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Abstract

As the energy transition accelerates, improving wind energy efficiency and forecasting be-
comes increasingly critical. One key challenge lies in reconstructing high-fidelity atmospheric
boundary layer (ABL) flow fields from sparse measurements, especially in regions influenced
by wind turbines. This thesis explores the use of Latent Diffusion Models (LDMs) to recon-
struct physically plausible ABL flow fields from limited spatial data. Where previous work
focused on homogeneous, neutral ABL states, this research extends the methodology to more
diverse and realistic conditions by including both stable and neutral boundary layers with
embedded wind farms. A conditional diffusion model is trained in the latent space of an
autoencoder (AE), using both local measurements and global atmospheric labels. The model
is evaluated using statistical, physical, and spectral metrics, and its ability to generalize
across multiple ABL regimes is analyzed. Results show that the model can generate realistic
reconstructions from extremely sparse inputs, including turbine wake structures, and can po-
tentially serve as a tool for initializing Large Eddy Simulations (LES). These findings mark
an important step toward integrating generative models into operational wind forecasting and
control systems.
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Chapter 1

Introduction

As concerns about climate change continue to intensify, research and investments in renewable
energy sources are also on the rise. To achieve net zero emissions by 2050, the International
Energy Agency (IEA) [1] estimates that approximately 67% of global energy must come from
renewable sources. Among these, wind energy is projected to provide the second largest share.
However, the increasing reliance on renewable energy is already presenting challenges for grid
stability, primarily due to the unpredictable and intermittent nature of these energy sources.

To increase the total energy production by wind turbines a lot of new wind parks are being
built. However, space is a constraint [2][3][4] and there is also a lot to be gained from
improving the efficiency of currently existing wind farms. Wind turbines operate in highly
turbulent environments, and their performance depends on the ability to adjust to real time
wind conditions. Current control methods often rely on limited local sensor data, which does
not capture the full complexity of the wind field [5][6]. Getting more realistic wind fields
allows for the development of online, high fidelity models that can drive closed-loop control
systems. These systems dynamically adjust turbine settings, maximizing energy capture and
minimizing mechanical stress. This leads to more efficient wind energy generation and extends
the lifespan of turbines, which is not only sustainable but also economically appealing.

Improving grid stability is a crucial component of the energy transition[7]. One effective
way to achieve this is by enhancing weather forecasting [8][9], which enables more accurate
predictions of wind and solar energy production. High-quality forecasts support better plan-
ning for both energy generation and consumption, directly contributing to the shift toward
cleaner energy systems. Achieving such forecasts requires a better understanding of the ac-
tual state of the atmosphere, particularly the complex and dynamic wind conditions in the
Atmospheric Boundary Layer (ABL). By more accurately capturing these real-world flow
patterns, forecasts can become more reliable and actionable.

Both these issues require better flow reconstruction to contribute to the energy transition
more. A promising new method for doing this is the use of Latent Diffusion Model (LDM),
a kind of machine learning used for image generation. Using sparse measurements available
LDMs can reconstruct the flow around the sensors for turbulent situations, thus being able
to generate realistic flow fields at a wind farm.

Master of Science Thesis M.F. Triezenberg



2 Introduction

1-1 Turbulence and LES in the Atmospheric Boundary Layer

The ABL is the lowest part of the atmosphere, directly interacting with the Earth’s surface,
and plays a critical role in weather forecasting and wind energy applications. However, the
dynamics within the ABL are complex due to turbulence chaotic, irregular flows with a wide
range of interacting scales [10]. Turbulence in the ABL is often driven by interactions with
terrain and obstacles, forming vortices of various sizes. These vortices undergo an energy
cascade, transferring energy from large eddies to smaller ones until dissipated as heat at the
Kolmogorov microscale [11].

jTurbulence is governed by the Navier-Stokes equations [12], which describe fluid motion
and ensure conservation of mass and momentum. The nonlinear nature of these equations,
particularly the convective term, makes them challenging to solve, especially in turbulent
regimes where small changes in initial conditions can lead to vastly different outcomes. The
wide range of scales involved in turbulent flows from large energy containing eddies to small
dissipative ones further complicates their numerical resolution.

To address this, Large Eddy Simulation (LES) is often employed. LES strikes a balance
between Direct Numerical Solution (DNS) [13], which fully resolves all turbulent scales but
is computationally expensive, and Reynold’s Averaged Navier-Stokes (RANS) [14], which
models turbulence statistically. LES resolves the larger, energy containing eddies directly,
while using a subgrid-scale (SGS) model, such as the Smagorinsky model [15], to approximate
the effects of smaller eddies. This approach filters out the small-scale turbulence and models
it using an eddy viscosity parameter to simulate energy transfer from large to small eddies.

The filtering operation in LES [16] separates large and small scales in the flow field, typically
done via convolution, while the Navier-Stokes equations describe the dynamics of the resolved
scales. The SGS model accounts for unresolved scales, introducing a turbulent eddy viscosity
to represent the dissipative effects. This makes LES computationally efficient and well suited
for simulating turbulent flows in the ABL, allowing for accurate predictions of large-scale eddy
dynamics without the prohibitive costs of fully resolving all scales. However, as mentioned,
LES can benefit from better initial conditions through extrapolating sparse measurements,
something that DMs could help with.

1-2 Diffusion Models

Deep generative models have revolutionized image synthesis by generating high quality sam-
ples. Two prominent examples, General Adversarial Network (GANS) [17] and Variational
AutoEncoder (VAE) [18], have achieved remarkable success. Recently, however, Diffusion
Models (DMs) [19] have gathered significant attention, demonstrating performance on par
with GANs and VAEs while offering distinct advantages. Unlike GANs, which rely on ad-
versarial training and are often unstable, DMs are more stable due to their likelihood based
training process. Similarly, DMs are able to model complex data distributions more effectively
than VAEs. These characteristics make DMs an attractive choice for image synthesis tasks.

Diffusion Models, specifically Denoising Diffusion Probabilistic Models (DDPMs), are a class
of generative models that transform a simple initial distribution, like a Gaussian, into a
complex target distribution using a diffusion process. This process involves gradually adding
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1-3 Flow Reconstruction Using Diffusion Models 3

noise to the input data, and then learning to reverse this noise, step by step, using a neural
network. The ability to effectively model this denoising process is key to the success of DMs.

1-3 Flow Reconstruction Using Diffusion Models

Papers by J.Bastek et. al. [20] and D.Shum et. al. [21] first introduced using DMs to do
flow reconstruction trained on data generated by LES models. These papers did not focus
on flows in the ABL but on a smaller scale. They showed the potential of these models to
reconstruct turbulent flows and laid the foundation for further research.

Flow reconstruction in the ABL using DMs was then first studied by A. Rybchuk et al. [22],
who employed data from the Rotor Aerodynamics Aeroelastics and Wakes (RAAW) field cam-
paign [23]. This campaign collected wind flow measurements around a wind turbine using a
combination of in-situ meteorological tower sensors, ground based lidars, and nacelle mounted
lidars. In their approach, a LDM was used to extrapolate sparse measurements to large three-
dimensional regions of the ABL. While their method achieved promising results, the training
and evaluation were conducted on a highly homogeneous dataset namely, a single ABL state
simulation under periodic boundary conditions. In such a setting, flow variability is minimal,
and the spatial characteristics of the data are nearly uniform across samples. Consequently,
even unconditional sampling tends to produce realistic reconstructions, removing the need of
meaningful conditioning.

However, for diffusion based flow reconstruction methods to be viable in real world scenarios,
the model must be able to generalize to a much broader range of ABL states, including stable,
unstable, and transitional atmospheric conditions. This calls for effective conditioning strate-
gies to guide the generative process toward physically plausible samples that are consistent
with sparse observations and global measurements. Furthermore, current works only focused
on reconstructing the three velocity components u, v and w while some LES models also
require the most-static-energy temperature T}; and specific humidity ¢; as initial conditions.
So in order to use a DM to do flow reconstruction to use as initial conditions for LES the
model has to be able to reconstruct these variables too. This research aims to address these
needs by investigating conditioning techniques for both spatially sparse measurements and
global state variables while trying to reconstruct the five variables u, v, w, Ty, and g;.

1-4 Research Gap and Research Question

In recent years, DMs have shown significant promise in reconstructing complex flow fields.
These models are able to generate high fidelity representations of turbulent flow fields. Ry-
bchuk et al. [22] already showed good performance in reconstructing the ABL. They did this
however, without any turbines and only for a Neutral Boundary Layer. Even though their
results are promising, there is a lot of improvement needed before real-life application, for e.g.
wind farm control or wind resource assessment, is possible. Therefore this research proposes
adding a global conditioning to the model enabling it to distinguish between different ABL
states. Furthermore, it will also be shown that DMs can reconstruct flow fields that contain
wind turbines. These proposals lead to the following research question:
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4 Introduction

"How can a diffusion model reconstruct turbine influenced flow fields across multiple ABL
states?"

To answer this question the model will be fed with different types of global information to
inform it about the global state of the ABL. The importance of this additional information
will be tested by comparing it to model outputs without this information. Lastly, as has been
mentioned, it would be useful to use these reconstructed flow fields as initial conditions for
LES. Commonly LES simulations do not only need the velocity components u, v and w but
also the moist-static-energy temperature Tj; and the specific humidity ¢;. This study will
also investigate whether a DM can reconstruct these variables too, something that is not yet
done in this context.

1-5 Report Structure

The structure of this thesis is as follows: First, Chapter 2 introduces the relevant atmospheric
dynamics and provides a theoretical background on LDMs, including AEs, DMs, and guidance
mechanisms. Second, Chapter 3 presents the model implementation and training strategy,
covering both the AE and the conditional DM. Third, Chapter 4 describes the experimental
setup, detailing data generation using LES, preprocessing, measurement design, and hard-
ware specifications. Fourth, Chapter 5 presents the results, including visual and quantitative
analyses for various ABL states, and evaluates model performance across different conditions.
Finally, Chapter 6 concludes the thesis and offers recommendations for future work.

M.F. Triezenberg Master of Science Thesis



Chapter 2

Atmospheric Flow Reconstruction
using Diffusion Models

Now that the research gap and research question have been established, we turn our atten-
tion to maximizing model performance. This involves examining both the fundamentals of
atmospheric dynamics and the underlying principles of the model architecture. The goal is
to identify ways to optimize the model’s design and training procedure to better align with
the objectives of this research.

In addition, since in previous work by Rybchuk et al. [22] no explicit guidance was necessary,
this chapter also explores alternative guiding mechanisms that may still prove beneficial for
more complex or sparse input scenarios.

The structure of this chapter is as follows. Section 2-1 provides a brief overview of relevant
ABL dynamics. Section 2-2 introduces the LDM, beginning with its overall structure and fol-
lowed by foundational explanations of autoencoders and diffusion models. Finally, Section 2-3
discusses various methods of conditioning or guiding the model toward specific outputs.

2-1 Atmospheric Dynamics

As mentioned before, the ABL is the lowest part of the atmosphere that directly interacts
with the Earth’s surface. The ABL can be in multiple different states that greatly influ-
ence the dynamics of the flow in the ABL. These states can be categorized into three main
states according to atmospheric stability, namely: Neutral Boundary Layer (NBL), Stable
Boundary Layer (SBL) and a Convective Boundary Layer (CBL). These states differ mainly
in turbulence characteristics. The SBL occurs mainly at night when surface cooling leads to
stratification, which suppresses turbulence. The CBL, on the other hand, occurs during day
time when, due to surface heating, there is a lot of buoyant turbulence and vertical mixing.
Lastly, the NBL is an intermediate state where there is little to no surface heating or cooling.
Figure 2-1 shows the flow in the three different ABL states, clearly indicating the difference

Master of Science Thesis M.F. Triezenberg



6 Atmospheric Flow Reconstruction using Diffusion Models

CBL NBL SBL

Figure 2-1: Figure showing a side view of the wind in x-direction for the three ABL states: CBL,
NBL and SBL.

in turbulence among the different states. The amount of turbulence, and thus to some extent
the ABL state, can be quantified using the Bulk Richardson number Rj, which is a measure
for the dynamic stability and turbulence in the ABL.

2-1-1 Bulk Richardson number

The Bulk Richardson number is a simplified version of the Richardson number and both
are parameters used to quantify the balance between the buoyancy and shear in a flow [24].
The Bulk Richardson number is often used over the Richardson number because the Bulk
Richardson number uses differences in flow over a finite distance while the Richardson number
requires high-resolution vertical profiles to calculate gradients. Since these high-resolution
profiles are often not available due to sparse measurements the Bulk Richardson number is
often used. It is a dimensionless number calculated using the following formulas:

Ab,Az
(AU)2 + (AV)?2

g
= — 2— ]_

Where:

g is the gravitational acceleration.

0, is the reference virtual potential temperature.

Af, is the difference in virtual potential temperature over the layer.

Az is the height of the layer.

AU and AV are the differences in the wind speeds u and v respectively.

So the Ry is computed by calculating the difference in wind speeds and potential temperature
at two different heights. The obtained value of Ry provides information on ABL stability:

When Rb<0 the ABL is convective.

When 0<Rb<0.25 the ABL is turbulent and shear driven.

When 0.25<Rb<1.0 the ABL is intermittently turbulent.
When Rb>1.0 the ABL is stable

M.F. Triezenberg Master of Science Thesis



2-1 Atmospheric Dynamics 7

2-1-2 Boundary Layer Height

Another important detail of the ABL is the Boundary Layer Height (BLH) or the height of
the inversion layer. As is visible in figure 2-1, there is a clear height at which the turbulent
flow in the ABL stops and the flow becomes more laminar. The BLH is the altitude up to
which turbulent mixing occurs. As shown in the figure, lower turbulence levels in the SBL
lead to a lower BLH compared to the CBL. While the flow beneath the boundary layer is
turbulent due to the interactions with the Earth’s surface this transitions to more stable,
stratified conditions above the boundary layer.

28 30 32 34 4 6 8 10 12 NBL
Thi[*C] u[m s—]]

Figure 2-2: Figure showing the horizontally averaged profiles for Tj,; and u and the Boundary
Layer Height in these profiles.

The BLH is an important parameter for understanding to what extent the Earth’s surface
interactions influences the flow in the ABL. In literature there is no generally accepted way of
calcuting the BLH, however G.Rampanelli and D. Zardi [25] proposed using the water liquid
potential temperature for this. This is possible because the inversion layer always exists
because there is a sudden jump in potential temperature at a certain height. This sudden
jump prevents the air from mixing, blocking turbulence and creating the stratified conditions
that we mentioned earlier. Figure 2-2 outlines this phenomenon by showing that the height
of the BLH is the height at which the vertical profile of T}; has a jump, which is at the same
height where the turbulence disappears in the right sub-figure. This figure also shows the
vertical profile for the wind speed u.

Thi, also called moist-static-energy temperature [26], is an important variable for some LES

simulations because it can function as a state variable for some LES. State variables for LES

form the minimal set of variables that define the system’s physical state.
Lyq  Ligi

z
Ty =T+ 29

2-2
Cp Cp Cp 22)

Where:

e T is the parcel temperature.
e z is the height above ground level.

¢, is the specific heat of dry air at constant pressure.

Master of Science Thesis M.F. Triezenberg



8 Atmospheric Flow Reconstruction using Diffusion Models

g is the gravitational acceleration.

L, is the latent heat of vaporization.

e ¢ is the water vapor specific humidity.

L; is the latent heat of fusion .

q; is the specific humidity of ice.

The variable T}y; is a conserved variable for moist adiabatic processes such as rising air parcels
and cloud formation. It represents the moist static energy per unit heat capacity and due to
its conservation it is used as a state variable for some LES simulations.

2-2 Latent Diffusion Models

2-2-1 General Structure
DMs are a state-of-the-art class of generative machine learning models, but they are computa-
tionally expensive due to the large number of denoising steps required in the reverse process.

This cost becomes particularly significant for high-dimensional 3D domains representing, for
example, a wind farm. To reduce the overall computational burden, an LDM is used.

Compressed Compressed
Input Input | Diffusion

» Encoder >
\/ Model

Figure 2-3: The basic structure of the LDM.

Decompressed
Output

An LDM places the diffusion model in the latent space of an AE, a type of Convolutional
Neural Network (CNN) that learns to compress input data into a lower-dimensional represen-
tation and then reconstructs it. The AE consists of two parts: an encoder that compresses the
input, and a decoder that reconstructs it. Because the latent space is a compressed version
of the original data, running the DM in this space significantly reduces memory and compute
requirements while still capturing important structures in the data. Figure 2-3 shows an
overview of the LDM.

Rombach et al.[27] showed that LDMs can achieve high quality results with greatly reduced
computational cost. Unlike earlier latent diffusion approaches such as by Vahdat et al.[28],
they propose first training the AE separately, followed by the diffusion model. Their ex-
periments found that compressing the data by a factor of 4 to 8 provides a good trade-off
between efficiency and reconstruction quality, even improving performance metrics like the
Frechét Inception Distance (FID) score [29]. So, following the method proposed by Rombach
et al. first the AE will be trained, followed by training the DM with the goal of extrapolating
partial measurement into a full flow field. The pipeline for this is shown in figure 2-4. In this
figure as input you can see an image that is mostly white except for an area in the lower right

M.F. Triezenberg Master of Science Thesis



2-2 Latent Diffusion Models 9

corner. This image is called a mask, and the non white values represent measurements done
at a certain location. Since the goal of this research is to extrapolate these measurements the
model has to be able to get these masks as input and fill in the white area around it, this is
called image inpainting. There are different methods for doing this, which will be discussed
in section 2-3-1.

Generated Image

—

Masked Truth

: —_Input |
|

Compressed Reconstructed
Input Diffusion Output
Model

Decoder

Figure 2-4: Data flow for inference of a Latent Diffusion Model doing flow reconstruction.

As the caption of 2-4 states this is the data flow for a Latent Diffusion Model doing flow
reconstruction. This figure shows that such a model can get measurements, for a certain
variable, in the form of a mask which are then compressed and fed to the DM. The DM
reconstructs the flow for this variable using the measurements, this reconstruction is then
decompressed and the final result is obtained. This approach can be applied to multiple
variables, which are stored as separate channels within a single 4D data array. For example,
when reconstructing five variables, the data would be organized with the shape [5, XY, Z],
where the first dimension represents the number of variables (channels), and X, Y, and Z
correspond to the spatial grid dimensions.

2-2-2 Autoencoder

This section shortly touches on the basics of an AE, explains how residual blocks work and
what their use are and mentions possible loss functions for the AE.

AE Basics

AEs are a type of CNN [30] designed to reconstruct their own inputs. An AE consists of two
main components: an encoder and a decoder. The encoder transforms the input data x into
a lower-dimensional latent representation h via the mapping

h = f(x)

The decoder then attempts to reconstruct the original input from the latent code through the
reverse mapping

r = g(h)
The encoder acts as a feature extractor: it compresses the high-dimensional input into a latent
representation that captures the most important structures and patterns. In the context of

this work, the encoder maps three-dimensional atmospheric flow fields into a compact and
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10 Atmospheric Flow Reconstruction using Diffusion Models

informative latent space that retains key turbulent features. The decoder then reconstructs
the input from this representation, ideally preserving all relevant flow information.

If no constraints were placed on the model, the AE could learn to simply invert the encoder
through the decoder, achieving perfect reconstructions without learning meaningful struc-
ture in the latent space. To prevent this, AEs are designed with architectural or loss based
constraints that force the model to learn only the most informative features of the data in
order to reconstruct it. This property makes the AE especially valuable for this research, as
it ensures that the latent space captures the most essential information from the input flow
fields. This compact representation is then used by the diffusion model for guided sample
generation.

Residual Block

When building deeper convolutional AEs one can encounter an issue called ’vanishing gradi-
ents’, making them more unstable during training. Residual blocks were first introduced by
He et al. [31], to prevent this phenomenon.

The idea of a residual block is that, instead of letting a layer learn an entire function from
scratch, a residual block learns the difference between an input and the desired output. The
input is then added back to the output of the block, stabilizing training. A residual block
can be defined using the following formula:

y=F(z,{Wi}) + (2-3)

where:

e z is the input feature tensor.

o F(x,{W;}) is a learned function, typically a series of convolutional layers with activation
functions and possibly normalization layers. W; stands for the learnable parameters in
the layer.

e 1y is the output of the residual block, representing the sum of the original input and the
learned residual.

Loss Function

Choosing the correct loss function is one of the most important parts of effectively training an
AE. There are a lot of different losses available that can be combined to create a powerful loss
function that optimizes the objective for your AE. This section will discuss multiple losses
used in AEs and why they could be a useful addition to the loss function of this particular
AE.

Negative Log-Likelihood
The NLL loss or Negative Log-Likelihood loss is a measure of how well the AE predicts the

observed data [32]. Minimizing the NLL loss is equal to maximizing the likelihood of observing
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2-2 Latent Diffusion Models 11

your data under the assumed probabilistic model. In this case the NLL loss is calculated by
taking the reconstruction, done by the AE, as a probabilistic prediction, aiming to maximize
the likelihood that your generated samples are similar to data it has been trained on. The
NLL loss is calculated as follows:

LnLr =

X — %)2
[w + log(02)1 (2-4)

N =

Where:

e (x—%)? is the absolute reconstruction loss, which is the difference between the input x
and the reconstruction %.

e 02 is the variance in the reconstruction.

o log(o?) is the logarithmic of the predicted variance. It penalizes the model for making
o2 too large thus controlling its confidence.

Minimizing the NLL loss preserves fine-scale features in the flow field, which could be essential
for the reconstruction of turbulence. Furthermore, by modeling uncertainty the model can
increase its robustness against noisy or sparse inputs, which are often present in real world
applications.

Kullback-Leibler Divergence

The KL loss or Kullback-Leibler divergence loss which is a measure for the distance between
two distributions [33]. In the case of an AE the distributions being compared are a predefined
latent prior p(z) and the encoder generated latent distribution g(z|z). In this case p(z) is a
Gaussian with mean 0 and variance 1 and ¢(z|z) is the posterior distribution of the latent
z given input z. The distance between these two distributions is measured in the following
way:

Dia(a(ele) 19(2) = [ a(eha)tog (475 ) oz (25

However since p(z) used here is a Gaussian this can be rewritten into the following closed
form.

d

Z (uf + 02 —logo? — 1) (2-6)
i=1

Lxr, =

N |

An AE with a KL loss is called a Variational AE (VAE), first introduced by Kingma and
Welling [34], and its purpose is to push the latent representations g(z|x) towards the prior
distribution p(z). This prior distribution has a mean p and variance o pushing the distribution
of the latent space to that of a Gaussian. A well structured latent space is easier to learn for
the DM than when another distribution is used. Another reason that this is useful is because
it makes the latent representations more continuous allowing for smooth interpolation and
thus the generation of realistic new samples. Even though this AE will not be used to generate
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12 Atmospheric Flow Reconstruction using Diffusion Models

samples itself this is still a useful feature since a regularized latent space improves a decoder’s
ability to reconstruct inputs it has not explicitly seen yet. This is a necessary feature because
the DM is unlikely to generate samples that the AE have been trained on, using a VAE the
model will be able to interpolate between samples it has seen and the ones generated by
the DM. Furthermore, the probabilistic nature of a VAE increases robustness against noisy
samples, helpful in the case of real-life measurements.

Generator Loss

The Generator loss (L) is a loss that is mostly used in GANs. This loss uses a discriminator
that aims to improve the reconstruction quality. In this case the decoder is the generator that
has to fool the discriminator by producing realistic reconstructions. The loss function for the
generator loss looks as follows:

La = —E [Discriminator(z)] (2-7)

The discriminator is a separate model that is trained on classifying inputs as either real or fake.
By learning this it is possible to let the outputs of the AE be classified by the discriminator
and try to fool it into thinking they are inputs from the dataset. The loss is negative because
the goal is to maximize the discriminator’s belief that the fake data is real. By doing this,
the model is encouraged to generate physically possible turbulent structures. Furthermore,
while just using a NLL loss might lead to blurred reconstruction, the combination with the
generator loss promotes sharper output.

2-2-3 Diffusion Models

This section will look into the mathematical background of DMs. this Section will discuss
the fundamentals of DMs, followed by an explanation of attention, an essential feature for
the model.

DM Basics

Deep generative models, such as General Adversarial Network (GANS) [17] and Variational
AutoEncoder (VAE) [18], have achieved notable success in image synthesis. However, Diffusion
Model (DM) have recently emerged as a competitive alternative, demonstrating high-quality
sample generation. DMs offer several advantages: they are more stable than GANs due
to their likelihood based training and do not rely on restrictive Gaussian priors like VAEs,
allowing them to model more complex data distributions.

Denosing Diffusion Probabilistic Model (DDPM) [35][19][36][37], a popular class of DMs, use
a diffusion process to transform a simple distribution (e.g., Gaussian noise) into a complex
data distribution. This process consists of two main phases: a forward process, which adds
noise to data over time, and a reverse process, where a neural network learns to denoise the
data and generate samples.
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2-2 Latent Diffusion Models 13

Forward Process

In the forward process, the input data xg ~ g(xo) is gradually corrupted by adding Gaussian
noise through a series of steps [19]. Each step q(x;|x;—1) adds noise proportional to a variance
schedule B, resulting in pure noise x7 at the final step. This forward process can be expressed
as a Markov chain, and allows for direct sampling at any time step using the following
equation:

q(xt|xt—1) = N(xt; V1 = Bexe—1, BiI) (2-8)

q(x¢|x0) = N (%45 Vayxo, (1 — a)I) (2-9)

where ay = H’;:l as and ap = 1 — B;. Since [; is proportional to the amount of noise added
to the image at each step, a; can be seen as the amount of information in the image still left
at a certain time step.

The goal of the forward process is turning the original image x( into pure noise at xp by
adding noise through the noise schedule. This noise schedule was originally chosen as a linear
schedule but later it was found that a cosine schedule yields better results in most cases.
Figure 2-5 shows how a; decays for each noise schedule. Under the linear schedule, a; drops
to near zero quickly, so the original image signal is overwhelmed by noise after only a small
fraction of the diffusion steps. The cosine schedule, by contrast, keeps a; higher for longer,
preserving more of the image content throughout the forward process. Because the model is
trained (and later sampled) on inputs that still contain useful structure, it can learn a better
denoising function, which translates into higher quality reconstructions at inference time.

1.0} linear

—— cosine

0.8}

0.6}

[S]
0.4}

0.2}

0.0, i . .

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Figure 2-5: Figure showing a linear and cosine variant of the noise schedule.

Reverse Process
The reverse process aims to recover the original data from noise, step by step. Since the true

reverse transitions q(x;—1|x;) are unknown, a neural network is trained to approximate them.
The reverse process is modeled as a Gaussian distribution:

pe(xt—l ’Xt) = N(Xt—ﬁ NG(xtv t)? 29(Xt7 t)) (2'10)
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14 Atmospheric Flow Reconstruction using Diffusion Models

where pg(x¢,t) is learned by the neural network, and 3g(x¢,t) is often simplified to a fixed
schedule [19]. The neural network architecture that is used for this is a U-net [38].

Training

The neural network is trained by minimizing a wvariational lower bound (VLB) on the log-
likelihood of the data [39]. This is achieved by minimizing the Kullback-Leibler (KL) diver-
gence between the learned reverse distribution, pg(x;—1|x;), and the true posterior distribution
q(x¢—1|x¢). The KL divergence is a distance measure of how much a distribution differs from
another one. Minimizing this distance is done by minimizing the distance between the means
of both distributions. Which, in our case leads to the following objective function.

L =R [|[fie(xe, %0) = pro(x1,1)||’] (2-11)

Here fi;(x¢,%0) is a combination of x¢ and x; dependent on the variance ;. After this, [36]
found that training pg(xy,t) to predict the noise € at any step t yields better results. This
leads to simplifying the objective function to [35]:

Liimpte(0) = Et.u0.c U € — o (v/anmo + VT = ane, t)m (2-12)

In this new objective, the model learns to predict the added noise € by adjusting its parameters
so that eg(x¢, t) approximates the true noise at each timestep t. When €y (x¢, t) has been prop-
erly trained x;_1 ~ pp(x¢—1|x¢) can be sampled by computing x;_; = \/% (xt — \/%—&69 (x¢, t)) +
oz where z ~ N(0,1).

Attention Mechanism

Since the DM has to be able to extrapolate sparse measurements to the entire domain the
DM has to learn the relation between those measurements and the flow in other regions
of the domain. Attention, first introduced by Vaswani et al. [40], was made to learn the
relations between different words in a sentence. Even though no words are used in this model
attention’s ability to relate different values in an input to each other is a great feature that
can help the DM learn relations between measured and unmeasured areas.

Attention mechanisms take three matrices as input: Q (queries), K (keys) and V (values)
each representing different linear transformations of the input features.

e Q € R™*%Queries represent the data points for which we want to compute attention
scores. In the case of our flow reconstruction this represents locations in the domain,
especially where little to no measurements are available. The dimension m corresponds
to the number of query positions (typically all spatial locations in the domain), and dj
is the dimensionality of the feature representation.
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2-3 Guidance Mechanisms 15

o K € R™*% Keys also represent different data points in the domain that might contain
information relevant to the query locations. Keys enable the model to identify regions
with measurements that influence unmeasured areas. Here, n denotes the number of
key positions (e.g., the locations where measurements are available), and dy, is again the
feature dimension, shared with the queries.

e V € R™% Values represent the latent-space flow features at the key locations, which
will be weighted based on their attention scores to reconstruct missing data. The n
entries correspond to the same positions as in K, and d,, is the dimensionality of the
value vectors, which are combined to produce the output.

The attention score between each query and key is computed by computing the dot product,
scaled by the factor /dj where dj, is the dimensionality of the keys and queries. This is
done to prevent the dot product from exploding, stabilizing gradients during training. The
softmax function is a function that maps an input vector to a probability distribution making
sure all outputs are between 0 and 1 and sum up to 1. So for this use case the softmax
function makes the relation between keys and queries more interpretable by mapping them
to a relative importance.

Attention(Q, K, V) = softma QK| A\ (2-13)
ntion(Q, K, V) = softmax -
Vi,

The output of an attention layer is a weighted sum of the values, where the weights are
derived from the normalized attention scores. A high attention score indicates a strong
relation between two points, telling the model that a measurement in one location is strongly
correlated to an unmeasured region giving the model essential information on how to inpaint
images. This makes attention mechanisms especially useful in models for flow reconstruction
using sparse measurements, such as the diffusion models discussed in this work.

2-3 Guidance Mechanisms

The previous sections stated how the overall LDM was built and set up to maximize perfor-
mance during inference. As has been noted in section 1-3, since the data set used by Rybchuk
et al. [22] was so homogeneous no real guidance was needed to end up with a sample that
looked like the ground truth. Since the goal of this research is to show that it is also possible
to do image inpainting for more difficult, variable datasets it is important to also look into
good guidance mechanisms. This section will give an overview of the research that has been
done to look into these mechanisms. This research has been split up into two parts, guiding
the model by using sparse measurements, which is known as inpainting and will be discussed
in section 2-3-1. Furthermore, ways of supplying the model with more global information
about, for example, the state of the ABL have been investigated and will be discussed in
section 2-3-2. The combination of these two guidance mechanisms should allow the model to
infer the right ABL state through conditioning and reconstruct the right wakes through the
sparse measurements.
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16 Atmospheric Flow Reconstruction using Diffusion Models

2-3-1 Image Inpainting with Diffusion Models

The goal of this research is to train an LDM that uses sparse, real-life measurements in order
to extrapolate them to an entire flow field. The technique of giving partial information to a
generative model and making the model fill in the unknown values is called image inpainting.
There are different ways of supplying the model with these measurements and they will be
discussed below.

The Inpainting Task

In image inpainting a DM has to learn the relationship between known and unknown areas.
These known areas can range from small patches to larger regions. Inputs that only contain
partial information are called masks, masks consist of zeros for unknown pixels (masked pixels)
and nonzero for the known pixels. In general diffusion based inpainting, the generative process
is guided to only reconstruct the masked parts, while the unmasked parts are superimposed.
Formally, given an image x and a binary mask m, where m; ; = 1 indicates observed pixels
and m; j = 0 indicates missing ones, the goal is to sample X ~ p(x | x ©® m).

In the literature, two major methods exist for diffusion based inpainting: preconditioned and
postconditioned inpainting.

Preconditioned Inpainting involves training a conditional diffusion model to learn a distri-
bution p(x|y), where y represents conditioning information such as observed pixels or a mask.
During training, the model is explicitly exposed to various conditional scenarios, allowing for
fast inference later. However, this method requires significant computational resources and
time during training to generalize across all possible mask configurations [27].

Postconditioned Inpainting, on the other hand, does not require a trained conditional
model. Instead, an unconditional diffusion model is used as a prior during inference. One
approach is RePaint [41], which works by taking a jump back in time every few steps to end
up with a better result. It does this in order to remove weird artifacts that appear when just
superimposing the mask every step.

How it works is when you start with an image that is full noise at timestep T, the masked
values are superimposed and denoising happens for a few steps until you arrive at time t,
where t < T. Then the sample generated at time t gets a little bit of noise added to it again
so it has noise equal to timestep t+3 and then you start denoising the image again. The
idea behind this method is that by taking some extra steps the model incorporates the masks
better without the artifacts.

Alternative Methods such as the propagation based approach, proposed by Corneanu
et al. [42], aim to reduce both training and inference costs. Their method uses a small
trainable function that learns to share information between observed and unobserved regions.
This function learns to propagate information from known to unknown regions, allowing an
unconditional model to be used for inpainting. Although it avoids repeated sampling, the
authors report that their inference time is still approximately 5 times longer than that of a
preconditioned model.

Method Selection While all these methods achieve comparable reconstruction quality, their
computational characteristics differ. For practical applications where fast inference is critical,
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such as real-time flow field estimation, preconditioned models are preferred. Although training
is more expensive, it is a one time cost, whereas slow inference can be a significant bottleneck
in operational settings. Based on this trade-off, the preconditioned approach is adopted in
this research.

2-3-2 Mask-Guided Conditioning

The goal of adding a mask is to guide the model towards the state of the ABL that was
measured in real-life. This has to be done by supplying the model with essential information
in the best way possible. In this section the different ways of supplying masks to the model
will be discussed as they have been mentioned in literature.

Input Concatenation One of the simplest approaches is to concatenate the masks to the
input tensor as additional channels. This is done by concatenating the masked inputs as well
as the binary mask, providing the model with spatial information about which regions are
known and which are missing. This method is computationally inexpensive and widely used
in earlier inpainting frameworks such as [43].

Noise Resampling Another strategy, often used in DDPM based inpainting, is to apply
noise only to the masked regions during training and sampling, while keeping the unmasked
parts unchanged. This encourages the model to focus denoising efforts solely on the unknown
regions. This approach was demonstrated in works like [44]. This method can be applied to
both pre- and postconditioned models but mostly used in postconditioned models since in
preconditioned models the mask information should already be learned during inference.

Cross-Attention Conditioning More advanced models employ cross-attention mechanisms
to incorporate mask information. Here, the mask (or a learned embedding of the observed
data) serves as context that the model attends to during the denoising process. This strategy
is often used in text-to-image generation (e.g., [27]) and has been adapted for spatially aware
inpainting and flow reconstruction tasks (e.g., [45, 46]).

Because in their study Rybchuk et. al. [47] have found that hard constraining the mask, as is
done for noise resampling, leads to artifacts in the reconstructed field this option will not be
chosen. Furthermore, Cross-Atttention requires another model that can map the masks into
an embedding which increases model complexity. Because of this the conditioning method
used in this research will be concatenation of masks.

Class-Conditional Diffusion

In class-conditional diffusion models a label is provided as input to the model in order to guide
the generative process toward a certain class. Labels are numbers that represent a certain
class in the data on which the model is trained. These numbers can represent categorical
classes such as 'cat’ and 'dog’ or have a more continuous and physical meaning such as time.
These categorical labels are then given numbers like 1 or 2, but feeding these numbers to the
model is not done in practice. This is avoided because models struggle to relate data to such
labels because it is looking for a mathematical relation between the labels, so label 2 is twice
label 1. However, in the real world the labels stand for cat and dog, and cat is not twice dog,
so the model would have a hard time learning this relationship. In contrast, continuous labels
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18 Atmospheric Flow Reconstruction using Diffusion Models

do exhibit numerical relationships (2 minutes is twice as much as one minute) so using them
can be appropriate. To tackle the issue for categorical labels, label embedding is used, which
is a way of breaking a label, a single number, down into a vector which contains multiple
numbers. This vector is then concatenated to the input data to condition the generation
steps on the label’s information.

There are multiple ways of embedding a label, but one often used is sinusoidal embedding, as
done by [48] which called it Positional Encoding (PE). In a sinusoidal embedding, sinusoidal
functions are used at different frequencies to map an integer to a higher dimensional space.
As mentioned before, the integer is mapped to a vector, which is done by using a sine and
cosine function for the even and odd positions in the vector respectively.

PE(i)9) = sin( ), PE(i)ox+1 = cos( ) (2-14)

i i
100002k/d 100002k/d

The equation above shows how the embedded vector is filled. In this formula, d is the
dimension of the vector, k is the index of the vector going from 0 to % — 1, i is the integer to
be embedded and 10000 is an arbitrary but intentionally chosen large variable. the dimension
d can be chosen by the user which is a trade-off between memory and expressiveness of the
label. The choice for a combination of sine and cosine has been made because they change
continuously with the input meaning that a slight change in inputs shifts the embedding in
a predictable way, helping the model extra- or interpolate to values not seen during training.
Looking at the argument of both functions it can be seen that as k increases the denominator
increases, and thus the argument becomes smaller leading to a lower frequency. This change
in frequency is important for multiple reasons, as is shown in [49]. Firstly, because the big
range of frequencies ensures uniqueness across all inputs. Secondly, high frequencies help the
model distinguish between inputs that are close to each other, while the low frequencies help
the model grasp the difference between inputs that are far apart. The need for this big range
of frequencies is also the reason a large number such as 10000 is often chosen.
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Chapter 3

Model Implementation and Training
Strategy

This chapter outlines the practical implementation of the deep learning models used in this
study, focusing on both architectural design and training strategy. Building on the theoretical
foundations laid out in earlier chapters, we describe how the AE and DM were constructed
and optimized to enable high fidelity flow field reconstruction from sparse measurements.

Section 3-1 details the architecture and training of the autoencoder, which serves as a crucial
component for compressing the high-dimensional flow data into a lower-dimensional latent
representation. This dimensionality reduction enables efficient training of the more compu-
tationally intensive diffusion model.

In the section 3-2, we present the design of the diffusion model, which operates in the latent
space produced by the autoencoder. The DM is conditioned on sparse input measurements
and is responsible for reconstructing the full flow field. Attention is given to architectural
trade-offs, loss functions, and optimization strategies used to ensure stable and effective train-
ing.

Together, these components form the core of the end-to-end system used for flow reconstruc-
tion, balancing interpretability, computational cost, and model accuracy.

3-1 Autoencoder

This section outlines the choices made for the AE’s architecture and training strategy, based
on the theoretical background provided in Section 2-2-2. Section 3-1-1 describes the final
network architecture, while Section 3-1-2 presents the corresponding training configuration.

3-1-1 Architecture

As mentioned in chapter 2-2-1 the reason for using the AE is compressing input data to lower
the computational cost of the DM. From section 2-2-2 we know that AEs are perfect for this
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20 Model Implementation and Training Strategy

since they are built to extract the most important details from input data into the latent
space. In order to do this as effectively as possible, using the information from section 2-2-2,
architectural choices were made which will be discussed in this section.

Input, Output and Latent Space

The most important factors for choosing the architecture of a model are the desired dimensions
of the input, output and latent space. As mentioned in section 1-3, we want to reconstruct
5 variables, which will be done in a 3D domain with spatial dimensions [128,128,64] leading
to input and output dimensions of [5,128,128,64] per sample. Next the dimensions of the
latent space have to be chosen. As section 2-2-1 mentioned, Rombach et al. [27] found that a
compression ratio of four lead to the best results so this will also be adopted here. However, for
interpretability of the latent space it has been chosen that the 5 variables will be kept intact
and thus only the spatial dimensions will be compressed, leading to latent space dimensions
of [5,32,32,16]. Figure 3-1 shows what the data flow for the AE looks like.

Ground Truth Decompressed Image
I s, Compressed -
‘I' —Input | Encoder Input »| Decoder |

Figure 3-1: Data flow for training the AE.

Network Structure

Figure 3-2 shows the structure of the AE that was used to ensure the dimensions of the input,
output and latent space were correctly implemented. This image shows how the dimensions
of the inputs change throughout the process of down- and upsampling, while also showing
the use of 4 residual blocks per layer to prevent vanishing gradients, as mentioned in section
2-2-2.

3-1-2 Training Setup

Aside from the architecture used in the AE, another important part of optimizing performance
is choosing the right loss function. The total loss function, used during training, is shown in
equation 3-1.

Lar = LN + AKLLKL + Ag - Vg - La (3-1)
Where:

e Ly is the Negative-Log Likelihood loss as shown in equation 2-4.
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Encoder Decoder
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Figure 3-2: The architecture of the AE used to do flow reconstruction. DM denotes the actual
DM

e Mg is a scaling factor for the KL divergence loss which is 1e7% in our case, found
through hyperparameter tuning.

e Ly is the KL divergence loss as explained in equations 2-5 and 2-6.

e ),y is a scaling factor for the Generator loss which is 0.5 in our case, found through
hyperparameter tuning.

e 7, is a weight that changes from 0 to 1 after a certain amount of steps, giving the
discriminator time to learn what images are real. In our case vy, changes from 0 to 1
after 5000 steps.

e L is the generator loss as explained in equation 2-7

This equation shows that the loss function used consists of a combination of all losses discussed
in section 2-2-2. Furthermore, since a KL loss is used for the AE it is actually a VAE.

Another important feature of the training setup is the right optimizer used to optimize the
loss function. Two optimizers widely used in Machine Learning are Adam [50] and AdamW
[51] because of their ability to handle sparse gradients and their adaptive learning rate. The
difference between Adam and AdamW are that AdamW takes care of regularization, meaning
it prevents overfitting to the training data. However, since our AE is a VAE and we use
KL divergence, which both already regularize the model, the extra regularization from the
optimizer is not needed and thus Adam has been chosen as optimizer with a learning rate
of 1le~>. Furthermore, due to the high memory use of the model, a batch size of 2 has been
adopted.

3-2 Diffusion Model

This section outlines the architectural and training choices made for the diffusion model,
guided by the theoretical background discussed in 2-2-3. Section 3-2-1 describes the final
network architecture used for conditional generation in latent space, while Section 3-2-2 details
the training setup, including loss formulation, optimizer configuration, and learning rate
scheduling.
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3-2-1 Architecture

This section will discuss the final architecture used for the DM. In this decision process con-
siderations such as computational power and memory usage played important roles. Because
training a DM is an expensive process a trade-off has to be made between model complexity
and computational efficiency.

Ground Truth ~ Masked Truth Generated Image

| Compressed Reconstructed
_Input Input Diffusion Output Decader —output
Model

Figure 3-3: Data flow for training the Diffusion Model.

Input and Output

Unlike for the AE, the dimensions of the latent space are not that important for the DM since
the it is not explicitly used. Furthermore, as figure 3-3 shows for training our conditional DM
the input is not only the 5 variables that we want to reconstruct but also the masks used to
mimic their measurements. This increases the input channels from 5 to 10 since each variable
gets measurements in our case. Furthermore, to supply the model with information of where
measurements are done a binary mask is also concatenated to the input. This mask contains
ones for places where measurements are done and zeroes in the other places. Concatenating
this mask as well, results in 11 channels. As mentioned in the previous section the AE
compressed the data down to spatial dimensions [32,32,16] leading to final input and output
dimensions of [11,32,32,16] for the DM.

Network Structure

Figure 3-4 shows the network structure of the DM. This structure shows that the input of
dimensions [11,32,32,16] is sampled down in three layers to a dimension of [512,4,4,2] in the
bottleneck, only keeping the most important details. This figure clearly shows the use of skip
connections, which are characteristic for a U-net. Furthermore, it can be seen that in some
layers attention blocks are used, for which the motivation was given in section 2-2-3. The
use of attention is quite expensive which is why it is only used in downsampled layers, since
this is less computationally expensive. In both the decoder and the encoder 5 residual blocks
are used per layer while attention is not used for the first layer. Lastly, in the bottleneck 2
residual blocks and one attention block are used.

3-2-2 Training Setup

The loss function that will be used to optimize the DM during training is the one shown in
equation 2-12. AdamW will be used as optimizer to help regularize the model during training.
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Figure 3-4: The architecture of the DM used to do flow reconstruction.

The learning rate that will be used follows a linear schedule instead of just being a constant
value. The model uses a base learning rate of 5> which is multiplied by a schedule that
starts at 1e~® and grows to one, linearly over 10000 steps. This has been done because without
this schedule the model the training process could explode when the model sees image with
a lot of noise resulting in exploding gradients. Lastly, due to memory constraints the batch
size used is 1.
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Chapter 4

Experimental Setup

The goal of this research is to reconstruct physically plausible atmospheric flow fields from
sparse, on-site measurements using an LDM. Achieving this requires a realistic and diverse
training dataset, accurate modeling of sparse observations, and careful selection of relevant
atmospheric labels. This chapter outlines the experimental setup used to create such a foun-
dation, covering data generation, preprocessing, measurement design, and hardware resources.

Section 4-1 details how training data was generated, including simulation setups for different
ABL states and wind farm configurations. It also describes the data sampling strategy and
the preprocessing pipeline used to prepare the data for model training.

Section 4-2 discusses how sparse observations and global labels are constructed to mimic
real-world measurements. This includes the spatial masks that emulate LiDARs and meteo-
rological masts, as well as discrete labels like BLH and Rjp, which are used to improve flow
reconstruction.

Section 4-3 provides an overview of how the experiments are set up in the following chapter,
offering context for how the results were obtained.

Finally, Section 4-4 provides a brief overview of the hardware used for training and inference.
The combination of high-fidelity LES data, realistic observational constraints, and appropriate
computational resources ensures a robust and practically relevant setup for training the LDM.

4-1 Data Collection and Preprocessing

To reconstruct realistic atmospheric flow fields from sparse observations, we require a model
capable of learning the complex turbulent wind data. Ideally, such a model would be trained
on dense, high-resolution measurements of the flow across the entire domain. However, ac-
quiring complete observational data in the atmospheric boundary layer is practically infeasible
due to cost, accessibility, and the limitations of current sensing technologies. As mentioned in
section 1-1, LES is a trade-off between fidelity and efficiency and will thus be used to generate
realistic datasets.
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4-1-1 LES Model: ASPIRE

The LES model used for this research is the model Atmospheric Simulation Platform for Inno-
vation Research and Education (ASPIRE) developed and operated by the company Whiffle.
This model runs almost entirely on Graphical Processing Units (GPUs) and originates from
DALES: Dutch Atmospheric Large Eddy Simulation [52]. While DALES was built to study
turbulence in the ABL, Aspire uses GPUs to increase its computational efficiency in order for
it to be used for weather forecasting. Furthermore, the use of GPUs also allows the user to
visualize the LES domain during runtime.

LES Boundary conditions

Appropriate boundary conditions are critical for any LES model. ASPIRE offers several
boundary condition strategies, each designed for different assumptions about how flow behaves
at the edges of the computational domain.

Periodic Boundary Conditions

Under periodic lateral boundary conditions, ASPIRE effectively “loops” the flow field across
the domain edges. This means that all flow that leaves the domain on one side enters again on
the other side. Periodic boundary conditions are applicable for real life situations when the
part of the ABL you are interested in is relatively homogeneous; this could, for example, be
when temperature gradients or terrain variations are small. These homogeneous conditions
result in a more stable simulation and are generally cheaper to run than the other methods,
this makes them a good starting point for testing the diffusion model. Because of the homo-
geneity of the simulation there is no new momentum or energy injected into the domain, this
is why in periodic simulations external forcing mechanisms are used. An example of this is
applying a constant geostrophic wind, which acts as a large-scale pressure gradient force that
drives flow across the domain.

NonPeriodic Boundary Conditions

Unlike periodic boundary conditions, nonperiodic boundary conditions rely on explicit in-
flow/outflow conditions that can either come from data, through a Numerical Weather Pre-
diction (NWP) or self built boundary conditions. These conditions assume that the flow
is known upstream and propagates downstream, requiring external input from observational
data in combination with coarser large-scale models leading to real-weather LES. Nonperiodic
boundary conditions are essential when the flow is inhomogeneous, such as in the presence
of obstacles, complex terrain, or varying atmospheric conditions. Furthermore, nonperiodic
simulations are also necessary when the simulated domain becomes so big that spatial gra-
dients in weather conditions will occur, this is something that is not modeled by a periodic
simulation.

While using nonperiodic boundary conditions results in more realistic simulations, this also
leads to a dataset that is much more complex than a periodic one. This is due to the fact
that a nonperiodic simulation is much more dynamical than a periodic one which results in
e.g. more changes in boundary layer height and shear. Even though reconstructing data
gathered from a nonperiodic simulation would thus bring us closer to reconstructing real
world weather this is a big step since there is little known about a DM’s ability to reconstruct
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flow fields. This is why, for this research, the model will be reconstructing data gathered by
running periodic simulations in order to get a better understanding of a DM’s behavior in
reconstructing different ABL states with different measurements being available.

4-1-2 Datasets and Simulation Setup

This work is trying to extend the works by Rybchuk et al. [22] by creating a more realistic
dataset. This will be done by first using a dataset similar to that in [22] and then expanding
it in small steps. In order to do this the following datasets will be used:

1. A NBL with a single BLH and no turbines
2. A NBL with two different BLHs containing a 6x6 wind farm
3. A SBL containing a 6x6 wind farm

4. A combination of datasets 2 and 3.

These datasets have been picked to show that our model is able to reconstruct similar data
to that of Rybchuk et al. After that we want to show that our model is able to reconstruct
turbine influenced flow fields and also flow fields with varying BLHs. Then we want to show
that our model can also reconstruct an SBL, also containing wind turbines. Finally, by
combining the two datasets we want to show that our model is able to distinguish different
ABL states from each other in a dataset containing wind turbines and varying BLHs for the
NBLs. Furthermore, these datasets will contain the variables u, v, w, Ty and ¢; for each
snapshot, to make sure the generated samples could be used as initial conditions for LES.

Simulation Setups

Now that it is known what datasets we want to use we can start setting up the simulations that
will generate the data. This will be done by first generating the dataset that only contains
an NBL with a single BLH and no turbines, and later altering this dataset by making small
changes to the simulation. The periodic LES simulation has to be initialized using an input
profile, which is depicted in table 4-1. This setup was inspired by a paper by D.Allearts and
J.Meyers [53] who simulated an NBL and an SBL. Values taken from their simulations are
the roughness lengths, geostrophic wind and the vertical potential temperature profile.

A NBL with a single BLH and no turbines

As mentioned all other simulations will have small changes compared to the input profile in
table 4-1. The table shows the setup for the NBL with a single BLH without turbines.

NBL with two different BLHs containing a 6x6 wind farm

Next, from the NBL with one BLH without turbines we go to an NBL with two different
BLHs and a 6x6 wind farm, which was created by using the same input profile as shown in
table 4-1 but then a 6x6 wind farm was added. The 6x6 by wind farm consists of 5SMW
turbines with a diameter of 126 meters. The wind turbines are evenly spaced from each other
1008 meters away and the wind farm is centered in the middle of the domain.
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Table 4-1: Input profiles and boundary conditions for the NBL simulation with an inversion layer

at 1000 meters.

Quantity Symbol Values Notes

Heights z 0, 900, 1000, 1100, 1500, 2000 m  Height levels for profiles

Moist-static-energy Th 300, 300, 304, 304, 305.6, 307.6 K Isothermal up to 1 km,

temperature stronger inversion above

Specific humidity Gt 0.0001 (constant) Dry profile

Horizontal wind u 12 m s~! (constant) No vertical shear

Horizontal wind v 0 m s~! (constant) No cross-wind compo-
nent

Geostrophic wind Ug 12 m s~! (constant) Large-scale forcing

Geostrophic wind Vg 0 m s~! (constant) Large-scale forcing

Surface pressure Ps 101300 Pa Typical sea-level pres-
sure

Roughness length Z0m 0.1 m Momentum roughness

Roughness length 20h 0.1 m Heat roughness

Surface moisture flux wgqy 0.0 No evaporation at the
surface

Surface heat flux wo} 0.0 Kms™! Neutral:  no surface
heating/cooling

Another addition to the dataset is another BLH, which was created by using the same input
profile but than with different potential temperatures at different heights to create an inversion
layer at a different height. The new input profile for the potential temperature is shown in
table 4-2 while all other inputs are kept the same, for this simulation the same 6x6 wind farm
was added.

Table 4-2: Input profiles and boundary conditions for the NBL simulation with a inversion layer
at 1400 meters.

Quantity Symbol Values Notes

Heights z 0, 1400, 1500, 1600, 1800, 2000 m Height levels for profiles
Moist-static-energy Th 300, 300, 304, 306, 308, 310 K Isothermal up to 1.4
temperature km, inversion above

SBL containing a 6x6 wind farm

To obtain the dataset containing an SBL that is influenced by wind turbines only one value
had to be changed with respect to the previous dataset. Both input profiles from the previous
section were used but now the surface heat flux w6}, is changed from 0.0 to -0.01 K ms™ 1.
This has been done to mimic the surface cooling that is present in an SBL at for example
night time.

NBL and SBL both containing a 6x6 wind farm

The final dataset that was used was a combination of the previous two, leading to a dataset
containing turbine influenced flows, in two different ABL states where the NBL contained two
different BLHs. Using this final dataset should show that the model used is able to distinguish

M.F. Triezenberg Master of Science Thesis



4-1 Data Collection and Preprocessing 29

different BLHs from each other while also being able to differentiate between different ABL
states, increasing the realism of the problem compared to that of Rybchuk et al.

Parent-Child Simulation

Because the boundary conditions used for these simulations are periodic, it is not realistic
to just place a wind farm inside them. This is due to the nature of a periodic run, where
flow leaving the domain on one side enters again on the other side. This means that when
a wind farm is placed inside such a simulation, flow, that just passed a wind farm and has
slowed down, when leaving the domain flows back into the domain and passes through the
wind farm again, essentially creating an infinite wind farm, which is not realistic. In order to
tackle this issue a parent-child domain configuration is used to generate physically consistent
inflow conditions for a wind farm simulation. To address this, the simulation is split into two
domains.

A parent domain is initialized with periodic lateral boundaries and the same ABL state as
the corresponding child simulation. This parent domain spans a much larger area and does
not contain any turbines. Its primary purpose is to allow the wakes generated in the child
domain, influenced by wind turbines, to recover before potentially re-entering the wind farm.
This necessitates the use of a large area. The domain configuration is summarized in Table 4-3
1. While the resolution is relatively coarse, this is intentional: since detailed flow structures
are not required in the parent domain, a lower resolution significantly reduces computational
cost without affecting its effectiveness for wake recovery.

Table 4-3: Domain configuration for the parent simulation.

Parameter Value Description

N, 128 Number of grid points in the z-direction
Ny 128 Number of grid points in the y-direction
N, 64 Number of grid points in the z-direction
L, 25,192 m Domain size in the z-direction

L, 25,192 m Domain size in the y-direction

L, 2,048 m  Domain height

dzin 16 m Initial vertical grid spacing

Secondly, a child domain is defined within the larger parent domain and represents the region
of primary interest. This smaller domain receives its boundary conditions from the parent
domain to ensure that the inflow is not already influenced by turbine-induced disturbances.
This setup allows for a more accurate representation of the undisturbed atmospheric boundary
layer entering the simulation domain. The configuration details of the child simulation are
provided in Table 4-4.

These boundary conditions are satisfied by using "nudge factor" and "nudge extent" variables.
Nudge factor stands for how aggressively the flow in the child domain is forced towards that
of the parent domain. In this research a nudge factor of 0.2 has been chosen which means
that 20% of the discrepancy between the child and parent flow is corrected. This value has

!"'While not the recommended simulation setup, this configuration produced results considered good enough
for the purposes of this study.
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Table 4-4: Domain configuration for the child simulation.

Parameter Value Description

128 Number of grid points in the z-direction
128 Number of grid points in the y-direction
64 Number of grid points in the z-direction

8192 m Domain size in z-direction
8192 m Domain size in y-direction
2048 m Domain height

16 m Initial vertical grid spacing

Fh&rzzz
=}

been picked because it is a good trade-off between forcing the flow to look like that of the
parent while still keeping it realistic. The nudge extent defines how far into the child domain
the nudging is applied. The value chosen for this is 15 which means that nudging happens at
15 grid boxes from the boundaries. This value has also been picked because of its trade-off
between realism and making sure the parent flow is sufficiently adopted.

In summary, this nested domain setup enables the realistic simulation of wind farm wake
dynamics in an idealized boundary layer, while still preserving the advantages of periodic
LES for turbulence generation. Enabling us to create ABL states as we see fit to ultimately
test our model.

4-1-3 Data Sampling and Preprocessing

This section will mention how long the simulations were run and how often the data was
sampled from the simulations. After that it will be discussed how the obtained data was
stored and preprocessed to use during training of the model, this also includes the train, test
and validation splits used.

Simulation Durations and Sampling Frequency

The data was acquired by running four different simulations for a day of which the first six
hours were spin-up. To ensure more variability each simulation was based on a different,
randomly chosen seed. ASPIRE outputs flow statistics at fixed intervals. Specifically, three-
dimensional snapshots of the following variables were stored every 120 seconds:

Horizontal wind components: u, v

Vertical wind component: w

Liquid water potential temperature: Ty,

Total specific humidity: ¢

These variables were saved on a full 3D grid of shape (128 x 128 x 64). Furthermore, the
global variable R, was also extracted every 120 seconds.
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Data Format and Preprocessing

The simulation output was stored in a format compatible with Python based tooling. For use
in training, the following preprocessing steps were applied.

The data is outputted as one big .nc dataset and converted to a .Imdb dataset to ensure
efficient loading during training.

All fields were normalized per channel between the values -1 and 1 using a min max normal-
ization. This has been done to prevent the model prioritizing a certain channel because the
values in that channel are simply higher.

In order to prevent overfitting the dataset will be split into three groups: Training, Validation
and Testing. The Training set is there to increase the model’s performance on the data by
changing its parameters to improve the outputs. The Validation set is there to validate that
the model is not overfitting to the Training set at the end of each epoch. Finally, when
training is done the model will be used on the Test set to inspect how the model performs on
data not seen during training at all. These three groups are partitioned as follows:

o Training set: 80% of all available snapshots, balanced across ABL types (SBL and
NBL).

o Validation set: 10% of the data used to validate the improvement of the model on
the training data. After each epoch the current model is scored on the validation data
and saved if it gets the best score on this data.

o Test set: 10% of the data used to evaluate generalization performance after training
is done. This set is used for testing the model’s performance after training is done, to
see how the model handles unseen data.

4-2 Used Observations

The goal of this research is to build a LDM that, when given measurements, can reconstruct
a flow field that is closely related to the real flow field. These measurements can, for example,
be LiDARs measuring the wind speed, temperature sensors and anenometers measuring the
wind direction. These measurements will be passed to the LDM which will use them to
reconstruct the flow field. How this is done will be explained in the following sections.

4-2-1 Spatial Observations

In order for the diffusion model to reconstruct the correct flow from sparse on-site measure-
ments, it must learn the relationship between the observed measurements and the unobserved
regions of the domain. This is achieved by training a conditional diffusion model for inpaint-
ing, as described in Section 2-3-1.

Specifically, during training, the sparse measurement mask is concatenated with the full flow
field, allowing the model to learn how local observations relate to the global flow structure.

Master of Science Thesis M.F. Triezenberg



32 Experimental Setup

However, during inference, only the masked input is provided, and the model is expected to
extrapolate and reconstruct the full flow field from this limited information.

To find out whether the model will be able to use real-life measurements, it is important to
mimic these measurements through the use of a realistic mask. To do this, the mask in figure
4-1 has been used. In this figure purple means no information and yellow means there is
information in this place. This figure consists of a top and side view of the mask, where the
top view is from a horizontal slice at a height z = 3 which has been picked since this is at
hub height for the wind turbines in our simulations. The disks that are visibile in this slice
represent spinning LiDARs. The shape of this mask has been chosen to mimic measurements
done by a LiDAR measuring the wakes of the turbines. It is desired that the known values
contain the wakes of the turbines, in real-life this happens because nacelle mounted LiDARs
rotate with the turbine when the wind direction changes. Because this does not happen with
these masks a circular shape has been chosen for all turbines to make sure that there is always
a wake in the known regions of the mask. In the side view the horizontal lines that are shown
are the same LiDAR disks as visible in the top view and the vertical line represents a meteor
mast that does measurements from heights z = 0 to z = 3. This is important to measure
information such as the temperature gradient and the wind profile, which, as mentioned in
section 2-1, give a lot of information about the state the ABL is in. Such a meteorological
mast is also often at a wind farm so this is a realistic addition to the mask.

Top View

Side View

Figure 4-1: The mask used for mimicking on-site measurements, showing a top view at height
z = 3 and a side view at y = 70.

4-2-2 Discrete Observations

One of the proposals of this research is to add global conditioning labels to the model to
feed it information about the flow field that it is not able to extract from just the spatial
measurements in the masks. Two labels that come to mind that could be important additions
with respect to Rybchuk’s research are the BLH and Ry.

The addition of the BLH is necessary because most measurements are done below 300 meters
while the inversion layer can grow to even bigger heights than 2000 meters. The flow for
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a BLH of 1000 meters can be exactly the same as that for a BLH of 1500 meters so to
correctly reconstruct flow fields with the right BLH the model has to get this information
from somewhere else than the mask, which it can get from a label.

Another useful label for the dataset we are using is the Ry, since we are now combining two
different ABL states. By just using the mask the model might not be able to distinguish
the different states from each other and, as mentioned in section 2-1, the Ry gives a clear
differentiation between these states. So by feeding these labels to the model it should be
able to tell in which state the ABL is, helping it with generating the correct flow field. As
equation 2-1 shows, the Rp is computed by calculating the difference in wind speeds and
potential temperature between two different heights. However, it is important to note that
Rb calculations are sensitive to the heights selected to measure differences in virtual potential
temperature and wind speed components. For instance, when the upper measurement height
is above the actual boundary layer in stable conditions, the calculated R, value might not
accurately reflect the true stability condition. Since we will be investigating an SBL which
has a low BLH the upper measurement is chosen to be at 200 meters, while the lower one is
at 0 meters.

Adding these two labels to the model could be a powerful addition for helping the model
reconstruct the right flow fields, but how are these labels obtained? These labels can be
obtained from re-analysis data such as ERA5 [54] or coarse-scale models such as Whiffle’s
Mesoscale [55] model which is used as a coupling between observational data and ASPIRE to
give approximations of the state of the ABL.

4-3 Experiments

To evaluate the model’s performance on the datasets introduced in Section 4-1-2, four ex-
periments are conducted, as outlined in Table 4-5. Each experiment represents a specific
combination of ABL regime, turbine presence, and label availability. While the training data
for each experiment remains fixed, samples and labels passed to the model during inference
may change to test the importance of labels. So for example, even though experiment 2 is
always trained on both BLHs, during inference it is possible to only give samples with a high
BLH to the model or let the model infer samples without a label.

To distinguish between these variations, a compact notation is adopted. For example, Exp2-0,
M refers to Experiment 2 performed without any labels for the mixed set meaning both high
and low BLHs, while Exp2-B,M indicates the same experiment with the BLH label included.
Similarly, Exp4-BR,M denotes Experiment 4 conducted with both BLH and Ry labels for the
SBL and NBL combined. Furthermore, experiment 4 inferred on only the SBL samples is
denoted by Exp4-BR,S, since the NBL in experiment 4 still exists of both high and low BLHs
a high BLH is noted as follows, Exp4-BR,NH where NH stands for NBL High respectively.

This coding scheme is used throughout the remainder of the report to clearly indicate the
experimental setup and inference conditions associated with each result.
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Table 4-5: Overview of the four experiments performed, indicating ABL regime, turbine presence,
and label configuration. An “X" in the Inference column means there are no different inference
subsets. The term “Mixed” refers to: both high and low BLH samples in Experiment 2, and both
SBL and NBL samples in Experiment 4.

Experiment ABL State Turbines Labels Inference
Experiment 1 NBL No None X
Experiment 2 NBL Yes BLH, O High, Low, Mixed
Experiment 3 SBL Yes None X
Experiment 4 Mixed Yes BLH, R, @ NBL, SBL, Mixed

4-4 Used Hardware

All model training was performed on a workstation equipped with an NVIDIA GeForce RTX
3090 GPU, which features 24 GB of memory and 10496 CUDA cores. This high memory
GPU enabled the training of 3D convolutional networks with large spatial domains and deep
architectures using residual and attention blocks. To prevent data loading bottlenecks and
improve overall training speed, the dataset was stored on a high speed Solid State Drive (SSD),
significantly reducing input/output (I/O) latency compared to traditional hard drives. The
combination of GPU compute power and fast storage ensured that model training proceeded
efficiently.

In summary, the chosen LES setup, domain configuration, and sparse measurement masks
provide a physically consistent and computationally tractable foundation for training the
LDM. Together with carefully selected labels such as the Bulk Richardson number, this ex-
perimental design enables a robust investigation into the model’s ability to reconstruct diverse
ABL states from sparse, realistic measurements
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Chapter 5

Analysis of the Results

This chapter outlines the methodology used to evaluate the performance of the conditional
diffusion model. While the generated samples may appear visually realistic, a good analysis
is needed to assess whether they are statistically consistent with the training data, physically
plausible, and how they behave under varying conditioning inputs

5-1 NBL with one BLH

5-1-1 Visual Inspection

Figure 5-1 shows a visual representation of the model’s outputs for the variable u, while con-
ditioned on the measurements shown in the dotted, red lines in the input. This figure shows
that the model generates images that look like a possible realization of the measurements it
was conditioned on, while not being exactly the same. This is because of the DM’s proba-
bilistic behavior and the fact that the mask is not hard constraint but given as additional
information. This figure also shows that the model is able to reconstruct realistic turbulence.
Visualizations for the other variables are included in Appendix A.

5-1-2 Quantitative Analysis
Statistical Analysis

Firstly, we compare the probability-density functions (PDFs) of the sampled data with those
of the test set. Because a diffusion model is explicitly trained to approximate the data
distribution (Section 2-2-3), PDFs provide a natural first quantitative check. Figure 5-2
shows that the sampler reproduces the distribution of each variable: the blue (test) and
orange (sampled) curves peak at identical locations for u, v, w, Ty; and ¢;. Nevertheless,
the sampled peaks are consistently lower and broader than the test peaks. We interpret this
as residual additive noise: small perturbations introduced (or not fully removed) during the
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Figure 5-1: A top and side view of the variable u showing the input and the model’s output for
the NBL case. Areas inside the red dotted lines represent measurements given to the model.
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reverse diffusion process spread probability mass from the central bin into neighboring bins.
Matching the PDFs is therefore largely successful, but the slight broadening suggests room

for further sharpening.
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Figure 5-2: Figure showing the PDFs for all five variables of the test and sampled data for the
NBL case without turbines, Exp1.

Next, we will have a look at the horizontally averaged vertical profiles for all five variables.
This will show whether the model has correctly captured the characteristic profiles per variable
for a NBL. Looking at figure 5-3 it can be seen that for u, v, w and ¢; of the sampled data
follows that of the test data closely, except for a small negative bias in the lower half of the
profile for v, however this bias still falls well with in the standard deviation. The sampled
variable Tj; also looks similar to that of the test data, however there are some small errors.
As we can see Tp; above the inversion layer, at approximately 1000 meters, the sampled data
follows the test data well, however, below that the sampled data has a positive bias, that even
falls outside the standard deviation, and looks a bit noisy compared to the straight line from
the test data. This is particularly remarkable given that the upper part of the temperature
profile, which the model reconstructs well, exhibits stronger nonlinear variation, whereas the
lower section is nearly constant in height and should, in principle, be easier to reconstruct.
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Figure 5-3: Figure showing the horizontally averaged vertical profiles for all five variables of the
test and the sampled data for the NBL case without turbines, the shaded areas represent the
standard deviation from the mean, Exp1.

Physical Analysis

To assess whether the generated flow fields adhere to physical principles, we analyze two key
metrics: mass conservation and the turbulent energy spectrum.

We evaluate the turbulent energy spectrum. According to Kolmogorov’s theory, fully devel-
oped turbulence should exhibit an inertial range with a spectral slope of —5/3. Figure 5-
4 compares the energy spectrum of the test and sampled fields at a representative height
(z =~ 90m). The test data follows a slope slightly flatter than —5/3 between k, ~ 0.002 m~!
and 0.01 m~!, as expected, before dropping off due to resolution limits below the subgrid
scale. The sampled data matches this behavior in the inertial range but diverges at higher
wavenumbers, where it flattens rather than decaying. This excess energy at small scales likely
reflects high frequency noise that the model was unable to fully suppress during sampling.
While this discrepancy does not strongly affect large-scale flow features, it suggests that some
form of spectral filtering or physics aware loss function may be necessary for enforcing realistic
small-scale behavior.
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Figure 5-4: This figure shows the turbulence energy spectrum of the test and sampled data
compared to the energy cascade with a spectral slope of -5/3 for the NBL case without turbines,

Expl.

In incompressible flows, the divergence of the velocity field should be zero at every point in
space, reflecting conservation of mass. The divergence is the sum of the velocity components
in all three spatial directions. Figure 5-5 compares the distribution of velocity divergence
in the test and sampled data. For both, the distributions are centered around zero, but
the test data exhibits a sharper, more pronounced peak. In contrast, the sampled data has
a lower and broader peak, suggesting that perfect incompressibility is not preserved as well.
This degradation is likely due to residual noise introduced during the reverse diffusion process,
which the model may not fully eliminate. Another contributing factor could be that the model
was not explicitly trained to enforce incompressibility, and therefore does not prioritize this
physical constraint.
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Figure 5-5: This figure shows how the test and sampled data adhere to the conservation of mass,
total conservation of mass would lead to one vertical line at Vu = 0, Expl1.

While the results in this section are promising and demonstrate the model’s ability to recon-
struct realistic flow fields from sparse measurements it is important to note that, as mentioned
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in section 1-3, this dataset is far from real-world conditions. These results form a baseline for
further investigating the model’s shortcomings and limitations.

5-2 Turbine Influenced NBL with 2 BLHs

We will now look at the model’s ability to reconstruct flow fields for a more complicated
dataset where we add turbines to the NBL and we will have two different BLHs. One of the
additions to the model for this case is a label that contains the BLH, this analysis will show
that the model is able to reconstruct turbine influenced flow fields with different BLHs when
using a label. The need for this label will be mentioned shortly in the statistical analysis of
this section and will be further discussed in another section.

5-2-1 Visual Inspection

Figure 5-6 shows the model’s reconstruction for the horizontal wind component u, compared
to the masked input. The output retains realistic turbulent features and shows accurate
reconstruction of turbine wakes. The reconstruction for the other variables are shown in
Appendix A.

Input Top Output Top

Input Side Output Side 6

2
Figure 5-6: A top and side view of the variable u showing the input and the model's output

for the turbine influenced NBL case with two BLH. Areas inside the red dotted lines represent
measurements given to the model. The side view is a slice taken along the wind direction.

5-2-2 Quantitative Analysis

Now that we have shown that the model is able to reconstruct images that look qualitatively
similar it is also important to check whether the samples generated by the model are quanti-
tatively similar to that of the data. This will first be done by visually comparing the vertical
profiles of the test data to that of the sampled data, after that these profiles will also be
compared numerically.
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Statistical Analysis

Figure 5-7 shows the vertical profiles for a high and a low BLH from the test data compared
to the model output without a label. The model has only been given samples with a high
BLH here. In this figure most profiles look similar except for Tj; where you can clearly see
that the temperature profiles are different for the two different BLHs. This plot also clearly
shows that without the label the model’s output hovers somewhere in between the profiles of
the low and high BLH, while it should only be reconstructing high BLH. This indicates that
there is indeed need for a label informing the model about the BLH.
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Figure 5-7: Figure showing the horizontally averaged vertical profiles for all five variables of the
test and the sampled data for the turbine influenced NBL case for two BLHs without a label, the
shaded areas represent the standard deviation from the mean, Exp2-@,NH.

Figure 5-8 shows the vertical profiles for the same dataset but then with a label, showing
that when the label is given the model only reconstructs high BLH. The sampled profiles
for w, w, and Ty; follow the test data closely. The variable v shows a slight positive bias
of approximately 0.2m/s between 500-1700 m, while ¢; is overestimated by roughly 1 x
10~%kg/kg. Both deviations remain within reasonable bounds. This overestimation may be
attributed to the narrow dynamic range, with the majority of values concentrated within just
6% of the full min-max range. As a result, the model encounters small gradients during
training, which may limit its ability to accurately optimize this variable. Furthermore, the
vertical profile for ¢; from the test data does not look realistic. Normally the specific humidity
would decrease above the inversion layer but that is not the case here. This unrealistic profile
from the test data could be another reason the model is not reconstructing it well because it
has problems learning relations between the data because of the unrealistic humidity levels.
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Figure 5-8: Figure showing the horizontally averaged vertical profiles for all five variables of the
test and the sampled data for the turbine influenced NBL case for a high BLH, the shaded areas

represent the standard deviation from the mean, Exp2-B,NH.

Lastly, figure 5-9 shows that the model is also able to reconstruct the low BLH as well when
it is informed with a label.
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Figure 5-9: Figure showing the horizontally averaged vertical profiles for all five variables of the
test and the sampled data for the turbine influenced NBL case for a low BLH, the shaded areas
represent the standard deviation from the mean,Exp2-B,NL.

5-2-3 Vertical-profile error metric

To better understand the model’s improvements when additional labels or data are intro-
duced, the errors between the sampled vertical profiles and those from the test data will be
computed. This enables a straightforward comparison of model performance across different
configurations. Before error calculation, all variables are normalized to prevent those with
larger magnitudes from influencing the error values more than those with small magnitudes.

For each variable the script evaluates the vertical L! distance between the two normalized
profiles resulting in the overall integral between the two profiles.

/’Ztop |
Z,

surf

I(:E) = )_(Sampled(z) - )_(Test(z)| dz, (5—1)
The results of this analysis are presented in Table 5-1, showing that the model conditioned on
labels consistently yields lower errors across all variables except for ¢;. Interestingly, for g,
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the model without labels performs significantly better. This discrepancy may be attributed
to the fact that neither model was able to learn this variable particularly well. Overall, the
mean error for the model incorporating BLH information via a label is approximately half
that of the model without any additional conditioning. More plots for this dataset such as
the PDFs, Conservation of mass and turbulence energy spectrum can be found in Appendix

A

Table 5-1: Vertical profile errors for the turbine influenced NBL with and without labels.

Model U v w Th qt Mean

NBL without label 0.85 1.10 0.070 5.46 0.065 1.63
NBL with label 0.80 0.83 0.062 0.72 170 0.82

Wake Reconstruction

Lastly, we also want to investigate whether the model is correctly reconstructing the wakes
that are present in the data. We will do this by looking at the velocity deficit in the test data
compared to that of the sampled data.

To assess the wake structure, an upstream reference velocity Uy, was computed as the average
wind speed over several grid points upstream of the turbines. The Velocity Deficit (VD) was
then calculated along turbines centered planes comparing the local wind speed to Uy as
follows:

o 1 =0 Uoo(xnaz) - U(xnayvz)
VD(z,y, z) = 100 - N > U 2) [%)].

(5-2)
1

Where the summation is done for the six turbine rows present in the simulation.

To reduce small-scale variability, VD is averaged across a narrow strip centered at the turbine
row, yielding a 2D curtain of mean velocity deficit in the height—-downwind plane. To focus
on the general wake structure rather than sample specific turbulence, the velocity deficit
curtains are averaged over many individual flow fields. This ensemble averaging highlights
whether the model captures the typical shape and magnitude of turbine wakes across a range
of conditions.

Figure 5-10 compares the mean velocity deficit from the test data and the generated samples
for this NBL case. The sampled flow fields clearly exhibit wake structures in the lower right
part of the domain, indicating that the model is capable of reconstructing turbine induced
velocity deficits. However, wake development in the test data begins earlier, around 2000
m downwind, while the model does around 3000 m. This discrepancy may stem from the
lower magnitude deficits in that region, which the model might interpret as background
turbulence rather than wakes, which could possibly be circumvented by adding information
about turbine locations. Another reason for this loss of fine-scale details could be the AE that
loses this information during compression. Furthermore, the magnitude of the velocity deficit
is systematically underestimated in the sampled data, as indicated by the darker (lower VD)
regions compared to the brighter wake in the test data.
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Figure 5-10: Comparison of the mean velocity deficit (VD) curtain for test data and generated
samples under NBL conditions.

In this section we have shown that the model has trouble inferring the right BLH when
just using measurements. However, this shortcoming can be overcome by adding a label
containing information about the BLH. Furthermore, the VD figure has shown that even
though the model is able to capture the general structure and locations of the wakes, it does
not fully capture the right magnitude and small scale structures.

5-3 Turbine Influenced SBL

Now that we have shown that the model is able to reconstruct a turbine influenced NBL with
different BLHs we want to show that it is also able to reconstruct a SBL.

5-3-1 Visual Inspection

Figure 5-11 presents a representative reconstruction of the horizontal wind component w
for the SBL case. Compared to the more turbulent NBL, the flow field here appears more
stratified, with reduced mixing and clearly defined turbine wakes. The model successfully
captures these characteristics, including the lower boundary layer height, and produces output
that is visually consistent with the expected flow features. Reconstructions for the other
variables can be found in Appendix A.

5-3-2 Quantitative Analysis
The vertical profiles in Figure 5-12 confirm strong reconstruction performance for u, v, and
w, with near perfect alignment between sampled and test data. For T};, the model follows the

general trend but deviates slightly above 1000 m. The specific humidity ¢; is systematically
underestimated by approximately 5 x 107% kg/kg, though the overall shape is preserved.

Wake Reconstruction

Figure 5-13 shows the VD curtains for test data and generated samples under SBL conditions.
Compared to the NBL case, the wakes in the SBL are more coherent and persistent due to
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Figure 5-11: Figure showing the output for the variable u of the model when conditioned on the
input for the turbine influenced SBI case. The red areas in the left images represent the mask that
is given to the model during inference. The side view is a slice taken along the wind direction.
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Figure 5-12: Figure showing the horizontally averaged vertical profiles for all five variables of the
test and the sampled data for the turbine influenced SBL case, the shaded areas represent the
standard deviation from the mean, Exp3.

reduced turbulence and mixing. The sampled data closely matches the test data, capturing
the onset and extent of the wake from approximately 2000 m to 8000 m. This suggests that
the model performs better in reproducing SBL wake structures, likely due to the more stable
and less chaotic flow regime. Unlike the NBL case, the magnitudes of the sampled data’s VD
are closer to that of the test data here, which can be attributed to the fact that in this stable
case it is easier for the model to distinguish wakes and turbulence from each other.
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Figure 5-13: Comparison of the mean velocity deficit (VD) curtain for test data and generated
samples under SBL conditions.

The results in this section show that the model is also capable of reconstructing turbine in-
fluenced flow fields in a SBL, extending its applicability beyond the neutral cases analyzed
previously. The generated samples accurately reflect the expected low turbulence environ-
ment, capture turbine wake structures, and align well with the vertical profiles of the test
data. This demonstrates that the model is able to adapt to fundamentally different ABL
regimes when presented in isolation. However, for realistic deployment, the model must also
be able to distinguish and reconstruct both NBL and SBL cases when they are present within
the same dataset. The ability to resolve regime specific structures without explicit separation
is essential for generalization, and will be evaluated in the next section. Other plots for this
dataset can be found in Appendix A

5-4 Turbine Influenced Dataset containing an NBL and SBL

The previous results have shown that our model is able to reconstruct a turbine influenced
flow field for both a SBL and NBL seperately. However, to ever be applicable for real-life use
the model should not only be able to reconstruct these seperate ABL states but also identify
in which state the ABL is and reconstruct the correct flow field. Whether the model is able
to will be investigated here. Since previous work has already demonstrated that the model
can reconstruct flow fields that are visually similar to the test data when trained and tested
on separate datasets, this will not be repeated here, but the plots are shown in Appendix A.
This section will thus focus on showing that the model is able to distinguish the two ABL
states from each other using the R, and will show that this final model performs better on
this dataset than the models from the previous sections.

5-4-1 Quantitative Inspection

We will start of by qualitatively showing that the model can not distinguish the two ABL
states from each other when not being fed with Ry label. This is done in figure 5-14 where we
can see a vertical profile and the blue lines represent the SBL, the green lines the NBL, and
the orange lines the sampled data without labels. The vertical profiles of the sampled data
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fall inbetween that of the NBL and SBL states showing that the model can not distinguish
the two states from each other which is why the sampled data’s profile lies in between those
states.

Vertical profiles
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Figure 5-14: Figure showing the horizontally averaged vertical profiles for all five variables of
the test and the sampled data for the mixed case without labels, the shaded areas represent the
standard deviation from the mean, Exp4-0,S.

Figures 5-15 and 5-16 show the vertical profiles for the SBL and NBL states respectively
when the model is informed about the ABL state through the R, number, clearly showing
improvements.
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Figure 5-15: Figure showing the horizontally averaged vertical profiles for all five variables of the
test and the sampled data in the mixed dataset for the SBL case, the shaded areas represent the
standard deviation from the mean, Exp4-BR,S.

To quantitatively assess the reconstruction performance, Table 5-2 reports the integrated
profile error (Equation 5-1) between test and sampled data for each variable. The results show
that the model conditioned on the label achieves lower errors across all variables except for ¢;.
The increase in ¢; error suggests that the model still struggles to accurately reconstruct this
variable. Despite this, the overall mean error remains slightly lower with label conditioning,
indicating that the added label provides an improvement in reconstruction accuracy for most
flow variables.
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Figure 5-16: Figure showing the horizontally averaged vertical profiles for all five variables of the
test and the sampled data in the mixed dataset for the NBL case, the shaded areas represent the
standard deviation from the mean, Exp4-BR,NH.

Table 5-2: Vertical profile errors for the turbine influenced NBL with and without labels.

Model U v w Thi q:  Mean

Mixed without label 0.55 1.5 0.035 1.60 1.80 1.10
Mixed with label 0.52 0.52 0.034 1.10 2.87 1.01

5-4-2 Physical Analysis

For this dataset we would like to investigate if the model’s outputs adhere to the two laws of
physics also discussed in section 5-1-2.

Figure 5-17 shows the turbulence energy spectrum for the test and sampled data. Both follow
the expected —5/3 slope approximately between k, = 0.001 and k, = 0.01, indicating that the
model reproduces the correct spectral energy distribution across those scales. Beyond k, =
0.015, the test spectrum continues to decay while the sampled spectrum flattens, suggesting
that high-frequency noise or insufficient dissipation may remain in the generated fields.

Figure 5-18 assesses mass conservation by plotting the divergence distribution. Ideally, incom-
pressible flow would yield a sharp peak at V -u = 0. The sampled data shows a broader and
lower peak compared to the test data, indicating that although the model approximates diver-
gence free behavior, some residual noise or imperfect reconstruction causes slight deviations
from strict mass conservation.

In summary, this section demonstrated that conditioning the model on the R; enables it to
distinguish between different ABL states specifically the NBL and SBL. Without this label,
the model produces flow reconstructions that lie between the two regimes, indicating an in-
ability to separate them. With R; provided, however, the model generates more accurate,
state specific reconstructions, as reflected in improved vertical profiles and lower reconstruc-
tion errors for most variables. This capability marks an important step toward generalizing
to realistic, turbine influenced flow fields across varying ABL conditions. While challenges
remain particularly in capturing scalar fields like ¢; and achieving full physical consistency
this approach moves us closer to robust real-world applicability.
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Figure 5-17: This figure shows the turbulence energy spectrum of the test and sampled data
compared to the energy cascade with a spectral slope of -5/3 for the mixed case, Exp4-BR,M.
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Figure 5-18: This figure shows how the test and sampled data adhere to the conservation of
mass, total conservation of mass would lead to one vertical line at Vu = 0, Exp4-BR,M.
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5-5 Model Comparisons

To conclude this chapter, Table 5-3 presents a direct comparison of the profile integral errors
across all developed models when evaluated on the mixed, turbine influenced dataset. The
results highlight a clear trend: each addition of complexity whether through inclusion of
turbine effects, atmospheric variability, or conditioning on physical labels leads to a notable
reduction in error. The final model, trained on both NBL and SBL states and conditioned on
Ry and BLH, achieves the lowest mean error across all key variables. These findings confirm
that the integration of physical labels and diverse boundary layer regimes enables the model to
generalize better and produce more physically accurate reconstructions. While full real-world
applicability still requires further improvement, this final model represents a meaningful step
toward to robust, label aware flow field reconstruction in realistic ABL scenarios.

Table 5-3: Profile-integral errors for the different models used.

Model U v w Thi ¢+  Mean

NBL without turbines 1.36 5.13 0.032 7.49 3.56 3.51
NBL with turbines 1.29 218 0.060 4.41 3.78 2.34
SBL with turbines 1.31 153 0.034 4.31 581 2.60
Mixed 0.52 0.52 0.034 1.10 287 1.01

Master of Science Thesis M.F. Triezenberg



50

Analysis of the Results

M.F. Triezenberg

Master of Science Thesis



Chapter 6

Conclusion and Recommendation

6-1 Conclusions

This master’s thesis has investigated the use of LDMs for reconstructing physically plausible
flow fields in the ABL using sparse measurements. This work was motivated by the need for
improved flow reconstruction around wind farms to better support wind energy applications
and a more precise LES initialization. While previous works had already reconstructed the
ABL in a NBL state, this research focused on extending the model used to be able to dis-
tinguish multiple ABL states, that were also influenced by wind turbines, in the best way
possible. This led to the research question: "How can a diffusion model reconstruct turbine
influenced flow fields across multiple ABL states?'

In order to get a better understanding of the model’s behavior under different conditioning
circumstances, an extra analysis was done where the variance between samples conditioned
on the same input was studied. This analysis and the research question led to the following
conclusions.

Firstly, it can be concluded that DMs can be used to reconstruct turbine influ-
enced ABLs. This work noticed that even though other research had reconstructed flow
fields in the ABL, it had not been done with turbine influenced flows yet. For these models
to be used for wind energy applications it is important, ofcourse, that the model can actually
reconstruct flows with wind turbines inside them. The model showed good performance doing
this, reconstructing the wakes of the turbines well in most cases. This was most apparent in
the SBL state because of the low turbulent nature of this state which allowed the wakes to
be analyzed well.

Secondly, it can be concluded that DMs can, other than the wind velocity com-
ponents u, v and w, also reconstruct the moist-static-energy temperature T};.
Previous works had shown their ability to reconstruct all three wind components. However,
Ty and ¢ had never been reconstructed in the ABL using a DM before, even though this
is of importance for one of the interests of this research, which is to see whether DMs can
reconstruct flow fields in order to later use as initial conditions for LES. Commonly, LES
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simulations do require these two variables as initial conditions, so to be sure that the flows
reconstructed by the model could, at some point, be used as initial conditions. This research
has found that DMs are able to reconstruct Tj; well, but has more difficulty with reconstruct-
ing ¢;. However, this difficulty could be attributed to the fact that the input fields for ¢; are
unrealistic and not necessarily the model’s inability to learn this variable.

Thirdly, it can be concluded that the DM can distinguish different ABL states
and BLHs from each other using labels such as the Rib and the BLH. This work
introduced adding global information to the model, in the form of a label, to supply it with
additional information. This is an essential feature of the proposed model that could maybe
be extended to other labels to supply the model with information not available in the local,
spatial measurements.

Finally, it can be concluded that the model is able to reconstruct turbine in-
fluenced flows across different ABL states to some extent. The evaluation of the
model’s results were promising, showing good performance in the reconstruction of key struc-
tural features of the ABL, including wind turbine wakes and inversion layers. Statistically, the
generated samples matched the vertical profiles and PDFs of the train and test data reasonably
well, although an error for ¢; was noticed. Physical realism was assessed via the turbulence
spectrum and mass conservation. While the energy spectrum followed the expected cascade
at large scales, excess energy at small scales indicated residual numerical noise. Similarly, the
divergence of the velocity field was not zero, but this mirrored the non conservative nature of
the training data itself. These results were accomplished by applying structured guidance to
the model. Lastly, analyses into the VDs of the flow fields showed that the model is able to
capture the general structures in wakes while missing some fine-scale details in the NBL case.
This thesis has shown that with the right conditioning DMs are able to reconstruct turbine
influenced flows across multiple ABL states, even though there is still a lot of improvement
possible.

6-1-1 Future Potential

While this thesis focused on evaluating the LDM across specific experimental conditions, the
broader implications extend beyond the immediate findings. The model’s ability to recon-
struct realistic ABL flow fields under varying atmospheric conditions demonstrates strong
potential for scaling the approach toward real-world forecasting applications. As more LES
data becomes available capturing diverse ABL regimes and terrain types the conditional dif-
fusion model can be trained on increasingly realistic scenarios. This opens the door to using
such models for short-term wind energy forecasting. Ultimately, this research supports the
long-term vision of integrating generative models into the wind energy pipeline, where they
can provide fast, physics consistent reconstructions from sparse measurements.

It is important to note, however, that while the LDM produces flow fields that are statistically
and physically plausible, each output is one of many possible realizations consistent with the
input data. In practice, multiple samples may reproduce the same large-scale wake structure
but differ in small-scale turbulent features. This limits the immediate applicability of the
model for real-time turbine control, where precise knowledge of inflow turbulence is critical
for wake steering and load mitigation. Therefore, while the model shows clear promise for
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forecasting, resource assessment, and LES initialization, further refinement would be required
before it can be reliably used for high-resolution control purposes.

6-2 Recommendations

While the results from this thesis are a significant improvement of previous works looking
into flow reconstruction in the ABL, they also highlight areas for future research. Recom-
mendations are split into 3 categories: Improvement of the current configuration, making the
setup more realistic and future applications.

6-2-1 Configuration Improvements

The focus of this subsection is possible improvements to the dataset used, the way data was
processed and the conditioning of the model to improve overall performance.

Firstly, we recommend recreating the dataset in order to obtain a realistic ¢;. As
has been mentioned before the model was not able to reconstruct the vertical profiles for the
variable ¢; well, which could be due to the fact that the input data’s profiles for this variable
are not realistic. To find out whether the problem lies with the model or this unrealistic
behavior we thus recommend creating a dataset with a realistic profile.

Secondly, we recommend further investigating the roll of the mask in guiding the
model’s outputs. As mentioned, there are multiple ways to incorporate mask information
into the model, such as hard constraining the output at masked locations or concatenating
the mask to the input. This work adopts the latter approach, which leads to outputs that are
consistent with the measurements but not guaranteed to exactly match them. For applications
where accurate reconstruction at the measurement locations is critical,such as wake control, it
would be worthwhile to explore alternative strategies for integrating mask information more
directly.

6-2-2 Setup Realism

This subsection focuses on making the setup used to mimic real-life data assimilation using
sparse measurements at a wind farm more realistic.

Firstly, we recommend extending the dataset to a wider range of states to research
whether the model is still able to distinguish certain states from each other. Right
now the used dataset consists of a SBL and NBL where, except for the mean wind direction,
the flow does not really change within each state. To study whether the model is able to
reconstruct the flow in a more realistic setup this dataset could be extended. This can be
done in multiple ways, firstly by adding a CBL to the dataset. When this state is added the
three main ABL states are present in the dataset. This is important to check whether the
model is able to distinguish all three ABL states from each other. Furthermore, the current
dataset consists of two different ABL states, but in the ABL state there is not much change.
It would be interesting to see if the model can still cope when, for example, there are NBLs
with multiple boundary layer heights, wind speeds and wind directions, which it could be
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informed off through adding more labels. If the model is still able to reconstruct the flow in
that setup a good final step of checking whether the model can reconstruct real-life weather is
using nonperiodic LES data with ERA5 boundary conditions as mentioned in section 4-1-1.
This data is a lot more variable and covers all different states the ABL has, if the mode is
able to reconstruct data generated this way we can say it is ready to do it in real-life.

Secondly, we recommend using different masks to improve the realism of the
setup with respect to the measurements available at a wind farm. Currently the
masked being used for the final experiments is shown in figure 4-1. Even though this mask
only has information on about 0.15% of the domain, which is little, this is still more than is
present at a lot of wind farms in real-life. A lot of wind farms only have anenometers on each
turbine nacelle, which for the set up we used would be equal to only knowing the wind speeds
in 36 points throughout the entire domain. The currently used mask has about 1500 points at
which it measures the variables. Seeing how the model behaves when conditioned on sparser
masks is thus an interesting study. Furthemore, the mask currently used also measures g
and T}; in every point it measures the wind speed, this is often not possible in real-life so it
would be interesting to see how the model reconstructs these variables when they are only
given in, for example, the meteorological mast present in the mask.

6-2-3 Future Applications

This subsection states an interesting way the reconstructed flow fields can be used.

It is recommended to look into the use of the reconstructed flow fields for an
Ensemble Kalman-Filter (EnKF). When there is enough confidence in the model to
reconstruct realistic weather conditions with realistic measurements the reconstructed flow
fields can be used as observations in an EnKF, where the underlying model is an LES model.
In this setup the DM’s output can be used as observations used to guide an ensemble of LES
runs. This approach allows the EnKF to correct the LES state towards the model’s inpainted
measurements, combining the physical realism of the LES with the real-life measurements
of the DM. If implemented correctly this method would give realistic simulation of the flow
happening at a wind farm providing essential information for either turbine control or wind
resource assessment.

6-3 Final Words

In conclusion, this thesis addresses shortcomings in the literature by showing a DM’s ability
to reconstruct turbine influenced flow fields across multiple ABL states. An essential feature
for the future applicability of DMs in data assimilation and wind farms. Furthermore, this
the framework proved that a DM can also reconstruct the liquid potential temperature, while
having issues with the specific humidity and showed the power of adding global labels the
model in order to further guide it towards a specific flow field.

M.F. Triezenberg Master of Science Thesis



Appendix A

Additional Analysis Plots

This appendix contains plots that were not essential for the normal thesis but could still give
better insights on the performance of the model. This chapter has been split up into the four
different cases as discussed in chapter 5.

A-1 NBL

Figure A-1 shows the visual inspection of the model comparing the model outputs with its
input.
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Figure A-1
NBL case

Master of Science Thesis

M.F. Triezenberg



A-2 Turbine Influenced NBL across 2 BLHs 57

A-2 Turbine Influenced NBL across 2 BLHs

In chapter 5 some analyses for turbine influenced NBI case were left out and will be shown
in this section. Firstly, figure A-2 contains the visual inspection for all five variables of the
output compared to that of the input.
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Figure A-2
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Secondly, figure A-3 contains the PDFs of the test data compared to that of the sampled

data.
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Figure A-3: Figure showing the PDFs for all five variables of the test and sampled data for the

turbine influenced NBL case.

Lastly, figures A-4 and A-5 show the turbulence energy spectrum and the conservation of

mass respectively.

104 g — Test
Sampled
,é-.. — - K53
o 102; \
(@)]
U \
N
= 10 \
3
© 10—2_
1073 1072
kx [1/m]

Figure A-4: This figure shows the turbulence energy spectrum of the test and sampled data
compared to the energy cascade with a spectral slope of -5/3 for the turbine influenced NBL

case.
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Figure A-5: This figure shows how the test and sampled data adhere to the conservation of
mass, total conservation of mass would lead to one vertical line at Vu = 0.
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A-3 Turbine Influenced SBL

In chapter 5 some analyses for turbine influenced SBI case were left out and will be shown
in this section. Firstly, figure A-6 contains the visual inspection for all five variables of the
output compared to that of the input.
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Figure A-6
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Secondly, figure A-7 contains the PDFs of the test data compared to that of the sampled

data.
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Figure A-7: Figure showing the PDFs for all five variables of the test and sampled data for the
turbine influenced SBL case.

Lastly, figures A-8 and A-9 show the turbulence energy spectrum and the conservation of

mass respectively.
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Figure A-8: This figure shows the turbulence energy spectrum of the test and sampled data
compared to the energy cascade with a spectral slope of -5/3 for the turbine influenced NBL

case.
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Figure A-9: This figure shows how the test and sampled data adhere to the conservation of
mass, total conservation of mass would lead to one vertical line at Vu = 0.

A-4 Turbine Influenced Mixed Dataset Containing SBL and NBL

In chapter 5 some analyses for the turbine influenced mixed dataset were left out and will be
shown in this section. Firstly, figure A-10 contains the visual inspection for all five variables

of the output compared to that of the input for the SBL case.
Secondly figure A-11 contains the visual inspection for all five variables of the output compared
to that of the input for the NBL case.
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A-4 Turbine Influenced Mixed Dataset Containing SBL and NBL
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Figure showing the visual

Figure A-10
NBL case
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Figures A-12 and A-13 show the PDFs for the SBL and NBL respectively.
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Figure A-12: Figure showing the PDFs for all five variables of the test and sampled data for the
turbine influenced mixed dataset’'s SBL case.
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Figure A-13: Figure showing the PDFs for all five variables of the test and sampled data for the

turbine influenced mixed dataset’'s NBL case.
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