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FOREWORD
T he book that you have in your hands is my PhD dissertation. I have

called it "Deep Learning and Earth Observation for the Study of West
African Rainfall" and it contains part of the research I have conducted
and the learnings I have gained at the TU Delft during the last six years.
I say part–and not all–because in no way does it cover everything that
my PhD has taught me, or all the results it has yielded. In fact, like
someone told me once, the most important output of my PhD is not my
dissertation, but who I have become. During these last years I have
had the chance to travel often to Ghana, to work with schools, research
institutions and smallholder farmers. I have experienced what tropical
rainfall feels like, I have seen seen the impact of climate change on
people’s livelihoods with my own eyes, I have reflected on intercultural
collaboration, and I have learnt so much. I have been able to submerge
myself in the Ghanaian culture - during a fieldwork month in Tamale I
even took daily evening classes of "Bamaya", a traditional harvest dance
from the Dagomba people of Northern Ghana, performed to celebrate the
rains - and learnt some indigenous knowledge. I have learnt to really care
about the outcome of my research, more than for the scientific value of
it, for the societal impact.
On an academic side, publishing and defending my dissertation marks

the completion of not only my last six years, but also my (almost 15-years)
university education. I never thought I would do a PhD related to weather.
I never even liked rainfall! But step by step, I got myself here. Looking
back I can only see how much sense the whole puzzle made. I started off
with my love for space, studying Aerospace and then Space Engineering.
I was first passionate about space exploration, and then I decided to use
space to look back at Earth. Utilizing space for the benefit of society and
the planet became then my main interest. That is how I ended up, after
leaving Spain, and passing by South Africa and England, in the Water
Management Department of the TU Delft, the Netherlands. It has been a
long way. And no words can express the happiness of getting here.
During my first PhD years, I used to say assertively that I would not

submit until I was able to tell Ghanaian farmers when to plant, to help
them cope with climate change. I am grateful that although my research
took another direction, I ended up getting there with my later job. And
not only in Ghana, but in many other (African) countries.
At the end, following your intuition–and putting your heart in it–is always

the best way forward.

Mónica Estébanez Camarena
March 2025, Delft
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SUMMARY

West African food and economic safety are heavily reliant on agricul-
ture, most of which is rainfed. Changing rainfall patterns induced by
global warming jeopardize yields by unpredictable water availability. At
the same time, a rapidly growing population leads to rising demands for
food production. Accurate rainfall information is essential for farmers
to adjust their crop management practices and avoid yield, thereby im-
proving the overall resilience of the region. However, this information is
largely lacking due to a sparse rain gauge distribution, limited resources
and data transmission challenges. Added to this, existing satellite rainfall
products show a particularly poor correlation with ground observations in
West Africa.
This dissertation aims at improving rainfall information for farmers in

the Sudanian Savanna bioclimatic region of West Africa. The Sudanian
Savanna stretches across Africa as a broad belt, covering roughly from
southern Mali in the north to northern Ghana in the south. Its West
African area expands from Senegal in the west to Chad in the easte. Im-
proving rainfall information will support climate resilience and food and
economic safety in the region. This research leverages on the unique po-
tential of Earth Observation satellites to provide rainfall information ev-
erywhere, due to their global coverage and ability to track atmospheric
processes. To tackle the general poor performance of existing rainfall
information products, this work proposes an alternative avenue. Partic-
ularly, it investigates the potential of Deep Learning (DL) methods to
extract relationships between meteorological variables and raw satellite
data that might be overlooked by traditional satellite rainfall retrieval
methods.
However, DL models are data intensive, that is, they require large

amounts of data to be developed. Therefore, doing so over a data-scarce
context such as the Sudanian Savanna presents challenges of its own. To
overcome this, this dissertation starts by proposing a methodology to de-
velop DL models for data-scarce areas.
As a first demonstration of the potential of DL to model rainfall in

West Africa for a scarce set of target data, two models – called Rain-
Runner and Rainrunner+ – are developed for binary classification (rain /
no-rain) based on standard DL architectures: Convolutional Neural Net-
works (CNN) and Convolutional Long-Short Term Memory (ConvLSTM).
The input data for both models are thermal infrared (TIR) observations
from the Meteosat Second Generation satellites. The choice of these DL

xiii
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architectures is based on their ability to capture spatial and temporal
relations in the data. As target data, we use rainfall observations from
the Trans-African Hydro-Meteorological Observatory (TAHMO). Both mod-
els are trained over the north of Ghana using data from only 8 stations
over 2.5 years, with 20.4% of the data missing. The Precipitation Estima-
tion from Remotely Sensed Imagery Using an Artificial Neural Network
Cloud Classification System (PERSIANN-CCS) and the Integrated Multi-
satellitE Retrievals for the Global Precipitation Measurement (GPM) mis-
sion (IMERG) products are used as benchmarks. The first results are
promising as they compare well against these state-of-the-art products.
Our models consistently outperform PERSIANN-CCS and during the sec-
ond half of the rainy season they even outperform the much more com-
plex IMERG.

Of the two models, the CNN-based model performed best and this is
developed further by adding two information layers to the model, water
vapor (WV) and temporal information related to the time of the observa-
tion (hour and month). WV data is included because of its importance for
rainfall processes in West Africa, where most rainfall is convective and
therefore highly depends on available atmospheric moisture. Moreover,
literature suggests that one reason for the poor regional performance
of satellite rainfall products is a drier atmosphere than in other regions
of the world. Temporal information is included to account for the diur-
nal and seasonal patterns of rainfall. The results show that addition of
WV observations highlights areas of strong convection and discards non-
precipitating low-level features that introduce false alarms for methods
based only on TIR data. This is especially beneficial in areas like the trop-
ics where most rainfall is convective. Furthermore, it enables detection
of dry air masses advected from the Sahara Desert, that produce discon-
tinuities in rainfall events. Overall, the resulting model generates fewer
false alarms and lower rainfall overdetection (FBias < 2.0) compared to
the benchmark, IMERG Final Run.

In a third step, the models trained over the north of Ghana were applied
to stations across the wider Sudanian Savanna region. This yields valu-
able information about the generalization capabilities of the models and
the contribution of each information type (i.e., temperature, water vapor
and time of the observation) to satellite rainfall retrieval in the region.
From this, implications for the poor performance and possible improve-
ments of existing satellite rainfall products in the area can be inferred.
Results showed that the models have good generalization capabilities,
achieving similar performance across the Sudanian Savanna compared
to the north of Ghana, where they are trained. The observed effect of
adding WV and temporal information is also similar. Furthermore, ana-
lyzing this effect in a larger area and throughout the year highlights that
WV information is especially relevant during the first half of the rainy
season (March to June). We suggest that this is related to a larger atmo-
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spheric process that dictates West African climate and rainfall dynamics
during the year and that is often referred to as the movement of the
Intertropical Convergence Zone (ITCZ). This is the discontinuity area be-
tween the northeasterly dry and dusty Sahara air and the southwest-
erly humid oceanic air. In the period from March to June, the Sahara air
reaches further south and has a higher probability of causing rainfall in-
hibition in our area of interest. This phenomenon triggers false alarms in
TIR methods, but is corrected for by WV observations.
Lastly, this work proposes other future research avenues for advancing

the study of rainfall and satellite rainfall retrieval over West Africa, based
on insights gained during the research. Some of these avenues are em-
ploying additional satellite observations, more advanced Deep Learning
architectures, and Citizen Science.
One of these avenues that received special attention during the de-

velopment of this research is Citizen Science. A Citizen Science project
called Schools and Satellites (SaS) was deployed in the north of Ghana
between 2019 and 2021. SaS created a Citizen Observatory formed by
high schools and farmers that became the densest ground observation
network in the area during the time of the project. Although it is only
briefly referred to in the main body of this dissertation, additional infor-
mation can be found in the Appendix.
Overall, this work advances satellite rainfall retrieval in the Sudanian

Savanna region of West Africa in that: (1) It demonstrates the great po-
tential of DL methods for satellite rainfall retrieval over data-scarce areas
(2) it explains TIR rainfall over-detection and debunks traditional meth-
ods based on TIR-only rainfall retrieval and (3) it provides evidence in
support of regional models over global models. Particularly, we demon-
strate that locally training a DL model achieves comparable performances
to much more complex global models, even when developed with a small
training dataset and based on simple DL structures.
Furthermore, this work opposes the “black-box” narrative against DL

models for meteorology and showcases how meteorology knowledge can
be used to analyze the results of a DL model, and explain them from a
physical perspective.
Finally, I hope that the insights and recommendations extracted from

this dissertation can assist future researchers to further improve the
needed reliable rainfall information that can benefit the population and
agriculture and ecosystems management in Sub-Saharan Africa. Only
from there will we be able to progress towards a climate-resilient and
food- and economically-secure Africa.





SAMENVATTING

De West-Afrikaanse voedselvoorziening en economische veiligheid zijn
sterk afhankelijk van de landbouw, waarvan de watervoorziening groten-
deels gebaseerd op neerslag, zonder toegevoegde beregening. Veran-
derende neerslagpatronen als gevolg van de opwarming van de aarde
brengen de opbrengst in gevaar door onvoorspelbaarheid van beschik-
baar water. Tegelijkertijd neemt de vraag naar landbouwproducten toe
door de snel groeiende bevolking. Nauwkeurige neerslaginformatie is
essentieel voor boeren om hun gewasbeheer te kunnen aanpassen en
verliezen te voorkomen, waarmee de algehele veerkracht van de regio
verbetert. Deze informatie ontbreekt echter grotendeels door de lage
dichtheid van het netwerk van regenmeters, beperkte middelen en pro-
blemen met data-communicatie. Daar komt bij dat de bestaande satel-
lietproducten voor neerslag juist slecht correleren met de waarnemingen
op de grond in West-Afrika.
Dit proefschrift is gericht op het verbeteren van neerslaginformatie

voor boeren in de Soedanese Savanne-regio in West-Afrika, een regio
die zich uitstrekt van Senegal in het westen tot .. in het oosten. ter on-
dersteuning van klimaatbestendigheid en voedsel- en economische vei-
ligheid in de regio. Het maakt gebruik van het unieke potentieel van
aardobservatiesatellieten, vanwege hun wereldwijde dekking en vermo-
gen om atmosferische processen te meten. In dit werk wordt een alter-
natieve aanpak voorgesteld ten opzichte van de bestaande producten.
Deze maakt gebruik van het potentieel van Deep Learning (DL) metho-
den om relaties tussen meteorologische variabelen en ruwe satellietge-
gevens te naar boven te halen die mogelijk over het hoofd worden gezien
door traditionele satellietmethoden voor neerslaginformatie.
DL-modellen zijn echter gegevensintensief, dat wil zeggen dat er grote

hoeveelheden gegevens voor nodig zijn om ze te ontwikkelen. Daarom
vormt het ontwikkelen van DL-modellen in een context van data-schaarste,
zoals de Soedanese savanne, op zichzelf al een uitdaging. Om dit te
ondervangen begint dit proefschrift met het ontwikkelen van een me-
thodologie om DL modellen te ontwikkelen voor gebieden met weinig
gegevens.
Als eerste demonstratie van het potentieel van DL voor het modelle-

ren van regenval in West-Afrika zijn twee modellen ontwikkeld - RainRun-
ner en RainRunner+ genaamd - voor binaire classificatie van regenval
(regen / geen regen) op basis van standaard DL-architecturen: Convolu-
tionele neurale netwerken (CNN) en Convolutioneel langetermijngeheu-

xvii



xviii Samenvatting

gen (ConvLSTM). De invoergegevens voor beide modellen zijn thermisch
infrarood (TIR) waarnemingen van tweede generatie Meteosat satellie-
ten. De keuze van deze DL-architecturen is gebaseerd op hun vermo-
gen om ruimtelijke en temporele relaties in de gegevens vast te leggen.
We gebruiken de neerslagwaarnemingen van het Trans-African Hydro-
Meteorological Observatory (TAHMO) als referentie voor de modellen.
Beide modellen zijn getraind over het noorden van Ghana met behulp
van gegevens van slechts 8 stations gedurende 2,5 jaar, waarbij 20,4%
van de gegevens ontbraken. De bestaande neerslag-producten Preci-
pitation Estimation from Remotely Sensed Imagery Using an Artificial
Neural Network Cloud Classification System (PERSIANN-CCS) en Integra-
ted Multi-satellitE Retrievals for the Global Precipitation Measurement
mission (IMERG) worden gebruikt als benchmarks. De eerste resulta-
ten zijn veelbelovend omdat de modellen vergelijkbaar presteren met
de state-of-the-art producten. Onze modellen presteren consistent beter
dan PERSIANN-CCS en voor de tweede helft van het regenseizoen zijn ze
zelfs beter dan het veel complexere IMERG.

Van de twee modellen presteerde het op CNN gebaseerde model het
best en dit is verder ontwikkeld. Hiervoor zijn er twee informatielagen
aan het model toegevoegd, waterdamp (WV) en temporele informatie
met betrekking tot het tijdstip van de waarneming (uur en maand). WV-
gegevens worden toegevoegd vanwege het belang ervan in neerslagpro-
cessen in West-Afrika, waar de meeste neerslag convectief is en daardoor
sterk afhankelijk is van de beschikbare atmosferische vochtigheid. Bo-
vendien suggereert de literatuur dat een van de redenen voor de slechte
regionale prestaties van satellietneerslagproducten een drogere atmos-
feer is dan in andere delen van de wereld. Temporele informatie houdt
rekening met de dag- en seizoenspatronen van neerslag. De toevoe-
ging van WV-data legt meer nadruk op gebieden met sterke convectie en
verwijdert neerslag-achtige kenmerken op laag niveau die niet uitrege-
nen. Deze veroorzaken valse neerslag-detectiesbij methoden die alleen
op TIR-gegevens zijn gebaseerd. Deze toevoeging is vooral gunstig in
gebieden zoals de tropen waar de meeste neerslag convectief is. Boven-
dien helpt het om droge luchtmassa’s te detecteren, aangevoerd vanuit
de Sahara-woestijn, die discontinuïteiten kunnen veroorzaken in regen-
buien. Over het geheel genomen geeft het nieuwe model minder valse
alarmen en minder overdetectie van neerslag (FBias < 2,0) vergeleken
met de IMERG Final Run.

Als derde stap is het nieuwemodel dat is getraind voor het noorden van
Ghana toegepast op stations in de bredere regio van de Soedanese Sa-
vanne. Dit levert waardevolle informatie op over de generalisatiemoge-
lijkheden van de modellen en de bijdrage van elk informatietype (d.w.z.
temperatuur, waterdamp en tijdstip van de waarneming) aan het cor-
rect afleiden vanneerslag uit satellietmetingen in deze regio. Ook leiden
we hieruit verdere implicaties af voor de slechte prestaties en mogelijke
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verbeteringen van bestaande satellietproducten voor neerslag in het ge-
bied. De modellen blijken een goed generalisatievermogen te hebben
en presteren even goed in de Soedanese savanne als in het noorden van
Ghana, waar ze getraind waren. De toegevoegde waarde WV en tempo-
rele informatie is ook vergelijkbaar. Bovendien laat de regionale analyse
zien dat WV-informatie relevanter is tijdens de eerste helft van het re-
genseizoen (maart tot juni). We vermoeden dat dit verband houdt met
een groter atmosferisch proces dat het West-Afrikaanse klimaat en de
neerslagdynamiek gedurende het jaar dicteert en vaak wordt aangeduid
als: de beweging van de Intertropische Convergentiezone (ITCZ). Dit is
het overgangsgebied tussen de noordoostelijke droge en stoffige Sahara-
lucht en de zuidwestelijke vochtige oceaanlucht. In de periode van maart
tot juni reikt de Sahara-lucht verder naar het zuiden en is er een grotere
kans op regenvalonderdrukking in ons onderzoeksgebied. Dit fenomeen
zou valse alarmen genereren bij TIR-methoden, maar wordt gecorrigeerd
door de WV-waarnemingen.

Tot slot stelt dit werk toekomstige onderzoekspaden voor om het be-
grip van neerslagpatronen en afleiden van neerslag uit satellietmetingen
boven West-Afrika te verbeteren, gebaseerd op de inzichten die tijdens
het onderzoek zijn opgedaan. Enkele van deze mogelijkheden zijn het
gebruik van nog meer typen satellietwaarnemingen zoals van aerosolen,
toepassen van geavanceerdere Deep Learning-architecturen en de inzet
van Citizen Science.

Eén van deze onderwerpen kreeg speciale aandacht tijdens de ontwik-
keling van dit onderzoek: Citizen Science. Tussen 2019 en 2021 is in
het noorden van Ghana het Citizen Science-project Schools and Satel-
lites (SaS) uitgevoerd. SaS heeft een Citizen Observatory opgezet met
middelbare scholen en boeren dat het dichtste grondobservatienetwerk
in het gebied werd gedurende de looptijd van het project. Hoewel er
slechts kort naar wordt verwezen in de hoofdtekst van dit proefschrift, is
aanvullende informatie te vinden in de Appendix.

Samenvattend draagt dit werk bij aan het verbeteren van neerslag-
informatie uit satellietwaarnemingen voor de Soedanese Savanne regio
van West-Afrika omdat: (1) het toont het grote potentieel aan van DL me-
thoden voor neerslaginformatie uit satellieten voor gebieden met data
schaarste (2) het verklaart de over-detectie van TIR-gebaseerde metho-
den en ontkracht daarmee traditionele methoden die hierop gebaseerd
zijn en (3) het toont de meerwaarde aan van regionale modellen ten
opzichte van globale modellen. Specifiek tonen we aan dat het lokaal
trainen van een DL-model vergelijkbare prestaties oplevert als veel com-
plexere mondiale modellen, zelfs wanneer dit wordt gedaan met een
kleine trainingsdataset en op basis van eenvoudige DL-structuren.

Verder verzet dit werk zich tegen de stelling dat DL slechts “black-
box” modellen oplevert door te laten zien hoe meteorologische kennis
gebruikt kan worden om de resultaten van een DL-model te analyseren
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en deze vanuit een natuurkundig perspectief te verklaren.
Tot slot hoop ik dat de inzichten en aanbevelingen uit dit proefschrift

toekomstige onderzoekers zullen helpen bij het verkrijgen van de beno-
digde betrouwbare neerslaginformatie die ten goede kan komen aan de
bevolking en het beheer van landbouw en ecosystemen in Sub-Sahara
Afrika. Alleen op die manier kunnen we vooruitgang boeken in de rich-
ting van een klimaatbestendig en voedsel- en economisch veilig Afrika.
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INTRODUCTION

Climate change is more than statistics,
it’s more than data points.

It’s more than net-zero targets.
It’s about the people,

it’s about the people that are affected right now.

Vanessa Nakate, Climate Activist, Uganda
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2 1. Introduction

1.1. GEOGRAPHICAL AND RESEARCH CONTEXT

1.1.1. RESEARCH AREA: NORTHERN GHANA, SUDANIAN SAVANNA

G hana, on the southern coast of West Africa, is a vast country with
diverse cultures and climates. Only one day drive from the South to

the North of the country takes you through different bioclimatic regions,
from forest to savanna Figure 1.1. This dissertation begins in northern
Ghana and extends to the larger bioclimatic region in which it is located:
the Sudanian Savanna.

Figure 1.1: Bioclimatic regions of West Africa [1].

From the Atlantic Ocean to the Sahara Desert, West Africa has one
of the most extreme climatic gradients in the world, with the most
significant climatic variable for ecosystems and the population being
precipitation. Annual precipitation rates change from 200 mm in the
Sahel to over 2000 mm on the coast [2]. Two air masses - humid and
cold air from the ocean and dry and hot air from the desert – meet each
other in what is known as the Intertropical Convergence Zone (ITCZ).The
ITCZ and the West African Monsoon – a cool air blowing inland from the
Atlantic Ocean - are the main drivers of rainfall dynamics in West Africa,
since they control the timing, intensity and distribution of precipitation
during the rainy season [3]. However, rainfall mechanisms here are
complex and there are still many unknowns [2].

Like in the rest of West Africa, food and economic safety in the
region are heavily dependent on agriculture, most of which is rainfed
(i.e., only reliant on rainfall) and is threatened by climate change and
population growth. Accurate rainfall information is essential to face
these challenges.
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1.1.2. THE CHALLENGE OF RAINFALL INFORMATION IN WEST AFRICA

Changing rainfall patterns, more frequent extreme weather events like
droughts and floods, along with inaccurate and inaccessible rainfall
information, make farmers - most of whom are smallholders - vulnerable
to reduced yields and significant losses. In fact, many smallholder
farmers engaged during this research claimed facing difficulties in
adapting to climate change, and suffering losses in yield, seeds and
investments made in their farms, which had important repercussions in
their personal life Figure 1.2. Access to accurate rainfall information is,
therefore, essential to ensure the preparedness and resilience of the
farmers.

Operational weather and seasonal forecasts help smallholder farmers
make informed decisions and strengthen their resilience to climate
change. However, these models struggle to perform well in West Africa.
Improving and reliably assessing weather models requires accurate
and dense ground-based rainfall data, which remains insufficient due
to sparse rain gauge networks and data transmission challenges.
Satellites, with their global coverage, offer a potential solution, but
existing satellite products also show poor performance in the region.

Figure 1.2: A smallholder farmer stands in the middle of her tomato
field, dried shortly after planting because of an unexpected
drought. Photographed by the author in Wa, Ghana, February
2020. Her face has been covered for privacy.
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1.1.3. DEVELOPMENTS IN SATELLITE RAINFALL RETRIEVAL METHODS

Satellite rainfall retrieval methods employ mainly two types of Earth
Observation (EO) data: thermal infrared (TIR) and passive microwave
(PMW) data, from Geostationary (GEO) and Low-Earth orbit (LEO)
satellites, respectively. Rainfall is inferred from TIR imagery by studying
the temperature of the clouds. The most established TIR-based
method is the Cold Cloud Duration (CCD) method, that establishes
a relationship between how long a certain pixel remains under a
temperature threshold, and rainfall rates on the ground. This method
is based on the assumption that rain-bearing clouds have high tops,
below a certain atmospheric temperature, which makes it especially
relevant for areas with deep convection. It is used by two important
rainfall products in Africa, the Climate Hazards Infrared Precipitation
with Stations (CHIRPS) [4] - that also uses rain gauge data for bias
correction - and the Tropical Applications of Meteorology Using Satellite
Data and Ground-Based Observations (TAMSAT) [5]. Although the use
of TAMSAT is currently less extensive than before, CHIRPS remains the
preferred product for many African meteorological agencies. PMW data
retrieves rainfall by measuring the natural microwave radiation emitted
by hydrometeors in the atmosphere. Although TIR methods have the
disadvantage of being a less direct measure of rainfall than PMW ones,
they have the large advantage of providing a constant coverage of
the Earth. This is because GEO satellites are over the same point of
the Earth surface continuously, resulting in constant observations able
to track atmospheric movements. On the contrary, PMW observations
are made by LEO satellites and therefore only provide intermittent
information.

In general, satellite rainfall products perform poorly over West Africa
[6–10]. Literature suggests that the reason for this poor performance are
a sparse distribution of rain gauges, a higher aerosol concentration and
a drier atmosphere compared to other regions in the World. The higher
aerosols concentration would be due to dust from the Sahara desert,
biomass burning in sub-Saharan Africa and decomposing vegetation in
equatorial forests of Africa [11]. Therefore, to improve satellite rainfall
retrieval over West Africa, these characteristics should be taken into
account.

Machine Learning (ML) is a field that has gained popularity across
disciplines in the last decades, because of its ability to simulate physical
processes accurately. Its first application for satellite rainfall retrieval
was in the late 1900s, with the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIAN) [12],
based on GEO TIR data. Since then, ML-based rainfall retrieval methods
have rapidly evolved in parallel with advancements in the field of
machine learning.

In 2012 Deep Learning (DL) started to become popular, finding
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its first application in medical image diagnosis, autonomous vehicles
and speech recognition. The main advantage of DL models is that
they are “universal approximators”, they can approximate almost any
function, being able to model complex and non-linear processes, such
as rainfall [13]. From a data point of view, they can handle large
amounts of data, deal with noise, and incorporate new data easily
[13]. Furthermore, they are able to automatically extract features from
raw input data, as opposed to shallow networks for which features
have to be hand-engineered and passed as inputs to the network.
By automatically extracting features, the network can capture spatial
and temporal structures hidden in the data, potentially leading to the
discovery of new concepts and relations, correcting human errors, and
being free from preconceived notions about the processes [14]. One
common criticism of DL models is that they are black boxes and bring
little new understanding about the physical processes. However, by
carefully evaluating the model results in relation with the inputs, it is
possible to extract valuable knowledge about the physical relationships
between them [12–14].

A technical challenge of DL for rainfall retrieval in West Africa and other
data-scarce contexts is its data-intensive requirements. Furthermore,
existing ML-based satellite rainfall retrieval models are trained on dense
ground data, which is missing in this region.

1.1.4. RESEARCH OBJECTIVE

The overall goal of this research is to improve rainfall information over
the Sudanian Savanna region of West Africa, as a first step towards
improved weather forecasts models to support climate resilience and
food and economic security in the region.

To tackle this problem, the global coverage of Earth Observation
satellites - especially relevant for data-scarce contexts such as West
Africa – is combined with the ability of Deep Learning to learn the
relationships between meteorological variables and rainfall directly from
raw data.

Sub-objectives are (1) to investigate the potential of DL-based methods
for satellite rainfall retrieval over the Sudanian Savanna, (2) to propose
a methodology to develop DL models for data-scarce contexts, (3) to
assess the contributions of water vapor (WV) and temporal information
to improve rainfall information retrieval compared to TIR-only methods
and (4) to use DL as a diagnostic tool to understand the reasons behind
the poor performance of TIR-based rainfall retrieval methods over the
Sudanian Savanna, as well as how it could be improved.
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1.1.5. RESEARCH QUESTIONS

The main research question of this thesis is: How can Deep Learning
exploit thermal infrared, water vapor and temporal EO data for
satellite rainfall retrieval in the Sudanian Savanna region of
West Africa?

And it can be divided in the following sub-questions:

RQ1. How can DL be exploited to improve satellite rainfall retrieval in
data-scarce contexts? (Chapter 2)

RQ2. What role can water vapor observations and temporal infor-
mation, added to thermal infrared information, play in satellite rainfall
retrieval? (Chapter 3)

RQ3. Can a DL satellite rainfall retrieval model developed for the north
of Ghana be extrapolated to the wider Sudanian Savanna bioclimatic
region? (Chapter 4)

An overarching question that runs through this thesis is to what extent
can DL inform us about the underlying physics of rainfall processes.

1.1.6. RESEARCH METHODOLOGY

The basic concept of this research methodology is to develop a
data-driven model to learn the relationship between EO data and rainfall
on the ground. In the absence of gridded ground data on which to train
the model, we use point data Figure 1.3. This results in the output of the
model not being a precipitation map (gridded), but precipitation for the
center of the input image.

Figure 1.3: Concept of the link between multiple satellite information
layers and one point rainfall measurement.
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In essence, such a methodology has three components:

1. EO data: Based on existing satellite rainfall retrieval methods, the
first EO data used in this thesis is Meteosat TIR data. Next, water
vapor (WV) data from the same Meteosat observation, collected
simultaneously and covering the same pixels as the TIR data but at
a different wavelength, is added as a second layer to the model.
This is because of the crucial role that WV plays in rainfall processes
in West Africa, as well as because, as mentioned previously, a drier
atmosphere might be one of the reasons for a poor performance
of satellite rainfall products over West Africa. Lastly, temporal
information related to the observation (time of the day and month)
is included to account for the diurnal and seasonal patterns of
rainfall.

2. Ground data: One of the basic requirements for DL models is to
have extensive training and validation datasets. However, this is
challenging in a data-scarce context such as the Sudanian Savanna.
Therefore, we evaluated the possibility of expanding our training
and validation dataset, from the Trans-African Hydro-Meteorological
Observatory (TAHMO) [15] rain gauge network with Citizen Science
(CS) data. To this end, we ran a CS project in the north of Ghana
from July 2019 to December 2021, called Schools and Satellites,
that collected daily rainfall data. However, at the end, these data
are not contained in the main body of this dissertation for not being
deemed of sufficient scientific quality.

3. DLmodel: In this dissertation we develop two models – that we call
RainRunner - based on standard DL architectures: Convolutional
Neural Networks (CNN) and Convolutional Long-Short Term Memory
(ConvLSTM). With these two architectures we aim to capture spatial
(CNN and ConvLSTM) and temporal (ConvLSTM) patterns in the
data related to rainfall. We start by comparing the performance of
both models, and continue the development of the thesis only with
the preferred one.

At all stages of model development, performance is evaluated by
comparing the results with state-of-the-art satellite rainfall products:
the Integrated Multi-satellitE Retrievals for the Global Precipitation
Measurement (GPM) mission (IMERG) [16] and Precipitation Estimation
from Remotely Sensed Imagery Using an Artificial Neural Network Cloud
Classification System (PERSIANN-CCS) [17].
By adding information layers in a consecutive manner and comparing

the performances of the different models, we can assess the contribution
of each one of them. Further performance evaluation includes comparing
it across factors such as rain intensity and season (rainy / dry).
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Once the final model has been developed using data from the north
of Ghana, its generalization capabilities are analyzed by testing it on
ground stations across the wider Sudanian Savanna.
Meteorological knowledge is used in both the north of Ghana and

the Sudanian Savanna to study the reasons behind the difference in
performance of the models developed using each type of information
and behind the poor performance of TIR-based satellite rainfall products.

1.1.7. A NOTE ON SCHOOLS AND SATELLITES

Schools and Satellites (SaS) was one of the Citizen Science Earth
Observation Lab (CSEOL) pilot projects. CSEOL was an initiative funded
by the European Space Agency to foster ideas that combined space big
data and CS. Schools and Satellites was a collaboration between TU
Delft, PULSAQUA, TAHMO Ghana, Smartphones4Water and the Ghana
Meteorological Agency. I was the project lead, after proposing the
project and successfully securing the funding through a competitive
process in 2019.
The project had the goal to develop a rainfall retrieval model through

the combination of DL, EO and CS. This last component aimed at
creating an extensive training and validation dataset to support the
development of a DL model. In fact, the first version of the DL model
presented in this thesis was developed within SaS.
SaS worked with farmers and high schools in Northern Ghana to create

a Citizen Observatory to measure daily rainfall. Our Citizen Observatory
was formed by 51 citizen scientists across the five northern regions of
Ghana, and it became the densest rainfall observation network in the
region. In schools, the rainfall measurement was embedded into an
optional educational module on climate change and the water cycle.
The project had a high social and educational value, as communicated
by the participants and their communities. However, the COVID-19
pandemic caused important disruptions in the program, including the
impossibility of delivering the planned intensive training to the citizen
scientists before the data collection campaign. At the end, the data
collected was inconsistent and not deemed to be of a quality good
enough to be used to develop the DL model. Therefore, this project
has been left out of the main body of the thesis. To learn more
about SaS, the reader is referred to the Appendix A, which contains
key sections of two of the project deliverables: the report of work
package 1 - ground data collection - and work package 2 - algorithm
development. More information on the project can be found on this
link: https://new.tahmo.org/schoolandsatellites/.
Learnings from the Citizen Science campaign were shared in the paper
“Leveraging Citizen Science for Sustainable Development Education and
Water Security in Northern Ghana”, and was published in 2022 in
UNESCO’s Youth and Water Security in Africa report.

https://new.tahmo.org/schoolandsatellites/
https://unesdoc.unesco.org/in/documentViewer.xhtml?v=2.1.196&id=p%3A%3Ausmarcdef_0000381511&file=%2Fin%2Frest%2FannotationSVC%2FDownloadWatermarkedAttachment%2Fattach_import_805f7e2c-6d4f-4064-9163-146d4f9c8884%3F_%3D381511eng.pdf&locale=en&multi=true&ark=%2Fark%3A%2F48223%2Fpf0000381511%2FPDF%2F381511eng.pdf&fbclid=IwAR0mNleLTzQUFY1OJZMQzpxPIHPvqAmF7VuZNKS9A24vZXkT3_vlTaE_6FQ#UNESCO%20YOUTH%20AND%20WATER%20SECURITY%20IN%20AFRICA%20fa.indd%3A.41307%3A1386
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1.2. THESIS OUTLINE
This thesis is organized as follows:
Chapter 1 introduces the problem tackled in this thesis, its objectives,

the research questions to be addressed, the methodology to do so, and
the outline of the thesis.
Chapter 2 investigates the potential of DL to model rainfall in West

Africa and proposes a methodology to develop DL models in data-scarce
areas. It does so by developing two DL models – RainRunner - for rainfall
binary classification (rain / no-rain) over northern Ghana from Meteosat
TIR data, using CNNs and ConvLSTMs. This chapter uses the north of
Ghana as a case study.
Chapter 3 develops further the CNN-based RainRunner model over

the north of Ghana by adding two information layers to the TIR-only
model. This is, a water vapor (WV) layer and a layer containing temporal
information, particularly time of the day and month. In this way, it
develops three models - based on (1) only WV data, (2) TIR and WV
data and (3) TIR, WV and temporal information, and compares their
performances to that of the TIR-only model developed in Chapter 2.
The contribution of each information type is then evaluated based on
Atmospheric Science of the region.
Chapter 4 extends the four RainRunner models developed using data

from the north of Ghana to the wider Sudanian Savanna region. It
assesses the generalization capability of the model as well as whether
the insights about the contribution of the different information types
(i.e. temperature, water vapor and time of the day and of the year)
to satellite rainfall retrieval hold true across the wider region. In
addition, it investigates what this analysis can teach us about the poor
performance of existing satellite rainfall products in the region, and
possible improvements.
Chapter 5 suggests future research avenues for advancing the study

of West African rainfall, based on insights acquired during this research.
Finally, Chapter 6 reflects on the main findings and scientific

contributions of this dissertation.

1.3. SUPPLEMENTARY MATERIAL
All research data and code supporting the findings described in this
thesis are available in 4TU.ResearchData at: DOI: 10.4121/6e101d26-
8067-4455-b465-78ce8f6a601d.

https://doi.org/10.4121/6e101d26-8067-4455-b465-78ce8f6a601d
https://doi.org/10.4121/6e101d26-8067-4455-b465-78ce8f6a601d
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This chapter has been published in Remote Sensing 15(7), 1922. as The Potential of
Deep Learning for Satellite Rainfall Detection over Data-Scarce Regions, the West
African Savanna. (2023). Authors: Estébanez-Camarena, M., Taormina, R., van de
Giesen, N., and ten Veldhuis, M. -C., doi: 10.3390/rs15071922 [18].
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2.1. ABSTRACT
Food and economic security in West Africa rely heavily on rainfed
agriculture and are threatened by climate change and demographic
growth. Accurate rainfall information is therefore crucial to tackling
these challenges. Particularly, information about the occurrence and
length of droughts as well as the onset date of the rainy season is
essential for agricultural planning. However, existing rainfall models fail
to accurately represent the highly variable and sparsely monitored West
African rainfall patterns. In this paper, we show the potential of deep
learning (DL) to model rainfall in the region and propose a methodology
to develop DL models in data-scarce areas. We built two DL models
for satellite rainfall (rain/no-rain) detection over northern Ghana from
Meteosat TIR data based on standard DL architectures: Convolutional
neural networks (CNNs) and convolutional long short-term memory
neural networks (ConvLSTM). The Integrated Multi-satellitE Retrievals
for the Global Precipitation Measurement (GPM) mission (IMERG) and
Precipitation Estimation from Remotely Sensed Imagery Using an
Artificial Neural Network Cloud Classification System (PERSIANN-CCS)
products are used as benchmarks. We use rain gauge data from
the Trans-African Hydro-Meteorological Observatory (TAHMO) for model
development and performance evaluation. We show that our models
compare well against existing products despite being considerably
simpler, developed with a small training dataset - i.e., 8 stations
covering 2.5 years with 20.4% of the data missing - and using TIR data
alone. Concretely, our models consistently outperform PERSIANN-CCS
for rain/no-rain detection at a sub-daily timescale. While IMERG is the
overall best performer, the DL models perform better in the second half
of the rainy season despite their simplicity (i.e., up to 120 k parameters).
Our results suggest that DL-based regional models are a promising
alternative to state-of-the-art global products for providing regional
rainfall information, especially in meteorologically complex regions such
as the (sub)tropics, which are poorly covered by ground-based rainfall
observations.

2.2. INTRODUCTION
Food and economic safety in West Africa depend heavily on rainfed
agriculture and, therefore, on rainfall. In this context, accurate rainfall
information is essential to ensure food security. Uncertainty in West
African rainfall and the associated vulnerability of smallholder farmers
have been documented since the last century. In the 1970s, the Sahelian
Drought was socially and agriculturally devastating. It was reported to
have produced 100,000 deaths by 1973 and was followed by continuous
droughts in the next two decades [19, 20]. Currently, climate change
and global population growth [21], the two great threats of this century,
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exacerbate these problems. Sub-Saharan Africa will account for most
of this century’s population growth and will become the world’s most
populous area by the late 2060s [22]. Climate change is changing the
onset of the rainy season over the Sahel [23] and causing more frequent
droughts in most of Africa, which is severely increasing food insecurity
[24, 25]. Rainfall detection is essential to monitor these changes,
characterize rainfall patterns, and supply the information needed for
efficient agricultural planning. However, a sparse, unevenly distributed,
and inconsistently reported rain gauge network poses a major challenge
to studying rainfall variability in this region and has been a persistent
problem since the last century [26].

Satellite rainfall products are of special relevance for areas with
sparse rain gauge networks, such as sub-Saharan Africa, because
of their global coverage. In fact, satellite rainfall retrieval and its
application over Africa have been in constant development since the
late 1960s [26–29]. However, existing satellite products show a poor
correlation with ground measurements in the region. For example, the
Africa Climate Hazards Infrared Precipitation with Stations (CHIRPS) [4]
and the Tropical Applications of Meteorology Using Satellite Data and
Ground-Based Observations (TAMSAT) [5], particularly developed for
Africa based on the Cold Cloud Duration method, show daily Kling–Gupta
Efficiency values below 0.4 [6, 30]. The most widely used machine
learning-based product, Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks-Cloud Classification System
(PERSIANN-CCS) [17], tends to have a high false alarm ratio (FAR)
and to overestimate rainfall both globally and in Africa [7, 8]. Lastly,
the Global Precipitation Measurement (GPM) Integrated Multi-satellitE
Retrievals for GPM (IMERG) [16], which combines both physical and
ML-based methods and has been developed to become the longest and
most detailed rainfall data set, show a weaker correlation with ground
measurements in West Africa than in other regions of the world [9, 10].

The literature suggests that an important reason for the poor
performance of satellite rainfall estimates over West Africa is the
sparse rain gauge distribution, leading to underrepresentation in the
training or calibration data for the modeling algorithms. Additionally,
atmospheric conditions differ from other regions in the world, as there
are higher aerosol concentrations, higher land surface temperatures,
and a generally drier atmosphere [11]. Furthermore, the generalization
performance of existing ML rainfall retrieval models trained on dense
gridded rainfall data [17, 31–33] may decrease for areas with less
training data and different atmospheric conditions.

Deep learning (DL) is becoming increasingly popular in the field of
environmental remote sensing because of its ability to learn complex
patterns and features from data [34]. DL methods exploit spatial and
sequential inductive biases to improve performance by incorporating
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the assumption that nearby pixels in an image and nearby elements in a
sequence have more relevance to the output, which allows the network
to learn more effectively and generalize to new examples.
In this work, we investigate whether locally training a deep learning

model can overcome the limitations of global products in capturing the
complex rainfall dynamics of this region. We develop two models based
on CNN and ConvLSTM for rain/no-rain detection in the data-scarce
region of northern Ghana, West Africa. Both models have been trained
on a small regional dataset, representative of data availability in the
region. The focus of this paper is on rain/no-rain detection, i.e., binary
classification, as a first step towards rainfall intensity estimation. In
Section 2, we present the data and study area and introduce our
methodology; in Section 3, we report our results; in Section 4, we
compare our findings with those of other studies; and in Section 5 we
draw the main conclusions of this study and propose future work beyond
this paper.

2.3. MATERIALS AND METHODS
2.3.1. MODEL DEVELOPMENT DATASETS

The input to the model is level 1.5 data from the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) instrument aboard the Meteosat
Second Generation (MSG) satellite. Concretely, we use data from the
10.8 µm channel (channel 9 of SEVIRI), a window channel in the thermal
infrared (TIR) region that is widely employed for rainfall estimation from
cloud top temperature [35]. The spatial resolution over our study area
is 3.1 km x 3.1 km [36]. The temporal resolution is 15 min.

2.3.2. TARGET DATA: TAHMO RAIN GAUGE DATA

To develop the models, we used hourly rain gauge data from the
Trans-African Hydro-Meteorological Observatory (TAHMO) [15] as target
data. TAHMO provides quality-controlled rainfall data, available in near
real time. There are eight TAHMO stations in our study area during
the research period (July 2018-December 2020). Their locations and
characteristics are displayed in Figure 2.1 and Table 2.1, respectively.
Table 1 also includes the number of rain events per station per year.
Here, a rain event is defined as an uninterrupted time period of over-zero
rainfall measurements with a cumulative rainfall of at least 1 mm, and
there is a 1 h separation window between rain events.
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Figure 2.1: (a) Ghana located in West Africa and (b) TAHMO stations
considered in this study. UTM coordinates.
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2.3.3. BENCHMARK PRODUCTS

We used two benchmark products for performance evaluation [Table 2.2]:
PERSIANN-CCS [17], as a reference operational ML-based satellite rainfall
product, and IMERG [16], as a very high-quality global satellite rainfall
product.

Product Temporal Resolution Spatial Resolution Input Data
IMERG 30 min 0.1° × 0.1° ( 10 km ×

10 km)
TIR and PMW satel-
lite data, gauge
analysis, and addi-
tional input data

PERSIANN-CCS 1 h 0.04° × 0.04° ( 4 km ×

4 km)
TIR satellite data

Table 2.2: Summary of the characteristics of the benchmark products
used in this study.

PERSIANN–CCS builds on its predecessor, PERSIANN [12], and
estimates rainfall from GEO IR images. First, the model segments and
classifies clouds into cloud patches based on manually selected features
such as cloud texture or geometry. Second, it learns the relationship
between brightness, temperature, and rainfall rates for each cloud
patch [17]. PERSIANN-CCS has a latency of approximately 3 h. A
possible limitation of this method lies in the human-assigned features
and group definitions of cloud patches, which may be reductionist or
faulty in representing physical (rainfall) processes that are not yet fully
understood.
IMERG has been developed by NASA and is available as three different

products with varying latency times and more data being incorporated
in successive runs of the algorithm: Early run, with a 4 h latency time;
Late run, with a 12 h latency time; and Final run, with a latency time of
3.5 months. NASA advises using the Final Run as research-ready data.
Here, we evaluated all three products. The latest algorithm upgrade of
IMERG at the time of writing this paper was version 06.
IMERG relies on multiple data sources and algorithms: It employs

GEO IR satellites, “as many as possible” opportunistic LEO satellites,
and monthly gauge analyses [16]. The LEO satellites provide PMW
rainfall estimates that are propagated forwards and backwards in time
using estimated rainfall motion vectors. GEO IR estimates are added
using the PERSIANN-CCS algorithm to fill in the gaps between LEO PMW
estimates. The Early Run of the algorithm only has forward propagation,
whereas the Late Run has both forward and backward propagation,
allowing for interpolation. Furthermore, the longer latency time allows
for lagging data transmissions that might have been missed in the Early
Run to be incorporated in the Late Run. The gauge analyses from the
Global Precipitation Climatology Centre (GPCC) are used to regionalize
and correct biases in the final stage of the algorithm. Other input data
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are the GPM Combined Radar-Radiometer (CORRA) rainfall estimates,
Modern-Era Retrospective Analysis for Research and Applications Version
2 (MERRA-2), and Goddard Earth Observing System model (GEOS)
Forward Processing (FP) precipitable water vapor data [16].

2.3.4. STUDY AREA: NORTH OF GHANA

Northern Ghana, defined here as the northern part of Ghana comprising
the five northern regions and not the northern region alone, lies between
latitudes 8°N and 11°N and longitudes 3° W and 0°30E and is situated
in the Savanna climatic zone. It is heavily affected by high variability
in climate and hydrological fluxes, with frequent floods and droughts
accompanied by high temperatures. This produces frequent crop failures
or losses, outbreaks of diseases, and dislocation of human populations,
with major economic repercussions [37]. Over 70% of employment in
Ghana is in near-subsistence agriculture in rural areas [38].
Ghana’s climate is characterized by markedly seasonal rainfall with

high interannual variability. Rainfall seasons are determined by the
movement of the intertropical convergence zone (ITCZ), which oscillates
between the north and south tropics throughout the year [38]. The
ITCZ separates a cold, moist air mass moving northward from the
Atlantic and a dry, hot, and dusty air mass from the Sahara Desert. As
opposed to the south of Ghana, which has two annual rainy seasons,
northern Ghana has a unimodal rainfall regime, with a rainy season from
March to October, when the ITCZ is in its northernmost position [38,
39]. Figure 2.2 shows the average monthly temperature and rainfall
in Bawku, in the upper-east region of Ghana, which is representative
of the climatology of the region. Over 75% of rainfall in this area
is due to deep convection, most of it organized as large mesoscale
convective systems [40]. Intense and short-lived events as a result of
deep convection characterize the diurnal rainfall variation in this region
[41]. For example, over 80% of rain events present in our development
dataset last less than 3 h.

2.3.5. DATA PREPROCESSING

Figure 2.3 shows the flow diagram of the overall methodology presented
in this research, with special detail given to the data preprocessing
stage.
One-hour TAHMO and thirty minute IMERG data were accumulated in

3 h intervals, while PERSIANN-CCS data were directly obtained with a 3
h resolution. All three products were classified as rain/no-rain using a 1
mm/3 h threshold.
Data scarcity poses an obstacle to DL-based rainfall estimation or

prediction, in that the existence of densely gridded data to use as
training data during model development is a prerequisite for most
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Figure 2.2: Average monthly temperature and rainfall in Bawku, upper-
east region, Ghana (1993–2011). Data adapted from [36].
Bawku is representative of the climatology of our study area:
the five northern regions of Ghana.

Figure 2.3: Overall flow diagram of the methodology followed in this
study, from data preprocessing to performance comparison.

existing approaches [24, 31–33]. Our study area has a sparse rain gauge
distribution, with distances between stations too large to allow reliable
interpolation, especially considering the highly localized rainfall patterns
in West Africa. We employ a methodology to overcome this obstacle by
using point-based instead of gridded data as the output of the model.
RainRunner utilizes an image-to-point approach: the model is trained
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only with point-based rainfall data, corresponding to the center of the
input image. Some studies [42, 43] have used a similar methodology,
cropping satellite data around rain gauge measurements used as target
data before being input to a CNN in a DL model to estimate rainfall.
However, both approaches use other rainfall measurements present in
the cropped scene - and other data sources - as input to the models.
Muraux et al. (2021) [42] uses all rain gauges present in the scene,
and Wu et al. (2020) [43] uses TRMM 34B2 precipitation data. In our
case, MSG TIR images are the only model input, and they were cropped
to create 32 pixels × 32 pixels (i.e., approx. 96 km × 96 km area)
images centered on each TAHMO station as shown in Figure 2.4. Images
were cropped in a way to ensure that the corresponding station fell in a
“center square”, defined as a square with sides of length equal to the
pixel size and with center on the geometrical center of the image. In this
way, the model’s spatial resolution is the pixel size, i.e., approx. 3 km.

Figure 2.4: Center square in a 32 × 32 pixels image. Here, pixels are
numbered from bottom to top and from left to right.

Cropped MSG TIR images were grouped in 3 h sequences (i.e., groups
of 12 images). Sequences were then classified as rain/no-rain according
to the corresponding TAHMO data. Incomplete sequences due to gaps
in TAHMO or MSG data were discarded. We chose a 3 h temporal
resolution according to the short-lived rainfall events characteristic of
this area. We expect this resolution to be able to capture the daily
rainfall dynamics and deem a finer temporal resolution not needed for
the end goal of our research, which is to improve the quality of rainfall
information for agricultural applications.
To prepare the model development datasets, first we resampled the

training dataset to deal with the data imbalance characteristic of rainfall
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binary classification [44]. We employed a 4:1 dry/rain ratio. Validation
and test datasets were created with the same dry/rain ratio as the full
2020 data, i.e., 28.2:1, in order to be representative of reality. The data
distribution is presented in Table 2.3.

Dataset Total Data
Samples

Dry Data Sam-
ples

Rain Data Sam-
ples

Training (2018,
2019, and 2020)

5317 4248 1069

Validation (2020) 7304 7054 250
Test (2020) 7303 7053 250

Table 2.3: Dataset distribution in training, validation, and test.

We assigned all 2018 and 2019 data to the training dataset. Out of
the 2020 data, we randomly selected two sets of 250 rain sequences for
the validation and test datasets; the rest were assigned to the training
dataset.
After model development, its performance on the test dataset was

evaluated through comparison to IMERG and PERSIANN-CCS. However,
IMERG Final run and PERSIANN-CCS presented data gaps in the validation
and test datasets. IMERG Final run had 241 gaps in the validation
dataset and 229 in the test dataset, while PERSIANN-CCS only had 110
gaps in the validation dataset. Conveniently, so as not to penalize
further the minority class, all corresponded to sequences recorded as
dry by TAHMO stations. For a fair comparison, these sequences were
removed during result evaluation.

2.3.6. DEEP LEARNING MODEL

We framed the rainfall binary classification as a supervised binary
classification problem. We developed two model architectures:
RainRunner, based only on convolutional neural networks (CNN),
and RainRunner-R, which incorporates a convolutional long short-term
memory (ConvLSTM) architecture. Both models have the same
input (sequences of 12 TIR images taken every 15 min) and output
(rain/no-rain classification).
CNNs are deep neural networks with convolutional layers that exploit

symmetries in gridded data by recognizing similar patterns and features,
achieving efficient processing and generalization by reducing the
number of learned parameters [14]. CNNs treat pixels as connected
to their neighborhood instead of independent from each other through
convolution and pooling operations [45]. This enables them to account
for spatial correlations in rainfall. They are more computationally
efficient than multi-layer perceptrons (MLPs) [8]. LSTM architectures
are improved recurrent neural networks that incorporate a sequential
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inductive bias by means of memory cells and gates that selectively
maintain and propagate important information across timesteps. This
allows them to effectively process sequential data such as time series
and natural language texts [46]. ConvLSTM [47] is an extension of LSTM
to 2D sequences, i.e., images changing in time, instead of point-based
time series. As such, they are suitable techniques to capture the
spatio-temporal evolution of satellite gridded data.
We selected these relatively simple methods because of the nature of

our problem. State-of-the-art (SOTA) methods for image classification
and sequential processing based on transformers require tens of millions
to a billion parameters to achieve top performances on benchmark
datasets [48]. Training is performed using millions to billions (e.g.,
pretraining) of images and exceptional computing power [49]. These
settings are very different from the case study we are considering,
where we are dealing with fewer than ten thousand images. As such,
it is beyond the scope of our paper to test very large SOTA models.
Instead, we focus on more basic DL models capable of dealing with
limited data to explore the overall suitability of the DL approach for this
context. We employed ConvLSTM to test whether using a more suitable
inductive bias to process our sequences would yield better results.
We differentiate two building blocks: CNN and ConvLSTM blocks. A

CNN block comprises multiple convolution and pooling layers. The
output of a CNN block is a feature map with dimensions greater than or
equal to 8 × 8. The ConvLSTM block consists of ConvLSTM and batch
normalization layers, with the output of the block being a 2D tensor.
Besides these building blocks, we also used MLPs with a dropout layer
between the hidden and output layers.

RAINRUNNER ARCHITECTURE

Upon receiving an image sequence, RainRunner processes each image
in parallel through a CNN block and an MLP to produce one bounded
real value (0,1) from each one of them. Then, these outputs are
concatenated into a fully connected layer and passed through a second
MLP to classify the 3 h input sequence as rain/no-rain. Figure 2.5 shows
a schematic block diagram of this architecture.

RAINRUNNER-R ARCHITECTURE

RainRunner-R processes all the images as a sequence through a
ConvLSTM block. The output of this block is a 2D tensor that is then
passed through a CNN block and an MLP to produce a rain/no-rain
prediction. This architecture is shown in Figure 2.6. We investigated
the effect of bidirectionality on the ConvLSTM architecture. Bidirectional
recurrent neural networks allow training a model using both time
directions (i.e., past to future, future to past) of the input when a
whole sequence is available. While they cannot be used for forecasting
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Figure 2.5: Schematic block diagram of the RainRunner model architec-
ture.

purposes, they are particularly suitable for sequence recognition tasks
such as ours [50].

Figure 2.6: Schematic block diagram of the RainRunner-R model archi-
tecture.

2.3.7. TRAINING AND HYPERPARAMETER SEARCH

To account for data imbalance, we trained the models to minimize a
weighted binary cross-entropy loss, where a weight of 0.8 was given to
the rain class and 0.2 to the dry class (Equation (2.1)).

wp(λ) = −
U

µ

µ
∑

=U

[τ ΓΛ˘(p(τ)) + (U − τ) ΓΛ˘(U − p(τ))] (2.1)

where µ is the size of the dataset, τ is the label / true value (i.e., 0
for no-rain and 1 for rain), and p(τ) is the prediction probability (i.e., the
estimated probability of each sequence  containing rain).
We trained multiple hyperparameter combinations and chose the best

models based on a trade-off between the validation F1-score and the
number of trainable parameters. We ran these models ten times and
selected the overall best model for both RainRunner and RainRunner-R
based on the validation F1-score. Using F1-score as a performance
metric helps deal with the rain/dry data imbalance.

2.3.8. PERFORMANCE METRICS AND MISCLASSIŐCATION ANALYSIS

We used performance metrics commonly used in the meteorology field as
well as the F1-score, a metric commonly used for imbalanced problems
in DL, all extracted from the contingency table [Figure 2.7]. Accuracy
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(Equation (2.2), where TP denotes True Positives, FP denotes False
Positives, FN denotes False Negatives and TN denotes True Negatives)
represents the number of correctly classified data samples out of all
data samples; probability of detection (POD, Equation (2.3)) measures
the ability of the model to correctly detect rain sequences; success rate
and false alarm ratio (SR and FAR, Equation (2.4)) are complementary
and represent the certainty with which rain sequences are detected;
frequency bias (FBias, Equation (2.5)) represents the degree of
correspondence between rain predictions and observation; finally, F1-
score and critical success index (F1-score and CSI, Equation (2.6) and
Equation (2.7)) evaluate at the same time SR and POD.

Figure 2.7: Contingency table for the rain/no-rain binary classification
problem.

POD, SR, F1score, and CSI can vary from 0 to 1, with 1 being the
optimal value. FBias can range from 0 to ∞, with the optimal value
being 1. If FBias is below 1, the events are under-forecasted; if it is
greater than 1, they are over-forecasted.

Accuracy =
TN+ TP

TN+ FP+ TP+ FN
(2.2)

POD =
TP

TP+ FN
(2.3)

SR = U − FAR =
TP

TP+ FP
(2.4)

FBias =
TP+ FP

TP+ FN
(2.5)

F1 score =
V × SR× POD

SR+ POD
(2.6)
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CSI =
U

�

U
SR +

U
POD − U
� (2.7)

We present results in three ways: as contingency tables, numerically
as the forecast verification metrics, and visually in a Roebber diagram
[51] or performance diagram. To assess the generalization ability of the
models in the context of the highly localized and seasonal rainfall in
northern Ghana, we analyzed their performance depending on factors
such as location and time of the year (Table 2.4) in terms of the
distribution of misclassified sequences.

Factor Possible Val-
ues

Description

Station Bimbilla,
Bongo, Daf-
fiama, Kpandai,
Han, Navrongo,
Pusiga, Tamale

Each one of the 8 TAHMO stations

Month January to De-
cember

Each month of the year

Time of the day Day 6 AM to 6 PM in the local time (constant
throughout the year near the equator)

Night 6 PM to 6 AM
Dry <1 mm/3 h

Rain category Very light rain 1 mm/3 h to 1 mm/h
Light rain <2.5 mm/h
Moderate rain 2.5 mm/h to 7.6 mm/h

Table 2.4: Factors considered for misclassification analysis. The “rain
category” factor follows the definition of rain in the Glossary
of Meteorology of the American Meteorological Society, AMS,
except the “very light rain” category introduced here.

We compared the performance of RainRunner to that of the benchmark
products by computing the forecast verification metrics and performing
a misclassification analysis of all products. To assess the difference
in performance of the three IMERG products–i.e., Early, Late, and Final
Run - we included all of them in the forecast verification metrics
computation. For the misclassification analysis, we used IMERG Final
Run, as the highest-performing satellite rainfall product. We conducted
the performance evaluation based on the results of the test dataset.
For reference, we also include the forecast verification metrics of all
products on the validation dataset.
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2.4. RESULTS

2.4.1. SELECTION OF BEST-PERFORMING MODEL ARCHITECTURE

We tested 48 hyperparameter combinations for both RainRunner and
RainRunner-R and evaluated learning rates of 0.001, 0.0005, and 0.0001.
We used a batch size of 32 and 400 epochs, with an early stopping
criterion based on the improvement of the validation loss. We used an
Adam optimizer [52].

The F1-score values of the tested model architectures ranged from
close to 0 to almost 0.5 (Figure 2.8a), with the best-performing models
doing so at the expense of a high number of trainable parameters
(Figure 2.8b). Given the limited amount of data available for validation,
we selected the simplest, best-performing architectures to reduce the
chance of overly optimistic estimates of the model’s performance on
unseen data [53]. We ran the chosen architectures ten times to
select the overall best-performing models (Figure 2.8c). RainRunner
achieved an overall higher validation F1-score but a lower median
value than RainRunner-R. The model architectures that resulted in the
best performances are shown in Figure 2.9. They consist of 120,125
parameters for RainRunner and 21,033 parameters for RainRunner-R,
i.e., RainRunner-R has 17.5% of the trainable parameters of RainRunner.
The best-performing architectures for both models had two concatenated
convolution blocks (i.e., two convolutions + pooling operations). For
the RainRunner-R model, a bidirectional ConvLSTM resulted in the best
performances, which is in line with the classification task at hand, for
which both time directions might contain useful information.

Figure 2.8: Results of the hyperparameter search: (a) performance
distribution of all tested model architectures; (b) number
of trainable parameters and validation F1-score of the five
model architectures with the highest validation F1-score; and
(c) performance distribution of the selected models over 10
runs.
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Figure 2.9: Architecture of the best (a) RainRunner model (based on a
CNN only) and (b) RainRunner-R model (combining ConvLSTM
and CNN). In Figure 9a, only the pipeline of one image is
shown, the other 11 images go through a similar CNN block.

2.4.2. MODEL PERFORMANCE EVALUATION

Table 2.5 shows the values of the performance metrics of the selected
RainRunner models on our validation dataset, compared to those of
PERSIANN-CCS and IMERG Early, Late, and Final run on the same
dataset. RainRunner scored higher than PERSIANN-CCS on all metrics
except FBias and achieves a POD similar to that of IMERG. The weakest
point of RainRunner seems to be the substantially higher FBias.
Figure 2.10 shows the contingency tables of the same models for our

independent test dataset. IMERG Final run achieved the overall highest
performance among all models, with 95% dry and 82% rain sequences
correctly classified. IMERG Late and Early runs followed closely, with
95% (78%) and 95% (76%) dry (rain) sequences correctly classified,
respectively. The remaining models achieved a similar performance
in dry sequence classification: 94% for RainRunner, RainRunner-R,
and PERSIANN-CCS. Lastly, both RainRunner models outperformed
PERSIANN-CCS in rain sequence classification, with 74% of rain
sequences correctly classified by RainRunner and 73% by RainRunner-R,
as compared to 68% by PERSIANN-CCS. Finally, Figure 2.11 summarizes
the performance scores in a Roebber diagram. A perfect model - with
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Model Accuracy F1–score POD SR FBias CSI
RainRunner 0.94 0.47 0.78 0.33 2.36 0.30
RainRunner-R 0.94 0.46 0.77 0.33 2.34 0.30
PERSIANN-
CCS

0.94 0.43 0.63 0.28 2.26 0.24

IMERG Early
Run

0.94 0.47 0.73 0.35 2.10 0.31

IMERG Late
Run

0.95 0.49 0.78 0.37 2.14 0.33

IMERG Final
Run

0.95 0.52 0.82 0.38 2.16 0.35

Table 2.5: Performance metrics on the validation dataset.

POD, CSI, and FBias equal to 1 - would be in the upper-right corner of the
diagram. We can see three clusters: the best performance corresponded
to the three IMERG products, followed by the RainRunner models, and
lastly, PERSIANN-CCS. RainRunner had the largest FBias, which indicates
that it over-detected rain more often than the other models. In all the
other performance metrics, the two RainRunner models outperformed
PERSIANN-CCS on the test dataset.

Figure 2.10: Contingency tables of (a) RainRunner, (b) RainRunner-R, (c)
PERSIANN-CCS, and (d) IMERG Early, (e) Late, and (f) Final
run on the independent test dataset, consisting of 250 rain
and 6824 dry sequences.
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Figure 2.11: Roebber performance diagram on the test dataset.

2.4.3. MISCLASSIŐCATION ANALYSIS

Figure 2.12 shows the distribution of misclassified sequences of the
test dataset across individual stations, month of the year, and rain
categories. About 4% to 10% of the sequences were misclassified across
all stations. The southern stations showed a somewhat higher proportion
of misclassified sequences than the northern stations. Seasonally, the
percentage of misclassifications was much higher in the rainy season
than in the dry season, when all models correctly classified nearly
all sequences. IMERG performed better in the first half of the rainy
season yet misclassified substantially more sequences in the second
half of the rainy season, with up to 14% misclassifications for the
month of September. For all models, the most challenging events to
classify were very light and light rainfall, often misclassified as dry
sequences. We also investigated the performance of the models in
terms of misclassifications distributed over different times of the day
(day/night), but there was no significant difference in the number of
misclassifications for day and night.
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Figure 2.12: Misclassification analysis according to (top) station, (center)
month, and (bottom) rainfall intensity. The numbers
in brackets below the x-axis represent the number of
sequences of each category in the test dataset.

2.5. DISCUSSION
Our findings show that DL models for rainfall binary classification
trained with a small local dataset of strictly TIR data compare well to
state-of-the-art global products. These results suggest three insights:
(1) TIR data are strongly related to rainfall in this region; (2) DL can
extract relevant features linking TIR images with rainfall; and (3) locally
developing a DL model enables it to capture the characteristics of local
processes, in this case, rainfall occurrence, better than some globally
trained models.

The strong relationship between brightness temperature (Tb) and
rainfall has been extensively studied and used for satellite rainfall
retrieval. This relationship is particularly relevant in the Sahel, where
around 75% of surface rainfall is due to deep convection that involves
cold cloud tops, observable in TIR data [40]. RainRunner surpasses
PERSIANN-CCS, which uses machine learning to link TIR data to rainfall
through manually extracted features related to cloud properties. This
shows that DL methods are able to extract relevant features from data
and model natural processes better than expert-based models that rely
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on manual feature extraction. Especially training the model locally
allows it to reproduce regional rainfall patterns more efficiently.

As seen in the Roebber performance diagram Figure 2.10, all models
over-predict rainfall with an FBias greater than 2. It is known that TIR-
based methods over-predict rainfall because the size of large convection
systems is much larger than the surface rainfall area underneath [40]. A
further explanation of this over-prediction lies in the characteristic West
African rainfall processes. Particularly, the presence of rain-bearing
clouds does not necessarily mean rainfall on the ground. Sometimes
rainfall does not reach the ground due to the higher concentration of
aerosols and associated smaller drops, higher land surface temperature,
and drier atmosphere compared to other regions [11]. Therefore, adding
other relevant sources of information such as aerosols, land surface
temperature, or water vapor data might improve the performance of
the models. Furthermore, virga precipitation evaporating before it
reaches the ground accounts for 15% of all precipitation profiles in
the northern African Savanna (8°–12°N) [41]. Virga has been found to
account for 50% of false PMW precipitation results in arid regions [54]
and could be a cause for IMERG’s rainfall over-prediction. Furthermore,
the presence of other MW radiation scatterers, such as dry sand,
also results in satellite PMW retrievals over-estimating rainfall [41].
Despite the proven efficiency of DL methods to reproduce physical
processes, data scarcity poses a challenge to their employment. To
overcome this, we have used an image-to-point methodology that
only needs point-based rainfall measurements. Although other studies
have applied similar methodologies [42, 43], they required additional
rainfall information - additional rain gauges in the study region or a
gridded satellite product - as model inputs. Compared to these, our
approach has the advantage that it does not require any further rainfall
information. Of the two DL architectures we evaluated, results suggest
that the temporal inductive bias introduced by the ConvLSTM architectur
- processing each image in the 12-image sequence one after the other -
does not improve model performance, although it results in a model with
fewer trainable parameters (21,033 against 120,125 for RainRunner).
The hyperparameter search in model design produced a wide range
of performances for both models, which is probably explained by the
relatively small training dataset. To investigate the robustness of the
models, further research on a range of small to larger datasets would
be needed. It is striking that our DL models based on TIR data only,
developed with a small dataset and simple model architectures, achieve
a performance close to that of IMERG. The high learning efficiency of the
DL model, when trained with local data, is promising for the independent
application of such models in data-scarce areas such as sub-Saharan
Africa. Additionally, it might be interesting to investigate combining the
DL model with existing products such as IMERG, where the DL approach
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can offer complementary insights that help improve performance. For
example, substituting the PERSIANN-CCS rainfall estimation scheme
from TIR data within IMERG with our better-performing approach might
improve IMERG’s estimations. With most agriculture in West Africa
being rainfed, access to accurate rainfall information is necessary for
agricultural productivity. Satellite rainfall products, such as the one
developed in this study, that, after training, can be interpolated to areas
with no ground observations can play an essential role in overcoming
the data scarcity challenge and contributing towards food and economic
security.

2.6. CONCLUSION
In this paper, we have developed two DL models based on the CNN
and ConvLSTM architectures. The output of our models is a rain/no-rain
binary classification of 3 h sequences. We show that our models
compare well against existing products despite being considerably
simpler, developed with a small training dataset - observations from
8 stations over 2.5 years, with 20.4% data gaps - and using TIR data
alone. Specifically, our models consistently outperform PERSIANN-CCS
for rain/no-rain detection at a sub-daily timescale. While IMERG is the
overall best performer, the DL models perform better than IMERG in the
second half of the rainy season despite their simplicity (i.e., up to 120 k
parameters). Compared to our models that follow a black-box approach
from raw MSG TIR data, IMERG uses data from multiple LEO and GEO
satellites, both TIR and PMW, combined with reanalysis and rain gauge
data. The high performance that the models are able to reach despite
the important challenge of data scarcity shows their high efficiency and,
ultimately, the potential of DL to model rainfall in regions with low data
availability. We overcome the challenge of data scarcity to develop DL
models with an image-to-point methodology that only needs point data
instead of densely gridded rainfall information from the ground.
The DL model based on CNN achieved somewhat higher performance

than the one including CNN and a ConvLSTM. The temporal structure
information brought by the ConvLSTM architecture enables the model to
achieve similar performances as when based on CNN, with only 17.5%
of the trainable parameters but at the expense of a slower training
process.
We suggest that regionally training a DL rainfall model can result

in better performances than global models, especially in areas with
complex, highly region-specific meteorological characteristics, such as
the Savanna region of West Africa.
Further work includes the addition of other EO data as inputs to the

model. Particularly, and because of the drier atmosphere characteristic
of our study region, the SEVIRI water vapor channel is expected to
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improve the performance of satellite rainfall estimation. Aerosol data
from the Sentinel 5P satellite is also to be added. We expect that the
incorporation of these two data products will capture the atmospheric
conditions that are the potential causes of rainfall over-detection in
West Africa. Furthermore, because the aim of our study was to prove
the potential of deep learning methods for providing rainfall information
in data-scarce areas, finding the optimal model through a thorough
hyperparameter search was out of our scope. However, we believe such
a search would improve model performance, and we strongly encourage
it. At the same time, we recommend the expansion of the development
dataset to cover a longer period and/or a wider region in West Africa,
which would allow for the use of more advanced architectures such
as ConvNeXt [55] and eventually enable direct rainfall estimation. We
expect that the fully data-driven approach can give useful insights into
rain processes in the West African savanna.
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3.1. ABSTRACT
West African food systems and rural socio-economics are based on
rainfed agriculture, which makes society highly vulnerable to rainfall
uncertainty and frequent floods and droughts. Reliable rainfall
information is currently missing. There is a sparse and uneven
rain gauge distribution and, despite continuous efforts, rainfall satellite
products continue to show weak correlations with ground measurements.
This paper aims to investigate whether water vapor (WV) observations
together with temporal information can complement thermal infrared
(TIR) data for satellite rainfall retrieval in a Deep Learning (DL)
framework. This is motivated by the fact that water vapor plays a
key role in the highly seasonal West African rainfall dynamics. We
present a DL model for satellite rainfall detection based on WV and
TIR channels of Meteosat Second Generation and temporal information.
Results show that the WV inhibition of low-level features enables the
depiction of strong convective motions usually related to heavy rainfall.
This is especially relevant in areas where convective rainfall is dominant,
such as the tropics. Additionally, WV data allow us to detect dry air
masses over our study area, that are advected from the Sahara Desert
and create discontinuities in precipitation events. The developed DL
model shows strong performance in rainfall binary classification, with
less false alarms and lower rainfall overdetection (FBias k VYT) than the
state-of-the-art Integrated MultisatellitE Retrievals for GPM (IMERG) Final
Run.

3.2. INTRODUCTION
In West Africa, rainfed agriculture is the main pillar of the food system
and rural socio-economics. For example, in Ghana, the focus area of
this study, agriculture accounts for 54% of the total Gross Domestic
Product [57] and is predominantly rainfed small-holder farming. Rainfall
in this area is highly uncertain and there are frequent floods and
droughts, exacerbated by climate change. Reliable and timely rainfall
information is essential to effectively face these challenges and avoid
major economic and yield losses. However, a sparse and unevenly
distributed rain gauge network-as is typical for tropical areas [58,
59]-and regionally poor-performing satellite rainfall products,hinder the
availability of accurate dense rainfall information.
The global coverage of Earth observation satellites can offer a solution

for poorly ground-monitored areas. The most widely used methodologies
for satellite rainfall retrieval are based on thermal infrared (TIR) from
Geostationary (GEO) satellites and passive microwave (PMW) data from
Low-Earth Orbit (LEO) satellites. Because of their closer proximity to the
Earth’s surface, LEO satellites allow for a higher spatial resolution but
have the disadvantage of a longer revisit time, which often translates
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to rainfall events being missed. On the contrary, GEO satellites provide
a lower spatial resolution but have the advantage of a constant view
of the full Earth disk from their unique position, always above the
same point above the Earth’s surface. This enables them to have a
high temporal resolution and to monitor atmospheric processes like no
other satellite platform. This will only become more apparent with
Meteosat Third Generation, for which the first satellite has recently
been launched [60]. Retrieval methods can be physical- or Machine
Learning-based, or a combination of both. Within Machine Learning,
Deep Larning (DL) aims to minimize human intervention and facilitate
automated feature extraction from large raw datasets [61]. This new
data-oriented approach is a promising method to detect and possibly
estimate rainfall when theoretical or process-based approaches fail to
accurately parameterize such complex atmospheric processes.

Physical-based retrieval methods that use TIR data predominantly
employ the Cold Cloud Duration (CCD) method, which correlates the
time that a pixel is under a certain temperature threshold with rainfall on
the ground. Two examples of this approach are the Tropical Applications
of Meteorology Using Satellite Data and Ground-Based Observations
(TAMSAT) [62] and the Africa Climate Hazards Infrared Precipitation with
Stations (CHIRPS) [4] rainfall products, specifically designed for Africa
with daily and 6-hourly temporal resolutions, respectively. Results from
a calibration of the CCD method in the Sahel region are unreliable due
to spatial averaging and temporal aggregation, as well as low gauge
density [63]. In West Africa, both TAMSAT and CHIRPS show daily
Kling-Gupta Efficiency values below 0.4 [64, 65].

To address the limitations of the CCD method and exploit the benefits
of DL, ref. [66] developed a novel DL-based methodology: RainRunner.
RainRunner classifies 3 h intervals into rain/no-rain, based only on TIR
data. Rainrunner was trained over the North of Ghana using rain
gauge data as target, with a very small training dataset-measurements
from 8 rain gauges over 2.5 years-with TIR data as the only input
and based on standard DL architectures. Nonetheless, this approach
showed promising results, reaching near state-of-the-art performances.
However, as expected for methods that rely only on TIR data [67],
RainRunner heavily overdetected rainfall.

PMW sensors allow for a more direct retrieval of rainfall than TIR
sensors because they directly sense hydrometeors in the atmosphere.
Using this advantage, the Global Precipitation Measurement (GPM)
Integrated Multisatellite Retrievals for GPM (IMERG) rainfall product
combines data from TIR and PMW sensors, along with atmospheric
reanalysis and rain gauge data. Developed by NASA through the use
of physical- and Machine Learning-based algorithms, IMERG aims to
become the longest and most detailed rainfall dataset available [68].
Compared with other regions of the world, IMERG shows a weaker
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correlation with ground measurements in West Africa [69, 70].
The literature suggests that the poor regional performance of satellite

rainfall products over West Africa is partly due to sparse rain gauge
coverage [63], as has also been observed in other regions of the
world [71]. Another reason for this poor performance is the complexity
of West African rainfall dynamics. They are governed by the seasonal
northward shift of the Intertropical Convergence Zone (ITCZ) and the
West African Monsoon (WAM), a low-level south westerly moist flow
from the Atlantic Ocean. Wind shear generated by the monsoonal
flow creates a strong temperature contrast-especially from June to
September-between the dry hot Sahara Desert and the cool moist
Guinea coast that favors the formation of the African Easterly Jet.
The African Easterly Jet is a unique zonal wind feature located in the
midlevel troposphere around 600 hPa (Figure 3.1) and is most intense at
the end of August. The jet is caused by a thermal wind balance that
promotes the development of the African Easterly waves (AEWs) through
baroclinic and barotropic instability [58]. Many studies [72–74] have
identified water vapor as a key factor in West African rainfall dynamics.
Studies have shown that the main support for the intensification of
AEWs is moist convection. At the same time, latent heat release from
condensation of atmospheric water vapor and a strong solar irradiation
would be the key promoters of unstable atmospheric conditions that lead
to sparse but heavy precipitation events in the form of thunderstorms.
In this paper, we build on RainRunner by incorporating water vapor

(WV) data as an input to the model. Furthermore, to capture the
seasonality and the diurnal cycle of rainfall in this region, we also add
the temporal information of the satellite observations as additional input
data to the model. The goal of our study is to evaluate the impact of WV
observations combined with temporal information on satellite rainfall
retrieval in tropical regions and to what extent they can complement
TIR data. This paper is organized as follows: First, the data used during
our study are introduced together with our study region and research
methodology in Section 3.3. Our results are presented in Section 3.4
and subsequently discussed in Section 3.5. Finally, our conclusion and
some insights into future work are reported in Section 3.5.
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Figure 3.1: Illustration of the difference between rain (a) and dry (b)
season as seen in [YW µm imagery: (a) Easterly moisture
transport during boreal summer under the influence of
midlevel jets. (b) Dry low-level wind blowing from Sahara
desert slightly visible during dry season.
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3.3. MATERIALS AND METHODS

3.3.1. DEVELOPMENT DATASET AND BENCHMARK SATELLITE

RAINFALL PRODUCTS

The input data to the model are level 1.5 data from two channels of
the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard
the Meteosat Second Generation (MSG) satellite. They have a 15 min
temporal resolution and a 3.1 km spatial resolution over our study
region [75]. Building on RainRunner [66], we employ UTY\ µm TIR
data (channel 9 of SEVIRI). Additionally, we incorporate [YW µm WV
data (channel 6). Our choice to employ these data instead of ZYV
µm WV data (channel 5), which is the other WV channel of SEVIRI,
is based on the fact that channel 6 enables penetration further down
into the atmosphere than channel 5, which is situated in the center
of the water vapor absorption band. Observing water vapor further
down in the atmosphere can be useful to interpret humidity features
associated to midlevel jets in a strong convective environment (Figure
3.1). This is very relevant for our study region, where the rainy season is
heavily dependent on the African Easterly Jet, which transports moisture
horizontally in the middle troposphere. “Further down” is meant in
a relative sense. Although the water vapor channel 6 is a thermal
band, it does not represent the temperature of the Earth’s surface but
the temperature of the so-called effective layer. Only with a very dry
troposphere is the WV channel able to reach surface levels (e.g., eastern
Sahara desert and Antarctica) [76]. In most circumstances, such as
those encountered in the study area, radiation from water in the lower
parts of the atmosphere is readily absorbed by water vapor higher up
in the atmosphere. Thus, radiation from low liquid water clouds, such
as stratocumulus and nimbostratus, does not reach the satellite but is
absorbed by water vapor in higher layers. Therefore, channel 6 is not
helpful in detecting any rainfall produced by these low clouds. What is
observed by the satellite is the temperature of the effective layer, or the
layer above which there is insufficient water to absorb radiation from
below. The effective layer can include the middle layer in which the
all-important African Easterly Jet is situated, typically situated at 3000
masl. A very cold effective layer would indicate the presence of water
vapor or ice at high levels in the atmosphere, up to 10,000 masl, which
is typically associated with cumulonimbus clouds, which is also relevant
for rainfall detection. Finally, the timestamp of MSG data, i.e., date and
time of the day of each observation, is also model input. This is to take
into consideration the diurnal heating cycle and seasonality patterns
closely related to rainfall in this region.

To analyze the added advantage of incorporating WV into the
model, we used the same target training data as in our previous work
developing RainRunner [66]. That is, hourly data from eight Trans-African
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Hydro-Meteorological Observatory (TAHMO) rain gauges in the north of
Ghana [77] (Figure 3.2a) over a study period spanning from July 2018
to December 2020, included. Figure 3.2b shows the amount of missing
data per station during this time period.
The benchmark satellite rainfall product used in this study is IMERG,

developed by NASA, as it is currently the best-performing satellite
product over our study region. It combines PMW data from as
many Low Earth Orbit (LEO) satellites as possible with TIR data from
different Geosynchronous Earth Orbit (GEO) satellites to fill in gaps
between PMW measurements and monthly rain gauge data from the
Global Precipitation Climatologic Centre (GPCC). TIR estimates are
produced using Machine Learning, while PMW estimates through forward
and backward propagation using rainfall motion vectors based on
atmospheric reanalysis data. IMERG is available in different versions
with increasing latency time and model complexity: IMERG Early Run,
with a 4 h latency time and only forward propagation; Late Run,
with a 12 h latency time and backward propagation; and Final Run,
with 3.5-month latency time that is adjusted using gauge data from
the Global Precipitation Climatology Centre Full and Monitoring products
[78]-hence the longer latency time and higher performance. NASA
recommends using the Final Run product for research [79].

3.3.2. STUDY AREA: NORTH OF GHANA

The study area is northern Ghana, between 8° N and 11° N latitude and
3° W and 0°30′ E longitude. The climate in this region corresponds
to that of the broader Sudanian savanna agro-ecological zone of West
Africa [80]. West Africa has one of the most extreme climatic gradients
in the world, where the most significant climatic element is rainfall.
The mean annual rainfall steadily increases southward towards the
equator, with extremes ranging from near-zero in the arid part of the
Sahel up to over 2000 mm/year in the coastal zones [81].
Northern Ghana has a unimodal rainfall regime, with a peak generally

occurring during the months of July and August. The dry season in
this region starts in November and lasts until late March. During this
period of time, there are virtually no significant precipitation events [82].
Rainfall patterns in this area are highly regional and present a strong
diurnal cycle. The main characteristics of the rainfall regime in the
region of interest are visualized in Figure 3.3. Precipitation displays
characteristics of a convective and very heavy rainfall regime: seasonal
heavy short-lived thunderstorms (Figure 3.3b,c), short-lived events,
with the majority (82%) not lasting more than 3 h, and a close to 20
mm/h median value of the heaviest rainfall events.
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Figure 3.2: (a) Digital elevation map of the study area (GRASS QGIS)
and locations of the TAHMO stations. Data retrieved from
https://www.usgs.gov/ (accessed on 1 June 2022).
(b) Missing data for each TAHMO station in north Ghana
during our study period from July 2018 to December 2020.

https://www.usgs.gov/
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(a)

(b) (c)

(d) (e)

Figure 3.3: Rainfall dynamics in Northern Ghana expressed as (a)
monthly rainfall patterns, (b) frequency distribution of rainfall
duration, (c) frequency distribution of precipitation intensity
of the 100 heaviest rain events at each station, (d) seasonal
distribution of rainfall accumulation per time of the day, and
(e) frequency distribution of precipitation events (>1 mm/3h)
based on time of the day, depicted as a violin plot. In these
graphs, frequency corresponds to the number of occurrences
in the entire development dataset, as described in Table 3.1.
These results are based on hourly data from the four TAHMO
stations with no gaps during at least 2 full years within
our study period (no missing data for at least 66% of the
considered period 2018-2020): Daffiama (TA00251), Pusiga
(TA00264), Bongo (TA00254), Kpandai (TA00259).
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Figure 3.3d shows a progressively erratic diurnal cycle of convection
during the rainy season starting from May due to the strengthening of
the African Easterly Jet. A stronger African Easterly Jet consequently
enhances horizontal moisture transport (visible in WV 7.3 µm data) and
the formation of large mesoscale convective systems that propagate
overnight and result in large accumulated rainfall values. This pattern
peaks in early September where almost 1000 mm falls during nighttime.
Morning hours (6 a.m.-12 p.m.) [-20]have generally the least rainfall
accumulation, as well as fewer precipitation events (Figure 3.3e). Stable
atmospheric conditions are more often found around this time of the day.
On average, northern Ghana is more often under the influence of the

hot and arid North Easterly trade wind, which blows air that comes from
the Sahara desert, usually carrying a considerable amount of dust, while
the southern part of the country receives more maritime influx through
moist SW winds.

Table 3.1: Development dataset distribution in training, validation,
and test datasets. The validation and test datasets
contained sequences from 2020 and were created using
a dry/rain ratio computed from all 2020 data to simulate a
realistic distribution.

Dataset Year Dry Samples Rain Samples Total n_Samples Ratio Dry/Rain

Training 2018, 2019, 2020 4218 1055 5273 4.0
Validation 2020 6627 235 6862 28.2

Test 2020 6627 235 6862 28.2

3.3.3. DATA PREPROCESSING

Sparse ground training data pose a challenge to any ML-based rainfall
retrieval model. The methodology described in this section presents a
way to overcome the lack of dense ground data by using an image to
point approach such as described in [66]. For this purpose, TIR and WV
images were cropped to create a matrix of 32 × 32 pixels (96 × 96
km) with the TAHMO station located in a central 2 × 2 pixels square.
The spatial resolution of the model corresponds to the pixel size, which
is approximately 3.1 km [66]. Cropped images were then grouped to
form 3 h (12-image) sequences. The chosen temporal resolution is
in line with the rainfall duration pattern of this area. Integrity of the
sequences was mandatory: if any sequence included missing data, it
was discarded from the process.
Hourly TAHMO ground measurements were accumulated into 3

h intervals to match the temporal scale of the input sequences.
A threshold of 1 mm/3 h was selected to discriminate between rain and
no-rain sequences. We based our choice of threshold on the short and
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intense nature of rainfall events in our study region, with most events
lasting no more than 3 h. It is recognized that there are different
possible and reasonable definitions, but 1mm/3hours was also used in
our previous work developing the first version of this model, making
a direct comparison more consistent [66]. We aggregated 30-minute
resolution IMERG data in a similar fashion for comparison.
To include temporal information about the satellite observations, we

mapped the MSG data timestamp onto a circle to represent its cyclical
nature. Particularly, from the timestamp, we extracted the month
number, from 0 to 11, and hour of the day, from 0 to 21, due to the
sequences being 3 h in length. We performed the mapping by converting
these two variables into two two-dimensional arrays using sine and
cosine transformations. In this way we avoided jump discontinuities
from 11 pm to midnight and December to January. Equations (3.1) and
(3.1) provide the timestamp encoding, where X is the time variable in
question.

Κξθ = ξθ(
Vπ × Κ

η(Κ)
) (3.1)

ΚΦιξ = Φιξ(
Vπ × Κ

η(Κ)
) (3.2)

The development dataset is highly skewed, as is the rainfall binary
classification problem. This means that the number of no-rain sequences
is much larger than rain sequences. To deal with this imbalance, we
followed the methodology of [66] and used a hybrid approach of data
resampling and weighted loss function.
The dataset was split in such a way that the rain sequences in the

training dataset were oversampled with a ratio of 4:1 dry/rain, while both
validation and test datasets had a ratio of 28.2:1 dry/rain, representative
of the full 2020 data. The training dataset contained sequences from
2018, 2019, and 2020, while the validation and test datasets only
had sequences from 2020. The dataset distribution was based on
the minority class, i.e., rain samples, divided following an approximate
70-15-15 (training-validation-test) ratio. The dry samples were selected
randomly using the corresponding dry/rain ratios (Table 3.1).

3.3.4. SATELLITE DATA ANALYSIS

To study the differences between the TIR and WV spectral channels of
SEVIRI and their complementarity, satellite data were analyzed using
pixel analysis. We followed a top-down approach comparing data from
the two channels from the larger synoptic scale over the entirety of West
Africa-20° W to 20° E-to the smaller scale (mesoscale) using already
cropped MSG images from relevant sequences used for model validation.
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The aim of the larger-scale comparison was to visualize the water
vapor exclusion of low-level nonconvective features hidden by the West
African monsoon during the rainy season. For each SEVIRI TIR channel,
the relationship between observed radiance Δ and the equivalent
brightness temperature ΖΥ is given by EUMETSAT and expressed in
Equation (3.4). In this relation, Δ is the observed radiances in mW m−V

sr−U (cm−U)−U, ΖΥ is the equivalent brightness temperature in K, νΦ is
a central wavenumber of the spectral channel in cm−U, ΦU and ΦV are

constants with values ΦU = VβΦV, ΦV =
βΦ
κ
, where β is Planck’s constant,

Φ is the speed of light, and κ is the Boltzmann constant. The central
wavenumber ν and the so-called band c correction coefficients A and
B were determined by EUMETSAT from a nonlinear regression of a
precalculated lookup table using the Planck function for the different
thermal infrared SEVIRI channels and are provided on EUMETSAT’s
website [83].

ΖΥ = [
ΦVΦ

ια(U + ΦUWΦ /Δ)
− B]/A (3.3)

We analyzed sequences at the smaller scale using gray-level
histograms of the normalized pixel values, positively related to
equivalent brightness temperature. Because temperature is not
constant with height, if the atmosphere is conditionally unstable, there
is a negative temperature lapse rate  between the Earth surface and a
layer at βΨαβο = Μ that can be simplified using the relation expressed in
Equation (3.4), where Ζ is the absolute temperature and υ the altitude.

 = −
ΧΖ

Χυ
(3.4)

In raw satellite imagery, pixel radiances with values approaching the
unity are bright pixels, and they translate into absorption at lower levels
of the atmosphere, i.e., the effective layer is located at low levels, which
corresponds to higher temperatures. Darker pixels have values closer
to 0, which indicate colder temperatures of the effective layer, and
therefore, its location will be at a higher altitude. Meaningful events
for evaluation were selected manually based on (1) the misclassified
probabilistic output values of the models, so that events for which one
or both models misclassified a sequence but the combination of both
corrected the classification were selected, and (2) the WV mean pixel
value being at least a standard deviation away from TIR mean value.

3.3.5. MODEL DEVELOPMENT

We built our model on RainRunner [66]. We expanded the input layer to
feed two different streams of twelve 32 × 32 × 1 matrices for a total
of 24 input images, with one stream per each SEVIRI channel (TIR and
WV).
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We increased the number of nodes from 8 to 16, following the increase
in the number of input images (from 12 to 24). Figure 3.4 illustrates
a condensed diagram of the bispectral model structure. The inputs
of WV and TIR are convoluted separately in order to learn information
individually from each channel. The output of the convolution and
pooling layers is a 2-dimensional (8 × 8 × 1) single tensor generated
from each image of the sequence, i.e., 2 convolutions are applied in
series. The tensors are then flattened and concatenated before being
fed to a multilayer perceptron. The timestamp (month and time of the
day) is added directly into the fully connected layer after preprocessing
along with the 2D tensors from the convolutional layers. The model
has 11,019,197 learnable parameters. The batch size was set to 64
and the learning rate was fixed to 0.0001. The number of passes
trough the training dataset was fixed at 300 epochs with an early
stopping callback set to 50 to halt the training in case the model was
overfitting. The function for the dense layer(s) is a rectified linear
function (ReLu), while the output layer function is a logistic function,
or sigmoid, which returns a probabilistic output between 0 and 1, where
1 represents 100% rain and 0 is 100% dry. A decision boundary line
at 0.5 is used for the classifier to make a distinction between the two
classes. Lastly, a weighted loss function was applied to deal with the
imbalanced dataset, where dry sequences have 0.2 and rain sequences
0.8 coefficients, which reflected the ratio of dry/rain sequences of the
training dataset.

Figure 3.4: Schematic overview of the proposed bispectral (WV + TIR)
RainRunner architecture.
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3.3.6. PERFORMANCE EVALUATION AND ASSESSMENT OF

DATA CONTRIBUTION

In order to assess the individual contributions of water vapor and
timestamp, we conducted an ablation study in which we evaluated four
models with different inputs but similar architecture/hyperparameters:
(1) TIR data only; (2) WV data only; (3) TIR and WV data combined;
and (4) TIR and WV data together with the observation timestamp.
For a robust comparison, we applied an ensemble average to 10
runs of each model, so as to reduce the variance of the predictions.
We evaluated model performance using a set of categorical metrics
based on the contingency table, represented in Figure 3.5. These are
Accuracy (Equation (3.5)), Probability of Detection (POD, Equation (3.6)),
Success Ratio and its complimentary False Alarm Ratio (SR and FAR,
Equation (3.7)), Frequency Bias (FBias, Equation (3.8)), F1 score
(Equation (3.9)), and Critical Success Index (CSI, Equation (3.10)).
POD, SR, CSI, and F1score range between 0 and 1, with 1 being the
optimal value. FBias can adopt values from 0 to + ∞, with the target
value being 1. If FBias is below 1, the model is underforecasting the
event; if it is above 1, it is overforecasting it. F1score represents
the harmonic mean of SR and POD and is especially valuable for
imbalanced problems. Hence, the best averaged models were ranked
according to F1 score. Accuracy, POD, SR, FAR, FBias, and CSI are
performance metrics commonly used in meteorology for dichotomous
forecast verification [84–86]. F1 score is widely used in the Deep
Learning field and is especially useful to evaluate highly skewed binary
classification problems.

AΦΦrΦτ =
ΖΒ + Ζµ

ΖΒ + uΒ + uµ + Ζµ
(3.5)

ΒΑD =
ΖΒ

ΖΒ + uµ
(3.6)

ΕΔ = U − uAΔ = U −
uΒ

ΖΒ + uΒ
(3.7)

uBξ =
ΒΑD

ΕΔ
(3.8)

uUξΦιrΨ =
V × ΕΔ × ΒΑD

ΕΔ + ΒΑD
(3.9)

CΕ =
U

U
ΕΔ
+

U
ΒΑD
− U

(3.10)

Evaluation of model performance and of the contribution of each
model input was also performed by miscassification analysis, that is,
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Figure 3.5: Contingency table for the binary rainfall classification prob-
lem.

analysis of the distribution of misclassified sequences through the
day and across different months, seasons, TAHMO stations, and rain
intensities or categories. Rain categories were defined according to the
Glossary of Meteorology of the American Meteorological Society (AMS,
https://glossary.ametsoc.org/wiki/Rain (accessed on
1 June 2021)), except the “very light rain” category, which was
introduced in [66] for a more detailed results analysis, and is as follows:

• Very light rain: 1 mm/3h k ΔΔ k 1 mm/h;

• Light rain: 1 mm/h k ΔΔ k 2.5 mm/h;

• Moderate rain: 2.5 mm/h k ΔΔ k 7.6 mm/h;

• Heavy rain: ΔΔ > 7.6 mm/h.

3.4. RESULTS
3.4.1. MODEL PERFORMANCE ON THE INDEPENDENT TEST DATASET

Figure 3.6 displays the contingency tables of the four models evaluated
here, the best single run of the model with TIR, WV, and the timestamp
as input, and of IMERG Final Run for comparison. Initially, the models
that use WV and TIR alone performed similarly, with the TIR model
missing a slightly lower number of rain events and the WV model
showing less false alarms (false positives). Combining the two channels
leads to fewer misclassified dry and rainy sequences. The number
of false alarms decreases further when the timestamp is included into
the model. On the other hand, IMERG has considerably less misses
(false negatives), which can be explained by the model making use of a

https://glossary.ametsoc.org/wiki/Rain
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constellation of LEO PMW satellites, able to sense rainfall more directly
than TIR sensors. The best single run of the model with all inputs
presents the overall lowest number of false alarms (229), at the expense
of a high number of misses (78), which corresponds to a third of the all
rainy sequences.

Figure 3.6: Contingency tables on the independent test dataset of
ensemble averaged RainRunner model results using different
inputs: (a) TIR only, (b) WV only, (c) TIR + WV, (d) TIR +
WV + Time, (e) the single best run and (f) results for the
benchmark model, and IMERG-Final.

For better visualization, the categorical metrics are also represented
in the Roebber performance diagram [84] in Figure 3.7, where all IMERG
products are plotted as reference models. In this diagram, a perfect
forecast would be in the top-right corner, with POD, SR, and CSI equal
to one.
IMERG-Final has the highest number of hits (true positives). As a

consequence, it also has the highest POD of all models, although it has a
Fbias well above 2, which means it is severely overdetecting rainfall. The
IMERG Early and Late Run products have similar Fbias, yet a lower POD
and SR. IMERG Early has comparable performance to the WV_TIR model,
while it is outperformed by the TIR_WV + Timestamp which achieves
lower Fbias at the same short latency time. The benefit of adding WV
and timestamp is noticeable in this diagram, as it progressively leads to
a higher success ratio (SR) as well as a lower Fbias, reaching the lowest
FBias of all models (UYY k uΥξ k VYT).
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Figure 3.7: Roebber performance diagram on the test dataset.

3.4.2. MISCLASSIŐCATION ANALYSIS

Figure 3.8 shows the distribution of misclassified sequences among
different factors, i.e., time of the day, month, season, station, and rain
category. The northernmost stations overall have fewer misclassified
sequences compared with those more to the south of our study region.
Overall, the combination of WV and TIR with the timestamp results
in the least number of misclassifications of our developed models.
The addition of the timestamp is particularly valuable during the dry
season. The rainy season (boreal summer) shows a poorer performance
than the dry season for all models. It is worth mentioning that IMERG
has the highest number of incorrectly classified sequences during the
second half of the rainy season (from July to October), highlighting the
fact that the influence of the African Easterly Jet on rainfall patterns
is a true challenge, even for the most advanced models. The WV
model, whose strongest advantage is the correct depiction of convective
motions, shows the most misclassifications for light and very light
(stratiform) rain detection.



3

52
3. Water vapor and temporal data to complement TIR data in the

RainRunner model

Figure 3.8: Misclassification analysis on the independent test dataset
based on station, time of the day, month, class, rain
category, and season.

Figure 3.9 illustrates the contribution of the WV and the timestamp
information in the model by comparing the probabilistic output of
the combined model + timestamp with RainRunner TIR-only (10.8
µm). The addition of the number of the month makes the predictions
for the trimester December-January-February (DJF) much lower, with
values close to 0. Concretely, while the mean probabilistic output
of the model using TIR alone was 0.14, it decreased to 0.005 when
incorporating the timestamp. On the other hand, dry intervals during
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July-August-September (JAS) are still the most difficult to classify for
both models. Results suggest that the addition of the time of the day
is especially beneficial during the early rainy season, when the African
Easterly Jet is not yet offsetting the diurnal convective cycle and rainfall
is still occurring during late afternoon hours.

(a) (b)

(c) (d)

Figure 3.9: Comparison of the ensemble probabilistic output on the
test dataset for dry (a,b) and rainy (c,d) sequences:
The classification threshold applied for classification is 0.5,
as indicated in the plots; green color indicates the truth:
dry for (a and b) (output < 0.5) and rain for (c and d)
(output > 0.5). Subplots (a and c) correspond to the TIR-only
ensemble, while (b and d) correspond to the TIR + WV +
Timestamp ensemble. Subfigures (a,b) present the seasons
as acronyms, where JAS stands for July-August-September,
i.e, peak of the rainy season, and DJF stands for December-
January-February, i.e., the midst of the dry season.

Figure 3.9c,d shows how TIR-only predictions of rainy sequences
are closer to unity than the model combined with timestamp. This
is particularly true for some rain events that occurred during the
shoulder season (March/April or October/November) and obtained a
lower probabilistic output with the model using timestamp.
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Four heavy rainfall events were misclassified by the model using TIR
alone, while only two heavy events were misclassified by the combined
model. This is probably due to the ability of WV data to capture strong
convective motions associated to heavy rainfall.

3.4.3. PIXEL ANALYSIS COMPARISON

Satellite images over large areas are useful to understand the differences
between the TIR and the two WV channels. Figure 3.10 shows a snapshot
of West African atmospheric dynamics on 23 July 2020 at noon using
equivalent temperature brightness units. Midday is the time at which
the solar heating cycle is at its peak and early convection is visible.
The image retrieved at UTY\ µm shows information not always related to
rainfall, such as many low-level clouds spread across the whole region.
Where the sky is clear, the brightness temperature is an indicator of
the land surface temperature (the dark red area on the upper part of
the figure is near the Sahara Desert). Areas of intense convection (dark
blue) are highlighted in water vapor imagery. The softer red shade
shown in [YW µm is clearly the top of the West African Monsoon layer
that acts as threshold level for this channel, hiding low-level clouds.
Above this level, the African Easterly Jet transports moisture eastwards
and promotes slanted convection. The largest sensitivity range for
channel 5 (ZYV µm) is around 350 hPa, which makes this channel
completely blind to the West African Monsoon as well as to most of its
associated lower-level features. It is still a useful channel to locate deep
convective motions that take place in the upper troposphere, where the
average temperature is around 240K.
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Figure 3.10: Data from the three considered SEVIRI infrared channels
over West Africa on July 23 2020 at noon: from top to
bottom: WV 6.2 µm (Channel 5); WV 7.3 µm (Channel 6);
and IR 10.8 µm (Channel 9).

Figure 3.11 displays some of the analyzed misclassified sequences
where the bispectral approach proved to be useful for the model and
reflected some insight into atmospheric dynamics. The output of the
four evaluated models for these sequences is presented together with
the corresponding ground truth in Table 3.2. In Figure 3.11, the images
on the left side were selected from entire sequences for being illustrative
of the atmospheric event at hand. On the right hand side, the gray-level
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histogram shows the pixel distribution of each corresponding sequence.

(a)

(b)

(c)

(d)

Figure 3.11: Pixel analysis of relevant atmospheric events: (a) dry
intrusion from the North, (b) dry slot, (c) low-level moisture
detected in WV, and (d) 3D deep convective motions of a
heavy precipitation event as seen in WV and TIR imagery.



3.5. Discussion

3

57

From top to bottom, Figure 3.11a shows a clear dry intrusion. Dry
intrusions happen when a tropical system advects air from a dry source,
generally right after a precipitation event. They are visible as a sharp
gradient in WV imagery but are difficult to locate in TIR imagery,
because warmer clouds linger for a longer period of time.
A dry slot is seen in Figure 3.11b. Dry slots can be a consequence of

dry intrusions, or they might happen along the transition zone between
convective and stratiform rain in larger mesoscale convective systems.
In these two cases, while the model using TIR data alone misclassified

the sequence as rainy, the addition of WV allowed to correct it.
Figure 3.11c is a dry sequence from January 2020 (dry season) that

was misclassified by WV as rainy. However, TIR data show that there
were no rain-bearing clouds at that moment. This can happen when an
anomalous low-level moist southerly circulation peaks up during certain
days of the dry season, while, at higher levels, dry air is present. In this
situation, the [YW µm channel retrieves water vapor content from lower
levels resulting in incorrect predictions.
Figure 3.11d is a 3D surface plot of the 2D TIR and WV data,

aimed at better showing convective motions of a violent rain event as
seen from both channels. The Z-axis corresponds to the pixel values.
The gray-level of each pixel in WV imagery gives information about the
layer depth and clearly shows where strong convection occurs.
As for the gray-level histograms, two distinct peaks are observable

in each histogram. That is, the two channels generate an asymmetric
bimodal pixel distribution at different brightness temperatures. In the
case of WV imagery, the peak is an indication of the most frequently
occurring height of the effective layer during the sequence.

Table 3.2: Predicted probabilities from each ensemble model for the
selected events in Figure 3.11.

Event Ground Truth TIR WV TIR + WV TIR + WV + Timestamp

(a) Kpandai, 30.09.2020, 18h 0 0.60 0.18 0.48 0.47
(b) Bimbilla, 27.05.2020, 9h 0 0.51 0.10 0.42 0.21
(c) Tamale, 23.01.2020, 18h 0 0.42 0.64 0.32 0.14
(d) Pusiga, 27.05.2020, 12h 1 0.04 0.16 0.45 0.20

3.5. DISCUSSION
This study proposed a Deep Learning approach to tackle the challenge
of rainfall detection in the Sudanian savanna of West Africa by using
bispectral MSG data, i.e., TIR and WV data, as well as temporal
information. WV data proved to be useful in detecting the midlevel
African Easterly Jet, a main driver of rainfall dynamics in this area. This
jet creates a thermodynamic environment favorable for deep convection,
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observed in WV data without the contamination from low-level clouds
observed in TIR data. Furthermore, results show the complementarity
of the two MSG channels in scenarios where a monospectral approach
would result in misclassifications (Table 3.2). WV allows to reduce
the number of false alarms and increase the success ratio in cases
where dry air masses-dry slots and dry intrusions-in between tropical
systems, missed in TIR data, suppress rainfall (Figure 3.11a,b and
Appendix). While TIR data alone would detect the rain-bearing clouds
and misclassify these events as rain, the addition of WV data allows to
correct the classification. Another scenario in which WV and TIR results
are complementary for correct rainfall binary classification is when there
is low-level moisture with no rain-bearing clouds. Although WV data
alone would misclassify these cases as rain, TIR data are able to correct
them for the absence of rain-bearing clouds. For certain events that
are more difficult to identify, the gray-level histogram can be helpful
to distinguish dry from wet conditions during dry intrusions and dry
slots, indicated by the the distance between the mode of the WV and
TIR pixel distributions. Of the three scenarios-dry intrusions, dry slots,
and low-level moisture-dry intrusions are the most challenging because
of the sharp gradient present in the image (Figure 3.11a). This sharp
gradient can lead to TIR data alone misclassifying rainfall with high
certainty, making it difficult for the bispectral model to capture the
correct development of the dry air advection into the rainfall area.

Incorporating temporal information further allows the model to learn
regional seasonal and diurnal rainfall patterns. Its contribution is most
evident during the dry season, when the model correctly expects mostly
dry sequences. This is most advantageous in scenarios with low-level
moisture during the dry season, when adding timestamp information
reduces rainfall misclassification (Figure 3.11c and Appendix ??). In fact,
the misclassification analysis shows that the model based only on WV
data achieves the lowest performance among all models during the
dry season. This is because of the variable height of the effective
layer. During the dry season, there is very dry air higher up in the
atmosphere, and the satellite sensor might detect some anomalous
low-level moist currents that are not correlated with rainfall and that
might be misclassified as rain. However, these misclassifications
can be corrected with the addition of TIR and temporal information.
Because most of the analyzed dry slots and dry intrusions events (tables
in the Appendix ??) take place during the early or late rainy season,
when the atmosphere is more dynamic, the timestamp contribution is
unclear. In this scenario, adding timestamp information reduced the
chances of misclassification in 50% of the analyzed cases.

The flipside of including WV data is that it fails to retrieve stratiform
rainfall. Stratiform or warm rain is the precipitation that falls from
low-level clouds and is usually associated with light rainfall events.
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However, its relationship with low-level clouds remains very uncertain,
since the presence of such clouds is only sporadically linked to
rainfall [87]. The model using WV alone is the worst performing model
for very light and light rain (Figure 3.8), likely to be found in stratiform
clouds. Depending on the application, this insensitivity to low-level
clouds might be a strength or a weakness. More than 80% of the rainfall
in tropical inland areas comes from mesoscale convective systems
(MCs), and in fact, the presence of low clouds or high clouds such as
thin-iced cirrus leads to an overforecast of precipitation in models that
only make use of TIR data, which can be seen in Figures 3.6 and 3.7,
Table 3.2, and the Annex. The adoption of Channel 5 (WV ZYV µm as
opposed to the used [YW µm) would focus the model even more on deep
convective events that are strictly related to heavy rainfall events, since
it only detects upper-level WV structures (Figure 3.10). However, no
information on stratiform rain and shallow convection can be extracted
from this channel, so it would result in more missed events. Looking at
the Roebber diagram in Figure 3.7, a main drawback of our approach
is the low POD, which might be partly explained by our model missing
these kinds of light rainfall events.

Along the same line, the discrepancy in misclassified sequences
between northern and more southern stations (Figure 3.8) is in
agreement with the literature, and it is most likely due to a progressively
higher availability of moisture towards the coast, which leads to a slight
increase in rain from warm clouds [88].

Our approach can provide the basis to develop a full alternative
solution to the established Cold Cloud Duration (CCD) method. This
method is a cloud indexing statistical approach applied to the TIR
channel to distinguish convective rain clouds from nonrain low clouds. It
assumes a positive linear relationship between cloud tops and rainfall
to find an optimal temperature threshold for a certain area [89].
However, because of the complexities of convective rainfall, both the
temperature threshold and the linear regression relationship depend on
local characteristics of the area under consideration. Even if the region
of interest is divided into many calibration subareas, the results exhibit
several discontinuities in the rainfall estimates. Additionally, each
calibration area requires many ground measurements. At the moment,
West African gauge coverage is far from sufficient to make this method a
reliable option. The strength of this method relies on its simple approach
to achieve reliable results at very low temporal resolutions (POD: 0.69,
SR: 0.75, BIAS: 0.9 for wet dekadals detection) [62]. The combination of
the TIR and WV channels automatically excludes nonconvective features
within the whole region of interest. Furthermore, the temporal resolution
is higher than for TAMSAT (3hrs vs daily), which is very beneficial in
a convective precipitation context. Similarly to the CCD-based CHIRPS
and TAMSAT, the model developed in this study is specifically designed
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for equatorial Africa. The addition of WV data is expected to be less
effective in detecting rainfall outside the tropics, where convective
rainfall is less dominant. Different factors play a role in rainfall formation
in midlatitudes, in particular frontal systems.

Finally, an important advantage of the model is the short latency
time of 3 h, as compared with the 3.5 months latency of IMERG Final
Run and the 12 h latency of IMERG Late Run. Only IMERG Early Run
has a comparable latency time, i.e., 4 h. Precipitation estimates have
an important operational value and are essential for crop models and
applications such as flood and drought monitoring-for which timeliness
is essential in an operational setting.

A promising direction for further development is to transform binary
rainfall detection into rainfall estimation. However, geostationary
(GEO) IR images have the limitation of providing only indirect rainfall
estimates. Passive Microwave Sensors (PMWs) remain the most direct
satellite observations for rainfall retrieval, capable of retrieving the
rainfall rate by receiving the backscattered signal of hydrometeors.
Therefore, the addition of PMW estimates could prove beneficial. As a
starting point, rainfall estimates derived from GEO IR imagery could
be locally adjusted whenever a PMW observation is available for that
region, although post-processing calibration is required to account for
grid mismatch [90]. Another advised future development is to increase
the temporal and spatial resolution of the model. Certain rainfall events
are so highly localized in space and time that the current scale (i.e., 3
h 96 km × 96 km sequences) is too coarse for their detection. As an
example, the heavy rain event in Pusiga in May (Figure 1) was incorrectly
classified by all models including IMERG Final Run. A well-defined small
dark blob in WV imagery appears only at the end of the sequence,
while the previous images contained mostly bright pixels that made
the sequence easily misclassified as dry. Moreover, a higher temporal
resolution would lead to fewer incomplete sequences, which would
increase the size of the development dataset. Because most rainfall
in this area is attributed to localized pockets of rapid moist air ascent,
which are sometimes not larger than a few kilometers, reducing the area
of the cropped MSG images could also be beneficial for their detection.
On this matter, the new Meteosat Third Generation, for which the
first satellite was launched in December 2022, is set to deliver higher
spatial (2 km) and temporal (10 min) resolution [60]. These new data
could potentially allow the WV channel to detect smaller-scale rising air
motions even with the current input shape.

The combination of multiple SEVIRI channels to enhance low-level
features by applying a temperature brightness difference between
relevant channels might improve the detection of warm rainfall.
However, it is likely that precipitation will be more overdetected unless
a better relation between the two variables is defined through a ΖΥ − ΔΔ
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relationship. On the other hand, the adoption of the other WV channel
ZYV µm may bring more reliable results on the detection of heavy
rainfall events, which account for most of the accumulated rainfall on
the ground.

3.6. CONCLUSIONS
This work shows that a DL model is able to tackle rainfall detection
in regions where sparse rain gauge networks and erratic precipitation
patterns pose a challenge to existing rainfall estimation methods.
The incorporation of water vapor information into the model is
noticeable and results in a reduced number of false alarms. The true
value of WV data for rainfall detection lies in its capacity to detect dry
air intrusions into tropical easterly waves, which is of particular interest
for regions close to the Sahara Desert. We also show how dry intrusions
and dry slots result in false positives using only TIR data, which might
be the reason why TIR rainfall products tend to overdetect rainfall. This
can be corrected with the addition of WV data. However, using WV
data alone can also result in false positives in scenarios with low-level
moisture that occur most often during the dry season and that can
be corrected by TIR data. This points to the complementarity of WV
and TIR data for satellite rainfall estimation in Southern West Africa.
Another new input to the model from the original TIR-only version [66]
is the temporal information related to date and time. Results reveal
that while the addition of temporal information is beneficial in scenarios
with anomalous low-level moisture during the dry season, it does not
have a clear effect during the rainy season. Finally, our approach allows
to decrease false alarms and reach a lower FBias than the much more
complex state-of-the-art IMERG Final Run (FBias < 2.0).
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4.1. INTRODUCTION

I n the last years Deep Learning (DL) has proven to be a powerful tool
for weather and climate modeling, often surpassing purely physical

models and other Machine Learning (ML) methods [91–93]. The
success of DL has been enabled by a combination of efficient learning
algorithms and a vast parametric space, which makes DL models
much more complex than other ML models. Unfortunately, as models
become more complex, they also become less transparent, creating
a trade-off between model explainability and performance [94]. In
fact, some known challenges of DL include limitations in generalization
and interpretability. Firstly, data-driven models might learn spurious
non-physical correlations, due to the high complexity of the physical
processes, that might overfit the training dataset and not perform well
when applied to other contexts. Secondly, the complex architectures of
DL make its decision-making process opaque and difficult to understand,
which is known as the "black-box" nature of DL [95, 96].

To address the "black-box" problem, Explainable Artificial Intelligence
(XAI) aims to enhance the interpretability and transparency of ML
models. XAI encompasses a range of techniques to establish clearer
connections between the inputs and outputs of the ML models, enabling
users to understand the reasoning behind model decisions [94, 97]. By
understanding a ML model, users can gain trust in it as well as acquire
new learnings about physical processes being modeled, such as possible
causal relationships between input and output variables [94]. Thus,
DL can be used to broaden our knowledge about physical processes.
In climate models and projections, coupling a DL model with causal
discovery has been shown to improve model performance and provide
insights into the physical drivers of atmospheric processes [96].

When applied to the complex rainfall processes in West Africa,
dominated by the West African Monsoon system [98], XAI could provide
new insights into the relationships between different atmospheric
variables and rainfall. The West African Monsoon system is a large-scale
circulation characterized by reversal of low-level winds transporting
moisture inland from the Atlantic Ocean [98]. Furthermore, rainfall
dynamics in Southern West Africa, including the Sudanian Savanna
present diverse diurnal and seasonal cycles, and complex relationships
between meteorological variables such as atmospheric moisture, ocean
and land temperatures, wind and cloud top temperatures [99–102].

The ablation study performed in Chapter 3, that evaluated the
contribution of thermal infrared (TIR), water vapor (WV) and temporal
information to rainfall detection (binary rain/no-rain classification) was
a step in this direction. The results showed that the main effect
of combining TIR and WV is to reduce false precipitation detection.
During the dry season, TIR allowed to correct some misclassification
derived from non-precipitation low-level moisture observed in WV.
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During the rainy season, WV corrected TIR precipitation over-detection
by (1) inhibiting non-precipitating low-level features and (2) detecting
dry air masses advected from the Sahara Desert and that create
discountinuities in precipitation events.
In this chapter we evaluate the generalization capability of the four

RainRunner models introduced in the previous chapters, and trained
over Northern Ghana, to the wider Sudanian Savanna region of West
Africa. These are: a model only using TIR data, one only using WV data,
one combining TIR and WV data and one based on these two kinds of
data as well as temporal information.
Particularly, we address the questions of (1) whether the models

trained over Northern Ghana achieve similar performances across the
Sudanian Savanna, (2) whether the findings derived in Chapter 3 about
the contribution of the different information types (i.e. temperature,
water vapor and time of the day and of the year) to satellite rainfall
retrieval hold true across the wider region, and (3) what can this
analysis teach us about the poor performance of existing satellite rainfall
products, and possible improvements.
Ultimately, the final goal remains to improve the quality of rainfall

information in West Africa, as a necessary step for food and economic
safety in the region.

4.2. DATA AND STUDY AREA
4.2.1. GROUNDTRUTH DATA: TAHMO STATION DATA

The original groundtruth dataset considered for this study was composed
of 36 TAHMO stations in the Sudanian Savanna region, depicted in
Figure 4.1, color-coded per country. For better visualization, the color
and marker scheme will be maintained through the remaining of this
chapter. Figure 4.2 shows their data availability during the study period.

In order to have a robust performance evaluation we filtered out of
the dataset the stations with large data gaps. Particularly, only stations
with data available for at least 50% of the two halves of the rainy
season (i.e., March to June and July to October) were considered. To
form the groundtruth dataset we accumulated hourly TAHMO data into
3-hour intervals. Table 4.1 describes the characteristics of the selected
14 stations, as well as their distribution of 3-hour rainy and dry samples
or intervals.
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Figure 4.1: TAHMO stations in the Sudanian Savanna region of West
Africa included in this study.
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Figure 4.2: Data availability (white) of TAHMO stations in the Sudanian
Savanna included in this research during the study period.
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The stations are distributed across Mali, Burkina Faso, Togo, Benin and
Nigeria and located at different altitudes, as depicted in Figure 4.3.

Figure 4.3: Digital Elevation Model of West Africa, with the Sudanian
Savanna region marked in red, and location of the selected
TAHMO stations.

4.2.2. MODEL INPUT DATA: MSG TIR AND WV DATA

In line with the previous chapters, 15-min level 1.5 data from channels
6 (7.3 µm, WV) and 9 (10.8 µm, TIR) of the SEVIRI instrument, onboard
the MSG satellite, were used as input to the model. Examples of the
data from both channels are represented in Figure 4.4. Both images
were captured simultaneously on the 21st of August 2021 at 17:30, in
the peak of the rainy season in the Sudanian Savanna. Cold clouds
are observable above West Africa in both images, whereas due to its
effective layer (i.e., the layer of the atmosphere that most contributes
to the signal captured by a sensor in a particular wavelength, and thus
the layer observable in an image) being at higher altitudes, channel 6
filters out some low-level features observed with channel 9.

4.2.3. REFERENCE DATA: RAINRUNNER MODELS AND IMERG

In order to evaluate the generalization capability of the RainRunner
models developed previously in this thesis, we compare the performance
that they achieved on the stations they were trained on, in Northern
Ghana, with the performance achieved on the previously unseen
Sudanian Savanna stations.
Additionally, we employ IMERG data as an external reference, in its

Early, Late and Final runs. Because of the development of IMERG during
the writing of this dissertation, here we utilize IMERG v07, that was fully
released between 2023 and 2024 [103]. IMERG v07 incorporated several
changes to improve rainfall retrieval performance as compared to the
v06 version, used in previous Chapters. These changes include among
others intercalibration of passive microwave (PMW) estimates to correct
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Figure 4.4: Images from the two MSG channels used in this study, on the
21st of August 2021 at 17:30 UCT. Left: Channel 9, 10.8 µm;
right: Channel 6, 7.3 µm.

biases and improved retrieval algorithms for both PMW and TIR data.
For TIR, PERSIANN-CCS was substituted for Precipitation Estimation from
Remotely Sensed Information Using Artificial Neural Networks–Dynamic
Infrared Rain Rate (PDIR-Now), that dynamically shifting relationships
between the IR brightness temperatures [103]. Over Africa, PDIR-NOW
has been reported to importantly overtaken PERSIANN-CCS, with a
decreased false alarm ratio (FAR) and bias [104].

4.3. METHODOLOGY

4.3.1. QUALITY CONTROL OF THE TAHMO RAINFALL DATASET

A first step for a reliable performance evaluation was to evaluate
the data of the 14 selected TAHMO stations to exclude possible faulty
stations, that would have derived in untrustworthy results. This included:

1. Outlier detection through a “high-level” evaluation of the stations’
rainfall observations, to identify stations reporting unrealistic
values.

2. Consistency evaluation by comparison of rainfall records from
stations very close to each other. Although due to the highly
regional small-scale rainfall processes rainfall observations can be
different between close-by stations, the large-scale rainfall patterns
should be similar.
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4.3.2. PREPROCESSING OF MODEL INPUT DATA

The preprocessing of data into a format appropriate for input into the
model followed the same methodology as in previous chapters. Both
TIR and WV images were cropped to 32 × 32 pixels (96 × 96 km)
images with the TAHMO stations located in a 2 × 2 pixels central
square. Then, these images were combined in 3-hour, i.e. 12 images,
sequences. Lastly, we assigned to each sequence its corresponding
temporal information: the hour of the day and the month of the year of
the first image in the sequence.

4.3.3. PROCESSING OF REFERENCE DATA

In order to be comparable to model output, IMERG data needed to be
processed into a similar format. For this, 30-min IMERG Early, Late and
Final Runs by first accumulating them into 3-hour intervals and later
classified in rain/no-rain. A threshold of 1mm/3hr was used for this
classification.

4.3.4. MODEL IMPLEMENTATION

To study the generalization capability of the four models, i.e., (1) TIR
data only; (2) WV data only; (3) TIR and WV data combined; and (4)
TIR and WV data together with the observation timestamp in the wider
Sudanian Savanna region we re-ran the ensemble models on the 14
stations considered here. This is, we ran the same 10 pre-trained model
runs from Chapter 3 over each station, and averaged the results for an
improved robustness. It is important to remember that the output of the
RainRunner models is one single rain / no-rain value corresponding to a
point target (rain gauge) within the 2 × 2 pixels central square of the
input images (32 x 32 pixels).

4.3.5. PERFORMANCE EVALUATION

We evaluated the performance of the models by comparison to the
corresponding groundtruth data: 3-hour TAHMO data from the 12
selected stations. We performed a global evaluation (i.e., considering
all data) as well as a seasonal evaluation. The dry season was defined
as November to February, included, and the rainy season was divided in
two halves: March to June and July to October, included. As reference,
we included IMERG data (Early, Late and Final runs) in the evaluation.
To evaluate the generalization capability of the models we compared

their global and seasonal performance over the previously unseen
stations across the Sudanian Savanna to the performance achieved on
the Northern Ghana stations, used for training.
We used Probability of Detection (POD), Success Ratio (SR), Frequency

Bias (FBias) and Critical Score Index (CSI) as performance metrics.
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Based on these metrics, we represented model performances on
Roebber diagrams.
The analysis evaluated both global model performance across the

study region and individual station performance to compare models and
regional differences.

4.4. RESULTS
4.4.1. TAHMO DATASET QUALITY CONTROL

The station outlier and consistency evaluation resulted in the decision
to exclude the stations TA00457, in Nigeria, and TA00467, in Togo, ad
these station did not pass the data quality control. Particularly, station
TA00457 contained unrealistic daily rainfall values, with up to around
600 mm [Figure 4.5].

Figure 4.5: Daily rainfall values of the 14 TAHMO stations in the Sudanian
Savanna dataset.

We compared the daily rainfall timeseries of station TA00467 with that
of IMERG daily data and, for proximity as can be seen in Figure 4.1, to
that of station TA00339, that due to data gaps was not considered in
this evaluation. Figure 4.6 shows this comparison. As can observed in
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the figure, station TA00467 failed to capture most rainfall in the second
half of the 2019 rainy season, from July 2019, while it was captured by
both IMERG and station TA00339. Furthermore, the correlation between
the daily rainfall time series of the two TAHMO stations was as low as
0.49. Comparing the time series from both stations with that of IMERG
resulted in a correlation of 0.62 for station TA00467 and 0.73 for station
TA00339.
Thus, stations TA00457 and TA00467 were excluded from the Sudanian

Savanna dataset for the remaining analysis.

Figure 4.6: Daily rainfall timeseries of IMERG v6 and the TAHMO stations
TA00467 and TA00339.

4.4.2. PERFORMANCE EVALUATION

Results of model performance evaluation are shown globally over the
whole Sudanian Savanna dataset and for individual stations. Figure 4.7
shows the global performances of all four RainRunner models over
the (previously unseen) Sudanian Savanna stations, as well as the
corresponding IMERG Early, Late and Final runs. For reference, the
performance of IMERG Final and of the RainRunner models on the
Northern Ghana stations are also shown. Figure 4.8 shows global
performances divided in the two halves of the rainy season (March
to June and July to October, included). As a reminder, the training
dataset of the models comprised data from July 2018 to December 2020
from 8 TAHMO stations in Northern Ghana, while the evaluation and
test datasets only contained 2020 data. This is, while the reference
RainRunner model performances correspond only with 2020 data, the
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results showed here for the Sudanian Savanna also include data from
2018 and 2019.

Figure 4.7: Performances of the four RainRunner models and IMERG
Early, Late and Final runs on the Sudanian Savanna dataset,
for the whole study period. For reference, the performance of
the four RainRunner models and IMERG Final over Northern
Ghana are also shown.
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Figure 4.8: Performances of the four RainRunner models and IMERG
Early, Late and Final runs on the Sudanian Savanna dataset,
divided in the two halves of the rainy season.

As for individual stations, Figure 4.9 depicts the resulting Roebber
performance diagrams per station. In this case, and due to the already
cluttered Roebber diagrams, the performances over Northern Ghana are
displayed as comprised in a green rectangle. This rectangle remains
unmoved in all the performance diagrams in this chapter, to serve as a
static reference to aid visual interpretation of the results.
It can be seen that the performances achieved in the 12 stations

are very similar among them and to those of northern Ghana (green
rectangle), with all stations simultaneously achieving higher POD and
SR than the lower boundaries in northern Ghana. Furthermore, the
performances slightly improve consistently (i.e. getting closer to the
top-right corner of the diagram) when both the WV and the timestamp
layers are added to the model. This is also observed in Table 4.2, which
presents the performance metrics averaged over the 12 stations, for the
4 models.
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Figure 4.9: Performance diagrams of the RainRunner models on the
Sudanian Savanna stations, for the entire study period
(1/07/2018 to 31/12/2020). The green rectangle serves as
reference and indicates the area comprised between the
performances of the RainRunner models on the Northern
Ghana stations. See Figure 3.7

Model POD SR FBias CSI
TIR 0.76 0.36 2.13 0.32
WV 0.75 0.36 2.12 0.32

TIR+WV 0.77 0.38 2.05 0.34
TIR+WV+time 0.77 0.40 1.93 0.36

Table 4.2: Average performance metrics of the four RainRunner models
(TIR, WV, TIR+WV and TIR+WV+time) on the 12 TAHMO
stations in the Sudanian Savanna dataset.

Figure 4.10 and Figure 4.11 show the performance diagrams for the
two halves of the rainy season: March to June and July to October,
included. Table 4.3 shows the performance metrics averaged over all
stations for the two periods. During the first half of the rainy season, the
added value of incorporating the WV and temporal layers in the model
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is significant in that false alarms from the TIR-only model are corrected,
with the SR increasing from 0.26 to 0.32 and the FBias decreasing
from 3.19 to 2.47. Here, the information layer with the largest effect
on model performance is the time. In this part of the season, there
are also larges differences in performance across the stations. On the
other hand, the four models perform better in all metrics except POD
during the second half of the rainy season, included the TIR model,
that obtains a considerably higher SR (lower FAR) than during the first
half of the rainy season, i.e., 0.43 compared to 0.26. The FBias of all
models decreases to around 1.75. During these months, performances
do not change significantly with additional layers, and except from a
small increase in average POD, the addition of time does not improve
performance. The model that uses a combination of TIR and WV data
has the lowest FBias. Furthermore, there are smaller differences in
performance across stations.

Figure 4.10: Performance diagrams during the first half of the rainy
season. The green rectangle serves as reference and
indicates the area comprised between the performances of
the RainRunner models on the Northern Ghana stations.
See Figure 3.7
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Figure 4.11: Performance diagram during the second half of the rainy
season. The green rectangle serves as reference and
indicates the area comprised between the performances of
the RainRunner models on the Northern Ghana stations.
See Figure 3.7

Model POD
(1st
half)

POD
(2nd
half)

SR
(1st
half)

SR
(2nd
half)

FBias
(1st
half)

FBias
(2nd
half)

CSI
(1st
half)

CSI
(2nd
half)

TIR 0.82 0.75 0.26 0.43 3.19 1.74 0.25 0.38
WV 0.79 0.75 0.27 0.43 2.96 1.74 0.25 0.37

TIR+WV 0.83 0.76 0.28 0.45 2.97 1.70 0.27 0.39
TIR+WV+time 0.78 0.77 0.32 0.44 2.47 1.76 0.30 0.39

Table 4.3: Performance metrics averaged over all the considered TAHMO
stations, for the four models developed, during the two halves
of the rainy season (March to June and July to October).
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4.5. DISCUSSION
The general performance of the models over the whole period shows
high similarity to that of the stations in northern Ghana, pointing
towards a good generalization capability of the model, i.e., it achieves
a similar performance on data from unseen stations than the stations it
was trained on. It is important to remember that these models were
trained using data from only 8 stations in northern Ghana, during 2.5
years. Figure 4.7 shows that when combining TIR, WV and temporal
information, RainRunner achieves a somewhat higher SR and lower FBias
than IMERG Early. IMERG Late and IMERG Final are the best performing
models in the overall study period, which is not striking due to the high
complexity of the precipitation retrieval algorithms. However, Figure 4.8
shows that during the second half of the rainy season, all RainRunner
models achieve a smaller FBias than all IMERG models, although the
difference is small. A phenomena that is known to cause over-detection
in both TIR and PMW-based satellite rainfall retrieval, and that might be
partly the reason for the higher FBias of IMERG, is "virga" precipitation,
i.e., precipitation that evaporates before reaching the ground [41, 54].
This kind of precipitation is estimated to account for over 50% of
precipitation over the Sahara [41], and 10-15% in the rest of Africa [54].
Virga precipitation has been found to account for 30% - 50% of false
PMW-detected precipitation events in arid regions [41].
Comparing the influence of different sources of information on both

the global performance and the performance on individual stations, the
combination of TIR, WV and temporal data is beneficial over the overall
study period, similarly to the effect visible in Northern Ghana. Although
POD decreases, SR and CSI increase, and FBias gets closer to 1. This
indicates similar rainfall processes captured in TIR, WV and temporal
data across the whole region.
As for the seasonal performance Figure 4.8, the combination of TIR

and WV is beneficial in the two halves of the rainy season. The addition
of temporal information has the largest impact during the first half of the
rainy season, when it improves general performances (this is, favoring a
decrease in FBias and FAR over an increase in POD). However, temporal
information does not improve performance during the second half of the
rainy season. Evaluating performances at the level of individual stations,
a similar pattern can be found [Figure 4.10 and Figure 4.11]. We suggest
that the explanation is in line with the findings from Chapter 3. The
chapter concluded that the two main contributions of WV information as
an addition to TIR information in satellite rainfall retrieval were:

1. Inhibition of low-level features. Due to an effective layer at a
higher altitude, the part of the atmosphere observable in WV data
is shallower and restricted to higher altitudes than for TIR, that
at 10.8 µm is in an atmospheric window and therefore can pass
through the atmosphere. This effect can be observed in Figure 4.4.
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Because of this higher effective layer, WV data highlights areas of
strong convection – higher cloud tops - , usually related to heavy
rainfall. In this way it would be an alternative to the traditional Cold
Cloud Duration (CCD) method, employed by other products such as
TAMSAT and CHIRPS.

2. Detection of dry air masses advected from the Sahara
Desert, that produce vertical discontinuities in rainfall events in
the form of dry air intrusions. In such cases, rain-bearing clouds
with cold tops identified in TIR imagery can produce rainfall that
does not reach the ground. Including WV data allows to depict this
phenomenon and correct for false alarms. This kind of events is
disregarded by CCD methods.

Here, the WV inhibition of low-level features improves model
performance in some cases. This might explain improvement in
performance during the whole rainy season. Figure 4.12 to Figure 4.15
show examples of cases where the addition of WV information corrected
a false alarms of the TIR-only model. The images show the 3-hour
sequences formed by twelve 32 x 32 pixels images in the TIR and WV
wavebands. The images are centered on different TAHMO stations,
in this case in Burkina Faso and Mali. They depict what seems to
be non-precipitating low-level features [Figure 4.12 and Figure 4.13]
and dry air intrusions [Figure 4.14 and Figure 4.15]. Non-precipitating
low-level features can be recognized by the differences in the amount
and distribution of pixels of low reflectance (black) in the TIR and WV
images. The TIR images show dark pixels (cold) throughout, whereas
the WV images show fewer and localized dark pixels. The effective layer
of WV data (the highest layer in the atmosphere that can be observed
in the data) is higher than the non-precipitating low-level features and
therefore filters them out. Dry air intrusions are seen as a continuous
"blanket" of air that is also somewhat observable in the TIR imagery.
Table 4.4 shows the output of the TIR-only, WV-only, and TIR+WV
RainRunner models for these sequences. As a reminder, this output is
a real number between 0 and 1, and a threshold of 0.5 is then used to
classify sequences as dry (< 0.5) or rainy (≥ TYY).
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Figure 4.12: Example of a case when the addition of WV information
corrected a false alarms of the TIR-only model. Station
TA00168 on the 8th of June 2019.

Figure 4.13: Example of a case when the addition of WV information
corrected a false alarms of the TIR-only model. Station
TA00170 on the 12th of September 2018.
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Figure 4.14: Example of a case when the addition of WV information
corrected false alarms of the TIR-only model. Station
TA00405 on the 20th of June 2019.

Figure 4.15: Example of a case when the addition of WV information
corrected false alarms of the TIR-only model. Station
TA00336 on the 20th of May 2019.
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Fig. Station Country Date TIR
model
output

WV
model
output

TIR+WV
model
output

4.10 TA00168 Burkina
Faso

08-06-
2019

0.84 0.45 0.44

4.11 TA00170 Burkina
Faso

12-09-
2018

0.68 0.08 0.49

4.12 TA00405 Mali 20-06-
2019

0.58 0.23 0.38

4.13 TA00336 Mali 20-05-
2019

0.52 0.04 0.24

Table 4.4: Probabilistic output of the RainRunner models (TIR-only, WV-
only and TIR+WV) associated with the sequences in Figures
4.10-4.13.

The different results between the two halves of the rainy season
might find an explanation in the atmospheric processes that define
West African climate and rainfall dynamics mechanisms, dominated
by the West African Monsoon system [98], Figure 4.16. An in-depth
analysis of the complexity of what elements within the monsoon system
produce the seasonal cycle over equatorial Africa are beyond the scope
of the thesis, but a number of potential factors have been pointed
out in the literature [98, 99]. One of the phenomena that dictates
rainfall processes in West Africa is the movement of the Intertropical
Convergence Zone (ITCZ). Although the extent to which the progression
of the ITCZ influences rainfall is debated in literature [105], it is referred
to in the following as a reference to track the associated movement of
the Sahara Thermal Low (STL) during the year. The development of the
STL is induced by the temperature gradient between the colder Atlantic
Ocean and the warmer Sahara and Sahel, and initiates the northward
migration of the ITCZ and associated moisture transport [99].
Figure 4.17 shows rainfall distribution over West Africa in the first

dekads of June to October of 2020. The figure depicts the progression
first northwards and then southwards of the ITCZ and associated rainfall.
Our study area is roughly comprised between the southern border of
Senegal and the northern border of Cote d’Ivoire.
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Figure 4.16: Mean Meridional Circulation (stream lines) and associated
mean Zonal Wind (m/s in contours) over West Africa during
the summer season [98].
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Figure 4.17: Rainfall distribution over West Africa in the first dekads of
June to September 2020, adapted from [106–110].
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Firstly, during the first half of the rainy season the ITCZ is at lower
latitudes and therefore the Sahara Thermal Low (STL) reaches further
south. This leads to conditions of convective inhibition (CIN) that
suppress rainfall. The movement of the ITCZ over the Sudanian Savanna
during the first months of the rainy season creates highly different
atmospheric conditions within our study area. By July to September, the
rainy season peaks over the Sudanian Savanna and the ITCZ reaches its
northernmost position, reaching latitudes far beyond this region. During
this period, the likelihood of dry air masses being advected from the
Sahara Desert decreases.

Additionally, the seasonal and diurnal distribution of precipitation
types in the Sudanian Savanna is closely related to the movements
of the West African Monsoon (WAM) and the Intertropical Convergence
Zone (ITCZ) [40]. The establishment of the WAM (northward and
southward progression of the ITF) in the region at the beginning of
the rainy season (March to June) and its retreat phase at the end
of the season (September to October) favors conditions of greater
instability and wind shear that promote the development of organized
convection in the form of Mesoscale Convective System (MCS) type rain
systems, such as Wide Convective Cores (WCCs). Deep Convection
Cores (DCC) rain events reach their maximum frequency in May. On
the other hand, when the ITCZ and the associated WAM rain belt
are in their northernmost position (July and August), despite the high
atmospheric moisture content there is a weaker wind shear, which
is more conducive to the development of isolated and less organized
convection compared to the transition phases. During this phase, there
is less organized convection and isolated shallow convection or Isolated
Shallow Echo (ISE) - weak convective rainfall or warm rain -rain events
reach their maximum frequency [40]. Of these precipitation types,
DCC precipitation shows the larger diurnal variability, with most events
occurring during the late afternoon-early evening, after convection
has built up during the day [40]. Although strong convective rainfall
represents a small number of events in West Africa during the second
half of the rainy season 3%, they contribute by close to 50% to the total
rainfall [111].

These processes have multiple implications for satellite rainfall
retrieval: With the STL over an area, the probability of TIR data detecting
rain-bearing clouds whose rainfall is later suppressed by the dry and
dusty air is higher. However, these masses of dry air are observed by
WV imagery, enabling corrections for false alarms in rainfall detection.
Furthermore, the African Easterly Jet Figure 4.16, situated at around 600
hPa, that corresponds to the level of maximum sensitivity range of the
WV channel used here [112], is linked to Saharan dust transport [113]
and might therefore amplify dry air and aerosol advection, and rainfall
inhibition. This can explain the large added benefit of WV observations
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to model performance during the first half of the rainy season, and
the better performance of the TIR model during the second half of the
rainy season. This is, with the ITCZ in its northernmost position, the
likelihood of CIN decreases and therefore the relationship between TIR
data and rainfall on the ground is more direct, and additional sources
of information barely change the performance of the model. The larger
differences in performance across stations during the first half of the
rainy season than during the second half might be due to the ITCZ
travelling over our study area during the first months of the rainy
season, creating large atmospheric differences at its pass. Moreover, a
possible reason of the significant performance improvement introduced
by temporal information during the first half of the rainy season, is the
stronger diurnal cycle of DCC rain events, that dominate the first half of
the rainy season. As for seasonal information (i.e., the number of the
month), we suggest that the model might learn to expect more rainfall
inhibition during the first part of the rainy season. Lastly, the weaker
wind shear during the months of July and August will induce a smaller
displacement of rainfall from the cloud (top) to the ground, which might
improve TIR performance during the second half of the rainy season.
Opposed to this, other research has shown the prevalence of mesoscale
convective systems, in the form of squall lines in the second half of
the rainy season [114, 115]. Because squall lines are larger in extent
and have higher tops (deeper convection) than localized convection,
they are more clearly visible in TIR data. Furthermore, squall lines
have a weaker diurnal cycle. This paradigm could also be supported
by our results, in the better performance of TIR during the second half
of the rainy season, as well as the little impact of adding temporal
information. Therefore, we can only conclude that the models are
identifying a stronger temporal signature during March-June than during
July-September, but the concrete mechanisms behind this effect are still
unclear. More research is needed to determine which view is more
correct but the value of going back and forth between ML generated
results and physical reasoning is a very productive method.
Supporting these claims, Table 4.5 presents the number of rainy

intervals, the number of intervals that were classified as rainy by the
TIR-only model and their ratio. Interestingly, this seems to roughly
follow the progression to the North and then back to the South of the
ITCZ during the year. The considerably smaller general numbers from
March to June are partly due to the fact that the study period is from the
1st of July 2018 to the 31st of December 2020, and therefore excludes
the first half of the 2018 rainy season, added to the peak of the rainy
season happening in the second half.
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4. Application of the RainRunner models to the Sudanian Savanna of

West Africa

Month Actual rain Predicted rain Actual/pred
March 35 161 0.22
April 86 375 0.23
May 207 674 0.31
June 260 625 0.42
July 671 1149 0.60

August 773 1131 0.69
September 624 1065 0.59
October 319 750 0.43

Table 4.5: Number of rainy intervals, intervals that were predicted as
rain by the TIR-only model and their ratio. Our study area
expands between 9.35◦N and 12.16◦N.

Finally, even if the addition of WV improves the performance of the
models all over the Sudanian Savanna region of West Africa, they still
obtain a high FAR. A potential reason for rainfall over-detection, as seen
in literature [11], might be a higher atmospheric aerosol concentration
than in other regions of the world. Therefore, a possible future avenue
to improve model performance would be to add information related to
aerosols. Chapter 5 will look into some of these avenues.
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D uring the time that I spent carrying out this research, I started or
devised various research avenues based on the insights I gained

along the way. Some of them did not materialize due to time constraints,
others would require separate research projects on their own. I would
like to reflect on some of them in this dissertation so that future
researchers can consider them, since I believe they will yield advances
in the study of West African rainfall. To this end, this chapter summarizes
some reflections for future work.

This chapter is organized by sections according to various topics that
future research should consider. It begins by describing the unique
atmospheric conditions of West Africa, which differ significantly from
those in other regions. The chapter then suggests expanding the use
of Earth Observation (EO) data beyond the types traditionally employed
for satellite rainfall retrieval. It proposes leveraging data cubes and
Deep Learning to process EO data more effectively. Additionally, it
recommends Citizen Science as a valuable source of ground data.
Finally, the chapter addresses the need of interdisciplinary collaboration
to achieve a true breakthrough in satellite rainfall retrieval

5.1. DIFFERENT ATMOSPHERIC CONDITIONS IN WEST

AFRICA
The starting hypotheses of this dissertation were that the poor
performance of satellite rainfall products over West Africa is partly due
to (1) a drier atmosphere and (2) a higher atmospheric aerosol
concentration in West Africa than in other regions of the world [11].
According to Mc Collum (2000) [11], a drier atmosphere leads to higher
cloud bases due to the limited moisture available at lower altitudes.
As a result, precipitation is more likely to evaporate before reaching
the ground. A higher aerosol concentration translates into many
Cloud Condensation Nuclei (CNN), and therefore smaller droplets and
inefficient rainfall processes. Furthermore, rainfall patterns in this
region are highly seasonal, following the latitudinal movement of the
ITCZ. Therefore, if we aim to improve rainfall retrieval in this
area, we must account for regional conditions. In this dissertation,
including both water vapor and temporal information in the RainRunner
rainfall retrieval model (Chapter 3) resulted in better performances over
a TIR-only model. WV data did not only depict deep convective motion,
filtering out low-level features, but also highlighted dry air masses
advected from the Sahara Desert, that suppress rainfall. The main
contribution of temporal information was to correct false alarms during
the dry season and the first months of the rainy season. Evaluating
the performance of the models across the wider Sudanian Savanna
(Chapter 4) pointed towards a link between the importance of adding
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WV information to a TIR-only model and regional seasonal atmospheric
dynamics, that would explain the difference performances in the two
halves of the rainy season. This is in line with Chapter 3, since Saharan
dry (and dusty) air moves northwards crossing our research area during
the first half of the rainy season.

The next logical step from the initial hypotheses would be to add
information about aerosols to capture (1) the small-scale interactions
between rainfall and aerosols and (2) the large-scale movement of
the ITCZ. Figure 5.1 shows monthly averages of the aerosol product
AEΔA from the TROPOMI instrument onboard ESA’s Sentinel 5P satellite,
that contains the Aerosol Index (AI) – representative of the content
of atmospheric aerosols, for 2019. The AI is based on wavelength-
dependent changes in Rayleigh scattering in the ultraviolet (UV) region
of the electromagnetic spectrum, where ozone absorption is very small.
It is calculated based on spectral contrast in the UV spectral range,
using the 354 nm and 388 nm wavelengths. Positive values (that
correspond with the Absorbing Aerosol Index, AAI) signal the presence of
UV-absorbing aerosols such as dust and smoke. Strong negative values
might indicate the presence of non-absorbing aerosols. Because clouds
result in near-zero values, this index can be used in their presence. It
is useful to track absorbing aerosols such as desert dust, smoke from
biomass burning and volcanic eruptions also in the presence of clouds
[116].

The yearly progression in Figure 5.1 can be divided in the following
stages:

From December to March, within the dry season in the Sudanian
Savanna, the distribution of atmospheric aerosols is less organized. This
corresponds to the Harmattan or Harmattan (Dust) Haze phenomenon
experienced in sub-Sahel West Africa between mid-November and March,
peaking in January and February, characterized by a widespread high
density of atmospheric aerosols [117]. The main source of dust during
this period is the Bodele depression, Chad, that can be observed in the
figure. The Bodele depression is the largest global source of mineral
aerosols and is estimated to produce around 50% of those originating
in the Sahara [117, 118]. Rainfall and dust influence each other in
that, on one side, rainfall in the dust source is linked to dust emission
rates in the sub-Sahel region [117, 118]. On the other side, anecdotal
evidence gathered from on-the-ground conversations claims that years
with a dustier Harmattan are followed by heavier rainy seasons. In
the interest of understanding better sub-Sahel African rainfall dynamics,
beyond satellite rainfall retrieval, it would be interesting to evaluate
whether there are indeed interconnections between atmospheric aerosol
concentrations during the Harmattan months - potentially linked to
previous rainfall in the main dust sources - and rainfall intensity during
the following rainy season. The same kind of Earth Observation (EO)
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data could be used for such analyses.
Later in the year, in April, aerosols become denser and more

structured, pushed inland by southwesterly moist air blowing inland
from the Atlantic Ocean, following the northwards progression of the
ITCZ (that separates this moist air from the northeasterly Harmattan
winds). From April to September, the dense aerosol area progresses
roughly as the ITCZ: first moving northwards and then, albeit in a less
structured manner, retreating southwards. During these months, the
high concentration of atmospheric aerosols increases the abundance
of Cloud Condensation Nuclei (CCN), leading to the formation of many
small droplets. This derives in inefficient rainfall processes and can
result in rainfall overestimation by TIR-based satellite rainfall retrieval
methods. Passive microwave (PMW) satellite rainfall retrieval may also
overestimate rainfall in these conditions, as the abundance of CNN
enhances ice particle formation and lightning activity in convective
systems, increasing PMW scattering (McCollum, 2000).
Finally, from October onwards the density of aerosols in the

atmosphere decreases. and in December, aerosols disperse over a
wider area.
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Figure 5.1: Monthly averages of the AEΔA product of the satellite
Sentinel 5P, for 2019. The colour scale (ranging from dark
blue to cyan, green, yellow, and red) represents aerosol
presence, with green to red indicating a strong aerosol
presence.
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5.2. BEYOND THE TRADITIONAL USE OF EARTH

OBSERVATION DATA FOR SATELLITE RAINFALL

RETRIEVAL
Earth Observation (EO) satellites have been observing the planet
since the launch of Tiros 1, the first weather satellite, in 1960.
Continuously orbiting the Earth, these satellites provide a privileged,
global perspective of our atmosphere, delivering Terabytes of data daily.
Despite this wealth of information, only a small portion of EO
data is currently utilized for satellite rainfall retrieval, primarily
thermal infrared (TIR) and passive microwave (PMW) data.

Rainfall retrieval products for Africa, such as CHIRPS and TAMSAT,
rely predominantly on TIR data from geostationary (GEO) satellites,
with CHIRPS incorporating rain gauge data to enhance accuracy.
Meanwhile, IMERG achieves superior performances than other products
by incorporating PMW data from “as many as possible” low-Earth
orbit (LEO) satellites, which detect hydrometeors in the atmosphere,
alongside reanalysis and rain gauge data. However, these approaches
focus on cloud-top temperature and localized hydrometeor information
and do not account for broader interactions of the Earth system that
influence rainfall.

However, rainfall is intricately linked to the Earth system, as
it both influences and is influenced by various atmospheric,
terrestrial, and hydrological processes. For instance, rainfall
impacts soil conditions, vegetation health, and water availability, while
factors such as wind patterns, land surface temperatures, topography
and soil moisture play crucial roles in rainfall formation and distribution.
Different conditions under the clouds can significantly affect the amount
and distribution of rainfall reaching the ground, which is neglected
in Cold Cloud Duration methods. Including information from other
Earth system variables could enable data-driven models to capture
the complex relationships that drive rainfall. Expanding the scope of
EO data used in satellite rainfall retrieval beyond TIR and PMW would
allow the model to learn from these interactions, potentially improving
performance and providing a more comprehensive understanding of the
system.

This dissertation demonstrates the value of integrating additional EO
data to improve performance of the RainRunner rainfall retrieval model.
By combining water vapor (WV) data with thermal infrared (TIR) data,
the RainRunner model showed improved performance in binary rainfall
classification. This supports the idea that including more variables
related to rainfall can improve the performance of satellite rainfall
retrieval. It is foreseen that further inclusion of data from other
bands, sensors and satellites will yield additional performance
improvements.
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Future research should consider this idea and explore the inclusion of
additional EO datasets that capture variables related to rainfall. The
selection of these datasets should be guided by factors such as spatial
and temporal resolution, data quality, and historical record length. For
example, although often modern satellites offer high-resolution data,
that can be useful to analyze small-scale weather patterns, they have
the trade-off of shorter historical records on which to train data-driven
models. Additionally, remote sensing sensors inherently have resolution
trade-offs, across spatial, temporal, spectral and radiometric resolutions.
Although it is beyond the scope of this dissertation to specify which
datasets should be used, some data to be considered – and associated
potentially useful products – are:

• Soil Moisture: Changes in soil moisture, as initially shown by
Hasenauer et al. (2014) [119] and more recently by Mosaffa et al.
(2023) [120], can provide indirect information about precipitation.
Examples of EO products containing information on soil moisture
are those from ESA’s Sentinel 1 and SMOS satellites, and NASA’s
SMAP missions.

• Land Surface Temperature (LST): Although the relationship
between LST and rainfall is complex, the two variables are
undoubtedly interlinked and influence each other. For instance,
higher land surface temperatures can increase evaporation,
potentially causing precipitation to evaporate before reaching
the ground, and drive increased atmospheric moisture. Conversely,
when precipitation reaches the ground it cools it down. Some
relevant EO sensors that produce LST datasets are the Sea and Land
Surface Temperature Radiometer (SLSTR) onboard ESA’s Sentinel-3,
Terra and Aqua onboard NASA’s MODIS, and the long-record USGS
Landsat series.

• Topography: Elevation affects local weather patterns through
processes such as orographic lifting, that can cause condensation
in mountainous regions and affect regional rainfall distribution
[121]. Therefore, incorporating Digital Elevation Models (DEM)
could improve spatial rainfall estimates. Examples of such datasets
are the Space Shuttle Radar Topography Mission (SRTM)’s DEM and
the ASTER Global DEM.

• Other parameters: Multispectral imagery can provide information
on vegetation status, cloud albedo, and surface irradiance, among
others, all of which interact with rainfall dynamics. Examples of
multispectral sensors to consider are the Multispectral Instrument
(MSI) onboard Sentinel 2, and, particularly relevant in this
dissertation, the SEVIRI instrument onboard Meteosat Second
Generation (MSG). Although this dissertation used only two MSG’s
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SEVIRI channels, the instrument provides many other wavebands
with the same spatial and temporal resolution, enabling seamless
incorporation into RainRunner or other similar satellite rainfall
retrieval models.

Lastly, the launch of the new generation of the Meteosat satellites
deserves special attention, as a key advancement in European weather
observation. Meteosat Third Generation (MTG) was launched in
December 2022 and offers new possibilities for satellite rainfall retrieval
thanks to its higher spatial and temporal resolution compared to MSG
utilized in this research. Particularly, the temporal resolution was
improved from 15 to 10 minutes and the spatial resolution, from 3
to 2 km. Furthermore, MTG carries a new set of sensors. These
developments will undoubtedly yield better results in future research.

It is worth noting that this holistic or systemic view of the Earth
aligns well with the evolution of the global climate sciences landscape.
Particularly, this idea aligns with the principles of the digital twins of
the Earth, a new concept that is rapidly gaining popularity, enabled by
modern technologies and supercomputing facilities. They are digital
representations of the Earth that intend to replicate our physical world
with all its processes and uncertainties [122]. The popularity and
relevance that digital twins of the Earth have gained during the last
years - during the development of this dissertation – is reflected
in the ambitious Destination Earth project (DestinE) of the European
Commission, to be implemented by the European Centre for Medium-
Range Weather Forecasts (ECMWF), the European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) and the European
Space Agency (ESA). DestinE aims to create a digital twin of the Earth
system to support decision making, particularly in the face of climate
change [123].

5.3. DEEP LEARNING AND DATA CUBES TO HARVEST THE

POWER OF EARTH OBSERVATION
The advancement of Deep Learning methods, that are highly data-
intensive, could offer a pathway to fully utilize the vast amounts of
EO data. This dissertation served as a showcase of the application
of Deep Learning methods for rainfall retrieval in West Africa, and as
a DL-based diagnosis of how the characteristic atmospheric conditions
of West Africa affect the performance of satellite rainfall products. As
such, the Deep Learning methods considered (CNNs and ConvLSTMs)
are early DL methods and in no way the most advanced. DL is a
rapidly changing field, with new, more powerful architectures being
continuously developed. Therefore, the development of an operational
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model would require extensive research to design the most suitable DL
architecture.

Two more complex DL architectures whose use has flourished during
the development of this research and that have yielded promising
results in satellite rainfall estimation and prediction are Trajectory Gated
Recurrent Unit (TrajGRU) and Generative Adversarial Networks (GANs).
While the first one was explicitly developed for rainfall nowcasting [124],
GANs have been successfully applied also to rainfall estimation, such
as in PrecipGan [125] and Sat2rain [126]. Following the development
of the PERSIANN satellite rainfall products, the developer group at the
University of California Irvine applied a modification of GAN, conditional
GAN (cGAN) to estimate rainfall [127]. Very close to this research, both
PrecipGAN and Sat2Rain combined multiple channels from geostationary
satellites and elevation data to estimate rainfall. However, once again
these models required a dense ground observation network for training,
which is missing in the case of West Africa. Sat2rain was trained on
radar data over Asia [126]. and PERSIANN-cGAN, on data from the GPM
Ground Validation Data Archive over the United States [127].

However, pursuing a multi-satellite and multi-instrument approach
poses the challenge of working with different orientations and spatial
resolutions, among others. A solution to this can be inspired by EO data
cubes. They are a proven concept by Geoscience Australia (GA), the
Australian Science Industry (CSIRO) and a super-computer facility (NCI)
and are a representation of EO data in which different data is organised
as spatially aligned pixels ready for analysis [128]. Although in this
application the data cubes would not contain analysis-ready data, the
concept can be used instead as an efficient structure to organise all
input satellite data for ingestion into the RainRunner model. In such an
arrangement, different products could be thought of as different layers,
and data could be collocated using the same geographic coordinates.
A possible methodology to create such data cubes used in a promising
early investigation during the course of this research is the combination
of the open data cube libraries with the PostgreSQL database manager.
This allows to access the stored data by location, date, dimensions and
resolution of the desired output. Further, this dissertation addressed the
lack of dense target data to train a DL model by considering point data
from the centre of the input image, instead of gridded data. In this way,
data cubes should also be centred on point measurements.

Figure 5.2(a) shows an example of an initial setup devised in early
stages of this research. It contains ground swaths of multiple satellites
(large green, red, yellow and blue geometries) overlayed on point rainfall
measurements (dots) surrounded by squares of the shape of the desired
input data to the model (small squares). Figure 5.2(b) represents the
concept of a data cube, that could overcome this obstacle, centered on
a rainfall measurement.
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This methodology has the potential to be expanded to other
applications: Organizing relevant EO data layers in a data cube
to be input into a Deep Learning model to predict a target
variable of interest, for its center.

Figure 5.2: (a) Multi-satellite and multi-sensor experimental setup, with
different satellite ground swaths and (b) data cube concept,
containing multiple data layers, centred on one rainfall
measurement.

5.4. CITIZEN SCIENCE AND AS A GROUND DATA SOURCE
One of the main challenges facing rainfall information in Sub-Saharan
Africa is the sparse rain gauge distribution. Without dense ground
data it becomes extremely challenging to develop or validate a satellite
rainfall retrieval model, whether analytical or DL-based. The World
Bank estimates that the overall cost of modernizing and maintaining of
a full-fledged weather observation system is around $1.5 billion [129],
which is highly limiting for many African nations.
Various innovative rainfall sensing methods could overcome this

obstacle, such as opportunistic sensing through GPS sensors or
telephone microwave links and Citizen Science (CS). CS has the added
value of involving the general population in science and the tackling of
the problem.
During this research we carried out a CS project named Schools

and Satellites (SaS) in which 51 citizen scientists across the North of
Ghana measured daily rainfall during a period of 2.5 years. Despite
the high educational and societal value of SaS, the data gathered was
inconsistent and not always reliable. Therefore, these data were deemed
unfit for the training dataset, and were only used for model validation.
Even then, several assumptions had to be made.
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Citizen Science remains a powerful tool to gather ground
observations, particularly relevant in data-scarce contexts such
as Sub-Saharan Africa, and it must be explored. Some of the
key learnings from SaS to design effective CS projects that produce
scientifically valid data are:

• To ensure trustworthiness and high data quality, besides data
quality control mechanisms, citizen scientists should be given
extensive training and supervision.

• To avoid data gaps, every project should be adapted to the context
of a particular region, including internet connectivity and available
resources. Another strategy that can help avoid data gaps is to
introduce redundancy in the design of the observation network,
with more than once citizen scientist in virtually the same location.
The necessary distance between redundant citizen scientists would
be determined by the resolution of the model.

• To ensure harmony and avoid possible conflicts, as well as
appropriateness of the project, cultural awareness and collaboration
with local partners are imperative.

• It is necessary to work with engagement strategies throughout the
project to keep citizen scientists engaged.

• Any project involving CS must have a dedicated team to ensure its
success.

For a detailed explanation of SaS, the reader is directed to the
Appendix.
Lastly, there are initiatives such as the school-to-school program of the

Trans-African Hydro-Meteorological Observatory (TAHMO) [15] that are a
step between a citizen science campaign and a high-cost fully-fledged
observation network. TAHMO places weather stations in or near schools,
integrating them in the curriculum. In this set-up, relatively rich schools
subscribe to the program in a “buy one, pay two” arrangement, with one
station placed in a relatively poor school in rural Africa. Both schools are
then paired in a “sister schools” program through which they engage
in conversation about climate and its importance in their respective
societies. In this way, the project supports education and cultural
exchange while ensuring that the weather stations are maintained and
secured [15].

5.5. THE NEED OF INTERDISCIPLINARY COLLABORATION
Throughout the time that I have spent working on this research I
have observed that academia often operates in silos, with researchers
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focused solely on their individual fields. However, as this Chapter
has made clear, this is a problem that involves multiple disciplines.
Expertise from Computer Science is needed to design optimal model
architectures; Earth Observation informs the selection of suitable
satellites and sensors; Atmospheric Science and Hydrology recommend
relevant information to include in the models based on the physical
sciences of rainfall processes; and, where Citizen Science is to be
employed, Social Sciences are key in designing engaging and effective
programs.
This need for collaboration is particularly needed in fast-moving fields

like Deep Learning and Big Data, and especially to tackle one of the most
urgent issues of our time: building resilience against climate change.
It is only through such interdisciplinary efforts that we can
develop reliable rainfall information that supports agriculture,
ecosystem management, and overall resilience in Sub-Saharan
Africa. Only from such efforts will we be able to progress
towards a climate-resilient and food- and economically-secure
Africa.
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T his Chapter summarizes the key findings of this thesis, discusses
the advantages and limitations of the proposed methodologies and

reflects on the scientific relevance of this work by highlighting its
contributions to the scientific community.

6.1. MAIN ŐNDINGS
In this work, we developed four Deep Learning (DL) models for satellite
rainfall retrieval called RainRunner. The models perform a binary
classification (rain / no-rain) of 3-hour intervals based on Meteosat
thermal infrared (TIR), water vapor (WV), a combination of TIR and
WV data, and a combination of these and temporal data. The models
were developed locally over the North of Ghana and applied across the
Sudanian Savanna in West-Africa, achieving similar results. This work
serves as a proof-of-concept for DL-based satellite rainfall retrieval in the
data-scarce region of West Africa. Furthermore, performance evaluation
in all stages of model development and testing gave us important
insights into rainfall processes in the region, in particular related to
relations between deep convection systems, non-precipitating low-level
features and dry Saharan air – as depicted in EO imagery – and rainfall
measured on the ground. These findings provide an explanation for the
poor performance of TIR-only satellite rainfall products in the region,
debunking existing methods based on Cold Cloud Duration (CCD). In the
following we give an answer to the research questions formulated in
Chapter 1:
RQ1. How can DL be exploited to improve satellite rainfall

retrieval in data-scarce contexts?
In Chapter 2 we proposed a methodology to apply DL methods

to data-scarce contexts, showing promising results. It overcame the
challenge of data-scarcity for model training by replacing the gridded
target training dataset with point data. Before feeding images to
the model, they are cropped so as to be centered on a target point
rainfall measurement. Once trained, the output of the model is not a
gridded rainfall map but a point rainfall estimation (in this case binary
classification rain / no-rain). Therefore, the model does not need dense
gridded data but only point data.
The chapter presented two models - one based on CNN and one

combining CNN and ConvLSTM. Both models obtained performances
comparable to state-of-the-art satellite rainfall products. This is a
remarkable result given that they are based on simple DL architectures,
developed with a small training dataset—observations from 8 stations
over 2.5 years, with 20.4% data gaps—and only using TIR data. Both
models consistently outperformed PERSIANN-CCS in our test dataset.
The RainRunner models even outperformed the much more complex
IMERG product during the second half of the rainy season.
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As for model architecture, the CNN-based model marginally outper-
formed the model combining CNN and ConvLSTM yet with a faster
training process, even if at the expense of a higher number of training
parameters (4.7 times more parameters).
Above all, the high performance that the models were able to achieve

despite the significant challenge of data scarcity showed their high
efficiency and, ultimately, the potential of DL to model rainfall in regions
with low data availability.
RQ2. What role can water vapor observations and temporal

information, added to thermal infrared information, play in
satellite rainfall retrieval?
Chapter 3 continued the development of the (CNN-based) RainRunner

model by incorporating WV and temporal data into the model. Then,
Chapter 4 tested the model on 12 other stations in the wider Sudanian
Savanna, resulting in similar performances and findings coherent with
Chapter 3. These chapters served as an example of how meteorology
knowledge can be used to analyze the results of a DL model, and explain
them from a physical perspective.
The combination of TIR with WV data was beneficial in all instances

– for the north of Ghana and the wider savanna region. This indicates
similar rainfall processes captured. The role that water vapor information
plays in satellite rainfall retrieval - particularly in the Sudanian Savanna
region - can be summarized in the two following points:

1. Inhibition of low-level features. The effective layer for WV data
- that is, the atmospheric layer that contributes most to the signal
at the corresponding wavelength - is located at a higher altitude
than that of TIR data, which can penetrate through the whole depth
of the atmosphere without being absorbed. As a result, the part
of the atmosphere observable in WV data is shallower and limited
to higher altitudes. Therefore, WV data highlights areas of strong
convection – higher cloud tops - , usually related to heavy rainfall.
This effect can be used to discard low-level features that do not
produce rainfall. In this way it constitutes an alternative to the
traditional Cold Cloud Duration (CCD) method, employed by other
products such as TAMSAT and CHIRPS.

2. Detection of dry air masses advected from the Sahara
Desert, that produce vertical discontinuities in rainfall events. The
results of Chapter 4 show that water vapor adds greater value
during the first half of the rainy season (March to June). This
can be explained by dry air being advected into the region from
the Sahara Desert during this season. This is part of a larger
atmospheric process that plays a crucial role in West African climate
and rainfall dynamics during the year, associated with converging
trade winds and low pressure systems, and often loosely referred
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to as the movement of the ITCZ. During the first months of the
rainy season the Sahara Thermal Low (STL) reaches further south,
creating convective inhibition (CIN) and suppressing rainfall. This
dry air is observed in WV data, and therefore its CIN-effect is
corrected for in rainfall estimation. Indeed, during this phase the
model based only on TIR data shows a higher False Alarm Ratio.
During the second half of the rainy season, the occurrence of dry
air suppressing rainfall is less probable than during the previous
months. In these instances, TIR data has a more direct relationship
to rainfall recorded on the ground and adding WV data does not
alter the model performance significantly.

Temporal information also proved more valuable during the first than
during the second half of the rainy season. We suggest that this might
be explained by the predominant rainfall mechanisms in these two
periods: DCC rain events, with a strong diurnal cycle, are most frequent
during the first half of the rainy season. As for seasonal information
(i.e., the number of the month), we suggest that the model might
learn to expect more rainfall inhibition during the first part of the rainy
season. Furthermore, the weaker wind shear during the months of July
and August will induce a smaller displacement of rainfall from the cloud
(top) to the ground, which might improve TIR performance during the
second half of the rainy season.

Lastly, the added benefit of incorporating information sources is
smaller during the second half of the rainy season. This might be due to
the absence of convective inhibition during this phase, that makes the
relationship between rainfall and TIR data more direct.

RQ3. Can a DL satellite rainfall retrieval model developed
for the north of Ghana be extrapolated to the wider Sudanian
Savanna bioclimatic region?

This research question was addressed in Chapter 4, were we applied
the model developed using data from 8 stations in the north of Ghana to
12 other stations in the Sudanian Savanna. The model achieved similar
performances, showing a good generalization capability. Comparing the
performances of the RainRunner models across stations during the two
halves of the rainy season shows larger differences between stations
during the first than during the second halves of the rainy season. We
suggest that the explanation behind this is the larger spatial variability
in atmospheric conditions across the whole Sudanian Savanna. During
this period, the model combining TIR, WV and temporal information
shows a greater generalization ability than those using only one (TIR or
WV) or two (TIR and WV) sources of information.
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6.2. ADVANTAGES AND LIMITATIONS
This dissertation served as a showcase for the application of Deep
Learning methods for rainfall retrieval in West Africa, and as a DL-
based diagnosis of how satellite observations capture the characteristic
atmospheric conditions of West Africa and how this affects the
performance of existing satellite rainfall products.
One advantage of DL satellite rainfall retrieval as discussed in this

dissertation is the high efficiency of DL to learn relationships between
variables, as compared to physics-based methods. This is demonstrated
by the performances achieved by RainRunner, comparable to state-of-
the-art models and even surpassing IMERG during the second half of
the rainy season, both in Northern Ghana and in the broader Sudanian
Savanna, in terms of Frequency Bias (FBias).
Furthermore, with our methodology we showed how meteorology

knowledge can be used to analyze the results obtained with a DL model,
and to get insights into physical processes. In this line and as proposed
in Chapter 5, collaboration between the Deep Learning and Meteorology
fields can lead to important advancements in the field of satellite rainfall
retrieval.
This thesis also shows that by incorporating WV observations into

a TIR-based rainfall retrieval model, the rainfall over-detection typical
of TIR methods can be minimized. Across the whole Sudanian
Savanna, WV data was able to correct for non-precipitating low-level
features as well as to identify dry Saharan air suppressing rainfall.
However, even if the addition of WV improved the performance of
the models, they still obtained a high FAR. Among others, potential
reasons for this, as seen in the literature (Mc Collum, 2000), might
be a higher concentration of atmospheric aerosols, higher clouds tops
and a high land surface temperature that causes rainfall to evaporate
before reaching the ground. Therefore, possible future avenues to
improve model performance would be to add other layers with satellite
atmospheric aerosols and land surface temperature data.
It is also important to bear in mind that the DL methods considered

here are early DL methods and in no way the most advanced. Therefore,
an exhaustive investigation of the most appropriate DL architecture
should be carried out should RainRunner be operationalized.

6.3. SCIENTIŐC CONTRIBUTION OF THIS DISSERTATION
The findings from this dissertation advance satellite rainfall retrieval in
the Sudanian Savanna region of West Africa in various ways:

1. Using simple DL architectures, RainRunner demonstrates the
great potential of DL methods for satellite rainfall retrieval
in data-scarce regions.
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2. By using DL as a diagnostic tool, this work identifies relationships
between non-precipitating low-level features, dry Saharan air and
strong convective areas, with rainfall measured on the ground.
In this way, it debunks the CCD method and explains TIR
rainfall over-detection in two ways: (1) TIR-based methods are
often contaminated with low-level features that do not produce
rainfall and (2) convective clouds observed in TIR imagery might
not produce rainfall or, it might not reach the ground because
of convective inhibition and rainfall suppression produced by dry
Saharan air.

3. It provides evidence in support of regional models over
global models. Particularly, we suggest that regionally training
a DL rainfall model can result in better performances than global
models, especially in areas with complex, highly region-specific
meteorological characteristics, such as the Sudanian Savanna
region of West Africa.
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ANNEX A

Schools and Satellites (SaS) CSEOL Citizen Science Earth Observation
Lab

This chapter contains parts of deliverable 4.1, "WP1 - Ground-truth data collection."
and deliverable 4.2, "Report WP2 - Algorithm developement", submitted by the
Schools and Satellites team, led by the author, to the Citizen Science Earth
Observation Lab (CSEOL).
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Work Package 1: Ground-truth data collection  

Objectives 

This work package had the following objectives: 

O1. Expand the rainfall measurement network in Ghana, by starting in the pilot area.  

O2. Introduce an educational module for schoolchildren in Ghana on climate change, the water cycle 

and earth observation possibilities, that can be added to the regular school curriculum of Ghana. 

Results 

CS data collection  

Designing and developing the CS data collection in the pilot area 
For farmers and schoolteachers in the northern regions of Ghana to participate in the SaS project, we 

have developed instruction materials:  

- To make you own #SchoolsandSatellites rain gauge, we recommend watching this video and 

using the manual ‘How to make your own rain gauge’.  This pdf also explains what to do. 

- In the Rainfall Measurement Syllabus, we explain all the necessary steps to take rainfall 

measurements yourself or with your students.  

- And for teachers, we have made a Teachers Manual that gives a lesson plan to teach their 

students about rainfall patterns, climate change and taking rainfall measurements.  

- To understand how to make your own rainfall graphs, please us this instruction sheet.  

The teachers manual is based on a research among the teachers and students interviewed during the 

fieldtrip in February 2020, and on the Educational Curriculum for Climate Change for Junior High Schools 

in Ghana.   

To collect the data, an African server was opened by S4W, and an African ODK S4W form created. Errors 

that occurred in the pre-pilot have after that been solved by providing different smartphones to the 

citizen scientists.  

We have produced 50 low-cost soda bottle rain gauges in the summer of 2020.  

Roll out of the designed CS data collection  
In corona times and with corona measures in place, we performed one on one instructing of the teachers 

joining the project. At those moments, teachers also received the S4W rain gauges, a SaS t-shirt, a 

smartphone with the ODK app already installed, and help with installation of the holder for the rain 

gauge.  

This way, we immediately ensured that the installed S4W rain gauges location was suitable concerning 

rainfall measurement standards.  
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Furthermore, we have held a survey among the observers of the SaS Citizen Observatory. Of the 44 new 

observers, 15 responded to the survey. We held a lottery between the respondents, where they could 

win a raincoat and boots. We held this lottery to motivate them to fill in the survey and to create a fun 

element into it all.  

Validation of the CS measurements  
The first validation step is to view all measurements and compare them with the produced photos of 

the measurements and check on GPS and time of measurement. This will ensure that most of the 

errors can be corrected.  

This process is taken up by Smartphones4Water. After correction, a continuation of the error is 

prevented, by giving feedback to the citizen scientists. See Appendix F for an example of such a feedback 

input.  

The second validation step is to compare the measurements with each other. Even though we expect a 

different value over space, outliers can be spotted and removed.  

The python script developed by Bilal Abou Hashish also functions for this purpose: to have some insight in 

the data and to detect outliers. From the script, it can be inferred that the citizen scientists largely are 

good at taking measurements. By the script, bar plots of any desired timeframe can be plotted, as well as 

specifying the citizen scientists or clusters to include in the plot. 

The third validation step is to compare with the TAHMO weather stations installed in the area.  

A first comparison has been made with the data collected in September and October 2020 by the SaS 

Citizen Observatory (CO) and the TAHMO stations. Since the TAHMO stations are spread over the 

complete north and the CO is for now only spread over 4 districts, the accumulated rainfall is quite 

different between the two networks. However, when we create a double mass curve of the two 

networks, the networks seem to be proportional. Of course, this must be checked again after more data 

has been collected by the SaS CO. 
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Appendices 

Appendix D: Roll out of the Citizen Science network 

 

Figure 1 Locations of SaS manual rain gauges. Can also be found on this map.  

SCHOOLS AND SATELLITES INSTALLATIONS  
Schools and Satellites project seeks to create a large number of rainfall stations across the 

northern part of Ghana. This is to help look into the changing pattern of rainfall in this part of 

the country. There has been a change of the onset of the rainy season and the peak period 

for the raining season. This instability in respect of the rainfall has had grave effects on the 

productivity of farmers.  

As part of the educational component of the schools and satellites project, rainfall stations 

were to be installed in Junior High Schools. The project seeks to give the school child a hand-

on experience on how to take rainfall measurements, plot graphs with the data and share 

their analysis with their colleagues. All these are being done under the guidance and 

supervision of the designated teachers in the respective schools involved in the project. 

The innovative rain gauges installed are made from 1.5L Fanta bottle.  

The installation of the Schools and Satellites (SaS) rain gauges began on the 10th of August 

2020. It all looked impossible at first in view of the global pandemic (COVID-19) which has 

brought a lot of restrictions including shutting down of schools.  

The initial plan had to be changed completely to meet the prevailing conditions in the country 

due to the COVID-19. The new plan was to engage with the education directorate to assist us 
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with potential schools for the installations. Again, the head teacher or the teacher of the 

selected school had to be resident in the community where the school is located. This was to 

ensure that the measurements were done on daily basis.  

The education offices were consulted to assist with the list of schools. We finally, got four (4) 

education offices giving us a list to work with. These were West Mamprusi District (North East 

Region), Wa East, Sissala East and Sissala West (Upper West Region). The number of schools 

visited included West Mamprusi 10, Wa East 10, Sissala East 17 and Sissala West 6. One was 

also installed at Gbewaa College of Education in the Upper East region. This makes it a total 

of 44 schools or sites where rain gauges were installed.  

LOGISTICS 
The SaS project was to provide all the needed logistics to enable the teachers carry out the 

task. The teachers were also trained on how to take measurements as well as use the 

education materials co-developed with SaS team for their lessons. The teachers were then to 

train their students when school finally re-opens. The logistics made available to the selected 

schools and assigned teachers included: 

1. Plastic rain gauge made from Fanta bottle 

2. A mobile phone (Itel A56) installed with the ODK app and educational materials 

3. A branded gear with the name of the project 

4. A sticker to indicate the school is a SaS school 

The education offices and their selected schools welcome us and the project. Most of them 

expressed great optimism about the project. They have made commitment to ensure that 

they take care of all that have been handed over to them.  

The project also received the endorsement of the assigned (head) teachers. Some of the 

teachers also engage in farming and therefore see this as an opportunity to monitor the 

rainfall in their respective communities. They acknowledge the impact it will have on their 

decision making as far as their farm work is concerned. They promised to also keep hard 

copies of the daily records. 

IMPACT OF SaS 
The selected schools for the project are all located in farming communities. From the 

interactions that went on with the teachers, rainfall data will be useful to the community. 

Farmers still depend on the traditional knowledge and assumptions for the onset of the 

rains and the peak period. This on many occasions fail and they lose their investment 

(crops).  
 

The project has prospect of influencing decisions of farmers in the communities where these 

innovative rain gauges have been installed. Hence, saving them of their investments. The 
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teachers have been encouraged to share the outcome of this research work with their 

communities.  

Though we did not install on time to cover the beginning of the raining period, we should 

have some data coming in. 
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Work Package 2: Algorithm development 

Introduction 
The aim of this work package was to create a satellite rainfall product able to estimate rainfall without the 

need of data from the ground, using Deep Learning (DL) and with Earth Observation (EO) data as input.  

The model developed, RainRunner, is able to detect rainfall on the ground making use of satellite data 

only, with a 0.03 degrees spatial resolution and a 3-hour temporal resolution.  

The proof-of-concept model achieves similar performances to the well-established Precipitation 

Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System 

(PERSIANN-CCS), developed at the University of California Irvine, and the Global Precipitation 

Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), developed by NASA. The main 

advantage of this model is that it is fully data-driven, uses a simpler algorithm, is tailored to regional 

rainfall characteristics (in this case of West Africa), and runs in quasi real-time, i.e., it can be applied as 

soon as GEO IR images become available.  

Finally, the model has been tested on the citizen science-based rainfall dataset collected by SaS citizen 

scientists. On these data, the model outperforms the Climate Hazards Group InfraRed Precipitation with 

Station data (CHIRPS) and the Tropical Application of Meteorology Using Satellite Data and Ground-Based 

Observations (TAMSAT) products and has a similar performance to PERSIANN-CCS and IMERG.  

Another goal set in the project proposal of using all Sentinel satellites, Meteosat Second Generation (MSG) 

and a DEM was not met. Instead, the current version of RainRunner uses only MSG data. There are reasons 

to believe adding the remaining layers would improve the performance of the model. Strategies to add 

further layers to the model are outlined in this document. 

To the best knowledge of the project team, this is the first work in which a DL-based rainfall estimation 

model is locally trained over Africa. Additionally, a methodology to train DL models when accurate high-

density data is missing on the ground has been developed, in which EO images are linked to point-based 

ground measurements to train the DL model. Potential applications of this include using Citizen Science 

data to complement station data and create large datasets for EO-DL problems.  

RainRunner could set a stage towards better rainfall information in areas of the world where it is currently 

missing, ultimately contributing to climate adaption in these areas. The methodology developed in this 

project, i.e. such combination of Deep Learning, Citizen Science and Earth Observation, could potentially 

be extrapolated to other real-world problems. 

This report describes the work developed in this work package, limitations, outcomes and suggestions for 

future developments.  

Results 

Citizen Science data 

Data taken by 38 citizen scientists in 2019 and 2020 have been used to further test the model. In this case, 

since the CS data has a daily resolution, the performance of TAMSAT and CHIRPS was also evaluated 
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against the RainRunner algorithm [Figure 8]. For RainRunner, IMERG and PERSIANN-CCS, running at 3-

hour resolution, first predictions were made on each of the eight 3-hour intervals in each day. A day was 

only classified as dry when all eight intervals were classified as dry. Otherwise, the day in question would 

be classified as rain. Figure 8 shows the performance of all models on the CS dataset. The overall 

performance is higher compared to Figure 7, as expected as a result of the daily instead of 3-hour 

resolution. Again, IMERG seems to be leading but very close to RainRunner and with somewhat lower 

scores for PERSIANN-CCS. In this case, CHIRPS and TAMSAT show a clear disadvantage with substantially 

lower performance scores.  

The rainfall product currently being used by the Ghana Meteorological Agency is CHIRPS. Therefore, and 

looking at the much higher performance, RainRuner can introduce a clear advantage in this region. 

Furthermore, the high performance achieved by the two RainRunner models in 38 previously unseen 

locations show the generalization capability of the models. 

 

Figure 1: Performance diagram on the citizen science data. 
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Lessons learned from Citizen science data collection campaign  

Possibly the main challenge with the CS data recording was that the citizen scientists recorded rainfall 

data at different times of the day. Partly this was due to the fact that in-person workshops could not be 

organized before the full CS campaign in 2020 due to COVID-19. The number of citizen scientists increased 

during the campaign from 6 to 51, and some of the citizen scientists did not fully understand that 

measurements were always meant to be taken at the same time, ideally in the morning before school. It 

was also challenging for the citizen scientists to get to the rain gauges, located in the schools and often 

far away from the teachers’ residence and of difficult access, even more so with schools closed because 

of the pandemic. Another reported reason for a challenging access to the rain gauge were extremely heavy 

storms at the recording time. Lastly, it was often difficult to upload the recording via the 

Smartphones4Water (S4W) app due to a poor internet connection or to the S4W app requesting the GPS 

coordinates, and the phones not being able to provide them due to the need of an internet connection. 

The GPS issue of the S4W forms was tackled in 2021, but the internet poor connectivity was still an 

important limitation. In the cases where the citizen scientists took measurements at a time different than 

the morning, sometimes this was just after a heavy storm, wanting to report that rain event.  

Working with these non-uniform data poses challenges, since we are unsure about the timing of the 

reported rainfall, and this introduces uncertainty that the performance of the models is correctly 

evaluated.  

As a way to tackle this issue, the definition of a day was made considering the distribution of recording 

times [Figure 9]. The RainRunner 3-hour intervals were also considered, so that in our definition of a day 

the start and end corresponded with the start and end of the intervals (i.e. 0 AM, 3 AM, 6 AM, 9 AM, 12 

PM, 3 PM, 6 PM, 9 PM). Because most measurements were taken in the morning and the heaviest rainfall 

happens in the evening [Figure 10], it was decided to define a day as from 12 PM to 12 PM. Then, all CS 

measurements were assigned to 12 PM of that day, corresponding to rainfall fallen (or not) between 12 

PM of the previous day and 12 PM of the current day. In this way, we avoid errors such as evening rainfall 

in a day where it did not rain in the morning being missed if the citizen scientist recorded “dry”. However, 

it is important to note that there might be errors if a citizen scientist records an evening rainfall event just 

after it happens, since that measurement will be assigned to that day, but it would have corresponded to 

the next one. 
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Figure 2: Distribution of citizen scientist recordings in time. 

 

Figure 3: Total accumulated rainfall through the day, in 2019 and 2020 and at the 8 TAHMO stations. 
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ANNEX C

Supplementary material to Chapter 3.

.

This chapter has been published in Atmosphere 14(6), 974.as an Annex to The Role
of Water Vapor Observations in Satellite Rainfall Detection Highlighted by a Deep
Learning Approach. (2023). Authors: Estébanez-Camarena, M., Curzi, F., Taormina, R.,
van de Giesen, N., and ten Veldhuis, M. -C. doi: 10.3390/atmos14060974, [56]
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0.1. PIXEL ANALYSIS

Figure 1: Example of a misclassified rain sequence in WV imagery due
to coarse temporal resolution. Pusiga—May 2020.
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0.2. DRY SLOTS

Figure 2: Dry slots observed at TAHMO locations. The characteristics of
each dry slot are presented in Table 1.

Event Ground
Truth

TIR WV TIR + WV TIR + WV
+ Times-
tamp

(a) Bimbilla,
2020.09.07, 09 h

0 0.51 0.03 0.007 0.17

(b) Bimbilla,
2020.09.12, 06 h

0 0.56 0.54 0.23 0.39

(c) Han, 2020.10.01, 15
h

0 0.73 0.34 0.42 0.33

(d) Bongo, 2020.04.10,
15 h

0 0.66 0.28 0.49 0.38

(e) Bongo, 2020.05.09,
12 h

0 0.41 0.11 0.32 0.35

(f) Daffiama,
2020.05.15, 15 h

0 0.74 0.28 0.47 0.25

(g) Tamale, 2020.06.14,
12 h

0 0.52 0.09 0.29 0.23

( h) Navrongo,
2020.06.20, 15 h

0 0.45 0.04 0.35 0.50

Table 1: Location, date and time of the dry slots depicted in Figure 2,
together with the corresponding grountruth (rain = 1/ no-rain =
0) and resulting probabilistic output of the different models.
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0.3. DRY INTRUSIONS

Figure 3: Dry intrusions observed at TAHMO locations. The characteris-
tics of each dry intrusion are presented in Table 2.

Event Ground
Truth

TIR WV TIR + WV TIR + WV
+ Times-
tamp

(a) Bimbilla,
2020.03.22, 15 h

0 0.57 0.14 0.67 0.17

(b) Bimbilla,
2020.05.06, 21 h

0 0.92 0.45 0.64 0.23

(c) Bimbilla,
2020.07.26, 12 h

1 0.51 0.26 0.75 0.78

(d) Bimbilla,
2020.09.30, 15 h

0 0.77 0.69 0.46 0.59

(e) Navrongo,
2020.05.17, 12 h

0 0.81 0.41 0.69 0.48

(f) Pusiga, 2020.05.06,
00 h

0 0.50 0.34 0.24 0.29

(g) Pusiga, 2020.07.15,
03 h

0 0.51 0.37 0.46 0.54

( h) Bongo, 2020.09.25,
12 h

0 0.62 0.27 0.44 0.44

Table 2: Location, date and time of the dry intrusions depicted in
Figure 3, together with the corresponding grountruth (rain = 1/
no-rain = 0) and resulting probabilistic output of the different
models.
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0.4. LOW-LEVEL MOISTURE

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Low-level moisture events observed at TAHMO locations during
dry season. The characteristics of each low-level moisture
event are presented in Table 3.

Event Ground
Truth

TIR WV TIR + WV TIR + WV
+ Times-
tamp

(a) Bimbilla,
2020.02.11, 18 h

0 0.42 0.83 0.28 0.30

(b) Bimbilla,
2020.12.22, 12 h

0 0.41 0.65 0.37 0.18

(c) Daffiama,
2020.01.22, 21 h

0 0.28 0.54 0.20 0.02

(d) Daffiama,
2020.01.23, 06 h

0 0.22 0.66 0.14 <0.01

(e) Kpandai,
2020.01.25, 00 h

0 0.43 0.58 0.18 0.02

(f) Kpandai,
2020.10.21, 00 h

0 0.30 0.63 0.37 0.23

(g) Navrongo,
2020.02.12, 00 h

0 0.07 0.50 0.24 <0.01

( h) Pusiga, 2020.02.11,
18 h

0 0.08 0.55 0.24 0.05

Table 3: Location, date and time of the low-level moisture events
depicted in Figure 4, together with the corresponding grountruth
(rain = 1/ no-rain = 0) and resulting probabilistic output of the
different models.
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