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Operationally-Safe Peer-to-Peer Energy Trading in
Distribution Grids: A Game-Theoretic

Market-Clearing Mechanism
Giuseppe Belgioioso, Wicak Ananduta, Sergio Grammatico, Senior Member, IEEE,

and Carlos Ocampo-Martinez, Senior Member, IEEE

Abstract—In future distribution grids, prosumers (i.e., energy
consumers with storage and/or production capabilities) will trade
energy with each other and with the main grid. To ensure an
efficient and safe operation of energy trading, in this paper,
we formulate a peer-to-peer energy market of prosumers as
a generalized aggregative game, in which a network operator
is responsible to enforce the operational constraints of the
system. We design a distributed market-clearing mechanism with
convergence guarantee to an economically-efficient, strategically-
stable, and operationally-safe configuration (i.e., a variational
generalized Nash equilibrium). Numerical studies on the IEEE
37-bus testcase show the scalability of the proposed approach
and suggest that active participation in the market is beneficial
for both prosumers and the network operator.

Index Terms—Prosumers, energy management, distributed
algorithm, generalized Nash equilibrium

NOMENCLATURE

Variables and Cost Functions
fdi [e] cost of the dispatchable units
fmg [e] cost of trading with the main grid
f st [e] cost of the storage units
f tr [e] cost of trading with other prosumers
J [e] total cost function of each prosumer
λmg [e/kWh] dual variable for grid trading constraints
µpb [e/kWh] dual variable for power balance constraints
µtg [e/kWh] dual variable for grid physical constraints
µtr [e/kWh] dual variable for reciprocity constraints
pdi [kW] power generated by dispatchable units
p` [kW] real power line of two neighboring busses
pmg [kW] power traded with the main grid
pch [kW] charging power of the storage units
pds [kW] discharging power of the storage units
ptg [kW] power exchanged between bus and main grid
ptr [kW] power traded with another prosumer
q` [kVAr] reactive power line
σmg [kW] aggregate of active load on the main grid
v p.u. voltage magnitude
x [%] state of charge of the storage units
θ [rad] voltage angle
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Parameters
α, β, γ - step sizes of the proposed algorithm
b [kW] aggregate of passive consumer demand
B [ohm−1] line susceptance
cdi [e/kWh] linear coefficient (coeff.) on the cost

of dispatchable units (DU)
cta [e/kWh] trading tariff
ctr [e/kWh] per-unit cost of trading
dmg [e/kWh2] coeff. on the cost of trading with

the main grid
ecap [kWh] max. capacity of the storage units
ηst - leakage coefficient of storage units
ηch, ηds - charging and discharging efficiencies
G [ohm−1] line conductance
H - time horizon
p̄ch [kW] max. charging power of the storages
pd [kW] power demand
p̄ds [kW] max. discharging power of the storages
pdi, pdi [kW] max. and min. power generated by DU
pmg, pmg [kW] max. and min. total power

traded with the main grid
ptr [kW] max. power traded between prosumers
Qdi [e/kWh2] quadratic coeff. on the cost of DU
Qst [e/kWh2] coeff. on the cost of storage units
s [kVA] max. line capacity
Ts [hour] sampling time
v, v p.u. max. and min. voltage magnitude
x, x p.u. max. and min. state of charge
θ, θ [rad] max. and min. voltage angle

Sets
B set of busses in the electrical network
Bmg set of busses connected to main grid
C coupling constraint set
E set of links in the trading network
Gt graph representing trading network
Gp graph representing physical network
H set of discrete-time indices
L set of power lines (links)
N set of prosumers
N+ set of prosumers and network operator
Ni set of trading partners of prosumer i
N b

y set of prosumers of bus y
P set of passive consumers
Pb

y set of passive consumers of bus y
U local constraint set

I. INTRODUCTION

In recent years, there has been a fast growing penetration
of distributed and renewable energy sources as well as stor-
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age units in distribution networks [1]. The parties who own
these devices are called prosumers, i.e., energy consumers
with production and/or storage capabilities. Unlike traditional
consumers, prosumers can have a prominent role in achieving
energy balance in a distribution network, since they can
contribute to energy supply. Therefore, currently there is a
large research effort to study potential evolutions of electricity
markets and decentralized energy management mechanisms
that can enable active participation of prosumers [1]–[4].

Focusing on spot markets, i.e., day-ahead and intra-day
markets, each prosumer has to decide its energy production
and consumption over a certain time horizon, with the ob-
jective of minimizing its own expenses while satisfying its
physical and operational constraints. Most of existing works
formulate such peer-to-peer (P2P) markets via game-theoretic
or multi-agent optimization frameworks [2], [5]–[10]. For
instance, the authors of [2] provide a literature survey of
early works on game-theoretic P2P market models. More
recently, [5] considers a coalition game approach for peer-to-
peer trading of prosumers with storage units. Furthermore, [6]–
[10] propose economic dispatch formulations where energy
trading is incorporated as coupling (reciprocity) constraints
and each prosumer has local decoupled objectives.

Generalizing the previous papers, our preliminary work in
[11] does not only consider multi-bilateral trading but also
trading with the main grid, which extends the coupling to both
constraints and objective functions. Mathematically, clearing
the resulting P2P market corresponds to finding a generalized
Nash equilibrium (GNE), namely, a configuration in which no
prosumer has an incentive to unilaterally deviate. Similarly,
[12] formulates a generalized Nash game of energy sharing or
a multilateral (instead of bilateral) trading among prosumers,
and proposes a distributed algorithm to find a solution of the
market equilibrium problem. In parallel, we note that operator-
theoretic approaches have been effectively exploited to design
distributed algorithms that efficiently solve GNE problems
under the least restrictive assumptions [13]–[17].

In practice, however, direct trading among prosumers might
jeopardize system reliability, for which network operators are
responsible. Therefore, when designing energy management
mechanisms for a distribution grid, one must also consider
the role of network operators and the reliability of the system
itself. For example, [18], [19] treat decentralized markets and
operational reliability separately, and propose market-clearing
mechanisms where decentralized market solutions must be ap-
proved by a network operator based on the system operational
constraints. An alternative is based on incorporating network
charges, which may reflect utilization fees and network con-
gestion, into the market formulation, as discussed in [20], [21].
Differently, [8], [22] include network operators as players in
the market and impose network operational requirements as
constraints in the market problem, which is formulated as a
multi-agent optimization. A similar approach is considered in
[23], which employs generalized Nash bargaining theory and
decomposes the problem into two hierarchical subproblems (a
social welfare maximization and an energy trading problem).

In this paper, we consider a P2P energy market in which
each prosumer is capable of not only generating and storing

energy but also directly trading with other prosumers as
well as with the main grid. Similarly to [22], we include
a network operator, whose objective is to ensure safe and
reliable operation of the system. However, we formulate the
market clearing as a GNE problem, in which the players (i.e.,
prosumers and network operators) have coupling objective
functions and constraints (Section II). Our market formulation
extends the preliminary work [11] by including network oper-
ational constraints and system operators in the model, which
complicate the analysis as we need to exploit the problem
structure to derive an efficient algorithm.

The main advantage of our decentralized market design
is that its equilibria are not only economically-optimal but
also strategically-stable (i.e., no prosumer has any incentive to
unilaterally deviate), operationally-safe and reliable (i.e., the
network operational requirements are met), and socially-fair
(i.e., the marginal loss for satisfying the grid constraints is the
same for each prosumer). Furthermore, we design a provably-
convergent, scalable and distributed market-clearing algorithm
based on the proximal-point method for monotone inclusion
problems [24, § 23] (Section III). Finally, we investigate
via extensive numerical studies: (i) the effectiveness of the
proposed market framework; (ii) the impact of distributed
generation, storage and P2P tradings in distribution grids; and
(iii) the scalability of the proposed market-clearing mechanism
with respect to both the number of prosumers and the number
of P2P tradings in the distribution network (Section IV).

Notation: R denotes the set of real numbers, N denotes
the set of natural numbers, and 0 (1) denotes a matrix/vector
with all elements equal to 0 (1). A⊗B denotes the Kronecker
product between the matrices A and B. For a square matrix
A ∈ Rn×n, its transpose is A>, [A]i,j represents the element
on the row i and column j. A � 0 (< 0) stands for
positive definite (semidefinite) matrix. For any x ∈ Rn,
‖x‖2A = x>Ax, with square symmetric matrix A � 0. For
a closed set S ⊆ Rn, the mapping projS : Rn → S denotes
the projection onto S, i.e., projS(x) = argminy∈S ‖y − x‖.

II. PEER-TO-PEER MARKETS AS A GENERALIZED NASH
EQUILIBRIUM PROBLEM

We denote a group of N prosumers connected in a distri-
bution network by the set N = {1, 2, . . . , N}. Each prosumer
might have the capability of producing, storing, and consuming
power, depending on their devices and assets. Furthermore,
each prosumer might also trade power directly with the main
grid and with (some of) the other prosumers, which we will
refer to as trading partners. The trading partners of an agent
might be defined based on geographical location or on bilateral
contracts [4]. We model the trading network of prosumers as
an undirected graph Gt = (N , E), where N is the set of
vertices (agents) and E ⊆ N × N is the set of edges, with
|E| = E. The unordered pair of vertices (i, j) ∈ E if and only
if agents j and i can trade power. The set of trading partners
of agent i is defined as Ni = {j| (j, i) ∈ E}.

Moreover, we also consider the electrical distribution net-
work, to which the prosumers are physically connected.
This network consists of a set of B busses, denoted by
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Fig. 1: Left plot: A modified IEEE 37-bus network with
12 prosumers (boxes) and 15 passive loads (black triangles);
busses are represented by black circles, physical lines in L
by solid lines. Right plot: P2P trading network, where trading
relations (E) are represented by blue double-arrow lines.

B := {1, 2, . . . , B}, connected with each other by a set of
power lines, denoted by L ⊆ B×B. Thus, we represent the
physical electrical network as a connected undirected graph
Gp = (B,L). In Gp, each prosumer is connected to a bus and,
in general, one bus may have more than one prosumer. Figure 1
shows an example of trading and physical electrical networks.
Furthermore, we assume that a distribution network operator
(DNO) is responsible to maintain the reliability of the system,
i.e., to ensure the satisfaction of the physical constraints of the
electrical network [18], [19], [22].

We focus on P2P spot markets, i.e., day-ahead and intra-day
markets, similarly to [4], [6], [22]. Thus, we denote the horizon
of the decision profiles by H = {1, 2, . . . ,H}. For instance, in
a day-ahead market, typically, the sampling period is one hour
and the time horizon is H = 24 hours. Moreover, as in [22],
we also include the physical constraints of the distribution
network to ensure that a solution is not only economically
optimal but also meets the standards of the DNO.

Let us model such a P2P market as a generalized game.
Specifically, we assume that each prosumer, or agent, i ∈ N
aims at selfishly minimizing its cost function, which might
involve decisions of other agents, subject to local and cou-
pling constraints. Furthermore, we consider the DNO as an
additional agent, i.e., agent N+1, whose only objective is to
ensure the constraints of the physical network are met. In this
regard, let ui ∈ Rni denote the decision of agent i, for all
i ∈ N+ := {1, . . . , N+1}. Furthermore, we denote by u the
decision profile, namely, the stacked vectors of the decisions of
all agents, i.e., u := col({uj}j∈N+), and by u−i the decision
of all agents except agent i, i.e., u−i = col({uj}j∈N+\{i}).

Each agent i is self-interested and wants to compute an
optimal decision, u∗i , that solves its local optimization problem

u∗i ∈


arg min

ui

Ji (ui, u−i)

s.t. ui ∈ Ui
(ui, u−i) ∈ C,

(1a)

(1b)
(1c)

where Ji is the cost function of agent i, Ui is the local

constraint set, and C is the set of coupling constraints. In the
remainder of this section, we describe Ji, Ui, and C, upon
which we postulate standard assumptions, as formalized next.

Assumption 1. For each agent i ∈ N+, the function
Ji(·, u−i) is convex and continuously differentiable, for all
fixed u−i; the set Ui is nonempty, closed and convex. The
global feasible set X :=

(∏
i∈N Ui

)
∩ C satisfies the Slater’s

constraint qualification [24, Eq. (27.50)]. 2

A. Modelling the prosumers
In this section, we introduce the prosumer model. We

consider that power might be generated by non-dispatchable
generation units, e.g., solar and wind-based generators, or
dispatchable units, e.g., small-scale fuel-based generators.
Moreover, we also consider the slow dynamics of storage
units. We restrict the model of each component such that
Assumption 1 holds, that is, we avoid non-convex formulations
and provide a convex approximation instead. Not only this
approach is common in the literature, see e.g. [22], [25],
[26], but also practical especially for real-time implementation,
which requires fast and reliable computations.

First, we suppose that the components of the decision vector
of prosumer i ∈ N , ui, are the power generated from a
dispatchable unit (pdii ∈ RH ), the charging and discharging
power of a storage unit (pchi , p

ds
i ∈ RH ), the power traded

with the main grid (pmg
i ∈ RH ), and the power traded with its

neighbors j ∈ Ni (ptr(i,j) ∈ RH ), for all j ∈ Ni. For simplicity
of exposition, we assume that each prosumer only owns at
most one dispatchable unit and/or one storage unit. Next, we
present the model for these devices.

Dispatchable units: The objective function of a dispatch-
able unit, denoted by fdii : RH → R, is typically a convex
quadratic function [10], [25], [27], e.g.,

fdii (pdii ) = ‖pdii ‖2Qdi
i

+ (cdii )
>
pdii , (2)

where Qdi
i < 0 and cdii are constants. Furthermore, the power

generation pdii is limited by

pdi
i
1H ≤ pdii ≤ pdii 1H , ∀i ∈ N di,

pdii = 0, ∀i /∈ N di,
(3)

where pdii > pdi
i
≥ 0 denote maximum and minimum total

power production of the dispatchable generation unit, and
N di ⊆ N the subset of agents that own dispatchable units.

Storage units: Each prosumer might also minimize the
usage of its storage units, for instance, in order to reduce its
degradation. The corresponding cost function is denoted by
f sti : RH → R and defined as in [27] as follows:

f sti (pchi , p
ds
i ) = ‖pchi ‖2Qst

i
+ ‖pdsi ‖2Qst

i
, (4)

where Qst
i < 0. The battery charging and discharging profiles,

pchi = col((pchi,h)h∈H) and pdsi = col((pdsi,h)h∈H), respectively,
are constrained by the battery dynamics [25], [28],

xi,h+1 = ηsti xi,h + Ts

ecapi
(ηchi p

ch
i,h − ( 1

ηdsi

)pdsi,h),

xi ≤ xi,h+1 ≤ xi, ∀i ∈ N st,∀h ∈ H,
pchi ∈ [0, pchi ], pdsi ∈ [0, pdsi ], ∀i ∈ N st,

pchi = 0, pdsi = 0, ∀i /∈ N st,

(5)
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where xi,h denotes the state of charge (SoC) of the storage
unit at time h ∈ H, ηsti , η

ch
i , η

ds
i ∈ (0, 1] denote the leakage

coefficient of the storage, charging, and discharging efficien-
cies, respectively, while Ts and ecapi denote sampling time
and maximum capacity of the storage, respectively. Moreover,
xi, xi ∈ [0, 1] denote the minimum and the maximum SoC of
the storage unit of prosumer i, respectively, whereas pchi ≥ 0
and pdsi ≥ 0 denote the maximum charging and discharging
power of the storage unit. Finally, we denote by N st ⊆ N the
set of prosumers that own a storage unit.

Local power balance: The local power balance of each
prosumer i ∈ N is represented by the following equation:

pdii + pdsi − pchi + pmg
i +

∑
j∈Ni

ptr
(i,j) = pdi , (6)

where pdi ∈ RH denotes the local power demand profile over
the whole prediction horizon. The power demand pdi is defined
as the difference between the aggregate load of prosumer i
and the power generated by its non-dispatchable generation
units, e.g., solar or wind-based generators1. Finally, it is worth
mentioning that a prosumer that does not own a dispatchable
nor storage unit can satisfy its power balance (6) by importing
(trading) power from other prosumers and/or the main grid.

Passive consumers: In addition, we assume that some
busses in the distribution network might also be connected to
some (traditional) passive consumers that do not have storage
nor dispatchable units, and do not trade with other prosumers.
Let us denote the set of such passive consumers by P . For
each passive consumer i ∈ P , its power demand pdi > 0 is
balanced conventionally, namely, by importing power from the
main grid. Nevertheless, these passive loads will play a role
in the trading process between prosumers and main grid, and
in the power-balance equations of the physical network.

B. Modelling the P2P trading

In this section, we present the cost and constraints of
bilateral tradings between prosumers.

Power traded with neighbors: Recall that each prosumer
i ∈ N has a set of trading partners denoted by Ni. The
corresponding cumulative trading cost is given by

f tri

(
{ptr(i,j)}j∈Ni

)
= 1>H

∑
j∈Ni

(
ctr(i,j)p

tr
(i,j)+c

ta|ptr(i,j)|
)
, (7)

where ptr(i,j) ∈ RH is the power that prosumer i trades with
prosumer j, ctr(i,j) ≥ 0 is the per-unit cost of trading [6], and
cta is a tariff imposed by the DNO for using the network [9]. In
practice, the parameters ctr(i,j) can be agreed through a bilateral
contract [4], model taxes to encourage the development of
certain technologies or be used for the purpose of product
differentiation [6], [9], [10]. Furthermore, for each P2P trade
it must hold that

−ptr(i,j)1H ≤ p
tr
(i,j) ≤ p

tr
(i,j)1H , ∀j ∈ Ni, (8a)

ptr(i,j) + ptr(j,i) = 0, ∀j ∈ Ni, (8b)

1If a component of pdi is positive, then the load is larger than the power
produced by its non-dispatchable units.

where ptr(i,j) denotes the maximum power can be traded with
neighbor j. Equations (8b), commonly known as reciprocity
constraints [4], impose the agreement on the power trades.

Power traded with the main grid: Let pmg
i,h be the power

prosumer i imports from the main grid at time h ∈ H. As
in [25], we assume that the electricity unit price at each time
step h ∈ H depends on the total consumption,

cmg
h (σmg

h ) = dmg
h ·

(
σmg
h + bh

)2
, (9)

where dmg
h is a positive price parameter, whereas σmg

h and bh
denote the aggregate active and passive load on the grid, i.e.,

σmg
h =

∑
i∈N

pmg
i,h , bh =

∑
i∈P

pdi,h, ∀h ∈ H. (10)

Therefore, the total cost incurred by prosumer i, over the
horizon H, for trading with the main grid is given by

fmg
i (pmg

i , σmg) =
∑
h∈H

cmg
h (σmg

h )
pmg
i,h

σmg
h + bh

=
∑
h∈H

dmg
h (σmg

h + bh) pmg
i,h ,

(11)

We note that the cost function (11) assumes equal electricity
price at each distribution node and the consideration of power
losses and congestion, which may result in different price at
different node, is left for future work.

Finally, we bound the aggregative loads (10) as follows:

pmg1H ≤ σmg + b ≤ pmg1H , (12)

where pmg > pmg ≥ 0 denote the upper and lower bounds.
Typically, the latter is positive to ensure a continuous operation
of the main generators that supply the main grid.

C. Modelling the physical constraints

To ensure that the solutions to our decentralized market
design are operationally-safe and reliable for the entire system,
we impose the physical constraints of the electrical network,
namely, power-flow-related constraints.

Firstly, recall that Gp = (B,L) is a graph representation of
the physical electrical network that connects the prosumers.
We denote by By = {z | (y, z) ∈ L} the set of neighbouring
busses of bus y ∈ B, whereas we denote by N b

y ⊆ N and
Pb
y ⊆ P the set of prosumers and passive consumers that are

connected to bus y ∈ B, respectively. Additionally, we denote
the set of busses connected to the main grid by Bmg ⊆ B.

Secondly, we define decision variables, for each bus y ∈ B,
which are used to define the physical constraints. Denote by
vy ∈ RH and θy ∈ RH the voltage magnitude and angle over
H. Moreover, ptgy ∈ RH denotes the real power exchanged
between bus y ∈ B and the main grid, whereas p`(y,z) and
q`(y,z) ∈ RH , for each m ∈ By , denote the real and reactive
powers of line (y, z) ∈ L over H, respectively.

We consider a linear approximation of power-flow equa-
tions, which is standard in the literature of P2P markets, e.g.,
[22], [29]. Specifically, for each bus y ∈ B, it must hold that∑

i∈Pb
y

pdi +
∑
i∈Nb

y

ηi − ptgy =
∑
z∈By

p`(y,z), (13)
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where ηi is the active power injection of prosumer i, i.e.,

ηi := pdi − pdii − pdsi + pchi . (14)

Equation (13) models the local power balance of bus y,
similarly to (6) although now it relates power generation,
consumption, and line powers. Moreover, it must hold that

p`(y,z) = B(y,z) (θy − θz)−G(y,z) (vy − vz) , ∀z ∈ By, (15a)

q`(y,z) = G(y,z) (θy − θz) +B(y,z) (vy − vz) , ∀z ∈ By, (15b)

which represent the power flow equations of line (y, z) from
the perspective of bus y, with B(y,z) and G(y,z) denoting the
susceptance and conductance, respectively, of line (y, z). Note
that by (15a) and (15b), for each pair (y, z) ∈ L, it holds that
p`(y,z) = −p`(z,y) and q`(y,z) = −q`(z,y).

We also impose reliability constraints for each bus y ∈ B,

(p`(y,z),h)2 + (q`(y,z),h)2 ≤ s2(y,z), ∀z ∈ By,∀h ∈ H, (16a)

θy1 ≤ θy ≤ θy1, (16b)

vy1 ≤ vy ≤ vy1, (16c)

where (16a) represents the line capacity constraint at each line,
with maximum capacity of line (y, z) ∈ L denoted by s(y,z),
and (16b)-(16c) represent the bounds of the voltage phase
angles and magnitudes, respectively, with θy ≤ θy denoting
the minimum and maximum phase angles and vy ≤ vy
denoting the minimum and maximum voltage magnitude. Note
that, when linearizing the power flow equations, we take one
of the busses as reference bus. Without loss of generality, we
suppose the reference is bus 1 and assume θ1 = θ1 = 0.

Finally, the power exchanged with the main grid must
satisfy the following constraints:

ptgy = 0, ∀y /∈ Bmg, (17a)

σmg
h + bh =

∑
y∈B

ptgy,h, ∀h ∈ H, (17b)

where (17a) is imposed by definition that the busses that are
not directly connected with the main grid do not exchange
power with the main grid, whereas (17b) ensures that the
power traded by the prosumers with the main grid (in the
trading network) corresponds to the power exchanged between
the whole distribution network and the main grid.

III. A DISTRIBUTED MARKET-CLEARING MECHANISM

A. Market-Clearing Game and Variational Equilibria

By letting the physical variables of the distribution network
be handled by a DNO (i.e., agent N + 1), the P2P market
clearing problem can be compactly written as the problem of
finding the optimal strategy profiles u∗i ’s in (1), for all i ∈ N+,
where the decision variable ui is defined as

ui=

col
(
pdii , p

ch
i , p

ds
i ,p

mg
i , {ptr(i,j)}j∈Ni

)
, ∀i ∈ N ,

col
(
{θy, vy, ptgy , {p`(y,z), q

`
(y,z)}z∈By

}y∈B
)
, i=N+1;

the cost function is defined as

Ji(ui, u−i) = fdii (pdii ) + f sti (pchi , p
ds
i ) + f tri

(
{ptr(i,j)}j∈Ni

)
+ fmg

i (pmg
i , σmg) , ∀i ∈ N , (18)

whereas2 JN+1 = 0; the local action set is

Ui =

{
{ui | (3), (5), (6), (8a) hold } , ∀i ∈ N ,
{ui | (15),(16), (17a) hold } , i=N+1;

(19)

and finally, the set of coupling constraints is

C = {u | (8b), (12), (13), (17b) hold} . (20)

Remark 1. The definitions of Ji, Ui, C in (18), (19), (20) sat-
isfy Assumption 1. Moreover, these definitions can be expanded
by incorporating additional cost terms, for example, related to
the degradation of storage units and constraints (e.g. ramp-
ing constraints of dispatchable generation units), as long as
Assumption 1 remains satisfied. Additionally, instead of linear
power flow equations in (15), a nonlinear convex relaxation,
such as a second order cone or semi-definite programming as
discussed in [26, Sect. II-A] can be considered since it still
satisfies Assumption 1. In this case, only the definition of UN+1

differs from the current formulation. 2

From a game-theoretic perspective, the collection of inter-
dependent optimization problems in (1) constitute a general-
ized game, and a set of decisions {u∗1, . . . , u∗N+1} that simul-
taneously satisfy (1), for all i ∈ N+, corresponds to a GNE
[30, § 2]. In other words, a set of strategies {u∗1, . . . , u∗N+1}
is a GNE if no agent i ∈ N+ (prosumers and DNO) can
reduce its cost function Ji(u

∗
i , u
∗
−i) by unilaterally changing

its strategy u∗i to another feasible one. Among all GNEs, we
target the special subclass of variational GNEs (v-GNEs) that
coincides with the solutions to a specific variational inequality
GVI(K, P ) [30, Prop. 12.4], i.e., the problem of finding a pair
of vectors (u∗, z∗), such that u∗ ∈ K, z∗ ∈ P (u∗), and

(u− u∗)>z∗ ≥ 0, ∀u ∈ K,

where the mapping P (u∗) :=
∏
i∈N+

∂
∂ui

Ji(u
∗
i , u
∗
−i) is the

so-called pseudo-subdifferential, and K := C ∩ (
∏
i∈N+ Ui)

is the global feasible set. v-GNEs enjoy the property of
“economic fairness”, namely, the marginal loss due to the
presence of the coupling constraints is the same for each agent,
see e.g. [31]. For these reasons, v-GNEs have been used to
model desirable (i.e., efficient, strategically stable, fair, and
safe) configurations in several distributed engineering systems,
including P2P energy market models, see e.g. [6]. In this paper,
we focus on computational aspects, namely, the design and
analysis of a fast and scalable decentralized v-GNE seeking
algorithm for the P2P market game (1), while we study the
properties of its v-GNEs numerically rather than analytically.

Note that the cost functions in (18) are coupled only via the
aggregative quantity σmg =

∑
i∈N p

mg
i in (10), namely, the

active load (i.e., the congestion) on the main grid. Therefore,
for each agent i ∈ I, we can define a function J̃i such that

J̃i(ui, σ
mg) := Ji(ui, u−i). (21)

Games with such special structure are known as aggregative
games [32], and have received intense research interest, within
the operations research and the automatic control communities
[13]–[17]. When the agents’ cost functions depend linearly

2Here, we assume that the DNO does not have preferences on the outcome,
provided that it is a feasible solution for the grid.
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on the congestion (as for our P2P market model) v-GNEs
are efficient (in terms of social welfare). Specifically, the
so-called price of anarchy [33], which quantifies how much
selfish behaviour degrades the performance of a given system,
tends to one (i.e., no performance degradation) as the agents
population size grows unbounded [34].

B. Semi-decentralized Market Clearing

Several semi-decentralized and distributed algorithms have
been recently proposed to find a solution of the generalized
aggregative game in (1), e.g. [13]–[17]. Among these methods,
we focus on semi-decentralized ones [16], in which the agents
(i.e., prosumers) rely on a reliable central coordinator (i.e., the
DNO) that gathers local variables in aggregative form and then
broadcasts (incentive) signals for coordination purposes.

In this paper, we exploit the special linear coupling structure
in the cost functions (18) and coupling constraints (20) to
tailor Algorithm 6 in [16] for our P2P market game. Un-
like most of the available semi-decentralized pseudo-gradient-
based methods, [16, Algorithm 6] relies on proximal updates
that are computationally more expensive but greatly mitigate
the overall communication burden between agents and coordi-
nator. The resulting market-clearing mechanism, summarized
in Algorithm 1, requires the prosumers and the DNO to store,
update, and communicate some additional (dual and auxiliary)
variables, whose primary function is to coordinate the system
towards operational feasibility and trading reciprocity. In par-
ticular, each prosumer i ∈ N stores in its local memory
• the local strategy ui that collects the power generation,

storage (charging/discharging), load, and trading profiles;
• the active power injection ηi, defined as in (14) and

privately communicated (as a grid usage bid) to the DNO;
• a (dual) variable µtr

(i,j) for each trading partner j ∈ Ni,
whose function is to drive prosumer i’s and j’s power
trades to agreement, i.e., the reciprocity constraints (8b),
and can be interpreted from an economic perspective as
a bilateral trading shadow price [6, Section 2.4].

In addition to the physical variables of the distribution net-
work, i.e., uN+1, the DNO stores in its local memory
• the (dual) variables λmg and µtg, that are associated with

the main grid constraints (12) and (17b), respectively;
• a (dual) variable µpb

y for each bus y ∈ B, associated with
the power balance constraint on bus y (13).

From an economic perspective, these variables can be inter-
preted as extra marginal losses imposed to the prosumers for
the grid usage. From a control-theoretic perspective, they can
be interpreted as states of discrete-time integrators driven by
the violation of the network operational constraints (20).

The semi-decentralized information flow of Algorithm 1 is
illustrated in Figure 2, while its locals and central updates are
summarized in Algorithm 2 and Algorithm 3, respectively.
In there, we used some auxiliary variables (e.g., ζ tr

(i,j), ψi
in Algorithm 2) to keep the presentation compact. The next
proposition shows the global convergence of Algorithm 1 to
a variational GNE of the proposed P2P market game. Due to
space limitations, we provide only a sketch of the proof that
is mainly based on the technical results in [16, Theorem 2].

ALGORITHM 1. Semi-decentralized P2P Market Clearing

Initialization: For all prosumers i ∈ N : set µtr
(i,j)(−1) = 0,

∀j ∈ Ni. DNO: set λmg(0)=0, µtg(0)=0, µpb
y (0)=0, ∀y∈B.

Iterate until convergence (k = 0, 1, . . .)

For all prosumers i ∈ N (in parallel):

Local update via ALGORITHM 2:⌊
Set {µ(i,j)(k)}j∈Ni

as in ALG. 2 (i)
Set ui(k+1) as in ALG. 2 (ii)

Communication
ηi(k+1), pmg

i (k+1)→ DNO

For all trading partners j ∈ Ni (in parallel):⌊
ptr
(i,j)(k+1)→ prosumer j

Distribution Network Operator (DNO)

Central update via ALGORITHM 3:⌊
Set uN+1(k+1) as in ALG. 3 (i)
Set λmg, µtg, {µpb

y (k+1)}y∈B as in ALG. 3 (ii)

Communication (Broadcast)
σmg, λmg, µtg(k+1)→ all prosumers i ∈ N
For all busses y ∈ B (in parallel):⌊
µpb
y (k + 1)→ all prosumers i ∈ N b

y on bus y

P1

P3P5

P4

P6

P2

P8

P11

P10

P9

P7

P12

Alg. 3

P2P trading
network

grid pricesgrid-use bids

Alg. 2
Prosumer 6

Alg. 2
Prosumer 4

ptr(6,4)

ptr(4,6)

trading bids

η6, p
mg
6

η4, p
mg
4

exchange

Distribution Network
Operator (DNO)

Fig. 2: Information flow in Algorithm 1.
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ALGORITHM 2. Local update of Prosumer i

Step sizes: For each i ∈ N , set αi < 1/(3+N maxh∈H d
mg
h ),

βtr
(i,j) = βtr

(j,i) < 1/2, for all j ∈ Ni.

(i) Dual update (trading reciprocity): For all j ∈ Ni (in parallel):⌊
ζ tr
(i,j)(k) = ptr

(i,j)(k) + ptr
(j,i)(k)

µtr
(i,j)(k) = µtr

(i,j)(k) + βtr
(i,j)

(
2ζ tr

(i,j)(k)− ζ tr
(i,j)(k−1)

)
(ii) Primal update (generation, storage, load, and trading):

ψi(k) = ui(k)− αi · col
(
− µpb

y (k), µpb
y (k),−µpb

y (k),[
IH
−IH

]>
λmg(k) + µtg(k),

{
µtr
(i,j)(k)

}
j∈Ni

)
Set ui(k+1) as the unique solution to{

argmin
ξ∈Rni

Ji
(
ξ, u−i(k)

)
+ 1

2αi
‖ξ − ψi(k)‖2

s.t. ξ ∈ Ui

ALGORITHM 3. DNO central update

Step sizes: set αN+1 < 2, γmg < 1/N , βtg < (|N |+|B|)−1,
and βpb

y < (1+2|N b
y |+|By|)−1, for all busses y∈B.

(i) Primal update (grid physical variables): ψ(k) = col

({
0, µtg(k) + µpb

y (k), {µpb
y (k),0}z∈By

}
y∈B

)
uN+1(k + 1) = projUN+1

(
uN+1(k) + (αN+1)−1ψ(k)

)
(ii) Dual update (operational feasibility):

δ(k+1) =
[

1
−1
]
⊗ (2σmg(k+1)−σmg(k))−

[
pmg1H−b
−pmg1H+b

]
λmg(k + 1) = projR2H

≥0
(λmg(k) + γmgδ(k+1))

ζ tg(k + 1) = σmg(k+1) + b− σtg(k+1)
µtg(k + 1) = µtg(k) + βtg(2ζ tg(k + 1)− ζ tg(k))

For all busses y ∈ B (in parallel):
ζpb
y (k + 1) =

∑
i∈Pb

y
pdi +

∑
i∈Nb

y
ηi(k+1)

−ptg
y (k+1)−

∑
z∈By

p`(y,z)(k+1)

µpb
y (k + 1) = µpb

y (k) + βpb
y (2ζpb

y (k+1)− ζpb
y (k))

Proposition 1. The following statements hold true:
(i) There exists a v-GNE of the P2P market game (1).

(ii) The sequence (u1(k), . . . , uN+1(k))k∈N generated by
Algorithm 1 converges to a v-GNE of (1).

Proof. See Appendix A.

Remark 2. The main properties of the proposed market-
clearing mechanism (Algorithms 1-3) are listed below:

(i) The step sizes in the local and central updates (i.e.,
Algorithms 2 and 3) are fully-uncoordinated, i.e., they
can differ across prosumers and DNO, and can be chosen
independently based on local information only;

(ii) The primal update of each prosumer (Algorithm 2 (ii))
involves the solution of a quadratic program3, for which

3Up to a fairly-standard reformulation of the absolute value term in (7).

very efficient solvers are available, e.g. [35]. In there,
if Ji

(
ξ, u−i(k)

)
is replaced by its approximate version

J̃i
(
ξ, σmg(k)

)
, obtained by neglecting prosumer i’s con-

tribution ptr
i to the aggregative active load σmg, Algorithm

1 will converge to a variational Wardrop equilibrium [16,
§ II.B], which is a good approximation of v-GNEs for
networks with a large number of prosumers.

(iii) The primal update of the DNO (Algorithm 3 (i)) requires
projecting onto UN+1, which is a convex but nonlin-
ear set. This operation is computationally expensive if
naively solved. However, more efficient ad-hoc algo-
rithms to calculate projUN+1

can be designed using best
approximation methods [24, § 30], e.g., see Appendix B.

(iv) Algorithm 1 can be recast as a proximal-point method
opportunely preconditioned to distribute the computation
among the prosumers [16, § IV]. Such operator-theoretic
interpretation can be used to design provably-correct ac-
celeration schemes [16] as well as to provide robustness
guarantees to asynchronous implementations [36].

Remark 3. Our proposed approach differs from community-
based local markets [4, Section 3.2], which also requires a
coordinator that manages the trading activities. In our setup,
each prosumer knows its trading partners and, thus, negotiates
directly with them while the coordinator handles the physical
constraints and aggregated power bought from the main grid.

IV. NUMERICAL STUDIES

We perform an extensive numerical study on the IEEE
37-bus distribution network to validate the proposed game-
theoretic market design and market-clearing algorithm. Specif-
ically: (a) we evaluate the importance of having physical
constraints in the model; (b) we evaluate the economical
benefits of trading; (c) we show how storage units owned by
prosumers might affect power consumptions; and (d) we test
the scalability of the proposed algorithm. All the simulations
are carried out in MATLAB and use the OSQP solver [35] for
solving the quadratic programming problems.

In all simulations4, we consider heterogeneous networks,
where the power demand profile of a prosumer or passive
user is either that of single household, multiple households,
restaurant, office, hospital, or school. Moreover, some pro-
sumers may have solar-based power generation. The demand
and solar-based generation profiles are based on [37]. We
also arbitrarily select a set of prosumers to own dispatchable
generation units with different sizes and to own homogeneous
storage units. We randomly generate the trading networks and
place each prosumer and passive user in one of the busses of
the IEEE 37-bus network.

Some of the default cost parameters are set as in [25], i.e.,
Qdi
i = 0, cdii = 0.045e/kW, for all i ∈ N di, Qst

i = 0, csti = 0,
for all i ∈ N st, and dmg

h = 0.1624/bhe/kW, whereas the
trading cost parameters ctr(i,j) = 0.08e/kW, for all (i, j) ∈ E ,
and cta = 0.01e/kW. The parameter ctr(i,j) is set larger than
cdii to encourage trading between prosumers with and without

4The codes and data sets used for all simulations are available at
https://github.com/ananduta/P2Penergy/simulations.
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10

(a) With physical constraints

> 100%
60%− 100%
10%− 60%
0%− 10%

10

Line capacity

(b) Without physical constraints

Fig. 3: Power line capacities of the physical network. The
solutions of the P2P market might cause overcapacity in some
lines of the physical network when capacity constraints (16a)
are not taken into account.

dispatchable units, but is smaller than the average unit-price
of importing power from the main grid. Note that, in some
simulations, we vary these cost parameters.

A. Achieving operationally-safe solutions

In the first simulation study, we compare the solutions
obtained from solving a P2P market model with and without
capacity constraints (16a). We specifically create an extreme
case with 25 prosumers, where the load of prosumer 10
(see Figure 3) is very high. We solve both market designs
using Algorithm 1. Figure 3 shows the resulting power-line
saturations between busses for both designs. Some equilibrium
solutions of the P2P market cause overcapacity in some lines
when capacity constraints (16a) are not taken into account in
the model, as illustrated in Figure 3 (b).

B. The impact of P2P trading

In this section, we evaluate whether energy trading is
economically beneficial for the prosumers. To this end, we
generate a network of 50 prosumers and consider two sce-
narios: (a) where trading is not allowed, i.e., ptr(i,j) = 0 in
(8a); (b) where trading is allowed with ptr(i,j) = 30 kW,
and the default cost parameters are homogeneous. The other
parameters of the network are kept constant in both scenarios.
Figure 4 shows the individual costs difference between the
equilibrium configurations of the market designs with (a) and
without P2P tradings (b). In particular, all prosumers gain
economical benefits when they can trade.

Then, we evaluate the sensitivity of the total traded power
with respect to the trading cost parameter ctr(i,j) and the trading
tariff, cta. Figure 5 shows that ctr(i,j) must be set appropriately
to maximize trading among prosumers. In other words, when
ctr(i,j) is either too high or low, trading is less attractive. On the
other hand, the higher the tariff is, the less power is traded, as
shown in Figure 6. Therefore, the DNO may adjust this tariff to
encourage or discourage trading in the network. Discouraging

Fig. 4: Total cost improvement (e) of each prosumer by
trading (ctr(i,j) = 0.08e/kW).

Fig. 5: Aggregated P2P trading for different cost coefficients
(ctr(i,j) in e/kW).

Fig. 6: Aggregated P2P trading for different penalty coeffi-
cients (cta in e/kW).

trading might be needed when the capacity of the network is
close to its limit.

C. The impact of storage units

In this set of simulations, we investigate the advantages of
distributed storage in the network. We generate a test case
of 50-prosumer network and consider two extreme scenarios:
(a) no prosumers own storage units and (b) all prosumers
own storage units. Furthermore, we also allow some of the
prosumers to own distributed generation units, whose cost
functions are strongly convex quadratic, i.e., Qdi

i > 0, for
all i ∈ N di, which vary from one unit to another. Figures
7-9 summarize the simulation results. From Figure 7, we can
see how the storage units help in shaving the peak of total
power imported from the main grid and locally generated
by distributed generators. Interestingly, the trading between
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Fig. 7: Incorporating storage units causes a peak-shaving effect
on the sum of the total power imported from the main grid
and the power locally generated.

Fig. 8: Aggregated P2P trading in scenarios (a) and (b).

prosumers is also affected, as shown by Figure 8. From this
plot, we observe that the existence of storage units reduce
the total power traded during the peak hours as the prosumers
have reserved energy in their storages. Note that the prosumers
charge their storage units during the first off-peak hours by
buying energy from the main grid and/or from other prosumers
that own dispatchable generation units (see the first six hours
of the bottom plot of Figure 7 and those of Figure 8). Finally,
Figure 9 compares the price of electricity from the main grid
and the average price of bilateral trading (including the average
of the shadow prices). Most of the times, the trading prices
are lower than the grid prices (in both scenarios), explaining
the high amount of power traded.

D. Scalability of the market-clearing mechanism

Finally, we perform a scalability test for the proposed
algorithm. Specifically, we evaluate the convergence speed,
in terms of the total number of iterations required to meet
a predetermined stopping criterion, when the size of the
population of prosumers N and the connectivity of the trading
network (the number of trading links) grow. We carry out two
sets of simulations. For the former, we consider five different
values of N and a fixed connectivity level of 0.6 and we
run ten Monte Carlo simulations for each N , whereas in the
latter, the connectivity of the trading network of 50 prosumers
varies in the range [0.1, 1], where connectivity 1 means that

Fig. 9: Comparison of the average electricity trading price
(ctr + cta + 1

|E|
∑

(i,j)∈E µ
tr
(i,j)) with the electricity grid prices.

Fig. 10: Total number of iterations for convergence of Alg. 1
vs number of prosumers (top) and the connectivity level (the
number of trading links) (bottom). The average computation
times of the inner loops, i.e., Algs. 2 and 3, obtained on a
computer with Intel Xeon E5-2637 3.5 GHz processors and
128 GB of memory, are 74.5 ms and 1.13 s, respectively.

the trading network is a complete graph. Similarly, we also run
ten Monte Carlo simulations for each connectivity value. We
can see from Figure 10 that Algorithm 1 suitably scales with
respect to both the number of prosumers and the connectivity
level of the trading network. These results highlight that our
algorithm is suitable to be applied to large-scale systems.

V. CONCLUSION

Energy management and P2P trading in future energy
markets of prosumers can be formulated as a generalized
game, where the network operator is an extra player in charge
of handling the network operational constraints. A provably-
convergent operationally-safe market-clearing mechanism is
obtained by solving the game with a semi-decentralized Nash
equilibrium seeking algorithm based on the proximal-point

Authorized licensed use limited to: TU Delft Library. Downloaded on March 29,2022 at 11:13:01 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2022.3158442, IEEE
Transactions on Smart Grid

10

method. Numerical studies show that the computational com-
plexity of the proposed mechanism is independent of the
prosumer population size, and suggest that active participation
in the market is economically advantageous both for prosumers
and network operators. Future research directions include:
efficiently incorporating non-linear convex approximation of
power flow in the algorithm; handling the physical constraints
in a fully-distributed manner, i.e., without the action of a
network operator; and dealing with uncertainties in the model,
e.g., renewable energy production, as well as those from
information exchange processes required by our algorithm.

APPENDIX

A. Algorithm 1: Derivation and Convergence Analysis

The derivation and convergence analysis of Algorithm 1
relies (for the most part) on the customized preconditioned
proximal-point (cPPP) algorithm for generalized aggregative
games proposed in [16, Algorithm 6]. The objective of this
appendix is to show that the proposed market-clearing game
(1), with cost functions and constraints sets defined in (18)-
(20), satisfies all the technical conditions in [16, Theorem 2],
among which is the existence of a variational GNE, i.e., item
(i) of Proposition 1. Therefore, we invoke [16, Theorem 2] to
prove convergence of Algorithm 1, i.e., item (ii) of Proposition
1. For a complete convergence analysis of the cPPP algorithm
for aggregative games we refer to [16, Appendix C].

Aggregative cost functions: First, we show that the cost
functions (18) can be cast as in [16, Eqn. (30)], i.e.

Ji(ui, u−i) = gi(ui) + (Cavg(u))
>
ui, (22)

where avg(u) := 1
N

∑
i∈N ui denotes the average strategy.

Let Ni = N , for all i ∈ N , without loss of generality5. In
this case, ui ∈ R(3+N)H , for all i ∈ N . Moreover, let Ξmg ∈
RH×(3+N)H denote the matrix that selects the pmg

i -component
from the decision vectors ui’s, and define the matrix D :=
N diag(dmg

1 , . . . , dmg
H ), where dmg

h is the price coefficient for
the main grid power. Then, the cost functions in (18) can be
recast as [16, Eqn. (30)], or (22), with

gi(ui) = fdii (pdii ) + f sti (psti ) + f tri

(
{ptr(i,j)}j∈Ni

)
,

+ 1
N (Db)>pmg

i , (23a)

C = (Ξmg)>DΞmg. (23b)

Technical assumptions: Next, we show that all the assump-
tions in [16, Theorem 2] are satisfied.

(i) For all i ∈ N+, the cost function Ji(ui, u−i) in (23a) is
convex in ui, since all the components of gi are convex.
Hence, [16, Assumption 1] holds.

(ii) For all i ∈ N+, the local set Ui in (19) is nonempty,
closed and convex. Moreover, Slater’s constraint qualifi-
cation on the global feasible set

(∏
i∈N+ Ui

)
∩ C holds

under an appropriate choice of the parameters. Therefore,
[16, Assumption 2] is satisfied.

5For example, by defining, for all i ∈ N , the “dummy variables”
{ptr

(i,j)
}j∈N\Ni

for all the prosumers that do not trade with i.

(iii) The pseudo-subdifferential mapping of the game (1)
reads as F : u 7→

∏
i∈N (∂uiJi(ui, u−i)) × 0, since

JN+1 = 0. It follows by [38, Corollary 1], that the first
term of F , i.e., u 7→

∏
i∈N ∂ui

Ji(ui, u−i), is maximally
monotone [24, Definition 20.20], since C in (23b) is
positive semidefinite, i.e., C = (Ξmg)>DΞmg � 0.
Moreover, also the second term of F , i.e., the zero
mapping 0, is maximally monotone. Therefore, it follows
by [24, Proposition 20.23] that their cartesian product∏
i∈N (∂ui

Ji(ui, u−i))×0 = F is maximally monotone.
Hence, [16, Assumption 6] holds.

(iv) By [16, Lemma 1 (i)], there exists a variational GNE of
the game in (1), since the constraint sets Ui in (19) are
bounded, and the pseudo-subdifferential mapping F is
monotone. Hence, [16, Assumption 4] is satisfied.

�

B. Alternating Projection for Operational Feasibility

In this appendix, we propose an efficient algorithm to
compute the projection onto the set UN+1 (Algorithm 3 (i)).
First, let us recall the structure of uN+1, i.e.,

uN+1 = col
(
{θy, vy, ptgy , {p`(y,z), q

`
(y,z)}z∈By

}y∈B
)
,

and let us define the sets

S1 := {uN+1 | (16) and (17a) hold}, (24)
S2 := {uN+1 | (15a) and (15b) hold}, (25)

such that UN+1 = S1∩S2. The proposed method, summarized
in Algorithm 1, is essentially a Douglas–Rachford splitting
(DRS) [24, § 26.3] applied to the best approximation problem
argminξ∈S1∩S2‖ξ−uN+1‖ = projS1∩S2(uN+1), see e.g. [39,
§ 4.3] for a formal derivation of the algorithm.

Unlike UN+1, the projections onto S1 and S2 have closed-
form expressions, hence Algorithm 1 only involves elementary
operations. Specifically, projS1(uN+1) = u+N+1, where

θ+y =


θy, if θy < θy
θy, if θy > θy

θy, otherwise
, v+y =


vy, if vy < vy
vy, if vy > vy

vy, otherwise
,

ptg
y
+

=

{
ptg
y , if y ∈ Bmg

0, otherwise
,

and for all y ∈ B, z ∈ Bz , and h ∈ H

L(y,z),h = max
{
‖ col(p`(y,z),h, q

`
(y,z),h‖, s(y,z)

}
,

(p`(y,z),h)
+

=
s(y,z)

L(y,z),h
p`(y,z),h,

(q`(y,z),h)
+

=
s(y,z)

L(y,z),h
q`(y,z),h.

Whereas, since S2 is an affine set, a closed-form expression
for projS2 is given in [24, Example 29.17(ii)].
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Algorithm 1: DRS for computing projUN+1
(uN+1)

1: Initialize ξ(0) ∈ RnN+1 , and set η ∈ (0, 2)
2: While convergence is not achieved do:
3: z(k) = projS1( 1

2ξ(k) + 1
2uN+1)

4: ξ(k + 1) = ξ(k) + η
(
projS2(2z(k)− ξ(k))− z(k)

)
5: end while
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