
 
 

Delft University of Technology

On the martingale decompositions of Gundy, Meyer, and Yoeurp in infinite dimensions

Yaroslavtsev, Ivan

DOI
10.1214/18-AIHP940
Publication date
2019
Document Version
Final published version
Published in
Annales de l'institut Henri Poincare (B) Probability and Statistics

Citation (APA)
Yaroslavtsev, I. (2019). On the martingale decompositions of Gundy, Meyer, and Yoeurp in infinite
dimensions. Annales de l'institut Henri Poincare (B) Probability and Statistics, 55(4), 1988-2018.
https://doi.org/10.1214/18-AIHP940

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1214/18-AIHP940
https://doi.org/10.1214/18-AIHP940


www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2019, Vol. 55, No. 4, 1988–2018
https://doi.org/10.1214/18-AIHP940
© Association des Publications de l’Institut Henri Poincaré, 2019

On the martingale decompositions of Gundy, Meyer, and Yoeurp
in infinite dimensions

Ivan S. Yaroslavtsev

Delft Institute of Applied Mathematics, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands.
E-mail: I.S.Yaroslavtsev@tudelft.nl

Received 8 January 2018; accepted 28 September 2018

Abstract. We show that the canonical decomposition (comprising both the Meyer–Yoeurp and the Yoeurp decompositions) of
a general X-valued local martingale is possible if and only if X has the UMD property. More precisely, X is a UMD Banach
space if and only if for any X-valued local martingale M there exist a continuous local martingale Mc, a purely discontinuous
quasi-left continuous local martingale Mq , and a purely discontinuous local martingale Ma with accessible jumps such that M =
Mc + Mq + Ma . The corresponding weak L1-estimates are provided. Important tools used in the proof are a new version of
Gundy’s decomposition of continuous-time martingales and weak L1-bounds for a certain class of vector-valued continuous-time
martingale transforms.

Résumé. Nous montons que la décomposition canonique (comprenant à la fois la décomposition de Meyer–Yoeurp et celle de
Yoeurp) d’une martingale locale générale à valeurs dans X est possible si et seulement si X a la propriété UMD. Plus précisément,
X est un espace de Banach UMD si et seulement si pour toute martingale M il existe une martingale locale continue Mc, une
martingale locale purement discontinue et quasi-continue à gauche Mq et une martingale locale purement discontinue Ma à sauts
accessibles, telles que M = Mc + Mq + Ma . Les estimées faibles L1 correspondantes sont fournies. Les outils importants utilisés
dans cette preuve sont une nouvelle version de la décomposition de Gundy d’une martingale à temps continu, et des bornes faibles
dans L1 pour une classe de transformations de martingales vectorielles à temps continu.

MSC: Primary 60G44; secondary 60G07; 60G57; 60H99; 46N30

Keywords: Gundy’s decomposition; Continuous-time martingales; UMD spaces; Canonical decomposition; Meyer–Yoeurp decomposition;
Yoeurp decomposition; Weak estimates; Weak differential subordination

1. Introduction

It is well-known thanks to the scalar-valued stochastic integration theory that a stochastic integral
∫

�dN of a general
bounded predictable real-valued process � with respect to a general real-valued local martingale N exists and is well
defined (see e.g. Chapter 26 in [26]). Moreover,

∫
�dN is a local martingale, so by the Burkholder–Davis–Gundy

inequalities one can show the corresponding Lp-estimates for p ∈ (1,∞):

E sup
0≤s≤t

∣∣∣∣∫ s

0
�dN

∣∣∣∣p �p E

(∫ t

0
�2 d[N ]

) p
2

, t ≥ 0 (1.1)

(here [N ] : R+ × � → R+ is a quadratic variation of N , see (4.3) for the definition). The inequality (1.1) together
with a Banach fixed point argument play an important rôle in providing solutions to SPDE’s with a general martingale
noise (see e.g. [12,20,21,26,37,49] and references therein). For this reason (1.1)-type inequalities for a broader class
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of N and � are of interest. In particular, one can consider H -valued N and L(H,X)-valued � for some Hilbert space
H and Banach space X. Building on ideas of Garling [16] and McConnell [34], van Neerven, Veraar, and Weis have
shown in [37] that for a special choice of N (namely, N being a Brownian motion) and a general process � it is
necessary and sufficient that X is in the class of so-called UMD Banach spaces (see Section 2.1 for the definition) in
order to obtain estimates of the form (1.1) with the right-hand side replaces by a generalized square function. Later
in the paper [48] by Veraar and in the paper [49] by Veraar and the author, inequalities of the form (1.1) have been
extended to a general continuous martingale N , again given that X has the UMD property.

Extending (1.1) to a general martingale N is an open problem, which was solved only for X = Lq(S) with q ∈
(1,∞) in the recent work [15] by Dirksen and the author. One of the key tools applied therein was the so-called
canonical decomposition of martingales. The canonical decomposition first appeared in the work [54] by Yoeurp, and
partly in the paper [36] by Meyer, and has the following form: an X-valued local martingale M is said to admit the
canonical decomposition if there exists a continuous local martingale Mc , a purely discontinuous quasi-left continuous
local martingale Mq (a “Poisson-like” martingale which does not jump at predictable stopping times), and a purely
discontinuous local martingale Ma with accessible jumps (a “discrete-like” martingale which jumps only at a certain
countable set of predictable stopping times) such that Mc

0 = M
q

0 = 0 a.s. and M = Mc + Mq + Ma . The canonical
decomposition (if it exists) is unique due to the uniqueness in the case X = R (see Remarks 4.2 and 4.4). Moreover,
when X is UMD one has by [51] that for all p ∈ (1,∞),

E‖Mt‖p
�p,X E

∥∥Mc
t

∥∥p +E
∥∥Mq

t

∥∥p +E
∥∥Ma

t

∥∥p
, t ≥ 0. (1.2)

In particular, if N is H -valued and � is L(H,X)-valued, then∫
�dN =

∫
�dNc +

∫
�dNq +

∫
�dNa

is the canonical decomposition given that N = Nc + Nq + Na is the canonical decomposition, so

E

∥∥∥∥∫ t

0
�dN

∥∥∥∥p

�p,X E

∥∥∥∥∫ t

0
�dNc

∥∥∥∥p

+E

∥∥∥∥∫ t

0
�dNq

∥∥∥∥p

+E

∥∥∥∥∫ t

0
�dNa

∥∥∥∥p

, t ≥ 0,

which together with Doob’s maximal inequality reduces the problem of extending (1.1) to the separate cases of Nc ,
Nq and Na . Possible approaches of how to work with

∫
�dNc,

∫
�dNq , and

∫
�dNa have been provided by [15]:

sharp estimates for the first were already obtained in [48,49] and follow from the similar estimates for a Brownian
motion from [37]; the second can be treated by using random measure theory (see Section 2.4), which is an extension
of Poisson random measure integration theory (see [13] and [14]); finally, the latter one can be transformed to a
discrete martingale by an approximation argument, so the desired Lp-estimates are nothing more but the Burkholder–
Rosenthal inequalities (see [5,15,46] for details).

The canonical decomposition also plays a significant rôle in obtaining Lp-estimates for weakly differentially sub-
ordinated martingales. The weak differential subordination property as a vector-valued generalization of Burkholder’s
differential subordination property (see [7,23,30,40]) was introduced by the author in [53], and can be described in the
following way: an X-valued local martingale M̃ is weakly differentially subordinated to an X-valued local martingale
M if for each x∗ ∈ X∗ and for each t ≥ s ≥ 0 a.s.∣∣〈M̃0, x

∗〉∣∣≤ ∣∣〈M0, x
∗〉∣∣,[〈

M̃, x∗〉]
t
− [〈

M̃, x∗〉]
s
≤ [〈

M,x∗〉]
t
− [〈

M,x∗〉]
s
.

If X is a UMD Banach space and p ∈ (1,∞), then applying Lp-bounds (1.2) for the terms of the canonical decom-
position together with Lp-bounds for purely discontinuous (see [53]) and continuous (see [51]) weakly differentially
subordinated martingales yields

(
E‖M̃∞‖p

) 1
p ≤ cp,X

(
E‖M∞‖p

) 1
p , (1.3)
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where the best known constant cp,X equals β2
p,X(βp,X + 1) (here βp,X is the UMDp constant of X, see Section 2.1

for the definition). Sharp estimates for cp,X in (1.3) remain unknown. Moreover, it is an open problem whether one
can prove weak L1-estimates of the form

λP
(
M̃∗∞ > λ

)
�p,X E‖M∞‖, λ > 0. (1.4)

Here this question is partly solved: we show that (1.4) holds for M̃ being one of the terms of the canonical decompo-
sition of M (see (1.5) and (4.2)).

The discussion above demonstrates that the canonical decomposition is useful for vector-valued stochastic integra-
tion and weak differential subordination, so the following natural question arises: for which Banach spaces X does
every X-valued local martingale have the canonical decomposition? The paper [51] together with the estimates (1.2)
provides the answer for Lp-martingales given p ∈ (1,∞). Then X being a UMD Banach space guarantees such a
decomposition.

The present paper is devoted to providing the definitive answer to this question (see Section 4):

Theorem 1.1. Let X be a Banach space. Then the following are equivalent:

(i) X is a UMD Banach space;
(ii) every local martingale M : R+ × � → X admits the canonical decomposition M = Mc + Mq + Ma .

Moreover, if this is the case, then for all t ≥ 0 and λ > 0

λP
((

Mc
)∗
t
> λ

)
�X E‖Mt‖,

λP
((

Mq
)∗
t
> λ

)
�X E‖Mt‖,

λP
((

Ma
)∗
t
> λ

)
�X E‖Mt‖.

(1.5)

Notice that the inequalities (1.5) are new even in the real-valued case, even though in that case they are direct
consequences of the sharp weak (1,1)-estimates for differentially subordinated martingales proven by Burkholder in
[8,9] (see also [39,40] for details), from which one can show the following estimates

λP
((

Mc
)∗
t
> λ

)≤ 2E|Mt |,
λP
((

Mq
)∗
t
> λ

)≤ 2E|Mt |,
λP
((

Ma
)∗
t
> λ

)≤ 2E|Mt |.
The main instrument for proving (ii) ⇒ (i) in Theorem 1.1 is Burkholder’s characterization of UMD Banach spaces

from [6]: X is a UMD Banach space if and only if there exists a constant C > 0 such that for any X-valued discrete
martingale (fn)n≥0, for any sequence (an)n≥0 with values in {−1,1} one has that

g∗∞ > 1 a.s. =⇒ E‖f∞‖ > C,

where (gn)n≥0 is an X-valued discrete martingale such that

gn − gn−1 = an(fn − fn−1), n ≥ 1,

g0 = a0f0,
(1.6)

and where g∗∞ := supn≥0 ‖gn‖. Using this characterization for a given non-UMD Banach space X we construct a
martingale M :R+ × � → X which does not have the canonical decomposition (see Section 4.4).

In order to obtain weak L1-estimates of the form (1.5) together with (i) ⇒ (ii) in Theorem 1.1 one needs to
use two techniques. The first is the so-called Gundy decomposition of martingales. This decomposition was first
obtained by Gundy in [19] for discrete real-valued martingales. Later in [11,23,33,42] a more general version of this
decomposition for vector-valued discrete martingales was obtained. In Section 3 we will present a continuous-time
analogue of Gundy’s decomposition, which has the following form: an X-valued martingale M can be decomposed
into a sum of three martingales M1, M2, and M3, depending on λ > 0, such that for each t ≥ 0
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(i) ‖M1
t ‖L∞(�;X) ≤ 2λ, E‖M1

t ‖ ≤ 5E‖Mt‖,
(ii) λP((M2)∗t > 0) ≤ 4E‖Mt‖,

(iii) E(VarM3)t ≤ 7E‖Mt‖,

where VarM is a variation of the path of M .
The second important tool is weak differential subordination martingale transforms. Discrete martingale transforms

were pioneered by Burkholder in [4], where he considered a transform (fn)n≥0 
→ (gn)n≥0 of a real-valued martingale
(fn)n≥0 such that

gn − gn−1 = an(fn − fn−1), n ≥ 1,

g0 = a0f0

for some {0,1}-valued deterministic sequence (an)n≥0. Later in [6,11,17,22,23,33] several approaches and general-
izations to the vector-valued setting and operator-valued predictable sequence (an)n≥0 have been discovered, while
the martingale (fn)n≥0 remained discrete. In particular for a very broad class of discrete martingale transforms it
was shown that Lp-boundedness of the transform implies weak L1-bounds. In Section 4.2 (see Theorem 4.9) we
prove the same assertion for a weak differential subordination martingale transform, i.e. for an operator T act-
ing on continuous-time X-valued local martingales such that T M is weakly differentially subordinated to M and
{M∗∞ = 0} ⊂ {(T M)∗∞ = 0} for any X-valued local martingale M . A particular example of such a martingale trans-
form T is M 
→ T M = Mc, where Mc is the continuous part of M in the canonical decomposition. Due to (1.2) this
operator is bounded as an operator acting on Lp-martingales if X is UMD, so by Theorem 4.9 the first inequality of
(1.5) follows. Even though in the case of a discrete filtration such an operator has a classical Burkholder’s form (1.6)
from [6] (with (an)n≥0 being predictable instead of deterministic, see Proposition 4.13 and the remark thereafter),
such transforms are of interest since they act on continuous-time martingales, which was not considered before.

2. Preliminaries

In the sequel the scalar field is assumed to be R, unless stated otherwise.

2.1. UMD Banach spaces

A Banach space X is called a UMD space if for some (or equivalently, for all) p ∈ (1,∞) there exists a constant
β > 0 such that for every N ≥ 1, every martingale difference sequence (dn)

N
n=1 in Lp(�;X), and every scalar-valued

sequence (εn)
N
n=1 such that |εn| = 1 for each n = 1, . . . ,N we have

(
E

∥∥∥∥∥
N∑

n=1

εndn

∥∥∥∥∥
p) 1

p

≤ β

(
E

∥∥∥∥∥
N∑

n=1

dn

∥∥∥∥∥
p) 1

p

.

The least admissible constant β is denoted by βp,X and is called the UMDp constant or, if the value of p is understood,
the UMD constant, of X. It is well-known that UMD spaces obtain a large number of useful properties, such as being
reflexive. Examples of UMD spaces include all finite dimensional spaces and the reflexive range of Lq -spaces, Besov
spaces, Sobolev spaces, Schatten class spaces, and Orlicz spaces. Example of spaces without the UMD property
include all nonreflexive Banach spaces, e.g. L1(0,1) and C([0,1]). We refer the reader to [10,23,43,47] for details.

2.2. Martingales and càdlàg processes

Let X be a Banach space, F = (Ft )t≥0 be a filtration that satisfies the usual conditions (e.g. right-continuity). For
each 1 ≤ p < ∞ a martingale M : R+ × � → X is called an Lp-martingale (or, an Lp-integrable martingale) if
M∞ := limt→∞ Mt exists in Lp(�;X); we call M an L∞-martingale if ‖Mt‖L∞(�;X) is uniformly bounded in
t ∈ R+. For a given p ∈ [1,∞) we will denote the set of all X-valued Lp-integrable F-martingales by Mp

X(F);
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further, we will denote the set of all X-valued local Lp-integrable F-martingales by Mp,loc
X (F). Note that Mp

X(F) is
a Banach space endowed with the norm ‖M‖Mp

X(F) := ‖M∞‖Lp(�;X).

We will denote by M1,∞
X (F) the set of all X-valued local F-martingales M such that

sup
λ>0

λP
(
M∗∞ > λ

)
< ∞.

In the sequel we will omit F from the notations Mp
X(F), Mp,loc

X (F), and M1,∞
X (F).

Remark 2.1. Let X be a Banach space, M : R+×� → X be a martingale. Then (Nt )t≥0 := (‖Mt‖)t≥0 is a submartin-
gale by [26, Lemma 7.11] and the fact that x 
→ ‖x‖ is a convex function on X. Moreover, by [28, Theorem 1.3.8(i)]
we have that for each t ≥ 0, p ≥ 1 and λ > 0

P
(
M∗

t > λ
)≤ E‖Mt‖p

λp
. (2.1)

A function f : R+ → X is called càdlàg (a French abbreviation of the phrase “continuous from right, limits from
left”) if it is right-continuous and if it has left-hand limits. A process V :R+ ×� → X is called càdlàg if it has càdlàg
paths. For instance, any martingale M : R+ × � → X has a càdlàg version given F satisfies the usual assumptions
(see [53] for details in the vector-valued setting).

Let τ be a stopping time. If V : R+ × � → X is càdlàg, then we can define �Vτ : � → X in the following way:

�Vτ =

⎧⎪⎨⎪⎩
V0, τ = 0,

Vτ − limε→0 V0∨(τ−ε), 0 < τ < ∞,

0, τ = ∞,

where limε→0 V0∨(τ−ε) exists since V has paths with left-hand limits.
One can define the so-called ucp topology (uniform convergence on compact sets in probability) on the linear space

of all càdlàg adapted X-valued processes; convergence in this topology can be characterized in the following way: a
sequence (V n)n≥1 of càdlàg adapted X-valued processes converges to V : R+ × � → X in the ucp topology if for
any t ≥ 0 and K > 0 we have that

P

(
sup

0≤s≤t

∥∥Vs − V n
s

∥∥> K
)

→ 0, n → ∞. (2.2)

Then the following proposition holds.

Proposition 2.2. The linear space of all càdlàg adapted X-valued processes endowed with the ucp topology is com-
plete.

Proof. This is just the vector-valued analogue of [45, Theorem 62], for which one needs to apply the vector-valued
variation of [44, Problem V.1]. �

We state without proof the following elementary but useful statement.

Lemma 2.3. Let X be a Banach space, (fn)n≥1, f be continuous X-valued functions on [0,1] such that fn → f in
C([0,1];X) as n → ∞. Then the function F : [0,1] →R+ defined as follows

F(t) = sup
n

∥∥fn(t)
∥∥, t ∈ [0,1],

is continuous.
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2.3. Purely discontinuous martingales

Let M :R+ ×� →R be a local martingale. Then M is called purely discontinuous if [M] is a pure jump process (i.e.
[M] has a version that is a constant a.s. in time). Let X be a Banach space, M : R+ × � → X be a local martingale.
Then M is called purely discontinuous if for each x∗ ∈ X∗ a local martingale 〈M,x∗〉 is purely discontinuous. The
following proposition can be found in [15,51].

Proposition 2.4. A martingale M : R+ × � → X is purely discontinuous if and only if MN is a martingale for any
continuous bounded martingale N : R+ × � → R such that N0 = 0.

In the sequel we will use the following lemma, which proof can be found in [15,51].

Lemma 2.5. Let X be a Banach space, M : R+ × � → X be a martingale which is both continuous and purely
discontinuous. Then M = M0 a.s.

The reader can find more on purely discontinuous martingales in [15,24–26,51,53].

2.4. Random measures

Let (J,J ) be a measurable space. Then a family μ = {μ(ω;dt,dx),ω ∈ �} of nonnegative measures on (R+ ×
J ;B(R+)⊗J ) is called a random measure. A random measure μ is called integer-valued if it takes values in N∪{∞},
i.e. for each A ∈ B(R+) ⊗F ⊗J one has that μ(A) ∈N∪ {∞} a.s., and if μ({t} × J ) ∈ {0,1} a.s. for all t ≥ 0.

Recall that P and O denote the predictable and optional σ -algebras on R+ × � and P̃ =P ⊗J and Õ := O ⊗J
are the induced σ -algebras on �̃ := R+ ×�× J . A process F :R+ ×� → R is called optional if it is O-measurable.
A random measure μ is called optional (resp. predictable) if for any Õ-measurable (resp. P̃-measurable) nonnegative
F :R+ × � × J → R+ the stochastic integral

(t,ω) 
→
∫
R+×J

1[0,t](s)F (s,ω, x)μ(ω;ds,dx), t ≥ 0,ω ∈ �,

as a function from R+ × � to R+ is optional (resp. predictable).
Let X be a Banach space. Then we can extend stochastic integration to X-valued processes in the following way.

Let F :R+ × � × J → X, μ be a random measure. The integral

t 
→
∫
R+×J

F (s, ·, x)1[0,t](s)μ(·;ds,dx), t ≥ 0,

is well-defined and optional (resp. predictable) if μ is optional (resp. predictable), F is Õ-strongly-measurable (resp.
P̃-strongly-measurable), and

∫
R+×J

‖F‖dμ is a.s. bounded.

A random measure μ is called P̃-σ -finite if there exists an increasing sequence of sets (An)n≥1 ⊂ P̃ such that∫
R+×J

1An(s,ω, x)μ(ω;ds,dx) is finite a.s. and
⋃

n An = R+ × � × J . According to [25, Theorem II.1.8] every

P̃-σ -finite optional random measure μ has a compensator: a unique P̃-σ -finite predictable random measure ν such
that E

∫
R+×J

W dμ = E
∫
R+×J

W dν for each P̃-measurable real-valued nonnegative W . We refer the reader to [25,

Chapter II.1] for more details on random measures. For any optional P̃-σ -finite measure μ we define the associated
compensated random measure by μ̄ = μ − ν.

For each P̃-strongly-measurable F : R+ × � × J → X such that

E

∫
R+×J

‖F‖dμ < ∞

(or, equivalently, E
∫
R+×J

‖F‖dν < ∞, see the definition of a compensator above) we can define a process t 
→∫
[0,t]×J

‖F‖dμ̄ by
∫
[0,t]×J

F dμ − ∫
[0,t]×J

F dν. The following lemma is a vector-valued version of [25, Defini-
tion 1.27].
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Lemma 2.6. Let X be a Banach space, μ be a P̃-σ -finite optional random measure, F : R+ × � × J → X be
P̃-strongly-measurable such that E

∫
R+×J

‖F‖dμ < ∞. Then (
∫
[0,t]×J

F dμ̄)t≥0 is a purely discontinuous X-valued
martingale.

Proof. It is sufficient to show that

t 
→
〈∫

[0,t]×J

F dμ̄, x∗
〉
=
∫

[0,t]×J

〈
F,x∗〉dμ̄, t ≥ 0,

is a purely discontinuous martingale for each x∗ ∈ X∗, which can be shown similarly the discussion right below [25,
Definition 1.27]. �

The reader can find more information on random measures in [15,25,26,31,32,38].

2.5. Predictable and totally inaccessible stopping times

A stopping time τ is called predictable if there exists a sequence of stopping times (τn)n≥0 such that τn < τ a.s. on
{τ > 0} and τn ↗ τ a.s. as n → ∞. A stopping time τ is called totally inaccessible if P(τ = σ) = 0 for any predictable
stopping time σ . Later we will need the following lemma.

Lemma 2.7. Let X be a Banach space, V : R+ ×� → X be a predictable càdlàg process. Let τ be a totally inacces-
sible stopping time. Then �Vτ = 0 a.s.

Proof. It is sufficient to show that 〈�Vτ , x
∗〉 = 0 a.s. for any x∗ ∈ X∗. Then the statement follows from [25, Propo-

sition I.2.24]. �

Let X be a Banach space, M : R+ × � → X be a local martingale. Then M has a càdlàg version (see e.g. [53]),
and therefore we can define adapted càdlàg process Mτ− = (Mτ−

t )t≥0 in the following way

Mτ−
t := lim

ε→0
M(τ−ε)∧t , t ≥ 0, (2.3)

where we set Mt = 0 for t < 0. Notice that Mτ− is not necessarily a local martingale. For instance if X = R and
M is a compensated Poisson process, τ := inft≥0{�Mt > 0}, then Mτ−

t = −(t ∧ τ) a.s. for each t ≥ 0, so it is
a supermartingale which is not even a local martingale. Nevertheless, if τ is a predictable stopping time, then the
following lemma holds. Recall that for any stopping time τ we define σ -field Fτ− in the following way

Fτ− := σ
{
F0 ∪ (

Ft ∩ {t < τ }), t > 0
}

(see [26, page 491] for details).

Lemma 2.8. Let X be a Banach space, M : R+ × � → X be a local martingale, τ be a predictable stopping time.
Then Mτ− defined as in (2.3) is a local martingale. Moreover, if M is an L1-martingale, then Mτ− is an L1-martingale
as well.

Proof. Without loss of generality we can let M0 = 0 a.s. First assume that M is an L∞-martingale. Let (τn)n≥1
be an announcing to τ sequence of stopping times, i.e. τn < τ a.s. on {τ > 0} and τn ↗ τ a.s. as n → ∞. Then
Mτn is an L1-martingale for each n ≥ 1. Moreover, M

τn
t → Mτ−

t a.s. as n → ∞ for each t ≥ 0. On the other hand,
M

τn
t = E(Mt |Fτn) → E(Mt |Fτ−) a.s. as n → ∞ by [23, Theorem 3.3.8] and [26, Lemma 25.2(iii)], and hence in L1

by the uniform boundedness due to the boundedness of M∞. Therefore for each t ≥ 0 we have that Mτ−
t = E(Mt |Fτ−)

is integrable, hence for all 0 ≤ s ≤ t

E
(
Mτ−

t |Fs

)= E

(
lim

n→∞M
τn
t |Fs

)
= lim

n→∞E
(
M

τn
t |Fs

)= lim
n→∞Mτn

s = Mτ−
s ,
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where all the limits are taken in L1(�;X). Hence (Mτ−
t )t≥0 is a martingale. Moreover, by [23, Corollary 2.6.30]

E
∥∥Mτ−

t

∥∥= E
∥∥E(Mt |Fτ−)

∥∥≤ E‖Mt‖ ≤ E‖M∞‖, t ≥ 0. (2.4)

Now we treat the general case. Without loss of generality using a stopping time argument assume that M is an
L1-martingale. Let (Mm)m≥1 be a sequence of X-valued L∞-martingales such that Mm∞ → M∞ in L1(�;X) as
m → ∞. Analogously the first part of the proof Mτ−

t = E(Mt |Fτ−) for each t ≥ 0; moreover, by (2.4) ((Mm)τ−
t )m≥1

is a Cauchy sequence in L1(�;X). Therefore by [23, Corollary 2.6.30], (Mm)τ−
t → Mτ−

t in L1(�;X) for each t ≥ 0,
hence for each t ≥ s ≥ 0 by [23, Corollary 2.6.30]

E
(
Mτ−

t |Fs

)= E

(
lim

m→∞
(
Mm

)τ−
t

∣∣Fs

)
= lim

m→∞E
((

Mm
)τ−
t

|Fs

)
= lim

m→∞
(
Mm

)τ−
s

= Mτ−
s ,

where all the limits are again taken in L1(�;X). Therefore (Mτ−
t )t≥0 is an L1-martingale. �

2.6. Compensator and variation

Let X be a Banach space, M : R+ × � → X be an adapted càdlàg process. Then a predictable process V :R+ × � is
called a predictable compensator of M (or just a compensator of M) if V0 = 0 a.s. and if M −V is a local martingale.

The variation VarM :R+ × � →R+ of a càdlàg process M : R+ × � → X is defined in the following way:

(VarM)t := ‖M0‖ + lim sup
mesh→0

N∑
n=1

∥∥M(tn) − M(tn−1)
∥∥, (2.5)

where the limit superior is taken over all the partitions 0 = t0 < · · · < tN = t .
Let V : R+ × � → X be a càdlàg adapted process. Analogously to the scalar-valued situation we can define a

càdlàg adapted process V ∗ :R+ × � →R+ of the following form

V ∗
t := sup

s∈[0,t]
‖Vs‖, t ≥ 0.

3. Gundy’s decomposition of continuous-time martingales

For the proof of our main results, Theorem 4.8 and Theorem 4.9, we will need Gundy’s decomposition of continuous-
time martingales, which is a generalization of Gundy’s decomposition of discrete martingales (see [19] and [23,
Theorem 3.4.1] for the details).

Theorem 3.1 (Gundy’s decomposition). Let X be a Banach space, M : R+ × � → X be a martingale. Then for
each λ > 0 there exist martingales M1,M2,M3 : R+ × � → X such that M = M1 + M2 + M3 and

(i) ‖M1
t ‖L∞(�;X) ≤ 2λ, E‖M1

t ‖ ≤ 5E‖Mt‖ for each t ≥ 0,
(ii) λP((M2)∗t > 0) ≤ 4E‖Mt‖ for each t ≥ 0,

(iii) E(VarM3)t ≤ 7E‖Mt‖ for each t ≥ 0.

Remark 3.2. Notice that if M is a discrete martingale (i.e. Mt = M[t] for any t ≥ 0), then the decomposition in
Theorem 3.1 turns to the classical discrete one from [23, Theorem 3.4.1].

For the proof we will need the following intermediate steps.
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Lemma 3.3. Let X be a Banach space, M : R+ ×� → X be a càdlàg adapted process such that E(VarM)t < ∞ for
each t ≥ 0 and a.s.

Mt =
∑

0≤s≤t

�Ms, t ≥ 0.

Then M has a càdlàg predictable compensator V :R+ × � → X such that for each t ≥ 0

E‖Vt‖ ≤ E(VarV )t ≤ E(VarM)t . (3.1)

In particular, if M has a.s. at most one jump, then

E‖Vt‖ ≤ E(VarV )t ≤ E(VarM)t = E‖Mt‖. (3.2)

Proof. Let μM be a random measure defined on R+ × X pointwise in ω ∈ � in the following way:

μM(ω;B × A) :=
∑
u∈B

1A\{0}
(
�Mu(ω)

)
, ω ∈ �,B ∈ B(R+),A ∈ B(X). (3.3)

Notice that (VarM)t =∑
0≤s≤t ‖�Ms‖ a.s. for each t ≥ 0, so in particular a.s.

(VarM)t =
∫

[0,t]×X

‖x‖dμM(x, s), t ≥ 0. (3.4)

Also note that μM is P-σ -finite: for each 0 ≤ u ≤ v and t ≥ 0 one has that

E

∫
[0,t]×X

1‖x‖∈[u,v] dμM
�u,v E

∫
[0,t]×X

‖x‖1‖x‖∈[u,v] dμM

≤ E

∫
[0,t]×X

‖x‖dμM

= E(VarM)t < ∞.

Since μM is an integer-valued optional P-σ -finite random measure, it has a predictable compensator νM (see
Section 2.4 and [25, Theorem II.1.8]), and therefore since by (3.4)

E

∫
[0,t]×X

‖x‖dμM(x, s) = E(VarM)t < ∞,

we have that

t 
→ Vt :=
∫

[0,t]×X

x dνM(x, s), t ≥ 0,

is integrable and càdlàg in time due to the fact that it is an integral with respect to the measure νM a.s. Moreover, by
the definition of variation (2.5) we have that ‖Vt‖ ≤ (VarV )t a.s. for each t ≥ 0, and hence

E‖Vt‖ ≤ E(VarV )t ≤ E

∫
[0,t]×X

‖x‖dνM(x, s)
(∗)= E

∫
[0,t]×X

‖x‖dμM(x, s)

(∗∗)= E(VarM)t ,

where (∗) holds due to the definition of a compensator, and (∗∗) follows from (3.4). To show (3.2) it is sufficient to
notice that if M has at most one jump then (VarM)t = ‖Mt‖ a.s. for each t ≥ 0. �

The following lemma is folklore, but the author could not find an appropriate reference, so we present it with the
proof here.
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Lemma 3.4. Let X be a Banach space, V : R+ ×� → X be a right-continuous predictable process, V0 = 0 a.s. Then
V is locally bounded.

Proof. For each n ≥ 0 define a stopping time τn := inf{t ≥ 0 : ‖Vt‖ ≥ n}. Then a sequence (τn)n≥1 of stopping times
is increasing a.s. and tends to infinity as n → ∞. Moreover, (τn)n≥1 are predictable by [26, Theorem 25.14] and the
fact that for each n ≥ 1

{τ ≤ t} =
{

sup
0≤s≤t

‖Vs‖ ≥ n
}

∈P . (3.5)

Therefore for each n ≥ 1 there exists an announcing sequence (τm,n)m≥1 of stopping times. Choose mn so that P(τn −
τmn,n > 1

2n ) < 1
2n . Then (τmn,n)n≥1 is such that τmn,n → ∞ a.s. as n → ∞, and for each n ≥ 0 we have that a.s.

sup0≤s≤τmn,n
‖Vs‖ ≤ sup0≤s<τn

‖Vs‖ ≤ n. �

Let τ and σ be stopping times. Then we can set

τ − ∧σ− := (τ ∧ σ) − . (3.6)

Notice that if M : R+ × � → X is a càdlàg process, then (Mτ−)σ− = Mτ−∧σ−.

Proof of Theorem 3.1. By a stopping time argument we can assume that M is an L1-martingale. Define a stopping
time τ is the following way:

τ = inf

{
t ≥ 0 : ‖Mt‖ ≥ λ

2

}
.

Let M2,1 := M − Mτ and let M3,1(·) = �Mτ 1[0,·](τ ) + Mτ−
0 , where by (2.3) we can conclude that a.s.

Mτ−
0 :=

{
M0, τ > 0,

0, τ = 0.
(3.7)

Let N : R+ × � → X be such that Nt = �Mτ 1[0,t](τ ), t ≥ 0. Then due to the fact that Mτ = E(M∞|Fτ ) by [26,
Theorem 7.29], [23, Corollary 2.6.30], and the fact that ‖Mτ−‖ ≤ λ

2 a.s., we get

E(VarN)∞ = E‖�Mτ‖ = E‖Mτ − Mτ−‖ ≤ E‖Mτ‖ +E
(‖Mτ−‖1τ<∞

)
≤ E‖M∞‖ + λ

2
< ∞. (3.8)

Therefore by Lemma 3.3, N has a compensator V . Let

σ := inf
{
t ≥ 0 : ‖Vt‖ ≥ λ

}
be a stopping time. Then by (3.5) σ is a predictable stopping time. Define now M1 = Mσ−∧τ− +V σ− −Mτ−

0 , M2,2 =
(Mτ− + V ) − (Mσ−∧τ− + V σ−), M3,2 = N − V where σ − ∧τ− is defined as in (3.6). Define M2 := M2,1 + M2,2

and M3 := M3,1 + M3,2. Then M = M1 + M2 + M3. Now let us describe why this is the right choice.
Step 1: M1. First show that M1 is a martingale. Indeed, for each t ≥ 0

M1
t = Mσ−∧τ−

t + V σ−
t − Mτ−

0 = (
Mτ−

t + Vt − Mτ−
0

)σ−

= (
Mτ

t − 1τ∈[0,t]�Mτ + Vt − M
τ2−
0

)σ−

= ((
Mτ

t − Mτ−
0

)− (Nt − Vt)
)σ−

, (3.9)
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and the last expression is a martingale due to the fact that Mτ is a martingale by [26, Theorem 7.12], the fact that
N − V is a martingale by the definition of a compensator, Lemma 2.8, and the fact that by (3.8)

E‖N∞‖ ≤ E(VarN)∞ ≤ E‖M∞‖ + λ

2
< ∞.

Now let us check (i): ‖Mσ−∧τ−∞ ‖, ‖Mτ−
0 ‖ ≤ λ

2 a.s. by the definition of τ , and ‖V σ−∞ ‖ ≤ λ by the definition of σ ,
so ‖M1∞‖ ≤ 2λ a.s.

Further, to prove the second part of (i) we will use the representation of M1 from the last line of (3.9). Notice that
by [26, Theorem 7.12] and [23, Corollary 2.6.30] for each fixed t ≥ 0

E
∥∥Mτ

t

∥∥≤ E‖Mt‖. (3.10)

Moreover,

E‖Nt‖ = E
∥∥Mτ

t − Mτ−
t

∥∥≤ E
∥∥Mτ

t

∥∥+E
(∥∥Mτ−

t

∥∥1τ<∞
)

≤ E
∥∥Mτ

t

∥∥+E

(
λ

2
1τ<∞

)
≤ 2E

∥∥Mτ
t

∥∥ (∗)≤ 2E‖Mt‖,

where ‖Mτ−
t ‖ ≤ λ

2 ≤ ‖Mτ
t ‖ on {τ < ∞} by the definition of τ , and (∗) follows from [26, Theorem 7.12] and [23,

Corollary 2.6.30]. Therefore by (3.2)

E‖Vt‖ ≤ E‖Nt‖ ≤ 2E‖Mt‖ (3.11)

as well. Finally, E‖Mτ−
0 ‖ ≤ E‖M0‖ ≤ E‖Mt‖ by (3.7) and [23, Corollary 2.6.30]. Consequently, the second part of

(i) holds by the estimates above and by the triangle inequality.
Step 2: M2. First note that

M2 = M − Mτ + (
Mτ− + V

)− (
Mτ− + V

)σ−
. (3.12)

Let us check that M2 is a martingale. M − Mτ is a martingale by [26, Theorem 7.12]. Furthermore,

Mτ− + V = Mτ − (N − V )

is a martingale as well due to [26, Theorem 7.12] and the fact that V is a compensator of N . Finally, (Mτ− + V )σ−
is a martingale by Lemma 2.8.

Let us now prove (ii). Notice that by (3.12)

P
((

M2)∗
t
> 0

)≤ P
((

M − Mτ
)∗
t
> 0

)+ P
(((

Mτ− + V
)− (

Mτ− + V
)σ−)∗

t
> 0

)
.

First estimate P((M − Mτ)∗t > 0):

P
((

M − Mτ
)∗
t
> 0

)≤ P(τ ≤ t) ≤ P

(
M∗

t ≥ λ

2

)
≤ 2E‖Mt‖

λ
,

where the latter inequality holds by (2.1). Using the same machinery we get

P
(((

Mτ− + V
)− (

Mτ− + V
)σ−)∗

t
> 0

) ≤ P(σ ≤ t)

= P(‖Vt‖ ≥ λ)
(i)≤ E‖Vt‖

λ

(ii)≤ 2E‖Mt‖
λ

,

where (i) follows from the Chebyshev inequality, and (ii) follows from (3.11). This terminates the proof of (ii).
Step 3: M3. Recall that

M3 = Mτ−
0 + N − V.
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Therefore by the triangle inequality a.s. for each t ≥ 0

E
(
VarM3)

t
≤ E

∥∥Mτ−
0

∥∥+E(VarN)t +E(VarV )t

≤ E‖Mt‖ + 2E‖Nt‖ ≤ 5E‖Mt‖, (3.13)

where the latter inequality holds by (3.11), while the rest follows from (3.1) and the fact that E‖Mτ−
0 ‖ ≤ E‖M0‖ ≤

E‖Mt‖. �

Remark 3.5. Let p ∈ (1,∞), M be an Lp-martingale, λ > 0, M = M1 + M2 + M3 be Gundy’s decomposition (see
the theorem above). Then M1 is an Lp martingale since ‖M1

t ‖L∞(�;X) ≤ 2λ for all t ≥ 0; M3 is a local Lp-martingale
since M3 = Mτ−

0 + N − V , where both Mτ−
0 and N∞ = �Mτ are Lp-integrable (the latter is Lp-integrable by the

argument similar to (3.8)), and V is locally Lp-integrable by Lemma 3.4; finally, M2 is a local Lp-martingale since
M2 = M − M1 − M3. Therefore all the martingales in Gundy’s decomposition are locally Lp-integrable given M is
an Lp-martingale.

4. The canonical decomposition of local martingales

The current section is devoted to the proof of the fact that the canonical decomposition (as well as the Meyer–Yoeurp
and the Yoeurp decompositions) of any X-valued local martingale exists if and only if X has the UMD Banach
property. Recall that the Meyer–Yoeurp decomposition split a local martingale M into a sum M = Mc + Md of a
continuous local martingale Mc and a purely discontinuous local martingale Md , while the Yoeurp decomposition split
a purely discontinuous local martingale Md into a sum Md = Mq + Ma of a quasi-left continuous local martingale
Mq and a local martingale Ma with accessible jumps.

First we give all the basic definitions properly, and thereafter we provide the reader with the proof of the main
statement, Theorem 4.8.

4.1. Basic definitions and decompositions of Lp-martingales

Let X be a Banach space. Recall that a purely discontinuous local martingale have been defined in Section 2.3.

Definition 4.1. A local martingale M : R+ × � → X is called to have the Meyer–Yoeurp decomposition if there exist
local martingales Mc,Md : R+ × � → X such that Mc is continuous, Md is purely discontinuous, Mc

0 = 0, and
M = Mc + Md .

Remark 4.2. Recall that by [51] if M = Mc + Md is the Meyer–Yoeurp decomposition, then 〈Mc,x∗〉 is continuous
and 〈Md,x∗〉 is purely discontinuous for any x∗ ∈ X∗; therefore this decomposition is unique by the uniqueness of
the Meyer–Yoeurp decomposition of a real-valued local martingale (see [26, Theorem 26.14] and [51] for details).

Let M : R+ × � → X be a local martingale. Then M is called quasi-left continuous if �Mτ = 0 a.s. for any
predictable stopping time τ , and M is called with accessible jumps if �Mτ = 0 a.s. for any totally inaccessible
stopping time τ (see Section 2.5 for the definition of a predictable and a totally inaccessible stopping times).

Definition 4.3. A purely discontinuous local martingale Md : R+ × � → X is called to have the Yoeurp decom-
position if there exist purely discontinuous local martingales Mq,Ma : R+ × � → X such that Mq is quasi-left
continuous, Ma has accessible jumps, M

q

0 = 0, and Md = Mq + Ma .

Remark 4.4. Analogously to Remark 4.2 it follows from [26, Corollary 26.16] that the Yoeurp decomposition is
unique.

Composing Definitions 4.1 and 4.3 we get the canonical decomposition.
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Definition 4.5. A local martingale M :R+ ×� → X is called to have the canonical decomposition if there exist local
martingales Mc,Mq,Ma : R+ × � → X such that Mc is continuous, Mq and Ma are purely discontinuous, Mq is
quasi-left continuous, Ma has accessible jumps, Mc

0 = M
q

0 = 0, and M = Mc + Mq + Ma .

Remark 4.6. Notice that if M = Mc + Mq + Ma is the canonical decomposition, then �M
q
τ = �Mτ for any totally

inaccessible stopping time τ since in this case �Mc
τ = �Ma

τ = 0 by the definition of a continuous local martingale
and a local martingale with accessible jumps. Analogously, �Ma

τ = �Mτ for any predictable stopping time τ .

The reader can find further details on the martingale decomposition discussed above in [15,25,26,36,51,54].
Due to [51] the UMD property guarantees the canonical decomposition of any X-valued Lp-martingale with p ∈

(1,∞) and the following proposition holds:

Proposition 4.7. Let X be a UMD Banach space, p ∈ (1,∞). Then any Lp-martingale M : R+ × � → X has the
canonical decomposition M = Mc + Mq + Ma , and then for each t ≥ 0 we have that

E
∥∥Mc

t

∥∥p ≤ β
p
p,XE‖Mt‖p,

E
∥∥Mq

t

∥∥p ≤ β
p
p,XE‖Mt‖p,

E
∥∥Ma

t

∥∥p ≤ β
p
p,XE‖Mt‖p,

(4.1)

where βp,X is the UMDp constant of X.

It is a natural question whether the canonical decomposition is possible and whether one can extend (4.1) in the
case p = 1. It turns out that the UMD property is necessary and sufficient for the canonical decomposition of a general
local martingale, while instead of (4.1) one gets weak-type estimates:

Theorem 4.8 (Canonical decomposition of local martingales). Let X be a Banach space. Then X has the UMD
property if and only if any local martingale M : R+ ×� → X has the canonical decomposition M = Mc +Mq +Ma .
If this is the case, then for any λ > 0 and t ≥ 0

λP
((

Mc
)∗
t
> λ

)
�X E‖Mt‖,

λP
((

Mq
)∗
t
> λ

)
�X E‖Mt‖,

λP
((

Ma
)∗
t
> λ

)
�X E‖Mt‖.

(4.2)

For the proof of the main theorem we will need a considerable amount of machinery, which will be provided in
Sections 4.2–4.4.

4.2. Weak differential subordination martingale transforms

The current subsection is devoted to the proof of the fact that boundedness of a continuous-time martingale transform
from a certain specific class acting on Lp-martingales implies the corresponding weak L1-estimates. Such type of
assertions for special discrete martingale transforms was first obtained by Burkholder in [4]. Later the Burkholder’s
original statement was widely generalized in different directions (see [6,11,17,22,23,33]), even though the martingale
transforms were remaining acting on discrete martingales. The propose of the current section is to provide new results
for martingale transforms of the same spirit by considering continuous-time martingales. This will allow us to consider
linear operators that map a local martingale to the continuous part of the canonical decomposition, or the part of the
canonical decomposition which is purely discontinuous with accessible jumps, so weak L1-estimates (4.2) will follow
from Lp-estimates (4.1) and Theorem 4.9.
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Before proving the main statement (Theorem 4.9) we need to provide the reader with basic definitions. Let M :
R+ × � →R be a local martingale. We define a quadratic variation of M in the following way:

[M]t := P− lim
mesh→0

N∑
n=1

∣∣M(tn) − M(tn−1)
∣∣2, (4.3)

where the limit in probability is taken over partitions 0 = t0 < · · · < tN = t . The reader can find more about a quadratic
variation in [25,26,35,45].

Let M,N : R+ ×� →R be local martingales. Then N is called to be differentially subordinated to M (or N � M)
if |N0| ≤ |M0| a.s. and [N ]t − [N ]s ≤ [M]t − [M]s a.s. for each 0 ≤ s ≤ t < ∞. We recommend the reader [1,2,7,23,
40,50] for further acquaintance with differential subordination.

Let X be a Banach space, M,N : R+ × � → X be local martingales. Then N is called to be weakly differentially

subordinated to M (or N
w� M) if 〈N,x∗〉 is differentially subordinated to 〈M,x∗〉 for each x∗ ∈ X∗. The reader can

find more details on weak differential subordination in [41,51–53].
The following theorem will be an important tool to show Theorem 4.8 and it is connected with [23, Proposi-

tion 3.5.4]. Recall that Mp
X is a space of all Lp-integrable X-valued martingales, and Mp,loc

X is a space of all locally
Lp-integrable X-valued martingales (see Section 2.2).

Theorem 4.9. Let X be a Banach space, p ∈ (1,∞), T :Mp,loc
X →Mp,loc

X be a linear operator such that T M
w� M

and

M∗∞ = 0 =⇒ (T M)∗∞ = 0 a.s. (4.4)

for each M ∈Mp
X . Assume that T ∈ L(Mp

X). Then for any M ∈Mp
X

λP
(∥∥(T M)∗∞

∥∥> λ
)≤ Cp,T ,XE‖M∞‖, λ > 0, (4.5)

where Cp,T ,X = 26‖T ‖L(Mp
X)

p
p−1 + 28.

Remark 4.10. Notice that if X is a UMD Banach space, then T is automatically bounded on Mp
X and ‖T ‖L(Mp

X) ≤
β2

p,X(βp,X + 1) by (1.3) and [51] since T M
w� M for any M ∈Mp

X .

For the proof we will need several lemmas.

Lemma 4.11. Let X be a Banach space, M : R+ × � → X be a purely discontinuous martingale with M0 = 0 a.s.
Let μM be the corresponding random measure defined as in (3.3). Assume that

E

∑
s≥0

‖�Ms‖ = E

∫
R+×X

‖x‖dμM < ∞. (4.6)

Then Mt = ∫
[0,t]×X

x dμ̄M for each t ≥ 0 a.s.

Proof. By (4.6) there exists N : R+ × � → X such that Nt =∑
0≤s≤t �Ms for each t ≥ 0. Let V = N − M . Then

both t 
→ Nt − Vt = Mt , t ≥ 0, and

t 
→ Nt −
∫

[0,t]×X

x dνM =
∫

[0,t]×X

x dμM −
∫

[0,t]×X

x dνM =
∫

[0,t]×X

x dμ̄M, t ≥ 0,

are martingales. Therefore

t 
→ Vt −
∫

[0,t]×X

x dνM = Mt −
∫

[0,t]×X

x dμ̄M, t ≥ 0,
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is a predictable martingale, which is purely discontinuous as a difference of two purely discontinuous martingales
(see Lemma 2.6). On the other hand it is continuous by the predictability (see e.g. [29, Theorem 4] and [27,
Corollary 2.1.42]). Hence by Lemma 2.5 this martingale equals zero since it starts at zero, so M = N − V =∫
[0,·]×X

x dμ̄M . �

Lemma 4.12. Let X be a Banach space, M,N :R+ ×� → X be purely discontinuous martingales such that N
w� M .

Then E(VarN)t ≤ 2E(VarM)t for each t ≥ 0.

Proof. Without loss of generality E(VarM)∞ < ∞. Notice that since N
w� M , for a.e. (t,ω) ∈ R+ × � there exists

a(t,ω) ∈ [−1,1] such that �Nt(ω) = a(t,ω)�Mt(ω) (see [53]). Therefore a.s. for each t ≥ 0∫
[0,t]×X

‖x‖dμN(x, s) =
∑

0≤s≤t

‖�Ns‖ =
∑

0≤s≤t

∣∣a(s, ·)∣∣‖�Ms‖

≤
∑

0≤s≤t

‖�Ms‖ ≤ (VarM)t . (4.7)

So by Lemma 4.11 N = ∫
[0,·]×X

x dμ̄N , hence

(VarN)t =
(

Var
∫

[0,·]×X

x dμ̄N (x, s)

)
t

=
(

Var

(∫
[0,·]×X

x dμN(x, s) −
∫

[0,·]×X

x dνN(x, s)

))
t

≤
(

Var
∫

[0,·]×X

x dμN(x, s)

)
t

+
(

Var
∫

[0,·]×X

x dνN(x, s)

)
t

≤
∫

[0,t]×X

‖x‖dμN(x, s) +
∫

[0,t]×X

‖x‖dνN(x, s)

= 2
∫

[0,t]×X

‖x‖dμN(x, s)
(∗)≤ 2(VarM)t ,

where (∗) holds by (4.7). �

Proof of Theorem 4.9. The proof has the same structure as the proof of [23, Proposition 3.5.16]. Fix M ∈ Mp
X and

λ > 0. Let K := ‖T ‖L(Mp
X), M = M1 + M2 + M3 be Gundy’s decomposition of M from Theorem 3.1 at the level

αλ for some α > 0 which we will fix later. Notice that all M1, M2 and M3 are local Lp-martingales by Remark 3.5.
Then

P
(∥∥(T M)∗∞

∥∥> λ
)≤ P

(∥∥(T M1)∗
∞
∥∥>

λ

2

)
+ P

(∥∥(T M2)∗
∞
∥∥> 0

)+ P

(∥∥(T M3)∗
∞
∥∥>

λ

2

)
. (4.8)

Let us estimate each of these three terms separately. First,

P

(∥∥(T M1)∗
∞
∥∥>

λ

2

)
(i)≤
(

2

λ

)p

E
∥∥(T M1)∗

∞
∥∥p (∗)≤

(
2

λ

p

p − 1

)p

E
∥∥(T M1)

∞
∥∥p

(ii)≤
(

2K

λ

p

p − 1

)p

E
∥∥M1∞

∥∥p ≤
(

2K

λ

p

p − 1

)p∥∥M1∞
∥∥p−1

∞ E
∥∥M1∞

∥∥
(iii)≤

(
2K

λ

p

p − 1

)p

(2αλ)p−15E‖M∞‖ = 5(4αK
p

p−1 )p

2αλ
E‖M∞‖,
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where (i) follows from (2.1), (∗) follows from Doob’s maximal inequality [28, Theorem 1.3.8(iv)], (ii) holds by the
definition of K , and (iii) follows from Gundy’s decomposition.

Now turn to M2. By (4.4)

P
((

T M2)∗
∞ > 0

)≤ P
((

M2)∗
∞ > 0

)≤ 4

αλ
E‖M∞‖. (4.9)

Finally, by Lemma 4.12 and the fact that T M3
w� M3 we have that

E
(
VarT M3)

∞ ≤ 2E
(
VarM3)

∞,

hence

P

(∥∥(T M3)∗
∞
∥∥>

λ

2

)
(i)≤ 2

λ
E
∥∥(T M3)∗

∞
∥∥≤ 2

λ
E
(
VarT M3)

∞

(ii)≤ 4

λ
E
(
VarM3)

∞
(∗)≤ 28

λ
E‖M∞‖,

where (i) follows from (2.1), (ii) holds by (4.9), and (∗) holds by Theorem 3.1(iii). Therefore by (4.8)

λP
(∥∥(T M)∗∞

∥∥> λ
)≤ λ

(5(4αK
p

p−1 )p

2αλ
+ 4

αλ
+ 28

λ

)
E‖M∞‖

=
(5(4αK

p
p−1 )p

2α
+ 4

α
+ 28

)
E‖M∞‖,

and by choosing α = p−1
4Kp

we get

λP
(∥∥(T M)∗∞

∥∥> λ
)≤

(
10K

p

p − 1
+ 16K

p

p − 1
+ 28

)
E‖M∞‖

=
(

26K
p

p − 1
+ 28

)
E‖M∞‖,

which is exactly (4.5). �

The following proposition shows that the operator T from Theorem 4.9 has a special structure given the filtration
F = (Ft )t≥0 is generated by (Fn)n≥0: such martingale transforms are the same as those considered in [23, Proposi-
tion 3.5.4] and [6].

Proposition 4.13. Let X be a separable Banach space. Let the filtration F = (Ft )t≥0 be of the following form: Ft =
F�t� for each t ≥ 0, T be as in Theorem 4.9. Then there exists an (Fn)n≥0-predictable sequence (an)n≥0 with values
in [−1,1] such that �(T M)n = an�Mn a.s. for each n ≥ 0 for any M ∈Mp

X .

Proof. Let G = (Gn)n≥0 := (Fn)n≥0 be a discrete filtration. Due to the construction of F and the fact that G is discrete
we have that any F-martingale M is in fact discrete (i.e. Mt = M�t� a.s. for each t ≥ 0), hence any martingale has

accessible jumps, so by Lemma 4.20 it is sufficient to use the fact that T M
w� M for any M ∈ Mp

X in order to
apply Theorem 4.9. Let us show that there exists a G-adapted [−1,1]-valued sequence (an)n≥1 such that �(T M)n =
an�Mn a.s. for each n ≥ 0. Since X is separable, Lp(�;X) is separable by [23, Proposition 1.2.29]. Let (ξm)m≥1 be
a dense subset of Lp(�;X). For each m ≥ 1 we construct a martingale Mm in the following way: Mm

t := E(ξm|Ft ),

t ≥ 0. Then we have that ((T M)mn )n≥0
w� (Mm

n )n≥0 for each m ≥ 1, so by [53] for each m ≥ 1 there exists a G-adapted
[−1,1]-valued sequence (am

n )n≥0 such that �(T Mm)n = am
n �Mm

n for each n ≥ 0. Let us show that for each m1 �= m2
and n ≥ 0 we have that

am1
n = am2

n a.s. on Am1,m2
n , (4.10)
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where A
m1,m2
n := {�M

m1
n �= 0} ∩ {�M

m2
n �= 0}. Let ((ck

1, c
k
2))k≥1 be a dense subset of R2 such that for each k ≥ 1

ck
1�Mm1

n + ck
2�Mm2

n �= 0 a.s. on Am1,m2
n .

Then T (ck
1M

m1 + ck
2M

m2)
w� ck

1M
m1 + ck

2M
m2 for each k ≥ 1, and hence by the linearity of T we have that for each

k ≥ 1 a.s. ck
1a

m1
n �M

m1
n + ck

2a
m2
n �M

m2
n and ck

1�M
m1
n + ck

2�M
m2
n are collinear vectors in X, and∣∣∣∣ck

1a
m1
n �M

m1
n + ck

2a
m2
n �M

m2
n

ck
1�M

m1
n + ck

2�M
m2
n

∣∣∣∣≤ 1 a.s. on Am1,m2
n ,

by the weak differential subordination. Therefore we can redefine A
m1,m2
n up to a negligible set in the following way:

Am1,m2
n := Am1,m2

n

⋂
k≥1

{
ck

1�Mm1
n + ck

2�Mm2
n �= 0

}
⋂
k≥1

{∣∣∣∣ck
1a

m1
n �M

m1
n + ck

2a
m2
n �M

m2
n

ck
1�M

m1
n + ck

2�M
m2
n

∣∣∣∣≤ 1

}
.

Let us now fix any ω ∈ A
m1,m2
n and ε > 0. Let x∗ ∈ X∗ be such that 〈�M

m1
n (ω), x∗〉 �= 0 and 〈�M

m2
n (ω), x∗〉 �= 0

(such x∗ exists by the Hahn-Banach theorem and the definition of A
m1,m2
n ). Then we can find k ≥ 1 such that

0 <
〈ck

1�M
m1
n (ω) + ck

2�M
m2
n (ω), x∗〉

|ck
1| + |ck

2|
< ε (4.11)

since ((ck
1, c

k
2))k≥1 is dense in R

2 (i.e. k ≥ 0 such that (ck
1, c

k
2) is almost orthogonal to (〈�M

m1
n (ω)x∗〉, 〈�M

m2
n (ω),

x∗〉)). But on the other hand (we will omit ω for the convenience of the reader)

1 ≥
∣∣∣∣ck

1a
m1
n �M

m1
n + ck

2a
m2
n �M

m2
n

ck
1�M

m1
n + ck

2�M
m2
n

∣∣∣∣= |〈ck
1a

m1
n �M

m1
n + ck

2a
m2
n �M

m2
n , x∗〉|

〈ck
1�M

m1
n + ck

2�M
m2
n , x∗〉

= |〈ck
2(a

m2
n − a

m1
n )�M

m2
n , x∗〉| − |〈ck

1a
m1
n �M

m1
n + ck

2a
m1
n �M

m2
n , x∗〉|

〈ck
1�M

m1
n + ck

2�M
m2
n , x∗〉

(∗)≥ ∣∣am2
n − am1

n

∣∣∣∣〈�Mm2
n , x∗〉∣∣1

ε
− 1, (4.12)

where (∗) holds by the triangle inequality, (4.11), and the fact that |am1
n | ≤ 1. Since ε was arbitrary, (4.12) holds true

if and only if a
m2
n (ω) − a

m1
n (ω) = 0. Now since ω ∈ A

m1,m2
n was arbitrary, a

m1
n = a

m2
n on A

m1,m2
n .

Now we define for each n ≥ 0 and m ≥ 1:

B1
n = {

�M1
n �= 0

}
,

Bm
n = {

�Mm
n �= 0

} \ Bm−1
n , m ≥ 2,

B0
n = �

∖ ⋃
m≥1

Bm
n ,

and define an in the following way:

an(ω) := am
n , ω ∈ Bm

n ,m ≥ 1,

an(ω) := 0, ω ∈ Bm
0 .

(4.13)

Then by (4.10) an = am
n a.s. on {�Mm

n �= 0} for all m ≥ 1. Therefore �(T Mm)n = an�Mm
n a.s. for all m ≥ 1. Now

let M be a general Lp-martingale. Let (Mmk )k≥1 be a sequence which converges to M in Mp
X . Fix n ≥ 0. Then by
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[23, Corollary 2.6.30] �M
mk
n converges to �Mn in Lp(�;X) as k → ∞, so by boundedness of an we have that

an�M
mk
n → an�Mn in Lp(�;X). On the other hand by boundedness of T and by [23, Corollary 2.6.30]

lim
k→∞an�Mnk

m = lim
k→∞�

(
T Mmk

n

)
n

= �(T M)n,

where the limit is taken in Lp(�;X). Hence �(T M)n = an�Mn a.s.
It follows from (4.13) and [53] that (an)n≥0 is G-adapted and bounded by 1. Now let us show that (an)n≥0 is G-

predictable. Assume the opposite. Then there exists N ≥ 0 such that aN is FN -measurable, but not FN−1-measurable
(here we set F−1 to be the σ -algebra generated by all negligible sets). Fix x ∈ X \ {0}. Then we can construct the
following Lp-martingale M : R+ × � → X: �Mn = 0 if n �= N and �MN = (aN − E(aN |FN−1))x. This is an
Lp-martingale since by the triangle inequality and [3, Theorem 34.2]∥∥aN −E(aN |FN−1)

∥∥∞ ≤ ‖aN‖∞ + ∥∥E(aN |FN−1)
∥∥∞ ≤ 1 + ∥∥E(|aN ||FN−1

)∥∥∞
≤ 1 + ∥∥E(1|FN−1)

∥∥∞ ≤ 2.

Then we have that �(T M)N = aN(aN −E(aN |FN−1))x, and since T M is a martingale,

0 = E
(
�(T M)N |FN−1

)= E
(
aN

(
aN −E(aN |FN−1)

)
x|FN−1

)
= xE

(
a2
N − aNE(aN |FN−1)|FN−1

)
= x

(
E
(
a2
N |FN−1

)− (
E(aN |FN−1)

)2)
= xE

((
aN −E(aN |FN−1)

)2|FN−1
)
,

so since x �= 0 and the fact that (aN − E(aN |FN−1))
2 is nonnegative we get that aN − E(aN |FN−1) = 0 a.s., hence

aN is FN−1-measurable. �

Remark 4.14. One can extend Proposition 4.13 to the case of a Banach space X being over the scalar field C. The
point is that because of the structure of the filtration F any F-martingale is purely discontinuous, so one can extend

the definition of weak differential subordination in the way presented in [52]; namely, N
w� M if |〈�Nt, x

∗〉| ≤
|〈�Mt,x

∗〉| a.s. for all t ≥ 0 and x∗ ∈ X∗. Then by applying the same proof one can show that the sequence (an)n≥0

from Proposition 4.13 exists and is still (Fn)n≥0-predictable, but it takes values in the unit disk D := {λ ∈ C : |λ| ≤ 1}.

4.3. Sufficiency of the UMD property

Now we will consider two examples of an operator T from Theorem 4.9, which will provide us with the Meyer–Yoeurp
and the Yoeurp decompositions of any UMD space-valued local martingale.

Theorem 4.15 (Meyer–Yoeurp decomposition of local martingales). Let X be a UMD Banach space, M : R+ ×
� → X be a local martingale. Then there exist unique local martingales Mc,Md : R+ × � → X such that Mc is
continuous, Md is purely discontinuous, Mc

0 = 0, and M = Mc + Md . Moreover, for any λ > 0 and t ≥ 0

λP
((

Mc
)∗
t
> λ

)
�X E‖Mt‖,

λP
((

Md
)∗
t
> λ

)
�X E‖Mt‖.

(4.14)

For the proof we will need the following lemma.

Lemma 4.16. Let M :R+ ×� → X be an L1-martingale, (Mn)n≥1 be a sequence of purely discontinuous X-valued
L1-martingales such that Mn∞ → M∞ in L1(�;X). Then M is purely discontinuous.
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Proof. Without loss of generality M0 = 0 and Mn
0 = 0 a.s. for each n ≥ 1. By Proposition 2.4 it is sufficient to check

that MN is a martingale for any bounded continuous real-valued martingale N with N0 = 0 a.s. Fix such N . Then due
to Proposition 2.4 MnN is a martingale for each n ≥ 0. Moreover, since Nt is bounded for each t ≥ 0, (MnN)t →
(MN)t in L1(�;X). Therefore by the boundedness of a conditional expectation operator (see [23, Corollary 2.6.30])
for each 0 ≤ s ≤ t

E
(
(MN)t |Fs

)= E

(
lim

n→∞
(
MnN

)
t

∣∣Fs

)
= lim

n→∞E
((

MnN
)
t
|Fs

)
= lim

n→∞
(
MnN

)
s
= (MN)s.

Hence, MN is a martingale. Since N was arbitrary, M is a purely discontinuous martingale. �

Proof of Theorem 4.15. By a stopping time argument we can assume that M is an L1-martingale. Fix p ∈ (1,∞). Let
(Mn)n≥1 be a sequence of X-valued Lp-martingales such that Mn∞ → M∞ in L1(�;X). Without loss of generality
assume that E‖M∞ − Mn∞‖ < 1

2n+1 for each n ≥ 1. Let T ∈ L(Mp
X) be such that T maps an Lp-martingale N :

R+ × � → X to its continuous part Nc (such an operator exists and bounded by Proposition 4.7). For each n ≥ 1 we
denote T Mn by Mn,c . Then we know that by Theorem 4.9 for each m ≥ n ≥ 1 and any K > 0

P
((

Mn,c − Mm,c
)∗
∞ > K

)
�p,X

1

K
E
∥∥Mn,c∞ − Mm,c∞

∥∥≤ 1

2nK
, (4.15)

hence (Mn,c)n≥1 is a Cauchy sequence in the ucp topology by (2.2). Notice that all the Mn,c’s are continuous local
martingales, which are complete in the ucp topology (see [49, pages 7–8] and Lemma 2.3). Hence there exists a local
martingale Mc : R+ × � → X which is the limit of (Mn,c)n≥1 in the ucp topology. Now it is sufficient to prove that
Mc

0 = 0 and that 〈M − Mc,x∗〉 is a purely discontinuous local martingale for any x∗ ∈ X∗ in order to show that Mc

is the desired continuous local martingale. Firstly, Mc
0 = P − limn→∞ M

n,c
0 = 0 since Mc is the limit of (Mn,c)n≥1

in the ucp topology and since M
n,c
0 = 0 a.s. for each n ≥ 1. Secondly, since Mn,c → Mc in the ucp topology and

Mn → M in L1(�;X), 〈Mn − Mn,c, x∗〉 → 〈M − Mc,x∗〉 in the ucp topology for each fixed x∗ ∈ X∗. Without loss
of generality set that E‖M∞‖,E‖Mn∞‖ ≤ 1 for each n ≥ 1. Also by choosing a subsequence we can assume that
Mc,n → Mc a.s. uniformly on compacts. Therefore by Lemma 2.3 the process t 
→ sup0≤s≤t supn ‖Mc,n‖ exists and
continuous, and for each m ≥ 1 we can define a stopping time τm in the following way

τm := inf
{
t ≥ 0 : sup

0≤s≤t

sup
n

∥∥Mc,n
∥∥≥ m

}
.

Notice that a.s. τm → ∞ as m → ∞. First show that 〈(M − Mc)τm, x∗〉 is purely discontinuous for each m ≥ 1. Note
that (Mc,n)

τm∞ → (Mc)
τm∞ and (Mn)

τm∞ → M
τm∞ in L1(�;X) as n → ∞. Therefore〈(

Mn − Mc,n
)τm, x∗〉→ 〈(

M − Mc
)τm, x∗〉

in L1(�), so by Lemma 4.16 〈(M −Mc)τm, x∗〉 is purely discontinuous. Notice that by letting m to infinity we get that
〈M − Mc,x∗〉 is a purely discontinuous local martingale for any x∗ ∈ X∗, hence M − Mc is a purely discontinuous
local martingale.

The uniqueness of the decomposition follows from Remark 4.2, while (4.14) holds due to the limiting argument,
(4.15), and the completeness of L1,∞-spaces provided by (1.1.11) and Theorem 1.4.11 in [18]. �

Let us turn to the Yoeurp decomposition.

Theorem 4.17 (Yoeurp decomposition of local martingales). Let X be a UMD Banach space, Md : R+ × � → X

be a purely discontinuous local martingale. Then there exist unique purely discontinuous local martingales Mq,Ma :
R+ × � → X such that Mq is quasi-left continuous, Ma has accessible jumps, M

q

0 = 0, and Md = Mq + Ma .
Moreover, for any λ > 0 and t ≥ 0

λP
((

Mq
)∗
t
> λ

)
�X E

∥∥Md
t

∥∥,
λP
((

Ma
)∗
t
> λ

)
�X E

∥∥Md
t

∥∥. (4.16)
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For the proof we will need the following lemmas.

Lemma 4.18. Let M : R+ × � → R be a local martingale with accessible jumps, M0 = 0 a.s. Then {M∗∞ = 0} =
{[M]∞ = 0} up to a negligible set.

Proof. Let M = Mc + Mq + Ma be the canonical decomposition of M (see Section 4.1). Then Mq = 0 since M has
accessible jumps. By [26, Exercise 17.3] {(Mc)∗∞ = 0} = {[Mc]∞ = 0} up to a negligible set. Let us show the same
for Ma . Let τ := inf{t ≥ 0 : �Ma

t �= 0} be a stopping time. Notice that a.s.

{τ < ∞} ⊂
{∑

t≥0

∣∣�Ma
t

∣∣> 0

}
⊂ {(

Ma
)∗
∞ > 0

}
,

{τ < ∞} ⊂
{∑

t≥0

∣∣�Ma
t

∣∣2 > 0

}
= {[

Ma
]
∞ > 0

}
,

so we can redefine Ma := (Ma)τ . By the definition of τ we have that for each t ≥ 0 a.s.
∑

0≤s≤t |�Ma
s | = |�Ma

τ |1τ≤t ,
hence by [54, Theoreme (1–6).3] a.s.

Ma
t = �Ma

τ 1τ≤t , t ≥ 0. (4.17)

Therefore since [Ma]t = |�Ma
τ |21τ≤t we have that {(Ma)∗∞ = 0} = {[Ma]∞ = 0} up to a negligible set.

Let us now show the desired. First notice that by [26, Corollary 26.16] a.s.{[M]∞ = 0
}= {[

Mc
]
∞ + [

Ma
]
∞ = 0

}= {[
Mc

]
∞ = 0

}∩ {[
Ma

]
∞ = 0

}
. (4.18)

On the other hand a.s.{
M∗∞ = 0

}= {
M∗∞ = 0

}∩ {�Mt = 0∀t ≥ 0} (i)= {
M∗∞ = 0

}∩ {(
Ma

)∗
∞ = 0

}
(ii)= {(

Mc
)∗
∞ = 0

}∩ {(
Ma

)∗
∞ = 0

} (iii)= {[
Mc

]
∞ = 0

}∩ {[
Ma

]
∞ = 0

}
(iv)= {[M]∞ = 0

}
,

where (i) holds by (4.17), (ii) follows from the fact that Mc = M − Ma , (iii) follows from the first half of the proof,
and finally (iv) follows from (4.18). �

Lemma 4.19. Let M : R+ × � → R be a local martingale, M = Mc + Mq + Ma be the canonical decomposition.
Then up to a negligible set{

M∗∞ = 0
}= {(

Mc
)∗
∞ = 0

}∩ {(
Mq

)∗
∞ = 0

}∩ {(
Ma

)∗
∞ = 0

}
. (4.19)

Proof. Let N := Mc + Ma . First notice that by Lemma 4.18 and [26, Corollary 26.16] a.s.{
N∗∞ = 0

}= {[N ]∞ = 0
}= {[

Mc
]
∞ + [

Ma
]
∞ = 0

}
= {[

Mc
]
∞ = 0

}∩ {[
Ma

]
∞ = 0

}
= {(

Mc
)∗
∞ = 0

}∩ {(
Ma

)∗
∞ = 0

}
. (4.20)

Let τ := inf{t ≥ 0 : �Mt �= 0} be a stopping time. Then a.s.

{τ < ∞} ⊂ {
M∗∞ > 0

}⊂ {
N∗∞ > 0

}∪ {(
Mq

)∗
∞ > 0

}
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since M = N + Md . Let A = {M∗∞ = 0} ⊂ �. Then [M]∞ = [N + Mq ]∞ = 0 a.s. on A, and consequently [N ]∞ = 0
a.s. on A by [26, Corollary 26.16]. Therefore by Lemma 4.18 N∗∞ = 0 a.s. on A, so (Mq)∗∞ = 0 a.s. on A, and
therefore by (4.20){

M∗∞ = 0
}= A ⊂ {

N∗∞ = 0
}∩ {(

Mq
)∗
∞ = 0

}
= {(

Mc
)∗
∞ = 0

}∩ {(
Mq

)∗
∞ = 0

}∩ {(
Ma

)∗
∞ = 0

}
.

The converse inclusion follows from the fact that M = N + Mq and (4.20). �

Lemma 4.20. Let X be a Banach space, M,N : R+ ×� → X be local martingales such that N has accessible jumps

and N
w� M . Then

P
(
N∗

t > 0
)≤ P

(
M∗

t > 0
)
, t ≥ 0. (4.21)

Proof. (4.21) follows from the fact that {M∗
t = 0} ⊂ {N∗

t = 0}. Let (x∗
n)n≥0 ⊂ X∗ be a separating set. Then up to a

negligible set{
M∗

t = 0
}=

⋂
n≥0

{(〈
M,x∗

n

〉)∗
t
= 0

}
,

{
N∗

t = 0
}=

⋂
n≥0

{(〈
N,x∗

n

〉)∗
t
= 0

}
,

therefore it is sufficient to consider X = R. Let M = Mc + Md + Ma be the canonical decomposition of M (see
Section 4.1). By Lemma 4.19 and (4.20){

M∗
t = 0

}⊂ {(
Mc + Ma

)∗
t
= 0

}
.

Moreover, by Lemma 4.18{(
Mc + Ma

)∗
t
= 0

}= {[
Mc + Ma

]
t
= 0

}⊂ {[M]t = 0
}
,{

N∗
t = 0

}= {[N ]t = 0
}
,

and hence since N � M ,{
M∗

t = 0
}⊂ {[M]t = 0

}⊂ {[N ]t = 0
}= {

N∗
t = 0

}
. �

Proof of Theorem 4.17. Without loss of generality assume that Md is an L1-martingale and Md
0 = 0 a.s. We will

divide the proof into two steps.
Step 1. Define a stopping time τ = {t ≥ 0 : ‖Md

t ‖ > 1
2 }. In this step we assume that Md = (Md)τ (i.e. the martingale

stops moving after reaching 1
2 , in particular after the first jump of absolute value bigger than 1). Let μM be the random

measure defined by (3.3), νM be the corresponding compensator (see Section 2.4). For each n ≥ 1 define a stopping
time

τn = inf

{
t ≥ 0 :

∫
[0,t]×X

‖x‖1‖x‖>n dνMd

> 1

}
, (4.22)

and a process Md,n : R+ × � → X in the following way

M
d,n
t =

((
Md

)τ−
t

+ �Md
τ 1‖�Md

τ ‖≤n1τ≤t +
∫

[0,t]×X

x1‖x‖>n dνMd

)τn−
, t ≥ 0, (4.23)
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where we define Mσ− for a stopping time σ in the same way as in (2.3). First of all show that τn → ∞ a.s. as n → ∞.
Notice that by due to Section 2.4

E

∫
R+×X

‖x‖1‖x‖>1 dνMd = E

∫
R+×X

‖x‖1‖x‖>1 dμMd ≤ E
∥∥�Md

τ

∥∥
≤ E

∥∥Md
τ

∥∥+E
∥∥Md

τ−
∥∥ (∗)≤ E

∥∥Md∞
∥∥+ 1

2

(∗∗)
< ∞, (4.24)

where (∗) follows from the fact that Mτ = M∞ and the fact that ‖Mτ−‖ ≤ 1
2 a.s., and (∗∗) holds due to the fact that

M is an L1-martingale. Therefore∫
R+×X

‖x‖1‖x‖>1 dνMd

< ∞ a.s.,

so by the monotone convergence theorem a.s.∫
R+×X

‖x‖1‖x‖>n dνMd → 0, n → ∞,

and hence τn → ∞ as n → ∞.
We need to show that Md,n is an L∞-martingale for each n ≥ 1. Clearly Md,n is adapted and càdlàg. It is also a

local martingale since it can be rewritten in the following form:

M
d,n
t = (

Md
)τn−
t

−
∫

[0,t]×X

x1‖x‖>n1s<τn dμ̄Md

, t ≥ 0,

where the first term is a martingale by Lemma 2.8, and the second term is a local martingale by Lemma 2.6 and the
fact that the process s 
→ 1s<τn is predictable by [26, Theorem 25.14] and the predictability of τn (the latter follows

from (4.22) and the predictability of νMd
, see Section 2.4). Moreover, for each fixed t ≥ 0 we have that a.s.∥∥Md,n

t

∥∥≤ ∥∥(Md
)τ−∧τn−
t

∥∥+ ∥∥�Md
τ 1‖�Md

τ ‖≤n

∥∥+
∫

[0,τn)×X

‖x‖1‖x‖>nν
Md

≤ 1 + n + 1 = n + 2.

(Recall that τ − ∧τn− := (τ ∧ τn)−, see (3.6).) Therefore (Md,n)n≥1 are bounded martingales.
Now let us now show that M

d,n∞ → Md∞ in L1(�;X). First, M
d,n∞ = M

d,n
τn− a.s., so by the triangle inequality

E
∥∥Md∞ − Md,n∞

∥∥≤ E
∥∥Md∞ − Md

τn−
∥∥+E

∥∥Md
τn− − M

d,n
τn−

∥∥.
Notice that the first term vanishes as n → ∞ by the fact that ‖Md∞ − Md

τn−‖ ≤ 1 + ‖�Mτ‖ a.s., the fact that τn → ∞
a.s., and the dominated convergence theorem. Let us consider the second term:

E
∥∥Md

τn− − M
d,n
τn−

∥∥
= E

∥∥∥∥Md
τn− − (

Md
)τ−
τn− − �Md

τ 1‖�Md
τ ‖≤n1τ<τn −

∫
[0,τn)×X

x1‖x‖>n dνMd

∥∥∥∥
= E

∥∥∥∥�Md
τ 1τ<τn − �Md

τ 1‖�Md
τ ‖≤n1τ<τn −

∫
[0,τn)×X

x1‖x‖>n dνMd

∥∥∥∥
= E

∥∥∥∥�Md
τ 1‖�Md

τ ‖>n1τ<τn −
∫

[0,τn)×X

x1‖x‖>n dνMd

∥∥∥∥
= E

∥∥∥∥∫[0,τn)×X

x1‖x‖>n dμMd −
∫

[0,τn)×X

x1‖x‖>n dνMd

∥∥∥∥
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≤ E

∫
[0,τn)×X

‖x‖1‖x‖>n dμMd +E

∫
[0,τn)×X

‖x‖1‖x‖>n dνMd

(∗)= 2E
∫

[0,τn)×X

‖x‖1‖x‖>n dμMd (∗∗)= 2E
∥∥�Md

τ

∥∥1‖�Md
τ ‖>n,

and the last expression vanishes as n → ∞ by the monotone convergence theorem. (Notice that (∗) follows from the
definition of a compensator and from (4.24), while (∗∗) follows from the fact that ‖�Mt‖ ≥ 1 only if t = τ by the
assumptions on M .)

Since each of Md,n’s is an Lp-martingale for each p ∈ (1,∞), by Proposition 4.7 for each n ≥ 1 there exists the
Yoeurp decomposition Md,n = Mq,n +Ma,n of a martingale Md,n into a sum of two purely discontinuous martingales
Mq,n,Ma,n : R+ ×� → X such that Mq,n is quasi-left continuous, Ma,n has accessible jumps, and M

q,n

0 = M
a,n
0 = 0

a.s. (recall that M
d,n
0 = 0 a.s.). Fix some p ∈ (1,∞). Since an operator T q that maps an Lp-martingale M :R+ ×� →

X to its purely discontinuous quasi-left continuous part Mq of the canonical decomposition is continuous on L(Mp
X)

by Proposition 4.7, Theorem 4.9 together with Lemma 4.20 yields that for each m,n ≥ 1 and K > 0

P
((

Mq,n − Mq,m
)∗
∞ > K

)
�p

1

K
E
∥∥Md,n∞ − Md,m∞

∥∥
≤ 1

K

(
E
∥∥Md,n∞ − Md∞

∥∥+E
∥∥Md,m∞ − Md∞

∥∥),
so (Mq,n)n≥1 is a Cauchy sequence in the ucp topology. By Proposition 2.2 it has a càdlàg adapted limit. Denote
this limit by Mq . Let us show that Mq is a purely discontinuous quasi-left continuous local martingale. Let σ be a
predictable time. Then �M

q,n
σ = 0 a.s., and for any t ≥ 0 a.s.

sup
0≤s≤t

∥∥Mq,n
s − M

q
s

∥∥≥ 1σ≤t sup
0≤s≤σ

∥∥Mq,n
s − M

q
s

∥∥
≥ 1σ≤t

(
sup
m≥1

∥∥Mq,n

0∨σ− 1
m

− M
q

0∨σ− 1
m

∥∥∨ ∥∥Mq,n
σ − Mq

σ

∥∥)
≥ 1

2
1σ≤t

(
lim sup

m≥1

∥∥Mq,n

0∨σ− 1
m

− M
q

0∨σ− 1
m

∥∥+ ∥∥Mq,n
σ − Mq

σ

∥∥)
= 1

2
1σ≤t

(∥∥Mq,n
σ− − M

q
σ−
∥∥+ ∥∥Mq,n

σ − Mq
σ

∥∥)
(∗)≥ 1

2
1σ≤t

∥∥Mq,n
σ− − M

q
σ− − Mq,n

σ + Mq
σ

∥∥
≥ 1

2
1σ≤t

∥∥�M
q
σ− − �Mq,n

σ

∥∥= 1

2
1σ≤t

∥∥�M
q
σ−
∥∥, (4.25)

where (∗) follows from the triangle inequality. Since

P− lim
n→∞ sup

0≤s≤t

∥∥Mq,n
s − M

q
s

∥∥= 0,

we have that for each t ≥ 0

P− lim
n→∞ 1σ≤t

∥∥�M
q
σ−
∥∥= 0.

But the expression under the limit in probability does not depend on n. Hence 1σ≤t‖�M
q
σ−‖ = 0 a.s. By letting

t → ∞ we get that a.s. ‖�M
q
σ ‖ = 0, and since σ was arbitrary predictable, Mq is quasi-left continuous.

Let now σ be a totally inaccessible stopping time. Let us show that a.s.

�Mq
σ = �Md

σ . (4.26)
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First notice that for each fixed m ≥ n ≥ 1

�Mq,m
σ 1σ<τ∧τn

(∗)= �Md,m
σ 1σ<τ∧τn

(∗∗)= �Md
σ 1σ<τ∧τn ,

�Mq,m
σ 1σ=τ<τn1‖�Md

τ ‖≤n

(∗)= �Md,m
σ 1σ=τ<τn1‖�Md

τ ‖≤n

(∗∗)= �Md
σ 1σ=τ<τn1‖�Md

τ ‖≤n,

(4.27)

where (∗) follows from Remark 4.6, and (∗∗) follows from the definition (4.23) of Md,m and Lemma 2.7. Therefore
by (4.25) applied for our σ a.s. for each n ≥ 1

�Md
σ 1σ<τ∧τn = �Mq

σ 1σ<τ∧τn ,

�Md
σ 1σ=τ<τn1‖�Md

τ ‖≤n = �Mq
σ 1σ=τ<τn1‖�Md

τ ‖≤n.
(4.28)

By letting n → ∞ we get (4.26).
Let us show that Mq is locally integrable. For each l ≥ 1 set ρl := inf{t ≥ 0 : ‖Mq

t ‖ ≥ l}. Then a.s. for each t ≥ 0∥∥(Mq
)ρl

t

∥∥≤ ∥∥(Mq
)ρl

t−
∥∥+ ∥∥�(Mq

)ρl

t

∥∥
≤ l + ∥∥�(Mq

)ρl

t

∥∥1t=τ + ∥∥�(Mq
)ρl

t

∥∥1t<τ

≤ l + ∥∥�Md
τ

∥∥+ 1.

Therefore

E
∥∥(Mq

)ρl

t

∥∥≤ l + 1 +E
∥∥�Md

τ

∥∥< ∞,

where E‖�Mτ‖ < ∞ by (4.24). Since Mq is càdlàg, by [44, Problem V.1] we have that ρl → ∞ as l → ∞, so Mq is
locally integrable.

Now let us show that Mq is a local martingale. Let (Mq,nk )k≥1 be a subsequence of (Mq,n)n≥1 such that
Mq,nk → Mq uniformly on compacts a.s. (existence of such a subsequence can be shown e.g. as in the proof of
[45, Theorem 62]). It is sufficient to show that Mρl∧τnk

− is a local martingale for each l, k ≥ 1 since ρl → ∞ and
τnk

→ ∞ a.s. as l, k → ∞. Fix K > 0. Then by (4.27) and (4.28) for each k ≥ K we have that a.s. for each t ≥ 0

�
(
Mq,nk

)τnK
−∧τ−

t
= �

(
Mq

)τnK
−∧τ−

t
.

Therefore by Lemma 2.3 there exists a continuous adapted process N :R+ × � →R+ such that a.s.

Nt = sup
k≥K

∥∥(Mq,nk
)τnK

−∧τ−
t

− (
Mq

)τnK
−∧τ−

t

∥∥, t ≥ 0.

Now for each j ≥ 1 define a stopping time σj = inf{t ≥ 0 : Nt ≥ j}. Fix j ≥ 1. Then for each t ≥ 0 we have that for
any k ≥ K a.s.∥∥(Mq,nk

)ρl∧τnK
−∧σj

t
− (

Mq
)ρl∧τnK

−∧σj

t

∥∥≤ j + l + 2
∥∥�Md

τ

∥∥
and that (Mq,nk )

ρl∧τnK
−∧σj

t − (Mq)
ρl∧τnK

−∧σj

t → 0 a.s. as k → ∞. Hence by the dominated convergence theory(
Mq,nk

)ρl∧τnK
−∧σj

t
→ (

Mq
)ρl∧τnK

−∧σj

t
in L1(�;X) as k → ∞.

Consequently, ((Mq)
ρl∧τnK

−∧σj

t )t≥0 is an L1-martingale, which is moreover purely discontinuous by Lemma 4.16.
By letting l,K, j → ∞ we get that Mq is a purely discontinuous quasi-left continuous local martingale.

Ma can be constructed in the same way. The identity Md = Mq + Ma follows from the following limiting argu-
ment:

Md = ucp- lim
n→∞Md,n,
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Mq = ucp- lim
n→∞Mq,n,

Ma = ucp- lim
n→∞Ma,n,

and the fact that Md,n = Mq,n + Ma,n for each n ≥ 1.
Step 2. For a general martingale Md we construct a sequence of stopping times τn = inf{t ≥ 0 : ‖Md

t ‖ ≥ n
2 }.

For each Md,n := (Md)τn we construct the corresponding Mq,n by Step 1. Then for each m ≥ n ≥ 1 we get that
(Mq,n)τm = Mq,m since for any x∗ ∈ X∗ a.s.〈(

Mq,n
)τm, x∗〉= 〈

Mq,m,x∗〉
due to the uniqueness of the Yoeurp decomposition in the real-valued case. Then we just set M

q

0 := 0 and

M
q
t :=

∑
n≥1

M
q,n
t 1t∈(τn−1,τn], t ≥ 0,

where τ0 ≡ 0. The obtained Mq will be the desired purely discontinuous quasi-left continuous local martingale.
We can construct Ma in the same way and show that then Md = Mq +Ma similarly to how it was shown in step 1.
The uniqueness of the decomposition follows from Remark 4.4, while (4.16) follows analogously (4.14). �

Proof of Theorem 4.8 (sufficiency of UMD and (4.2)). Sufficiency of the UMD property follows from Theorem 4.15
and Theorem 4.17, while (4.2) follows in the same way as (4.14) and (4.16). �

4.4. Necessity of the UMD property

In the current subsection we show that the UMD property is necessary in Theorem 4.15 and Theorem 4.17, and hence
it is necessary for the canonical decomposition of a local martingale.

Theorem 4.21. Let X be a Banach space that does not have the UMD property. Then there exists a filtration F =
(Ft )t≥0 and an F-martingale M : R+ × � → X such that M provides neither the Meyer–Yoeurp nor the canonical
decomposition.

For the proof we will need the following lemma which is a modification of the statements from page 1001 and
page 1004 of [6]. Recall that if (fn)n≥0 is an X-valued martingale, the we define dfn := fn − fn−1 for n ≥ 1 and
df0 := f0.

Lemma 4.22. Let X be a Banach space. Then X is a UMD Banach space if and only if there exists a constant C > 0
such that for any X-valued discrete martingale (fn)n≥0, for any {0,1}-valued sequence (an)n≥0 one has that

g∗∞ > 1 a.s. =⇒ E‖f∞‖ > C,

where (gn)n≥0 is an X-valued discrete martingale such that dgn = andfn for each n ≥ 0, g∗∞ := supn≥0 ‖gn‖.

Proof. One needs to modify [6, Theorem 2.1] in such a way that dgn = andfn for some an ∈ {0,1} for each n ≥ 0.
Then the proof is the same, and the desired statement follows from the equivalence of [6, (2.3)] and [6, (2.4)]. �

For the next corollary we will need to define a Rademacher random variable and a Paley–Walsh martingale.

Definition 4.23 (Rademacher random variable). Let ξ : � → R be a random variable. Then ξ has the Rademacher
distribution (or simply ξ is Rademacher) if P(ξ = 1) = P(ξ = −1) = 1

2 .
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Definition 4.24 (Paley–Walsh martingale). Let X be a Banach space. A discrete X-valued martingale (fn)n≥0 is
called a Paley–Walsh martingale if there exist a sequence of independent Rademacher random variables (rn)n≥1,
a function φn : {−1,1}n−1 → X for each n ≥ 2 and φ1 ∈ X such that dfn = rnφn(r1, . . . , rn−1) for each n ≥ 2,
df1 = r1φ1, and f0 is a constant a.s.

Corollary 4.25. Let X be a Banach space that does not have the UMD property. Then there exists an X-valued Paley–
Walsh L1-martingale (fn)n≥0 and a {0,1}-valued sequence (an)n≥0 such that P(g∗∞ = ∞) = 1, where (gn)n≥0 is an
X-valued martingale such that dgn = andfn for each n ≥ 0.

Proof. Without loss of generality all the martingales used below are Paley–Walsh (see [23, Theorem 3.6.1]), so the
resulting martingale will be Paley–Walsh as well. By Lemma 4.22 we can find N1 > 0, an X-valued martingale
f 1 = (f 1

n )
N1
n=0 and a {0,1}-valued sequence (a1

n)
N1
n=0 such that E‖f 1

N1
‖ < 1

2 and

P
((

g1)∗
N1

> 1
)
>

1

2
,

where g1 = (g1
n)

N1
n=0 is such that dg1

n = a1
ndf

1
n for each n = 0, . . . ,N1. Now inductively for each k > 1 we find Nk > 0

and an X-valued Paley–Walsh martingale f k = (f k
n )

Nk

n=0 independent of f 1, . . . , f k−1 such that E‖f k
Nk

‖ < 1
2k and

P
((

gk
)∗
Nk

> 2Ck

)
> 1 − 1

2k
,

where gk = (gk
n)

N1
n=0 is such that dgk

n = ak
ndf

k
n for each n = 0, . . . ,Nk , and Ck > 2k is such that

P
((

g1)∗
N1

+ · · · + (
gk−1)∗

Nk−1
> Ck

)
<

1

2k
.

Without loss of generality assume that f k
0 = 0 a.s. for each k ≥ 1. Now construct a martingale (fn)n≥0 and a {0,1}-

valued sequence (an)n≥0 in the following way: f0 = a0 = 0 a.s., dfn = df k
m and an = ak

m if n = N1 + · · · + Nk−1 + m

for some k ≥ 1 and 1 ≤ m ≤ Nk . Then (fn)n≥0 is well-defined,

lim
n→∞E‖fn‖ = E‖f∞‖ ≤

∑
k≥1

E
∥∥f k

Nk

∥∥≤ 1

by the triangle inequality, and for an X-valued martingale (gn)n≥0 with dgn = andfn for each n ≥ 0, for each k ≥ 2

P
(
g∗

N1+···+Nk
> Ck

)≥ P
((

gk
)∗
Nk

> 2Ck,
(
g1)∗

N1
+ · · · + (

gk−1)∗
Nk−1

≤ Ck

)
> 1 − 1

2k−1
,

hence g∗∞ = ∞ a.s. �

Proof of Theorem 4.21. By Corollary 4.25 we can construct a discrete filtration G = (Gn)n≥0 and an X-valued
L1-integrable Paley–Walsh G-martingale (fn)n≥0 such that

E‖f∞‖ = lim
n→∞E‖fn‖ ≤ 1, (4.29)

and such that there exists {0,1}-valued sequence (an)n≥0 so that

P
(
g∗∞ = ∞)= 1,

where (gn)n≥0 is an X-valued martingale with dgn = andfn for each n ≥ 0.
Since (fn)n≥0 is Paley–Walsh, there exist a sequence (rn)n≥0 of independent Rademacher variables, a sequence

of functions (φn)n≥1 with φ1 ∈ X and φn : {−1,1}n−1 → X for each n ≥ 2, so that dfn = rnφn(r1, . . . , rn−1) a.s. for
each n ≥ 1.
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Now our goal is to construct a continuous-time X-valued martingale M which does not have the Meyer–Yoeurp
decomposition (and hence the canonical decomposition) using (fn)n≥0. Let us first construct a filtration F = (Ft )t≥0

on R+ in the following way. By [51, Section 3.2] for each n ≥ 0 we can find a continuous martingale Mn : [0, 1
2n+1 ]×

� → R with a symmetric distribution such that Mn
0 = 0 a.s., |Mn

1
2n+1

| ≤ 1 a.s.,

P
(
Mn

1
2n+1

= 0
)= 0, (4.30)

and

P
(
Mn

1
2n+1

�= signMn
1

2n+1

)
<

1

2n(‖φn‖∞ + 1)
. (4.31)

Let (r̃n)n≥0 be a sequence of independent Rademacher random variables. Without loss of generality assume that all
(r̃n)n≥0 and (Mn)n≥0 are independent. Then set F0 to be the σ -algebra generated by all negligible sets, and set

Ft :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F1− 1

2n
, t ∈ (1 − 1

2n ,1 − 1
2n+1 ), an = 0, n ≥ 0,

σ (F1− 1
2n

, r̃n), t = 1 − 1
2n+1 , an = 0, n ≥ 0,

σ (F1− 1
2n

, (Mn
s )

s∈[0,t−1− 1
2n ]), t ∈ (1 − 1

2n ,1 − 1
2n+1 ], an = 1, n ≥ 0,

σ (Fs : s ∈ [0,1)), t ≥ 1.

Let (σn)n≥0 be a sequence of independent Rademacher variables such that σn = r̃n if an = 0 and σn = signMn
1

2n+1
if

an = 1 (in the latter case σn has the Rademacher distribution by (4.30) and the fact that Mn
1

2n+1
is symmetric). Now

construct M :R+ × � → X in the following way:

Mt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, t = 0,

M1− 1
2n

, t ∈ (1 − 1
2n ,1 − 1

2n+1 ), an = 0, n ≥ 0,

M1− 1
2n

+ σnφn(σ1, . . . , σn−1), t = 1 − 1
2n+1 , an = 0, n ≥ 0,

M1− 1
2n

+ Mn

t−1− 1
2n

φn(σ1, . . . , σn−1), t ∈ (1 − 1
2n ,1 − 1

2n+1 ], an = 1, n ≥ 0,

limn→∞ M1− 1
2n

, t ≥ 1.

(4.32)

First we show that limn→∞ M1− 1
2n

exists a.s., hence M is well-defined. By [23, Theorem 3.3.8] it is sufficient to show

that there exists ξ ∈ L1(�;X) such that M1− 1
2n

= E(ξ |F1− 1
2n

) for all n ≥ 1. Notice that (M1− 1
2n

)n≥0 is a martingale

since M1− 1
2n+1

− M1− 1
2n

equals either σnφn(σ1, . . . , σn−1) (if an = 0) or Mn
1

2n+1
φn(σ1, . . . , σn−1) (if an = 1). Both

random variables are bounded, and in both cases the conditional expectation with respect to F1− 1
2n

gives zero. Now
let us show integrability. Let (f̃n)n≥0 be an X-valued martingale such that f̃0 = 0 a.s. and

df̃n = σnφn(σ1, . . . , σn−1), n ≥ 1. (4.33)

Then (f̃n)n≥0 has the same distribution as (fn)n≥0, so it is L1-integrable. Now fix n ≥ 1 and let us estimate E‖f̃n −
M1− 1

2n
‖:

E‖f̃n − M1− 1
2n

‖ (i)= E

∥∥∥∥∥
n∑

k=1

σkφk(σ1, . . . , σk−1)

−
n∑

k=1

(
σkφk(σ1, . . . , σk−1)1ak=0 + Mk

1
2k+1

φk(σ1, . . . , σk−1)1ak=1
)∥∥∥∥∥
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= E

∥∥∥∥∥
n∑

k=1

(
σk − Mk

1
2k+1

)
φk(σ1, . . . , σk−1)1ak=1

∥∥∥∥∥
(ii)≤

n∑
k=1

E
∥∥(σk − Mk

1
2k+1

)
φk(σ1, . . . , σk−1)

∥∥
(iii)≤ 2

n∑
k=1

P
(
σk �= Mk

1
2k+1

)‖φk‖∞
(iv)≤ 2

n∑
k=1

1

2k
≤ 2, (4.34)

where (i) follows from (4.33) and the definition of M from (4.32), (ii) holds by the triangle inequality, (iii) follows
from the fact that a.s. for each n ≥ 1∣∣σn − Mn

1
2n+1

∣∣≤ |σn| +
∣∣Mn

1
2n+1

∣∣≤ 2;

finally, (iv) follows from (4.31). Let us show that there exists F1-measurable ξ ∈ L1(�;X) such that M1− 1
2n

=
E(ξ |F1− 1

2n
) for each n ≥ 1. First notice that E(f̃∞|F1− 1

2n
) = f̃n for each n ≥ 1. Moreover, by (4.34) the series

η :=
∞∑

k=1

(
σk − Mk

1
2k+1

)
φk(σ1, . . . , σk−1)1ak=1

converges in L1(�;X). Therefore, if we define ξ := f̃∞ − η, then

E(ξ |F1− 1
2n

) = E(f̃∞ − η|F1− 1
2n

)

= f̃n −E

( ∞∑
k=1

(
σk − Mk

1
2k+1

)
φk(σ1, . . . , σk−1)1ak=1

∣∣∣F1− 1
2n

)

= f̃n −
∞∑

k=1

E
((

σk − Mk
1

2k+1

)
φk(σ1, . . . , σk−1)1ak=1|F1− 1

2n

)
= f̃n −

n∑
k=1

(
σk − Mk

1
2k+1

)
φk(σ1, . . . , σk−1)1ak=1 = M1− 1

2n
,

so one has an a.s. convergence by the martingale convergence theorem [23, Theorem 3.3.8].
Now let us show that M is a martingale that does not have the Meyer–Yoeurp decomposition. Assume the contrary:

let M = Md + Mc be the Meyer–Yoeurp decomposition. Then one can show that for each n ≥ 1

Md

1− 1
2n

=
n∑

k=1

σkφk(σ1, . . . , σk−1)1ak=0,

Mc

1− 1
2n

=
n∑

k=1

Mk
1

2k+1
φk(σ1, . . . , σk−1)1ak=1,

by applying x∗ ∈ X∗ and showing that the corresponding processes 〈Md

1− 1
2n

, x∗〉 and 〈Mc

1− 1
2n

, x∗〉 are purely discon-

tinuous and continuous local martingales respectively (see Remark 4.2). Now let us show that Mc is not an X-valued
local martingale. If it is a local martingale, then

P
((

Mc
)∗
∞ = ∞)= P

((
Mc

)∗
1 = ∞)= 0,
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since Mc as a local martingale should have càdlàg paths (even continuous since Mc assume to be continuous). But for
each fixed n ≥ 1

P
((

Mc
)∗

1 = ∞)= P
((

Mc − Mc
1

2n

)∗
1 = ∞)≥ P

(
(g̃ − g̃n)

∗∞ = (
Mc − Mc

1
2n

)∗
1

)
,

where (g̃n)n≥0 is an X-valued martingale such that dg̃n = andf̃n a.s. for each n ≥ 0, and hence by the construction in
Lemma 4.22 g̃∗∞ = ∞ a.s. Further,

P
(
(g̃ − g̃n)

∗∞ = (
Mc − Mc

1
2n

)∗
1

)= 1 − P
(
(g̃ − g̃n)

∗∞ �= (
Mc − Mc

1
2n

)∗
1

)
≥ 1 −

∞∑
k=n

1ak=1P
(
Mk

1
2k+1

�= σk

)
≥ 1 −

∞∑
k=n

P
(
Mk

1
2k+1

�= signMk
1

2k+1

)
(∗)≥ 1 − 1

2n−1
,

where (∗) follows from (4.31). Since n was arbitrary, (Mc)∗1 = (Mc)∗∞ = ∞ a.s., so Mc can not be a local martin-
gale. �

Proof of Theorem 4.8 (Necessity of UMD). Necessity of the UMD property follows from Theorem 4.21. �

Remark 4.26. One can also show that existence of the Yoeurp decomposition of an arbitrary X-valued purely dis-
continuous local martingale is equivalent to the UMD property. We will not repeat the argument here, but just notice
that one needs to modify the proof of Theorem 4.21 in a way which was demonstrated in [51, Section 3.2].

Remark 4.27. The reader might assume that one can weaken the Meyer–Yoeurp decomposition and consider a de-
composition of an X-valued local martingale M into a sum of a continuous X-valued semimartingale Nc and a purely
discontinuous X-valued semimartingale Nd , which perhaps may happen in a broader (rather than UMD) class of Ba-
nach spaces. Then for any reasonable definition of an X-valued semimartingale we get that Nc = Mc + A for some
continuous local martingale Mc and an adapted process of (weakly) bounded variation A. Hence M = Nc + Nd =
Mc + (Nd + A), where Nd + A = M − Mc is a local martingale, which is purely discontinuous, so M should have
the Meyer–Yoeurp decomposition as well in this setting, which means that the UMD property is crucial.
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