three kinds of vulnerabilities among the 15 TP modified vulnerabilities is
presented in the table 5.3, from which we can see that 14 out of the 15 vulnerabilities (93.3%) can still
be repaired by directly applying the template patch to the target file or updating the target file to the
latest version. Two special cases are identified here: one is CVE-2019-16910, which is classified as
“old version”” but is not repaired successfully. Another one is the single “changed context”” vulnerability,
CVE-2020-5235, which requires code transformations on the template patch due to changed context
in the target file. This vulnerability is correctly repaired. More analysis about repairing the two special
cases is presented in section 5.4.

However, this does not imply that only this single “changed context” vulnerability should proceed
to Step 3 of 1DRep (code-based approach). Automatically categorizing vulnerabilities that require
contextual code-based repair is challenging and often impractical, as it demands a deep contextual
understanding. Therefore, as a practical approach, any vulnerability classified as ”modified” should be
repaired through the code-based approach, which can save developers significant time in understand-
ing contexts.

#Old version #Unchanged context #Changed context

15 TP modified vulnerabilities 7 7 1

Table 5.3: Vulnerability complexity distribution among 15 detected modified vulnerabilities

Table 5.4: Detection results of V1SCAN for different vulnerability types.

Vulnerability type CVEs* V1SCAN

#TP #FP P†

Exactly reused only 25 25 0 1.00
Modified only 32 10 22 0.313
Exactly reused & Modified 5 5 0 1.00

Total 62 40 22 0.645
CVEs*: Total number of CVEs detected by V1SCAN, P†: Precision
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Figure 5.5: A snippet of the V1SCAN detection log as an example for TizenRT using the Centris dataset.
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5.3. RQ1. Vulnerability Detection Performance: How precisely does
V1SCAN detect and classify vulnerabilities in the 40 target IoT
projects?

In this section, we aim to evaluate the overall performance of V1SCAN in detecting and classifying
vulnerabilities across our 40 target IoT projects.

Methodology. To evaluate the performance of V1SCAN, we used the following three metrics: true
positive (TP), false positive (FP), precision (P = #TP/(#TP + #FP)). We do not use recall (R =
#TP/(#TP + #FN)) as an evaluation metric, because we do not know how many vulnerabilities would
exist in a target program as ground truth without using other vulnerability detection tools and our main
goal is to build an automatic repair tool. The TPs and FPs were determined by manual analysis: we
first got the detection report of V1SCAN (an example is shown in figure 5.5) and then vulnerabilities are
examined by referring to (1) the target vulnerable code, (2) the security patch, (3) the NVD description.
Note that V1SCAN can detect vulnerabilities in functions in a target program and a vulnerability might
contain more than 1 vulnerable functions. Therefore, a target program might contain a vulnerability that
is classified as both exactly reused and modified. This occurs when the target program exactly reused
some vulnerable functions while modifying others. In the log snippet shown in figure 5.5, V1SCAN
reported that the target project TizenRT reused the curl library and contained the vulnerability CVE-
2018-1000120 in both exact reuse and modified reuse forms, since TizenRT reused two vulnerable
functions reused exactly and one modified.

Results. From the results presented in the table 5.4, we can see that among the 62 vulnerabilities
detected in our 40 target IoT projects, 40 are TPs and 22 are FPs, resulting in a precision rate of 64.5%.
Furthermore, 25 are classified as exactly reused, 32 as modified, and 5 as both exactly reused and
modified.

Answer to RQ1. As shown in table 5.4, V1SCAN has a perfect precision (1.00) for the 25 exactly
reused vulnerabilities, while the precision for modified vulnerabilities is low: only 10 out of 32
are TPs (0.313). However, by comparing this result with the results reported in the paper of
V1SCAN [36], we found a huge inconsistency: V1SCAN detected 137 TPs and 6 FPs across 10
target programs, so their precision is 0.96. This highlights the need for improvements in detection
algorithms for modified code.

Analysis. The lower precision observed is primarily due to FPs that were reported as vulnerabilities,
despite having already been patched. According to V1SCAN’s algorithm, these should have been
filtered out. Only a few of them are due to the inevitable shortcoming in the line comparison part of its
algorithm.

To understand why patched ones are not filtered out, we checked the code of V1SCAN prototype
provided on GitHub [33] and found that some bugs existed in their algorithm. We had this conclusion
by reading their paper [36], which was inconsistent with the implementation in the provided prototype.
More specifically, the algorithm for filtering out FPs failed to compare all pairs of patch functions and
target functions to decide whether target function is vulnerable or not. Instead, it only compares the
one patch function to the target function to get the similarity score.

5.4. RQ2. Repair Effectiveness: How effective is our repair tool in
addressing the detected vulnerabilities?

In this section, we aim to assess how well our repair tool, 1DRep, can resolve vulnerabilities detected
in the IoT projects.

Methodology. We evaluated the effectiveness of our repair tool by assessing the number of com-
plete fixes achieved for the detected TP vulnerabilities categorized by their type. A fix is considered
complete only if it correctly addresses all the vulnerable functions without changing the customizations
made by developers. Other partial fixes or fixes that change the customizations are not regarded as
successful.

Results. Note that the vulnerability types presented in table 5.5 are the TP vulnerabilities presented
in table 5.4. Here, TP modified vulnerabilities include “modified only” TPs and “exactly reused & modi-
fied”” TPs.
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As shown in table 5.5, 1DRep successfully repaired all vulnerabilities except for one “modified””
TP, CVE-2019-16910 in OpenHarmony, achieving a 93.3% precision rate for ”modified” TPs and a
100% precision rate for ”exactly reused” TPs. This exception is a special case, categorized as an ”old
version” type, as explained in the following analysis and detailed in Notably, it successfully repaired the
special case CVE-2020-5235 found in FastBee, which is a TP modified vulnerability and categorized
as “changed context””, as explained in section 5.2.1.

Analysis. Here we analyze two special cases, beginning with the “changed context”” vulnerability,
CVE-2020-5235 in FastBee. It is special because successfully repairing it indicates that our tool has
the ability to address C1 (identifying correct insertion points) and C2 (adapting patches to changed con-
text), as outlined in section 1.2. Additionally, this case is rare, as we detected only one such “changed
context”” instance among 40 systems. By investigating this special case, we found the changed context
was located around the vulnerable/patch lines and was included within the extracted context lines. Fur-
thermore, the patch is quite short (3 lines), resulting in a short prompt. This inclusion and short prompt
likely enabled GPT-4o to recognize the surrounding context and generate a correctly transformed patch.

However, because a single case is insufficient to fully demonstrate 1DRep’s capability, we further
tested it on artificial vulnerable cases, evaluated in RQ3 as detailed in section 5.5.2.

Another special case is the failure to repair CVE-2019-16910 in OpenHarmony that can be attributed
to the length of the patch. The template security patch for this CVE spans 99 vulnerable and context
lines, with an additional 243 patch and context lines, totaling 437 lines and resulting in a prompt string
length of 23,080 characters. This extensive length makes it challenging for GPT-4o to generate a
complete and effective fix. Although this vulnerability is classified as an ”old version” type, which is
relatively easy to repair manually, the prompt’s size affects the repair ability. This is why this case is
also regarded as special.

Although we tried to improve the prompt by adjusting the predefined instructions, we failed to gen-
erate a correct patch for this special case. Therefore, although it is possible to generate a correct
patch by providing a better structured prompt, we believe it is more possibly because when a prompt
is longer, the model is highly likely to misinterpret the intent or become distracted by irrelevant details.
By providing a shorter prompt, the model is much more likely to generate a correct patch. This case
highlights a limitation of the tool when dealing with vulnerabilities having a lengthy patch and suggests
a future improvement for dealing with such cases.

Answer to RQ2. 39 out of 40 vulnerabilities are completely repaired (97.5% precision rate) ex-
cept for 1 TP modified vulnerability. This demonstrates its effectiveness in repairing both exact
and modified reused 1-day vulnerabilities. Successfully repairing the CVE-2020-5235 indicates
that our tool has the ability to address C1 and C2 when 1-day vulnerabilities contain limited vulner-
able/patch lines. The scarcity of the “changed context”” cases prompts the need to obtain more
cases as solved in section 5.5.2. However, the failure to repair CVE-2019-16910 highlights a lim-
itation of the tool when dealing with vulnerabilities having a lengthy patch and suggests a future
improvement for dealing with such cases.

Vulnerability type #Completely Patched #Vulnerabilities Success Rate
TP Exactly reused 25 25 100%
TP Modified 14 15 93.33%

Total 39 40 97.5%

Table 5.5: Repair results of 1DRep for the detected vulnerable reuses

5.5. RQ3: Repair Capability: How does 1DRep perform among the
artificial vulnerable reuses?

To explore the limits of 1DRep’s repair capability, we test it on the artificial vulnerable cases generated
by modifying existing template vulnerable files in the CVE dataset. This is because it is hard to find
actual cases that are of the type “changed context”” in the wild (only one in 40 systems).
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Before we present the evaluation in section 5.5.2, we explain why and how we generate the artificial
cases in the following subsection.

5.5.1. Generating artificial vulnerable reuses
Motivation and Characteristics of The Reuses. To thoroughly evaluate the limits of 1DRep’s repair
capability, in handling modified vulnerable code reuses, we artificially generated such cases. These
artificial reuses serve as test cases to assess 1DRep’s ability to generate appropriate customized
patches under varying levels of complexity.

The artificially generated vulnerable reuses mimic special real-world scenarios where template se-
curity patches become inapplicable due to developers’ modifications that change the context. In this
situation, repairing is more challenging when vulnerable target files cannot be repaired merely by sub-
stituting the vulnerable lines with template patch lines, as these templates do not align with the modified
context in the target files.

We focus on these challenging scenarios for several reasons:

1. Limited Availability of Special Cases: Out of 15 TP modified vulnerable reuses detected, only
two qualify as special cases: one is the “changed context”” case, while another one is the “old
version”” case (briefly introduced in section 5.2.1 and in-depth analysis is in section 5.4). This
scarcity necessitates the creation of additional artificial cases. Notably, we focus solely on han-
dling the ”changed context” cases, acknowledging that addressing another type—where the patch
is excessively lengthy—presents greater challenges and is left for future work.

2. Necessity for Customized Patches: The cases that require customized patches generated by
our tool, 1DRep, are critical for evaluating the tool’s unique capabilities.

3. Complexity: Due to the changed context, these cases are more challenging to repair. This
complexity makes them ideal candidates for thoroughly exploring the limits of 1DRep’s repair
capability.

The artificial vulnerable reuses we generated have the following characteristics:

• Based on Template Vulnerabilities with Limited Context: Through experimentation, we found
that when the context for patching a vulnerability is too extensive, GPT-4o tends to produce in-
correct or incomplete patches, regardless of prompt modifications. To mitigate this, we focus on
vulnerabilities with a smaller context (within 20 lines of code). We generate artificial cases by ran-
domly modifying template vulnerable files that contain a limited number of vulnerable and patch
lines.

• Proximity to Vulnerable/Patch Lines. Modifications are made directly on or near the vulnerable
or patch lines. Such targeted changes increase the likelihood that template security patches
become inapplicable, thereby necessitating the use of our tool, 1DRep.

• Various Modification Types: In real-world scenarios, developers modify code based on specific
purposes and the role of target lines within their programs. Given the lack of discernible patterns
from the limited number of existing vulnerable reuses, we assume that all types of modifications
are possible. For simplification, we focus on the following modification types: changing variable
names, changing called function names, altering if conditions, modifying returned error values,
changing comments, and altering function calls. Changes in this context can be add, remove, or
modify.

• Vulnerability Persistence: The goal of the progression is to ensure that the vulnerability remains,
but in a context where the patch can no longer be applied directly. As the complexity increases,
the persistence of the vulnerability is made more ambiguous or disguised by the modifications,
meaning that the repair tool must perform more sophisticated analysis to identify the vulnerability
and apply a customized patch.

• Increasing Complexity: We progressively increase the complexity of the modifications. As the
number of modifications increases, we assume that the complexity of the repair task increases
correspondingly.
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Methodology Our methodology comprises two steps: first, we select vulnerabilities from the CVE
dataset provided by [33], focusing on those with a limited number of vulnerable and patch lines.

Then, we manually modify the selected vulnerable code. This process involves introducing various
changes, such as renaming variables, altering function calls, or modifying control flow statements. To
facilitate a systematic evaluation of complexity, we adopt an incremental approach to modifications.
For instance, a case may be categorized based on the number of changes made: a Level 1 (L1) case
involves one change, while a L9 case entails nine changes. This framework enables us to create a
diverse set of test cases, progressively increasing complexity while ensuring that the original template
patch remains inapplicable and that the underlying vulnerability persists.

This allows us to explore the impact of various modifications on the effectiveness of our repair tool.

Example of Artificially Generated Vulnerable Reuse Here we provide a detailed example of how
we construct an artificial vulnerable case for the CVE-2020-8094 (we only provide Listings for L1, L3,
L7 and L9):

• L1 (1 change): Based on the template vulnerable file, a single modification, such as renaming a
variable (e.g., renaming input_len to data_length as shown in listing 5.1).

• L2 (2 changes): Based on L1, adds a second modification, such as changing a function call (e.g.,
modifying BestEffortAbort to EmergencyAbort).

• L3 (3 changes): Based on L2, introduces a new condition to an existing control flow statement
(e.g., adding a check for output == nullptr as shown in listing 5.2).

• L4 (4 changes): Based on L3, modifies the error message string (e.g., appending “critical failure”
to the error message).

• L5 (5 changes): Based on L4, changes the return value of a variable (e.g., altering result = 0
to result = -1).

• L6 (6 changes): Based on L5, adds or modifies comments explaining critical logic (e.g., adding
a comment about checking output validity).

• L7 (7 changes): Based on L6, alters the function signature by changing the type of the input
variable (e.g., from const char* to const void* as shown in listing 5.3).

• L8 (8 changes): Based on L7, modifies additional logic, such as changing how tmp_output_len
is calculated (e.g., tmp_output_len = *output_len / 2).

• L9 (9 changes): Based on L8, modifies more complex structures, such as changing the type of
the output parameter (e.g., from char **output to char *output[] as shown in listing 5.4).

Note that it does not matter if the 9 mutated cases do not compile, as the primary focus of these artificial
cases is to explore the limits of the tool’s repair capability.
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Listing 5.1: The diff between the L1 modified vulnerable reuse and original version of the CVE-2020-8094

1 --- ./OLD##CVE-2020-8904##0##google@@asylo##ecalls.cc
2 +++ ./level1_modified_ecalls.c
3

4 // Invokes the enclave restoring entry-point. Returns a non-zero error
↪→ code on

5 // failure.
6 -int ecall_restore(const char *input, uint64_t input_len , char **output,
7 +int ecall_restore(const char *input, uint64_t data_length , char **output,
8 uint64_t *output_len) {
9 if (!asylo::primitives::TrustedPrimitives::IsOutsideEnclave(input,

10 - input_len))
↪→ {

11 + data_length
↪→ )) {

12 asylo::primitives::TrustedPrimitives::BestEffortAbort(
13 "ecall_restore: input found to not be in untrusted memory.");
14 }

Listing 5.2: The diff between the L3 modified vulnerable reuse and original version of the CVE-2020-8094

1 --- ./OLD##CVE-2020-8904##0##google@@asylo##ecalls.cc
2 +++ ./level3_modified_ecalls.c
3

4 @@ -59,12 +59,13 @@
5

6 // Invokes the enclave restoring entry-point. Returns a non-zero error
↪→ code on

7 // failure.
8 -int ecall_restore(const char *input, uint64_t input_len , char **output,
9 +int ecall_restore(const char *input, uint64_t data_length , char **output,

10 uint64_t *output_len) {
11 if (!asylo::primitives::TrustedPrimitives::IsOutsideEnclave(input,
12 - input_len))

↪→ {
13 - asylo::primitives::TrustedPrimitives::BestEffortAbort(
14 - "ecall_restore: input found to not be in untrusted memory.");
15 + data_length

↪→ ) ||
16 + output == nullptr) {
17 + asylo::primitives::TrustedPrimitives::EmergencyAbort(
18 + "ecall_restore: input or output is invalid.");
19 }
20 int result = 0;
21 size_t tmp_output_len;
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Listing 5.3: The diff between the L7 modified vulnerable reuse and original version of the CVE-2020-8094

1 --- ./OLD##CVE-2020-8904##0##google@@asylo##ecalls.cc
2 +++ ./level7_modified_ecalls.c
3

4 @@ -59,14 +59,16 @@
5

6 // Invokes the enclave restoring entry-point. Returns a non-zero error
↪→ code on

7 // failure.
8 -int ecall_restore(const char *input, uint64_t input_len , char **output,
9 +int ecall_restore(const void *data, uint64_t data_length , char **output,

10 uint64_t *output_len) {
11 - if (!asylo::primitives::TrustedPrimitives::IsOutsideEnclave(input,
12 - input_len))

↪→ {
13 - asylo::primitives::TrustedPrimitives::BestEffortAbort(
14 - "ecall_restore: input found to not be in untrusted memory.");
15 + // Critical check for output validity
16 + if (!asylo::primitives::TrustedPrimitives::IsOutsideEnclave(data,
17 + data_length

↪→ ) ||
18 + output == nullptr) {
19 + asylo::primitives::TrustedPrimitives::EmergencyAbort(
20 + "Critical failure: input or output is invalid.");
21 }
22 - int result = 0;
23 + int result = -1;
24 size_t tmp_output_len;
25 try {
26 result = asylo::Restore(input, static_cast <size_t >(input_len), output

↪→ ,
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Listing 5.4: The diff between the L9 modified vulnerable reuse and original version of the CVE-2020-8094

1 --- ./OLD##CVE-2020-8904##0##google@@asylo##ecalls.cc
2 +++ ./level9_modified_ecalls.c
3 @@ -59,15 +59,17 @@
4

5 // Invokes the enclave restoring entry-point. Returns a non-zero error
↪→ code on

6 // failure.
7 -int ecall_restore(const char *input, uint64_t input_len , char **output,
8 +int ecall_restore(const void *data, uint64_t data_length , char *output[],
9 uint64_t *output_len) {

10 - if (!asylo::primitives::TrustedPrimitives::IsOutsideEnclave(input,
11 - input_len))

↪→ {
12 - asylo::primitives::TrustedPrimitives::BestEffortAbort(
13 - "ecall_restore: input found to not be in untrusted memory.");
14 + // Critical check for output validity
15 + if (!asylo::primitives::TrustedPrimitives::IsOutsideEnclave(data,
16 + data_length

↪→ ) ||
17 + output == nullptr) {
18 + asylo::primitives::TrustedPrimitives::EmergencyAbort(
19 + "Critical failure: input or output is invalid.");
20 }
21 - int result = 0;
22 - size_t tmp_output_len;
23 + int result = -1;
24 + size_t tmp_output_len = *output_len / 2;
25 try {
26 result = asylo::Restore(input, static_cast <size_t >(input_len), output

↪→ ,
27 &tmp_output_len);
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L1 L2 L3 L4 L5 L6 L7 L8 L9
CVE-2020-8904 o o o o o o o o o
CVE-2020-8905 o o o o o o o o o
CVE-2021-3450 o o o o o o o o o
CVE-2021-32055 x x x x x x x x x
CVE-2021-37690 o o o o o o o o o
CVE-2021-41099 o o o o o o o o o
CVE-2022-36879 o o o o o o o o o
CVE-2022-34927 o o o o o o o o o
CVE-2019-16161 o o o o o o o o o
CVE-2019-19061 o o o o o o o o o

#Complete/Total Patches 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10 9/10

Table 5.6: Repair results for the artificial vulnerable reuses modified in 9 levels based on 10 CVEs. ‘x’ represents that the patch
generated by 1DRep is incomplete, while ‘o’ represents completely patched.

5.5.2. Evaluation
Methodology. To assess the limits of 1DRep’s repair capability, we evaluated its performance on 90
artificially generated vulnerable reuses, which were created by modifying 10 CVEs across 9 complexity
levels as described in section 5.5.1. These artificial cases were designed to progressively challenge
the tool’s ability to recognize and repair modified vulnerabilities. We follow the same criteria as pre-
viously described in section 5.4 (the RQ2) to determine the correctness of generated patches: a fix
is considered complete only if it correctly addresses all the vulnerable functions without changing the
customized functionalities. Other partial fixes or fixes that change the customizations are not regarded
as successful. Note that all patches are assessed manually for correctness, without testing their compi-
lability, as the primary focus of these artificial cases is to explore the limits of the tool’s repair capability.

Results. As shown in table 5.6, 1DRep generated 81 complete patches for the 90 artificial vulner-
able reuses, achieving a 90% precision rate. (‘x’ represents that the patch generated by 1DRep is
incomplete, while ‘o’ represents completely patched.) Remarkably, 1DRep failed to repair the 9 arti-
ficial vulnerable reuses derived from CVE-2021-32055. The template patch of this CVE is visualized
in figure 5.6 by diffing. Next, the diff results obtained by comparing the L1, L6, and L9 cases with the
template vulnerable file (CVE-2021-32055) are visualized in figure 5.7, figure 5.8 and figure 5.9, re-
spectively. Finally, we only visualized the patch results for the L1 and L6 in figure 5.10 and figure 5.11
respectively by diffing. This is because the program failed to identify a similar vulnerable code in the
L8 and L9 cases as explained further in the following analysis.

Additionally, 1DRep fails to repair the L6 artificial vulnerable reuse of CVE-2020-8905.

Analysis. We examined all generated patches for the L1 through L9 cases to investigate the reasons
for failure. For the L1 and L2 cases, generated patches for them were identical and both failed to
remove the vulnerable code. They only provided a partial fix by correctly addressing one patch line in
both cases as shown in figure 5.10. We found this failure occurred because changes to variable names
in the vulnerable lines led to incomplete context being extracted for the prompt. As a result, 1DRep
failed to fully recognize that the original vulnerability persisted. This finding highlights that the accuracy
of 1DRep is highly sensitive to the precision of the extracted context. While adjusting parameters
like context size and sliding window size may offer partial solutions, the two cases suggest a need
for future work to develop a more robust code extraction technique to ensure that generated prompts
contain complete information necessary to repair the vulnerability.

For the L3 through L7 cases, all the identified insertion points and the generated patches were iden-
tical and entirely incorrect as shown in figure 5.11. In the L8 and L9 cases, no patches were generated
because the program failed to identify any similar vulnerable code lines and erroneously concluded that
no patch was necessary. This issue arises because, while the target files still contain vulnerable code,
the surrounding context has changed significantly—a result of the “no match”” condition previously
discussed in section 4.4.2).
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The findings on the 7 cases highlights that the complexity of modifications can significantly affect
the repair capability, prompting the need for handling of more complex modifications as future works.

The failure at level 6 of CVE-2020-8905 highlights a significant issue: the accuracy of GPT-4o’s
repair suggestions is not stable and might vary considerably as the complexity of the modifications
increases.

Answer to RQ3. As shown in table 5.6, 1DRep successfully repaired 81 out of 90 artificial vul-
nerable cases (90%), which are generated by modifying 10 CVEs in 9 levels progressively as
described in section 5.5.1. However, the failure with CVE-2021-32055 highlights the need for bet-
ter context extraction and handling of more complex modifications, pointing to potential areas for
future improvement.

Figure 5.6: The template patch for CVE-2021-32055. (All generated patches failed to repair the 9 artificial cases derived from
this CVE)

Figure 5.7: The diff result showing changes between the L1 case and the CVE-2021-32055.

Figure 5.8: The diff result showing changes between the L6 case and the CVE-2021-32055.
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Figure 5.9: The diff result showing changes between the L9 case and the CVE-2021-32055 (the visualized L6 is shown in
figure 5.8).

Figure 5.10: The diff result showing changes between the L1 case and the generated patch for it.

Figure 5.11: The diff result showing changes between the L6 case and the generated patch for it.
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5.6. Security Reports
To assess how developers might respond to the proposed repair suggestions, we provided security
reports for all 15 TP modified CVEs across 5 IoT projects on GitHub. These reports were submitted
by either creating pull requests or opening issues, providing the necessary information. The CVEs,
corresponding IoT projects, and links to the associated issues or pull requests are detailed in table 5.7.
In conducting our assessment of developer responses to proposed security repairs, we initially opted to
report vulnerabilities as issues. This decision was influenced by the presence of a structured bug report
template available in the AliOS-Things project, which provided a standardized format for conveying
bug-related information. Therefore, we assumed that the project maintainers might prefer this format.
Then to maintain uniformity in reporting and ensure that each project received the vulnerability report
in a consistent manner, we continued creating issues across all subsequent projects. Additionally, we
assumed that creating issues typically invite a more open discussion about possible solutions without
assuming the patch provided is final.

For the HarmonyOS project, however, an issue reporting option was unavailable, which necessi-
tated submitting a pull request as the only viable reporting method.

Notably, four of the five projects containing the 15 TP-modified CVEs are coincidentally Chinese.
To better capture the developers’ attention and encourage a quicker response, we provided reports in
Chinese for these projects. For the single project in English, TizenRT, we correspondingly wrote the
report in English.

As illustrated in figure 5.12, an example of a security report, we included comprehensive details for
the developers including (1) the NVD description, (2) GitHub Security Advisories, (3) GitHub commits
and (4) customized patch suggestions to fit the context in their project.

However, despite creating reports, we received no responses from any of the IoT projects except
for TizenRT, which assigned a developer to investigate the issues. We believe there are three primary
reasons for this:

• Prioritization of issues: Open-source projects often prioritize feature development over secu-
rity concerns, especially if those vulnerabilities are perceived as having a low or non-immediate
impact on the system’s functionality. If the vulnerabilities were not seen as critical, the developers
might deprioritize addressing them.

• Low level of maintenance: Some IoT open-source projects may have low levels of active main-
tenance, so the reports might not receive attention.

• Security expertise and dependencies: Some IoT projects may lack contributors with expertise
in security, making it difficult for them to quickly assess and apply the suggested patches. Ad-
ditionally, since the developers reused third-party OSS components, they may prefer to wait for
upstream fixes rather than implement custom patches themselves.
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Figure 5.12: Example of a security report for TizenRT.
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Project CVE ID Links

AliOS-Things

CVE-2019-13616
CVE-2020-8177
CVE-2020-8169
CVE-2019-14906

https://github.com/alibaba/AliOS-Things/issues/2018
https://github.com/alibaba/AliOS-Things/issues/2019
https://github.com/alibaba/AliOS-Things/issues/2020
https://github.com/alibaba/AliOS-Things/issues/2021

TizenRT

CVE-2020-26243
CVE-2020-5235
CVE-2018-1000120
CVE-2018-1000122
CVE-2018-1000301

https://github.com/Samsung/TizenRT/issues/6311
https://github.com/Samsung/TizenRT/issues/6312

HarmonyOS CVE-2018-9988 https://github.com/Awesome-HarmonyOS/HarmonyOS/pull/120

OpenHarmony

CVE-2018-9988
CVE-2019-16910
CVE-2021-3711
CVE-2021-22901

https://github.com/fenwii/OpenHarmony/issues/5
https://github.com/fenwii/OpenHarmony/issues/4
https://github.com/fenwii/OpenHarmony/issues/3

FaseBee CVE-2020-5235 https://github.com/kerwincui/FastBee/issues/17

Table 5.7: The security reports for the 15 TP modified CVEs in 5 IoT projects.
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Discussion

In this chapter, we discuss the significance and limitations of 1DRep and explore potential future work
that can enhance its effectiveness and applicability.

6.1. Significance of the Repair Tool 1DRep
The development of 1DRep addresses a critical need in software security by automating the detection
and repair of 1-day vulnerabilities in reused C/C++ IoT OSS components.

6.1.1. Handling Modified Reused Code
A key challenge in repairing vulnerabilities in reused code is handling cases where the reused code has
been modified by developers, rendering standard patches ineffective. 1DRep addresses this challenge
by employing a code-based repair strategy that leverages GPT-4o to generate context-aware patches.
This approach enables the tool to repair modified code that traditional patching methods would fail to
address, thus expanding the scope and effectiveness of automated vulnerability repair.

6.1.2. Contribution to IoT Security
Many IoT devices run on software that includes OSS components, which may not receive timely up-
dates. 1DRep specifically explored this domain by detecting and repairing 40 IoT projects, showing
the ability of automating the repair of vulnerabilities in reused C/C++ IoT OSS components. This con-
tribution shows the potential to mitigate the risks associated with the proliferation of vulnerable IoT
devices.

6.2. Limitations
While our research presents a novel approach to automated vulnerability repair, there are inherent
limitations that must be acknowledged.

6.2.1. Applicability to Short Patches
Our tool is currently most effective for vulnerabilities requiring short patches. This limitation arises
from the challenges associated with processing and generating repairs for longer code segments, both
in terms of context extraction and the capabilities of the GPT-4o. Complex vulnerabilities involving
extensive code changes are not yet adequately addressed.

6.2.2. Dependence on V1SCAN's Performance
The efficacy of our repair tool is directly linked to the performance of V1SCAN. The low precision rate
of V1SCAN in detecting vulnerabilities in IoT projects, limits the overall effectiveness of our approach.
This dependence also means that undetected vulnerabilities cannot be repaired by our tool.
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6.2.3. V1SCAN's limitation
As described in section 5.1 and section 5.3, the CVE dataset of V1SCAN is incomplete, and some
bugs existed in their algorithm resulted the unexpected low performance of V1SCAN. Therefore, future
works can be improving the detection tool and CVE dataset.

6.2.4. Assumptions on Code Customizations
Our approach assumes that developers make only minimal customizations to reused code. However,
in practice, developers may significantly modify third-party code, affecting the applicability of our repair
strategies. The artificial cases with customizations used in our evaluation are based on assumptions
and may not fully represent real-world scenarios.

6.2.5. Limited Detected Dataset for Evaluation
Due to the small number of CVEs detected and the limited number of modified vulnerabilities (only 15),
our evaluation may not capture the full spectrum of potential vulnerabilities and repair scenarios. As
a result, the accuracy and generalizability of our tool may decrease when applied to a broader set of
vulnerabilities.

6.2.6. Limitations of Code-Based Repair
Our code-based repair approach has specific limitations:

• Dependency on GPT-4o Quality: The success of the repair depends on the LLM’s ability to
generate correct and secure code.

• Complex Code Structures: Highly complex or obfuscated code may not yield high similarity
scores, potentially missing some vulnerable code blocks.

• Context Size Limitations: Large code contexts may exceed the input limitations of GPT-4o,
necessitating context reduction techniques.

6.3. Future work of the repair tool
While our repair tool demonstrates promising results in repairing 1-day vulnerabilities, there are several
areas where further research and development can enhance its capabilities.

Repairing Complex Vulnerabilities. Currently, our tool is most effective in scenarios where the vul-
nerabilities and corresponding patches involve relatively short code segments. However, real-world
vulnerabilities can often be complex, involving extensive code changes across multiple functions or
modules.

To address this limitation, future work can focus on:

• Handling Long Contexts: Enhancing the tool’s ability to process and repair vulnerabilities that
require patches involving longer code segments. This may involve optimizing prompts for LLMs
to handle larger inputs or repairing the vulnerabilities step by step by prompting the LLM multiple
times.

• Advanced Context Extraction: Employing more advanced methods for extracting relevant code
snippets could enhance the quality of the information provided to the LLM, leading to better repair
suggestions even in complex scenarios. This could involve Semantic Code Analysis and Abstract
Syntax Trees.

Benchmarking Different LLMs. Our current implementation only utilizes GPT-4o, but it might be
useful to compare GPT-4o with other state-of-the-art models to evaluate their effectiveness in code
repair tasks. This is because exploring other LLMs might provide insights into performance differences
and potential improvements.

Better detection model. Since the precision of V1SCAN is low due to some bugs in its implementa-
tion and half of its CVE dataset disappeared, future efforts could be on developing a better detection tool
that can detect 1-day vulnerabilities in reused OSS components or improving V1SCAN’s performance
by completing/expanding the CVE dataset, fixing its bugs and improving its mechanisms.
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Expanding the CVE Dataset. To improve vulnerability detection, it is essential to have a comprehen-
sive dataset. Future efforts could focus on building a larger CVE dataset particularly those relevant to
IoT projects, to improve the performance of the detection tool.

Enhancing Prompt Engineering for GPT-4o. Optimizing how we interact with GPT-4o can lead
to better repair suggestions. Therefore, developing more effective prompt structures might help in
generating better patches. Also, since some vulnerabilities might contain too many vulnerable/patch
lines, it might be helpful to adjust prompts based on the complexity or characteristics of the code being
repaired.

Addressing Non-Function Vulnerabilities. While our tool currently focuses on repairing vulnerabil-
ities within functions, V1SCAN can also detect vulnerabilities in structures, macros, and variables. Fu-
ture development could expand the repair capabilities to address these types of vulnerabilities, thereby
increasing the tool’s overall utility.

Leveraging Mutation Testing Techniques. While our study utilizes artificially generated vulnerable
reuses to evaluate the limits of 1DRep’s repair capabilities, these synthetic changes closely align with
the principles of mutation testing. Mutation testing is a well-established technique in software test-
ing that involves introducing small, systematic modifications (mutations) to a program’s source code
to assess the effectiveness of test suites. This technique can generate a diverse set of challenging
scenarios, providing a more robust evaluation of 1DRep’s repair capacity. This is because manually
generating synthetic data cannot fully capture the range of modifications found in real-world scenarios;
the process is both time-consuming and prone to errors, making it challenging to create a sufficiently
comprehensive dataset. Therefore, future work could leverage mutation testing techniques to:

1. Systematic Generation of Mutations: Future work could involve applying standard mutation
operators—such as statement deletion, variable renaming, conditional negation, and control flow
alterations—to generate a comprehensive set of mutated code samples. This systematic ap-
proach ensures a wide coverage of potential code variations that may occur in real-world software
development.

2. Guiding Targeted Improvements on LLM: Certain mutations may introduce complexities that
challenge the LLM’s (currently GPT-4o) ability to generate appropriate patches. Identifying these
challenges would provide insight into the LLM’s limitations with specific code patterns.
Recognizing patterns in LLM failures could allow adjustments to prompt strategies, enabling
clearer, more targeted instructions to improve repair effectiveness.
Furthermore, if certain types of mutations consistently cause issues, it might indicate a need to
fine-tune the LLM with additional training data that includes these challenging code scenarios.

Developing Systematic Methods to Assess Patch Correctness. WWhile our current evaluation of
patches generated by 1DRep relies on manual inspection, we recognize the necessity of systematic
methods to ensure comprehensive and objective assessment. Systematic evaluation is crucial for
validating the effectiveness of GPT-4 in generating correct patches for modified vulnerabilities. Future
works can focus on the following:

1. Static Analysis Tools. Static analysis tools can be employed to ensure that generated patches
are syntactically correct and semantically coherent. It is also possible to use security-focused
static analyzers to detect potential vulnerabilities that may have been introduced inadvertently.

2. Standardized Evaluation Criteria: A standardized checklist or set of criteria for reviewers can
be developed to consistently assess the patches, focusing on correctness, completeness, and
potential side effects.

3. Automated Testing: If test cases are available, 1DRep can automatically run the test cases on
both the vulnerable code and patched code to verify that the vulnerability is resolved. Additionally,
this can ensure the generated patch does not introduce new issues.
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Threats to validity

In this chapter, we discuss potential threats to the validity of our study.

7.1. Internal Threats to Validity
The following issues could affect the accuracy of our findings:

Limited Number of Detected Modified Vulnerabilities. The small number of CVEs detected, par-
ticularly the low number of true positive modified vulnerabilities (just 15), poses a threat to the internal
validity of our evaluation. This limited sample size may not be representative of the diversity of vulner-
abilities present in IoT projects, and as such, our findings may not generalize well to other contexts.

Artificial Cases. The artificially generated cases with customizations are generated manually based
on our assumptions and selected CVEs rather than real-world data, which may not accurately reflect
actual developer practices and introduce subjective biases or errors. Also, theymay not include enough
diverse or representative vulnerabilities, possibly biasing the repair effectiveness of 1DRep.

Dependency on V1SCAN and GPT-4o. If one of these tools fails, the repair process might be com-
promised. There is a risk in over-relying on the accuracy of V1SCAN for 1-day vulnerability detection
and GPT-4o for code generation.

In addition, the assumptions we made during the experiments might not hold:

• Short Security Patches are Prevalent: We observed that most security patches in the CVE
dataset involve short code segments, typically within a single function. We assumed this would
also apply to IoT projects; however, although it is true in our 11 selected vulnerable IoT projects,
with a larger dataset, the proportion of vulnerabilities requiring complex patches may increase.

• Minimal Code Customizations: We assumed that developers make only minor customizations
to reused code. Although it is true in our experiments, in reality, customization levels might vary
widely, potentially affecting the tool’s effectiveness.

7.2. External Threats to Validity
Selection of IoT projects. Since we choose a small set of IoT projects (just 40) for testing, the
detected vulnerabilities may not cover enough types of 1-day vulnerabilities in IoT projects, so they
might not represent the vulnerabilities in general IoT projects, which potentially reduces the broader
applicability of 1DRep.

The CVE dataset. It is difficult to maintain the CVE dataset in real time. Vulnerabilities are contin-
uously being discovered, and there is often a delay between the discovery of a vulnerability and its
inclusion in the CVE database. This introduces a lag in the identification and repair of emerging secu-
rity issues, particularly in rapidly evolving fields like IoT.
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7.2.1. Construct Validity
Our evaluation only used precision as the metric for assessing the detection tool, without considering
recall due to the unknown total number of vulnerabilities in the target projects. Therefore, we might
overlook situations where 1DRep could fail to detect certain types of vulnerabilities, particularly if those
vulnerabilities involve more complex modifications. Also, the increasing levels of modification might
not accurately reflect real-world difficulty in fixing vulnerabilities.



8
Conclusion

In this thesis, we set out to address the challenge of automating the detection and repair of 1-day
vulnerabilities in C/C++ software projects, with a particular focus on IoT projects that often rely on
reused open-source software components.

To deal with this issue, we developed 1DRep, an automated repair tool designed to detect and re-
pair 1-day vulnerabilities by leveraging template security patches and a LLM GPT-4o. Our approach
relies on the vulnerability detection tool V1SCAN. We apply V1SCAN to target projects to identify vul-
nerabilities, classifying them into two types: exactly reused and modified vulnerabilities. For exactly
reused vulnerabilities, we use a version-based repair approach, while for modified vulnerabilities, we
implement a code-based repair strategy, which heavily replies on GPT-4o. Finally, we provided secu-
rity reports containing patches for the detected CVEs in the 11 IoT projects by creating GitHub issues
or pull requests.

Our evaluation of 1DRep demonstrates its effectiveness by achieving a 97.5% (39 out of 40) suc-
cess rate in our 11 target vulnerable IoT projects. The tool shows particular strength in handling vulner-
abilities involving short code segments, which are common in security patches. Moreover, by utilizing
GPT-4o, 1DRep is capable of generating patches for modified context, addressing scenarios where
traditional patching methods fall short.

Despite the promising results, limitations such as reliance on the precision of the detection model
and challenges with complex vulnerabilities highlight areas for future research. Enhancements to the
underlying detection mechanisms, expanding the CVE dataset, and refining the code-based repair
approach are critical steps to improve the tool’s effectiveness.

In conclusion, 1DRep is a promising APR tool for 1-day vulnerabilities in reused C/C++ IoT OSS
components. By continuing to develop and refine such tools, we can better protect software systems
against known vulnerabilities.
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