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Summary

Aerosol is defined as the suspension of solid or liquid in the atmosphere. Its size can range from 0.001 to 200 µm.
While some aerosols do not pose any serious threat to humankind, others have devastating effects. Thus, it is
important to understand the type and distribution of these aerosols in the atmosphere. While traditional satellite
data poses delays due to the huge amount of data that it has to process through the traditional pipeline, machine
learning is quickly proving to be a likely winning candidate in providing accurate and efficient models. The
advances in machine learning and cloud computing combined with the terabytes of data from the earth observa-
tion satellites opens up avenues for creating newer and variant data products of better accuracy in the domain of
aerosol classification. There is a recognized need for distinguishing and characterizing different kind of aerosols
in the 5.6 billion dollar air quality market. This research focuses on the investigation and designing of machine
learning models for aerosol retrieval process. To meet this end we implement supervised learning on satellite
data to achieve aerosol classification to distinguish the different types of aerosols. The two satellites whose data
will be analysed are Polarization and Directionality of the Earth’s Reflectances (POLDER)-3 and Ozone Moni-
toring Instrument (OMI). In this study, the three supervised learning algorithms Support Vector Machine (SVM),
Random Forest (RF) and K Nearest Neighbours (KNN) were implemented to classify aerosol types for the year
2006 on POLDER-3 and OMI satellite data. We used results from previous studies on POLDER-3 as eight input
aerosol class label along with selected microphysical parameters for supervised learning and could achieve a very
high reproducibility of the aerosol classes with a reduction in training time. Similarly, we used three aerosol la-
bel classes as input along with selected microphysical parameters to generate a high reproducibility. The results
showed that SVM performed best on POLDER-3 data while RF was the best performing algorithm on OMI data.
Using SVM on POLDER-3 dataset with hyperparameter tuning we reached an overall accuracy of 99%, precision
of 99%, recall of 98% and f1-score of 99% on POLDER-3 dataset for the eight classes of aerosols. Using RF
on OMI dataset with hyperparameter tuning we reached an overall accuracy of 99%, precision of 99%, recall of
99% and f1-score of 99% on OMI dataset for the three classes of aerosols. It was concluded that while machine
learning still has a long way to go, it shows promising results in the field of satellite data processing for aerosol
classification.

Keywords: Supervised Learning, OMI, POLDER-3, satellite data, aerosol classification, earth observation, SVM,
RF, KNN
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1
Introduction

The story of civilization is, in a sense, the story of
engineering - that long and arduous struggle to
make the forces of nature work for man’s good.

L. Sprague de Camp

In this chapter, a brief motivation for the research area and an introduction to the research questions are presented.
This is followed by the requirements that govern the research project and the software that is subsequently devel-
oped. The main aim of the thesis research work is to develop machine learning techniques on satellite data for
the purpose of Earth observation. The main content will be exploring the supervised and unsupervised machine
learning techniques on past satellite data for the purpose of aerosol classification.

Aerosols come in different size and shapes. While, some aerosols are so minute that they can only be viewed
with an electron microscope and are made up of a few molecules, other aerosols are large enough to be seen with
the naked eye, but small enough to float in the air. A particle’s lifetime in the atmosphere is proportional to its
size and weight. Larger particles tend to sink to the ground in a few of hours, but smaller particles take longer.
Irrespective of whether we can see them or not, their presence is almost always felt through their interactions
with the incident sunlight by reflecting, absorbing or radiating it. Thus, the best measure to gather data on the
aerosols is through satellite sensors measuring these light interactions. Through this study we aim to understand
the present distribution of aerosols and to have a better understanding of the Air Quality over the world through
the satellite data. The goal of the research is to develop a supervised learning algorithm to create an aerosol clas-
sification algorithm, wherein, the primary objective of the classification algorithm is to convert abstract aerosol
parameters derived from the satellite sensors, like the size distributions, index of refraction, shape, Angstrom ex-
ponent and Aerosol Index that sensors provide into distinct Aerosol types. The science output of this study would
help to identify the good and bad aerosols with regard to impact on human beings as well as help understand the
combination of sources on a global scale.

The scope of the research project is as follows:

• To classify the satellite data especially on atmospheric aerosols using supervised learning method.
• To build an efficient model which performs better on the satellite aerosol retrievals.
• To optimise the classification accuracy of the supervised learning models using hyperparameter tuning.

1.1. Thesis Research Question
Through the thesis study the following questions will be answered.

1. What are the past satellite missions that give information regarding the atmospheric aerosols?
2. Which algorithms have higher accuracy on the satellite aerosol retrievals?
3. What is the classification accuracy of the machine learning algorithms SVM, KNN and RF for aerosol

classification?

1
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(a) Is it possible to build a higher accuracy than that presently achieved by the existing algorithms for
aerosol classification?

(b) How do the classification results of SVM, KNN and RF compare with each other?

1.2. Thesis Research Outline
Based on the literature study, suitablemachine learning algorithmswere identified which could be used on satellite
data. The theory of underlying machine learning techniques was understood. The advantages and disadvantages
of the machine learning techniques were compared. The next step after the literature review, would be to gather
the data. Satellite data would be gathered and pre-processed such that it could be used as an input to the machine
learning algorithms. The data would be then split into train, test and validation datasets.
Following this, the machine learning algorithms would be implemented and the performance metrics would be
analyzed to understand the accuracy of the algorithms. This would be followed by the analysis of the results. The
final step of the thesis would be the report detailing all the above-mentioned steps.

1.3. Report Layout
The thesis report in divided into the following chapters:

• Chapter 1 is the introduction to the thesis document.

• Chapter 2 provides all the background required to understand the topic related to the thesis along with a
brief description of the motivation behind the thesis project. Further, it provides an overview on the present
aerosol distribution.

• Chapter 3 provides the literature review of the thesis document.

• Chapter 4 presents all the basic information behind using machine learning.

• Chapter 5 describes the methodology used in the thesis project.

• Chapter 6 presents the implementation and results of the report. Section 6.3 presents the discussion of
results.

• Chapter 7 is the conclusion to the thesis document along with the recommendations for future work.

1.4. Contributions of the thesis
Previous researchers like Vincent de Bakker and Russel et al used unsupervised learning to create aerosols clusters
on POLDER-3 dataset. Our work extends the previous work done by various researchers on a single data set to
two satellite data. While most of the focus area in the previous works has been on unsupervised learning, this
work looks at supervised learning and the application to extend the code across multiple satellite data platforms.
The aim of the study is to use machine learning algorithms used in past studies as collected in the literature study
to see their applicability for aerosol classification. High accuracy and low error upon training the model while
tuning the hyperparameters indicate the applicability of using machine learning models for aerosol classification.
In this study we lower the training time to generate aerosol clusters by nearly half that of the 24 hrs needed in
the study of de Bakker to classify with 99% accuracy for the same eight aerosol classes on POLDER-3 data.
The Cluster 1 is smoke, 2:Mixed Smoke, 3:Marine, 4:Urban Industrial, 5:dusty Smoke, 6:Marine Dust, 7:dust
and 8:Polluted Dust. On the OMI dataset, we are able to recreate the three aerosol classes : Weakly absorbing,
Biomass burning and Desert Dust with 99% accuracy. Another important conclusion through this work is that
there is no one size fits all solution to machine learning models for aerosol classification and infact does depend
on the dataset at hand.



2
Background

”Space isn’t remote at all. It’s only an hour’s
drive away, if your car could go straight
upwards.”

Sir Fred Hoyle, Astronomer

We have come a long way from October 4, 1957 when the first satellite Sputnik was launched. In a little over 63
years, almost 8,900 satellites have been launched from all across the world. From this astounding number to date,
approximately 1,900 remain operational, continuously gathering scientific data or providing the infrastructure for
communication.

Figure 2.1: Distribution of satellites across the Earth. Data source from European Space Agency, The Society of Concerned Scientists,
Business Insider and Euroconsult [69]
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Figure 2.2: Distribution of satellites across the Earth. Data source from European Space Agency, The Society of Concerned Scientists,
Business Insider and Euroconsult bar graph [69]

Given the vast amount of operational satellites and an even larger amount of data coming in, maintaining and
analyzing the data to provide sound scientific output in a timely manner proves to be a challenge for traditional
computing. Here, machine learning proves to be a useful tool. The advances in machine learning and cloud
computing combined with the terabytes of data from the Earth observation satellites opens up avenues for creat-
ing newer and variant data products of better accuracy, modelled to the requirements of the customer. Google
Earth Engine is a successful commercial example of using satellite data coupled with large scale cloud comput-
ing services to provide customizable user output in the field of Earth Observation[22][49].National Aeronautics
and Space Administration (NASA) on its official website also claimed to encourage the adoption of Artificial
Intelligence Techniques to space science in collaboration with tech companies like Google, IBM, and Intel[59].
In the year 2018, Crew Interactive Mobile Companion (CIMON) was the first Artificial Intelligence (AI)-based
robot deployed on the International Space Station. As a result of Airbus, IBM, and German Aerospace Center
[Deutsches Zentrum für Luft- und Raumfahrt] (DLR)’s collaboration, CIMON showed that AI technologies were
slowly making their way into the otherwise conservative space industry [14].

Although history has shown us that the space industry has been slow in adopting AI and much less to on-board
applications on the spacecraft, the trends have been changing due to the continued efforts by the industry and
the governmental agencies. A recent 2019 report by Cosine Remote Sensing and ESA/ESTEC, The Netherlands,
demonstrated the application of Artificial Intelligence for the purpose of cloud screening onboard a spacecraft[19].
The AI algorithm was applied to data collected from the hyperspectral imager and a thermal infrared radiometric
spectrometer integrated into a CubeSat platform. The payload is called HyperScout-2 and is capable of acquiring
the data, processing the data from L0 to L2 levels, and deploying the neural network algorithm [19]. The neural
network pipeline deployed on HyperScout-2 is said to cater to a wide range of applications ranging from disaster
mitigation, fire or fire hazard notification to agriculture monitoring.

The applications of Artificial Intelligence in the domain of Earth Observation is seeing new found growth with
investments like the 5 million euros that were made to the AI labs in TUMunich by the federal government 1. An
example of this growth is the ”Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and
Beyond Artificial Intelligence for Earth Observation: Reasoning, Uncertainties, Ethics and Beyond (AI4EO)”
laboratory which is a collaboration of TUM and DLR. Led by Prof. Xiaoxiang Zhu, one of the application areas
is to ascertain the change in the level of the layer below the Earth’s surface, which could be an indicator of the
potential collapse of urban infrastructure like dams, tunnels, and the like. Based on a report generated by the
United Nations, it was estimated that by 2050 almost 2/3rds of the world population would be living in cities,
which further drove in the need for the research in the area [46].

Based on an internal report at Airbus Defence and Space Netherlands, the Air Quality Market was estimated to
grow to 5.6 Billion Dollars in 2021[26]. Enhancing the aerosol remote sensing data for the air quality market was
predicted by the report to usher new policies that could bring overall economic benefits that outweigh costs 20:1.
That same report mentions that the annual welfare loss worldwide was 5.1 Trillion dollars[26], almost more than
600 dollars per person.

2

1https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/36026/
2https://www-sciencedirect-com.tudelft.idm.oclc.org/science/article/pii/S0034425717302900

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/36026/
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2.1. Historical Background
”There’s so much pollution in the air now that if
it weren’t for our lungs there’d be no place to put
it all. Robert Orben”

Carl Sagan

Figure 2.3: Aerosol Types [2]

Soot, Ash, Smoke, Sulphates, Organic Carbon, Nitrates, Mineral Dust and Sea Salt. What these have in common
are that these particulates in the atmosphere are termed as Aerosols. Over the past few decades, atmospheric
instruments like POLDER, OMI and Tropospheric monitoring Instrument (TROPOMI) have been giving major
insights into understanding the aerosols and trace gases in ways not imaginable in the earlier years.

The history of measuring the Atmospheric Aerosols began with the Advanced Very High Resolution Radiometer
(AVHRR) in the 1970s. While the Aerosol detection is not limited to the satellite remote sensing and satellite
imagery, but also includes ground-based aerosol detection along with aerial detection, the literature study in
Chapter 3 will focus on the Aerosol Classification using the satellites. In the last 40 years, atmospheric aerosol
detection has seen the application of advanced satellite remote sensing technologies.
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Table 2.1: History of platforms and sensors used to derive aerosol properties from space [37]

Satellite Instrument Launch End of bands (wavelength (µm )) Accuracy
Landsat MSS 1972 1978 4 (0.5 - 1.1) τ 10 %
SMS-1,2 VISSR 1974 1981 5 (0.65 - 12.5) -
GOES-1 VISSR 1975 Present 5(0.65 -12.5) τ 18 34 %
Apollo-Soyuz SAM 1975 1975 0.83 -
GMS-1 VISSR 1977 2005 4(0.45 - 12.5) -
TIROS-N AVHRR 1978 1980 4(0.58 - 11.5) -
Nimbus-7 SAM-2, CZCS, TOMS 1978 1993 1, 6(0.441-11.5), 6(0.385 - 0.380) σext (10%)
AEM-B SAGE 1979 1981 4(0.45 -12.5) -
NOAA 6-16 AVHRR 1979 Present 5(0.58 -12) τ 10 % , τ 3.6 %
ERBS SAGE-2 1984 2005 4(0.386 -1.02) σext (10%)
TRMM VIRS 1997 Present 5(0.63 - 12) τ 35 %, α (+- 0.5 )
SPOT-3 POAM-2 1991 1996 9(0.353-1.060) σext (20%)
ERS-1 ATSR, GOME 1991 1999 4(1.6, 3.7, 11,12) , 4 (0.24-0.79) -
UARS HALOE 1992 2005 8(2.45 - 10.01) reff (+- 15 %), σext (5%)
SSD LITE 1994 1994 3(0.355, 0.532, 1.064) β(λ1) / β(λ2) (<5%)
ERS-2 ATSR-2, GOME 1995 Present 7(0.55 -12), 0.24-0.79 τ (<0.03), τ (30)%
Earth Probe TOMS 1996 Present 6(0.309-0.360) τ (20-30%)
ADEOS POLDER, ILAS , OCTS 1996 1997 9(0.443-0.910), 2(0.75-0.78, 6.21-11.77), 7(0.412-0.865) τ (20 -30 %)
Orb View -2 SeaWiFS 1997 Present 8(0.412-0.865) T(5-10%)
SPOT -4 POAM-3 1998 Present 9(0.354-1.018) σext (+- 30%)
TERRA MODIS,MISR 1999 Present 36(0.4-14.4), 4(0.35 0.87) τ (5 - 15 %) , τ (10 - 20 %)
METEOR-3M SAGE-3 2001 2005 9(0.385-1.545) σext (5%) ,τ (5 %)
PROBA CHRIS 2001 Present 62(0.4-1.05) -
Odin OSIRIS 2001 Present 0.274-0.810 σext (15%)
AQUA MODIS 2002 Present - -
ENVISAT AATSR, MERIS , SCIAMACHY 2002 Present 7(0.55-12.0), 15(0.4-1.05), 0.24-2.4 τ (0.16), τ ( 0.2), AI( 0.4)
ADEOS -2 POLDER-2 , ILAS-2 , GLI 2002 2003 9(0.441-0.910), 4(0.75-12.85), 36(0.38-12) τ ( 0.1)
MSG – 1 SEVIRI 2002 Present 12(0.6-13.4) τ (0.08)
ICEsat GLAS 2003 2003- 2(0.532, 1.064) σext (10%), τ (20%)
AURA OMI , HIRDLS 2004 Present 3(0.27-0.5), 21(6-18) τ (30%), σext (5 25%)
PARASOL POLDER-3 2004 Present 8(0.44-0.91) -
CALIPSO CALIOP 2006 Present 2(0.532,1.064) -

2.2. Market share
The investment and the market share of the air quality market shows a continually increasing trend over the years
and market research across multiple business analyst firms indicate a strong prevalence to such improving trends
in the future. In such a scenario, investigating in the sources and types of aerosols and to derive more insights
into the satellite data to understand the prevalence of aerosols around us in the air is a positive investment not
only from an environmental, policy and health perspective but also from the monetary perspective.

“EO is the gathering data about planet Earth’s chemical, physical and biological systems through remote sensing
technologies supplemented via encompassing the collection, Earth surveying approaches, analysis and presenta-
tion of data” [8] . Generally, research is prevalent in the field of science and technology, like study of ecosystems,
hydrology, climate and meteorology, forests area and marine life. EO helps to improve the lifestyle and protect
populations from disasters e.g. forest fire detection, tsunami warning etc.

Figure 2.4: Commercial EO data market and Value Added Services Market in 2015 [17]
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Even as far back as 2015, the Commercial EO data market was worth 1.7 billion dollars with Value-added services
market valued at 3.2 billion dollars. In 2025, this evaluation is estimated to increase to 5.3 billion dollars [17]. Of
this nearly 21 percent as of 2015 was attributed to environmental monitoring. From this evaluation, it is evident
that there is increased interest in value-added services market in Earth Observation. To meet that end, Machine
Learning can help add value to the satellite data by processing enormous data and detecting changing trends and
classifying events on a global scale.[35]

2.3. Atmospheric Aerosol
Man must rise above the Earth—to the top of the
atmosphere and beyond—for only thus will he
fully understand the world in which he lives.

Socrates

The following section outlines the need for Air Quality monitoring, followed by an introduction to the science
behind various aerosol types. Further, various studies conducted in the past on aerosol monitoring are highlighted.

Figure 2.5: Atmospheric Aerosol Distribution Across the Globe. Goddard Earth Observing System Forward Processing model output for
aerosols on August 23, 2018. The visualization depicts huge plumes of smoke drifted over North America and Africa. Also visible are three

different tropical cyclones churned in the Pacific Ocean, and large clouds of dust blew over deserts in Africa and Asia. [62]

A report Air QualityMonitoring SystemMarket by Product, Sampling, Pollutant, End-user, by Geography Global
Opportunity Analysis and Industry Forecast up to 2026 reported that the Air Quality monitoring market would
be worth 6.5 Billion dollars by 2025. 3

Furthermore, a research by Greenpeace Center for Research on Energy and Clean Air [47] reported that the a
country like China or India could end up spending almost 5 -6 % of the GDP due to Air pollution. Furthermore,
it stated that 4.5 million deaths with aerosols with Particulate Matter 2.5 pollution are also responsible for 1.8
billion days of work absence, 4 million new cases of child asthma and 2 million preterm births. With Aerosols
having such a profound effect on human lives and the global economy, a further study to understand what aerosols
are and how they can be classified is necessary.
The atmospheric aerosol is described as a combination of liquid particles and/or solid particles suspended in
air. Generally, the aerosol denotes the particulate component in atmospheric science. In most of the cases the

3https://www.prnewswire.com/news-releases/air-quality-monitoring-system-market-size-worth-6-5-billion
-by-2025-grand-view-research-inc-300961673.html

https://www.prnewswire.com/news-releases/air-quality-monitoring-system-market-size-worth-6-5-billion-by-2025-grand-view-research-inc-300961673.html
https://www.prnewswire.com/news-releases/air-quality-monitoring-system-market-size-worth-6-5-billion-by-2025-grand-view-research-inc-300961673.html
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Figure 2.6: Report by Greenpeace Center for research on Energy and Clean Air [5]

atmospheric aerosols is primarily formed in the lowest layers of the atmosphere, namely stratosphere, troposphere.
Also it can occur in different sizes varying from nanometer scale to micro meter scale [5].

Figure 2.7: Aerosol Atmospheric processes [63]
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Table 2.2: Various Aerosol Types and their distribution in µg/m3

Source Low High Best
Natural Primary Soil Dust 1000 3000 1500
Natural Primary Sea Salt 1000 10000 1300
Natural Primary Volcanic Dust 4 10000 30
Natural Primary Biological Debris 26 80 50
Natural Secondary Sulfates from biogenic gases 80 150 130
Natural Secondary Sulfates from volcanic SO2 5 60 20
Natural Secondary Organic Matter from biogenic VOC(Volatile Organic Compounds) 40 200 60
Natural Secondary Nitrates 15 50 30
Total Natural 2200 2200 23500 3100
Anthropogenic Primary Industrial Particulates 40 130 100

Dust 300 1000 600
Soot 5 20 10

Anthropogenic Secondary Sulfates from SO2 170 250 190
Biomass Burning 60 150 90
Nitrates from NOx 25 65 50
Organics from anthropogenic VOC 5 25 10

Total Anthropogenic 600 1640 1050
Total 2800 26780 4150

Atmospheric aerosols can originate from anthropogenic sources, natural sources or it may form through atmo-
spheric chemical processes. There are two types of aerosol formation in terms of formation mechanism namely
Primary aerosol (PA) and Secondary aerosol (SA). In the atmosphere, SA is formed by gas-to particle formation
and phase transitions. Here, the phase transition are either condensation or nucleation process while the formation
of heterogeneous SA results from two or more (multi)- phase chemical reactions [71]. This type of SA may occur
far from the source. Based on the mechanical breakup of parent materials, fragmentation, and some incomplete
parent materials, PA can be formed. The primary particles are directly emitted into the atmosphere and PA inherit
the chemical assets of parent material. Naturally, PA are surface-sourced. The aerosol particles that are directly
inserted into the atmosphere are known as PA in Earth science. For example, natural PA are mineral dust, animal
debris, sea spray, volcanic ash, plant debris, which are formed through mechanical resources. A huge volume of
particles can be released into the atmosphere during a volcanic eruption, where few of these particles may reach
very high altitudes (of above 10 km into the stratosphere). From different surface types, the dispersion and disin-
tegration of animal and vegetal fragments and microbes are blown off, forming the biogenic component of PA [6].
Similarly, humans pollute the atmosphere and release primary anthropogenic aerosols from automobiles, biomass
burning, industry, and agriculture. SAs may be formed with the presence of precursor gases that is originated
from anthropogenic and natural aerosols like NO2, SO2, and volatile organic components (VOC) that account for
gas to particle conversion. Specific to aerosol mass fluxes, the strength of various aerosol sources are discussed
in table 1[6].

Studies over the previous years have shown that aerosol particles are related with well being problems including
cardiovascular and respiratory diseases, cardiovascular, neurological, and respiratory sicknesses [70], particularly
aerosol particulate matter 2.5 µm (PM 2.5) because of its capacity to infiltrate further and store in the lower res-
piratory tract [43].

There is a recognized need for detection and characterization of aerosols for various domains including that of
public health. Satellite aerosol retrieval provides a suitable method to detect and characterize these aerosols on a
global scale. A study by Zheng et al. [73] has predicted themulti-aerosolmixing statemetrics usingmachine learn-
ing technique that allows to improve the fundamental representation of aerosol mixing state that may lead to huge
errors at a global scale. At the end of the simulation, they have concluded that the presented ensemble method,
a combination of the deep learning and Extreme gradient (XG) boost methods gave the best results.The XG
boost method has been dominating the machine learning methods for being a high-speed and high-performance
implementation of gradient boosted decision trees. This ensemble method is able to predict the multi-aerosol
mixing state metrics with acceptable predictive power (Index of Agreement (IOA) = 0.99, Coefficient of Deter-
mination (R2) = 0.99). Furthermore, it was stated that the ensemble technique gives better performance when
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compared to pure deep learning and non-ensemble XG boost methods. In closing, it was highlighted that when
selecting the predictive models, the trade-off among accuracy and run-time needs to be considered. In the future,
they have planned to enhance the study by integrating effective learning models and increasing the data size which
may be combined with an enhanced distribution of data.

Previous studies [16] on aerosol classification were performed on older satellite data (2008,[16]) on now defunct
satellite. The aim of the research was also to apply machine learning algorithms to newer satellite data retrieval’s
that could give an insight into the present day classification of aerosol distribution on Earth.

How exactly the satellites measure these aerosols presence over the globe is evident in the figure below. An
example to demonstrate this working is through the example of OMI. OMI is a passive sensing instrument,
implying that it needs the sunlight to take measurements. As can be seen in Figure 2.8, the incident solar radiation
is either absorbed by clouds and aerosols, reflected by the surface, emitted by clouds and aerosols or absorbed
by trace gases. The satellite measures this outgoing radiation along with the direct incoming sunlight to analyse
further constituent aerosols or presence of trace gases.

Figure 2.8: Passive sensing working [3]

The figure explains the working of passive remote sensing. Passive remote sensing does not use active power
from the satellite, instead it uses the incoming solar radiation from various sources to detect energy. The strength
of the reflected and emitted radiation is dependent on many surface and atmospheric conditions. The incoming
solar radiation from the sun is either absorbed by the clouds and aerosols or absorbed by trace gases. It could
also be reflected by the clouds and aerosols or the surface. As for the outgoing radiation, the emission from the
clouds and aerosols along with that from the surface combined with the reflectance from the clouds, aerosols
and surface are measured by the satellite. By measuring these incoming and outgoing radiation, the satellite can
provide a description of the constitution of the atmospheric conditions, i.e. cloud cover, aerosols, trace gases and
the surface conditions. It is this working principle of passive sensor that enable us to obtain data that later can be
used to create better models of aerosol and distribution.

2.4. Previous Studies on aerosol classification using satellite data
Numerous satellite aerosol classification methods based on the threshold approach have been developed. Hig-
urashi and Nakajima [27] devised a four-channel algorithm for detecting aerosol types using data from four-
channel Sea-viewing Wide Field of View Sensors (SeaWiFS). In northern Asia, four aerosol species have been
discovered above the ocean, including soil dust, carbonaceous, sulfate, and sea salt. Jeong and Li [30] proposed
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a method for classifying aerosols based on data from the AVHRR and the Total Ozone Mapping Spectrometer
(TOMS). The Aerosol Optical Thickness (AOT) and Angstrom Exponent (AE) from AVHRR were used in con-
junction with the aerosol index from TOMS to classify aerosols into seven categories (biomass burning, dust, sea
salt, pollution/sulfate). On a global basis, two of the twenty-one mixtures (biomass/dust mixtures, sulfate/sea salt
mixtures, and unexplained mixtures) were identified. Lee et al.[38] classified aerosols into four major types (dust,
sea salt, smoke, and sulfate) and two mixtures of major types over northeastern Asia using AOT and AE values
from the Moderate Resolution Imaging Spectroradiometer (MODIS) and an aerosol index value from the OMI
data. Additionally, those authors examined the geographical and temporal distributions of aerosol types across
northeastern Asia and compared them to those predicted by a global aerosol climate model. Kim et al. proposed
a MODIS–OMI algorithm to classify aerosol types using the aerosol index from OMI and the fine mode fraction
from MODIS. The MODIS–OMI categorization results were compared to those of the 4CA over northeastern
Asia, and their agreement ranged from 32% to 81%. Along with channel data and aerosol optical characteristics,
Torres et al. pioneered the use of carbon monoxide, a tracer of carbonaceous aerosols, rather than AE, to discrimi-
nate between carbonaceous and dust aerosols. CO column values from the Atmospheric Infrared Sounder (AIRS)
and an aerosol index were utilized to identify aerosols in an operational OMI near-UV aerosol algorithm. Pen-
ning de Vries et al. [52] developed a novel global aerosol categorization method Global aerosol categorization
method (GACA) based on monthly average aerosol properties (Aerosol Optical Depth (AOD) and aerosol optical
depth) and trace gas column densities (NO2, HCHO, SO2, and CO). On a monthly basis, the GACA categorized
aerosol kinds, and the findings were compared to aerosol compositions produced from the global monitoring at-
mospheric composition and climate model. Mao et al. [42] classified aerosol types over eight study locations,
including significant aerosol source regions and downwind of the source regions, using AOD and aerosol relative
optical depth from MODIS. The consistency between satellite-based and ground-based data in Mao et al. ranges
from 36% to 91% over the studied regions. Indeed, of the aforementioned satellite aerosol classification investi-
gations, only Mao et al. attempted such a satellite and ground-based validation. The majority of the classification
results were compared solely to those from an aerosol climate model and to those from older aerosol classification
methods. Although accuracy assessments of aerosol categorization methods are uncommon, uncertainty has been
documented in satellite aerosol optical characteristics and trace gas products. According to Chu et al.[12], the
uncertainty of MODIS-derived AOD was (0.05 + 0.15 AOD), and that of MODIS AE was up to 30%. According
to Thrastarson et al [66]., the uncertainty in AIRS CO products is 15%. These uncertainties in satellite input data
can result in aerosol type misclassifications using threshold-based classification algorithms.



3
Satellite Missions

The present chapter will look at the historical missions that led to the global aerosol measurements from space
in Section 3.1. From there on, we look at the three mission/satellites that will be studied in the thesis. Section
?? looks at the TROPOMI satellite on board the Sentinel 5 Precursor satellite followed with an introduction
to the dataset. Section 3.3 looks at OMI onboard Aura satellite while Section 3.2 details POLDER-3 onboard
Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar
(PARASOL). Finally, Section 3.4 wraps up this chapter with an overview.

3.1. Historical Missions for Aerosol measurements
Back in July 1975, although atmospheric measurements had been done from balloons, they had never been done
from space. SAM was the first experiment to be conducted in space to measure aerosols. Onboard the Apollo-
Soyuz test flight, marking the end of the Apollo missions would mark the beginning of atmospheric studies
onboard the spacecraft. SAM demonstrated that utilizing a method known as occultation from an orbiting van-
tage point may provide scientists with a far better lens on the stratosphere, which is a layer of the atmosphere that
is 10-31 miles (16-50 kilometers) above the surface. While the instrument had only four orbits, it was a proof
of concept of taking good quality atmospheric measurements from space, paving the way to several revisions on
the instruments on follow on missions like the SAGE instrument that flew onboard Applications Explorer Mis-
sion (AEM)-B [45].

Figure 3.1: Early beginning of dedicated atmospheric study missions beginning with the SAM instrument. Although it took measurements
only during sunrise and sunset, it laid the foundation for the beginning of atmospheric studies from space. [45]

In the last 40 years , atmospheric aerosol detection has seen the application of advanced satellite remote sensing
technologies. These advances have led to the development of new aerosol products of which are included in the
table listed below[37].

12



3.1. Historical Missions for Aerosol measurements 13

Table 3.1: Previous Aerosol Observation Missions [37].

Satellite Instrument Launch End No. of bands (wavelength ( µm )) Accuracy
Landsat MSS 1972 1978 4 (0.5 - 1.1) τ 10 %
SMS-1,2 VISSR 1974 1981 5 (0.65 - 12.5) -
GOES-1 VISSR 1975 Present 5(0.65 -12.5) τ 18 34 %
Apollo-Soyuz SAM 1975 1975 0.83 -
GMS-1 VISSR 1977 2005 4(0.45 - 12.5) -
TIROS-N AVHRR 1978 1980 4(0.58 - 11.5) -

Nimbus-7
SAM-2
CZCS
TOMS

1978 1993
1

6(0.441-11.5)
6(0.385 - 0.380)

σext (10%)

AEM-B SAGE 1979 1981 4(0.45 -12.5) -
NOAA 6-16 AVHRR 1979 Present 5(0.58 -12) τ 10 % , τ 3.6 %
ERBS SAGE-2 1984 2005 4(0.386 -1.02) σext (10%)
TRMM VIRS 1997 Present 5(0.63 - 12) τ 35 %, α (+- 0.5 )
SPOT-3 POAM-2 1991 1996 9(0.353-1.060) σext (20%)

ERS-1 ATSR
GOME 1991 1999 4(1.6, 3.7, 11,12)

4 (0.24-0.79) -

UARS HALOE 1992 2005 8(2.45 - 10.01) reff (+- 15 %), σext (5%)
SSD LITE 1994 1994 3(0.355, 0.532, 1.064) β(λ1) / β(λ2) (<5%)

ERS-2 ATSR-2
GOME 1995 Present 7(0.55 -12)

0.24-0.79 τ (<0.03), τ (30)%

Earth Probe TOMS 1996 Present 6(0.309-0.360) τ (20-30%)

ADEOS
POLDER
ILAS
OCTS

1996 1997

9(0.443-0.910)
6(0.441-11.5)
2(0.75-0.78
6.21-11.77)

7(0.412-0.865)

τ (20 -30 %)

Orb View -2 SeaWiFS 1997 Present 8(0.412-0.865) T(5-10%)
SPOT -4 POAM-3 1998 Present 9(0.354-1.018) σext (+- 30%)

TERRA MODIS
MISR 1999 Present 36(0.4-14.4)

4(0.35 0.87) τ (5 - 15 %) , τ (10 - 20 %)

METEOR-3M SAGE-3 2001 2005 9(0.385-1.545) σext (5%) ,τ (5 %)
PROBA CHRIS 2001 Present 62(0.4-1.05) -
Odin OSIRIS 2001 Present 0.274-0.810 σext (15%)
AQUA MODIS 2002 Present - -

ENVISAT
AATSR
MERIS

SCIAMACHY
2002 Present

7(0.55-12.0)
15(0.4-1.05)
0.24-2.4

τ (0.16), τ ( 0.2), AI( 0.4)

ADEOS -2
POLDER-2
ILAS-2
GLI

2002 2003
9(0.441-0.910)
4(0.75-12.85)
36(0.38-12)

τ ( 0.1)

MSG – 1 SEVIRI 2002 Present 12(0.6-13.4) τ (0.08)
ICEsat GLAS 2003 2003- 2(0.532, 1.064) σext (10%), τ (20%)

AURA OMI
HIRDLS 2004 Present 3(0.27-0.5), 21(6-18) τ (30%), σext (5 25%)

PARASOL POLDER-3 2004 Present 8(0.44-0.91) -
CALIPSO CALIOP 2006 Present 2(0.532,1.064) -

While there have been many missions in the past dedicated to the purpose of aerosol observation, only three
missions shall be studied for the purpose of this thesis. The three being, POLDER-3, OMI, and TROPOMI. The
reasoning being that we needed three missions from various timelines giving us a sense of past, present and future
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missions. While POLDER-3 gives us a sense of past missions, TROPOMI gives use a picture of the atmospheric
composition of the present and future. OMI has been chosen since it has an overlapping timeline with both
POLDER-3 andTROPOMI thus giving us an opportunity to compare results between the various missions.

Table 3.2: Three aerosol measuring instruments at a glance: A comparison

Instrument POLDER-3 OMI TROPOMI
Satellite PARASOL AURA SENTINEL-5-P
Launch Date December 18, 2004 July 15, 2004 October 13, 2017

Instrument Type Passive optical imaging radiometer
polarimeter instrument

Nadir-viewing visible
ultraviolet spectrometer

Spectrometer sensing
ultraviolet(UV)
visible (VIS)
near (NIR)

short-wavelength infrared (SWIR)
Resolution 6 km over 2400 km swath 2600 km 7 x 7 km best resolution
Swath 2400 km 2600 km 2600 km

Wavelength 443 and 910 nm FWHM 270 to 500 nm

UV 270-320 nm
visible 310-500 nm
NIR 675-775 nm

SWIR 2305-2385 nm.[6]

Agency CNES
NASA satellite

Dutch Space instrument
KNMI science output

ESA
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Figure 3.2: Timeline of POLDER-3,OMI and TROPOMI Instruments
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3.2. Polarization and Directionality of the Earth’s Reflectances (POLDER)-
3 (PARASOL)

POLDER-3 is an instrument onboard the PARASOL. Launched in December 2004, POLDER 3 has by far the
most detailed sensor information regarding aerosols. It was the first of its kind sensor capable of making multi-
angle polarization imaging observations in the world. It has a push broom scanner with a telecentric lens [64].
In section B.1, the detailed parameters that can be used to derive information regarding the aerosols are noted.
Almost 55 variables present make POLDER-3 a highly suitable candidate to analyse atmospheric aerosol compo-
sition.

Furthermore, both OMI and PARASOLwere on the same A train as can be seen from Figure 3.4. Thus, both were
measuring the same area, making comparisons stronger. However, in December 2009, as is evident in Figure 3.5
PARASOL was moved to a lower orbit, and the syncing with the A train sensors only happened in 2 to 3 months.
By 2011, PARASOL was out of view of the other A-train sensors at the equator. Unfortunately, PARASOL was
decommissioned 9 years after launch on 18 December 2013, making the necessity to continue the present study
with newer and functioning satellites like OMI and TROPOMI necessary. Nevertheless, POLDER 3 provides a
detailed benchmark to study the global atmospheric composition of aerosols which proves to be a good starting
point for the thesis.

It is interesting to note that POLDER has flown thrice on satellite missions. The first was with ADEOS-1 in
1996-1997 mission and the second with ADEOS-2 in 2002. Although, they could only gather a few months of
data due to malfunction of the spacecraft solar panels [68]. POLDER-3 in contrast gave nearly 9 years worth of
scientific output.

Figure 3.3: POLDER-3 onboard the PARASOL satellite
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Table 3.3: POLDER-3 data parameters [16]

Abbreviation Full name Wavelengths / Modes / Variants
AOT Aerosol Optical Thickness 440, 490, 563, 670, 865, 1020 nm
SSA Single Scattering Albedo 440, 490, 563, 670, 865, 1020 nm
reff Effective Radius Fine, Coarse Mode Fraction
veff Effective Variance Fine, Coarse Mode Fraction
m_r Real Refractive Index Fine, Coarse Mode Fraction
m_i Imaginary Refractive Index Fine, Coarse Mode Fraction
sphere_frac Sphericity Fine, Coarse Mode Fraction
lat Latitude Coordinates of Centers and Corners
long Longitide Coordinates of Centers and Corners
psurf Surface Pressure
N Aerosol Column Number Density Fine, Coarse Mode Action
number_of_points Number of Data Points Over Ocean, Land
error Parameter Retreival Uncertainity / Error AOT, SSA, reff, veff, m_r, m_i, N, sphere_frac

Figure 3.4: Parasol and POLDER-3 instrument in the A train with Aura withOMIinstrument [16]

Figure 3.5: Parasol lifetime [16]

The POLDER-3 sensor comprises of a digital camera with a CCD detector array of 274 x 242 pixels. It is ca-
pable of measuring in nine spectral channels ranging from blue (0.443 m) to near-infrared (1.020 m), as well as
polarization at 0.490 m, 0.670 m, and 0.865 m and at up to 16 distinct angles (51° along track, 43° across track).
At nadir, the pixel size is 5.3 km 6.2 km. The POLDER-3 overpass occurs at approximately 1:30 p.m. local
time, and one scene of photos covers an area of 2100 x 1600 km2. POLDER-3 enables two-day global coverage.
The equipment measures polarized light in many directions, which enables the extraction of more precise aerosol
optical and physical properties [64][20].
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3.3. Ozone Monitoring Instrument (OMI)
The Total Ozone Mapping Spectrometer (TOMS) instrument of NASA and the Global Ozone Monitoring Ex-
periment (GOME) instrument of the European Space Agency (ESA) are the forerunners ofOMI(on the ERS-2
satellite). It has a considerably higher ground resolution than GOME and can measure a significantly more at-
mospheric components than TOMS (13 km x 25 km forOMI vs. 40 km x 320 km for GOME).OMI is a major
instrument aboard Aura for monitoring the recovery of the ozone layer in response to the phase-out of substances
such as CFCs, which was agreed upon by the world’s governments in the Montreal Protocol and subsequent revi-
sions in Copenhagen and London.

Criteria pollutants including O3, NO2, SO2, and aerosols are measured by OMI. The US Environmental Protec-
tion Agency (EPA) has identified these areas as hazardous to the environment. OMI is 100 times more sensitive
than TOMS at detecting volcanic ash and sulfur dioxide generated by volcanic eruptions. The accuracy of these
measures is critical for aviation safety.OMI monitors ozone profiles (in the UV) in addition to TES and HIRDLS
(in the IR) and MLS (in the IR) (in the microwave).OMI measures BrO, formaldehyde, and OClO, all of which
are involved in the chemistry of the atmosphere.OMI onboard the Aura satellite platform was launched on July
15, 2004 [65].

Figure 3.6: OMI onboard the Aura satellite
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Table 3.4: OMI instrument specifications [65]

Item Parameter
Visible: 350 - 500 nm
UV: UV-1, 270 to 314 nm, UV-2 , 306 to 380 nm
Spectral resolution: 1.0 - 0.45 nm FWHM
Spectral sampling: 2-3 for FWHM
Telescope FOV: 114 (2600 km on ground)
IFOV: 3 km, binned to 13 x 24 km
Detector: CCD: 780 x 576 (spectral x spatial) pixels
Mass: 65kg
Duty cycle: 60 minutes on daylight side
Power: 66 watts
Data rate: 0.8 Mbps (average)
Pointing requirements (arcseconds) (Platform+instrument, pitch:roll: yaw, 3s):
Accuracy: 866:866:866
Knowledge: 87:87:87
Stability (6 sec): 87:87:87
Physical Size: 50 x 40 x 35 cm

With a wide-field telescope feeding two image grating spectrometers, the equipment examines Earth’s backscat-
tered radiation. A CCD detector is used in each spectrometer.
A white light source, LEDs, and a multi-surface solar-calibration diffuser are all included in the onboard calibra-
tion. The polarization of backscattered radiation is removed using a depolarizer.

3.4. Chapter Summary
A brief historical context to the satellite missions dedicated either fully or partially to the study of atmospheric
aerosols is presented. Out of the various missions flown, three missions TROPOMI, OMI and POLDER-3 are
selected due to their differing timelines that allow overlap to measure and compare the science output. Further-
more, the quality of the generated output also played a role in selecting these mission. In additions, all of the three
satellite missions have a connection with the Dutch space industry, either through data processing organizations
like Netherlands Institute for Space Research (SRON) / Royal Netherlands Meteorological Institute Koninklijk
Nederlands Meteorologisch Instituut (KNMI) or through satellite manufacturing companies like Airbus Defence
and Space Netherlands B.V. (previously Dutch Space).
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Supervised Learning Algorithms

In this Chapter, we look at the theory and the studies related to the three supervised learning algorithms KNN, RF
and SVM implemented in this thesis. Supervised learning is a subset ofMachine Learning (ML). ML techniques
are used to automatically build an empirical model from available information [36]. Typically, we may perform
either supervised or unsupervised learning when using ML methods. Supervised Learning requires ground truth
labels or data toward training capable prediction-making models, while unsupervised learning approach seeks to
determine emergent patterns within input data [15] [34]. ML as we know it today was conceived back in 1959
by Arthur Samuel [56], two years after the first satellite Sputnik was launched. Although the application of ML
was intended for pattern recognition for the computer industry, in the recent years ML is proving to be ubiquitous
across multiple fields including satellite data retrievals which is the focus area of this thesis.

4.1. K Nearest Neighbours (KNN)
The basic principle of k nearest neighbour or KNN method is to cluster the input data on the basis of distance
metric (e.g. Eucleadian, Manhattan, Minkowski, Cosine, Jaccard and Hamming with Eucleadian being the most
popular in Scikit-learn package in python). Then, the new data is classified based on its proximity to existing
groupings. Here, k represents the determination of parameter like how many adjacent data, i.e. neighbors are
required for classification before assigning the clusters label to input data. As noted in the research conducted by
D. Crowe et al [15], the primary advantages of KNN are that the model training and prediction are completed at
a rapid pace. This ensures that KNN can be used as a near-real time and resource-efficient algorithm.

KNN is split into two different phases namely training and classification. In training phase, the number of objects
are classified manually by human beings from the training set. Here the class labels and feature vectors are stored
then the computer reads this subset of objects. For these objects the correct classification is known. During the
process of classification phase, the input data are categorized by majority of nearest neighbors’ value (by mea-
suring distance among variable). Usually, the training phase is executed once, and the classification phase is
executed any number of times afterwards.

From Figure4.1, we can see the flowchart for the KNN algorithm. First, we get the value for the parameter k which
defines the number of nearest neighbours. Next, we take all the datapoints and the new points in a n-dimensional
space. This is followed by calculating the distance of the new point from all the datapoints. Subsequently, we
sort the distance of all the datapoints and select the k point with the smallest distance. We then estimate the value
of the test point by weighted average of its neighbour. The algorithm ends when the error of the test points is
within the desirable range.

20
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Figure 4.1: KNN Algorithm flowchart [41]

In Figure 4.2, we can clearly demonstrate the difference the selection of the K parameter has on the classification
of the input into output class. In the figure, the input sample is the green circle that has to be classified into either
the class (red triangle) or class (blue square). For k =3, There are two triangles and only one square inside the
inner circle, and thus, the green circle is classified to red triangle. If k=5 it is classified as blue square, due to the
larger number of samples in the area specified by the dotted lines. K is commonly taken to be an odd number
if the number of output classes is two to avoid overlapping. The selection of small and large k value are used
to classify the data in an efficient manner. Each of these value specifications are summarized in Table 4.1. In a
nutshell, the best value of k depends on the actual data, as there is no one size fits all solution. Every training
sample is traversed and the distance d between the training set sample and the new sample is computed.
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Figure 4.2: Example of KNN classification [31]

Training time Complexity is equal to:

O(nfeatures ∗ nsamples ∗ k) (4.1)

where n refers to the number of training samples and K is classifier parameter referring to the number of nearest
neighbours to include in the majority of the voting process.

Table 4.1: Features of small and large values of k [71]

Small values of k Large values of k
Cause over-fit Cause over-generalization
Increase negative effect of noise Reduce negative effect of noise
Create distinct class boundaries Create indistinct class boundaries

A work by Nikolaos Papagiannopoulos et al [50] introduced a programmed airborne order technique dependent
on the European Aerosol Research Lidar Network (EARLINET) escalated optical boundaries with the point of
building an organization wide arrangement apparatus that could give close continuous vaporized composing data.
The introduced strategy relies upon a directed learning method and utilizes the Mahalanobis separation work that
relates each unclassified estimation to a predefined airborne sort. As an initial step (preparing stage), a reference
dataset is set up comprising of previously ordered EARLINET information. Utilizing this dataset, they charac-
terized 8 airborne classes: clean mainland, contaminated mainland, dust, blended residue, dirtied dust, blended
marine, smoke, and volcanic debris. The impact of the quantity of vaporized classes has been investigated, just
as the ideal arrangement of concentrated boundaries to isolate distinctive airborne sorts. Besides, the calculation
is prepared with writing molecule straight depolarization proportion esteems. As a subsequent advance (testing
stage), they applied the strategy to a previously arranged EARLINET dataset and examine the consequences of the
correlation with this grouped dataset. The prescient precision of the programmed characterization shifts between
59 % (least) and 90 % (greatest) from 8 to 4 vaporized classes, separately, when assessed against pre-grouped
EARLINET lidar. This demonstrates the expected utilization of the programmed order to all organize lidar infor-
mation. Moreover, the preparation of the calculation with molecule straight depolarization esteems found in the
writing further improves the precision with values for all the vaporized classes around 80 %. Also, the calculation
has demonstrated to be exceptionally flexible as it adjusts to changes in the size of the preparation dataset and the
quantity of airborne classes and arranging boundaries. Finally, the low computational time and interest for assets
make the calculation incredibly reasonable for the execution inside the single analytics chain, the EARLINET
brought together preparing suite.
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4.2. Random Forest (RF)
As shown in Figure4.3, RF classifier is a kind of a machine learning based ensemble approach which is a combi-
nation of output and collection of decision tree of individual trees. The random forest is a type of decision tree
method that minimizes the variance through averaging the the unbiased decision trees [25]. The bagging approach
is comparable to the boosting method which combine different weaker rules rather than using single decision rule.
However, bagging takes an average value and boosting method produces a sequence of weak decision rules [4] .
In order to predict aerosol type, trees within the ensemble method we can describe as vote on classification label.
The spectrum is allocated to majority choices whereas each tree has equal weight ratio. Commonly voted label
implies higher certainty since the ensemble approach is independent to the subset of training data. by providing
alternative hypotheses we can add ensemble method that increases the robustness of classification approach so
preferable to unique classifiers [11].

Figure 4.3: Random Forest Classifier [13]

Training time Complexity is equal to:

O(nsamples ∗ log(nsamples) ∗ k) (4.2)

where k is the number of trees in the Random Forest.
Run time Complexity is equal to:

O(depthoftree ∗ k) (4.3)

Space Complexity is equal to:
O(depthoftree ∗ k) (4.4)

Random Forest is supposedly faster than other algorithms.
Run time Complexity is equal to

O(nfeatures ∗ nsamples) (4.5)

Testing takes longer since each test instance is compared to the entire training data. According to a study byWonei
Choi et al. [10], a new method for categorizing aerosol types was created using satellite data and a machine-
learning methodology. In a RF model, an aerosol type dataset from the Aerosol Robotic Network (AERONET)
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was employed as a target variable. To find the best collection of input variables for the RF-based model, the
contributions of satellite input variables were quantified. Based on inputs from satellite variables, the new tech-
nique can classify seven different types of aerosols: pure dust, dust-dominant mixed, pollution-dominant mixed
aerosols, and pollution aerosols (strongly, moderately, weakly, and non-absorbing). The model’s performance
was statistically tested using AERONET data that was not included in the model training dataset. The accuracy
of the model in classifying the seven categories of aerosol was 59 percent, with 72 percent for four types (pure
dust, dust-dominant mixed, strongly absorbing, and non-absorbing). The model’s performance was compared to
that of a previous aerosol classification approach based on the wavelength dependence of SSA and AERONET
fine-mode-fraction data. SSA wavelength dependencies for specific aerosol types are consistent with those found
using the new approach for the same aerosol types. This research shows that an RF-based model can classify satel-
lite aerosols while being sensitive to non-spherical particle contributions.

A work by Christopoulos et al [11] developed a model using random forest method on single particle mass spec-
trometry data. They have specifically focused on reducing the dimensionality and evaluated the performance with
the help of confusion matrices. Additionally, they have identified the significance of chemical markers among
sources of contamination or arbitrary groups of aerosols using chemical feature selection method. The ranking
was done using dimensionality reduction method and frequently identified the contaminant via subset of ranked
features.

4.3. Support Vector Machine (SVM)
In order to perform classification and regression analysis, the SVMmethod utilizes kernel function through trans-
fer of data into high dimensional space with the help of non-linear transformation approach. It may also find the
linear space among variables by separating input data into two classes. Hence the hyper-plane is the greatest mar-
gin among two classes. The Figure illustrates SVM based hyperplane among two classes whereas the bold lines
denote the hyper-plane that split the data into two classes. This separation process is used to obtain maximum
separation between two classes with minimal error. In SVM, the inputs are represented in the form of attribute
vectors [39].

Due to the non-linear and higher dimensionality characteristics, the process of hyperspectral remote sensing data
becomes more complex SVM. For addressing this issue, a research by Kolluru in 2013 [33] recommended ML
based SVMs. This was mainly preferred to perform classification of high dimensional data. In order to perform
classification and regression analysis, the SVMmethod utilizes kernel function through transfer of data into high
dimensional space with the help of non-linear transformation approach. It may also find the linear space among
variables by separating input data into two classes. Hence the hyper-plane is the greatest margin among two
classes. Figure4.4 illustrates SVM based hyperplane among two classes whereas the bold lines denote the hyper-
plane that split the data into two classes. This separation process is used to obtain maximum separation between
two classes with minimal error. In SVM, the inputs are represented in the form of attribute vectors
.
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Figure 4.4: Visualizing the hyperplane separating the two feature vectors of classes in 2D and 3D plane [1]

The two planes parallel to the classifier and which passes through one or more points in the data are called ‘bound-
ing planes. The distance between these bounding planes is called ‘margin’. By the process of learning hyperplane
which maximizes, this margin is evaluated. The points of the corresponding class, which falls on the bounding
planes, are called ‘support vectors. These points are crucial in forming a hyperplane hence the name support
vector machine [57].The support vector machines predicts the target values of test attributes based on the training
data [29].

In the following paragraphs, studies using SVM classifier for aerosol classification are discussed. For instance,
a study by Ma and Gong, (2012) [40] presented an SVM classification for aerosol and cloud. With the help of
the SVM classifier, they have confirmed the suitable parameter that includes the attenuated backscatter, depolar-
ization ratio, latitude of a base layer, colour ratio, and layer top in each layer, then avoided the cloud attenuated
backscatter coefficients based multi-modal distribution during the simulation process. Also, they have validated
the system performance by considering different sample sizes and various feature space/vectors, where the fea-
ture space includes depolarization ratio which provides stable results, then frequently increases the number of
samples with better accuracy. Research by Lary et al., 2018 [36] has discussed the relation of AOD measured
by the AERONET and retrieved through MODIS. But the bias between these two sets of data might be an im-
perfect understanding of root causes. In order to overfit the training examples, the resulted outcome of various
learning techniques may accurately classify the training dataset however, it fails to simplify new examples. To
minimize the statistical bound on the generalization error, SVM is specifically made, resulting in outcome as ef-
ficiently extrapolate a new example. When compared to the neural network, SVMgets trained faster by adopting
a randomized procedure which also follows the deterministic quadratic optimization process. In order to lead to
a slow evaluation of new data, the downside of SVM models can be large. To overcome these issues, different
optimization methods must be developed for making SVMs faster, especially for operational use [44].
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Methodology

This chapter goes into the details of the methodology and implementation that will be followed in this thesis
project. In section 5.1, the research work plan is discussed. The next section describes how the data was collected.
This is followed by discussion in section 5.2 on the machine learning algorithms and motivation for the choice
of using SVM, RF and KNN algorithms. Following this, we discuss the implementation considerations for these
algorithms in Scikit-learn[51] and discuss the various parameters that need to be selected. Subsequently, the
parameters and metrics required to evaluate these models are discussed in section 5.3. Section 5.4 contains the
high level requirements guiding the implementation of this thesis project. Thereafter, the environment used for
implementation of the code is discussed in section 5.5. Section 5.6 discusses the implementation of thesis work
first for POLDER-3 data and then followed by OMI data.

5.1. Research Work flow
The research was split into four phases. The first part of the research phase delved into the literature study of the
presently available algorithms, briefly documented in Chapter 4. This phase was completed with the selection of
the three algorithms for aerosol classification, i.e. SVM, KNN and RF based on their merits and demerits com-
pared to other algorithms as mentioned in Table 5.2. The literature study gave a background into the available
machine learning algorithms to be implemented in the thesis. Furthermore, the satellite data concerning aerosol
retrievals were studied and three satellite missions were selected. Out of these, POLDER-3 and OMI for the year
2006 were studied in detail.

The second phase consisted of obtaining the satellite data from SRON and NASA sources for the reference year
2006. The year 2006 was chosen since that was the dataset shared by Otto Hasekamp and this is the year on
which the clustering of aerosols was performed by Vincent de Bakker [16]. This was followed by exploring the
data and understanding the format and extracting the data in a suitable format such that further analysis could be
made. The next step, was to understand the variables and clean the data to remove NaNs.

The third phase of implementation began with obtaining the unsupervised learning cluster labels from previous
researchers. To obtain the class label for POLDER-3, the research of Vincent de Bakker [16] was studied, un-
derstood and recreated. Unsupervised learning techniques SOM and K means were run in R studio to get these
labels and the data was stored in .RDA format. This .RDA format was ported to python to implement the super-
vised learning techniques. Statistical software R was used to run all the simulations for unsupervised learning
techniques to create the cluster labels for POLDER-3 to be used as a starting point for running supervised learn-
ing algorithms selected in the second phase. Python 3 machine learning environment (SCI-Py) was selected to
implement these algorithms. The data was split in 70 % training and 30 % testing format. Further, seven fold
cross-validation scheme was used to ensure that the model did not overfit the data. Once the best performing
algorithm was selected based on the root mean square error across the class labels, the next step was to tune the
hyperparameters to increase the efficiency of the algorithm. Here, we use bias and variance trade-off to find the
optimal hyperparameters and then use the confusion matrix to derive insights into these results. The same steps
were repeated for OMI accounting for the changes compared to POLDER. Firstly, OMI data has daily files while
POLDER-3 has monthly files. Secondly, OMI has inherent aerosol classes present with the data products and

26
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thus we did not need to recreate unsupervised learning to create these class labels. However, OMI had only three
class labels compared to eights clusters of POLDER-3. Furthermore, POLDER-3 has more variables describing
aerosols than OMI, however it is no longer active and thus necessitates looking at other satellites as an alternative
for present and future data like TROPOMI.

In the fourth phase, the results obtained in the third phase are analysed and compiled together while noting the
similarities and differences.

As mentioned in Chapter 3, two satellite missions i.e. POLDER-3 and OMI were chosen to be studied and anal-
ysed using machine learning for this thesis as seen in Figure 5.1. Figure 5.2 shows the outline of the methodology
used in this thesis. On the right hand side the pipeline for POLDER-3 is detailed and on the left hand side that
for OMI. Firstly, these were chosen for the microphysical parameter information contained in the satellite data
that could help effectively identify the atmospheric aerosol composition. Secondly, these three missions contain
overlapping information that could help in providing a continuous stream of satellite information. POLDER-3 is
the oldest instrument out of the three missions, other being OMI and TROPOMI, but also the one with the most
detailed microphysical parameters regarding the aerosols. POLDER-3 data was obtained from SRON and was
presented in a monthly average fashion while that for OMI was downloaded from the NASA repository. Even
though the location and the period were the same, the features were different between the OMI and POLDER-3
satellite and thus it results in no direct similarity between the data. TROPOMI data was obtained from ESA
copernicus programme and the data was plotted. Further work on TROPOMI has been proposed in future work
keeping in mind the time constraints and the fact that aerosol related parameters like the aerosol layer height
variables will be made available in the future.

Figure 5.1: Timeline of POLDER-3, OMI and TROPOMI Instruments. In this study we explore the data for the year 2006 for POLDER-3
and OMI. TROPOMI is recommended as future work.

One of the first steps in the thesis was to recreate the research done by Vincent de Bakker [16] to perform the
clustering on the POLDER-3 2006 data to generate the labels of aerosols. Research by Vincent de Bakker [16]
created a database of clusters on the POLDER-3 2006 dataset on the world maps, where each cluster corresponded
to an aerosol type. He classified these into eight aerosol types: dust, marine, urban-industrial, smoke and the
remaining four types are mixtures of these above mentioned classes. The study used unsupervised learning, in
the form of Self OrganizingMap and K-means clustering algorithm to create labels for each geographical latitude,
longitude combination. These results are the starting point in our thesis. We use these labels as ground truth labels
to train our supervised learning algorithm. The focus of our study is to see how the three supervised learning
algorithms RF, KNN and SVM perform against each other on the two satellite data POLDER-3 and OMI.
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Figure 5.2: Methodology Outline

The next step is to look at the obtained data. First, we look at the POLDER-3 data for the year 2006. We extract
the data frame with micro-physical properties for atmospheric columns with a seasonal label. The year is split into
four seasons: Winter, Spring, Summer and Autumn. Next, we plot the microphysical property distribution across
the four seasons to view the seasonality and the data distribution. Subsequently, we perform data exploration
on the data to see the four variables and their cross correlation with other variables to check how much each
variable influences each other. With the eight class labels as mentioned in Table 6.2 as the target label, we use
cross-validation mentioned in 5.3, to train the model and measure the algorithm performance.
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Second, we begin by looking at OMI data for the year 2006 as well. We extract the required micro-physical
parameter data from the he5 format along with the timestamp, the latitudinal and longitudinal data. Furthermore,
we have the four class labels classifying the aerosol type which we use in training the data. Again, we follow the
same methodology as POLDER-3 to find the best performing algorithm.
With the labelled data as our input set, we make a split of 70 % training data and 30 % test data to measure the
performance of our model. Cross-validation is a resampling process used to evaluate machine learning models
on a limited data sample. The process has a single parameter called k that refers to the number of groups that a
given data sample is to be split into. This procedure is often called k-fold cross-validation. We use seven fold
cross-validation scheme to ensure that there is no high bias in the data. It ensures that every data point from the
dataset has the chance of appearing in the training and test set. It is one of the recommended approaches for a
limited input data since it creates a large training data by iterating through the data. In Figure 5.3, we see k-fold
validation where one fold is used for testing and k-1 fold is used for model training. This process is repeated k
times. The value of k is recommended to be between 5 to 10. In this study we employ k as 7. K is generally
chosen that is a divisor of the sample size in our case, or the size of the groups in the sample that should be
stratified.

Figure 5.3: Splitting the data into test and train sets using the cross validation approach to prevent over-fitting of the data

Using this cross validation scheme we train three models. To measure the performance of the three algorithms
(RF, KNN, SVM) against one another and to select the best performing algorithm for each use case we use the
performance metric of Root Mean Square Error.
The importance and the relevance of understanding aerosols and their classification was mentioned in Chapter
2. In a nutshell, through the study we can comment on how the differing satellite missions measure the aerosols
differently and measure how the three machine learning algorithms stack up against each other when the data sets
are changed. We can then finally conclude the study with a list of future recommendations for steps that might
make the algorithm perform better but were out of scope of this study.

For future work, we look at the TROPOMI data. We extracted the required micro-physical parameter data from
the netcdf format along with the timestamp, the latitudinal and longitudinal data. Next, the extracted data was
plotted on a world map. Due to time limitations further work on TROPOMI is recommended for future work.

5.2. Data Collection
For the thesis, two satellite data had to be acquired. These included POLDER-3 and OMI. The data collected from
the two satellites are at different processing levels. The Figure 5.4 shows the various available data processing
levels and the relationship between them.
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Figure 5.4: Relationship between different levels of satellite data [41]

NASA states on their website 1 that their Earth Observing System Data and Information System (EOSDIS) data
products have four levels. Level 0 denotes the raw data from the instrument. Level 1 corresponds to reconstructed,
time-referenced level 0 data. Level 2 includes further processing and includes derived geophysical variables at the
same resolution. Level 3 data includes more consistency and completeness. The variables from the satellite data
are mapped on a uniform space-time grid scales. Level 4 is highly processed data. It might also include results
from multiple measurements resulting in better derived analyses. OMI is a NASA satellite and was provided in
Level 3 daily gridded format while POLDER-3. European Space Agency (ESA) on their website also states that
it have four levels of data processing 2. Level 0 data is the raw data from the satellite. In level 1 data, the data
is converted to physical units. In level 2 data the data is processed as results of the experiment of the instrument.
An example of level 4 data are the weather maps that are presented on news.
In Table 5.1, we can see how the POLDER-3 and OMI data were sourced from different sources. POLDER-3
was sourced from scientist Otto Hasekamp from SRON while OMI was sourced from the open source satellite
data website of NASA. It is worth noting that POLDER-3 was provided in level 3 monthly averaged gridded
format while OMI was provided in level 3 daily gridded format which later had to be averaged to create monthly
averages. Upon speaking with Dr. Pepijn Veefkind who was the principal investigator of TROPOMI and OMI,
HARP https://stcorp.github.io/harp/doc/html/ingestions/index.html package was recommended
to create these monthly averages.

Table 5.1: Data collection for POLDER-3 and OMI satellite data

Satellite
Data

Organization Link to data Frequency Year

POLDER-
3

SRON Obtained from Otto Hasekamp from SRON
in the folder PARASOLDATA_GRIDDED L3: Monthly Aver-

aged Data
2006

OMI NASA OMI Science Investigator-led Processing
System

L3: Daily averaged
readings

2006

The OMI data has been obtained from NASA’s Goddard Earth Sciences Data and Information Services Center.
Since the instrument was a Dutch - Finish instrument which flew on an American satellite, the data is available
both through the Goddard Earth Sciences Data Information Services Center site as well as from the KNMIwebsite
which is a Dutch Meteorological website. The OMI data was downloaded from https://disc.gsfc.nasa.gov
/data-access. However, to access the data from this site a user account must be created on Earthdata website
https://disc.gsfc.nasa.gov/data-access. Using the wget function on the Mac/linux PC the required L3

1https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-policy/data-l
evels

2https://pmtp.hb.se/space-data/space-project-phasing-data-levels-and-data-use/processing-levels/

https://stcorp.github.io/harp/doc/html/ingestions/index.html
https://disc.gsfc.nasa.gov/data-access
https://disc.gsfc.nasa.gov/data-access
https://disc.gsfc.nasa.gov/data-access
https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-policy/data-levels
https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-policy/data-levels
https://pmtp.hb.se/space-data/space-project-phasing-data-levels-and-data-use/processing-levels/
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files can be downloaded. The region of interest and the target dates can be selected and filtered through the web-
site which then generates a list of downloadable files in He5 format that can be used for further processing. The
date range input to select the data for the year 2006 to be compared with the POLDER 2006 data was 2006-01-01
to 2006-12-31. This results in approximately 5256 links for download relating to L2 OMAERO data.

The OMAERO corresponds to Aerosol multi-wavelength algorithm. OMAERO is based on a multi-wavelength
algorithm that utilizes up to twenty wavelength bands spanning from 331 and to 500 nm. The first release data
of the data was 23 November 2007. The files are available in level0, level 1, level 2 and level3 formats. Each
Level 2 he5 file contains data for a single orbit. For each day there was 14 passes resulting in 14 L2 files. An
L3 format was generated taking the best measurements of the day generating a single file for each day. For the
purpose of brevity, the concise L3 files will be used. 363 files, 2.3G were present in the 2006 year data. The entire
dataset could be downloaded in 33 mins. OMI data has the following parameters: Here d refers to the 1 degree
by 1 degree resolution while 3e refers to the 0.25 by 0.25 degree resolution. OMAERUVd - OMI/Aura Near-UV
Aerosol Absorption and Extinction Optical Depth And Single Scattering Albedo This product is used for accurate
readings over the land. OMAEROe - OMI/Aura Aerosol Extinction Optical Depth and Aerosol Types product is
used for accurate reading over the ocean surface.

5.3. Machine Learning Algorithms
In supervised machine learning, an algorithm learns a model from the training data. The aim of the algorithm is to
best estimate the mapping function (f) for the output variable (Y) given the input data (X). The table 5.2 reviews
the advantages and disadvantages of the supervised Machine Learning algorithms found in the literature for Earth
Observation. Based on the research articles reviewed, it was evident that there was no one size fits all solution
and each algorithm had its advantages and disadvantages. The following table summarizes the broad level merits
and demerits of the algorithms as seen from the literature. From the algorithms mentioned, KNN, RF and SVM
are implemented in this study. Chapter 4 details the explanation of these algorithms used.

Table 5.2: Machine Learning algorithm merits and demerits

Techniques Merits Demerits
Support Vector Machine [29] [40] It is highly accurate and handle

many features
It requires more time to process, High com-
putation cost

Single Decision trees [24] [58] Easy to process high dimension
data

has the risk of overfitting. It is restricted to
one output attribute and generating categori-
cal output , If the type of data is numeric then
it generates complex decision tree.

Random Forest [11] [53] Efficient method to handle large
datasets

Building and testing the model is slower pro-
cess , More complex to interpret than deci-
sion trees.

K Nearest Neighbour [55] Classes need not be linearly sepa-
rable

It is sensitive to noisy or irrelevant attributes

Interpretability is a measure of the machine learning algorithm to explain its predictions. Linear Regression has
the highest degree of interpretability followed by decision trees. This is followed by KNNs which has a high
degree of interpretability through feature importance. The interpretability reduces with Random Forests and Sup-
port Vector Machines. Artificial Neural Network (ANN)s on the other hand are black-box algorithms since the
underlying reason for the classification is not evident.

Training time refers to the time taken to build the model from a training data. This is the time the model takes to
learn the desired parameters for classification that is used for evaluating testing set. Since, the algorithms should
be able to run on a limited CPU hardware, GPU intensive ANNs are not preferred for the thesis. Hardware
specifications available for the implementation are as follows:

• 1.4 GHz Quad-Core Intel Core i5
• 8 GB memory

As a result of the requirements set on the selection of the algorithms, between the trade-off of higher Interpretabil-
ity and lower training time, SVM, KNN and RF have been chosen to be compared.
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5.4. Environment
The choice has been made to implement the machine learning code in Python. Python has established itself as a
well-established language in the recent years. Further, it is the language that the author knows best, thus favouring
python over other languages.

Anaconda simplifies the package management for Python for machine learning. Package management in Ana-
conda is performed by Conda. It comes with over 250 packages automatically installed , and over 7500 packages
that can be installed using Conda. Anaconda Navigator as shown in Figure 5.5, a graphical user interface included
in the Anaconda distribution provides access to the Jupyter notebook while taking care of all of the Python de-
pendencies.

Figure 5.5: Anaconda Graphical User Interface

Jupyter Notebook supports languages like Python, Julia and R. It is an open-source integrated development en-
vironment. It is a web-based interactive computational environment 3. It aids in exploratory data analysis as we
can see inline visualization of a particular piece pf code with any dependencies on other parts of the code. Figure
5.6 shows the user interface of a jupter notebook.

3https://www.geeksforgeeks.org/difference-between-jupyter-and-pycharm/
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Figure 5.6: Jupyter Notebook

• Git - Version 2.24.3 was used for Git. This was the Apple Git-128. The link to the Git repository is added
in Appendix B

• java 15.0.2 2021-01-19 Java(TM) SE Runtime Environment (build 15.0.2+7-27) Java HotSpot(TM) 64-Bit
Server VM (build 15.0.2+7-27, mixed mode, sharing).

At the time of writing the thesis, there were several free and open source software available to implement the
machine learning algorithms. Some examples are: Caffe, Keras, Octave, Pandas, Scikit-learn, TensorFlow, XG-
Boost 4. Amongst these, Scikit-learn has been chosen to perform further analysis. One of the main advantages of
Scikit-learn is its accessibility and simplicity. It provides simple and efficient tools for data mining and data anal-
ysis. Scikit-learn[51] is an open-source machine learning library for Python built on NumPy and SciPy python
libraries released in 2007. It provides various algorithms that can be implemented for machine learning. Since,
it houses the machine learning algorithms SVM,KNN and RF and has a demonstrated history of faster imple-
mentation time as compared to other libraries like mlpy, pybrain, pymvba, mdp and shogun, Scikit-learn has
been shortlisted as the suitable library to implement the machine learning algorithms for the thesis. Furthermore,
it has modules for pre-processing data, extracting features, optimizing hyperparameters and evaluating models.
Additionally, the previous experience of using Scikit-learn by the author has also factored in the selection of the
platform for the implementation.

Model Implementation
In this section, we briefly describe the implementation considerations for SVM, RF and K-NN in Scikit-learn.

Random Forest
In the case of the random forest, hyperparameters include the number of decision trees in the forest and the
number of features considered by each tree when splitting a node. Scikit-learn package implements a default set
of hyperparameters for all models, but these are not always the most optimal set of hyperparameters. The best
hyperparameters are not known ahead of time and tuning the model results in trial-and-error approach to detect
the best fit. Now, to find the best fit we try different combinations to evaluate the performance of each model.
Presently, the default parameters for Random Forest in Scikit-learn are as follows:

Listing 5.1: Default parameters selected for Random Forest

Parameters currently in use:

{'bootstrap': True,

4https://www.netguru.com/blog/top-machine-learning-frameworks-compared
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'ccp_alpha': 0.0,
'class_weight': None,
'criterion': 'gini',
'max_depth': None,
'max_features': 'auto',
'max_leaf_nodes': None,
'max_samples': None,
'min_impurity_decrease': 0.0,
'min_samples_leaf': 1,
'min_samples_split': 2,
'min_weight_fraction_leaf': 0.0,
'n_estimators': 10,
'n_jobs': None,
'oob_score': False,
'random_state': None,
'verbose': 0,
'warm_start': False}

Out of all of these parameters, the important ones are explained below:

• Bootstrap : If the bootstrap is true, then the sub-sample size is set with the max samples parameter. On the
other hand, if the bootstrap parameter is false, then the entire dataset is used to build the tree.

• n estimators: N estimators takes an integer as input. It refers to the number of trees in the forest.
• criterion : This parameter measures the quality of a split. In this study we look at two parameters: ’Gini’
which refers to Gini impurity and ’Entropy’ for information gain. Gini impurity is the probability of incor-
rectly classifying a randomly chosen element in the dataset if it were randomly labeled according to the
class distribution in the dataset. It is given by

G =

C∑
i=1

p(i) ∗ (1− p(i))

where C is the number of classes and p(i) is the probability of of the event i being true. The optimal split
for the root node is chosen while training a decision tree by maximizing the Gini Gain, which is determined
by subtracting the weighted impurity of the branches from the original.
The formula for entropy h(S) is given as follows:

E(S) =

C∑
i=1

−p(i) log2 pi

• max depth: We can control the maximum depth of the trees in the random forest using this setting. To
regularize the classifier model and to reduce the chance of overfitting the model we reduce the max depth
of the tree.

• minimum samples leaf: It specifies the minimum number of samples required at a leaf node. If the available
samples are less than the given minimum samples leaf, the leaf will not split. By increasing the minimum
samples leaf, the model will be more regularized, reducing the possibility of overfitting.

• maximum features: It specifies the number of features to examine when looking for the best split. It can be
of form int or float. The value can be ’auto’,’sqrt’,’log2’. If it is an integer then max features are considered
at each split. For float values , then max features are a fraction and round(max features * n features) are
considered at each split. For ’auto’ and ’sqrt’, sqrt(n features) is considered. For log2 max features is taken
as log2(n features). Even if it means effectively inspecting more than max features features, the search for
a split does not end until at least one valid partition of the node samples is identified.

Support Vector Machine
The implementation of SVM in Scikit-learn is based in libsvm package. The following are the parameters that
need to be configured for SVM.
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• The term ”kernel” is employed because the Support Vector Machine uses a collection of mathematical
functions to give a window to change data. Here, we use kernel function as RBF. RBF refers to radial
bias function. It is quite similar to the gaussian distribution. RBF Kernel overcomes the space complexity
problem as RBF kernel SVMs only store the support vectors during training and not the entire dataset.

The RBF kernel function for two points X1 and X2 computes the closeness between the two points:

K(X1, X2) = exp (−γ||Xi −Xj ||2)

where || X1 −X2 || is the Euclidean distance between the two points X1 and X2

• C refers to the regularization parameter. C is a positive float value and is inversely proportional to the
strength of regularization. Recall that regularizations are techniques for reducing error and limiting over-
fitting by fitting a function adequately on the specified training set. The default value is ’1’.

• Gamma refers to the kernel coefficient for ’rbf’, ’poly’ and ’sigmoid’. Gamma takes float as input or it can
be set to ’scale’ or ’auto’. Default value used 1/(nfeatures ∗X.var())

Listing 5.2: Default parameters selected for SVM

{'C': 1.0,
'break_ties': False,
'cache_size': 200,
'class_weight': None,
'coef0': 0.0,
'decision_function_shape': 'ovr',
'degree': 3,
'gamma': 'scale',
'kernel': 'rbf',
'max_iter': -1,
'probability': False,
'random_state': None,
'shrinking': True,
'tol': 0.001,
'verbose': False}

K-Nearest Neighbour
In Scikit-learn library, the KNeighborsClassifier function is used to implement the K-Nearest Neighbour. KNeigh-
borsClassifier learns based on each query point’s nearest neighbors, where is an integer value given by the user.
The hyperparameter k specifies how many neighbours are used in the output label prediction and is dependent on
the data. A larger value of k reducing the effects of noise in the data while making the classification boundaries
less defined. k is often set to a odd number to prevent a situation when there is a tie between the neighbours. For
further discussion on how choosing a small or a large k alffects the algorithm refer to Section 4.1 in Chapter 4.
The following are the parameters that need to be configured for SVM.

• n neighbours: It takes integer as the datatype and its default value for n is 5.
• algorithm: The algorithm parameter specifies which algorithm will be used to implement the k nearest
neighbour search. The options include brute-force search, KDtree, BallTree and auto setting. Using the
auto setting fits the most approriate algorithmdepeding on the values passed to the algorithm.

• leaf size: The default value for the leaf size is 30 for Balltree and KDTree algorithms. The best value
depends on the data passed and affects the construction speed and memory for storing the tree.

• metric: This parameter refers to the distance metric for building the tree. The default value is Minkowski
distance.

• p: p is the power parameter for minkowski metric. When p=1 manhattan distance is selected and when p=2
euclidean distance is selected.
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Listing 5.3: Default parameters selected for KNN

Parameters currently in use:
{'algorithm': 'auto',
'leaf_size': 30,
'metric': 'minkowski',
'metric_params': None,
'n_jobs': None,
'n_neighbors': 4,
'p': 2,
'weights': 'uniform'}
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5.5. Model Evaluation
In Scikit-learn the negative root mean square is the chosen scoring metric. By negating the mean square error
metric we can obtain the negative mean square error metric. It is a measure of how close a classifier line is to
the actual data points. MSE has the units of the variable plotted on the vertical axis squared. The equation below
shows theMean Squared error. The squaring is performed so that the negative value doesnt cancel out the positive
value.

MSE =
1

n

n∑
i=1

(yi − yi)
2

MSE and RMSE are related as RMSE is the root of mean squared error. By taking the absolute value of Negative
Mean squared error and then taking the root we get the root mean squared error. The root mean square error
(RMSE) has been used as a common statistical metric to quantify model performance in air quality, and climate
research investigations [9]. One of the reasons for its wide use is that it is the most easily interpretable metric
since it has the same units as the variable plotted on the Y axis. One of the underlying assumptions in RMSE is
that the errors are unbiased and follow a normal distribution. RMSE is the distance, on average of a data point
from the classier fitted line measured almong the Y axis.

RMSE =

√√√√ 1

n

n∑
i=1

e2i

⋆Confusion Matrix another name for error matrix facilitates visualization of the algorithm performance and is
common in supervised learning [23]. Each row of the matrix represents the instances of the actual class, whilst
every column represents the predicted class. It is denoted by a matrix of size a x a associated with a classifier
showing the predicted and actual classification, where a is the number of different classes. Figure 5.7 below
shows the sample confusion matrix for OMI with the sample example of Biomass burning. We use this example
to understand the concepts of True Positive, True Negative, False Positive and False Negative.

Figure 5.7: Sample Confusion Matrix format for OMI biomass burning

From the confusion matrix, we can deduce a number of results. Firstly, we can use it to calculate the accuracy
with respect to the ground truth of the classification. Secondly, it is used to recognize the specific errors affecting
each class labels. Thirdly, it help evaluate and quantify the extent to which the model underfits or overfits each
class label/category. Below, the formulas for calculating five different metrics measuring the performance of the
model are given.

• Accuracy =

TruePositive+ TrueNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative
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• Misclassification =

FalsePositive+ FalseNegative

TruePositive+ TrueNegative+ FalsePositive+ FalseNegative

• Precision =
TruePositive

TruePositive+ FalsePositive

• Sensitivity/Recall =
TruePositive

TruePositive+ FalseNegative

• Specificity =
TrueNegative

TrueNegative+ FalsePositive

⋆ Bias and Variance can determine where a model is well performing in the true sense or if it is overfitting or
underfitting. Bias is the difference between the Predicted Value and the Expected Value. When there is a high
bias error, it results in a very simplistic model that does not consider the nuances in the data. Since, it does not
learn the data properly, it is called underfitting. Variance on the other hand is when the model is too much in sync
with the variations in the data along with the noise. What this results in is that the new model is predict accurately
on the new data since it has learnt too much from the training data.
In the Figure 5.8 the bulls-eye is the correct prediction of the target. The goal is to achieve low bias and variance
for the most accurate predictions as can be seen in the Figure the predictions all lie inside the bulls-eye area. When
there is low bias and high variance in the data, it leads to overfitting of the data. When there is low variance and
high bias, it leads to underfitting of the data.

Figure 5.8: Bias and Variance Tradeoff [18]

The below Figure shows the different fits of the models: Underfitting, Overfitting and Optimal fit, along with
the trade=off between bias and error. The total error of a machine learning model is the sum of the bias error
and variance error. The aim is to balance bias and variance such that the model does not underfit or overfit the
data. Overfitting refers to error which occurs when a function is too closely fit to a limited set of data points.
Underfitting refers to the modelling error when the model can neither model the training data nor generalize to
new data.
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(a) Underfitting, Overfitting and optimal fit [60]

(b) Reaching optimal fit for bias and variance [60]

Figure 5.9: Bias and Variance

The performance of the three machine learning models will be evaluated in the Chapter 6.

5.6. High Level Requirement Traceability Matrix
The following table encompasses the Requirement Traceability Matrix which would effectively guide as a mea-
surable progress bar for the developments achieved in the project.

ReQ-ID Requirement SubCategory
R-001 The application shall implement supervised learn-

ing algorithm for the purpose of aerosol classifica-
tion on a flying mission

Application

R-002 The application shall be be validated against pre-
vious satellite mission

Application

R-003 The application shall to a reasonable degree to ac-
curacy be able to distinguish between at least five
major types of aerosols.

Application

R-004 The application shall be capable to be deployed
and tested on a computer with the specifications
of 1.4 Ghz processor and 8 Gb RAM

Performance

R-005 The application shall reach a performance metric
of accuracy of at least 90% on the test dataset

Performance
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Implementation and Results

The implementation section is divided into two main categories. First, we look at the implementation with
POLDER-3 data. The implementation begins with first obtaining the data, understanding its structure, clean-
ing the data and exporting it into a format that can be used for further processing. Then, the steps mentioned
in the Methodology section are repeated with OMI data. In the results section, we look at the results derived
for the satellite instruments POLDER-3 and OMI by using the supervised learning algorithms of SVM, RF and
KNN. After following all the steps mentioned in Chapter 5 methodology, we compare the performance of the
three supervised learning algorithms against each other and study how varying the hyperparameters affects the
accuracy of the algorithm.

6.1. POLDER Data
POLDER-3 was an instrument on the PARASOL microsatellite. It was launched on 18 December 2004. The
POLDER-3 instrument and the corresponding PARASOL mission was decommissioned on 18 December 2013.
The POLDER instrument collected accurate observations of the polarized and directional solar radiation reflected
by the Earth-atmosphere system.

The data presented for POLDER-3 instrument is in the following format. The year 2006 was chosen since that
was the reference year shared by SRON, who provided the dataset. In the Table 6.1 the various data parameters
that can be extracted from the POLDER-3 data are presented.

Table 6.1: POLDER-3 data parameters [16]

Abbreviation Full name Wavelengths / Modes / Variants
AOT Aerosol Optical Thickness 440, 490, 563, 670, 865, 1020 nm
SSA Single Scattering Albedo 440, 490, 563, 670, 865, 1020 nm
reff Effective Radius Fine, Coarse Mode Fraction
veff Effective Variance Fine, Coarse Mode Fraction
m_r Real Refractive Index Fine, Coarse Mode Fraction
m_i Imaginary Refractive Index Fine, Coarse Mode Fraction
sphere_frac Sphericity Fine, Coarse Mode Fraction
lat Latitude Coordinates of Centers and Corners
long Longitide Coordinates of Centers and Corners
psurf Surface Pressure
N Aerosol Column Number Density Fine, Coarse Mode Action
number_of_points Number of Data Points Over Ocean, Land
error Parameter Retrieval Uncertainty / Error AOT, SSA, reff, veff, m_r, m_i, N, sphere_frac

POLDER-3 was introduced in Section 3.2 where we saw the description of the PARASOL mission and an intro-
duction to the POLDER-3 data. In Figure 5.4, we saw the flow diagram for the implementation of themethodology
on POLDER-3 data. The first step was data extraction from POLDER. The year 2006 was chosen since that was

40
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the reference year shared by Otto Hasekamp from SRON, who provided the dataset. The data was provided in
.nc format which refers to netcdf or network common data files. The nc file was extracted in R due to the ease
of extraction with the packages in R and a dataframe was created which would be ported in Python for further
processing and implementation of machine learning algorithm.
A dataframe is a two dimensional data structure containing columns of required variables. It is much like a
spreadsheet. The top row is called the header and each individual row that follows is called a cell. The benefit of
using a dataframe is the easy portability between the R environment and python environment. In Figure 6.12d,
we see the dataframe with 1131324 rows and 10 columns. The rows represent the datapoints collected across the
12 months for POLDER, while the columns represent the variables that will be used for machine learning chosen
from table 6.1. But first, we look at the correleration matrix created from this dataframe

Figure 6.1: Dataframe created from the extracted variables from the POLDER-3 data

A correlation matrix is a table that presents the coefficients of correlation between variables. Each cell in the
table contains the information about the correlation between two variables. The value of correlation ranges from
0 to 1, with 0 being no correlation between the features to 1 being highly correlated. Correlation gives us a clear
understanding of the importance of the features before building the machine learning model. With the help of the
correlation analysis we can also check if we have multicollinearity i.e. high correlation between the variables,
which is undesirable in the role of building a machine learning model. From 6.2 the feature correlation matrix,
we can deduce the following points:

• There is no strong correlation between the features and the cluster label. This means that there is no domi-
nant features dictating the output, thus giving us unbiased labels independent of the feature.

• The cluster number label and variables: AngstromExponent and sphericity are mildly negatively correlated.
This means that as the value of angstrom exponent and sphericity increases the clustering label number
decreases.

• The features RRI(mrfine) and SSA are mildly positively correlated. This means that as the value of
RRI(mrfine) and SSA increases the clustering label number increases.

• Sphericity seems to the have the highest negative correlation to other measured parameters.



6.1. POLDER Data 42

Figure 6.2: Feature correlation matrix for the four features.

In Figure 6.3, we can see the correlation matrix being visualized in terms of weights in the clusters. We saw from
the correlation matrix that sphericity is negatively highly correlated and thus here we see that for lower cluster
numbers (1,2,3,4), the weights of the sphericity is higher as compared to higher cluster numbers (5,6,7,8).

Figure 6.3: Weights for each hyperphysical parameter in POLDER-3 data for the year 2006 [16]

After reading all the data points, we got a total of 23,651,900 points. However, many of these observations are
NANs where possibly data was not collected efficiently. When only the complete cases were considered, the
output resulted in final values of 1,131,224 data points. It is worth noting that there is not an equal distribution
of datapoints across the twelve months of the year 2006. From 6.4, we can see that there is a difference of
nearly 41,328 datapoints between the month with the highest datapoints September and the month with the lowest
datapoints January. What this means is that the dataset is not a perfect distribution of data across the months but
infact is a results of error in collecting data or NaNs that were created in the capturing of the data. It is worth
noting that while the data is not a perfect distribution that difference is not large enough to create an imbalance
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in the data that would affect the machine learning model.

Figure 6.4: Monthly distribution of the data points

From the extracted data points in Figure 6.4, we create the seasonal labels. December, January, February make
’Winter’; March, April, May make ’Spring’; June, July, August make ’Summer’ and September, October and
November make ’Autumn’. Next, we plot the seasonal (northern hemisphere seasons) i.e. Winter, spring, summer
and fall variations in the satellite acquired data regarding the aerosols. In Figure 6.5 the world maps with major
cities are plotted along their latitude and longitude across the x and y axis. This reference frame will be used
throughout the rest of the project to plot the data of the three satellite data.

Figure 6.5: Coordinates for the aerosol reading from the satellite data [21]

Here, we plot the following four variables

• 1) SSA - Single Scattering Albedo is defined as the ratio of scattering efficiency to the total extinction
efficiency or the sum of both absorption and scattering. SSA is a unitless quantity, which if zero indicates
that the absorption is the cause of particle extinction. Whereas, if the SSA is 1 then scattering is the cause
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of particle extinction. Particle extinction refers to the reduction in the radiation between an emitting source
(e.g. Sun) and the observer (e.g. satellite) due to dust and gas (e.g. aerosols) in between the path.

Figure 6.6: Seasonal variation in Single Scattering Albedo

(a)Winter SSA 490 nm distribution (b) Spring SSA 490 nm distribution

(c) Summer SSA 490 nm distribution (d) Autumn SSA 490 nm distribution

Figure 6.6 plots SSA values on the world map in the color gradient scheme. The colour indicates the
value of SSA, with darker blue color meaning a lower value of SSA and lighter yellow value meaning a
greater value of SSA. The colour gradient is shown in the plot legend. From Figure 6.6, we can see that the
SSA value varies seasonally over geographical locations on earth. Multiple observations can be deduced.
Firstly, the data is incomplete along the north and south poles. This might be due to weather disturbances
or cloud cover impeding data collection. Secondly, we see that high SSA values occur over South America
during the summer months of June, July and August as marked by higher yellow and orange values. This
means that there was higher reflecting aerosols in summer. This is in sync with literature which states that
agricultural fires and land clearing common in the Amazon basin spanning South America.
From Figure 6.7, we can see that the upper whisker or the upper bound of all seasons is the maximum value
of SSA i.e. 1. The median has only minor variation across the four seasons. The same can be seen with the
first and third quartiles. However, there is a significant variation between the minimum SSA values across
the four seasons. All the seasons display outliers beyond the minimum values. Another observation is that
SSA is limited by the range between 0.6 and 1 while theoretically the range acn be from 0 to 1 for SSA.
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Figure 6.7: Box plot of SSA distribution vs seasons

• 2) RRI - Real Refractive Index is an important parameter to determine the absorption and scattering of the
particle along with the information regarding the particles size. It consists from both real and imaginary
parts and for the purpose of this study we will be concentrating on the real part.

Figure 6.8: Seasonal variation in Real Refractive Index

(a)Winter RRI distribution (b) Spring RRI distribution

(c) Summer RRI distribution (d) Autumn RRI distribution

Figure 6.8 plot RRI values on the world map in the color gradient scheme. The colour indicates the value
of RRI, with darker blue colour meaning a lower value of RRI and lighter yellow value meaning a greater
value of RRI. The colour gradient is shown in the plot legend. From Figure 6.8, we can that RRI value
varies seasonally over the geographical locations on earth. It is worth noting that the data is incomplete
along the north and south poles as was the case with SSA.
It is observed that only in the summer months, the RRI is highest in the South American and African regions
compared to the rest of the world and rest of the seasons. Moreover, only in summer and autumn there is
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a lot of scattering of RRI in contrast with winter and spring RRI distribution.

Figure 6.9: Box plot of RRI distribution vs seasons

From Figure 6.9, it is observed that the medians for all four seasons are well under 1.45 RRI value. This
indicates that there isnt much scattering in the value of RRI among the four seasons. Further more, there is
a significant difference in the upper limits, with summer season having the highest RRI around 1.6 while
winter has the lowest. All the value of RRI are contained between 1.30 and 1.70 across the four seasons.

• 3) AE - Angstrom Exponent a parameter that specifies how an aerosol’s optical thickness is conventionally
affected by the wavelength of light. (τλ)/(τλ0) = (λ)/(λ0)

α where (τ(λ)) is the optical thickness, (λ)
is the wavelength and (α) is the angstrom exponent. The larger the angstrom exponent the smaller the
particle and the smaller the angstrom exponent the larger the particle size. For example, the clouds have a
large size, nearly zero angstrom exponent and thus have negligible relationship between optical depth and
wavelength. This results in the clouds appearing white.



6.1. POLDER Data 47

Figure 6.10: Seasonal variation in Angstrom Exponent

(a)Winter AE distribution (b) Spring AE distribution

(c) Summer AE distribution (d) Autumn AE distribution

From Figure 6.10, we can see that larger particle size i.e. lower angstrom exponent is observed over the
oceans. It is seen that the denser the population of an area the lower the particle size. The same can be seen
in the map in populated and industrious areas of India, China and Africa.

Figure 6.11: Box plot of Angstrom exponent distribution vs seasons

From the boxplot in Figure 6.11 we can see that the values for angstrom exponent is between 0 and 3.5
across the four seasons. Summer has highest value of AE at 2.5. All the four seasons have the lowest
whisker of the box plot at 0. Summer has a slightly higher median than the other seasons which have
comparable median.
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• 4) Sphericity - Spherical Fraction Coarse Distribution is defined as the ratio of the surface area of the sphere
of the same volume as the particle under reference to the actual surface area of the particle. A perfect sphere
has a sphericity of 1, other shapes have a sphericity less than 1.

Figure 6.12: Seasonal variation in spherical coarse fraction

(a)Winter spherical fraction coarse distribution
(b) Spring spherical fraction coarse distribution

(c) Summer spherical fraction coarse distribution
(d) Autumn spherical fraction coarse distribution

From Figure 6.12, we see that the sphericity data points are distributed across the world during summer and
autumn seasons. It is seen that in the spring season, the East Asian region has least amount of sphericity. Overall,
high sphericity is maintained across the four seasons.
From the boxplot in Figure 6.13, it is seen that sphericity has a range between 0 and 1. Spring has a lower first
quartile as compared to other seasons. The spread between first and third quartile is significantly larger in the
spring season compared to other seasons. In Summer and Autumn, the sphericity value are closer to 1.

Figure 6.13: Box plot of Spherical Fraction distribution vs seasons
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Table 6.2: Eight clusters found in POLDER-3 data that used as labels for supervised learning for N = 1, 131, 324 resulting in cluster labels
for aerosols on 339,402 datapoints. observations [16]

heightCluster Proposed Aerosol Types No. of data points
1 Smoke 25,328
2 Mixed Smoke 31,212
3 Marine 76,391
4 Urban-Industrial 56,527
5 Dusty Smoke 15,105
6 Marine Dust 63,879
7 Dust 52,711
8 Polluted Dust 18,249

In Table 6.2, eight clusters found in POLDER-3 data that used as labels for supervised learning for N = 339,402
observations are stated. We use these class labels as the beginning step in the classification of the supervised
learning algorithm. In table 6.3 we see the centroids and their distribution of the standard values of the four
hyperparameter variables SSA, AE, sphere_frac_coarse and m_r_fine.

Table 6.3: Centroids of the eight found clusters and their hyperparameter values [16]

SSA_490nm AE sphere_frac_coarse m_r_fine
V1 0.9576819 0.7875106 0.1670247 1.401883
V2 0.7673035 0.9227107 0.1968260 1.459614
V3 0.9429534 0.7984468 0.2313506 1.549334
V4 0.9505147 0.7686054 0.5509413 1.425842
V5 0.9456691 0.5514180 0.9155904 1.414115
V6 0.9407932 1.2898002 0.9177906 1.534532
V7 0.7485480 0.9893963 0.9272278 1.463060
V8 0.9466955 1.2850705 0.9317799 1.390002

With these centroids and labels collected from Vincent de Bakker’s thesis, we implement the supervised learning
algorithms from scikitlearn library in python in jupyter notebook environment.
The pair-wise plot in Figure 6.14 is used to understand the relationship between the microphysical parameters
derived from POLDER-3 data. The plots are displayed in the matrix format where the row name represents the x
axis and the column name represents the y axis. Here the feature label 1,2,3,4,5,6,7 and 8 refer to Smoke, Mixed
Smoke, Marine, Urban Industrial,Dusty Smoke, MarineDust,Dust and PollutedDust respectively. Each plot in
the figure apart from the diagonal plots are a pairwise plot of two microphysical parameters and show how the
clusters are distributed for different ranges of these parameters. The diagonal plots are different from the rest of
the pairwise plots. A univariate distribution plot is displayed to show the marginal distribution of the data in each
column in the form of a kernel density plot. The remaining plots are scatter plots.

Recall from the previous chapter in implementation that we left of with finding the eight centroids for POLDER-3.
R Each of the 339,402 datapoints for POLDER-3 for the year 2006 was assigned a class label associated with
these centroids. We use these labels as the ground truth for training the data. We split that data into 70 % for
training and 30 % for testing. In the 70 % of the data that is used as the training data, we again split it further
according to the number of folds for cross-validation. Cross-validation is used to evaluate a model’s ability to
predict new data that was not used in its estimation, in order to identify issues such as overfitting or selection bias,
as well as to provide insight into how the model will generalize to a different dataset.
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Figure 6.14: Feature Pair Plot

In the code below we are making four demarcations of the data for the purpose of fitting and predicting values.
X_train includes all the data that will be used to train the model. For our use case 70% of the data (339,402
data points) are in X_train. The remaining 30% of the data (101,821 datapoints) are in X_test. These values are
used to predict the class label and the accuracy of the model. y_train refers to the class labels. y_test contains the
category class labels for the test data. This is used to test the accuracy between the actual and predicted categories.

Listing 6.1: Code to split the dataframe into train and test set

X_train, X_test, y_train, y_test = train_test_split(X,Y,
train_size=0.7,test_size=0.3,random_state=100)

In the code below, seven folds are made to meet the cross-validation step as discussed in Chapter 5. Recall that
in methodology we explained the k-fold cross validation technique. Here, we use k = 7. For each fold, 1/7 data
is used as a testing set and 6/7ths of the data is used as a training data set. This step is repeated 7 times for
each algorithm. Scoring is a method of evaluating the performance of the algorithms on the test set depending
on the number of correct predictions and can be measured in terms of accuracy, root mean square error or other
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parameters. Once the model is trained on 70 % of the data, we used the negative mean squared error metric to
calculate the score of each of these models on the test set. As mentioned in Chapter 5, we now compare the
performance of the three algorithms: SVM, KNN and RF based on root mean square scoring metric. The theory
behind each of these algorithms is mentioned in Chapter 4 and the implementation is provided in Chapter 5.

Listing 6.2: Code to calculate the least mean squared error

for name, model in models:
kfold = model_selection.KFold(shuffle=True,n_splits=7,random_state=0)
cv_results = model_selection.cross_val_score(model, X_train, y_train,cv=kfold,

scoring='neg_mean_squared_error')
results.append(np.sqrt(np.abs(cv_results)))
names.append(name)
print("%s: %f (%f)" % (name,

np.mean(np.sqrt(np.abs(cv_results))),np.std(np.sqrt(np.abs(cv_results)),ddof=1)))
#boxplot algorithm comparison

fig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results )
ax.set_xticklabels(names)
plt.show()

In 6.15, we are looking at the algorithm with the least mean squared error. The Root Mean Squared Error or
(RMSE) is a metric that indicates how near a fitted line is to the data points and is our chosen metric for scoring
the algorithms. The lower the mean squared error the better the performance of the model. In this instance, from
Figure 6.15, it is evident that the algorithm SVM with a score of 0.3 has the least mean squared error and thus
has the best performance.

Figure 6.15: Root Mean Squared Error results of KNN, RF and SVM

Next, it is worth noting that in the preliminary analysis, we took the default hyperparameter tuning setting for
fitting the SVM. However, running a simulating training for different parameter setting yields different estimator
performance results. In listing 6.3, we can see that there are three hyperparameters that can be varied to improve
the performance of the SVM algorithm. GridsearchCV, a library function in Scikit-learn provides a comprehen-
sive search over specified parameter values for an estimator. For this grid search we vary the values of C and
Gamma. C is varied from 0.1, 1, 10 and 100. Gamma is varied from 1, 0.1, 0.01 and 0.001. The term ”kernel” is
employed because the SVM uses a collection of mathematical functions to give a window to change data. Here,
we use kernel function as Radial Basis Function (RBF). It is quite similar to the Gaussian distribution. RBF Ker-
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nel overcomes the space complexity problem as RBF kernel SVMs only store the support vectors during training
and not the entire dataset. Note that while scoring the algorithm on default parameter we had chosen k = 7. Here,
we used cross-validation with k = 5 to reduce the time it takes run the optimization.

The RBF kernel function for two points X1 and X2 computes the closeness between the two points:

K(X1, X2) = exp (−γ||Xi −Xj ||2)

where || X1 −X2 || is the Euclidean distance between the two points X1 and X2

Listing 6.3: We use the code below to find the best parameter search for SVM algorithm.

from sklearn.model_selection import GridSearchCV

# defining parameter range
param_grid = {'C': [0.1, 1, 10, 100],

'gamma': [1, 0.1, 0.01, 0.001],
'kernel': ['rbf']}

grid = GridSearchCV(svm.SVC(), param_grid, refit = True, verbose = 3)

# fitting the model for grid search
grid.fit(X_train, y_train)

In Figure 6.16, 80 different fits were generated for the SVM algorithm. The resulting fits with different hyperpa-
rameters, i.e. different combinations of C and gamma for the kernel as ’rbf’ are generated. The resulting fits are
compared with each other against the score generated. The higher the score, the better performing is the algorithm.
Among the two hyperparamters being tuned, low C means low error and if we have large C it means large error.
The second hyperparameter Gamma dictates the curvature in the decision boundary. The higher the Gamma,
the higher the curvature. Conversely, the lower the gamma the lower the curvature.’C’: 100, ’gamma’: 0.001,
’kernel’: ’rbf’ SVC(C=100, gamma=0.001) generated the best fit. It is worth noting that each hyperparameter fit
takes a different amount of time to train. For example, for C = 0.1 and gamma =1 took a total of 41 mins to train.

Figure 6.16: Parameter search

From Figure 6.17, we can see that the mean score is lowest for parameter gamma = 1. The mean test score is
the highest for gamma = 0.001. The general trend seen in the graph in Figure 6.18 is that mean test score rises
initially and then falls off with increasing gamma. For lower value of gamma at 0.001 for C =100 the score was
the highest and then it falls off for C=100. The highest accuracy is for C = 100 and gamma = 0.001.
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Figure 6.17: Dependence of C and Gamma with accuracy. The Y
axis represents the mean test score of accuracy taken over the five
folds of cross-validation. The X axis represents the parameter C
varied over 0.1, 1, 10 and 100. The line graphs represent the four

parameters of gamma at 0.001, 0.01, 0.1 and 1.

Figure 6.18: Dependence of C and Gamma with accuracy. The Y
axis represents the mean test score of accuracy taken over the five
folds of cross-validation. The X axis represents the parameter
Gamma varied over 0.001, 0.01, 0.1 and 1. The four line graphs
represent different values of parameter C at 0.1, 1, 10 and 100.

From Figures 6.19 and 6.20 we see the dependence of C and Gamma with mean rank score.Rank 1 is for C =100
and gamma =0.001. The rank 16 or lowest rank is for C =0.1 and gamma = 0.001.

Figure 6.19: Dependence of C and Gamma with rank score. The Y
axis represents the rank score from 1 to 16. The lower the tank the
more desirable the algorithm. The X axis contains the parameter C.
The four line graphs are for parameter gamma at 0.001, 0.01, 0.1 and

1.0.

Figure 6.20: Dependence of C and Gamma with rank score. The Y
axis represents the rank score from 1 to 16. The lower the tank the
more desirable the algorithm. The X axis contains the parameter

Gamma. The four line graphs are for parameter C at 0.1, 1.0, 10.0 and
100.0. Rank 1 is for C =100 and gamma =0.001. The rank 16 or

lowest rank is for C =0.1 and gamma = 0.001.

In Figures 6.21 and Figures 6.22, we see the dependence of C and Gamma with mean fit time. The Y axis rep-
resents the mean fit time in seconds. The general trend observed in these graphs is that as the parameter gamma
increases the mean fit time increases while not actually resulting in an increase in accuracy. Rank 1 is for C =100
and gamma =0.001 also takes the least amount of fit time. The rank 16 or lowest rank is for C =0.1 and gamma =
0.001 also takes a low amount of train time. The general trend observed in these graphs is that as the parameter
gamma increases the mean fit time increases while not actually resulting in an increase in accuracy. From the
graph it is evident that the variable does no have a major impact on the fit time as parameter Gamma does. From
a variation of gamma of 0.1 to 1, we see a great increase in the mean fit time.
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Figure 6.21: Dependence of C and Gamma with mean fit time. The
Y axis represents the mean fit time in seconds. The X axis contains
the parameter Gamma. The four line graphs are for parameter C at

0.1, 1.0, 10.0 and 100.0.

Figure 6.22: Dependence of C and Gamma with mean fit time. The
Y axis represents the mean fit time in seconds. The X axis contains
the parameter C. The four line graphs are for parameter Gamma at

0.001, 0.01, 0.1 and 1.0.

From Figure 6.23 we see that dependence of C and Gamma with mean fit time. The Y axis represents the mean
fit time in seconds. The X axis contains the parameter C. The four line graphs are for parameter Gamma at 0.001,
0.01, 0.1 and 1.0. we see that the Rank 1 is for C =100 and gamma =0.001 also takes the least amount of fit time.
The rank 16 or lowest rank is for C =0.1 and gamma = 0.001 also takes a low amount of train time. The general
trend observed in these graphs is that as the parameter gamma increases the mean fit time increases while not
actually resulting in an increase in accuracy. From the graph it is evident that the variable does no have a major
impact on the fit time as parameter Gamma does. From a variation of gamma of 0.1 to 1, we see a great increase
in the mean fit time.

Figure 6.23: Dependence of C and Gamma with mean fit time. The Y axis represents the mean fit time in seconds. The X axis contains the
parameter C. The four line graphs are for parameter Gamma at 0.001, 0.01, 0.1 and 1.0.

From Figure 6.24 and 6.25 we see the dependence of C and Gamma with the test score. In Figure 6.24, the Y
axis represents the rank score from 1 to 16. The lower the tank the more desirable the algorithm. The X axis
contains the parameter C. The four line graphs are for parameter gamma at 0.001, 0.01, 0.1 and 1.0. Rank 1 is for
C =100 and gamma =0.001. While in Figure 6.25 we see that the Y axis represents the rank score from 1 to 16.
The lower the tank the more desirable the algorithm. The X axis contains the parameter Gamma. The four line
graphs are for parameter C at 0.1, 1.0, 10.0 and 100.0. Rank 1 is for C =100 and gamma =0.001. The rank 16 or
lowest rank is for C =0.1 and gamma = 0.001. From the graphs we learn that the rank 16 or lowest rank is for C
=0.1 and gamma = 0.001.
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Figure 6.24: Dependence of C and Gamma with rank score. The Y axis represents the rank score from 1 to 16. The lower the tank the more
desirable the algorithm. The X axis contains the parameter C. The four line graphs are for parameter gamma at 0.001, 0.01, 0.1 and 1.0.

Rank 1 is for C =100 and gamma =0.001.

Figure 6.25: Dependence of C and Gamma with test score. The Y axis represents the rank score from 1 to 16. The lower the tank the more
desirable the algorithm. The X axis contains the parameter Gamma. The four line graphs are for parameter C at 0.1, 1.0, 10.0 and 100.0.

Rank 1 is for C =100 and gamma =0.001. The rank 16 or lowest rank is for C =0.1 and gamma = 0.001.

Encapsulated in Figure 6.26, we can see how the Variance and Bias is affected by changes in C and Gamma. The
SVM algorithm has low bias and high variance, but this trade-off can be changed by increasing the C parameter
that influences the error margin allowed in the training data which increases the bias but decreases the variance.

Figure 6.26: Dependence of Variance and Bias on C and Gamma

6.1.1. Validation
Cross-validation is a scheme employed to validate the accuracy of the model. For both POLDER-3 and OMI
when comparing the three algorithms of SVM, RF and KNN a seven fold cross-validation scheme was used on
the default parameters. The three algorithms are compared and the best performing algorithm is chosen based
on these results. The best fit for the hyperparameters are made using GridSearchCV method. To ensure that the
best fit for the hyperparameters are chosen, we employ a five fold cross-validation technique. Five fold ensures
that we are validating the technique while ensuring the time taken is not too high as is a case if a higher value
of k is chosen for cross-validation. In the table 6.4 we can see the five fold cross-validation for selecting the
best hyperparameters for POLDER-3. The scoring is done for all the five folds and then we calculate the mean
and standard score. Finally, we calculate the rank based on these metrics, which decides the best performing
hyperparameters which in our case are as given below:

Listing 6.4: Best fit parameters from GridSearchCV

SVC(C=100, Gamma=0.001, kernel='rbf')
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Once the hyper-parameters are tuned and the model implementation is performed, it is time to interpret and
understand the results obtained from the algorithm. From figure 6.27, we can see the confusion matrix for SVM
implementation. It is an array of size n x n, where n refers to the number of output label classes. For our application
this number is eight since we have eight aerosol clusters that we are classifying. Here, the rows and the columns
represent the class labels. In each cell of the confusion matrix Ci,j we have the value equal to the number of
observations known to be in group i and predicted to be in group j. The function to create the confusion matrix
takes as input X_test and y_test. Recall that X_test refers to the 30 % of the dataset (101,821) used for testing
the dataset. Recall from Chapter 5 that from [16] we get the clusters where 1: Smoke, 2:Mixed Smoke, 3:Marine,
4:Urban-Industrial, 5:dusty Smoke, 6:Marine Dust, 7:dust and 8:Polluted Dust. In the confusion matrix given
below, the Y axis denotes the True label and the X axis denotes the Predicted label.

Figure 6.27: Confusion Matrix for the 8 cluster classes

From the confusion matrix, we can see that for a total of 7032 datapoints Class label 1 : Smoke was correctly
classified as Smoke for 6882 datapoints. It was incorrectly labelled as label 2:Mixed Smoke for 21 data points,
incorrectly labelled as label 3:Marine for 26 datapoints, incorrectly labelled as label 4:Urban Industrial for 27 dat-
apoints, incorrectly labelled as label 5:dusty Smoke for 10 datapoints, incorrectly labelled as label 6:MarineDust
for 2 datapoints, and incorrectly labelled as label 7:dust for 64 datapoints. The algorithm did not misclassify any
class 1 label:Smoke as class 8 label:Polluted Dust.

This gives us a f1-score of 0.98 as seen in figure 6.28. Classes 4:Urban Industrial, 6:Marine Dust, 7:dust have
a similar precision of 0.98. The classes 2:Mixed Smoke, 3:Marine, 5:Dust Smoke and 8:Polluted Dust have a
higher f-1 score of 0.99. We saw in Chapter 5 methodology that the f-1 score is the harmonic mean of precision
and recall. The score corresponding to each class tells the accuracy of the classifier in classifying the data points
in the particular class compared other classes. The support refers to the number of samples of the true predictions
in detected in the particular class. In the figure below, we see the precision, recall and f-1 score along with the
support for the best fit of SVM algorithm.

Figure 6.28: Precision, Recall and F-1 Score
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In a nutshell, to sum up the results we found out that the algorithm SVM outperforms the algorithms KNN and
RF for the POLDER-3 data set. Furthermore, tuning the hyper parameters further increases the accuracy of
the algorithm. Using the supervised learning algorithm we can classify the aerosol classes from Figure 6.29 as
shown below into Figure 6.30 with 99% accuracy. We arrived at these results using a series of assumptions and
considerations, it is worth noting that any variation in these assumptions and considerations might lead to a varied
results. These will be discussed in the discussion section Section 6.1.2.

Figure 6.29: Plot of all eight clusters

Since plotting all the eight cluster gets too crowded on the world map, we now visualize each cluster on the world
map.
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(a) Cluster 1:Smoke (b) Cluster 2:Mixed Smoke

(c) Cluster 3:Marine (d) Cluster 4:Urban Industrial

(e) Cluster 5:dusty Smoke (f) Cluster 6: Marine Dust

(g) Cluster 7:Dust (h) Cluster 8: Polluted Dust

Figure 6.30: Aerosol Clusters throughout the year. Here the eight clusters are plotted on the world map. Cluster 1 is smoke, 2:Mixed
Smoke, 3:Marine, 4:Urban Industrial, 5:dusty Smoke, 6:Marine Dust, 7:dust and 8:Polluted Dust.

6.1.2. Discussion on POLDER-3
Our requirement when we started this study was to meet an accuracy of 90% on aerosol classification using su-
pervised learning. Ideally, when working on a classification problem like ours the best score is 100% accuracy.
However, this score is impossible to achieve as an upper bound. Predictive modelling tends to inherently have pre-
diction error from a range of sources including incompleteness of the data sample, noise in the data and stochastic
nature of the modeling algorithm. Thus, we have set the baseline to be 90% accuracy. Using SVM on POLDER-3
dataset with hyperparameter tuning we reached an overall accuracy of 99%, precision of 99%, recall of 98% and
f1-score of 99% on POLDER-3 dataset for the eight classes of aerosols. Thus, at first glance we have met the
90% accuracy requirement. However, as previously stated there were a few assumptions and considerations we
made to arrive at these results. Changing these assumptions and considerations would change the results. Firstly,
in our study we only used a selected group of combination of hyperparameters in our GridSearchCV algorithm,
if we were to do a more comprehensive and exhaustive search over a larger hyperparameter range, it might result
in an even greater accuracy than achieved here. However, having already met the 90% requirement we set out
to achieve, we did not focus on further optimizing the result. Secondly, we used the negative root mean square
metric as the scoring metric to choose between the three algorithms RF, KNN and SVM as was seen in Figure
6.15. We saw from the Figure that SVM had the least error and thus we chose it for further optimizing. It is worth
noting that when these three algorithms were compared they were run on the default settings in the Scikit-learn
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python library. RF was a very close in error to SVM with the difference being 0.05 root mean squared error. Had
a different set of hyperparameters been chosen, RF might have been the best performing model with least error.
We can conclude here that tuning the other algorithms might have lead to different results than what was achieved
using the default hyperparameters. This leads us to believe that optimization bias has occurred in choosing SVM
as the best performing model for POLDER-3 dataset.

In this study we classified eight types of aerosols classes using microphysical parameters and cluster labels as
input. In this study we used the same microphysical features as used by de Bakker. We used four features:
fraction of spheres - sphere_frac_coarse, real refractive index - m_r_fine, single scattering albedo - SSA_490 nm,
and angstrom exponent- ae. The reader is referred to Section 5.7.1 for more information on these microphysical
features. de Bakker used these features to find eight aerosol clusters

1. Smoke
2. Mixed-Smoke
3. Marine
4. Urban-Industrial
5. Dusty Smoke
6. Marine Dust
7. Dust
8. Polluted Dust

in the data using unsupervised learning. It is also worth noting that the difference in the definition of these clusters
is possible. De Bakker [16] had manually labelled these algorithms based on the region of occurrence, and thus it
is possible that there was a degree of overlap between the said cluster name. The difference between our study and
that of de Bakker is that we use supervised learning to categorize the aerosol classes while he ran unsupervised
learning to assign clusters. The training of his algorithms took well over 24 hours. Once his best fitting model
was trained, we tested it on the test dataset which generated aerosol type data labels as input for our supervised
learning techniques. The motivation to use supervised learning over unsupervised learning is two fold, one it is
faster than unsupervised learning for aerosol classification and second once the model is trained it can be ported
to different subsets of unseen data for example different years to find the aerosol types. Firstly, unsupervised
learning means that to find aerosol clusters in a dataset we needed to cluster the whole dataset without any knowl-
edge of howmany clusters may be present and use a exploratory study to find the number of clusters that might be
present. This exploratory study is very time consuming as was evident when running de Bakker’s code to find the
clusters and generate the output labels. Once we get these output labels, we need to manually label them. With
supervised learning we can use baseline studies to get the number of cluster labels and then train further models
faster on these baselined dataset.

In the next section we look at the implementation and results on OMI data. The reader is referred to Chapter 7
for an overall discussion of the methodology and the obtained results on OMI and POLDER-3.
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6.2. OMI Data
The OMI instrument is a nadir-viewing wide-field-imaging spectrometer onboard the earth observing system
Aura satellite. It provides a daily coverage of the globe at the nadir resolution of 24 x 13km2 [7] 1. OMI mea-
sures nitrogen dioxide, sulphur dioxide, bromine oxide, OClO, and aerosol characteristics, which constitute the
key air quality components. It measures the sunlight incident directly and back-scattered in the ultraviolet-visible
spectrum ranging from 270 nm to 500 nm.

Table 6.5: OMI instrument specifications [48]

Item Parameter
Visible 350 - 500 nm
UV UV-1: 270 to 314 nm, UV-2: 306 to 380 nm
Spectral resolution 1.0 - 0.45 nm FWHM
Spectral sampling 2-3 for FWHM
Telescope FOV 114 (2600 km on ground)
IFOV 3 km, binned to 13 x 24 km
Detector CCD: 780 x 576 (spectral x spatial) pixels
Mass 65 kg
Duty cycle 60 minutes on daylight side
Power 66 watts
Data rate 0.8 Mbps (average)

In Section 5.2, we saw how OMI data was collected. We mentioned that there were two aerosol data products
called OMI AERO data and OMI AEROUV data. These two datasets have different variables as shown in Table
6.6. We decided to use the OMI AERO data for this thesis since that dataset has aerosol type labels present in the
data.

Table 6.6: Difference between aerosol products from OMI

OMI O Data Products OMI AERO UV data Products
2) ’AbsorbingAerosolOpticalThicknessMW’,

3) ’AerosolModelMW’,

4) ’AerosolOpticalThicknessMW’,

5) ’AerosolOpticalThicknessPassedThresholdMean’,

6) ’AerosolOpticalThicknessPassedThresholdStd’,

7) ’Latitude’,

8) ’Longitude’,

9) ’SingleScatteringAlbedoMW’,

10) ’SingleScatteringAlbedoPassedThresholdMean’,

11) ’SingleScatteringAlbedoPassedThresholdStd’,

12) ’SolarZenithAngle’,

13) ’TerrainReflectivity’,

14) ’UVAerosolIndex’,

15) ’VISAerosolIndex’,

16) ’ViewingZenithAngle’

1) ’CloudFraction’,

2) ’CloudOpticalDepth’,

3) ’FinalAerosolAbsOpticalDepth354’,

4) ’FinalAerosolAbsOpticalDepth388’,

5) ’FinalAerosolAbsOpticalDepth500’,

6) ’FinalAerosolOpticalDepth354’,

7) ’FinalAerosolOpticalDepth388

8) ’FinalAerosolOpticalDepth500’,

9) ’FinalAerosolSingleScattAlb354’,

10) ’FinalAerosolSingleScattAlb388’,

11) ’FinalAerosolSingleScattAlb500’,

12) ’UVAerosolIndex’

The OMI data is split into 362 files. Some files for days are missing thus totalling 362 instead of 365 signalling
the duration of the entire year. Below, in Figure 6.31 the distribution of these files can be seen. Each file is stored
with the he5 extension. Consider a he5 file to be a non - readable json file that contains key-value pairs. The keys
and values define the observations (date, cloud coverage, data quality, etc. ), the raw data , and the processed
data. The he5 files are read with Python using the h5py module.

1https://aura.gsfc.nasa.gov/omi.html

https://aura.gsfc.nasa.gov/omi.html
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Figure 6.31: 362 daily OMI Level 3 files distribution

The OMI data for aerosols mainly consist of OMAERO: (Multi wavelength for better characterization over the
oceans) and OMERUV (Two near UV wavelength for over the land). The OMAERO data consists of Aerosol
Model (16 bit integer value where each bit indicates a characteristic of the model.) Sample data:

Lon Lat Aerosol Model Value
x y 1211

abcd

The Most significant bit (a) represents the aerosol type: The four aerosol models are:
1 - WA – Weakly absorbing
2 – BB – Biomass Burning
3 – DD – Desert Dust
4 - VO – Volcanic Aerosols

These are further subdivided into subtypes depending on their size distribution, refractive index and vertical
distribution giving each classification a unique four digit identifier (abcd as referred before)[67].

Figure 6.32: Dataframe containing variables extracted for OMI data. Here there are six columns containing Latitude, Longitude, Aerosol
Model, Aerosol Optical Thickness, Single Scattering Albedo and UV Aerosol Index for a single day in Level 3(L3) file.
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Recall that as mentioned for description for Figure 5.7, a correlation matrix is a table that presents the coefficients
of correlation between variables. Each cell in the table contains the information about the correlation between two
variables. The value of correlation ranges from 0 to 1, with 0 being no correlation between the features to 1 being
highly correlated. Correlation gives us a clear understanding of the importance of the features before building the
machine learning model. With the help of the correlation analysis we can also check if we have multicollinearity
i.e. high correlation between the variables, which is undesirable in the role of building a machine learning model.
From Figure 6.33, we can deduce the following points:

Figure 6.33: Feature correlation matrix for the three features and Aerosol Model.

First, we begin exploring the OMI 2006 dataset by plotting the four major aerosol classes on the world map. They
actually have 50 overall classes, of which the four major types are: Weakly absorbing, Biomass Burning, Desert
Dust, and Volcanic Aerosols. These are further classified into smaller subsets of each type depending on the
difference on microphysical parameters. In the 2006 OMI data that these graphs are maps for the distribution of
the aerosol types is as follows: Total Data points: 4061606

From 6.34, 6.35 and 6.36, we can see the seasonal changes across various months in the distribution of the
four aerosol classes of weakly absorbing aerosol, biomass burning aerosol, desert dust aerosol, and volcanic
aerosol. Across the summer months of June, July and August, and the autumn months of September, October
and November there is a greater distribution of biomass burning aerosol. Across the winter months of December,
January and February and the spring months of March, April and May, there is a smaller distribution of biomass
burning aerosol. Overall, it can be observed that biomass burning aerosol has shown a downward trend in the
Australian subcontinent from September to December.

Figure 6.34: Plotting four major aerosol types for OMI from January to April. 1 - WA – Weakly absorbing 2 – BB – Biomass Burning 3 –
DD – Desert Dust 4 - VO – Volcanic Aerosols
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Figure 6.35: Plotting four major aerosol types for OMI from May to August. 1 - WA – Weakly absorbing 2 – BB – Biomass Burning 3 –
DD – Desert Dust 4 – VO – Volcanic Aerosols

Figure 6.36: Plotting four major aerosol types for OMI from September to December. 1 - WA – Weakly absorbing 2 – BB – Biomass
Burning 3 – DD – Desert Dust 4 – VO – Volcanic Aerosols

Recall that we found four classes for OMI 2006 data, namely, Weakly absorbing, Biomass burning, Desert Dust
and Volcanic Aerosols. OMI generated a total of 4061606 datapoints over the entire year in terms of daily files.
To limit the training time we used averaging to generate a sampled dataset. We used these labels as ground truth
for training the OMI data. There were only two data points for Volcanic Aerosols in the training dataset and
thus this algorithm effectively only classifies between the three classes: Weakly Absorbing, Biomass burning
and Desert Dust. We have selected the microphysical parameters Aerosol Optical Thickness, Single Scattering
Albedo and UV Aerosol Index to be trained in the supervised learning models. The relationship between these
microphysical variables and the clusters are present in Figure 6.37.The pair plot in Figure 6.37 is used to under-
stand the relationship between the hyperparameters derived from OMI data. Here the feature label 1,2 and 3 refer
to Weakly absorbing, Biomass burning and DesertDust respectively.
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Figure 6.37: Feature Pair Plot

The test set has 16314 datapoints with three class labels. The next step of implementing the supervised learning
models RF, KNN and SVM on the OMI data is presented below. From the figure 6.38, we can see that the
algorithm RF has the least value for the Root Mean Squared Error, and thus can conclude that for non-optimized
parameters, RF is the best performing algorithm. Note that the lower the negative mean squared error the better
performing the algorithm. The least performing algorithm is SVM for OMI dataset. Interestingly, SVM was
the best performing algorithm for the POLDER-3 dataset. Thus, it can be concluded that there is no one size
fits all solution in machine learning instead it depends on the individual case and depends on the dataset and the
classification task at hand.
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Figure 6.38: Root Mean Squared Error results of KNN, RF and SVM on OMI data

Now, we try to improve the accuracy of the RF algorithm using hyperparameter tuning. In Scikit-learn, there
are four hyperparameters for RF that can be tuned. In the case of the RF, hyperparameters include the number of
decision trees in the forest and the number of features considered by each tree when splitting a node. Scikit-Learn
package implements a default set of hyperparameters for all models, but these are not always the most optimal
set of hyperparameters. The best hyperparameters are not known ahead of time and tuning the model results in
trial-and-error approach to detect the best fit. Now, to find the best fit we try different combinations to evaluate
the performance of each model.
In Chapter 5, we saw the implementation details for RF in section 5.4. We saw the various parameters and their
definitions. From the documentation on RF in Scikit-Learn [61], we learn that the number of trees in the forest
(n estimators) and the number of features considered for splitting at each leaf node (max features) are important.
Along with these, we also train max depth and criterion. We use GridSearchCV to run fits with changing the
parameters given below:

Listing 6.5: GridSearchCV selected for Random Forest

param_grid = {
'n_estimators': [200, 500],
'max_features': ['auto', 'sqrt', 'log2'],
'max_depth' : [4,5,6,7,8],
'criterion' :['gini', 'entropy']

}

After fitting 5 folds for each of 60 candidates, totalling 300 fits we get the best parameter fit given below:

Listing 6.6: Best fit parameters from GridSearchCV

RandomForestClassifier(criterion='entropy', max_depth=8, max_features='sqrt',
n_estimators=200)

In Figures 6.39, 6.40, 6.41, we see how the mean test score varies with different combinations of the hyperparam-
eters. We can clearly see that the the hyperparameter setting shown in the listing above are the best performing
hyperparameters maximizing accuracy for the RF algorithm. In Figure 6.39 we see how the mean test score
varies with changing max depth parameter for different parameter criterion ’gini’ and ’entropy’. From the graphs
it is evident that as the max depth parameter is increased the accuracy increases. The maximum accuracy is
achieved for max_depth =8. Secondly, the parameter entropy shows the slightly higher maximum accuracy for
fixed max_features. Among the three param_max_features, ’sqrt’ had the maximum accuracy.
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Figure 6.39: Mean test score variation with changing max depth parameter for different parameter criterion ’gini’ and ’entropy’. The Y axis
represents the mean test score accuracy of the five folds of cross-validation. The X axis depicts the parameter maximum depth which is
varied from 4,5,6,7,8. The two column represent the parameter criterion and entropy as explained in Chapter 5. Line graphs are drawn for

three parameters ’auto’, ’sqrt’ and ’log2’.

From Figure 6.40 we see how the mean test score varies with different parameter max depth for changing pa-
rameter max features as ’auto’, ’sqrt’ and ’log2’. The Y axis represents the mean test score accuracy of the five
folds of cross-validation. The X axis depicts the parameter maximum depth which is varied from 4,5,6,7,8. The
three columns represent the three parameters of max_features ’auto’, ’sqrt’, and ’log2’. In each graph, the two
ling plots represent the criterion ’gini’ and ’entropy’. From the graphs we can see that ’gini’ initially has a higher
accuracy than ’entropy’ for lower values of max_depth. Then for max_depth = 8, the accuracy of ’entropy’ is
highest, making it the best performing hyperparameter.

Figure 6.40: Analyzing the optimization results. The Y axis represents the mean test score accuracy of the five folds of cross-validation.
The X axis depicts the parameter maximum depth which is varied from 4,5,6,7,8. The X axis depicts the parameter maximum depth which
is varied from 4,5,6,7,8. The three columns represent the three parameters of max_features ’auto’, ’sqrt’, and ’log2’. In each graph, the two

ling plots represent the criterion ’gini’ and ’entropy’.

From Figure 6.41 we can see the mean test score variation for two parameter criterion gini and entropy for the
parameter max features as ’auto’, ’sqrt’ and ’log2’. The Y axis represents the mean test score accuracy of the five
folds of cross-validation. The X axis shows the categorical variation between the parameters ’gini’ and ’entropy’.
The three columns represent the parameter max features ’auto’, ’sqrt’, and ’log2’. In each plot the line graphs
represent the max depth varied from 4,5,6,7,8. From these graphs we can infer that the accuracy is maximum for
max depth =8. Futhermore, for all max depth except 8 , the criterion ’gini’ yields a higher accuracy than ’entropy’.
Finally, the second column with parameter max feature ’sqrt’ with parameter criterion ’entropy’ and max depth
= 8 has the highest accuracy compared to all other settings.
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Figure 6.41: Analyzing the optimization results. The Y axis represents the mean test score accuracy of the five folds of cross-validation.
The X axis shows the categorical variation between the parameters ’gini’ and ’entropy’. The three columns represent the parameter max

features ’auto’, ’sqrt’, and ’log2’. In each plot the line graphs represent the max depth varied from 4,5,6,7,8.

In Figure 6.42, we see how the mean fit time varies for different setting of the parameters. It is evident that
the settings giving the highest accuracy also take the highest time to fit. The general trend that is visible from
these graphs is that n estimator =500 takes longer time to fit when compared to n estimator n = 200. In the second
column for n estimator = 500, the mean fit time gradually increases with increasing max depth with the maximum
time being taken for max depth = 8.

Figure 6.42: Analyzing the optimization results - 4. The Y axis contains the mean fit time taken over the five folds of cross-validation. The
X axis the parameter max depth varied over 4,5,6,7,8. The three columns represent the parameter max features ’auto’, ’sqrt’ and ’log2’. In

each plot the two line graphs show the two parameters of n estimators as 200 and 500.

6.2.1. Validation
Cross-validation is a scheme employed to validate the accuracy of the model. For both POLDER-3 and OMI
when comparing the three algorithms of SVM, RF and KNN a seven fold cross-validation scheme was used on
the default parameters. The three algorithms are compared and the best performing algorithm is chosen based
on these results. The best fit for the hyperparameters are made using GridSearchCV method. To ensure that the
best fit for the hyperparameters are chosen, we employ a five fold cross-validation technique. Five fold ensures
that we are validating the technique while ensuring the time taken is not too high as is a case if a higher value of
k is chosen for cross-validation. In the table 6.7 we can see the five fold cross-validation for selecting the best
hyperparameters for OMI. The scoring is done for all the five folds and then we calculate the mean and standard
score. Finally, we calculate the rank based on these metrics, which decides the best performing hyperparameters
which in our case are as given below:

Listing 6.7: Best fit parameters from GridSearchCV

RandomForestClassifier(criterion='entropy', max_depth=8, max_features='sqrt',
n_estimators=200)
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Note that due to errors in the averaging technique no volcanic aerosols were detected in the database for OMI. Augustine
Volcano, in the Cook Inlet of the Gulf of Alaska, erupted on January 13 and 14, 2006. According to the Alaska Volcano Ob-
servatory (AVO), these explosive eruptions produced clouds of volcanic ash and flows of mud and rock fragments. However,
our study reported no such aerosol type in the training data. Thus we effectively classify only three aerosol types: Weakly
absorbing, Biomass burning and DesertDust.
Figure 6.43 shows the confusion matrix for the three classes. From the confusion matrix we see that the three classes Weakly
absorbing, Biomass burning and Desert Dust. For class 1: Weakly absorbing 13525 datapoints were correctly classified as
weakly absorbing. 11 datapoints were incorrectly classified as Biomass burning and 6 datapoints were incorrectly classified as
DesertDust. For class 2: Biomass burning, 1514 datapoints were correctly classified as biomass burning, 14weremisclassified
as Weakly absorbing and none were misclassified as Desert Dust. For class 3: Desert Dust, 1237 were correctly classified as
Desert Dust, 7 datapoints were misclassified as Weakly absorbing, and no datapoints were misclassified as Biomass burning.

Figure 6.43: Confusion Matrix for Random Forest

From Figure 6.44 we can see the precision, recall and support for the three aerosol classes. Class 1 : Weakly absorbing aerosol
had a precision of 100%, recall of 99%, and f1-score of 100%. Class 2: Biomass burning had a precision of 96%, recall of
99% and f1-score of 98%. Class 3: DesertDust aerosol had a precision of 98%, recall of 99% and f1-score of 98%.

Figure 6.44: Precision, Recall and Support

6.2.2. Discussion on OMI
Our requirement when we started this study was to meet an accuracy requirement of 90% on aerosol classification using super-
vised learning. As already stated in Section 6.1.2 we set the benchmark to be 90% accounting the inherent prediction errors
present in classification algorithms. The reader is referred to Section 6.1.2 for a detailed discussion. Using RF on OMI dataset
with hyperparameter tuning we reached an overall macro accuracy of 98%, precision of 99%, recall of 99% and f1-score of
99% on OMI dataset for the three classes of aerosols. In a nutshell, we found out that the algorithm RF outperforms the algo-
rithms SVM and KNN for the OMI data set. However, we interpret these results with caution since we have to account for
optimization bias that might have occured when we chose default hyperparameter setting when evaluating the performance
of these three algorithms.

A research by Wonie Choi et al [10] performed aerosol classification using space-borne measurement using AERONET data
using RF technique. Initially, seven classes were classified that included: pureDust,Dust-dominant mixed, pollution-dominant
mixed aerosols, and pollution aerosols containing four categories: strongly, moderately, weakly and non-absorbing. Themodel
was evaluated on remaining AERONET data and resulted in an accuracy of only 59%. When only four classes pureDust,Dust-
dominant mixed, strongly absorbing and non-absorbing were classified the accuracy shot to 72%. In our study we use RF as
a classifier on OMI data with Aerosol Optical thickness, Single Scattering albedo and UV Aerosol Index as input and three
class labels: Weakly absorbing, Biomass burning and Desert Dust. We get a classification accuracy of 99% across three
classes when measured on our test set. Although this accuracy seems to be high, the limitation is the low number of classes
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resulting in lower information regarding the number of aerosols. One recommendation is to increase the number of classes in
the training set so as to maintain a high amount of information on aerosol distribution.
The reader is referred to Chapter 7 for an overall discussion of the methodology and the obtained results on OMI and POLDER-
3.

6.3. Discussion of the Results on POLDER-3 and OMI data
We began the study by collecting POLDER-3 satellite data from SRON and OMI satellite data from the NASA website.
POLDER-3 instrument on PARASOL satellite was launched just five months after OMI instrument on Aura satellite in the
same year 2004. These satellite data were chosen due to the information they contained regarding aerosols and the fact that
both Parasol(satellite containing POLDER-3 instrument) and Aura(containing OMI instrument) satellites were on the same
A-train. A-train nickname of Afternoon constellation refers to a group of satellites following the same orbital track in a sun-
synchronous polar orbit crossing the equator at about 1:30 PM local time one after the other in close succession. Being in
the A-train resulted in near-concurrent observations from the instruments. These aid in further developing a comprehensive
understanding of the earth science data. Inspite of being on the same A-train there are certain dissimilarities between the two
instruments. POLDER-3 is a passive optical imaging radiometer polarimeter instrument whereas OMI is a visible ultraviolet
spectrometer. POLDER-3 measures in the wavelength 443 and 910 nm FWHM while OMI measures from 270 to 500 nm.
The reader is referred to Table 3.2 for further information regarding the two satellites. Even though POLDER-3 has many
more detailed aerosol micro-physical features as compared to OMI, it is not as desirable to study anymore since the mission
was discontinued on 18 December 2013, exactly nine years after launch. The reader is referred to Chapter 3 Section 3.2 for
further information regarding the POLDER-3 instrument and PARASOL mission.

POLDER-3 data is not freely available on the internet databases like OMI https://disc.gsfc.nasa.gov/datasets/OMAE
ROe_003/summary?keywords=OMAERO_003. The data for POLDER-3 had to be specifically obtained from Otto Hasekamp
from SRON. The data received from SRON was in the format of 1 degree x 1 degree gridded monthly averaged files in .nc
format for the year 2006. Since, POLDER-3 was obtained for the year 2006, OMI data was also downloaded from the NASA
database for the year 2006 hoping to keep synergy between the observations. The OMI data was in the he5 format. Note
that different tools are required to extract these different file formats. .nc is a NetCDF file format whereas .he5 is a hdf5 file.
HDF5 is extremely feature-rich, and has some great performance features and easier to use with python. On the other hand
NetCDF has a simpler API, and a much wider tool base. R was used to extract the data fron the .nc file due to easier library
extraction in R while python was used to extract OMI data due to easier available libraries like h5py for extraction.

On further examination, it was found that dealing with OMI data was not as straightforward as working on POLDER-3 data.
POLDER-3 data was rather straightforward with 12 files for each month of the year 2006. In each file 55 variables on aerosol
(Refer to Appendix B.1 for all the variables) were available to use to study aerosols. On the other hand the OMI data has two
variables called OMI O and OMI UV data products. On studying the user guide it was clear that these two data products had
different variables. The user is referred to Table 5.7 to study these different variables. OMAERUV uses near-UV algorithm
while OMAERO uses a multi-wavelength algorithm that uses upto 20 wavelength bands between 331 nm and 500 nm. On
speaking with the key investigator of the product Dr. Pepijn Veefkind (as seen in Appendix D), it was evident that OMAERO
product containing Aerosol Optical Depth, Single Scattering Albedo, and other geolocation was preferred over OMAERUV.
Moreover it also came with the Aerosol Model Classification with the four major classes being Weakly Absorbing, Biomass
Burning, Desert Dust and Volcanic Aerosols which was not present in the OMAERUV dataset. Some files were missing for
the months February and March resulting in 362 daily files instead of 365 for the year 2006. Note that this was in contrast to
the 12 files for POLDER-3. The OMAEROe files contain daily data from approximately 15 orbits. The maximum files size
for the OMAEROe data product is about 7Mbytes. This L3 product selects the best aerosol value from the L2 data. The spatial
resolution is 0.25 degree x 0.25 degree. Unlike the eight clusters in the POLDER-3 data, in the OMI data we could only
classify three aerosol classes. This is a consequence of the difference in cluster labels collection between POLDER-3 and
OMI. POLDER-3 clusters were generated using unsupervised clustering and then manually labelling the clusters. OMI on the
otherhand has four preclassified clusters as already mentioned above. With one class Volcanic Aerosol being less prevalent
in the dataset due to averaging error it is not present in the training set and thus effectively only three classes are present in
OMI. Volcanic eruption occurred on a few days in the month but when we averaged the aerosol on a geolocation for a month
we only obtained the most prevalent aerosol and not these special cases that happen on only a few days in a month. In the
future, a better averaging technique can be employed to generate the monthly averaged files such that no information is lost
when averaging all the days in a month.

Now coming to the discussion on supervised learning algorithm, in our study we implemented SVM, KNN and RF in python
from the scikit-learn library. These are standalone models that we used in this study. In the future, we could use a combination
of models using voting classification to further increase the accuracy of the models. Another point for discussion is the hyper-
parameter tuning that we used in this thesis. In our study we only used a selected group of combination of hyperparameters
in our GridSearchCV algorithm, in the future we recommend running a more comphrehensive and exhaustive search over a
larger hyperparameter range. Finally, coming to the discussion of attachment of the source of data in our case use used offline

https://disc.gsfc.nasa.gov/datasets/OMAEROe_003/summary?keywords=OMAERO_003
https://disc.gsfc.nasa.gov/datasets/OMAEROe_003/summary?keywords=OMAERO_003
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data either downloaded from the online database like OMI or obtained from scientists like SRON for POLDER-3. In the
future we could directly make a live connection to the data source such that we get real-time updates of the different aerosol
types. One useful application could be detecting harmful aerosols as was done with air monitoring service.

To sum up, as seen in Table 6.8 our requirement was to meet an accuracy of 90% on aerosol classification using supervised
learning. Using SVM on POLDER-3 dataset with hyperparameter tuning we reached an overall accuracy of 99%, precision
of 99%, recall of 98% and f1-score of 99% on POLDER-3 dataset for the eight classes of aerosols. Using RF on OMI dataset
with hyperparameter tuning we reached an overall accuracy of 99%, precision of 99%, recall of 99% and f1-score of 99% on
OMI dataset for the three classes of aerosols. We see in Figure 6.19 that root mean square error for RF is 0.08 and that of
KNN is 0.16 and that for SVM is 0.17. This difference is very small compared to the difference in POLDER-3 where the
root mean square for the three algorithms were 0.2 for SVM, 0.35 for RF and 0.8 for KNN. From this we can infer two points.
One, all the three algorithms perform better with overall lower error on the OMI dataset than on POLDER-3 dataset. Second,
the difference of performance error between the two best performing algorithms is very close: RF and KNN being only 0.08
for OMI and 0.04 between SVM and RF for POLDER-3. This means that optimization bias plays a significant effect on both
the datasets. Due to time constraints the best hyperparameter settings for all the three algorithms were not explored and only
the best performing algorithm was tuned with the different combination of hyperparameter for both POLDER-3 and OMI.
Furthermore, it was observed that tuning the hyper parameters further increases the accuracy of the algorithm.

In Table 6.8 we can see that we have met all the requirements we set out to meet in this thesis except for the requirement
of being able to distinguish between five types of aerosol for OMI. Our algorithm on OMI can classify only three types of
aerosol.

Table 6.8: Requirements

ReQ-ID Requirement SubCategory Verification
R-001 The application shall imple-

ment supervised learning al-
gorithm for the purpose of
aerosol classification on a
satellite data

Application The application
implemented su-
pervised learning
algorithm KNN,
SVM and RF on
POLDER-3 data
and classified eight
aerosol types

R-002 The application shall be be
implemented for two satel-
lite missions

Application The application was
implemented on
two satellite data
POLDER-3 and
OMI.

R-003 The application shall to a
reasonable degree to accu-
racy be able to distinguish
between at least five major
types of aerosols.

Application The application on
POLDER-3 can
classify between
eight type of aerosols.
However, The appli-
cation can on OMI
classify between
only three type of
aerosols.

R-004 The application shall be ca-
pable to be deployed and
tested on a computer with
the specifications of 1.4 Ghz
processor and 8 Gb RAM

Performance The application was
run and tested on a
computer with the
specifications of 1.4
Ghz processor and 8
Gb RAM

R-005 The application shall reach a
performance metric of accu-
racy of at least 90% on the
test dataset

Performance The application
reached a perfor-
mance metric of 99%
on the test dataset



7
Conclusion and Recommendations

In the thesis, we implemented the three supervised learning algorithms SVM, KNN, and RF on satellite data to classify aerosol
types. To reach this goal we followed a series of steps. First, we researched into possible satellite data missions whose data
contained information regarding atmospheric aerosols. We selected two missions and satellite instruments POLDER-3 and
OMI whose data was obtained from Otto Hasekamp and NASA repository respectively. The data obtained was in different
formats and the next step was to clean and preprocess the data. The NaNs in the data were removed. Following this, all the
hyperparameters in the data relating to aerosols were studied and features were selected to be trained in the machine learning
models. Recall that supervised learning techniques require a class label. To obtain the class label for POLDER-3, the research
of Vincent de Bakker [16] was studied, understood and recreated. Unsupervised learning techniques SOM and K means
were run in R studio to get these labels and the data was stored in .RDA format. This .RDA format was ported to python to
implement the supervised learning techniques. Scikit-learn is a library in python which provides a library to implement these
algorithms. The library and the function calls were studied and the scoring metric was chosen as negative mean squared error
from which root mean squared error of the two algorithms were compared. SVM proved to be the best performing algorithm
for POLDER-3 data. Following this step, optimization of the algorithm was performed and optimal combination for C and
Gamma were chosen while keeping an eye out for balancing bias and variance. The algorithm improved from 93% accuracy
to 99% accuracy with hyperparameter tuning. To implement the supervised learning algorithm on OMI, again, we needed the
class labels as was needed for POLDER-3. However, in this case the data already came with preclassified clusters. From fifty
smaller classes there were four major class labels of which three were the most dominant. With these class labels, we again
trained and evaluated the performance of the model on OMI data. In this case however, RF was the best performing model.
The thesis started with a few research questions listed below. This chapter presents the conclusions to the research questions
that were sought out in the thesis.

1. What are the past satellite missions that give information regarding the atmospheric aerosols?
As seen in Chapter 2, satellite missions gathering data regarding atmospheric aerosols began in 1975 with the Apollo-
Soyuz satellite with the SAM experiment. Since then there have been various missions gathering data regarding the
atmospheric aerosols. The lists of these satellite missions was gathered in Table B.1. Of these various satellites and
missions, two were chosen in this thesis. These being, POLDER-3 and OMI. For further discussion on POLDER-3
and OMI, the reader is referred to Table 3.2.

2. Which algorithms have higher accuracy on the satellite aerosol retrievals?
We can see in Appendix A that several studies state using artificial intelligence to give a boost of classification on
satellite data. Again, the answer to this question is not straightforward since the accuracy depends on the algorithm
of choice and the dataset at hand. Based on the literature review in Chapter 4, KNN, RF and SVM show the highest
promise on satellite aerosol retrievals.

3. What is the classification error of themachine learning algorithms SVM, KNN andRF for aerosol classification?
Using the default setting of hyperparameters in the Scikit-learn library in python we saw that the three algorithms SVM,
KNN and RF performed differently on the two datasets POLDER-3 and OMI. In Figure 6.15 we saw using the root
mean squared error metric that error for RF is 0.08 and that of KNN is 0.16 and that for SVM is 0.17. This difference
is very small compared to the difference in POLDER-3 where the root mean square for the three algorithms were 0.2
for SVM, 0.35 for RF and 0.8 for KNN. Using SVM on POLDER-3 dataset with hyperparameter tuning we reached
an overall accuracy of 99%, precision of 99%, recall of 98% and f1-score of 99% on POLDER-3 dataset for the eight
classes of aerosols. Using RF on OMI dataset with hyperparameter tuning we reached an overall accuracy of 99%,
precision of 99%, recall of 99% and f1-score of 99% on OMI dataset for the three classes of aerosols.

(a) Is it possible to build a higher accuracy than that presently achieved by the existing algorithms for aerosol
classification?
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Yes, it is possible to build a higher accuracy model. A greater range of Gridsearch CV hyperparameters could
result in an even greater accuracy. Further, lowering the number of aerosol classes might lead to higher accuracy
but it would result in lower information being contained. For example, if we were to remove the aerosol class
with more misclassifications in it, it would reduce the overall error and increase the accuracy. Note here that our
algorithms achieve 99% accuracy on both OMI and POLDER-3. However, the model on POLDER-3 generated
eight aerosol classes while OMI generated only three aerosol classes.

(b) How do the classification results of SVM, KNN and RF compare with each other?
We can see in Figure 6.38 that for the OMI dataset There is no one size fits all solution to compare the performance
of the three algorithms SVM, KNN and RF. Each dataset i.e. POLDER, OMI yield a different result. In Figure
6.15 we see that SVM was the best performing algorithm for POLDER-3 dataset. While, in 6.38 we can see that
RF was best performing algorithm for OMI dataset.

Through the implementation of the thesis, the following points were the key learning which were discussed in detail in Section
6.3.

1. Machine learning shows a promise to be a viable tool for the purpose of aerosol classification and inturn in earth
observation.

2. Hyperparameter tuning can greatly improve the accuracy of the model
3. Through this study we demonstrate that Random forest is a viable model capable of aerosol classification on OMI data

with Aerosol Optical Thickness, Single Scattering Albedo and Aerosol Index as input.
4. Through this study we demonstrate that Support Vector Machine is a viable model capable of aerosol classification on

POLDER-3 data with Angstrom Exponent, Single Scattering Albedo, Sphericity and Real refractive Index as input.

7.1. Recommendations and Future Work
As was already mentioned in Chapter 7 there are a few areas recommended for future work for the thesis project. In this
section we reiterate those points as well as add a few new points as recommendation for future work.

As a first recommendation, we begin with the choice of satellite mission for future study for aerosol classification. In this study
we studied POLDER-3 and OMI. In the future we recommend using data from two instruments. The first recommendation is
the TROPOMI instrument on the Copernicus Sentinel-5 Precursor mission as it bridges the gap between SCIAMACHY/En-
visat (which terminated in April 2012), the OMI/AURA mission, and the upcoming Copernicus Sentinel-4 and Sentinel-5
missions in terms of global atmospheric data products. When compared with its predecessors, TROPOMI has a much higher
resolution of 7 km x 3 km at best, while OMI has only 24 km x 13 km. This is a huge improvement of the predecessors
GOME2 at 80 km x 40 km and SCIAMACHY at 200 km x 30 km. TROPOMI has a wider wavelength range than the OMI
instrument, having bands in the Near Infrared (NIR) and Short-Wave Infrared (SWIR). The major goal of using the NIR band
is to improve cloud correction for trace gas retrievals. When compared to the lower oxygen A band (758–770 nm), the deeper
oxygen A band (758–770 nm) includes much more information about clouds, including cloud pressure and cloud percentage.
Prior to the launch of TROPOMI, daily global measurements of aerosol height were not operational. Active sensors, most
notably ground-based lidar systems or the space-borne Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), pro-
vided aerosol profiles, while multi-angle sensors, most notably theMulti-Angle Imaging SpectrRadiometer (MISR), provided
aerosol layer height . While active sensors have a high vertical resolution, CALIOP and MISR are only capable of observ-
ing narrow tracks. Passive sensors, on the other hand, such as TROPOMI, can cover the entire globe in a single day. The
TROPOMI data was available to all the users beginning July 2018. The Sentinal 5 Precursor (S5P) mission will support the
data and the data products till 2023. The data can be accessed via the Copernicus Open Access Hub.More work could be done
in the future for training the TROPOMI base parameters for aerosol classification. With additional products like the Aerosol
layer Height being added to the arsenal of products released to the public this could result in better training performances. Sec-
ondly we recommend 3MI, a POLDER-3 follow-on instrument to be launched in the 2020s that has extended spectral range in
the shortwave infrared with enhanced capabilities for cloud retrieval 1. With better instruments and dedicated missions which
provide data with more precision and higher cloud cover retrievals, the performance of the algorithm can be expected to be
better.

Our next recommendation is the choice of aerosol microphysical parameters used as an input to the supervised learning
algorithm. It was clear from our study that POLDER-3 and OMI had different aerosol microphysical parameters. The choice
of which microphysical parameters we chose to train the algorithmmight impact the training of the algorithm. We recommend
that one could use additional features from POLDER-3 dataset as used in the study by Russel et al [54] including Dust single
scattering albedo, imaginative refractive index, absorption angstrom exponent and volume of fine mode divided by the total
volume to form input set for supervised training. It is unclear how adding features would impact that overall accuracy since
adding more features is not directly proportional to increased accuracy. To further prove this point we mention the study by
Russel which could generate only seven classes

1https://www.sron.nl/missions-earth/aerosol-missions
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1. PureDust
2. PollutedDust
3. Biomass Burning, Dark Smoke
4. Biomass Burning, White Smoke
5. Urban Industrial, developed economy
6. Urban Industrial, developing economy
7. Pure Marine

using unsupervised learning using eight microphysical parameters. de Bakker generated eight clusters using only four micro-
physical parameters. Further analysis on how these microphysical parameters affects the accuracy is out of scope of our study
and thus is recommended for future work.

As discussed in Section 6.3 in our study we implemented standalone models SVM, KNN and RF in python from the scikit-
learn library. In the future, we could use a combination of models using voting classification to further increase the accuracy
of the models. Another point for discussion is the hyperparameter tuning that we used in this thesis. In our study we only used
a selected group of combination of hyperparameters in our GridSearchCV algorithm, in the future we recommend running a
more comphrehensive and exhaustive search over a larger hyperparameter range. Another point for recommendation is the
way OMI data was averaged. Since, we received the files in daily format we wanted to create a monthly average. In doing the
monthly average on a geolocation we lost some information so example on volcanic aerosols that we released when the volcani
erupted on only a few days. In the future, a better averaging technique can be employed to generate the monthly averaged
files such that no information is lost when averaging all the days in a month. Finally, coming to the discussion of attachment
of the source of data in our case use used offline data either downloaded from the online database like OMI or obtained from
scientists like SRON for POLDER-3. In the future we could directly make a live connection to the data source such that we get
real-time updates of the different aerosol types. One useful application could be detecting harmful aerosols in an air monitoring
service application.To end, this is only the beginning of the era of machine learning in the field of Earth Observation, and there
is much work to be done to fine tune the algorithm and input precise and larger datasets aimed at a targeted application at hand.
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B
Code repository

All the code developed as part of this thesis could be found be found at this repository: https://github.com/sniggy93/
Machinelearning_Aerosol

Figure B.1: Github link

B.1. POLDER parameters
1. AOT440nm
2. AOT490nm
3. AOT563nm
4. AOT670nm
5. AOT865nm
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6. AOT1020nm
7. SSA440nm
8. SSA490nm
9. SSA563nm
10. SSA670nm
11. SSA865nm
12. SSA1020nm
13. refffine
14. vefffine
15. mrfine
16. mifine
17. Nfine
18. spherefracfine
19. reffcoarse
20. veffcoarse
21. mrcoarse
22. micoarse
23. Ncoarse
24. spherefraccoarse
25. errorAOT440nm
26. errorAOT490nm
27. errorAOT563nm
28. errorAOT670nm
29. errorAOT865nm
30. errorAOT1020nm
31. errorSSA440nm
32. errorSSA490nm
33. errorSSA563nm
34. errorSSA670nm
35. errorSSA865nm
36. errorSSA1020nm
37. errorrefffine
38. errorvefffine
39. errormrfine
40. errormifine
41. errorNfine
42. errorspherefracfine
43. errorreffcoarse
44. errorveffcoarse
45. errormrcoarse
46. errormicoarse
47. errorNcoarse
48. errorspherefraccoarse
49. RRI
50. errorRRI
51. IRI
52. errorIRI
53. Extinction Angstrom Exponent(EAE)490670
54. EAE490865
55. EAE490670
56. EAE490865
57. errorEAE490670
58. errorEAE490865
59. errorAE490670
60. errorEAE490865
61. numberofpointsland
62. numberofpointsocean
63. latcorners
64. loncorners
65. latcenter
66. loncenter
67. psurf
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B.2. R coding for POLDER data
Packages are collections of R functions, data, and compiled code in a well-defined format. The directory where packages are
stored is called a library. R comes with a standard set of packages.
The RData format (usually with extension .rdata or .rda) is a format designed for usewith R, a system for statistical computation
and related graphics, for storing a complete R workspace or selected ”objects” from a workspace in a form that can be loaded
back by R.

B.3. Motivation for the project
https://www.youtube.com/watch?v=zIH0NimCHZ8 explains wny air pollution if worth investing in. IT further explains
the history and the future of satellite missions for aerosol and air pollution monitoring.
Video from NASA explains what aerosols are and why they are important to study. Its essentially a beginners guide.
Today’s space business is undergoing fast transformation, owing in major part to six transformative factors: There is an in-
crease in the amount of high-resolution optical and radar imagery; Increased competition in the marketplace as a result of the
flood of images may result in price reductions for EO data; Increased rivalry in the space sector is driving advancements in
satellite hardware and software. As a result, the cost of accessing and operating in space is decreasing; Increases in temporal
data resolution are altering our perspective on our globe and creating new markets; Cloud computing is cutting the cost of data
storage and computation; and machine learning and artificial intelligence techniques for processing EO data are enhancing out-
comes and significantly reducing the time required to examine imagery. [Source: https://medium.com/radiant-earth-i
nsights/how-earth-observations-cloud-computing-and-machine-learning-enables-global-development
-solutions-9ad1c2e60762]
1 From the NASA archives we can find from literature certain regions on the globe where we expect to find a certain type of
aerosols. One such example is the dust aerosol, which is expected over the desert regions like the Sahara desert. The table
below shows a compilation of such data over certain regions over the globe.

Table B.1: Expected Aerosols from literature over certain regions on the globe [2]

Reference Area Aerosol Type
North of Antarctica Airborne salt band
Oceans salt , sulfates from microalgae
Deserts dust plumes
Eastern USA, Urban Europe anthropogenic aerosols: sulphates , organic carcon
Eastern China Heavy blankets of aerosols

1https://earthobservatory.nasa.gov/features/Aerosols/page2.php

https://www.youtube.com/watch?v=zIH0NimCHZ8
https://www.youtube.com/watch?v=4eh6IKahbok
https://medium.com/radiant-earth-insights/how-earth-observations-cloud-computing-and-machine-learning-enables-global-development-solutions-9ad1c2e60762
https://medium.com/radiant-earth-insights/how-earth-observations-cloud-computing-and-machine-learning-enables-global-development-solutions-9ad1c2e60762
https://medium.com/radiant-earth-insights/how-earth-observations-cloud-computing-and-machine-learning-enables-global-development-solutions-9ad1c2e60762


C
Meeting with Atmospheric Sciences Experts

C.1. Meeting with Dr. Pepijn Veefkind
Dr. Pepijn Veefkind, having been a principal investigator for TROPOMI and a deputy investigator for OMI proved to the
most reliable source to validate the assumptions made in the thesis. The following questions were asked during the meeting.

• How can the data from TROPOMI and OMI be interrelated or compared interms of atmospheric sciences?
• Can visual images for the aerosols from the OMI and TROPOMI be analysed for further processing?
• How accurate is the calibration of the OMI data aerosol classification algorithm?
• What is the best method to combine the files to create a file of L3 data?
• why we would choose imagery vs sensor data for analysis from the satellite data
• How can we easily generate L3 files from L2 data.
Answer: The tools I was referring to is harp: https://stcorp.github.io/harp/doc/html/index.html . You want to use the
regard operation (see https://stcorp.github.io/harp/doc/html/operations.html(.

C.2. Meeting with Herman Russchenberg
Herman Russchenberg is an atmospheric sciences researcher at the CiTG Geosciences department at TU Delft. His research
interests are understanding aerosols, clouds and their interaction in the global cycle.
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