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1 Introduction

The building sector plays an indispensable role in achieving low-carbon future as buildings
alone account for nearly one third of total final energy use and CO2 emissions. Beside that,
energy consumption in the building sector has grown by 1.3% per year in OECD and 2.1%
per year in non-OECD countries from 1990 to 2010 [7]. Similar statistics are also given by the
World Business Council for Sustainable Development [20]. Additionally, the rapid urbanization
trend worldwide poses another stress in supporting increasing energy demand while achiev-
ing decarbonization target [15].

Although many challenges lie ahead, it also indicates a huge energy saving potential [5] and
a golden opportunity to develop energy saving technologies and strategies to cope with such
urgency in the built environment. Potential pathways include demand response and load
shifting [17], fault detection and retrofit strategies [12, 13] as well as future scenario planning,
building energy and electricity consumption signature and forecasting model at different spa-
tial scales serves as a foundation to enable these applications.

1.1 Objective

There are various technologies ranging from smart meter analytics to building energy de-
mand simulation that try to characterize building and urban scale energy use patterns and
make accurate predictions accordingly. However, due to complex interactions between dy-
namic outdoor and indoor conditions, stochastic human behavior, diverse building thermal
characteristics and energy systems including HVAC and lighting [2, 3, 13], ways to robustly
and accurately predict energy consumption with minimum requirement for privacy-related
data remains a challenging and active field [13]. The scope of this research is to explore how
to make use of the ever-growing energy relevant spatial data, particularly building geometry
and semantic information, energy simulation models at the district scale, and recorded smart
meter data to improve building electricity demand forecasting model at residential district as
well as to understand the significance of these influencing factors.
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1.2 Outline of the proposal

The proposal will first start with literature review. This section illustrates the importance
and value of building energy consumption signatures and also presents frequently applied
forecasting models and approaches. Research questions will be presented in section 3. Section
4 explains a possible methodology to tackle the presented problem, while section 7 section
and 6 focus on project planning, datasets and tools that are used in this research.

2 Related work

2.1 Energy saving potential enabled by consumption pattern

Accurate building energy consumption patterns and demand estimation is a necessary en-
abler for many energy saving strategies such as energy automation [2], supply and demand
side response in smart grid systems [1, 17], user behavior change [11], building operation man-
agement and appliance fault detection [12, 13] and energy-driven urban planning [15].

Frankel et al. (2013) have reported 16% to 20% savings of the US residential-energy demand
might be benefited from behavioral adjustment [5], or alternatively via energy automation,
which directly relies on precise consumption signatures and accurate demand estimation. In
terms of demand side response (DSR), utilities change electricity pricing based on the esti-
mated baseline model and provide incentives to the consumers in order to adjust consumption
behavior and enable load sifting [17]. Additionally, long-term climate change might signifi-
cantly change weather pattern in specific areas [16]. As buildings have comparatively long
lifetime and low retirement rate, consumption signature and demand estimation in the long-
run should be considered during the planning phase of the new building design.

Many studies have researched different approaches for modeling consumption pattern and
demand forecasting. These can be briefly categorized into three types: i) Deterministic model
approach, ii) Data-driven approach, and iii) Hybrid model approach and are described in sequence
below.

2.2 Deterministic model approach

Deterministic techniques simulate time-series energy consumption and performs forecasting
based on the science of building physics [3]. Accuracy of such approach is often determined
by the completeness and resolution of building thermal properties data and the underlying
thermal physics model. Wate and Coors (2015) have concluded relevant building thermal
properties affect temporal prediction accuracy in different level of details (LOD) [18].

On the other hand, there are many existing software packages such as CitySim, EnergyPlus,
City Energy Analyst and TRNSYS used by engineer and designer to simulate energy con-
sumption of the building at different spatial scales given different design scenarios. Each of
these softwares targets different use cases from urban scale simulation using CitySim [15], dis-
trict level planning and system simulation using City Energy Analyst [4] to the detailed and
sophisticated simulation engine EnergyPlus. The advantage of such physically based model
is that it does not require training data. It simulates non-linearity of energy demand given
different building properties and environmental conditions and thus easier to generalize for
the changing conditions. However, data unavailability and discrepancies of building thermal
properties and difference of the underlying thermal simulation engine often cause such ap-
proach fall short of enough accuracy [3]. Furthermore, stochastic human behavior is difficult
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to model and is often recognized as one of the main causes why simulation softwares have
higher uncertainty.

2.3 Data-driven approach

With increasing number of environmental monitoring sensors deployed in the built environ-
ment, huge volumes of recorded data become valuable resources for data-driven modeling
approaches. The technique depends on recorded smart meter data or even real-time energy
data and attempt to learn the temporal consumption trends based on previous usage patterns
and extrapolate to future scenarios [3]. Many supervised and unsupervised machine learning
algorithms are developed to enable such forecasting models and increase prediction accuracy.
These include: Regression fitting, Support vector machine (SVM), Artificial neuron network
(ANN), Random forest, Bayesian Networks and so on. Details of these algorithms and associ-
ated performance are reviewed by [1, 3, 12, 13]

Many studies have shown data-driven approach results in better prediction accuracy than
deterministic model [3, 9]. However, the downside of such method is that it often relies on
site-specific recorded data and thus more difficult to generalize when conditions have dra-
matic changes or unavailability of training data. Additionally, the complex interaction be-
tween input and output data is often sophisticated and difficult to interpret and thus has less
transparency [3].

2.4 Hybrid model approach

Deb et al. (2017) defines the hybrid model as a combination of more than one machine learn-
ing techniques. By combining different methods, hybrid model is capable of modeling more
complex autocorrelation structure of relevant features and thus improves accuracy [3].

Koponen et al. (2014) studied another hybrid model which not only combines different
machine learning algorithms but includes partly physically based model and a Kalman-filter
based predictor to predict energy demand [9].

Table 1: Comparison between data-driven and deterministic forecasting model [3]
Technique Advantage Disadvantage

Data-driven - Very fast in computation with real-time data - Requires past recorded data
- Suitable for non-linear modeling - Non-transparent and confined
- Often more accurate than deterministic models - Difficult to generalize

Deterministic - Based on the science of building physics - Difficult to model real scenarios
- Transparent and no training data needed - Data unavailability of building properties
- Easy to generalize - Not very accurate

2.5 Performance indices

The performance of the forecasting model is often measured by comparing the forecast results
with actual load data during validation period [6, 9]. Commonly used performance indices
include:

• MSE: Mean Squared Error = mean(e2
t )

• RMSE: Root Mean Squared Error =
p

MSE

• MAE: Mean Absolute Error = mean(|et|)
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• MAPE: Mean Absolute Percentage Error = mean(|pt|)

Where et refers to the forecasting error at time t; while pt = 100et/yt and yt is the observation
at time t.

3 Research questions

Wate and Coors (2015) and Miller (2016) have pointed out relevant influencing factors of en-
ergy consumption in the reports [11, 18]. Koponen et al. (2014) also reports significant ac-
curacy improvement, for the partly physically based method it improved the the MAPE of
hourly power forecast from 7.37% to 4.57%, when weather forecast data is included in the
forecasting model [9]. However, often due to unavailability of data and time-consuming work
of processing and organizing heterogeneous spatial data, the influence of spatial data such as
building geometry, building semantic information on the short-term electricity consumption
pattern and demand estimation is less studied. Consequently, the research scope of this project
will explore:

• To what extent with addition of spatial features such as building geometry, building se-
mantic information and physically based simulation results as model inputs can improve
sub-hourly prediction accuracy of building electricity consumption at district scale.

To answer this question, the following sub-questions should be included in the research
scope:

• What is the suitable hybrid model for short-term consumption forecasting which con-
siders smart meter measurement, environmental data, building geometry, information
and simulation result as model inputs.

Since unavailability and discrepancy of data are common, it is also interesting to look at
which features have most significant influence on energy consumption in the ultimate model,
so feature weights can be initialized accordingly.

• Among additional spatial features, which are the significant influencing factors of build-
ing electricity consumption at district scale in the real world practice.

4 Methodology

This section explains how the proposed methodology can be used to tackle the research ques-
tions in the following sequence. The overview of the expected workflow is presented in Figure
1

4.1 Feature engineering and selection

Except smart meter data, the research also considers the following spatial parameters in the
final model inputs:

• Ambient condition data: local temperature, humidity, solar gain

• Building geometry: volume, floor, wall, and roof areas, glazing ratio

• Non-geometric building data: envelope thermal properties, infiltration rate of the build-
ing, thermal system, number of occupants, occupant profile and occupancy schedule,
building usage type, built year, and refurbishment year
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Figure 1: General workflow of the research methodology

• CitySim energy simulation results

Database software such as PostgreSQL and CityGML data model will be used to manage these
various features.

Data processing and cleaning like outlier detection and interpolating missing values should
be carried out before performing any modeling or analysis. On the other hand, to get an initial
insight of data characteristic, Pearson correlation study between input features and recorded
consumption can be applied in this step. Alternatively, principle component analysis (PCA)
can serve as a dimension reduction method to identify major influencing features or initialize
feature weight according to the feature eigenvalues for later use.

4.2 Archetype segmentation and characterization

One of the major challenges of using deterministic approach to model consumption pattern
and perform demand forecasting is discrepancies and unavailability of detailed building ther-
mal properties [3, 15], even Internet of Things (IoTs) has produced and accumulated huge
volume of data in all sectors nowadays. The practical solution is thus abstracting building
stocks into ”building archetypes” based on the similarity of building usage type, built year,
refurbishment year, thermal system and assign building thermal properties accordingly [15].

Segmentation step can be simply based on the defined decision rules or by means of many
existing unsupervised segmentation algorithms such as k-means, k-nearest neighbor, random
forest or t-SNE.
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4.3 CitySim energy simulation

Data-driven approach is reported by many studies to have higher forecasting accuracy than
deterministic model. However, as it relies on site-specific training data for the model fitting,
it can not be easily generalized to other scenarios or perform future scenario simulation. The
deterministic approach based on the science of building physics shows the advantage in this
circumstance. The ideal here is thus using open source urban scale energy simulation soft-
ware: CitySim to generate time-series simulation data as additional spatial features for model
fitting and to compensate the downside of data-driven approach.

Preliminary workflow have been set up to enable importing building statistic data (for in-
stance, number of occupants, thermal properties and so on), assigning building semantic in-
formation to the 3D model with Python script and FME, executing CitySim energy simulation
and managing simulation output. Figure 5 illustrates the workflow for generating district
level simulation with CitySim.

Figure 2: CitySim simulation procedure

4.4 Forecasting model building

The forecasting model to be adapted is based on a hybrid model, which is defined as using
recorded data to train the ”baseline” model while site-specific spatial features and simula-
tion results of deterministic approach are considered as ”spatial enhancement” used to model
stochastic component of the future state, and can be written in the following form:

s(n)t = As(n)t�1 + Bw(n)
t�1 (1)

Where st is the consumption state at time t and is derived from the previous state st�1, which
propagates based on the data-driven baseline model A, plus additional uncertainty wt�1 mod-
eled by stochastic function. In terms of Sequential Monte Carlo (SMC) method, the state S
is represented by the probability distribution of weighted sample set S = {(s(n), p(n)|n =
1, ...N}, where p represents sample weight. The detail of the SMC model will be illustrated in
section 4.4.2.

4.4.1 Regression model

Regression is one of the most commonly used model fitting techniques which is also applied in
electricity load forecasting [14, 19], and can be a proper starting point for the baseline model.
The simplest linear regression model has the general form as:

y = qT
x + e (2)
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Where y is the predicted consumption state, while q is a regression coefficient vector of the
feature vector x, which includes energy relevant features such as recorded data, ambient con-
dition, building geometry and so on. e is an error term used for ridge regression.

Mathieu et al. (2011) further extend the regression model with time-of-week indicators,
which divide a week from Monday to Friday into 15 minute intervals and different regression
coefficients for each time-of-week, ai, and thus obtain different predicted load. [10]. Python
resource1 based on this concept is also available for direct use and can serve as a foundation
of the baseline model for this research.

4.4.2 Sequential Monte Carlo based forecasting model

Sequential Monte Carlo (SMC) or particle filters is an optimal estimation algorithm and is a
sampled-based solution of the recursive Bayesian filter which is widely used in navigation sys-
tem, computer vision and signal processing [8]. This research attempt to model the stochastic
component of equation 1 based on the concept of Sequential Monte Carlo.

Future state of energy consumption is difficult to predict as many stochastic events can
significantly affect estimation value. Namely, the future state of energy consumption is not
available for direct measurement but could rely on the data-driven regression model men-
tioned in section 4.4.1. In such prediction model, good estimation of stochastic components is
more likely to lead to more accurate prediction based on posterior probability derived from the
future state observer. In this case, observation state can be modeled based on spatial features
such as weather forecast or deterministic model results and iteratively update to the stochastic
components in the prediction model (or say baseline model). The prediction and observation
state should have the following form:

Prediction : st = ft�1(st�1, wt�1) (3)

Observation : zt = ht(xt, vt) (4)

Where ft�1 in equation 3 refers to state prediction function given previous state st�1 and
stochastic component wt�1 models prediction uncertainty; while ht in equation 4 refers to ob-
servation function given future state measurements xt and the associated observation noise
vt. The set of all observations up to time t is denoted by Zt = {z1, ..., zt}. In general, we are
interested in finding an estimate of state vector st provided with previous state vector st�1 and
using measurement zt to update the state estimation.

In the case of particle filter, energy consumption state is not represented by a single object
state st but by its probability distribution p(st). A prior distribution p(st|Zt�1) is calculated
according to the state prediction function, refers to equation 3; while a posteriori distribution
p(st|Zt) can be estimated given new measurement zt from the state observer according to
equation 4. See Figure 3 for the concept illustration.

5 Cross validation and evaluation

Since one scope of this research is trying to understand how ”spatial feature enhancement”
can increase forecasting model accuracy or even generalize it. Consequently, in the end of

1eetd-loadshape: https://bitbucket.org/berkeleylab/eetd-loadshape#markdown-header-baselines
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Figure 3: In the case of particle filter, state is modeled as probability and this diagram can be
viewed as one discrete time-step. deterministic dri f t shown in the diagram is modeled ac-
cording to prediction function while stochastic component diffuses the particle distribution.
Different weights are given to the diffused particles based on observed state, and resam-
pling results in new probability distribution of next time-step. Image source: [8]

the model building, performance index Mean Absolute Percentage Error (MAPE) introduced
in section 2.5 will be used to cross validate the prediction performance as well as to cross
validate with baseline prediction model manifested in section 4.4.1 without considering spatial
features.

6 Tools and datasets used

6.1 Tools

The main tools to be used in this project include:

• Energy simulation: CitySim Pro
The reason for choosing CitySim is because of direct hands-on experience and the set up
workflow in collaboration with the researcher at Eidgenössische Technische Hochschule
Zürich (ETH). It is also the few energy simulation software that models shared environ-
ment and targeting urban-scale energy simulation. Available simulation outputs from
CitySim is presented in the following table.

Table 2: CitySim simulation output
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Temporal scales Simulation outputs

Hourly Short-wave irradiation
Daily Long-wave net irradiation
Monthly Surface temperature
Yearly PhotoVoltaic production

Solar Thermal production
Sky View Factor
Heating demand
Cooling demand
Indoor temperature

Figure 4: CitySim surface temperature simulation on the test site

• Data management: PostgreSQL, CityGML, FME
Database PostgreSQL contains geo-component PostGIS, and is therefore an ideal tool
to manage building statistics data. CityGML is a 3D data model combining geome-
try and the associated semantic information. To update heterogeneous spatial data to
CityGML and perform energy simulation in CitySim, data integration software FME
provides abundant spatial operation transformers.

• Programming languages: Python and Matlab
Both Python and Matlab offer plenty machine learning libraries such as scikit, numpy
or TensorFlow in Python, while Math, Statistics and Optimization toolbox in Matlab.
Experience and familiarity with these languages is another reason.

• Visualization: Rhinoceros 3D with add-on Grasshopper
Optional but if necessary, the result of building consumption pattern and demand fore-
casting at district scale can be visualized in Rhinoceros 3D environment or alternatively
via JavaScript with WebGL API to allow visualization and interaction on web browser.
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Figure 5: CitySim simulation of partial Zürich. Credit: Danielle Griego

6.2 Datasets

Initial data collection phase has searched and assessed many candidates from Singapore,
Zürich, ETH Hönggerberg campus, Delft, Rotterdam, to London. However, it is still chal-
lenging to find out the complete datasets contain meter data and spatial data of the same area.
Table 3 shows that Zürich is the most promising candidate by far. City of Rotterdam has many
open source spatial data available online, but contacting utilities might be needed to access to
smart meter data.

Table 3: Currently available datasets

City Meter data Building and spatial features Simulation

Zürich 53 households 3D Geometry LOD1(2) LOD1 simulation
13 buildings (residential) Building usage type
1 minute frequency Built year
1 year period Refurbishment year

Thermal system
Number of occupants
Occupants profile
Thermal properties a

Temperature
Humidity
Solar gain

Rotterdam -b 3D Geometry LOD1(2) -c

Building usage type
Built year

aInferred from archetype
bNeed to contact utilities
cThe setup workflow can generate simulation for any area of interest if dataset is available
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