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Approach to robust multi-objective optimization and

probabilistic analysis: the ROPAR algorithm

Oscar O. Marquez-Calvo and Dimitri P. Solomatine
ABSTRACT
This paper considers the problem of robust optimization, and presents the technique called Robust

Optimization and Probabilistic Analysis of Robustness (ROPAR). It has been developed for finding

robust optimum solutions of a particular class in model-based multi-objective optimization (MOO)

problems (i.e. when the objective function is not known analytically), where some of the parameters

or inputs to this model are assumed to be uncertain. A Monte Carlo simulation framework is used. It

can be straightforwardly implemented in a distributed computing environment which allows the

results to be obtained relatively fast. The technique is exemplified in the two case studies: (a) a

benchmark problem commonly used to test MOO algorithms (a version of the ZDT1 function); and (b)

a design problem of a simple storm drainage system, where the uncertainty is associated with design

rainfall events. It is shown that the design found by ROPAR can adequately cope with these

uncertainties. The approach can be useful for assisting in a wide range of risk-based decisions.
This is an Open Access article distributed under the terms of the Creative

Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying

and redistribution for non-commercial purposes with no derivatives,

provided the original work is properly cited (http://creativecommons.org/

licenses/by-nc-nd/4.0/)
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INTRODUCTION
The main focus of this research is on robust multi-objective

optimization (RMOO) and the introduction of a new algor-

ithm, with the ultimate aim of testing and using it in water-

related problems.
Previous work

Robust multi-objective optimization in water-related
systems

The water sector started to use mathematical optimization

algorithms in the 1960s (Karmeli et al. ; Schaake &

Lai ). Nicklow et al. () devoted a paper to review
this topic, particularly focusing on the use of genetic algor-

ithms. However, although for many years in typical

problem settings the issue of uncertainty was not considered

in multi-objective optimization (MOO) of water systems, in

the last 10–15 years this aspect has started to be given atten-

tion. This type of optimization is often (albeit not always)

referred to as robust optimization. The notion of robustness

is treated in different studies in various ways and is deter-

mined by the particular needs of a case study or the

authors’ preferences.

Literature sources present various definitions of robust-

ness (Jin & Sendhoff ; Gunawan & Azarm ;

Savic ; Deb & Gupta ; Beyer & Sendhoff ;

Gaspar-Cunha & Covas ; Petrone et al. ; Erfani &

Utyuzhnikov ). For the purpose of this study, the follow-

ing definition is adopted, based on the sources just cited:

Robust optimization of multiple objectives is an optimiz-

ation method modified in such a way that it generates a

mailto:o.marquezcalvo@un-ihe.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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solution or a set of solutions that have minimum (or limited)

variability of the objective functions when some elements or

parameters of the modelled real system vary due to their

uncertainty.

Some of the first works applying RMOO methods were

in the field of water distribution systems. In these works

(Babayan et al. ; Kapelan et al. , ; Savic ,

; Odan et al. ), the robustness of the identified sol-

utions was achieved by including a measure of robustness

as one of the objective functions, which depends on the

type of problem being solved. One example of such a

specific objective was used by Kapelan et al. (): measur-

ing the probability that at the same time the heads of all the

nodes in the network comply with at least the minimum

head required for each node. In contrast, in the approach

proposed in this paper, the robustness is reached not by

requiring an objective function measuring the robustness

depending on the problem being solved, but by using criteria

of general applicability.

Other research in the water area has dealt with the opti-

mum design of urban drainage networks and wastewater

systems. All these works use the smoothing of the objective

function as the method to accommodate uncertainty. (This

process of smoothing is explained in more detail in the

next section.) Andino-Santizo () used two methods to

find the robust optimum design of a drainage network con-

sidering uncertainty in the population growth. Kang &

Lansey (), Kebede (), Vojinovic et al. (), and

Yazdi et al. () used a robust optimum design for water,

storm- and wastewater infrastructures considering as uncer-

tain the following parameters, respectively: amount of

water; climate change, urbanization, population growth,

and pipe aging; rainfall; and Manning roughness. Galindo-

Calderon et al. () found the robust optimum type and

location of the Best Management Practices for a storm

drainage network.

Yet another approach of RMOO used for water-related

systems follows the notion of deep uncertainty. Walker

et al. () classified the uncertainty in two categories: first,

uncertainties that can be statistically analysed; and second,

uncertainties that cannot be statistically analysed due to the

unforeseen future (named deep uncertainty). Beh et al.

() solved the problem of the optimal sequencing of

additional water supply sources over a 40-year planning
om https://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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horizon. Mortazavi-Naeini et al. () optimized planning

and operation of bulk water systems foreseeing conditions

of extreme drought. Watson & Kasprzyk () optimized

water allocation from multiple market-based supply instru-

ments. In our research, uncertainty is assumed to be such

that it allows for probabilistic description and analysis.

In the reviewed literature, the problem formulations

used do indeed take uncertainty into account, but it can

be seen that uncertainty is in a way ‘hidden’ and cannot

be directly estimated. The problem of robustness is formu-

lated by adding a specific metric of robustness depending

on the considered problem type, and therefore varies in

different case studies; besides, the process of probabilistic

uncertainty propagation to the final solutions is typically

not explicit either. This prompted the development of a

new algorithm for robust optimization with a general appli-

cability. The novelty of this study also relates to addressing

features not fully considered by the approaches previously

mentioned. First, it is a method where the robustness is

not defined by a metric of robustness depending on the

type of problem being optimized. Second, this method

does not change an objective function, e.g. by its smoothing,

employed earlier. Third, the method characterizes the uncer-

tainty explicitly, using probability density functions.
Methods of robust multi-objective optimization

MOO is a mature technology, and RMOO uses MOO as the

basic method. In MOO, when the objective function is not

known analytically, the most popular approach is to use a ran-

domized search, and themost widely used group ofmethods is

evolutionary (genetic) optimization (Deb et al. , ,

; Kollat & Reed ; Kukkonen & Deb ; Vrugt

et al. ; Tiwari et al. ; Hadka & Reed ). For more

details and additional literature, the reader is referred to the

reviews by Reed et al. () and Maier et al. ().

Some of the published literature on MOO techniques

which take uncertainty into account (so which could be

attributed to a group of robust optimization methods) was

analysed, and a possible categorization of these techniques

is presented below.

A. Methods minimizing the mean of the objective function

(Zitzler & Kunzli ; Kapelan et al. ; Limbourg
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; Savic ; Deb & Gupta ; Kuzmin ;

Andino-Santizo ; Kebede ; Vojinovic et al.

). This method minimizes a smoothed version of an

objective function f named fμ, which uses the average

of the objective function values in the proximity of a

given point. This is done instead of directly minimizing

the original objective function (i.e. f).

B. Methods minimizing the mean–variance of the objective

function (Jin & Sendhoff ; Fieldsend & Everson

; Gaspar-Cunha & Covas ; Kang & Lansey

; Zeferino et al. ). This approach is similar to the

previous one, but besides calculating the objective func-

tion averages fμ in the proximity of the point in question,

the standard deviation fσ is also estimated, to end up

with their combination fμσ, which is optimized instead of f.

C. Methods using an additional objective function related to

robustness (Babayan et al. ; Kapelan et al. ;

Erfani & Utyuzhnikov ; Zeferino et al. ; Toloh

; Marchi et al. ; Roach et al. ). In this

approach, a vector of objective functions fr which rep-

resents some measure of the solution’s robustness is

added to the original vector of objective functions f. This

measure of robustness fr could be the above-mentioned

fμ or fσ, or their combination fμσ or another way of measur-

ing the robustness of the system being optimized.

D. Methods using additional constraints related to robust-

ness (Gunawan & Azarm ; Deb & Gupta ). In

this approach, a vector of constraints is added to the orig-

inal inequality constraints of the problem, which sets a

boundary B to a given measure of robustness.

E. Method based on comparing the cumulative distribution

functions (Petrone et al. ). This approach aims at

reducing the difference between the CDF characterizing

uncertainty of a real solution and that related to an ‘ideal’

design. For real-life problems when a single CDF is gen-

erated as a result of a Monte Carlo simulation, and a

substantial number of these have to be generated

during optimization, implementation of this approach

could be computationally prohibitive.

It can be seen that all the mentioned approaches aggre-

gate uncertainty into the objective functions or constraints

and then solve a standard MOO problem resulting in a

single Pareto front. This is indeed a valid approach,
s://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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however, it should be noted that the impact of uncertainty

is embedded in this Pareto front, so uncertainty is in a way

hidden, ‘encoded’ in the solutions which are expected to

be robust. The uncertainty is encoded because the resulting

Pareto front combines the minimization of the objective

functions and the robustness in one single piece of infor-

mation. The problem is that it is not straightforward to

‘decode’ the level of robustness from the identified solutions

and to analyse how Pareto-optimal sets depend on actual

realizations of uncertain variables. Decoding this infor-

mation requires information to be stored for each solution

in the Pareto front regarding the relation between the sol-

ution and the uncertain parameters. If explicit decoding

and presentation of uncertainty are not performed explicitly,

this makes it difficult to fully grasp the impact of the uncer-

tainty by the decision makers and to select one of the

solutions from the Pareto front.

The presented problem was the main motivation to

develop an approach and algorithm entitled ‘Robust Optim-

ization and Probabilistic Analysis of Robustness’ (ROPAR);

in its initial form, it was presented by Solomatine () in

a short paper available on the web. In this approach, the

uncertainty is not encoded into a single Pareto front, but

multiple Pareto fronts are explicitly generated, each corre-

sponding to sampled values of the uncertain variable(s).

The multiple Pareto fronts make it possible to analyse the

statistical characteristics of resulting uncertainty propagated

to solutions, enriching the information available to decision

makers. That initial approach by Solomatine () is

extended in this paper, to make it capable of finding

robust optimum solutions.
Problem statement

The definition of robust optimization of multiple objectives

can be formalized mathematically as follows. Consider a

system model f, which is an abstraction (either mathematical

or computational) of a real system intended to be optimized.

The behaviour of the system model is characterized by the

value taken by input uncertain variable u, and decision vari-

ables x. Then a RMOO problem can be formulated as

min
x

f (x, u) ¼ min
x

fi(x, u), i ¼ 1, 2, . . . , n (1)
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subject to:

gj(x, u) � 0, j ¼ 1, 2, . . . , k (2)

hj(x, u) ¼ 0, j ¼ 1, 2, . . . , q (3)

xmin � x � xmax (4)

umin � u � umax (5)

where f is the vector of the n objective functions ( f1, f2,… , fn),

gj is the j-th inequality constraint, hj is the j-th equality con-

straint, k is the number of inequality constraints, q is the

number of equality constraints, u is the vector of the uncer-

tain input variables (e.g. rain intensity), umin and umax are

the vectors of the minimum and maximum values of uncer-

tain input variables, respectively, x is the vector of the

decision variables (e.g. pipe diameter), xmin and xmax are

the vectors of the minimum and maximum values of the

decision variables, respectively, and fi, gj, hj, x, u∈ℝ.

Solutions of a MOO problem are typically represented

as a Pareto front F in the space of objectives (criteria) (see

the example in Figure 3(a)) which can be defined as

F ≡ {f q : q ¼ 1, 2, . . . , ns} (6)

where fq is the qth tuple representing the evaluations of the n

objective functions in the Pareto front, F is all the evalu-

ations of the objective functions forming the Pareto front,

and ns is the number of tuples comprising the Pareto front.

To summarize, a solution is a configuration or a design

that is defined by a specific combination of the values

(vector) of the decision variable x. The aim is to find a

robust optimum solution x which ensures that the objective

function f values remain near the optimal value regardless of

the uncertainty that could affect the parameters u.
Robustness metrics

To measure the robustness of the solutions, the two most

common metrics for assessing the robustness found in the

literature are used (Beyer & Sendhoff ). These two

metrics of robustness are exemplified with the following

function. Assume that the goal is to minimize the objective
om https://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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function f(x). Consider that its robust counterpart is the

function F(x).

The first metric of robustness is the ‘expected value’ of f,

which can be represented by

F(x) ¼
ð
f(x, u) p(u) du (7)

where p(u) is the probability density function of the uncer-

tainty u.

The second metric of robustness is generally known as

the ‘worst case’. This is represented by

F(x) ¼ sup
V∈X(x,u)

f(V) (8)

where X(x,u) is the neighbourhood of the solution x.

Objective of the study

The main objective of this study is to propose and test the

new technique for RMOO, which would make it possible

for decision makers to carry out probabilistic analysis of

uncertainty propagation from uncertain factors to solutions,

and ultimately to select robust optimum solution(s).

Two case studies are considered: (a) a benchmark

problem commonly used to test MOO algorithms (a version

of the ZDT1 function); and (b) a design problem of a simple

storm drainage system, where uncertainty is associated with

design rainfall events.

In this study, we concentrate on presenting the method,

testing it in two case studies, and comparing the results to

those achieved with deterministic methods. Comparison to

other techniques also aimed at finding robust solutions is

left for another publication (Marquez-Calvo & Solomatine

in preparation-a).
METHODOLOGY

The methodology has three parts:

1. deterministic optimization with multiple objectives;

2. robust optimization with multiple objectives;

3. comparing deterministic and robust solutions.
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These three parts are presented in the subsequent

sections.
Deterministic optimization with multiple objectives

To assess if, indeed, ROPAR effectively finds robust sol-

utions, the deterministic MOO is carried out first. These

deterministic optimum solutions are used as a baseline to

compare them with the solutions found using the robust

optimization approach, using the robustness metrics pre-

sented above. For this study, two MOO algorithms are

used: NSGA-II (Deb et al. ) and its advanced version,

AMGA2 (Tiwari et al. ). It is acknowledged that

NSGA-II is not the most efficient optimizer nowadays, how-

ever, it is very widely used and for that reason, it is employed

here as well (its descendant, AMGA2, has been shown to be

faster). Furthermore, NSGA-II is used for the storm drainage

case and AMGA2 is used for the benchmark function case.

The problem solved using the MOO is the one defined in

the section ‘Problem statement’. However, given that the

problem is solved deterministically, there is no need to

sample the input uncertain variable u because it is con-

sidered to be fixed at a specific value. In this paper, for the

‘fixed u’ we use the mean value of ‘uncertain u’.
Robust optimization with multiple objectives

ROPAR is the approach used to find solutions that comply

with the definition presented in the Introduction. This

approach is based on Monte Carlo sampling of the input

uncertain parameter u, and allows the robustness of solutions

found by MOO algorithms to be probabilistically analysed.

Most methods of robust optimization employ one of the

known MOO algorithms as the core method, and we do this

as well. As for deterministic optimization, NSGA-II (Deb

et al. ) and AMGA2 are used as the core optimizers in

robust optimization as well.

Before presenting the ROPAR algorithm, it is worthwhile

mentioning some facts. Steps 1–7 were first presented by

Solomatine (). The improved current version has added

steps 8–10; these steps aim at finding the robust solutions.

In particular, Step 9 defines two criteria (minimize ‘expected

value’, and minimize ‘worst case’) to search for those
s://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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solutions with the least variability (in accordance with the

definition of robust optimization and the robustness metrics).

This extended current version is still named ROPAR.

ROPAR has three main parts. The first part is sampling

and generating the Pareto fronts. In this part, a value of an

uncertain parameter is sampled, and for each of the samples

the system model is instantiated with the sampled parameter

and with the rest of the (certain) parameters. This model is

used in optimization, resulting in a Pareto front. The

number of Pareto fronts is equal to the number of samples

generated. The second part of ROPAR is a probabilistic

analysis of the Pareto fronts. The third part of ROPAR is

finding the single or more robust solution(s).

Algorithm ROPAR

(Sampling and generating the Pareto fronts)

1. for r¼ 1 to np do
Begin
2. Sample ur

3. Find the Pareto-optimal set Fr by solving the deterministic

MOO problem for the sampled ur.

End.
(Analysing the Pareto fronts)

4. Pick one objective function fk, say f2. Choose a certain

level L2 for f2 (possibly represented by some narrow inter-

val for f2) and form the solution set S with the values of f2
in this interval, taking solutions from all the Pareto sets Fr
where r¼ 1,… , np.

5. Pick another objective function, say f1.

6. Build the empirical distribution of the values of f1 corre-

sponding to the members of set S. This empirical

distribution can be approximated by a probability density

function characterising the uncertainty of f1 for the sol-

utions corresponding to the chosen level L2 of f2.

7. (optional). Repeat steps 4, 5, and 6 running through a

number of various levels L2, until finding a desired level

of f2, for example the one with a minimum variance of f1.

(Finding the robust solution)

8. Once a level L2 is chosen, create the set Q containing opti-

mum solutions with a value of f2 approximately equal

to L2. Q should include one solution from every Fr where

f2≈L2 (the closest one). Optionally Q could include not

one but several solutions from every Fr where f2≈L2.
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9. The most robust solution xi is found by solving one of the

two single-objective optimization problems.

Criterion 1 (the ‘minimize expected value’ approach):

min
xi

1
np

Xnp
r¼1

f1(xi, ur)

" #
∀ xi ∈ Q

" #
(9)

Criterion 2 (the ‘minimize worst case’ approach):

min
xi

[[max
ur

[ f1(xi, ur), ∀ r ¼ 1::np]]∀ xi ∈ Q] (10)

where f1 is the objective function 1, ur is the instantiation r

of the vector of input variables u with uncertainty.

10. (optional). Repeat steps 8 and 9 running through a

number of various levels L2, as many times as the decision

maker needs.

Note. In an optional Step 7, the goal is to scan the robust-

ness of the solutions for several values of f2. It is just an

initial scan because the robustness of the solutions at differ-

ent values of f2 is quantitatively defined after carrying out

the steps 8, 9, and 10.
Comparing deterministic and robust solutions

To compare the deterministic solution with the robust sol-

utions, the criteria used to determine the robustness in

ROPAR are used to measure the robustness of the determi-

nistic solution – these are specified in Step 9 of ROPAR,

one for the expected value, and the other one – for the

worst case.

The process to carry out here is similar to the process

known as post-optimization robustness analysis presented

in Paton et al. (). The robust performance of the sol-

utions from the deterministic Pareto front is evaluated

considering all the random samples of rainfall.
TEST CASES

Two cases are considered: a benchmark function and a

storm drainage network. The cases for this study were delib-

erately chosen to be simple, since they serve an illustrative
om https://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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purpose to introduce the algorithm. Both of them are opti-

mized deterministically and robustly.
Optimization of a benchmark function

The widely used benchmark function ZDT1 (Zitzler et al.

) is employed. This benchmark function is used to test

MOO algorithms. The original formulation of ZDT1 is

min
x

f1(x) ¼ x1 (11)

min
x

f2(x) ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
x1

g(xm)

r� �
(12)

g(xm) ¼ 1þ 9
10

�
X11
i¼2

xi (13)

subject to

0 � xi � 1 for i ¼ 1, 2, . . . , 11 (14)

Its formulation is modified to add randomness, specifi-

cally the modified definition of f2 now is

min
x

f2(x) ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
x1

g(xm)

r
� randomfactor

� �
(15)

Here randomfactor is a random variable with a normal

distribution with μ¼ 1 and σ¼ 0.05 (randomfactor∼
N(1,0.0025)), which is sampled in the interval

[0.8384,1.1789]. A sample within this interval has 99.2%

probability of occurrence. The number of samples for this

set of experiments is set to 1,000.

The MOO used is AMGA2 (Tiwari et al. ), which is

set to run until 10,000 function evaluations of ZDT1 are

made.
Optimization of a storm drainage network

For this experiment, a model of a simple storm drainage pipe

network with 11 pipes is used (see Figure 1) (this is a simpli-

fied network in a Latin American town). The network has a

fixed layout, where the decision variables are the diameters



Figure 1 | Layout of the storm drainage network with 11 pipes (exported from SWMM

software), where lines represent pipes; circles – junctions; squares – sub-

catchments; and triangle – outfall.
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of pipes. The mathematical formulation of this problem is

min
D

Construction cost(D) ¼ CD � Lþ CF (16)

min
D

Flooding volume(D, P) (17)

where D is the vector (d1, d2,… , d11) representing the diam-

eter of every pipe in the network, CD is the vector (c1, c2,… ,

c11) representing the cost per length unit of every pipe

depending on its diameter, CF is the fixed cost of the project,

L is the vector (l1, l2,… , l11) representing the length of every

pipe, and P is the amount of precipitation in the basin. In

this paper, we are considering the pipe diameters as the

only decision variables, and this is, of course, a simplifica-

tion, since in reality the other variables have to be

considered, such as for example, pipe slopes which have

an impact on the excavation costs.

The volume of flood water is determined by running the

SWMM modelling software (Rossman ). In the remain-

der of this paper, cost and construction cost are used

interchangeably. The details of how the objective functions

are calculated are provided in the supplementary data (avail-

able with the online version of this paper).

For this case, the only parameter with uncertainty is the

rainfall, specifically, the intensity of the rainfall is considered

to be random (named irandom). It is assumed that irandom fol-

lows a normal distribution with a standard deviation of 7%

of the mean (i.e. irandom∼ ibase*N(1, 0.0049)), where ibase is

the intensity of the design rainfall corresponding to the
s://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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geographical location of the network, considering a return

period of 20 years. (The design return period for storm drai-

nage typically varies from 2 to 25 years (Akan &

Houghtalen ), and for this case 20 years was chosen.)

Two other parameters of the rainfall, duration and pat-

tern, are considered to be fixed, regardless of the intensity

(which is, of course, a simplification). With respect to the

duration, in the conducted experiments the duration of

the rainfall event is taken to be 3 hours. With respect to

the pattern of the rainfall, a synthetic hyetograph for

design storm was used (Butler & Davies ; Haestad

Methods & Durrans ). The hyetograph resembles the

one used by the Chicago method (Keifer & Chu ).

Despite this type of rainfall profile tending to overestimate

peak flows (Marsalek & Watt ; Alfieri et al. ),

here it is used because the intention is to design a robust net-

work able to cope with severe events (Fortunato et al. ).

Information describing the main aspects of the network is

as follows. Every pipehas the samedata: lengthof 100 m; slope

of 0.5%; Manning’s roughness coefficient of 0.02. The areas

(in ha) of the subcatchments (from upstream to downstream):

5.617, 4.441, 4.441, 4.441, 4.089, 4.089, 6.489, 6.489, 3.245,

3.245, and 3.389. The mean value of rainfall in 3 hours is

360 mm. The system is configured to consider that in the

event offlooding, the excess volume is stored atop the junction,

in a ponded fashion, and is reintroduced into the system as

capacity permits. An SWMM INP file with the values of

other parameters can be found in the supplementary data

(available with the online version of this paper).

To estimate the required number of samples, the

equation developed by Cochran () is used:

n ¼ z2p(1� p)
e2

(18)

where n is the number of samples, z is the abscissa of the

normal curve that cuts off an area α at the tails (1 – α

equals the desired confidence level, which was set to be

99.90%), e is the aimed level of precision (was set to be

5%), and p is the estimated variability of population (was

set to 50%, for details see Israel ).

Based on Equation (18), n is estimated to be 949 which

was for the sake of simplicity rounded to 1,000, so that the

rainfall intensity irandom was sampled 1,000 times. As men-

tioned before, irandom is the result of the multiplication of
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ibase with a random number obtained from the normal distri-

bution N (1, 0.0049). The 1,000 samples fell into the interval

[0.7738, 1.2505].

The large sample size (1,000) allows the four objectives to

be achieved: first, to reach a high confidence level; second, to

have a high level of precision; third, to consider the maxi-

mum heterogeneity in the population; fourth, to capture

those extreme values that have the potential to be the most

troublesome. On the other hand, if a high confidence level

or a high level of precision is not needed, or the population

does not have a high heterogeneity, then the number of

samples will be accordingly lower. This number can be also

made lower if the computational load is prohibitively high.

In the case of ROPAR, for each of the sampled rainfall

intensities the storm drainage network is optimized using

MOO NSGA-II (Deb et al. ), resulting in 1,000 Pareto

fronts, one front for each rainfall intensity. In every optimiz-

ation, 10,000 function evaluations (i.e. runs of the SWMM

model needed to estimate flood volume) are used.
RESULTS AND DISCUSSION

Case 1: The benchmark function

Optimizing the benchmark function using a deterministic
approach

As a result of optimizing the benchmark function ZDT1

without uncertainty (i.e. when randomfactor is fixed at 1),

the Pareto front in Figure 2(a) is generated.
Figure 2 | Optimization of ZDT1 deterministically (a); and robustly (b, c). The ROPAR analysis i

om https://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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Optimizing the benchmark function using ROPAR

As a result of steps 1–3 of the ROPAR algorithm, 1,000

Pareto fronts are generated – see Figures 2(b) and 2(c). In

steps 4–7 of ROPAR, these Pareto fronts are analysed to

determine which solutions are most robust within the

boundaries imposed by the decision makers.

Assume that the decision maker is interested in the

values of the objective function 2 in the interval 0.2 � f2 �
0.6 (see Step 7 of ROPAR). To illustrate the analysis of the

Pareto fronts, two values of the objective function 2, say

0.2 and 0.6, are picked. Their corresponding PDFs are

shown in Figures 2(b) and 2(c), respectively. Comparing

these two PDFs, one can say that in the considered interval,

the solutions with the values of f2 ≈ 0.6 are the ones with the

minimum variability of f1.

Steps 8–10 are not carried out in this case due to the fact

that the optimization algorithm finds the ideal (almost exact)

solutions for every realization of this random benchmark

problem. These solutions are basically the same and there

is no reason to use steps 8–10 of the algorithm which has

the purpose of finding the most robust solution among

them. The ideal solution for this benchmark problem is

when xi¼ 0 for i¼ 2, 3,… , 11. However, in the experiment

with the storm drainage system the solutions are different,

and for that reason steps 8–10 are necessary.

Comparing the solutions of the deterministic and robust
approaches

As pointed out previously, after carrying out deterministic

optimization of ZDT1, there is no more additional
s based on f2 ≈0.2 (b) and f2 ≈0.6 (c).
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information to help to decide which solution (among the 50

solutions forming the Pareto front) to choose. However, if

uncertainty in the benchmark function is assumed, and the

robust optimization approach is followed, one would have

more information enabling one of the solutions to be

selected. As shown in Figures 2(b) and 2(c), the robustness

of the solution has a direct relation to the value of the objec-

tive function 2: the higher value of the objective function 2,

the more robust the solution. Given the fact that it was

assumed that the decision makers are interested in the sol-

utions within the interval 0.2� f2� 0.6, the most robust

solutions are those corresponding to f2≈ 0.6.

Case 2: The storm drainage network

The problem of constructing (or rehabilitating) a storm drai-

nage network (i.e. the determination of the combination of

pipe diameters) is considered, with the two objective func-

tions to minimize: construction cost and flood volume.

Finding the optimum design without uncertainty
(deterministic approach)

Assuming fixed rainfall, the optimum deterministic designs

of the storm drainage network are found and shown in the

Pareto front in Figure 3(a). It can be seen that the cost of

the solutions is in the range from 1,000 to 4,000 tmu (thou-

sands of monetary units) and flooding volume of these

solutions ranges from 0 to 24 mlw (millions of litres of

water). Using the Pareto set aids, the decision maker in the

final choice of the single solution for implementation. For
Figure 3 | Optimizing the storm drainage network: (a) deterministically; (b) using ROPAR with

s://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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example, if a decision maker considers two possible costs,

1,500 and 3,000 tmu, the corresponding flooding volumes

given by the optimal solutions (networks) would be 11.2

and 1.7 mlw, correspondingly. However, the single Pareto

set does not give the possibility to say anything about the

robustness of these solutions against rainfall uncertainty.

Finding the optimum design considering uncertainty
(the robust approach)

In the ROPAR algorithm, the objective function f2 is associ-

ated with the construction cost (Step 4). Applying ROPAR

steps 1, 2, and 3, a set of 1,000 Pareto fronts is generated

(Figure 3(b)). In steps 4, 5, and 6, the variability of the flood-

ing volume is analysed for the two construction costs: 1,500

and 3,000 tmu – see Figures 3(b) and 3(c), respectively. As in

the case of deterministic optimization, it is easy to see (and it

is in a way obvious) that the lower investment leads to more

flooding.

However, it is now possible to also see more, e.g. to

detect a certain pattern: the lower the network costs, the

bigger the variability in the network performance. Despite

the relatively small uncertainty of the rainfall that is con-

sidered (the standard deviation is equal to 7% of the

mean), it is interesting to see the differences in the network

performance when less and less is invested in the construc-

tion of the network.

Let us assume that at Step 7 of the ROPAR algorithm,

the decision maker chooses to build a network with a cost

of 3,000 tmu. The decision could be based on the fact that

although the 3,000-tmu solution is 100% more expensive
a construction cost≈ 1,500 tmu; (c) with a construction cost≈ 3,000 tmu.
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than the 1,500-tmu solution, the latter leads to more flood-

ing, but also is 350% more dispersed (measuring

dispersion as the range, i.e. the width of the base of the

PDF). The range of the 1,500-tmu solution is 14 mlw; the

range of the 3,000-tmu solution is 4 mlw; and the ratio of

14 mlw to 4 mlw is 3.5, or 350%. In other words, the

3,000-tmu network has only 29% of the variability of the

flooding volume of the 1,500-tmu network, or it can be

said that in these terms it is 3.5 times more robust against

uncertainty in rainfall. If robustness is seen as an important

factor, then a decision maker may find this to be a good

additional justification to build a more expensive network

– in this case, a 100% more expensive design increases

robustness by approximately 3.5 times, and of course leads

to less flooding.

Yet another piece of information that can be deduced

from these plots is the relation of maximum flooding

volume (MFV) to cost under various scenarios. For example,

MFV for the network costing 3,000 tmu is 4 mlw, and MFV

for the network of 1,500 tmu is 19 mlw, which is almost five

times higher.

It should be noted that an increase in robustness for more

expensive designs from the engineering point of view is more

or less expected: if one invests more in larger pipes, the

number of solutions leading to flood is reduced. As invest-

ment reaches approximately 4,750 tmu, the pipes would

be able to accommodate any amount of storm water and

no rainfall would lead to flooding, so there is no uncertainty,

and robustness is maximum. In other applications, such

a relationship may be much less obvious. In any case,

ROPAR makes it possible to identify the sets of solutions

with different values of robustness and the corresponding

ranges of objective functions, enabling probabilistic analysis.

Steps 8 and 9 of ROPAR identify the robust solution(s),

ultimately selecting the most robust of the possible solutions,

given the user-defined cost. In this example, for each of the

costs 1,500 and 3,000 tmu, there are 1,000 solutions with

either less than or equal cost of 1,500 and 3,000 tmu,

respectively, that are selected in accordance with Step 8 of

the ROPAR algorithm. Next, as specified in Step 9 of

ROPAR, there are two criteria to select the most robust sol-

ution. Both criteria are applied to exemplify their use.

To apply criterion 1 of Step 9 (minimizing expected

value), for every solution the average flood volume (AFV)
om https://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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across the 1,000 rainfall samples is calculated, and the sol-

ution corresponding to the minimum AFV is picked.

Figures 4(a) and 4(b), corresponding to costs of 1,500 and

3,000, respectively, show the solutions with minimum AFV

marked with a red X.

The procedure described in the previous paragraph is

also used with criterion 2 of Step 9 of ROPAR (minimizing

worst case), and here the solution with the minimum MFV

is picked. Figures 4(a) and 4(b), corresponding to costs of

1,500 and 3,000, respectively, present the solutions with

minimum MFV marked with a red þ.
Comparing solutions found by deterministic and robust
approaches

To see a more general relationship among the 1,001 sol-

utions (i.e. 1,000 from the robust optimization plus 1 from

the deterministic optimization), in Figures 4(a) and 4(b)

every solution is plotted in the intersection of its AFV and

its MFV. The robust solution with respect to criterion 1 is

the one with the smallest AFV, and the robust solution

w.r.t. criterion 2 is the one with the smallest MFV. In

Figure 4(b), these two solutions are very close to each

other; they have almost the same performance, that is, the

solution found by criterion 1 could be used as the solution

of criterion 2 and vice versa. It should be noted that the

proximity of solutions corresponding to criteria 1 and 2 is

characteristic only to the considered simple case study, but

for more complex cases the results based on using criteria

1 and 2 could be very different (albeit these two criteria

obviously correlate).

Furthermore, from Figure 4(b) a Pareto front can be

recognized, and it has only two solutions. In Figure 4(b),

the red X and the redþ form a ‘blurred asterisk’ because

they are pointing to two different solutions (compare with

Figure 4(a), where a ‘sharp asterisk’ is seen because the X

and theþ are pointing to the same solution). For the

decision maker, only these two solutions are worth consid-

ering because they dominate all the rest of the solutions.

However, for other cases, the Pareto front might have

more solutions, and in those cases, all the solutions in the

Pareto front should be presented to the decision maker

to let him/her decide which solution to select for

implementation.



Figure 4 | Comparing robustness of solutions: deterministic (black dot), minimum AFV (red X), and minimum MFV (red þ); for costs 1,500 (a), 3,000 (b), and those in-between (c) and (d).

Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/hydro.2019.095.

Table 1 | Pipe diameters (m) for deterministic and robust solutions with a cost of

3,000 tmu

Deterministic Minimum AFV Minimum MFV

0.81 0.76 0.79

1.14 1.15 1.09

1.59 1.37 1.36

1.64 1.69 1.61

1.64 1.78 1.76

1.89 1.97 1.94

1.89 2.10 2.06

2.20 2.19 2.10

2.28 2.24 2.34

2.28 2.24 2.34

2.28 2.28 2.34
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In terms of offering more options to the decision maker,

several cost levels can be used. For example, Figures 4(c)

and 4(d) show seven robust solutions corresponding to the

costs 1,500, 1,750, 2,000, 2,250, 2,500, 2,750, and 3,000 tmu.

Additionally, from Figure 4 it is also possible to see that

robust solutions have better performance than the determi-

nistic solutions in terms of the values of AFV and MFV.

Lower values for AFV and MFV mean lower variability,

and hence higher robustness. This interpretation is in

accordance with the definition of robustness used in this

study.

Table 1 shows the robust and deterministic solutions

with a cost of 3,000 tmu. In the table, the diameters from

top to bottom correspond to the pipes in the network from

upstream to downstream, respectively.
s://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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CONCLUSIONS

In this paper, the problem of multi-objective robust optimiz-

ation taking uncertainty into account is formulated. ROPAR

is the algorithm presented and tested to solve this kind of

problem. It analyses the robustness of the solutions found

and selects the most robust solution(s).

Additionally, a deterministic MOO is compared with a

ROPAR MOO. Then the robustness of the deterministic sol-

utions is compared with the robustness of the ROPAR

solutions. In every case tested, ROPAR found a more

robust solution.

In contrast to the methods already known, ROPAR

allows for explicit handling of uncertainty and analysing

how uncertainty is propagated to the Pareto-optimal sol-

utions, and allows for the corresponding probabilistic

analysis. This makes it possible to identify the sets of

solutions with different values of robustness and to select

the robust solutions according to the preferences of a

decision maker.

The novelty of the presented approach is in two aspects.

First, the uncertainty of parameters or inputs is explicitly

propagated to the solutions, so that the dispersion of the sol-

utions can be analysed visually and analytically. Second, the

new method has general applicability since it uses a quite

general definition of robustness, and does not reformulate

the objective functions (e.g. by their smoothing). This

method can be applied to the optimization of a wide variety

of problems, where the parameters are uncertain and can be

represented by a PDF. Use of ROPAR for other problems

will be demonstrated in the forthcoming papers by

Marquez-Calvo & Solomatine (in preparation-a) and

Marquez-Calvo & Solomatine (in preparation-b).

One of the limitations of this study is that ROPAR is

applied to problems with one source of uncertainty and

two objective functions; however, its design allows this

algorithm to be employed in problems with more sources

of uncertainty and more objective functions. In Marquez-

Calvo et al. (submitted), a problem related with water quality

in a water distribution network is solved using ROPAR con-

sidering 24 sources of uncertainty. In Marquez-Calvo &

Solomatine (in preparation-b), the procedure to apply

ROPAR to multiple-objective optimization problems is pre-

sented, and the robust design of a storm drainage system is
om https://iwaponline.com/jh/article-pdf/21/3/427/566282/jh0210427.pdf
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identified, taking into account three objective functions

and three sources of uncertainty.

Further research will be aimed at developing and testing

the visual tools to enable problem representation and analy-

sis in multiple dimensions, and testing various ‘trade-off’

approaches that make it possible to deal with the compu-

tational complexity of ROPAR.
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