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Abstract. Cyber-attacks become more sophisticated and complex espe-
cially when adversaries steal user credentials to traverse the network of
an organization. Detecting a breach is extremely difficult and this is con-
firmed by the findings of studies related to cyber-attacks on organiza-
tions. A study conducted last year by IBM found that it takes 206 days on
average to US companies to detect a data breach. As a consequence, the
effectiveness of existing defensive tools is in question. In this work we deal
with the detection of malicious authentication events, which are responsi-
ble for effective execution of the stealthy attack, called lateral movement.
Authentication event logs produce a pure categorical feature space which
creates methodological challenges for developing outlier detection algo-
rithms. We propose an auto semi-supervised outlier ensemble detector
that does not leverage the ground truth to learn the normal behavior.
The automatic nature of our methodology is supported by established
unsupervised outlier ensemble theory. We test the performance of our
detector on a real-world cyber security dataset provided publicly by the
Los Alamos National Lab. Overall, our experiments show that our pro-
posed detector outperforms existing algorithms and produces a 0 False
Negative Rate without missing any malicious login event and a False Pos-
itive Rate which improves the state-of-the-art. In addition, by detecting
malicious authentication events, compared to the majority of the exist-
ing works which focus solely on detecting malicious users or computers,
we are able to provide insights regarding when and at which systems
malicious login events happened. Beyond the application on a public
dataset we are working with our industry partner, POST Luxembourg,
to employ the proposed detector on their network.

Keywords: Outlier detection · Ensemble learning · Cybersecurity ·
Embedding · Semi-supervised learning

1 Introduction

Lateral movement attack is a stealth and well orchestrated attack where the
adversaries gain shell access without necessarily creating abnormal network traf-
fic. They make use of legitimate credentials to log into systems, escalate privileges
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using lateral movements and subsequently manage to traverse a network without
any detection. The JP Morgan Chase [36] and Target hacks [23] are two well
known examples of attacks where the adversaries stayed undetected while they
traversed network.

Researchers have addressed malicious logins detection by evaluating their
methods on a real-world cyber security dataset provided freely by the Los Alamos
National Lab [19]. Existing works focus on detecting malicious users or comput-
ers which leads to classifying all the generated events from a user or computer as
malicious or legit. As a result, it fails to detect which specific events are malicious
and does not provide any information regarding when the adversaries manage
to impersonate benign users. Additionally, most of the existing approaches on
this dataset are questionable and the authors in [32] provide further details of
their study.

A common characteristic of login logs or authentication events is being com-
prised of multidimensional categorical variables. Categorical variables stem from
discrete entities and their properties, e.g. source user, destination computer, or
protocol type. The underlying values of this type of variables are inherently
unordered and as a consequence it is often hard to define similarity between
different values of the same variable. As such, detecting anomalies on discrete
data is challenging and is not a well studied topic in academia; the primary focus
is on continuous data. Moreover, the prominent challenge in the defensive cyber
world is to develop effective approaches which are realistic.

A possible solution to this point comes from the semi-supervised approaches
[22] that do not require anomalous instances in the training phase. These
approaches model the normal class and identify anomalies as the instances that
diverge from the normal model. In real-world problems where the amount of
unlabeled data is immense, identifying events that are not suspicious needs a lot
of manual work and underlies the risk of miss-labeling true anomalous events.
Hence, our motivation to develop our auto approach is to alleviate analysts
from time expensive and monotonous tasks that include a significant amount of
uncertainty.

In this work, we analyze authentication events using the Los Alamos authen-
tication dataset [19] and we aim at detecting unauthorized events to services
or computers in contrast to the majority of the existing works. We propose an
embedding based and automatic semi-supervised outlier detector to reduce the
false positives produced by an unsupervised outlier ensemble. In particular, our
approach is an ensemble approach where we develop an unsupervised outlier
ensemble to identify the most confident normal data points which will feed the
semi-supervised detector to ultimately detect outliers. Our technique could be
considered as a sequential outlier ensemble approach where two dependent com-
ponents are developed for an outlier detection task. We refer to the authors of [1]
for the details of outlier ensembles categories.

The contributions of our proposed approach are:

– We produce an embedding space via the Logistic PCA [25] algorithm that
has potentiality of better representing the normal behavior.
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– We develop the Restricted Principal Bagging (RPB) technique, an improved
variant of the well established feature bagging technique [27], that works on
the principal components space.

– We introduce a new unsupervised combination function, Vertical Horizontal
Procedure (VHP), that leverages gradually the predictions of individual and
smaller scale ensemble members.

– We automatically build an automatic semi-supervised ensemble by combining
the aforementioned novel components to effectively detect malicious events.

Overall, our approach improves current state-of-the-art by achieving a 0.0017
FPR and 0 FNR; without missing any malicious login event. It is tested on an
extremely imbalanced data sample of the real-world authentication log dataset
provided by Los Alamos. In this challenging data sample the percentage of mali-
cious events is 0.0066% which is 1348 times lower than the average outlier per-
centage in datasets used for outlier detection [33].

These improvements enhance our understanding of anomalous patterns since
existing state of the art methods fail to capture all the anomalous patterns. It
is particularly important for the practical implementation to keep the base rate
fallacy in mind: Reducing the number of the false positives by 150 compared
to state of the art means that we enable cyber analysts spending less time on
monotonous tasks of pruning false alerts.

Detecting malicious events instead of users or computers provides actionable
insights to analysts by answering questions related to when exactly and at which
systems a malicious event happened. Our work could also be used to extend
existing methodologies which detect malicious users to further detect malicious
events. To the best of our knowledge, this work is the first automatic semi-
supervised attempt that aims at detecting anomalous authentication events.

The rest of the paper is organized as follows. We briefly review related work
in Sect. 2. Then, we continue by describing extensively how we develop each
component of our approach in Sect. 3. In Sect. 4 we explain in detail the dataset
and we present the experimental settings and results. We close in Sect. 5, where
we conclude with remarks and future research directions.

2 Related Work

Anomaly Detection in Categorical Data. In [17], the authors proposed a
distance based semi-supervised anomaly detection method. In particular, the
distance between two values of a categorical attribute is determined by the co-
occurrence of the values of other attributes in the dataset. In [30], the authors
proposed an unsupervised anomaly detector based on subspaces. It examines
only a small number of low dimensional subspaces randomly selected to identify
anomalies. In [7], the authors proposed an anomaly detection method on hetero-
geneous categorical event data. The method maximizes the likelihood of the data
by embedding different events into a common latent space and then assessing
the compatibility of events. Furthermore, approaches that are based on pattern
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mining techniques have been developed. For instance, in [2], the authors pro-
posed to identify anomalies using pattern-based compression, and [14] detects
patterns in short sequences of categorical data.

Malicious Logins Detection. The Los Alamos National Lab provides a pub-
licly available dataset [19] which is the most used and is related to authentica-
tion login events. There is a non-exhaustive list of papers analyzing this dataset
for detecting abnormal authentication activities. The majority of the related
work of this dataset focuses on detecting anomalous entities, users or comput-
ers [4,13,15,16,21,39]. On the other hand, only few works [18,29,35] detect
anomalous events. The most used approach among all the existing works is the
bipartite graph.

This work effectively detects malicious authentication events instead of mali-
cious entities which gives the opportunity to analysts to correlate identified
malicious authentication events with malicious events on other data sources. In
addition, detecting anomalous entities could be considered as a subset of detect-
ing malicious events because from the latter we can derive the former but not
vice versa. Furthermore, our work is the first automatic semi-supervised outlier
ensemble approach that is developed with the aid of established theory on outlier
ensembles [1,44]. It is composed of novel and existed methods never tested for
outlier detection on categorical data and especially on authentication logs.

3 Methodology

We propose a novel outlier ensemble detector for categorical data which auto-
matically creates the “non-polluted” by outliers training set of a semi-supervised
ensemble. More specifically, first it builds in an unsupervised way an outlier
ensemble on all data points to identify with a relative confidence data points
that are normal Secondly, it develops a semi-supervised ensemble detector which
is trained only on the (normal) data points derived from the first phase. Finally,
the semi-supervised ensemble classifies new observations (data points not in the
training set) as belonging to the learned normal class or not. Figure 1 illustrates
the sequential and automatic nature of our approach. Throughout this work we
use outliers and anomalies interchangeably.

3.1 Phase 1

Unsupervised outier detection algorithms detect outliers based on their algo-
rithmic design [45]. In this work, we reverse the problem of unsupervised outlier
detection to unsupervised normal detection by using established oulier ensemble
theory. The aim of the this phase is to create the training dataset of the semi-
supervised model; normal data points. In particular, we independently employ
two unsupervised detectors to build an outlier ensemble on bagged subspaces
and finally identify the most confident normal data points.
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Fig. 1. Auto Semi-supervised Outlier Detector

Generation of Embeddings. Our dataset is a pure categorical dataset and
we produce the embeddings of our proposed detector via the Logistic PCA algo-
rithm [25]. This algorithm produces principal components and our aim is to find
principal components that explain at least 90% of the total variance. We sug-
gest a high percentage of explained variance because it means that we represent
an amount of information very close to the information included in the original
variables. We could have selected a different number of principal components
that explain more than 90% of the total variance but we leave this sensitivity
analysis for the future. Additionally, according to Theorem 2 of [25] we select
columns to decrease the deviance the most. This Theorem states that for Logis-
tic PCA the standard basis vector which decreases deviance the most is the one
corresponding to column with mean closest to 1/2.

Restricted Principal Bagging. Our motivation for developing the RPB -
Restricted Principal Bagging technique is to upper bound the sample space of
the principal components and then add randomness in a similar way like the
Feature Bagging technique [27]; randomness is a key ingredient of outlier ensem-
ble techniques. Our technique aims at capturing the individual contribution of
each principal component to the total explained variance. As such, we adjust the
Feature Bagging technique [27] to work for principal components and find sub-
spaces to detect ouliers more effectively. We explain in detail the RPB technique
in Algorithm 1.

Firstly, RPB creates multiple random subsets of the first p principal compo-
nents and each of these subsets is denoted by Sj . We denote by PCs the principal
components that we keep after we have applied the Theorem 2 and we also call as
V the set of all the Sj . Hence, V =

{
S1, S2, S3, S3, S4, S5

}
=

{
0.04 * | PCs |,

0.1 * | PCs |, 0.2 * | PCs |, 0.3 * | PCs |, 0.4 * | PCs |, 1.0 * | PCs |}. Then for
a Sj and for Iter iterations it samples from a uniform distribution U(d/2, d − 1)
without replacement, where d is the dimensionality of Sj . Hence, for each Iter iter-
ation Nj principal components are sampled out and create a dataset Fj . Finally,
an unsupervised outlier detector with random parameters is applied to Fj .
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Algorithm 1. Restricted Principal Bagging
Input:

• V the set of all the Sj

• OD is an unsupervised Outlier Detection Algorithm which outputs numeric outlier
scores for each data point
• Iter represents how many times we perform feature sampling

Output
• E is a vector composed of oulier scores for each data point

Procedure:

1: for all Sj in V do
2: for i = 1, 2, 3, 4, ...Iter do
3: Randomly sample from a uniform distribution between

[
d/2

]
and (d − 1),

where d is the number of the principal components in S
4: Randomly pick, without replacement, Ni principal components to create a

subset Fi

5: Apply OD on Fi feature space
6: end for
7: end for

Unsupervised Outlier Detectors. We employ two well performing and estab-
lished unsupervised detectors to combine them and identify the most confident
normal points that will feed afterwards the semi-supervised learner. We inten-
tionally select heterogeneous detectors in order to increase the probability that
they capture different patterns of anomalies. Also, we could have selected more
than two heterogeneous unsupervised detectors to build the ensemble but for
the current experiments we showcase the promising performance of the most
straightforward version of our approach.

Firstly, we select iForest [28] which is a tree-based and state-of-the-art detec-
tor which performs the best across many datasets [11] and applications [9,41].
Secondly, we select LOF [5] which is a proximity-based method and designed to
detect local outliers (see [1] for details in local and global outliers). It is also a
state-of-the-art outlier detection algorithm and there is a large body of research
on this detector [3,12,27,45].

The procedure that we follow at this phase is of running a detector over a
range of parameters without leveraging the ground truth to tune the detectors.
This procedure is interpreted as an ensemblar approach and we refer to [1]
where the authors discuss the topic extensively. As such, we run LOF with
different random values for the neighborhood parameter. Also, we run iForest
with the Cartesian product of parameters IF =

{
(Number Of Estimators ×

Maximum Samples×Maximum Features)
}
.

LOF and iForest independently apply RPB on set V to build the ensem-
ble version of LOF and iForest. Henceforth, we call LOF - RPB scoresj and
iForest - RPB scoresj the outlier scores that are produced by applying the RPB
technique on a subset Sj and employing the LOF and iForest respectively. The
final step is to combine these results in an unsupervised way to find the most
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confident normal data points. We introduce later the VHP combination function
to combine these results. Finally, we call as W the most confident normal data
points that will feed the semi-supervised algorithm to learn the normal behavior
and as O the least confident normal data points.

VHP Combination Function. As we discussed before, the RPB algorithm
builds a couple of LOF and iForest ensembles on each subset Sj . Hence, we
propose a strategy to effectively combine and gradually take advantage of these
couples of ensembles instead of applying a global combination function across all
the LOF - RPB scoresj and iForest - RPB scoresj . The authors in [43] develop
a novel local combination function and highlight the effectiveness of this type of
combination functions.

In our strategy we utilize the Averaging combination function to calculate the
average scores of ensemble members. The reason why we select this function is
that the average score is the most widely used in outlier ensemble literature and
performs the best in most cases [8]. It is worth noting that combining effectively
outlier ensemble members without leveraging the ground truth is challenging
and the authors in [1,24,44] extensively discuss the topic.

In particular, firstly we normalize all the LOF - RPB scoresj and
iForest - RPB scoresj and then apply the Averaging function to get the average
scores on each Sj . As such for each subset Sj we build an ensemble produced
by these combined outlier scores. We refer to this ensemble as LOF Ens & iFor-
est Ens. Afterwards, we convert the numeric outlier scores of each LOF Ens &
iForest Ens ensemble to binary values based on a threshold. Finally, we combine
these binary values by utilizing the unweighted majority voting [40] technique
to produce the output of Phase 1.

The conversion to binary values is referred as the Vertical Strategy and the
combination of the binary values as the Horizontal Strategy. Henceforth, we call
this combination function as VHP, Vertical Horizontal Procedure. All the outlier
scores are normalized with the Z-score normalization scheme which is the most
commonly used in outlier detection literature (see [1] for details in different
normalization schemes).

3.2 Phase 2

At this phase we leverage the produced W dataset of Phase 1 to build the
semi-supervised ensemble. The W dataset is composed of the most confident
normal class data points and via this dataset we learn the normal class patterns.
As a result this procedure of our analysis makes our approach sequential and
automatic at the same time. The desired outcome of this sequential approach is
to reduce significantly the number of false positives of O dataset after we have
learnt the contour of the normal class.

Hence, we employ the OCSVM - One-Class SVM algorithm [34] which is a
well performing algorithm that is applied to several problems such as, fraud
detection [37] and network intrusion detection [26]. OCSVM is a boundary
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method that attempts to define a boundary around the training data (normal
class), such that new observations that fall outside of this boundary are classified
as outliers [38].

Our proposed approach is developed on a pure unsupervised setup and as
a result we do not seek for the best performing parameters. Hence, without
any loss of generality we select as parameters of the OCSVM algorithm the
Cartesian product B =

{
(Type of kernel×Upper bound of training errors×

Kernel coefficient)
}
. The procedure that we follow at this phase is analogous

to Phase 1 where we execute each detector over a range of parameters without
leveraging the ground truth to tune the performance.

In particular, we independently execute several training runs of the OCSVM
on W with different parameter values from set B. The number of training exe-
cutions is equal to the carnality of set B. Next, for each execution of OCSVM
an outlier score vector is produced which has length equal to the number of
observations of O dataset. Finally, we combine these outlier score vectors, with-
out leveraging the ground truth, to ultimately produce the final outlier score for
each data point. It is worth noting that we could have selected any other set
of parameters as input for the OCSVM algorithm. The procedure of running a
detector over a range of parameters without the use of labels is interpreted as
an ensemblar approach (see [1] for details).

4 Experiments and Evaluation

The major objective of our experiments is to demonstrate the effectiveness of
our proposed auto semi-supervised detector by comparing it with works which
detect malicious login events. On the one hand, we do not leverage the ground
truth to tune any component of our methodology on the other hand, we use the
ground truth to present the performance of Phase 1 as well as Phase 2.

4.1 Dataset

The Los Alamos National Laboratory provides a freely available and compre-
hensive dataset1 [19]. It includes 58 consecutive days of credential-based login
events, of which days the 3 to 29 are labelled as malicious or normal via a
RedTeam table. This dataset consists of 1 billion events and is an excessively
imbalanced dataset; the percentage of the malicious login events is 0.000071%.

Each authentication event contains the attributes: time, source user, destina-
tion user, identifier per domain, source computer, destination computer, authen-
tication type, logon type, authentication orientation, and authentication result.
In addition, the authentication events are Windows-based authentication events
from both individual computers and centralised Active Directory domain con-
troller servers [20]. We also create a new attribute for each authentication event
based on if source computer and destination computer are the same or different.

1 https://csr.lanl.gov/data/cyber1/.

https://csr.lanl.gov/data/cyber1/
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This new boolean feature quantifies the Local or Remote rule respectively. In
our analysis, the time variable is excluded and as a result a purely categorical
feature space is produced.

Developing a data mining methodology on 1 billion events would require a
big data infrastructure but our work is not on proposing a computer engineering
tool. Hence, we use a data sample to develop and evaluate our methodology.
Sampling from a such an excessively imbalanced dataset usually produces sam-
ples composed of zero malicious login events which makes the evaluation of both
classes impossible.

Hence, we seek for a random sample of 150, 000 consecutive authentication
events that contains at least 5 malicious events in order to thoroughly evaluate
our approach. In other words, the percentage of malicious events has to be at
least 0.0033%. Consequently, our randomly selected sample contains 10 malicious
events and its percentage of malicious events is 0.0066%. Then, on the sampled
categorical space we apply the one-hot technique to produce the input binary
space of the Logistic PCA algorithm. The dimension of the this binary space is
150, 000 × 2700 and we refer to this dataset as D.

4.2 Experiment Environment

We used the logisticPCA [25] R package for the implementation of the Logistic
PCA algorithm and the data.table [10] R package for fast data manipulation. The
iForest, LOF and OCSVM algorithms were executed using the Python Scikit-
learn library [31].

4.3 Experimental Settings

Phase 1. We apply the Logistic PCA on the D dataset (150, 000 × 2700)
and we keep 900 principal components which explain 93% of the total variance.
Afterwards, we apply the Theorem 2 we explained in Sect. 3.1 and we return
500 principal components which will be the embeddings feature space denoted
by PCs.

The exact parameters of LOF and iForest are presented in Table 1. LOF is
employed with different number of neighbors as input whereas the input param-
eter set of iForest is the Cartesian product IF =

{
(Number Of Estimators×

Maximum Samples×Maximum Features)
}
.

Phase 2. Table 2 presents the parameters at Phase 2. In Sect. 3.2 we defined the
set B which is the Cartesian product of the input parameter values of OCSVM.
In addition, the Averaging combination function is utilized to unify the outlier
scores of all OCSVM executions.
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Table 1. Setting parameters

Subsets S Parameters

LOF V = {4%, 10%, 20%,
30%, 40%, 100%}

Neighbors = {5, 10,
15, 20, 30, 40, 50, 60,
70, 80, 90, 100}

iForest V = {4%, 10%, 20%,
30%, 40%, 100%}

NumberOfEstimators
= {100, 200, 300, 400}
MaximumFeatures =
{10%, 20%, 40%, 60%}
MaximumSamples =
{10%, 30%, 50%}

Table 2. Setting parameters

nu {0.0001, 0.0005, 0.001, 0.005}
gamma {0.01, 0.05, 0.09, 0.001}
kernel {“rbf”, “sigmoid”}

Settings for Comparisons: We develop the VHP-Ensemble with our proposed
VHP combination function accompanied with the RPB algorithm by leveraging
different subsets of principal components as we have discussed earlier. Also,
we develop the Vanilla-Ensemble to compare our proposed ensemble with. It
employs the iForest and LOF detector on the whole PCs embeddings space,
the feature bagging technique by Lazarevic [27] and the Averaging combination
function. The components of the developed ensembles and their corresponding
names are presented in Table 3.

Table 3. Ensembles of Phase 1

Detector Principal components of subsets S Combination Bagging

Ensmbles LOF iForest 20 50 100 150 150 200 500 VHP Avg. RPB Lazarevic

VHP Yes Yes Yes Yes Yes Yes Yes Yes No Yes No Yes No

Vanilla Yes Yes No No No No No No Yes No Yes No Yes

4.4 Evaluation

Phase 1
In Table 4, we summarize the performance of the ensembles discussed previously
and presented in Table 3. Since the output of Phase 1 is two sets, W and O, we
evaluate our detectors using the precision and recall measures. We also showcase
the sensitivity of the ensembles by reporting the presicion and recall scores based
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on different thresholds m; number of reported outliers. In our analysis m plays
the role of the confidence of finding normal data points.

We denote by P@m and R@m respectively, the precision and recall score
produced with m ranked data points which are considered as outliers. Table 4 is
a typical example of the trade off between precision and recall. In our proposed
approach the cost of higher precision is less than the cost of higher recall.

Table 4. Precision and Recall of the output of Phase 1

Enembles P@1500 R@1500 P@5000 R@5000 P@7000 R@7000

VHP 0.015 1.0 0.008 1.0 0.007 1.0

Vanilla 0.005 0.8 0.0016 0.8 0.0011 0.8

Phase 2.
Since all the components of this work are developed in a pure unsupervised setup
it is important to investigate the sensitivity of our approach, VHP-Ensemble.
As such, we test multiple variants of this ensemble detector based on different
numbers of reported outliers at Phase 1. In this way, we investigate the effect of
Phase 1 on building the semi-supervised ensemble detector.

Hence, we denote by Detector-1500 the semi-supervised detector which is
developed when a threshold rank m= 1500 is chosen for the VHP-Ensemble.
The most outlier point among the m= 1500 reported outliers has a rank of 1. In
the same fashion, we develop Detector-5000 and Detector-7000 where m= 5000
and m= 7000 respectively. Our motivation for selecting so large m is that we
want to feed the semi-supervised detector with the most confident normal data
points. We identify them based on our intuition for the outliers percentage in
our dataset. In our case, m is at least 150 times greater than the number of true
malicious authentication events.

We compare our methodology with works that are developed on the same
level of granularity; detecting malicious authentication events. Detecting mali-
cious users or computers means a huge amounts of events have to be further
analyzed to identify which specific events are malicious. Since the existing works
on malicious events is limited we compare our proposed detector with any kind
of machine learning(supervised, semi-supervised, unsupervised) approach that is
tested on authentication events. Hence, we evaluate all variants of our detector
with (i) Siadati et al. [35], (ii) Lopez et al. [29], (iii) Kaiafas et al. [18].

In Fig. 2 we present a summary of the FPR and TPR scores of all the com-
petitors. Amongst the competitors, Siadati et al. [35] achieves the lowest FPR
whereas Kaiafas et al. and all the variants achieve the highest TPR; they do
not miss any malicious login. In addition, Detector-1500 achieves the lowest
FPR among all the competitors. Ultimately, Detector-1500 improves FPR of
the Kaiafas et al. supervised detector by 10% (150 login events) and more than
doubles Siadati’s TPR. Siadati et al. detector is based on integrating security
analysts knowledge into the detection system in the form of rules that define login
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patterns. In other words, this detector does not improve the existing knowledge
of the cyber analysts for anomalous patterns but instead relies on known rules
to detect anomalies. As a consequence, the Siadati’s rule based visualization
detector misses 53% of the malicious logins.

In addition, each of the aforementioned approaches outperform the logisitic
classifier of Lopez et al. [29] which achieves AUC 82.79%. We do not plot their
reported FPR and TPR scores in Fig. 2 because their FPR scores are at least
5 times worse than the maximum FPR value in Fig. 2. Consequently, we avoid
presenting a figure that is less readable and informative for the majority of the
competitors.
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Fig. 2. Comparison of the Auto Semi-supervised Outlier Detector

5 Conclusion and Future Work

Our proposed automatic semi-supervised detector for malicious authentication
detection outperforms the existent supervised algorithms and tools with the
human in the loop. It is capable of capturing underlying mechanisms that pro-
duce anomalous authentication events. Our evaluation on a real-world authen-
tication log dataset shows that we do not miss any malicious login events
and improve the current state-of-the-art methods. Also, the sensitivity analy-
sis showed that the rank threshold at Phase 1 does not affect at all the TPR.
On the other hand, the effect of the threshold on the FPR is not so noticeable.
The semi-supervised ensemble detector improves the FPR of the unsupervised
ensemble almost 9 times while all the developed variants did not miss any true
malicious login events.

In the future we would like to extend this work by building an ensemble with
multiple heterogeneous one-class classification algorithms [38]. Also, we want
to model the authentication logs as graphs to produce embeddings with deep
learning models [6]. Additionally, we intend to extend the existing work with
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network representation learning techniques [42] instead of embeddings. Finally,
an extensive comparative evaluation will follow based on the above improvements
on many cyber-security datasets.

Acknowledgement. Georgios Kaiafas is supported by the National Research Fund
of Luxembourg (AFR-PPP Project ID 11824564). Additionally, the authors would like
to thank POST Luxembourg, the industrial partner of this project.

References

1. Aggarwal, C.C., Sathe, S.: Outlier Ensembles. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54765-7

2. Akoglu, L., Tong, H., Vreeken, J., Faloutsos, C.: Fast and reliable anomaly detec-
tion in categorical data. In: Proceedings of the 21st ACM international conference
on Information and knowledge management. pp. 415–424. ACM (2012)

3. Alshawabkeh, M., Jang, B., Kaeli, D.: Accelerating the local outlier factor algo-
rithm on a GPU for intrusion detection systems. In: Proceedings of the 3rd Work-
shop on General-Purpose Computation on Graphics Processing Units, pp. 104–110.
ACM (2010)

4. Bohara, A., Noureddine, M.A., Fawaz, A., Sanders, W.H.: An unsupervised multi-
detector approach for identifying malicious lateral movement. In: 2017 IEEE 36th
Symposium on Reliable Distributed Systems (SRDS), pp. 224–233. IEEE (2017)

5. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: ACM SIGMOD Record, vol. 29, pp. 93–104. ACM (2000)

6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9),
1616–1637 (2018)

7. Chen, T., Tang, L.A., Sun, Y., Chen, Z., Zhang, K.: Entity embedding-based
anomaly detection for heterogeneous categorical events. In: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
pp. 1396–1403 (2016)

8. Chiang, A., Yeh, Y.R.: Anomaly detection ensembles: In defense of the average. In:
2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelli-
gent Agent Technology (WI-IAT), vol. 3, pp. 207–210. IEEE (2015)

9. Ding, Z., Fei, M.: An anomaly detection approach based on isolation forest algo-
rithm for streaming data using sliding window. IFAC Proc. Volumes 46(20), 12–17
(2013)

10. Dowle, M., Srinivasan, A.: data.table: extension of ‘data.frame’ (2019). https://
CRAN.R-project.org/package=data.table, r package version 1.12.2

11. Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K.: Systematic construc-
tion of anomaly detection benchmarks from real data. In: Proceedings of the ACM
SIGKDD workshop on outlier detection and description, pp. 16–21. ACM (2013)

12. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data. PloS one 11(4), e0152173 (2016)

13. Goodman, E., Ingram, J., Martin, S., Grunwald, D.: Using bipartite anomaly fea-
tures for cyber security applications. In: 2015 IEEE 14th International Conference
on Machine Learning and Applications (ICMLA), pp. 301–306. IEEE (2015)

14. Hammerschmidt, C., Marchal, S., State, R., Verwer, S.: Behavioral clustering of
non-stationary IP flow record data. In: 2016 12th International Conference on
Network and Service Management (CNSM), pp. 297–301. IEEE (2016)

https://doi.org/10.1007/978-3-319-54765-7
https://doi.org/10.1007/978-3-319-54765-7
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table


Auto Semi-supervised Outlier Detection for Malicious Authentication Events 189

15. Heard, N., Rubin-Delanchy, P.: Network-wide anomaly detection via the dirichlet
process. In: 2016 IEEE Conference on Intelligence and Security Informatics (ISI),
pp. 220–224 (2016)

16. Heard, N., Rubin-Delanchy, P.: Network-wide anomaly detection via the dirichlet
process. In: 2016 IEEE Conference on Intelligence and Security Informatics (ISI),
pp. 220–224. IEEE (2016)

17. Ienco, D., Pensa, R.G., Meo, R.: A semisupervised approach to the detection and
characterization of outliers in categorical data. IEEE Trans. Neural Netw. Learn.
Syst. 28(5), 1017–1029 (2017)

18. Kaiafas, G., Varisteas, G., Lagraa, S., State, R., Nguyen, C.D., Ries, T., Our-
dane, M.: Detecting malicious authentication events trustfully. In: NOMS 2018–
2018 IEEE/IFIP Network Operations and Management Symposium. IEEE, April
2018

19. Kent, A.D.: Comprehensive, Multi-Source Cyber-Security Events. Los Alamos
National Laboratory, New Mexico (2015). https://doi.org/10.17021/1179829

20. Kent, A.D.: Cyber security data sources for dynamic network research. In: Dynamic
Networks and Cyber-Security, pp. 37–65. World Scientific, Singapore (2016)

21. Kent, A.D., Liebrock, L.M., Neil, J.C.: Authentication graphs: analyzing user
behavior within an enterprise network. Comput. Secur. 48, 150–166 (2015)

22. Khan, S.S., Madden, M.G.: One-class classification: taxonomy of study and review
of techniques. Knowl. Eng. Rev. 29(3), 345–374 (2014)

23. Krebs, B.: Target hackers broke in via HVAC company. Krebs on Security (2014)
24. Kriegel, H.P., Kroger, P., Schubert, E., Zimek, A.: Interpreting and unifying outlier

scores. In: Proceedings of the 2011 SIAM International Conference on Data Mining,
pp. 13–24. SIAM (2011)

25. Landgraf, A.J., Lee, Y.: Dimensionality reduction for binary data through the
projection of natural parameters. arXiv preprint arXiv:1510.06112 (2015)

26. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study
of anomaly detection schemes in network intrusion detection. In: Proceedings of
the 2003 SIAM International Conference on Data Mining, pp. 25–36. SIAM (2003)

27. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining, pp. 157–166. ACM (2005)

28. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE (2008)

29. Lopez, E., Sartipi, K.: Feature engineering in big data for detection of information
systems misuse. In: Proceedings of the 28th Annual International Conference on
Computer Science and Software Engineering, pp. 145–156. IBM Corp. (2018)

30. Pang, G., Ting, K.M., Albrecht, D., Jin, H.: Zero++: harnessing the power of zero
appearances to detect anomalies in large-scale data sets. J. Artif. Intell. Res. 57,
593–620 (2016)

31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

32. Pritom, M.M.A., Li, C., Chu, B., Niu, X.: A study on log analysis approaches using
sandia dataset. In: 26th ICCCN, pp. 1–6 (2017)

33. Rayana, S.: Odds library. Stony Brook,-2016. Department of Computer Science,
Stony Brook University, NY (2016). http://odds.cs.stonybrook.edu (2017)

34. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

https://doi.org/10.17021/1179829
http://arxiv.org/abs/1510.06112
http://odds.cs.stonybrook.edu


190 G. Kaiafas et al.

35. Siadati, H., Saket, B., Memon, N.: Detecting malicious logins in enterprise networks
using visualization. In: 2016 IEEE Symposium on Visualization for Cyber Security
(VizSec), pp. 1–8. IEEE (2016)

36. Silver-Greenberg, J., Goldstein, M., Perlroth, N.: JPMorgan chase hack affects 76
million households (2014)

37. Sundarkumar, G.G., Ravi, V., Siddeshwar, V.: One-class support vector machine
based undersampling: application to churn prediction and insurance fraud detec-
tion. In: 2015 IEEE International Conference on Computational Intelligence and
Computing Research (ICCIC), pp. 1–7. IEEE (2015)

38. Swersky, L., Marques, H.O., Sander, J., Campello, R.J., Zimek, A.: On the eval-
uation of outlier detection and one-class classification methods. In: 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA), pp.
1–10. IEEE (2016)

39. Turcotte, M., Moore, J., Heard, N., McPhall, A.: Poisson factorization for peer-
based anomaly detection. In: 2016 IEEE Conference on Intelligence and Security
Informatics (ISI), pp. 208–210. IEEE (2016)

40. Van Erp, M., Vuurpijl, L., Schomaker, L.: An overview and comparison of voting
methods for pattern recognition. In: Proceedings. Eighth International Workshop
on Frontiers in Handwriting Recognition, 2002, pp. 195–200. IEEE (2002)

41. Wu, K., Zhang, K., Fan, W., Edwards, A., Philip, S.Y.: RS-forest: a rapid density
estimator for streaming anomaly detection. In: 2014 IEEE International Conference
on Data Mining, pp. 600–609. IEEE (2014)

42. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: A survey.
IEEE transactions on Big Data (2018)

43. Zhao, Y., Nasrullah, Z., Hryniewicki, M.K., Li, Z.: LSCP: Locally selective combi-
nation in parallel outlier ensembles. In: Proceedings of the 2019 SIAM International
Conference on Data Mining, pp. 585–593. SIAM (2019)

44. Zimek, A., Campello, R.J., Sander, J.: Ensembles for unsupervised outlier detec-
tion: challenges and research questions a position paper. ACM SIGKDD Explor.
Newsl. 15(1), 11–22 (2014)

45. Zimek, A., Schubert, E.: Outlier detection. In: Liu, L., Özsu, M. (eds.) Encyclope-
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