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SUMMARY

A mathematical model of steady, fully developed laminar

flow in curved ducts is developed and used to derive a
simplified computation method to be applied in another
mathematical model predicting the flow in river bends.

The laminar flow model is verified by comparing its results
with analytical, numerical and experimental results reported
in the literature. A series of shallow channel computations is
made and the results are analysed, both from a mathematical
and from a physical point of view. Various simplified com-
putation methods are considered, most of which yield no
satisfactory results when the advective influence of the
secondary flow on the main velocity is important. Only a
method based on similarity approximationsufficienﬁly accurate

to be applied further.



1. Introduction

The flow and the bed topography in curved alluvial river
éhannels play a promiment part in several aspects of river
engineering, such as navigability, bank protection and dis-
persion of pollutants. Hitherto, cngineering problems con-
cerning river bends are mostly investigated using physical
scale models, even though the complex character of the

flow may give rise to scale effects making the model data
hard to interpret in prototype terms. The increased facilities
of electronic computers, however, make mathematical models
attractive to be developed. They would facilitate the
understanding of the physical phenomena and could be used
together with or even instead of physical models.

As it is impossible to reliably predict the bed topography
without knowing the flow field, an adequate model of the
flow in a curved channel with an uneven bed topography must
be developed first., Assuming disturbances of the flow to
travel at a much higher celerity than disturbances of the bed,
as is the case in most of the navigable alluvial rivers, the
bed can be considered as being fixed when computing the flow.
In addition, the flow can be assumed to be steady, which is
allowable under many practical conditions.

The dévelopment of a mathematical model of steady flow in
river bends with a fixed uneven bed forms one of the
research projects of the Laboratory of Fluid Mechanics of
the Delft University of Technology, as a part of the river

bend project of the joint hydraulic research programme T.0.W.™)

*) "Toegepast Onderzoek Waterstaat", in which Rijkswaterstaat,
the Delft Hydraulics Laboratory and the Delft University of

Technology collaborate.



2. The present problem

2.1. General outline

When straight channel flow enters a curved section, a transverse
pressure gradient develops. Under the influence of this pressure
gradient, the low velocity streamlines near the bottom are more
sharply curved than the streamlines of the depth-averaged flow,
whereas the high velocity streamlines near the free surface have
a smaller curvature than these depth-averaged flow streamlines.

The resultant flow field can be considered as being composed of

a 1

'main flow'" tangential to the depth-averaged flow streamlines
and a "secondary flow'" perpendicular to these streamlines.
In the central part of the channel this secondary flow is directed
inward (i.e. towards the centre of curvature of the main flow
streamlines) near the bottom and outward near the free surface.
Near the sidewalls, the secondary flow is vertical, upward near
the inner wall and downward near the outer wall. Consequently, the
curved flow field has a helical character.
In the curved channel, the main flow is redistributed over the
cross—section, partly as a consequence of the redistribution of the
longitudinal pressure gradient, partly under the influence of the

, secondary flow. This secondary flow gives rise to an advective
transport of longitudinal momentum in the transverse plane, causing
longitudinal accelerations of the main flow and hence a redistribution
of the main velocity.
If the curvature and the cross-sectional geometry of the channel are
constant over a sufficiently long distance, the redistribution of the
main velocity goes on until the transverse flux of longitudinal
momentum due to advection by the secondary flow and due to the re-
distribution of the longitudinal pressure gradient is balanced by
an opposite flux due to additional shear stresses raised by the
redistributed main velocity. Then the flow has reached its fully

developed stage and it has become axisymmelrric.



N

The main velocity redistribution plays an important part in
curved flows, so it must be adequately incorporated in the
mathematical model to be develoﬁed. Little is known, however,
about how its mechanism works exactly and about what is
important and what is not in the mathematical formulation

of this mechanism. Therefore the present work deals with the
analysis of the main velocity redistribution in curved flows.
To that end axisymmetric laminar flow is considered since it
is mathematically more accessible than developing flow or
turbulent flow, while the redistribution mechanism acts

as well. '

After the redistribution has been analysed, it will be attempt-
ed to develop a simplified computation method for curved flows
that yields a satisfactory description of fully developed
curved flows and that is likely to do so for developing

flows, either laminar or turbulent.

2.2. Previous work

Fluid flow through curved channels and pipes, with its

striking helical character, has engaged research workers

since a long time. As early as 1868, BOUSSINESQ gave a mathe-
matical description of the velocity components in axisymmetric
laminar flow through coiled pipes with a shallow, rectangular
cross-section, This was the start of an extensive series of
publications on the flow in curved channels and pipes, a full
review of which would become far too long. Therefore only
publications that are closely connected with the present
problem will be considered.

The first method widely used to solve axisymmeﬁric laminar flow
problems was a perturbation method with the Dean number Re/ﬁ7§; %)
as a perturbation parameter (DEAN, 1927 & 1928 and ADLER, 1934
for circular pipes; IT5, 1951 and CUMING, 1952 for elliptic

and rectangular pipes). The mostly analytical solutions obtained

in this way hold good for small values of the Dean number.

2 ; . i 5
) Here d denotes a linear dimension of the cross—section



In another group of publications, both on laminar and on
turbulent curved flows, perturbation methods are used

with the geometric ratio d/Rc as a perturbation parameter
(ANANYAN, 1965 (1957) & 1967 for axisymmetric flow in river
bends of arbitrary cross-section; ROZOVSKII, 1961 (1957) for
axisymmetric flow in bends of shallow channels; DE VRIEND,
1973a & b for axisymmetric laminar flow in shallow rectangular
pipes and channels; DE VRIEND, 1976 & 1977 for turbulent flow
in shallow river bends). In case of axisymmetric flow, however,
the series of expansions forming the solution of the problem
can be reduced to Dean number expansions equivalent to those
resulting from a low Dean number perturbation.

In contrast with the low Dean number theories mentioned above,
several authors presented an analytical high Dean number
approach of the axisymmetric laminar flow problem, assuming
the secondary flow and the main velocity gradients due to
viscous effects to be concentrated in thin layers along the
fixed boundaries and the flow outside these boundary layers

to be inviscid (ADLER, 1934 and ITO, 1969 for circular pipes;
MORI, UCHIDA AND UKON, 1971 for square pipes; SMITH, 1976 for
pipes of arbitrary cross-sectional shape; MURAMOTO, 1965 for
the inviscid core flow in rectangular open channels).

At intermediate Dean numbers no important approximate simpli-
fications are possible: the complete set of balance equationms
for mass and momentum, either reformulated in terms of stream
function and vorticity or not, has to be solved. Although
attempts have been made to do this more or less analytically
(McCONALOGUE AND SRVISTAVA, 1968, applied an iterative method
using Fourier series to a circular pipe), most authors used
numerical methods (for rectangular pipes: CHENG AND AKIYAMA,
1970; JOSEPH, SMITH AND ADLER, 1975; CHENG, LIN AND OU, 1976).
Experiments on axisymmetric laminar flow were mostly executed
in air, which requires small dimensions of the pipe in order
to have sufficiently small Reynolds numbers combined with

suff1c1ent1y high velocities. These small dimensions make

velocity measurements quite difficult, so that most cxperlmcntnl

data concern the pressure losses rather than the velocity field



(for square pipes: LUDWIEG, 1951, presenting friction factors;

MORI, UCHIDA AND UKON, 1971, giving friction factors and main
velocity distributions; JOSEPH, SMITH AND ADLER, 1975, using flow
visualization to investigate the changes of the secondary flow for
increasing Dean numbers). A quite different type of experiment was
reported by BAYLIS (1971), who investigated the friction factor in
electromagnetically driven mercury flow in a toroidal channel of
square cross-—section.

A most important development in the mathematical description of
curved flows lies in the application of more general three-
dimensional flow computation methods, such as those developed at
Imperial College, London (see, for instance, PATANKAR AND SPALDING,
1972 and PRATAP AND SPALDING, 1976) for "parabolic" flows, in which
the velocity and the pressure in a cross-section are not influenced
by what happens further downstream, and "partially parabolic" flows,
in which upstream influencing through the pressure occurs.

When applied to axisymmetric curved flow in circular pipes of not
too sharp curvature, the method yields results that agree very well
with measured data, both for laminar and for turbulent flow (see
PATANKAR, PRATAP AND SPALDING, 1974 and 1975, respectively). Not
only axisymmetric curved flow can be predicted, however, also for
developing flow very satisfactory results are obtained (PRATAP AND
SPALDING, 1975, for turbulent flow in a rather sharply curved pipe
of shallow cross—section; HUMPHREY, TAYLOR AND WHITELAW, 1977, for
laminar flow in a sharply curved square pipe; McGUIRK, 1978, for
turbulent flow in a rather sharply curved open channel). The afore-
mentioned "parabolic" flow approximation was also used by GHIA AND
SOKHEY (1977), who investigated laminar flow in curved ducts of
regular (circular, but mostly rectangular) cross-section. '

In not too sharply curved ducts where the "parabolic" flow approx-
imation holds good, these three-dimensional computation methods
yield good predictions of the flow field at low expenses (RODI, 1978).
If the flow is '"patially parabolic", however, like in sharply curved
ducts, where the influence of the bend is perceptible in the flow field
and the pressure distribution upstream (McGUIRK, 1978), the predictions

are still good, but the expenses are high. Therefore, it is still



worthwhile to investigate the possibility of simplified computation
methods for the flow in river bends.

In river problems, considerations are often limited to shallow channels,
which provides the possibility of applying a depth-averaged mathematical
model, thus reducing the number of dimensions in the mathematical prob-
lem (LESCHZINER, 1978). In addition, a free surface and an uneven bed

can easily be accounted for in such depth-averaged models. The dis-
persion terms generated by integrating the nonlinear momentum equation
over the depth of flow, however, play an important part in curved flow,
where the advective influence of the secondary flow on the main flow is
important. This becomes evident from depth-averaged curved flow computa-
tions in which the dispersion terms representing this advective influence
were neglected (DE VRIEND, 1976 & 1977). The results of these computations
show important errors, especially in the second part of the bend and
further downstream (see also DE VRIEND AND KOCH, 1977 & 1978). So in order
to make depth-averaged equations suited to describe curved flow in shallow

channels, a closer investigation of the dispersion terms is necessary.



-3, Mathematical model of axisymmetric laminar flow

"3.1. Mathematical formulation of the problem

Incompressible laminar flow is described mathematically by
the Navier Stokes equations, the equation of continuity and
a relevant set of boundary and initial conditions. In a
cylindrical coordinate system (R, ¢, z) with vertical z-axis
(figure 1) the Navier Stokes equations for axisymmetric,

incompressible steady flow read

ov ov v, Vv 82v 62v v v
R aR | z 9z R p R 3¢ p 322 aR2 R 9R . RZ .
2 2 2
R 9R Z 0z R p 9 P az2 3R2 R 9R R2 §
avz v 1 9p n 32v Bzvz i sz
Ve 3R T Ve 37 w=g-c3g* gl e e (3.3)
R 9R z 3z p 0z o) aZZ 3R2 R 9R
in which
Vps v¢, v, = velocity components in R, ¢ and z-direction,
respectively
P = pressure
p = mass density of the fluid
n = dynamic viscosity of the fluid
g = acceleration due to gravity
The equation of continuity for axisymmetric flow reads
ov v ov
R R z
® R T ° i)



and the integral condition of continuity becomes

[/ v, dA = Q ' (3.5)
A ¢ )

in which
A = cross-sectional area

o
n

discharge

As the shape of the cross-section is not expected to play an
essential part in the mechanism of velocity redistribution

under the influence of curvature, only rectangular cross-
sections are considered with a horizontal bottom and vertical
sidewalls.

The free surface is replaced by a frictionless rigid plate
parallel to the bottom at distance d, which exterts only normal
stresses upon the fluid. In free surface flow, this schematization
is allowed for low Froude numbers.

The boundary conditions at the bottom and the sidewalls, arising
from the impermeability of these walls and the no-slip conditions

there, are

v, = 0; v¢ = 0; vz =0 at z = Zys R = Rin and R = Rou (3.6)

in which

zb = the vertical coordinate of the bottom
R. = the radial coordinate of the inner sidewall
R

in
ou==the radial coordinate of the outer sidewall

The boundary conditions at the "surface" arise from the impermeabi-

lity of this boundary and the zero tangent shear stress:

BVR
el 0 at z = z,_ +d (3.7)

ov
=0: —2 - 0.
v Q3 57 0; 3

Zz



The free surface condition p = 0 is not applicable here,
since the surface plate exerts normal stresses upon the
fluid.

In case of axial symmetry, equation (3.2) and (3.3) lead to:

3% (BR) 0 and 3 (az) 0 whence %6 constant (3.8)
Normalization

In order to find out which parameters play a part in the

mathematical model, the system is normalized, such that each

term in the differential equations and the boundary conditions

(3.1) - (3.7) is written as the product of a constant scale-factor

and a variable dimensionless quantity of the order of magnitude 0(])*)
It seems appropriate to carry out this normalization by adopting

an adequate scale-factor for each variable, either dependent or

independent. So a function f of the variable x is normalized by

f(x) =F % f(x) and x = X » x (3.9)

F and X being constant scale-factors. Applying this rule to

the first derivative of f with respect to x yields:

dE _F L df o df |

== N with o - o (3.10)

As the value of X is the same throughout the system of equations
and boundary conditions, (3.10) is not necessérily correct for
all derivatives with respect to x of all dependent variables in
the system.

This kind of problem is encountered in the present case when
attempting to normalize the radial coordinate R, which occurs in

two types of terms:

® A quantity f is of the order O(en) if lim EE- exists.
’ eY0 €
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a. terms introduced by the use of curvilinear coordinates

%, except for the

longitudinal pressure gradient term in (3.1))

(in general: all terms containing

b. terms containing radial derivatives that are not essentially

due to curvature, such as for instance the viscous term
in (3.1)

azv

¢

3R2

L
p

If R tends to infinity, the terms of the former type vanish,
whereas the terms of the latter type do not. Hence normalizing

R by
R=R =1 (3.11)

in which Rc denotes the radius of curvature of the channel
axis, is correct for the first type of terms, but it is not
for the second. Applying (3.11) to the viscous term mentioned

above, for instance, and normalizing v¢ by

= 1 = Q_ . =
v¢ Vu - with V Bd and u = 0(1) (3.12)

this term would then become

".E_EL -nV 32“ (3.13
0 2 02,2 13
P aR R or

As the term does not vanish if R goes to infinity, the normalized
quantity 337 can not be of the order 0(1) for all values of R .
which is %5 conflict with the starting-point of the normallzatlon.
In order to cope with this problem, an additional radial

coordinate y is defined by:

R=R, +y . (3.14)
'yielding gﬁ = %;-. This makes it possible to normalize the
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two types of terms independently, the first type using

with

| —

1 1 1

" As the terms of the second type are mainly due to friction,
d is an adequate scale-factor for y as long as the cross-

section is not deep and narrow, so in terms of the second type

the normalization can be carried out using

y =dg  and 2.s

1 :
oR d

i - S (3.16
with x 0(1) ( )

|
Yy

For the same reason, d is chosen as a scale-factor for z:

19 N
I 5% w1ch—a—;-0(1) (3.17)

- a_
z = dg and 5z

The secondary flow (VR, vz) is a consequence of the main flow
curvature: if Rc tends to infinity, the secondary flow vanishes.
Additionally, the intensity of the secondary flow increases

as the depth of flow increases (except for narrow deep channels).

Therefore the secondary velocity components are normalized by:
vd L., —vd -
v, =V T Viv, = \Y v (3.18)

The pressure p and the longitudinal coordinate s = R¢ should be
normalized such that the longitudinal pressure gradient in (3.1) is
appropriately represented. In the limit case of steady straight
channel flow, equation (3.1) reduces to

2 2
5 oV a v

l3p,.n ¢+ ¢ . 3.1
A A Ko s (3.19)

0=-

The pressure gradient term and the viscous terms are equally
important in this equations and there is no reason why they should
not be so in curved flow. Therefore p and s should be normalized

such that:
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<

9P -

9S 2 3s

1 ]
Vn P yith %S- = 0(1)
d .

The three normalized Navier Stokes equations become consistent

if s is normalized by

s =dr ¢' whence ¢ = %— ¢'
c
In order to eliminate g from the normalized system, the
"total pressure'" p + pgz is normalized instead of p. Regarding
(3.20) and (3.21),
2

\
e P

Vn
p+pgz=-d—p =

©

=

in which Re is the Reynolds number based on the main velocity

“scale V and the depth of flow d.

Defining € = d/RC and substituting the normalizations (3.12),
(3.15)=(3.18), (3.21)-(3.22), into the system of differential
equations and boundary conditions (3.1)-(3.7) yields the

following normalized system:

du du uv 109 9 u 9°u , € du €
ERe (Vi + Wom +60) = - — 22 + o+ 2D+ == -= u
9 T r r 9¢ SCZ 3&2 r 9% r2
2 2 2 2
eZRe (v-g%+w-g—Z)—eRe%=-ng.+5(a_%+.3_‘£+%§1_§.2 )
14 13 8
2 2
e’Re (v %g + W %g) = - %%.+ sl 20, %_2&5
9z 9E 9E
ov € ow _
"a‘é"f";v*'-a—z—o
B/2d 0 5 B
J d [ udg = Y (& = - 7q at the inner sidewall,
-B/2d -1
E = %E at the outer sidewall)
w =20, %§-= 0; %% =0 atg =0
u=0; v=0, w'= 0 at ¢ = -1 and at £ = + 2,

— 2d

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
(3.28)

(3.29)
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.3.3. Stream function and vorticity of the secondary flow

The equation of continuity (3.26) only contains the two
secondary velocity components, so a scalar stream function y'

can be defined, such that this equation is satisfied:

=1y 13y 3.30
v roc °* YT Y (50

It should be noted that other definitions of the stream function
also satisfying (3.26) are possible. By adopting (3.30), however,

lines of constant stream function represent streamlines of the

secondary flow

d Y’ 3y’
= = - = /ZX = w/v (3.31)

Elimination of the pressure gradient terms from (3.24) and (3.25)

by differentiating (3.24) with respect to ¢ and (3.25) with respect
to § and subtracting yields

2
dw' dw' _ e . N R ¢
eRe (v 3E + w Y3 (" ) + Re Ya (r ) = V' (3.32):
2 2 2
where V2 " + +E2 . 8 and w' denotes the vorticity of
2 2 r 9§ 2
9 9T : r
the secondary flow defined by
9 ] 1 32 ! 32 ' e !
w-_aﬂ-a_":_(_‘lziﬂu__‘g-__) (3.33)
o Ty, se” T oo ‘

Considering the vorticity transport equation (3.32) , the only
source of secondary flow vorticity = appears to be the vertical
derivative of the centrifugal force; if this term is dropped, the
secondary flow is identically equal to zero. For small values of Re,
when u is independent on Re as can be seen from (3.23), the source
term in (3,32) is proportional to Re. This suggests the secondary

flow to be proportional to Re for small values of Re. So defining
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Y' =Re ¢ 3 w' = Re w

¥ and w can be expected not to depend on Re if Re is small.

Then it is useful to rewrite the normalized system
$3.23)-(3.29) as follows:

2 13y du e l3youw _ _13p 2
eRe” { r o¢ ‘93 T i r 9L C} T r 3¢' * ¥
2 13 Bw_e v, 13 dw,, 3 i _ 2
eRe” { 2T (35 = w) + T o rgg)} * (T)=Vw
2 2
V%¢ = wr with V? = 2—2 + 2—2 - %-gz
- oC &
B/2d 0 B
fdgf UdC=a-
-B/2d -1
o = - - 4B, du_ -
u=0 at gz = -1 and at § = :-Zd T 0atz =0
) 52
¥ =0and z¥ =0 atg=—1;w=0and-——"2’-=o at £ = 0
. Y4
q;=0and—§-‘1€i=,o at £ = + oo
- - Re 3y | = Re 3y
VETTT o YT Y W

The three normalized velocity components u, v and w and the

%%, can be solved
from this system of differential equations and boundary

normalized longitudinal pressure gradient

conditions as well as from (3.23)-(3.29). The advantage of

the present system is that the transverse pressure distribution
needs not be solved in order to obtain the velocity field. As
(3.36)" and (3.37) can easily be reduced to one fourth order
eéquations in ¢, this implies that three equations with two
unknown functions (u,y) and one unknown constant (%%,) have

to be solved simultaneously here, whereas (3.23)-(3.29)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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requires the simultaneous solution of five equations with four
unknown functions (u, v, w, p) and one unknown constant C%%,).
In the present system, the velocity components being known, the
{ransverse pressure distribution p(£,%) can be solved from (3,24)
or (3.25) or from a combination of these two equations obtained
by differentiating (3.24) with respect to § and (3,25) with
respect to ¢ and adding the results to (3.25) multiplied by %w
This yields

2 2 2 2
9- 3 € 0 2 v +W 2 3w € _ W 2
(—-.2+.‘—2+';E) (p+eRe——§—-)—e.Re(wag+;ww V'éz'f'(_,\_s)
RS 9z
eRe 9 2
B (u™) (3.43)

The relevant boundary conditions can be derived from (3.24)

and (3.25) and the boundary conditions for v and w:

9 32 9 ‘
P g 23 atc=—l;—P-=0 at g =0 (3.44) |
o0& 2 9z

9z
9 32w € 0w "B
3 - R R (3.45)

From equations (3.36) and (3.37) it becomes evident that the parameter
indicating the importance of the advective terms with respect to

the viscous and the pressure gradient terms is eRez, both in the
longitudinal momentum equation (3.36) and in the vorticity

transport equation (3.37).

DEAN (1928) and ADLER (1934) have shown that the resistance of low
Reynolds number flow in coiled circular pipes of moderate curvature

can be expressed as a power series expansion of the parameter

7 ;
1 3p 2 a 2 3 4()
- _) —— = De ( . )
p R 93¢ 4
c Y Rc

&

in which a denotes the radius of the pipe cross-section. The
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parameter De is called the Dean number. Carrying out a
normalization as applied to the present model, this number

can be rewritten as

;!? __EZKE - i =2
vZRl/2 Rc

aReé'

) y 2 . 2
in which Re' = %3 . Hence the resistance parameter De 1is equivalent

. 2 .
to the secondary flow advection parameter eRe derived here. Therefore

RevVe will be referred to as the Dean number hereafter.

Solution procedure

The non-linear system of differential equations and boundary
conditions (3.37)-(3.41) has to be solved iteratively to yield
approximations of u, %%, and ¥ in each iteration step. The essential
point of the iteration procedure is that the stream function of the
secondary flow y is supposed to be known when figuring in the

advective terms in (3.35) and (3.36). It is estimated by its solution
in the foregoing iteration step.

(n)
(n) d3p
and 36"

longitudinal momentum equation (3.35), the integral condition of

If n is the iteration index, u are solved from the
continuity (3.38) and the boundary conditions (3,40) . As shown before,
%%1 is a constant in axysymmetric flow. It will be indicated by =1
hereafter.

Defining
u:lu'

equation (3.35) can be reduced to:

—

2 13y du' e vy Ll3pouty 1 02,
eRe { rag;(ae;+r“)+ras;a;} rtvu

(3.47)

(3.48)

(3.49)



_]7_

As {y is considered as a known function here, this is.a linear
. ; : y : 1
differential equation in u' with the known source term - s

The boundary conditions for u' are the same as those for u, so

u' can be solved without knowing 1, which is subsequently

qolved from

B/d
B/2d 0
S dg [ u'dg
-B/2d -1

The stream function of the secondary flow Y is solved from the
fourth order partial differential equation obtained by combining
(3536) and (3.37). Estimating the secondary velocity-components
in the advective terms of the vorticity transport equations at
their values in the foregoing iteration step, this combined

fourth order equations reads

(n-1) 3 3 2 2 2
ke |2l (awz)+3§’2%i%’3%a_%+352%i)(n)+
¢ 9EL 14 14 13 £ %
R T i I i S & I OO N BN
5 9k - 3;3 ag2ac r 9£9C 9T
sy st oty e 3% . a0 & azw_ &3 oy (MW
Cg 2 gt g m 2 g 35, 5 -3 5 =)
g 9E 9T 9T o 9EazL r o0&, . r 9¢
As w(n—l) is a known function, this a linear equation in w(n),
with %E (u2)(n) as a known source term. This equation can be
solved with the boundary conditions (3.39)-(3.41) .

The iteration is started by setting w(O) =0

, such that in the
first iteration step the advective terms in (3.49) and (3.51)
drop out. The iteration is stopped when the following termination

criterion is satisfied in every point of the cross-section:

(3.50)

(3.51)
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|u(n) _ u(n‘l)l < 8 with 6 << 1 | (3.52)

As by definition the overall mean value of u(n) equals 1 for
all n, this absolute criterion can be used instead of a

relative one.

If only a fraction of the changes in u from one iteration step
to another is accounted for, the convergence of the iteration

procedure can be improved. Therefore

(n) _ 1 (L o u(n-l)}

u a with a> 1 (3.53)
is used rather than
L @@

(3.54)

This does not influence the consistency of the solution procedure,
(3.53) being equivalent to (3,54) if u(n_l) - u(n). The termination

criterion, however, must be corrected for g :

Iu(n) - u (n-l)l - g_ (3.55)

Numerical solution

In each iteration step the system of differential equations and
boundary conditions (3.49)-(3.51), (3.53), (3.39)-(3.41) 1is solved
numerically using an implicit second order finite difference method.
The equations are discretized on an N by M rectangular grid of

mesh size AgxAf , where Az = 1/N and AE = 1/(Md) (see figure 2).
Throughout the system central differences are used for discretization,
except near the boundaries, where forward or backward differencing

is applied. This is always done such that the truncation error is

at least second order (see Appendix I). Adopting a shorthand notation

§

in which %Z 3 and Vz denote the finite difference representations
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2 : . : :
of %z 3 gz and V', respectively, the discretized longitudinal

momentum equation in a grid point (i, j) reads:

2 (n~l) su 1 (n) w(n D gy
eRe [__ l _] { ,J + £ |(n)} + sJ ’J ]=_-l ® ‘V‘z Ll'(n)
r. 6z T8E T r, i,j o g r. i,j
J j J
(3.56)
() .
The derivatives of u.". are evaluated by the usual 3-point formulae,
whereas the derlvatlves of w( w-1) in the advection terms are
’
evaluated using 5-point formulae in order .to avoid artificial
viscosity effects. For the same reason the possibility of
using upwind difference schemes for the advection terms was
rejected (ROACHE, 1972).
The discretized stream function equation reads:
q)(n-l) 2 () w(n—l)
2 s § 1 - (n € 2 (n) j 8 1 2. (n)
E:Re["' =3 {= =% - =, ¥ 1o+ = — (= ¥y )
T8¢ £ r.i 1 i,3 r? 1 "4,3 33 14 rj 1 i3 1
LY
RO N 2,1 (n) 457
= «57
i,] 6@ rJ v (I‘J 1 v ) : J

P ; n) . i ; .
The derivatives of ¢£ 3 in thls equation are evaluated using second
b

order finite difference schemes. For accuracy reasons (artificial

(n-l)

viscosity), however, the derivatives of .
(n)

3
equation are discretized by fourth order schemes. In Appendix I it

in the advection terms

and the vertical derivative of u. in the source term of this

is shown that the lower derivatives with respect to § in the viscosity
terms and with respect to £ and ¢ in the advection terms (see also
(3.51)) will give rise to artificial -wviscosity or similar numerical
inaccuracies. Moreover, if the mesh size of the computational grid

is too large with respect to the boundary layer thickness at the

fixed walls, spurious spatial oscillations will occur in the finite
difference solution of u (ROACHE, 1972). All these numerical inaccuracies

are suppressed or are negligible if
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eRelvi | %5 <1 and eRe|w, .| Az

s ] 1,] —2_

%jAg << 1

throughout the flow.

The discretization of equations (3.49) and (3.51) is described in
detail in Appendix I. The resulting two sets of linear equations,
viz. (M-1)wN equations in ui’?) and (M-1)#(N-1) equations in
wi?ﬁ, are solved using a matrix decomposition procedure (WILKINSON
AND REINSCH, 1971). The integrations needed to determine 1 from
(3.50) are executed using Simpson's rule, The termination criterion
for the iteration procedure being satisfied, the total pressure p
is solved from a rewritten version of (3.43) with p given at all
boundaries. The discretization of the pressure equation and the

treatment of the boundary conditions are described in Appendix I.

4, Verification of the model

'4.1.

Comparison with analytical results

The results for low Dean numbers of the numerical solution method
described in the foregoing paragraphs have been compared with
analytical low Dean number solutions reported by ITO (1951),

CUMING (1952) and DE VRIEND (1973a, b). In the first two publications
the main velocity component and the stream function of the secondary
flow are determined by successive approximations with the Dean number
as a perturbation parameter. As a result, the main velocity and the
stream function are expressed as power series expansions of Dez.
Although derived for shallow channels of mild curvature, the analytical
results for the main velocity and the stream function of the secondary
flow reported by the third author can be reduced to power series
expansions of the Dean number that are applicable to relatively

deeper cross—-sections as well.

(3.58)

(3.59)
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All three authors have solved essentially the same differential
equations *), Cuming stopping the analysis after having deter-
mined the first non-zero term of each series expansion, the other
two authors also giving the second term of the main velocity
expansion.

In figures 3 and 4, the analytical solutions of the normalized
main velocity u and the normalized stream function of the
secondary flow Y are compared with the results of the present
model for € = 0.01 and Re = 50, i.e. De = 5, both for d/B = 0.5
(in terms of pipe flow: square cross—section) and d/B = 0.1 (in
terms of pipe flow: rectangular cross-section with aspect ratio
0.2). The numerical and the analytical solutions appear to

agree well, both for the main velocity and for the secondary flow
stream function.

Additionally, the longitudinal slope factors 1 show good agreement:
for the square cross-section the analytical and the numerical
values are 7.11 and 7.13, respectively, for the shallow cross-

section these values are 3.39 and 3.44..

Comparison with other numerical results

Various investigatofs apply numerical methods to study axisymmetric
incompressible laminar curved flow for intermediate or even high
Dean numbers.

The system of differential equations and boundary conditions solved
by CHENG AND AKIYAMA (1970) is essentially the same as the system
solved at present, although the divergence terms are neglected

(i.e. %-is set equal to 1 instead of ), which limits applications

1
1+
to relatively large radii of curvature. In general, the discretization
of the equations is second order, but fourth order schemes are
employed for the secondary velocity components in the advection terms

and for the vertical derivative of the stream function equation.

DE VRIEND accounts for the divergence of the coordinate system

in lower order terms of the expansions than the other authors.



The main flow equation and the stream function are solved
simultaneously by the same iterative procedure as applied

in the present work, using successive overrelaxation to

solve the individual equations in an iteration step.

Figures 5 a-d show a comparison of the main and the secondary
velocity components resulting from Cheng and Akiyama's

work and from the present model for d/B = 0.5, with the Dean

number as a parameter. In figure 5e the streamlines of the
secondary flow are compared for De = 18.4 and figure 6

represents the relative magnitude of the longitudinal slope

factor 1 with respect to its value i in an equivalent straight
channel or pipe. All results show a good agreement.

JOSEPH, SMITH AND ADLER (1975) developed a procedure to solve
time-dependent axisymmetric laminar flow problems. This

procedure was also applied to steady state computations, time

being an iteration parameter then. The differential equations

and boundary conditions describing this steady state flow are
equivalent to (3.23)-(3.29)., The solution procedure, however,

is quite different from the present one. The main velocity

equation is solved explicitly in time with a Dufort-Frankel
approximation of the second derivatives in the viscosity terms
(ROACHE, 1973). The secondary velocity components and the pressure
are determined from discretizations (with Dufort-Frankel approxim-
ations) of the momentum equations in radial and vertical direction
and the equation of continuity. These are rewritten into explicit
expressions for the secondary velocity components and a finite
difference equation for the pressure which is solved using
successive overrelaxation. This iterative procedure turns out to

be convergent up to higher Dean numbers than the present method,
.;Lt both suffer from weakly damped oscillations in time at higher
Dean numbers.

One of the most striking results from Joseph, Smith and Adler's work
is the occurence of a flow pattern with two counterrotating helices
instead of one (in pipe terms: four rather than two) at higher Dean
numbers. In a square pipe the transition from the usual low Dean number
flow pattern to this higher Dean number pattern is found to occur quite

abruptly at De = 50, which is confirmed experimentally.
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Similar counterrotating helices have been observed during

various experiments on turbulent flow in curved channels (B.C. YEN,
1965; RAO, 1975; CHOUDHARY AND NARASIMHAN, 1977; DE VRIEND AND
KOCH, 1977). As the second helix stays close to the outer wall

even in shallow channels, it will presumably be of minor import-
ance for the development of a mathematical model of turbulent

flow in river bends *). Nevertheless it provides a possibility

to test the present axisymmetric laminar flow model at higher

Dean numbers.

In figure 7 the main flow isovels and the streamlines of the
secondary flow resulting from the present model are compared with
‘those resulting from Joseph, Smith and Adler's model for a square
pipe and Dean numbers close to 50. In both models the transition
between the two flow patterns occurs at De = 50. The positions of
the main flow isovels and the secondary flow streamlines are in
rather good agreement, especially when taking into account that

for Dean numbers in the region about 50 a small deviation of the
Dean number will give rise to considerable changes of the flow
pattern. ,

As far as the magnitude of the stream function (i.e. the intensity
of the secondary flow) is concerned, however, the two models differ:
the values computed at present are about 207 higher. On making

the comparison between the two models at a lower Dean number

(De = 20.3, see figure 8), the same difference occurs whereas the
positions of the main flow isovels and the secondary flow streamlines
are in good agreement. By lack of experimental information on the
secondary flow intensity and considering that in the same Dean number
region the present secondary flow intensity agrees well with the
intensity found by Cheng and Akiyama (see figure 5 c-e), the cause

of this difference will not further be examined.

RAO (1975) suggests this second helix to be important to bank erosion

and consequently to the entire configuration of a natural water course.
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Finally, the transverse pressure drop at the surface is
compared with the values for a square pipe computed by

JOSEPH, SMITH AND ADLER (1975) an& with the 1.92 power law
resulting from circular pipe computations by AUSTIN AND SEADER
(1973). Figure 9 shows a good agreement between the present
results (exponent 1.91) and those from the two other models
(Joseph, Smith and Adler: exponent 1.87). The transverse
pressure drop is seen to be about a factor 1.3 higher in

case of a rectangular cross-section.

The system of equations solved by CHENG, LIN AND OU (1976)
agrees with the present one, except for the stream function
equation, which is replaced by the vorticity transport

equation (cf. equation 3.36) and the Poisson-type relation
between stream function and vorticity (cf. equation .3.37).
Although complications arise from the boundary conditions

of w at the fixed walls (see also: ROACHE, 1972), solution
procedures solving these two second order equations appear

to be superior to corresponding procedures solving the fourth
order stream function cquation. The system is discretized using
second order finite difference schemes, even when deriving the
secondary velocity components from the streamifpnction, thus
discarding artificial viscosity effects in the longitudinal
momentum equation (see Appendix I). Both splitting the stream
function equation and discarding artificial viscosity lead to
convergence of the iteration procedure up to much higher Dean
numbers than can be reached by the present method (in a square
pipe Dean numbers as large as 250 could be reached, whereas the
present method fails at De > 60).

The method was used to determine the axisymmetric velocity field
in rectangular channels of various aspect ratios (d/B = 0.25,
0.50, 1.0, 2.5). The results show the same features as those
discussed before, viz. an outward skewing of the horizontal
distribution and a flattening of the vertical distribution of the

main velocity as De increases (see also figure 10), longitudinal



4.3,

- 25 -

slope factors increasing with De (see figure 6) and the
formation of a counterrotating secondary circulation near

the outerwall in the upper half of the vertical. Contrary

to the present results and those obtained by JOSEPH, SMITH

and ADLER (1975), in a square pipe the transition to the

double secondary flow pattern occurs at a Dean number which

is definitely higher than 53. Moreover, for De = 53 the
secondary flow intensity is about 307 higher than the intensity
found from the present model (whereas the intensity found by
Joseph, Smith and Adler is about 207 smaller than the present

one!) These differences are most likely to be caused by

artificial viscosity effects reducing the effective Dean

number.

An important conclusion to be drawn from this work is that

the counterrotating secondary circulation can also occur in
shallow channels, where, at least at the Dean numbers considered,

the second helix stays close to the outer wall.

*Comparison with measurements

In contradiction to circular pipes, little experimental data

on incompressible flow through coiled rectangular pipes have

been published: only MORI, UCHIDA AND UKON (1971) presented

the main velocity distributions measured in air flow through

a square pipe of 0.02 m side length with a radius of curvature

of 0.267 m (d/Rc = 0.0357), at Dean numbers ranging from 10 to
900, i.e. both in the laminar and in the turbulent flow region.
According to Mori, Uchida and Ukon's paper, the presented

results concern the main velocity normalized by the mean velocity
in longitudinal direction. On closer examination of these results,
however, the overall mean value of the normalized velocity turns
out to be less than unityx). It does not become evident from the
paper how the mean longitudinal velocity was computed, but it

seems obvious that something is wrong at this point.

Assuming u(g,z) = u(§,0) # u(0,z)/u(0,0), the mean values are

about 0.8 for all Dean numbers.
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Althoug this inconsistency is to spoil the quantitative comparison
between computed and measured results, a numerical simulation of
the experiment was carried out in order to get an indication on

whether the computed results show the right tendencies for

. varying Dean numbers. As the computation did not converge at

4.4,

Dean numbers higher than 60, however, not all flow situations
could be simulated. Therefore figure 10 represents only main
velocity distributions for De = 9.9, 18.0 and 38.2.

As was to be expected, the quantitative agreement between
measured data and computational results is not very good.

But in addition, the shapes of the equivalent measured and

computed velocity distributions do not agree very well either.

Although the measured data show the same tendencies as the
computed results (for increasing Dean numbers a shifting of

the velocity maximum to the outer wall and a flattening of

the vertical distribution were observed), the shapes of the
measured distributions suggest the Dean number to be lower than
indicated.

As the computed distributions found by CHENG, LIN AND OU (1976)
agree well with the present ones (see figure 10), the cause of
these differences is not likely to lie in the mathematical model,
but rather in an error in the mean velocity, to which the Dean

number is proportional.

Utility of the model

From the foregoing comparisons with other work it is conluded

that the present mathematical model gives a rather good description
of incompressible axisymmetric curved flow at low and intermediate
Dean numbers (De < 60).

It must be assessed now whether this Dean number range is wide
enough to make the model suited for the present purposes: analysing
the velocity redistribution mechanism and developing a simplified
computation method for the flow in river bends.

In laminar curved flow the Dean number indicates the importance of
secondary flow advection relative to molecular diffusion of
momentum. Likewise, in turbulent curved flow, where a qualitavely

similar secondary flow occurs, the Dean number should indicate
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the importance of secondary flow advection with respect

to turbulent diffusion of momentum. Therefore the Dean
number should be based on some equivalent turbulent
viscosity rather than on molecular viscosity. A rough
indication of turbulent viscosity (ENGELUND, 1974) is given
by

Vv, = vd

v .
T 13

b

in which C denotes Chezy's constant. Then the turbulent Dean

number can be evaluated as

' B d
De_ = 13 ’/E—
[ o

=
5{0

In practice C/V/g will range from 10 to 20 and inunatural rivers
the ratio radius of curvature to channel width ranges from

2 to 3 (LEOPOLD, WOLMAN AND MILLER, 1964). For d/B = 055

the mathematical model is convergent up to De = 60, but as

d/B decreases, this critical Dean number increases. Taking

60 as a lower limit, 'the model is applicable when considering
-natural channels of a depth to:width ratio up to 0.1, which is
thought to be sufficient. In various flume experiments '
however, much higher Dean numbers are found, so that the
mathematical model is not likely to give even a qualitative
representation of the observed phenomana. Therefore a selection

of flume data to moderate Dean numbers will be made.

(4.1)

(4.2)
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Shallow channel computations

In order to study the influence of the Dean number the curvature
ratio € and the channel aspect ratio B/d on axisymmetric laminar
flow in curved shallow channels, a saries of shallow channel

computations was carried out using the mathematical model described

in the foregoing sections. Table 1 gives a survey of these comput-

ations.
€
10 4| 1072 0.04 0.16
2 25 - - -
5 25 - - =
< | 10 25 25 0/6.25/12.5| 25
~
m
25/37.5/50
15 25 - | - -

Table 1. Dean numbers for shallow channel computations

Influence of the Dean number

In the mathematical model the Dean number indicates the relative
importance of the advection terms in the longitudinal momentum
equation (3.49) and in the stream function equation (3.51).

I1f these advection terms are dropped, the solutions of u and

Y become identical to the zero Dean number solutions. Since the
velocity distribution, both in a shallow channel and in a square
pipe (see for instance figure 5), is strongly influenced by the
Dean number, advection must play a promiment part in curved flow.
Most of the phenomena observed whenvarying the Dean number can
be explained from the main velocity redistribution due to the
advective influence of the secondary flow. A description of this

redistribution and its consequences will be given in the present
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section, a more thorough analysis of the main velocity

redistribution will be made in chapter 6.

a. Main velocity distribution.

One of the most important effects of advection in curved

flow is the transverse redistribution of the main velocity.
For De = 0, the vertical distribution of u is practically
parabolic and the maximum lies at the surface near the inner
wall (figures 11 a-b). When De increases, however, the maximum
of the main velocity moves towards the outer wall and from the
surface to a lower point, the vertical distribution of u
becoming flatter in the upper half and steeper in the lower
half of the vertical. All these phenomena qualitatively agree

with those computed for square pipes (see chapter 4). Comparing

figures 5a-b and l1la-b, however, the influence of the Dean

number appears to be stronger in a square pipe, especially when
the vertical distribution of u is concerned: the same degree of
deformation *) of the main velocity distribution is reached at

a lower Dean number than in a shallow channel.

The main velocity redistribution due to advection is important
for the prediction of the bed configuratioﬁ in alluvial river
bends, as it gives rise to a redistribution of the longitudinal
shear stress at the fixed boundaries of the flow. This shear
stress is proportional to the main velocity gradient at the
boundary. Figure llc shows that in the outer wall region this
gradient decreases with the Dean number, whereas in the inner wall
region it remains almost constant. Consequently, the longitudihal

slope factor 1, which is correlated to the boundary shear

Measured, for instance, by the reduction of the main velocity
at the surface with respect to the value if the vertical
distribution would have been parabolic with the same depth-

averaged value.
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% g . s
stress ), increases with the Dean number, as 1s shown
in figure 12. This explains what is generally called the

"ecurve resistance'.

b. Secondary flow

The influence of the Dean number on the secondary flow is
shown in figure 13. The redistribution of the main velocity
influences the stream function through the source term
-%E (u2) in the stream function equation (3.51). For in-

creasing De this source term tends to decrease in the upper

half of the vertical, where it may even become negative, and

to increase the lower half. Consequently, its maximum shifts
downwards (for De = 0 the maximum for £ = 0 occurs at g = -0.58,
for De = 50 it occurs atg= -0.77), i.e. towards the bottom,
where its effect on y decreases since both y and g%-are
prescribed to be zero at the bottom. In addition, the vertical
mean value of the source term, which is equal to uz(c=0),
decreases for increasing De. As a consequence of this behaviour
of the source term, the maximum of the stream function { tends
to decrease as De increases and the centre of circulation, i.e.
the point where { occurs, moves downwards (see figures 13a-b).
At higher Dean numbers the maximum of the source term in the
outer wall region moves faster down than in the inmner wall
region (for De = 25 and 50, the maxima for § = -4 occur at

£ =0.72 andz = 0.76, respectively, whereas for £ = 4 they are
found at ¢ = -0.76 and ¢ = -0.84), Consequently, at higher Dean
numbers the reduction of the stream function near the outer wall
is relatively stronger than near the inner wall. This explains
why for increasing De the centre of circulation first moves
towards the outer wall (under the influence of the redistribution)

and above a certain value of De back inward again (see also figures
13d-e) .

By integrating equation (3.35) multiplied by r2 over the cross=

%l can be shown to be equal to the integral over the
g " . . 2
fixed boundaries of the main velocity gradient weighted by r .

section,
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As compared with the results for a square pipe, the re-

duction of §#in the shallow channel is rather weak in the

Dean number range considered (figure 13c). In square pipes

the quantity {JDe,which can be considered as an indication

of the secondary flow intensity as long as € is constant,
decreases at Dean numbers higher than about 20. The shallow
channel data availablex) suggest the Dean number at which JDe

is maximal to be considerably higher (between 30 and 40) and

the value of the maximum to be about twice as large as in

a square pipe.

Presumably, the shift of the maximum of JDe to higher Dean
numbers must be attributed to the aforementioned stronger
influence of the Dean number on the main velocity distribution
in a square pipe. The smaller values of JDe found in a square
pipe can be explained from the stronger influence of the
sidewalls. Considering the main velocity distribution in a

square pipe, the sidewall boundary layers cover a much larger
part of the cross-section than in a shallow channel (cf. figures
5a and 1l1a). Consequently, the overall mean value of the source
term in the stream function equations is smaller. Moreover,

even if this source term would have had the same overall mean
value, the smaller distance between the lateral boundaries would
have led to smaller values of { in a square pipe.

Comparing the location of the centre of circulation in a shallow
channel (figures 13d-e) with that in a square pipe in the same
Dean number range (figure 5c¢-d ), a qualitatively similar
behaviour is observed. As a consequence of the stronger influence
of the Dean number, however, the vertical displacement of the
centre of circulation is larger in a square pipe than in a
shallow channel at the same Dean number. For the same reason,
the shifting back inwards starts at a lower Dean number in a
square pipe. As in a shallow channel the influence of the
sidewalls is much smaller, there is much more room for lateral
displacements of the centre of circulation. Accordingly, these

displacements are much larger than in a square pipe.

The high expenses of the shallow channel computations limited

the number of runs that could be made
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Finally it should be noted that figures 5c-d, 13c and
13d-e suggest the centre of circulation lies closest
to the outer wall when the highést value of {JDe occurs,

i.e. when the highest secondary flow intensity is reached.

c. Transverse pressure distribution.

Figure 14 shows the influence of De on the transverse
pressure distribution. Since only the distribution of p is
important and not its absolute value, p was set equal to
zero in the inner top corner (g = 0, £ = -5). At low Dean
numbers, when the maximum of the main velocity lies near
the inner wall, the radial distribution of p is concave,
but as De increases and the maximum of u shifts towards
the outer wall, a convex distribution is found. For all
Dean numbers considered the vertical pressure distribution
hardly changes: p is almost constant throughout the vertical.
From figure l4a it appears that the difference between the
values of p/eRe at the outer and at the inner wall hardly

depends on De. According to the definition

R
P=—e2-(p+pg2)
pV

fhis implies that the transverse pressure drop is closely
proportional to Dez,which is confirmed by figure lé4c, where
an exponent of 1.96 is found. This figure also shows the
transverse pressure drop in the channel considered to be
about 5 times as large as in a square pipe (see also figure
9). Apparently, the transverse pressure gradients are almost
the same in both cases.

From these results it can be concluded that, at least in
shallow channels for the range of Dean numbers considered,
(De < 50) the transverse pressure distribution is hardly
influenced by'the secondary flow. The only important source

term in the pressure equation (3443) is the main velocity
eRe 29 2

(3.22)
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d. Total energy distribution.

Finally, the total energy normalized by

2 2,2 2
_ Re 1 2 _ u + e (v + w)
e = ;;5 (p + pgz + 5 pvtot) = p + Re

is given in figure 15. From this figure and the transverse
distribution of p given in figure 14 it becomes evident
that the term with u2 plays a prominent part in e.
Consequently, the energy maximum shifts towards the outer
wall as De increases and the vertical distribution tends
to be flatter in the upper half and steeper in the lower

half of the cross-section.

Influence of the curvature ratio

In axisymmetric curved flow two important effects influence

the main velocity distribution in an opposite sense:

- the "potential flow" effect, represented by the factor'% in the
pressure gradient term of the longitudinal momentum equation

= the effect of secondary flow advection

At low Dean numbers, the potential flow effect is predominant:

outside the sidewall boundary layers the mean velocity is

inversely proportional to r, as in free vortex flow (cf.

low Dean number solution by DE VRIEND, 1973). When De increases,

however, the influence of advection increases and the radial

distribution of the main velocity gradually changes into a

profile with its maximum near the outer wall instead of the

inner wall (see figure 1la).

The factor % varies from the inner to the outer wall. Conse-

quently, the influence of the potential flow effect gets stronger

when the bend becomes sharper, or in the present case,where d/B

is kept constant: when the curvature ratio increases (see

figures l6a and 16d). 4

According to figures 16b, ¢ and e, the influence of € on the

vertical distribution of u is more complicated. In the channel

axis a slight flattening of the profile can be observed in case

3 (5.1)
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of a very sharp bend x). In the sidewall regions, however,
the influence of € is much stronger. Near the inner wall

the effect of advection is drastically intensified when

€ 1increases, whereas near the outer wall the effect

weakens.

From figures 16f and 161 it becomes evident that the stream
function (and hence its radial and vertical derivatives)
hardly depends on € near the inner.wall and decreases for
increasing € near the outer wall. The secondary velocity
components, however, are proportional to %-times the
derivatives of the stream function (definition 3,30),so as

€ increases they increase near the inner wall and decrease
even stronger than the stream function near the outer wall.
Consequéntly, the local effect of advection is intensified
near the inner wall and weakened near the outer wall. From
the slight increase of the advective influence on the main
velocity profile in the channel axis (figure 16b) it becomes
clear that the intensification near the inner wall is stronger
than the weakening near the outer wall.

Figures 16f and 16i show that for increasing € the maximum

of the stream function decreases and shifts towards the inner
wall. This accords with the behaviour of the source term in
the stream function equation: its vertical mean value uz(c = 0)
shows an overall decrease with the maximum shifting towards
the inner wall (see also figure 16a). In the inner wall region,
however, the maximum of the source term shifts to a lower
point of the vertical as e increases. Thus the local increase
of the vertical mean value of the source term is compensated,
such that in this region Y hardly depends on €.

According to figures 16g-h and 16j, the role of advection in
the vertical distribution of ¢ is the same as in the main

velocity distribution: intensification of the influence near

€ = 0.16 represents a very sharp bend here, the radius of

curvature of the inner wall being as .small as 0.2 RC.
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the inner wall and weakening near the outer wall.
Consequently, as e increases the centre of circulation

for a vertical moves down in the inner wall region and
around the channel axis and it goes up in the outer wall
region.

As regards the influence of the curvature ratio, the
shallow channel results seem to differ from those for

a square pipe, where, for instance, over a wide range of ¢
hardly any effect on { was observed (figure 13c). It should
be noted, however, that in case of a shallow channel a
certain value of € represents a much sharper bend than in
case of a square pipe, since the normalized radius of

curvature of the inmer wall is given by

g = 1 = .B_E
inner 2d
So in terms of r. , the shallow channel computations

inner
represented in figure 13c range from 0.9995 to 0.2 and

the square pipe computations from 0.99995 to 0.95. This
implies that the shallow channels cover a wide range of bend
sharpnesses, but the square pipe computations all deal with

gentle bends.

Influence of the channel aspect ratio

Figure 17 shows the influence of the channel aspect ratio
B/d on the transverse distributions of the main velocity

and the stream function of the secondary flow.

According to figure 17a, the location of the main velocity
maximum shifts to higher values of the relative radial
coordinate 2%5 as B/d increases, but the value of the
maximum is approximately constant. When plotting the depth-
averaged main velocity distriButions near the inner and near
the outer wali on the same radial scale (figures 17c-d)

the curves near the inner wall depend on B/d, but the curves

near the outer wall practically coincide for all values of

(5.2)
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B/d considered. Apparently, at the present Dean number

the main velocity maximum moves outwards until it is

stopped by the viscous forces near the outer sidewall.

The vertical distribution of u in the channel axis (figure
17b) is strongly influenced by the channel aspect ratio,
from a typical low Dean number profile in shallow channels
(B/d = 10,15) to a typical higher Dean number profile in

a square pipe (B/d = 2). According to figure 17e, however,
the vertical distribution of u near the outer wall depends
on B/d to a much lower extent than the distributions near
the inner wall and in the channel axis (figure 17b). The
influence of B/d on the vertical distribution of u in the
channel axis confirms the hypothesis made in section 5.1.:
the influence of the Dean number on the vertical distribution
of the main velocity decreases when the channel aspect ratio
increases. The differences between the effects of advection
near the two sidewalls can be explained from the local
intensity of the secondary flow, especially of the vertical
velocity component. Figures 17h-i show that near the inner
wall the vertical velocity decreases considerably as B/d
increases, whereas in the outer wall region this velocity
component slightly increases. Consequently, the influence of
advection shows stronger variations with B/d in the inner
wall region than near the outer wall.

As it was already mentioned and explained in section 5.1.,
the overall intensity of the secondary flow is strongly
influenced by the channel aspect ratio: the smaller B/d,

the smaller ). As B/d increases, the centre of circulation

shifts to higher values of the relative radial coordinate
2dg
B b
2, 5, 10 and 15, § occurs at B/2d-¢ = 0.85, 1.38, 1.75 and

1.88, respectively).

but .the distance to the outer wall increases (for B/d =

The vertical distribution of ¥ in the channel axis reflects
the influence of advection on the main velocity distribution:
a low Dean number profile in shallow channels and a higher

Dean number profile in a square pipe (see figure 17g).
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’ 5.4, Summary

The conclusions to be drawn from the shallow channel

computations can be summarized as follows.

When the geometry is kept constant and the Dean number

is raised from zero on,

the maximum of the main velocity shifts from the inner
to the outer wall and the horizontal distribution
changes from skewed inward to skewed outward.

the vertical distribution of the main velocity grows
steeper near the bottom and flatter in the upper parts
of the cross-section, until at higher Dean numbers the
main velocity even decreases near the surface.

the boundary shear stress remains almost constant near
and at the inner wall, whereas it drastically increases
near and at the outer wall.

the longitudinal slope factor increases considerably
the intensity of the secondary flow grows to a maximum
and then decreases again

the centre of circulation of the secondary flow moves
outwards as long as the secondary flow intensity
increases, and subsequently moves inwards again

the centre of circulation moves down, such that the inward
radial velocity tends to concentrate near the bottom

the vertical distribution of the pressure remains almost

hydrostatic

the transverse pressure drop increases in proportion with
2 " 1.96

De” at low Dean numbers and with De 3 as De becomes

higher

the mean radial pressure gradient is almost the same as
in a square pipe

the transverse pressure distribution is hardly influenced
by the secondary flow.

the kinetic energy distribution is completely dominated

by u2.

When the cross-sectional shape and the Dean number are kept

constant and the curvature ratio € is raised from very small

values on,
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- the influence on the "potential flow effect" on the
horizontal distribution of the main velocity increases

- the influence of advection on the vertical distribution
of the main velocity intensifies near the inner wall
and weakens near the outer wall

- the magnitude of the secondary velocity vector increases
near the inner wall and decreases near the outer wall

- the maximum of the stream function of the secondary
flow decreases and shifts inwards

- through the main velocity the vertical distribution of
the stream function is more influenced by advection near

the inner wall than near the outer wall.

When the Dean number and the curvature ratio are kept constant

and the channel aspect ratio B/d is raised from 2 on,

- the main velocity maximum moves outwards, but such that
the horizontal distribution of the main velocity near
the outer wall hardly changes

- the influence of advection on the vertical distribution
of the main velocity decreases

- the secondary flow intensity increases

- the centre of circulation of the secondary flow moves
outwards, but the distance to the outer wall increases

- through the main velocity, the influence of the Dean
number on the vertical distribution of the stream function
of the secondary flow decreases

The redistribution of the main velocity under the influence

of advection is the cause of most of the other phenomena,

such as the increase of the boundary shear stress and the

longitudinal slope factor, the increase at smaller De and

the decrease at higher De of the secondary flow intensity

and the shifting of the centre of circulation of the second-

ary flow.
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*.. 6L Analysis of the main velocity redistribution

In chapter 5 it was shown that most of the phenomena

observed in the results of the shallow channel computations
could be explained from the redistribution of the main velocity.
In order to gain a better understanding of the physical
mechanisms underlying this redistribution, it will be attempted
to analyse it mathematically and physically.

According to the longitudinal momentum equation for axisymmetric

curved flow.

2 2
2 1 9y ,du € 1 3y 9du 1 3 u 3 u € du €
De" {-— > G+ - Wt-F ==t S+ o+ ===y (6.1)
r 3¢ 3§ r r 9& 9C r 3C2 agz r 9f r2
and the equivalent equation for fully developed straight
flow
2 2
0 = 1t 9—%-+ ﬁ_%_ (6.2)
18 13

, there are three kinds of differences between the fully
developed main velocity distributions in curved and straight

channels, arising from

- advection by the secondary flow
1 . .
- the factor T in the pressure gradient term
- the extra diffusion terms due to the divergence of the

coordinate system

, respectively. The last two sources together give rise to the

"potential flow"

effect mentioned in section 5.2.: outside
the sidewall boundary layers the radial distribution of the main
velocity tends to be the same as in a potential vortex, viz,

proportional to %3 as can easily be shown from equation (6.1)

for De = 0:
2 2 2
1 3 u 3 u € du €
02—+ —+Z— +=2 4+ = u (6.3)
T 8;2 3£2 r 9f r2
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Outside the sidewall boundary layers the solution of this

equation can be written as:

=L -/
u_zr(]C)

ksee also the low Dean number solution by DE VRIEND, 1973).
When De is raised from zero on, the influence of advection
grows more and more important and the main velocity dis-
tribution is gradually "inverted" until the maximum occurs
near the outer wall and at some distance below the surface
(see section 5.1.). This velocity redistribution under

the influence of advection will be subject to further analysis

in the next parts of this section.

Influence of advection at low Dean numbers

At low Dean numbers the influence of advection can be

considered as a perturbation of the zero Dean number solution
(cf. DEAN (1928) and ADLER (1934) for circular pipes, ITO (1951),
CUMING (1952) and DE VRIEND (1973, a,b)). Accordingly, the main
velocity, the longitudinal slope factor and the stream function

can be written as power series expansions of De

©

Y De2kuk ;1= De2k1k ;v =
k=0 k=0. k

8

b2k b
0

S~

The first main velocity perturbation u, of the zero Dean number

solution ug is solved from

_1%(ﬁ+su)+1ﬂ93“_9=‘_1+32“1 S ey 2
r 9 9% r O r 3¢ 9¢ r 8&2 ag2 r 9§ r2 1
Defining
1
“1=Tc;“o+“i

1 which can be solved

the influence of advection is isolated in u
from

du! 2
1 Bwo Buo 9 uy 9 uy u

€
T3 3¢ -z ¢ T g U

Y. du
-1 0 0 €
T Gg trvt

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)
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As an illustration of how advection influences the main flow,
equation (6.8) is solved neglecting the lateral diffusion

terms and approximating uO and wo by

6 =935 (=)

-
114

- 24 5 3
Yo To T (c 7t + 11g” - 5¢)

1]

Yo

The resulting expression for ui reads:

v du_ u dy
0 0 =
T (EE" +'% Uo)fl(C) + rO i f (z)

where fl(;) and fz(c) are polynomials in ¢z (cf. DE VRIEND, 1973).

From equation (6.7) and the integral condition of continuity

(3.38) an expression for 1, can be derived, such that the

1
first order approximation of u reads

B/2d .
J dg! f u d; } o+ DeZu;
-B/2d -1

wla

The depth-averaged value of u;, given by

= _g_(d“o L €5y 6656 _ 1%y - 3328
1 r 'dg§ r 0° 7315 r dg 0 7315
du ~
’ w111 be negative near the inner sidewall, where both EEQ * %-uo

and ——g-are positive, and positive near the outer sidewall, where
thesg quantities are negative., Outside the sidewall regions of a
shallow_ehannel the radial derivatives (and hence u;) are small
with respect to the peaks occuring near the sidewalls. Therefore
the modulus of the overall mean value of u; can be expected to

be considerably smaller than the maxima of |u;|. Hence it can be
concluded from (©.12) that under the influence of advection by

the secondary flow a reduction of u with respect to GO occurs near

the inner wall, whereas near the outer wall u increases with respect

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)
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to ;0. This is the same tendency as observed in the shallow
channel computations by the complete model (see figure 11),
although the influence is more local here, i.e. confined to
the sidewall regions').

4n important feature of the advective influence on the
vertical distribution of the main velocity, viz. the flat-

tening tendency, can also be explained from (6.11). Rewriting
(6.12) as

B/2d 0
-— 2 ~—
w=[8, 0-08 5w s ouard #0801 ] 2 -gh .
-B/2d -1
e U du u. dy
2.7 Yo e - 0o Yo
+ De“{ T (—E— i~ UO) fl(C) + T a@E fZ(C)}

, the functions f](c) and fz(c)(polynomials in ¢) indicate how

the vertical distribution of u is influenced by advection due

to the radial and the vertical velocity, respectively. The two
functions are repgggented-graphically in figures 18a-b, showing
that, as long as-ag— + %-uo is positive, the radial velocity
component gives rise to a flattening of the main velocity profile,
whereas, but to a much lower extent, a positive vertical velocity
leads to more oblique profiles of u.

A physical interpretation of these results can be given when
considering the main flow isovels and the secondary flow stream-
lines of the zero Dean number solution near the inner wall, for
instance. Figure 18c shows the streamlines of the secondary flow
to intersect -the main flow isovels such that the main velocity
always increases when moving along a streamline. Apparently, the
secondary flow in the inner wall region always conveys fluid from
places with lower longitudinal momentum of the undisturbed flow to
places with higher longitudinal momentum of the undisturbed flow.
As a consequence, an overall decrease of the main velocity with

respect to us occurs near the inner wall.

Even if lateral diffusion is taken into account this local character

remains for the greater part (DE VRIEND, 1973).

(6.14)
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The local advective effect of the secondary flow is likely to
increase with the local values of the secondary flow intensity,
the gradient of the undisturbed main velocity field and the

angle of intersection between the isovels and the streamlines,

‘an that the effect will be the strongest when the streamlines

are normal to the isovels. The mathematical verification of this
hypothesis can be found from the expressions for the directions
of the isovels and the streamlines with respect to the horizontal

axis, denoted by a and o respectively:

du_ du Y. Y w
-0 U = e D ) )
;an o 5E /3C and tan o 5E /3C v (6.15)
Using these expressions it can easily be derived that
du Ju ou du, .
0 0 _]/ 2 2 I/rgio 2 O 2o s _
Vo 3% + v, T v0,+ v, (a€ )7 o+ (3C ) 31n(as ai) (6.16)

So discarding the effect of the d&vergence of the coordinate
00 3
r

system represented by the term € ), the advection terms

in equation (6.1) are proportional to each of the afore-
mentioned quantities if the sine of the angle of intersection

is taken.

In figure 18c the streamlines appear to intersect the isovels

at much larger angles in the higher parts of the represented
region than in the lower parts of it, where the two sets of

lines are almost parallel. The secondary flow intensity is also
somewhat higher in the upper parts and, at least within a
distance of about the depth of flow from the inner wall, the
main velocity gradients are of the same order of magnitude through-
out the vertical. Consequently, the advection terms will increase

from the bottom to the surface and the main velocity profile will

grow flatter in the upper part and steeper in the lower part of

If the divergence effect is taken into account, the same
reasoning holds for lines of constant ruy instead of the

isovels.
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the vertical l), as is confirmed by equation (6.11) and

figures 18a-b.

Separation of horizontal and vertical distribution of u

In 16 Dean number flow the perturbations of the main

velocity distribution with respect to the zero Dean number
distribution ug have a local character in that the perturbation
in a point is strongly dependent on the advection terms (based
on uo) in the vicinityz) of that point, but is hardly influenced
by the advection terms further away. As the Dean number
increases, however, the lateral interaction grows stronger and
the influence of advection is felt throughout the cross-section,
even if it is very shallow. In a shallow channel the lateral

interaction outside the sidewall boundary layers takes place

on a much larger length scale than the vertical interaction.
This suggests the radial and the vertical distribution of u

can be treated separately when analysing the influence of
advection. This would be rather favourable, not only because

of the easier understanding of the redistribution phenomenon,
but also as regarding the expenses of the computations necessary
for the analysis. Moreover, it would provide a possibility to
develop a simplified computation method. Therefore it will first

be investigated whether a similarity solution of the shape
u(g,z) = u(g) f(x)

, u(£) denoting the mean value of u in a vertical g, gives
an appropriate approximation of the transverse distribution
of the main velocity.

If (6.17) were exactly true, the quantity u/u|€=0 would be
equal to G/G|£=0, i.e. independent on . According to figure
19a, u/u|€=O

at higher Dean numbers.,

hardly depends on r, except near the outer wall

A constant value of the advection terms throughout the vertical
would have yielded a parabolic perturbation of u, so that the

shape of the main velocity profile is not affected.
Area with a characteristic dimension of the order 0(d)

(6.17
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Similarly, the quantity u/u would be equal to f(g), i.e.
independent on £, if (6.17) were exact. From figure 19b

it appears that the vertical distributions of u show the
same features throughout the cross-section, especially as
far as the flattening at higher Dean numbers is concerned.
Adopting (6.17) as an approximation of u and assuming y

can also be approximated by a similarity solution

Y(E,L) = ¥(E) g(z)

» the following depth-averaged equation can be derived from the

longitudinal momentum equation (3.35):

2

2
* 3 'Ez“’“'gil
dg r ¢

De2

[a%

|

A&

2 adc

) o

N

t=-1

If y, f and g are known functions, equation (6.19) can be
considered as a linear differential equation in u with 1

as an additional unknown constant. In combination with the
integral condition of continuity (3.38) and the boundary conr

ditions.

B

u=0 at £ = :-Zd

this equation can be solved for u and 1. If for v, f and g
the results of the complete mathematical model are substituted,
taking f(z) = (u/t_1)|€___0 and g(zg) = (w/$)|€=o, the above depth-
averaged computation yields the mean velocity distributions
represented in figure 20a. Although at higher Dean numbers the

peak in the outer wall region is too pronounced, the essential

\ . . : 20
features of the mean velocity redistribution are well represented ).

The observed redistribution may not be attributed to the sub-

stitution of the bed shear stress factor af derived from

dg |;=—l

the results of the complete model. Neglecting advection, the solution

of the depth averaged equation lies close to the depth-averaged
solution of the complete system for all Dean numbers considered
(figure 20b).

(6.18)

(6.19)

(6.20)



From the similarity approximations (6.17) and (6.18) and
the longitudinal momentum equation (3.35) the following

mathematical system can be derived:

2 ,_ ¥ du, ke~ dg udy df'y _ 1, -d°f
Re™ i= o (dg W dg ' * 3 £ 94z Jestu dc2 *
2= - 2
d d -
*ESH T RSO0 e
£ r

with the boundary conditions

- . 4 -
fl'=0atg=r-1; 4 0 at £ =0 (6.22)

and the definition

f@) = Fr @/ (6.23)
If u, ¥ and g(z) are known functions, equation (6.21) is a

linear differential in f'. Substituting u, ¥ and g(z) as they

were computed by the complete mathematical model, f(g) can be
solved from the above system in any vertical of the cross-section.
For £ = -B/2d+0.5, £ = 0 and £ = B/2d-0.5 the results are given

in figure 2la, from which the agreement with the relevant results
of the complete model appears to be good in the chanel axis and
somewhat worse near the sidewalls, at least at higher Dean

numbers é3. Presumably, the differences near the sidewalls must

be attributed to approximations made in the lateral diffusion
terms and in the radial advection terms of equation (6.21) by
replacing the radial derivatives of u by u/u times the relevant
derivative of u. Thus the interaction between u/u in various
verticals is neglected. Nevertheless, it can be concluded that

the horizontal and the vertical distribution of u can be separated

when analysing the advective main velocity redistribution.

*) See footnote on page 45 and figure 21b
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6.3. Horizontal distribution of the main velocity

In addition to the longitudinal slope term, the following
terms of groups of terms can be distinguished in the depth-

averaged longitudinal momentum equation (6.19):

29 du,e= 0 df
r

the radial advection term De ETT u) —lf 9 3¢

dg

0

- the vertical advection term De2 u dy J g af dzg
r dg -1 dg
&a da & =
~ the lateral diffusion terms L2 SR B o
d 2 r d§ 2
£ r
- the bed shear stress term - u af |
dg r=—1

The influence of each of these terms on the solution of (6.19)
and so on the redistribution of u has been investigated.

Figure 22a shows the mean velocity distributions resulting

from equation (6.19) when omitting each of the above terms

or groups of terms, respectively. If the radial advection terms
are neglected, the peak in u occurring near the outer wall
becomes wider and higher, which suggests the advective effect

on u to increase. If the vertical advection terms are neglected,
however, the advective influence on u almost vanishes: the
maximum of u liest near the inner wall for all Dean numbers
considered and the peak near the outer wall is absent. Only

the inner wall layer becomes thicker and the outer wall layer
becomes thinner as De decreases.

At all Dean numbers considered the influence of the lateral
diffusion terms in the central region of the cross-section
(-4<E<4) appears to be negligible. In the sidewall regions lateral
diffusion is important in combination with the no-slip condition

at the sidewalls in that it gives rise to boundary layers of
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nonzero thickness and, especially near the outer wall, to

a limitation of the main velocity peak at higher Dean numbers.
The latter effect is readily shown by comparing the solutions

of (6.19) with no-slip conditions and with zero tangential

shear stress conditions at the sidewalls (figure 22b).
Additionally, it becomes evident from this comparison that

the main velocity distributions in the central region are
essentially the same, even though they differ by a constant
factor as a consequence of the differences near the sidewalls
(the overall mean value of u is always equal to 1; cf. (3.48)

and (3.49)). Hence it is concluded that the influence of lateral
diffusion and the sidewall boundary conditions on the distribution
of u is restricted to the sidewall regions.

As was to be expected in this shallow channel, neglecting the

bed shear stress has a dramatic effect. For De=0 the distribution
of u becomes parabolic rather than inversely proportional to r
with sidewall boundary layers (figure 22a). As De intreases a
very strong influence of the secondary flow is observed, pushing
the maximum of u towards the outer wall and giving rise to very
pronounced peaks in u near_the outer wall at higher Dean numbers.
Qutside the wall regions %% is practically constant. Apparently,
the bed shear stress restricts the sidewall boundary layers*),
thus giving rise to flatter distributions of u, and it damps the
effect of secondary flow advection.

This damping phenomenon can be illustrated by the following
example for the central region. Taking y as a constant, neglecting
lateral diffusion and setting r=1 for simplicity, equation (6,19)

reduces to

The parabolic profile obtained for De=0 and zero bed shear
stress implies that the sidewall boundary layers are fully

interacting.

(6.24)
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where k = Deza I g E{ dg and k, ~f| . Since this is a
first order dlffe}entlal equatlon, only oné boundary con-
dition can be imposed on u, say
u = u, at § = go
where Eo indicates a point close to the inner wall boundary
layer. Then the solution of (6.24) reads

2 -
S R )
u=-—=+ (u, - —)e 5

. Ky

As .a consequence of secondary flow advection, U, is likely to
be smaller than 1/k2, so u will increase towards its asymptote
u = l/kz. Both uy and the quantity k2/kl will decrease for
increasing De, so u will approach its asymptote more gradually
then. This explains why the inner wall boundary layer becomes
thicker at higher Dean numbers.

If the bed shear stress is neglected, however, so if kz/kl+ 0,
u=u, +o— (E-E)
0 k 0

So by lack of the damping effect of the bed shear stress, the
mean velocity in the central region increases linearly with £
(cf. figure 22a).

Reconsidering the advective influence of the secondary flow, it
can be shown from (6.19) that in the central region, where
lateral diffusion is negligible, the effect of the vertical
velocity component has a local character. Omitting the radial
advection term and neglecting lateral diffusion, equation (6,19)

reduces to

in the central region. Equation (6,28) can be rewritten as an

(6.25)

(6.26)

(6.27)

(6.28)
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explicit expression for G, containing only local values of the
other variables. Accordingly, there is no lateral interaction
between the mean velocities in adjacent points.

On the other hand, the radial advection term does give rise

to lateral interaction: the mean velocity in a point is

influenced by the mean velocities further inwards (cf..(6,26)

and (6.27)). It should be noted, however, that, at least in

the central region, the mean velocity in a point is hardly
influenced by the mean velocities further outwards. This is
readily illustrated by figure 22c, representing solutions of
(6.19) when neglecting lateral diffusion in the central region and
vertical advection in one half of the cross-section. If the radial
advection term is also neglected, the solution in the central
region corresponds with (6.28) . If the radial advection is taken
into account, however, the mean velocity tends tq the solution

of (6.28), but the adaptation is retarded in outward direction
(cf. (6.26) ) and the discontinuity at £=0 resulting from (6,28)

is felt only for £>0.

A mathematical explication of this exclusively outward influence
of advection can be given by considering the following ¢-dependent

version of (6.19) without lateral diffusion and with r=1 for

simplicity:
- Ju 2- _f - df 2 dy ng -
aua—¢-,+De¢ f 93 E=1_uﬁ'| - De a€ fgdcdt;u (6.29)

where a is a positive constant. The direction of the character-
istics of this equation is given by

0

g _ 29 af 4 |
==; = Dg~ "= I g (6.30)
d¢ au -] dz

so the characteristics are directed outward throughout the
cross—section, @, a, u the integral being positive. Consequently,
disturbances can only move outwards, so the mean velocity in a
point can be influenced by the mean velocities further inwards,
but not by those further ourwards. In other words: in the flow

described by equation (6.29) all information is transported
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outwards at a celerity of which the radial component has

a magnitude
0
= df
De2 v [ g ac dg

As a conclusion from the mathematical analysis of the depth-
averaged equation (6.19) the following concept of the physical
mechanism of advective main velocity redistribution can be

drawn up:

= through the same mechanism as described in section (6.1.)
for low Dean number flow, near the inner wall the secondary
flow, and especially its vertical component, gives rise to
lower values of u than would be found without accounting for
advection, whereas near the outer wall it causes higher values
of u.

- the reduction of u near the inner wall influences the mean
velocity further outwards through the outward retardation
effect of radial advection combined with the bed shear stress
and local vertical advection; as compared with the distribution
of u without the influence of radial advection, the region of
noticeable increase of u near the outer wall and the magnitude
of this increase are reduced by the same retardation effect.

- in regions where the vertical velocity is positive, the bed
shear stress and the vertical advection act in the same sense
in combination with radial advection: radial variation tendencies
of u are damped; when w is negative, however, the two elements
have opposite effects, the bed shear stress still damping, but
vertical advection destabilizing now.

- the peak in u near the outer wall is damped by the effect of

lateral diffusion together with the no-slip condition at the

wall,

Another verification of this concept can be obtained by analysing
(6.19) in case of slipping sidewalls (for u only). Then the mean
velocity gradients near the sidewalls will be much smaller than

in case of no-slip walls, so the local advective effect of the
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radial velocity component will be much smaller there.
Accordingly, the solution for w=0 is practically independent
on De (figure 22b). On the other hand, the local effect of
vertical advection will increase in the sidewall regions,

the sidewall conditions being less limitative. Attempts

to verify this increase by solving (6.19) for v=0 and slipping
sidewalls, however, fail as a consequence of negative values
of u ”) occurring near the outer wall for De=25 and De=50
(figure 22b). At smaller values of De the differences between
the solutions with and without radial advection are too small
to draw conclusions from.

According to the aforementioned concept of the advective
redistribution mechanism, the mean velocity distribution out-
side the sidewall regions ought to show - the same features as in
case . of no-slip walls, u being reduced near the inner wall
and the outward retardation effect remaining unchanged.

Figure 22b shows that in the central region the solutions for
slipping sidewalls and for no-slip walls do agree, except for
a constant factor arising from the differences near the side-

walls.

6.4, Vertical distribution of the main velocity

In equation (6.19) for the vertical distribution of the main
velocity the following terms or groups of terms can be dis-

t*inguished in addition to the reduced longitudinal slope

term —:
X
_ ; . _ 29 du e - dg
the radial advection term De = (EE i# = u) T F
. . 2udy _df'
the vertical advection term De T dE gyaz

H|m
Q-IQ-
wig |
|

N

1
4
%

2_
- the lateral diffusion terms (é—f +
dg T

2 -
. d
*) Due to negative values of the quantity E—e —:il—lg- J ggf dg + —fl
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- 1
- the vertical diffusion term u af
. dc

The structure of the equation is quite similar to that of equation
(6.19)*) in that it contains a second order diffusion term

(here the vertical, in (6.,19) the lateral..diffusion ﬁerm) a

first order transport term (here the vertical, in (6.19) the

radial advection term) and, in addition to the longitudinal

slope term, two production terms (here the radial advection term
and the lateral diffusion terms, in (6.19) the vertical advection
term and the vertical diffusion or bed shear stress term).
Consequently, the mechanism of advective main velocity redis-—
tribution in the vertical must be similar to the mechanism of
advective mean velocity redistribution, although the relative
importance of the various effects may be different.

As shown by figure 23, the effects of advection on the vertical
distributions of u near the sidewalls are qualitatively the

same as described for low Dean number flow. Near the inner wall
radial advection gives rise to an increase of u in the lower parts
of the vertical and a decrease in the upper parts, whereas vertical
advection causes a decrease in the lower parts and an increase in
the upper parts. Near the outer wall the-reverse effects occur.

In the central region both lateral diffusion and vertical advection
turn out to have little influence. Neglecting the radial advection,
however, appears to have a considerable effect, the main velocity
profile staying close to the low Dean number profile for all Dean
‘numbers considered.

Regarding the predominant impartance of the radial advection term,
the vertical distribution of the main velocity in the central region

must physically be explained as follows. In the upper part of a

This is to be expected since both equations are derived in a

similar way from the longitudinal momentum equation (3.35), the

structure of which is independent of the direction of the co-

ordinates in the transverse plane, at least if divergence effects

are discarded. Full similarity with equation (6.19) is attained (6.31)
by integrating (6.21), multiplied by r2, in radial direction:

B/2d _ 2 i B/2d ._ 9 du_ B/2d
pe? & (f'g) ;I w3 .L4f fortues e g |
-B/2d d :

dcz -B/2d -B/2d

ala
Y

oo
&8



6.5

= GX =

vertical the momentum of the fluid advected by the (outward)
secondary flow is smaller than when advection would not
affect the vertical distribution of the main velocity, as the
mean velocity increases in outward direction and the vertical
distribution of u is flatter than without advection. For the
same reasons the momentum of the fluid advected in the lower
part of the vertical is higher than without advection.
Consequently, radial advection causes u to decrease in the

upper part of the vertical and to increase in the lower part.

High Dean number flow

Although it may be of no direct interest to the problem of

flow in river bends, some attention will be paid here to the

flow at higher and very high Dean numbers, the former to explain
the generation of a second spiral near the outer wall, the latter
as a limit case of the intermediate Dean number flow described in
the foregoing sections. The present model yielding no reliable
solution for Dean numbers higher than about 60, the analysis

of the high Dean number flow will be based on what is known

from experimental and theoretical work reported in the literature

(CHENG, LIN AND OU, 1976; MORI, UCHIDA AND UKON, 1971; SMITH, 1976).

As was reported in the literature (JOSEPH, SMITH AND ADLER, 1975)
and confirmed by the present computations, in square pipes the
regular secondary flow pattern, consisting of two counterrotating
vortices, abruptly changes into a four vortex pattern if the
Dean number becomes larger than about 50. The occurrence at
higher Dean numbers of two counterrotating vortices near the
centre of the outer wall was also reported by CHENG AND AKIYAMA
(1970) and by CHENG, LIN AND OU (1976), the latter showing a
second vortex to occur at sufficiently high Dean numbers in
shallow channels, as well.

In terms of "open" channels, this breaking up can be explained

as follows. If the Dean number is sufficiently large, secondary

flow advection will give rise to negative vertical derivatives
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of the main velocity in the upper part of the cross-section.
Consequently, the source term in the stream function equation,

:C (u ), becomes negative there. If these negative values grow
sufficiently strong, the stream function itself becomes negative

in the upper part of the cross-section, so a second secondary
circulation develops, with a sense of rotation opposite to the
regular secondary flow. Near the inner wall and in the central
region, where the mean velocity increases in outward direction,
such a second circulation, when existing, would destroy itself,
since its advective effect would cause the vertical derivatives

of the main velocity in the upper part of the cross—-section to
become positive. In the outwall region, however, where the mean
'velocity sharply decreases in outward direction, the second
circulation intensifies itself through its advective effect on the
main flow, the main velocity near the surface being further reduced
and the vertical derivatives of u growing more negative there. This
also explains the abruptness of the transition from the regular
secondary flow pattern with a single vortex to the double vortex
pattern: as soon as a second vortex develops near the outer wall
develops, it intensifies itself as far as viscous diffusion permits.
In essence, the physical mechanism giving rise to the double vortex
pattern in shallow channels is the same as the mechanism causing
the instability for small disturbances of laminar flow in a

narrow curved channel formed by two concentric plates (DEAN, 1928).

When the Dean number is further increased, the main velocity
gradients and the secondary flow concentrate in rather thin
layers along the fixed walls. Outside these layers an inviscid
core develops, in which a small outward secondary flow occurs.
Both this secondary flow and the main velocity in the core are
constant in a vertical (MORI, UCHIDA AND UKON, 1971; SMITH, 9176).
In the inviscid core the longitudinal momentum equation reduces

to

De2

N <2
—~
Q-ID-
Cal =

€ 1
+ — u = e
r ) r

in which $ is independent of . The solution reads

(6.32)
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C
g + = (6.33)

<2ln

where c is a constant of integration to be determined by
matching the core solution with the solution in the wall layers.
Setting the vertical velocity in the core equal to zero, it
can be shown from the equation of continuity that $ must be a
constant, so that according to (6.33) the main velocity in the
core consists of two parts, one increasing linearly with r
and the other one inversely proportional to r. This core flow
can be considered as the high Dean number limit of the mean
“velocity distribution at intermediate Dean numbers, with the
damping effect of vertical diffusion (bed shear stress) and ver-
tical advection reduced to zero in the core.
Essentially the same concept, with an inviscid core enclosed by
a three dimensional boundary layer along the fixed walls, was
adopted by MURAMOTO (1965) in order to describe fully developed
fiow in curved open channels. Assuming %-to be a constant rather
than 1, the mean velocity distribution he found in the core
consisted of a part increasing with rz and a part inversely
proportional to r. The experimental verification of this theory
showed a rather good agreement in the downstream part of a 180°
bend.

6.6, Summary

As regarding the mathematical model, the analysis of the

longitudinal momentum equation leads to the following conclusions:

1. Two opposite effects cause the main velocity distribution in
axisymmetric curved flow to deviate from the distribution in
the equivalent straight channel flow, viz.

- the potential flow effect, represented in the equation by
the factor % in the pressure gradient term and the extra
diffusion terms due to the divergence of the coordinate
system, and making the velocity distribution oblique towards

the inner sidewall
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- the advective influence of the secondary flow, making
the velocity distribution skewed towards the outer wall
and causing the velocity maximum to occur below the
surface at sufficiently high Dean numbers.
The relative importance of these two effects is indicated
by the Dean number (or rather the square of it): if De is
small, the potential flow effect is predominant, if De is
large, the effect of advection is the most important one.
At low Dean numbers the effect of advection can be com-
puted as a perturbation of the zero Dean number solution;
it is of a local kind then and in comparison with the zero
Dean number solution it reduces the mean velocity near the
inner wall and gives rise to a flatter vertical distribution
of u there, whereas near the outer wall and, to a much lower
extent, in the central region it augments the mean velocity
and gives rise to a more oblique‘vertical distribution.
At low and intermediate Dean numbers (in the present examples:
De < about 50), a similarity solution provides a good approx-
imation of the main velocity. Supposing a similarity solution
to hold for the stream function of the secondary flow, as
well, the mean velocity and u/u can be analysed separately.
Supposing the stream function of the secondary flow and the
vertical distribution of the main velocity to be known, the
mean velocity can be solved from the depth-averaged longitudinal
momentum equation. When analysing this equation it appears that:
- the vertical advection term forms the main cause of the
decrease of u near the inner wall and the increase near the
outer wall
- the influence of the vertical advection term is of a local
kind, especially in the central region
- the radial advection term alone is of minor importance to
the redistribution of u
- the radial advection term gives rise to an important lateral
interaction in that in a point the mean velocity is in-

fluenced by u further inwards; as a consequence, the region



influenced by the reduction of u near the inner wall

is extended until it covers the greater part of the
cross—section (De > about 10) and the region influenced
by the increase of u near the outer wall is compressed
against the outer wall

the influence of the lateral diffusion terms and the
sidewall boundary conditions is restricted to the regions
close to the sidewalls

the bed shear stress has a damping effect, thus reducing
the mean velocities and causing a retardation in the

effect of the radial advection term.

© 6. Supposing the stream function of the secondary flow and the

mean velocity to be known, the vertical distribution of the

main velocity can be solved from an equation derived from the

longitudinal momentum equation. Analysing this equation shows

that:

near the inner wall, where the vertical velocity is positive,
the vertical advection term causes a decrease of u/u in the
lower parts of a vertical and an increase in the higher parts;
near the outer wall, where w is negative, the effect is
reverse

the radial advection term gives rise to an increase of

u/u in the lower parts of a vertical near the inner wall
(where the radial derivative of u is positive), and a decrease
in the upper parts; near the outer wall, where g%—is negative,
the reverse occurs

in the central region the influence of the vertical advect-
ion term is small, but the radial advection term is quite
important; it gives rise to similar deviations from the low
Dean number profile of u/u as near the inner wall

the influence of lateral diffusion and the sidewall boundary

conditions is small

At very high Dean numbers an inviscid core develops, in which

the main velocity consists of two components, one proportional

and one inversely proportional to r and both independent to Z.

This core flow represents the high Dean number limit of the

mean velocity distribution.
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8. When De is raised up to values of about 60 and higher,
the stream function of' the secondary flow tends to
become negative in the upper part of the cross-section;
near the inner wall and in ﬁhe central region this ten-
dency reduces itself through the advective influence of
the secondary flow on the vertical distribution of the main
flow, but near the outer wall it amplifies itself through
the same mechanism as far as viscous diffusion permits. As
a consequence, for De = 60 a sudden transition occurs from a
secondary flow pattern with a single vortex to a pattern
with an additional counterrotating vortex near the surface
close to the outer wall.

The physical interpretation of the advective redistribution

of the main velocity can be summarized as follows

1. In regions where the longitudinal momentum increases along
the streamlines of the secondary flow, i.e. near the inner
wall and, if the Dean number is not too small, in the upper
part of the central region, the main velocity tends to
decrease as a result of advection; near the outer wall and,
if De is large enough, in the lower part of the central
region, where the secondary flow moves in a direction of
decreasing longitudinal momentum, the main velocity tends
to increase due to advection. Due to these inertial effects,
the mean velocity is reduced near the inner wall and in-
creased near the outer wall and in the central region the
vertical distribution of the main velocity grows steeper near
the bed and flatter higher up in the vertical if De is raised
from zero on.

2. The advective effect of the secondary flow is stronger in the
upper half of the vertical than in the lower half. Consequently,
there is a net effect of advection when averaging over the
depth of flow. The advective influence of the vertical velocity
component gets a local character then, but the net influence
of the radial velocity keeps its inertial features: in
combination with the bed shear stress, which acts as a

damping mechanism, it has an outward retardation effect on
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the mean velocity. Through this retardation mechanism

the local reduction of u near the inner wall (mainly
caused by vertical advection) influences the mean
velocities in the greater part of the cross-section if

De is large enough, whereas the local peak in u near the
outer wall (also due to vertical advection) is compressed
against the wall, where it is partly damped by viscous

forces.



7. Simplified computations

Since the solution of the full steady state Navier Stokes
equations for axisymmetric flow takes a lot of computer
time, especially for the shallow channel computations

(one iteration on a 10x 10 grid took about 20 s on an

IBM 370/158), it is worthwhile to look for possibilities of
simplification before attempting to solve developing curved

flow problems or turbulent flow problems.

7.1. The advection terms in the stream function equation

As became evident from the foregoing paragraphs, the advection
terms in the longitudinal momentum equation may definitely not

be neglected unless the Dean number is very small. In the stream
function equation, however, the importance of the advection terms
has not yet been investigated. Neglecting these terms would
greatly reduce the computation work per iteration step, as the
coefficient matrix of the discretized stream function equation
‘then becomes independent of the intermediate results of the
iteration, so that it needs to be inverted only once rather than
in each iteration step. ‘

Figure 24 gives an impression of the influence of this secondary
flow inertia on the flow in a shallow channel. Even though the
Dean number is rather high, this influence appears to be negli-
gible as far as the main velocity distribution is concerned,

- whereas considerable deviations in the secondary flow pattern are

found only close to the outer wall.

7.2. Importance of the sidewall regions

In a mathematical model of the flow and the bed configuration

in a curved alluvial river a detailed prediction of the flow
near the banks is not likely to be of primary importance, unless
the deformation of the river channel pattern (meandering) is

studied. Nonetheless, simplifications of the mathematical model
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in the sidewall regions must be carried out with caution,

as was shown in the foregoing paragraphs, where the solution

of u near the inner wall, for instance, appeared to influence
the mean velocity in almost the entire cross-section. On the
other hand, in the central region the distribution of u for
slipping sidewalls appeared to differ only slightly from

the distribution in case of no-slip walls (figure 22b), which
suggest some simplification of the longitudinal momentum
equation might be possible near the sidewalls.

As in the central region the influence of lateral diffusion is
negligible (figure 22a), an obvious simplification in the side-
wall regions would be to neglect lateral diffusion in the
longitudinal momentum equation. If possible at all, however,
this simplification will certainly not be allowed in combination
with the no-slip condition at the sidewalls. Regarding the slight
influence of changing the no-slip conditions into full slip
conditions (figure 22b), it must be possible to find adequate
boundary conditions when lateral diffusion is neglected, but
even then the advantage of this simplification will be small:
it does not alter the iterative solution procedure nor does it
make the solution simpler, although the order of this equation
is reduced in radial direction. Moreover, this reduction of the
equation to first order in radial direction raised the question
where lateral boundary conditions should be imposed when only
one condition of this type can be used. Therefore, neglecting
lateral diffusion in the longitudinal momentum equation is not
very suitable for simplification.

Another advantageous simplification in the stream function
equation would be to neglect all radial derivatives of ¢ , thus

reducing the equation to the ordinary differential equation

4

9 Y ) 2

2Y -2 ) (7.1)
ac4 14

Together with the boundary conditions at the bottom and at

the surface, this equation yields:
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which is easy to evaluate numerically. If u satisfies the
no-slip condition (u=0) at the sidewalls, ¥ can readily be
shown to satisfy both the condition of impermeability (y =0)
and the no-slip condition (%% = 0) at the sidewalls.
In the central region this simiplification seems to be allowed,
but near the sidewalls this is not quite evident. Therefore (7.2)
has been evaluated for a given distribution of u and compared
with the stream function resulting from the complete system.
According to figure 25, representing the results for De = 50,
important deviations from the solufion of the complete equation
occur near the outer wall, both in the mean value of Y and

in the vertical distribution.

When attempting to solve the complete system of equations with

-the stream function equation truncated to (7.1), this truncation

appears to induce divergence of the iterative solution procedure
for Dean numbers at which the system with the full stream
function equation has a convergent solution.

Simplifications of the stream function equation that are less
drastic than those leading to (7.1) are hardly profitable, the
resulting equation always being a partial differential equation
the solution of which is not essentially simpler than when only

secondary flow inertia is neglected.

In summary, even for shallow channels a substantial simplification
of the differential equations without important influence on

the results can only be attained by omitting the advection terms
from the stream function equation. All other terms, both in the
longitudinal momentum equation and in the stream function equation,
must be retained or dropping them yields no essential simplification

of the mathematical system.

(7.2)
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7.3. Successive approximation of the solution

Since the system of differential equations and boundary
conditions can hardly be simplified by neglecting terms,

other possibilities of simplification must be examined

in the method of solution.

In the literature on flow in river bends perturbation methods
are often used for successive approximation of the solution of
the governing differential equations. Starting from a basic
solution, which is mostly the equivalent straight channel flow,
or in terms of the present work the low Dean number limit,
perturbations of this solution are determined for small

values of a geometric parameter (the ratio of the depth of

flow or the hydraulic radius of the cross-section and the
radius of curvature of the channel axis). Thus each dependent
variable in the solution of the mathematical system is
approximated by a perturbation series (i.e. a power series of
the small parameter), the subsequent terms of which are
determined successively, making use of the foregoing terms that
are already known.

Table 2 gives a survey of various‘applications of this perturbation

technique to the flow in river bends (see also paragraph 4.1).

flow | degree of | validity | number of nonzero terr

Author regimeg development] -

main flow |secondary fl
BOUSSINESQ (1868) i L A C 1 1
ANANYAN (1965) L/T A CS 2 1
ROZOVISKII (1961) L/T A c/s 1/2 ' 1
DE VRIEND (1973a,b) L A cs/c/s 2 1
DE VRIEND (1976, 1977) T D C 2 1

(L = laminar; T = turbulent; A = axisymmetric; D = developing;

C = central region; S = sidewall region; CS = entire cross-section)

Table 2. Survey of applications of perturbation methods.
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As was mentioned already in paragraph 4.1, the laminar

flow solution for the full cross-section obtained by DE VRIEND
(1973a,b) as a perturbation series of the depth to radius of
curvature ratio can be rewritten as a perturbation series of
the Dean number, the basic solution being the low Dean number
limit of the solution of the full steady state Navier-Stokes
equations. If the cross—section is shallow, the same holds
good for the separate laminar flow solutions in the central
region and near the sidewalls that were obtained by several
authors mentioned in table 2. Hence it would be interesting

to find out to what extent (i.e. what Dean number) these
perturbation methods are applicable to the present problem

or how they could lead to simplified solution methods. In order
to get an idea of the applicability of the straigtforward low
Dean number perturbation axisymmetric laminar flow in a
shallow curved channel with a given and invariable

secondary flow is considered. Then the only equation to be

solved reads

2 2 2
2, 13y ou' e , 1 3y du' 1 3 u' du' e du' ¢ '
De{- =L (= +=u')+—-"Lt —}=—+ — +— +——— -=—u (7.3)
r 3¢ ‘9¢& r r 3§ 9L b 5 8;2 352 r 3¢ r2
where u' = u/1. The longitudinal slope factor 1 can be

determined from the integral condition of continuity as
described in paragraph 3.4.
The straightforward low Dean number perturbation method implies

that the unknown quantity u' is expanded in a power series of

De2:

u' = z De u! , ' ‘ (7.4)
k=

which is substituted into (7.3). Then this equation can be

rewritten into the form
De”" Eq, =0 (7.5)

in which the expressions Eqk can contain ui(i a 0; Ts sess k)



- 66 -

As (7.5) must hold for a continuous range of De, each of

the expression Eqk must be equal to zero, which yields a

series of equations

Eqk =0
For k = 0, this equation reads
82u' 32u' du/ 2
0 0 € 0 € ' 1 _

2 YT trw " Ta2%trt®
18 .14 r
With the appropriate boundary conditions ué can be solved from
this equation. For k > 0, equation (7.6) can be written as

2l 2' 1 . 1 1
acz 352 r 3¢ r2 k r 3§ 9k r k-l r 3§ ar
from which, for successively increasing k, ui can be solved.
Substituting the results into (7.4) yields successive approxi-
mations of u'.
As an example, this computation was carried out for a shallow
channel (d/B = 0.1; d/Rc = 0.04), taking the solution of the
stream function equation with the source term based on u, (instead

0
of u) as the stream function of the imposed secondary flow.

Figure 26 shows the results for gradually increasing Dean numbers;

the series expansion (7.4) turns out to be divergent for Dean

numbers higher than 10. This implies that low Dean number
perturbations are not applicable as a solution technique for

the present problem.

In spite of this negative conclusion as to the applicability of

low Dean number perturbation methods, some attention has to be

(7.6)

(7.7)

(7.8)

paid to an even more restrictive perturbation method. The turbulent

flow version of this method is most widely used in the literature

on flow in shallow river bends (ROZOVSKII, 1961; YEN, 1965;
ENGELUND, 1974; DE VRIEND, 1976 & 1977), especially when

simplification of the differential equation by neglecting smaller

terms is considered as a perturbation cut off after the first

non-zero term in every power series. In addition to a
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Reynolds number limitatioﬁ*) that is seldomly mentioned
explicitly, the influence of the sidewalls (banks) is

assumed to be restricted to a region close to these walls
(banks), such that in shallow channels a central region

exists where the horizontal derivatives of the velocity
components are much smaller than the vertical ones. Accordingly,
the radial derivatives in the central region are normalized by

Rc rather than by d, which yields the normalized longitudinal

momentum equation

2 2
2,2, 13 du _u 13 3u:_ 1 3u 23u_1203u_u
R e Gt Pl Tt 2t e T D
9T or
(7.9)
and the integral-condition of continuity
1+B/2R
. c 0
I d < (7.10)
l-B/ZR r_lf Udc = B/RC
c
When secondary flow inertia is neglected, the normalized
stream function equation becomes
5 2.ty 2 3%y 1%y .. 4t 209% 3 3%y 3 v
FTA i S S e D re CZ T T3t 2 T 273 o)
14 or 3¢ 9rog ar or r or r
(7.11)

The solution of this system is approximated successively,
. 2 . . 2
with € as a perturbation parameter and supposing Re  to
o ; : ; . :
be 0(e ). Considering the first non-zero terms in the expan-

sions of u, 1 and ¥

x)In turbulent flow this limitation concerns the Reynolds number

" based on a representative turbulence viscosity rather than on

molecular viscosity.
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» which agree with the solutions of the velocity components

given by BOUSSINESQ (1868), the distributions of the main velocity
and the stream function in the central region appear to agree well
with the low Dean number limit of the solution in the whole cross-
section, especially when the exact value of 1 is substituted for
1 (figure 27).

It should be noted that the solutions (7.12) do not satisfy the
boundary conditions at the sidewalls: all terms in (7.9) and
(7.11) containing radial derivatives are at least an order €2
smaller than the leading terms, so that they drop out of the

zero order approximation of these equations. In the higher.

order equations from which uy and wk (k>1) are solved, only

radial derivatives of lower order perturbations u. and ¥y

(1 <k) occur, which are known quantities in that itage. Hence

the sidewall boundary conditions for u and y are not satisfied

in any order of approximation. This is consistent with the
aforementioned assumption that the sidewalls do not influence

the flow in the central region. In order to satisfy the boundary
conditions at the sidewalls a local solution for the regions near
these walls must be determined (ROZOVSKII, 19613 DE VRIEND, 1973a,b)
In order to have an impression of the convergence and the
applicability of the successive approximation method for the

central region, the above method was used to solve (7.9) and

(7.10) with the stream function of the secondary flow fixed at

2
1
=1 0 (7_5.3 3 _

For a shallow channel (d/B = 0.1; € = 0.04) and Dean numbers
up to 10, the perturbation was carried out on computer until

11 non-zero terms in the series expansion of u were obtained.
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Figure 28a, showing the values of u' at the inner wall,

in the channel axis and at the outer wall as functions of

the order of approximation k, gives an impression of the
intermediate results during the iteration. Apparently,
convergence is poorest at the inner wall, where even at

De = 7.5 the mean velocity finally "explodes". In addition,
this figure and figure 28b show the velocity tends to grow
more oblique as De increases, the maximum staying at the

inner wall rather than shifting outwards.

This must be attributed, of course, to the absence of the
sidewall influence (cf. paragraph 6.3). In the central region the
vertical velocity and the radial derivative of the main velocity
are negative, so that secondary flow advection gives rise to a
more oblique mean velocity distribution. This in turn yields
more negative vertical velocities and radial derivatives of

the main velocity, etc.

Hence it must be concluded that successive approximations for
the central region with € as a perturbation parameter are only
applicable at very low Dean numbers, but are essentially wrong
as soon as secondary flow advection becomes important. This
conclusion stands when local solutions near the sidewalls are
included (ROZOVSKII, 1961; DE VRIEND, 1973a,b). The solution in
the central region is fully determined in itself, so it can not

be influenced by these local solutions.

7.4. Depth-averaged equations derived by successive approximations

Although successive approximation of the solution with € or De
as a perturbation parameter fails as a solution method at the
Dean numbers of interest, the method can be used to derive
approximations of the depth-averaged equations (cf. for turbu-
lent flow: DE VRIEND, 1976). According to figures lla and b,

for instance, the influence of the Dean number on the vertical
distribution of the main velocity becomes important at consider-

ably higher values of De than the influence on the radial distribution.
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Hence a low Dean number perturbation method is likely

to work well for the vertical distribution of u at higher
Dean numbers than for the radial distribution. According to
paragraph 6.2, the low Dean number limit of u can be

approximated by
uy(€,2) = uy (&) f(2) (6.17)
Substituting this into the zero Dean number longitudinal momentum

equation 7.7, GO and fo can be solved. Far from the sidewalls

lateral diffusion is negligible, so fb follows from

2
a f! af! .
._Q_—_ - 5 1 - u __0 =0. - 1 ]
dcz 1 with fOIC=—1 0; az IC=O E fo _fO/fO (7.14)
.with the solution
3 2
fo=7 -2 , (7.15)

(cf. equations 6.4 and 7,12). Making use of this information,

equation (7.7) can be averaged over the depth of flow to yield

d%uy _duy 2 _ _
+S—— - u - 3u (7.16)
de r d§ r2 0 0

Similarly, the low Dean number limit of the stream function is

approximated by

Vo (E:0) = ¥y (8) g,(@) : (6.18)

wﬁich leads to

7 5 3
go® =32 @’ -7+ g - sp) (7.17)

~ (cf. equation 7.12) and the depth-averaged stream function equation
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2 d ¥, e 4% e 2409 Y &3 240 . 5040 -
wl _ TTE T ir I O TGS Dt ¥
z=0 dE dg r dg r e 1o

(7.18)

According to (7.8), the first perturbation of the main velocity,

U, follows from

2 2

9 u, . 0 u, L, Bul ) 52 . ll _ l.8¢0 (Buo LE )+”l Bwo 3u0
8;2 ag2 r 9§ r2 1 r r 9¢ 9E r O r 9 9z
(7.19)
Suppose u, can be approximated by
U (E,2) = 0y (8 £ + T @) £ @) +u L) ) L@ (7.20)

such that the first component represents the influence of the
longitudinal slope term, the second component the influence of
the radial advection term and the third one the influence of the
vertical advection term. Substitution of (7.20) into (7.19)
yields an equation from which fl,] and fl,2 can be solved. In

the central region, where lateral diffusion is negligible, this

leads to
2
d f;,] _ f dgo With f‘ | _ 0. df{’ll =,0 . f =f' /F— (7 20~
- U 3 1 1 - <0,
a2 0 dg L ¢ ' I P
2
d°f! df df!
1,2 0 . 1,2 A ol i .
—5 =9pq vithfi .l =03 | =05 F, 5= £ o/f) , (7.21
dcz 0 dz 1,2 =1 dz £=0 1, , s

the solutions of which are polynomials in . Making use of

these solutions, the depth-averaged version of (7.19) becomes
2- -

d d 2 ' 1,

T,0, 87,0 etn g L (7.23a)
ag? T dg 21,0 1,0 T

a%u du 2 p, du .
1,1 ,e 1,1 _€e = S § - =£§_Q.(_Q+£(,) (7.23b)

d€2 r r2 1,1 52 1,1 95 r dg r O
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2— - - —1
‘1“1,1+5d“|,2_52:1 _1 _ 128 U0 Mo
dE r dg r2 1,2 26 95 r dg
When GO + EG] and 1 + €1, are considered as approximations

OkDea) of u and 1, respectively, De2

added to equation (7.16) yields

times equations (7.23)

2 - 2 - =
d e du \ 2r 79 - 1 - 128 , ¥ ,du
-—+——--(—- +3) - — + De - - + —=—{ L (—+
dgz r dg r2 r 52 26 1,2 95 " r ‘dg
udy
* r dg}]
in which the quantities Gl | and Gl 5 are solved from
2_ -
T, e @ mmg 128 i, e
dEz r dg r2 1,1 52 1,1 95 r ‘dg r
a%g du 2 = o=
1,2, e M2 ¢ T -1 _128udy
ng r dg r2 1,2 6 95 r dg
The stream function ﬁ is approximated by the solution of
a*y e d°9 e2 240, a% & 260 £y dj _ 32 2
T2y 30T S0 - Twm R sy
dg dg r dg .,

With the appropriate boundary conditions, equations (7.24) through
(7.27) can be solved iteratively, starting from the zero Dean
number solution, for instance. As an example, this computation

was carried out for the same shallow channel as in the fore-

going (d/B = 0.1; € = 0.04), using the zero ofder approximation
of the secondary flow. Convergence is far better than for the
complete low Dean number perturbation method described in

paragraph 7.3 (even for De = 50 the procedure converges mnow),

but as De increases the agreement with the equivalent solution

of the complete system soon becomes rather poor (see figure 29).
If in equations (7.25) and (7.26) the lateral diffusion terms are

neglected, they reduce to explicit expressions for G] 1 and Gl 2
’ ’

(7.23¢)

=H|m
(=3 |
p—

+

(7.24)

(7.25)

(7.26)

(7.27)
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in terms of u and @:

u, = £

_ 52 128
1,1 77

= |1

du e g - 26128 u dy
d -

o

When substituted into equation (7.24), this yields

2

oy - = e
—J du L €3y +udy
o U + - u) + = dE}

(dE

o

2 78 128
* De” o3 45 {2

£

S

+ £
dg * o

H el

X
r

N

In contrast with the system (7.24) through (7.27), of which the
iterative solution procedure can be considered as a semi-
implicit solution method for the longitudinal momentum equation
(when solving this equation part of the advection terms is
incorporated in the solving operator and part in the known
source terms u and u, ), equation (7.29) can be solved

1,1 1,2
). So if, as in the foregoing example, the secondary

implicitly*
flow is fixed at its zero order approximation, no convergence
problems are encountered in the solution of the longitudinal
momentum equation. The mean velocity distribution found this way
for the same shallow channel as before appears to agree better
with the solution of the complete system than the results from
(7.24) through (7.26) (see figure 29), but if the Dean number
gets higher than 20, considerable differences occur here, as well.
Convergence grows poorer when the secondary flow is correlated to
the actual mean velocity instead of being kept fixed. According
to figure 30, the procedure with the implicit solution of the
longitudinal momentum equation converges at higher Dean numbers
than the procedure with the semi-implicit solution (De < 17.5 vs.
De <:10). °

From the comparison between the four examples discussed in this
paragraph it appears that implicit solution of the longitudinal
momentum equation improves the convergence of the iterative
procedure that solves this equation and the stream function

equation simultaneously.

*)

The combination of equations (7.27) and (7.29) still has to be

solved iteratively, of course.

(7.28)

(7.29)
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Still the smallness of the critical Dean numbers and

the considerable deviations from the solution of the complete
system as soon as advection grows important lead to the con-
clusion that the simplified solution methods discussed here

must be rejected for the flow in shallow river bends.

7.5. Similarity solution

A logical continuation of the foregoing is to maintain the
similarity hypothesis, which has appeared to be rather good,
even for De > 15, but drop the low 'Dean number approximations

of the vertical distributions of u and Y. Instead, these
distributions can be solved from differential equations to be
derived from the longitudinal momentum equation and the stream
function equation (cf. paragraph 6.2, equations (6.21) through
(6.23)). Neglecting lateral diffusion, the longitudinal momentum

equation yields

2 0 ' T = -
L - e’ Iy g ' Dez(i:-%g + 50 Hpoon (7.30)
et Segy T T
with £ =o0s | w05 5 e pFm
C:-—] C c=0

Taking £y =_0, f can be solved from this system when u| ’ %%|
El and g%| are known. §=0 §=0
Ifgfgteral dig?gsion and advection are neglected in the stream

function equation, it yields

4
dg'_d_ (f2) (7.31)
dC4 dg
d L} d2 ] —
with g'| =0; g'| =0; £ | =0; <L | =0;g9=g'/g"

s
gm-1 =0 9% rem1 T az? r=0
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When g is known, f can be solved from this system.
Consequently, (7.30) and (7.31) can be used in an iterative

solution procedure in combination with the depth-averaged

equations for the mean velocity and the stream function (see

also paragraph 6.2)

d“u' € 27 df y.du' e f
t(=-De"g X D)—= = (=, + L
dgz r dz r’dg r2
with ;'I B =0 and u = u'B/(d
g= 53
b~ 3- 2
dg de r © =0 4t
a3 a> - w
o M (RIS
dg” z=0 dg” g=-1 =0
with $| = 0; El-i] =0
€=+-B— d€€=+-§-—
— 2d — 2d

As was shown in paragraph 6.2, equation (7.32) yields satis-
factory results for G, even if the Dean number is not small,
when ), g and f are introduced as known functions derived from

the solution of the complete system. The same holds for the

-B/2d

B/2d

u'dg)

results of f when G, @ and g are introduced as known functions

into (7.30). An iterative procedure consisting of (7.30) through
(7.33), however, has not been investigated yet. Therefore, this

procedure was applied to the same shallow channel example as

before (d/B = 0.1; € = 0.04). As figure 31 shows, convergence

is hardly reduced, even though the system consists of more

equations with more sources of disturbances. On the contrary,

(7.33)
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introducing a simple damping rule, viz. (3.53) with a=2,

leads to fast convergence up to much hihger Dean numbers

(De = 37.5) than the foregoing methods.

The mean velocity distribution (figure 31b) agrees well with

the corresponding result of the complete system, except for

the outer wall region. The same holds for the horizontal
distribution of the stream function (figure 31d). In the

channel axis, the vertical distributions of the main velocity
(figure 31c) and the stream function (figure 3le) fairly agree
with those found from the complete system. Near the outer wall
and, as far as the main velocity is concerned, also near the
inner wall deviations from the solution of the complete system
are found.

The only deviations from the solution of the complete system

that may spoil the applicability of the similarity method are
those near the outer wall, especially in the main velocity
distribution. If the peak in the mean velocity there grows

much too high, the mean velocity in the other parts of the
cross-section, and hence the bed shear stress there, will be
reduced considerably. So the mean velocity distribution in the
outef wall region must be predicted rather well, even if it is

of no direct interest for the present purpose. In the present
example (figure 31b) this prediction is good enough, as the
reduction of the mean velocity away from the outer wall is rather
small for all Dean numbers considered. Hence it is concluded that
the similarity system (7.30)_through (7.33) is suited as a
simplified solution method for axisymmetric laminar flow in shallow
channels.

Finally, it should be noted that, although the similarity system
provides a satisfactory approximation of the velocities in
axisymmetric flow, it may give rise to errors when applied to
developing curved flow. There -the vertical velocity distributions
are influenced by longitudinal accelerations of the main flow

(DE VRIEND, 1976 & 1977), which will vary in a cross-section.
Hence it may be necessary to determine the vertical velocity

distributions in more than one vertical (quasi-similarity approximation).
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7.6. Summary

The conclusions to be drawn as to the possibility of

neglecting terms in the differential equations and as to

the applicability of simplified computation methods can be

summarized as follows.

1. The influence of the advection terms in the stream function
equation is negligible as far as the main velocity distri-
bution is concerned. Considerable deviations from the
stream function solved from the complete system occur only
near the outer wall.

2. Lateral diffusion could be neglected in the central region,
but not close to the sidewalls. There lateral diffusion
terms must be retained, both in the longitudinal momentum
equation and in the stream function equation, in order to
satisfy the sidewall boundary conditions (main velocity)
or to avoid serious errors in the solution (secondary flow).

3. Successive approximation of the solution with the Dean number
as a perturbation parameter can only be applied at very low
Dean numbers.

4. Perturbation methods making use of the curvature ratio e
as a perturbation parameter implicitly include an additional
Reynolds number limitation.

5. Solution methods in which the influence of the sidewalls on the
flow in the central region is neglected are only applicable to
rectangular channels if the Dean number is very small. Even if
local solutions for the sidewall regions are incorporated,

- these methods are essentially wrong as soon as advection
grows important.

6. In shallow channels the influence of advection on the vertical
distribution of the main velocity is smaller than on the
horizontal one. As a consequence, depth-averaged equations
derived from the complete system using successive approximations
are applicable at higher Dean numbers than the successive

approximations themselves. Nevertheless, simplified solution
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methods based on these depth-averaged equations are only
applicable at rather low Dean numbers, which makes them

unsuited for the prediction of flow in river bends.

A mathematical model based on the similarity approximation
of the main velocity and the stream function of the
secondary flow yields rather good predictions of axi-
symmetric laminar flow at sufficiently high Dean numbers.
Only in the outer wall region considerable deviations from
the equivalent solution of the complete system occur at
higher Dean numbers, but these deviations are not so large
that they influence the velocities further inwards in an

unallowable way.
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8. Conclusions

8.1. General

Although perhaps not as good asi other numerical models
at the point of convergence, the present model provides
a good approximation of axisymmetric laminar flow in

curved ducts up to Dean numbers of about 60.

A (turbulent) Dean number range from O through 60 is
sufficient to describe the flow in curved alluvial
rivers. For the simulation of flume experiments, however,
a limitation to experiments with sufficiently low Dean

numbers may be necessary.

8.2, Main velocity redistribution

1.

Opposite effects cause the main velocity distribution

in a curved flow to deviate from the distribution in

the equivalent straight flow, viz. the potential flow
effect, drawing the main velocity maximum inwards, and

the advective effect of the secondary flow, pushing the
maximum outwards. At small Dean numbers the potential

flow effect predominates, at high Dean numbers the advective

effect is the most important one.

Starting from the velocity field that would occur if the
advective influence of the secondary flow were absent,

the mechanism of the advective redistribution of the main
velocity can be explained as follows. In the parts of the
velocity field where the longitudinal momentum increases
along the streamlines of the secondary flow, this secondary
flow conveys fluid of relatively low longitudinal momentum

to points where the momentum of the undisturbed flow is
relatively high, thus causing a reduction of the longitudinal

momentum, i.e. of the main velocity there. Conversely, in
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parts of the velocity field where the longitudinal
momentum decreases along the secondary flow stream-
lines, advection gives rise to an increase of the

main velocity. This velocity redistribution goes on
until the influence of advection is counterbalanced by
the influence of additional viscous stresses generated

by the redistribution.

The advective effect of the vertical velocity component
is of a local kind. It is only important near the side-
walls. Near the inner wall it gives rise to a reduction
of the mean velocity and a more oblique vertical
distribution of u/u. Near the outer wall the effect is

reverse.

The advective effect of the radial velocity component
alone is hardly felt in the mean velocity distribution,
but it strongly influences the vertical distribution of
u/u in that it causes a reduction of this quantity in the
upper part of the cross-section and an increase in the

lower part.

In combination with vertical advection, the advective
influence of the radial velocity component on the mean
velocity is quite important. With the bed shear stress as
a damping factor, radial advection forms an outward
retardation mechanism in the mean velocity redistribution.
Through this mechanism the influence of the local reduction
of u near the inner wall (which is mainly due to vertical
advection) is extended to the greatef part of the cross-
section, such that the mean velocity maximum is shifted
outwards. The mean velocity peak caused by vertical
advection near the outer wall is compressed against the

wall, where it is damped by viscous forces.
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6. The advective influence of the secondary flow on

the main velocity gives rise to the following pheno-

mena when the Dean number is increased from zero on

and the channel geometry is kept constant:

the mean velocity maximum shifts outwards (see also 5)
the vertical distribution of u/u grows steeper near

the bottom and flatter higher up in the vertical (cf. 4),
such that at higher Dean numbers the maximum lies below
the surface .

the shear stress at the fixed boundaries remains con-
stant near the inner wall and increases near the outer
wall

the longitudinal slope factor increases

the intensity of the secondary flow, indicated by {,
first increases and then decreases again.

at a certain, rather high Dean number (between 50 and
60 here), the single vortex secondary flow pattern
suddenly changes into a double vortex pattern, as an
additional counterrotating vortex, caused by the

same mechanism as Dean's instability, develops near the
surface close to the outer wall

the transverse pressure drop increases almost in
proportion with De2

the vertical distribution of the pressure remains almost
hydrostatic

at véry high Dean numbers (a few hundreds) the main
velocity gradients due to viscosity and the secondary
flow are concentrated in rather thin layers along the
fixed boundaries; outside these boundary layers the

flow becomes inviscid.

7. The most important effects of raising the curvature ratio

€ while keeping the Dean number and the channel aspect

ratio constant are:
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- the "potential flow effect" in the mean velocity
distribution grows more important with respect to
the advective influence of the secondary flow
- the magnitude of the vertical velocity component
and the advective influence of the secondary flow
on the vertical distribution of the main velocity
are intensified near the inner wall and weakened near

the outer wall.

8. When the Dean number and the curvature ratio are kept
constant and the channel aspect ratio is raised,
= the main velocity maximum moves outwards
- the secondary flow intensity indicated by { grows,
but the influence of advection on the vertical

distribution of the main velocity decreases

8.3. Sensitivity analysis of the differential equations

1. The main conclusions to be drawn from a sensicivity
analysis of the longitudinal momentum equation are

- the vertical advection term is the main cause of
the mean velocity reduction near the inner wall and
the increase near the outer wall, but it hardly
influences the main velocity distribution in the
central region.

- the radial advection terms alone are unimportant for
the mean velocity, but they strongly influence the
vertical distribution u/u; in combination with the
bed shear stress term and the vertical advection term,
the radial advection terms give rise to an important
lateral interaction in the main velocity distribution:
the outwards retardation effect

- the influence of the lateral diffusion terms and the
sidewall boundary conditions is restricted to the mean

velocity close to the sidewalls.



2. In the stream function equation
- the advection terms are negligible, at least in

shallow channels

- the lateral diffusion terms are important close to

the sidewalls.

8.4, Simplified computation methods

" 1. At intermediate Dean numbers the mathematical system can
not be simplified essentially by neglecting terms, except

for the advection terms in the stream function equation.

2. At low Dean numbers (De < 10) the system of differential
equations can be solved using a perturbation method with

the Dean number as a perturbation parameter.

3. Perturbation methods as often applied to the flow in
curved shallow channels, making use of € as a perturbation
parameter and neglecting the influence of the sidewalls,
are appiicable to rectangular channels if the Dean number
is very small. Even if local solutions in the sidewall
regions are included, these methods are essentially wrong

as soon as advection grows important.

4. Simplified mathematical models consisting of depth-averaged
equations derived from the complete system by successive
-low Dean number approximations can be applied at higher
Dean numbers than the successive approximations them-—
selves. Nevertheless, the range of applicability of these
simplified models is too small to make them suited for the

prediction of flow in river bends.

5. Both the main velocity and the stream function of the
secondary flow can be approximated by similarity solutions.
A mathematical model based on this similarity approximation

works rather well at sufficiently high Dean numbers.
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Appendix I ~ Discretization of the equations

1. Numerical accuracy

The numerical computations are carried out on a grid of N by M
rectangular meshes of size Af x Af, where Az = 1/N and Af = 1(Md),
as shown in figure 2. A grid point (g, £) is referred to by the
indices (i,j), such that ¢ = -1 + iAz and § = -B/2d + jA%.

In principle, the discretization of the differential equations
in the mathematical system to be solved is second order. If
second order finite difference schemes would be employed to
every individual term, however, higher order derivatives would
occur both in the differential equations and in the truncation
errors of the finite difference equations, which gives rise to
numerical incaccuracies (artificial viscosity). On considering,

for example, two of the viscosity terms in the stream function

equation
4 2 .2
aayg+3323122 (I.1)
9f r. 9§

the application of central finite difference schemes to each

individual term would yield

oy by, L+ 6, - by, L Y. 2 ¢, . 29, ., Y. .
wlsJ"'] lupl:J"'l lP]-s:l lpl,J_l '4’1,3—2 3 £ wl’J+l— w15J+w19J:1
Ag4 r? A&Z
(102)
Using Taylor series expansions about the point (i,j), this can be
shown to be equivalent to:
2 4 2 2 6
(] + 3= __E J’_ _t':_ v & O(AEZ v ) (1.3)
2 12 £4 r2 ag2 ag6
¥ i A
34¢
Thus in the leading viscosity term — an artificial viscosity is
9

introduced. The influence of this artificial viscosity will be.
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small if 82A€2/4 is sufficiently small with respect to unity,

but such a requirement is rather hard to evatuate for

some of the sources of artificial viscosity in the present

system. Another way to avoid this effect is applying higher

order finite difference :EEemes to the lower derivatives. Employing

a five-point scheme for ——E-in (I.1), for instance,

13

Vi g T M5 T O TR 51 Y e

-+
A£4

e Vi gep T VO¥s 5an T 30N 5 Y 1O 5 T ¥ 5o
3~f2 — 5 (T.4)

£’ , 1208%

J

this discretized expression becomes equivalent to:

4 2 2 6
2ta3E 2byong? XY (1.5)
12 ¥ 13 13

In the present set of differential equations, various sources of

artificial viscosity or similar inaccuracies may occur:

a. the secondary velocity components in the advection terms, both
in the main flow equation (2.50) and in the stream function
equation (2.52). Employing second order finite difference schemes
to compute these components from the stream function would lead
to third derivatives of this stream function in the truncation
error, and hence to artificial viscosity, these derivatives
being equivalent to second derivatives of the secondary velocity

components.
ez 63
b. the divergence terms with 5 and =3 in the stream function equation

- T T : ; s
(2.52), both in the advection terms and in the viscosity terms.

See also the example elaborated in this section.
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(n)

c. the derivatives of in the advection terms of (2.52).

In addition to the advection terms mentioned under b, the
; € .. . .

terms w1th-; lead to fourth derivatives in the truncation

error when discretizing them by a second order scheme.

d. the vertical derivative of u(n) in the source term of (2.52).
Discretizing this derivative by a 3-point scheme would bring
into the truncation error a third derivative of u(n), being
equivalent to the fourth derivatives of w(n) (i.e. third
derivatives of the secondary velocity components) in the

viscosity terms of this equation.

All these sources could be avoided by employing fourth order

schemes for the relevant terms. Doing so for the terms mentioned
under c, however, would lead to a larger computational molecule

and higher computer costs. Therefore it is worthwhile to investigate
under which conditions the artificial viscosity arising from these
terms is negligible. Elaborating the three-point finite difference
representation of these terms and requiring the truncation error

to be much smaller than the leading terms leads to:

2
<<l 3 %— eRe|v. .| A% <<1

= eRe|v. .|
r. 1,]

1 W
h| vl h|

2 2
£ eRe|w, .| 8 <y ; = eRe|w. .| L1 <<l
rj 1,] 6 rj i4] 6

Apart from the artificial viscosity and similar inaccuracies
mentioned before, another type of numerical inaccuracy may occur

in the present system: if the mesh size of the computational grid

is too large with respect to the thickness of the boundary layers

at the fixed walls, spatial oscillations (wiggles) will occur in the
finite difference.solution of u (ROACHE, 1972). Applying the one-
dimensional analysis given by Roache to the present two-dimensional

problem, wiggles will be suppressed when

(I.6)
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eRe|v. .| L P and eRelw, .| 25 < 1
i,j' 2 1,]

throughout the flow.
Combining (I.6) and (I.7) shows, that if

€ €
';J AE é<l and ;‘J Ag <<1

the artificial viscosity due to the use of a second order finite
scheme in terms of type ¢ is negligible. Especially in not too
sharp bends, condition (I.8) will be satisfied for reasonably
large values of A{ and Az, such as 0.1. Therefore, this type of
artificial viscosity is neglected. It should be noted that if
(I.8) holds good, the inaccuracies originated by second order
schemes for the divergence terms mentioned under b are negligible

too, their negligibility requiring:

|m
N

Ae <<1

(1.7)

(1.8)

(1.9)



2. Discretization of the main velocity equation

For 1 <i <N, 1< j <M1, equation (2.50) for u' is

discretized as follows:

Sw(n—]) 6u'(n) G‘P(n—]) GU'(n)
_E_&E [_ i’j { i’j + E ul(n)} + iaj i)j
b o 6C GE r. i,j 6&
where
. M
r; = I+ (- Febt
e TR I W T PO TY Bhiae 05 Tl L 5 RS
6% 1440z
C¥ioa,y T 5t i, T Yied, cor
12Ag :
TSN Bhilas o P Ml CI% Bilke % cor ;
12042
by, . .+ 270, . - 108y, . .
- i-3,3 i-2,] i-1,]3 for i
66AC
85,5 120055t 3% e T Mg T Wisie g,
et ' 144AE
L. -8, .+ 8, ...— Y. .
= wl’J—z wlaJ—] wlaJ+] wlaJ+2 for
1208
O35 T B T T

1444

[ ' o
duiaj = uiaj+l ui’j-l

&8 20

1
r.
J

+ 4gu!(?)
1,]

i < N-1

j < M-l

(1.10)

(I.11)

(I.12a)

(I.12b)

(I.12¢)

(I.12d)

(I.13Db)

(I.13c)

(1.14)
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15 Sers T e .
2= = 2J 2 for 1 < i < N-l (I.15a)
8¢ 2AE -
=0 for 1 = N (I.15b)
u! . = 2u! ., + u! . Y, o =2u! . o+ u! .
v2u! oo i1, i,i 0 Yi-1,j & Ui, 31 ul,] u1,_]-] 2
1 - ' 2
€ i,j+1 ,J-1 _ € ' i
+ = ThE 9 ui,j for 1 < i < N-1l (I.16a)
i - T
J
=2ul . 4+ 2u} Lt gag 2 + u)
- s ] i=1sd o _1isj¥l Yi,3 j=1
2 2
A7 Ag
u! . - u! . 2
€ + - € ;
+ T 1,1+ 1,J°1 _ = ui . for 1 = N (I.16b)°
j 2Ag r; »J

3. Discretization of the stream function equation

For 1 < i <N-1, 1 < j < M-1, the stream function equation (2.52)

is discretized by

@1 3@ 3@

; 2 (n) 2 (n) (n)
2 . Sy.. Y. . $ Sy 2
eRe [_ q;l’J { w15J+ w,J_z_S_ l1’1,;1_35 ,J+3_ ‘p,J}+
P I ; 2 5
' . SEST 55 5 st T3 652 r? &
(n 1) 3w(n) 63w(n) _ 62w£n2 (n) (n)
+ 6%3 { :;J + 1,] _ € = 69.]} +2 u’ 5 9J -
, 6T setsy Ty 66T i,j o8¢
w(n 5 (n) 5 w(n) 6 w(n) 5 lp(n) 9 sz?‘). 3 5‘*{“)-
ot 2’?2‘“ pl- 2l —gd e —gh v 8, —qaloas,
8¢ T - Tioee 8E67 8€ r; %
(1.17)
where in the advection terms§
3
87y, . =120y. . + 36 -8 3
ETS B Viv,g © Miea,s T Wiy o (I.18a)
.6;3 24A;3
-Y._ + 29, . .= 29, + Y. ; : .
o el itl,) it2,) for 1<i<N-1 (I.18b)
2077
a3 i 82
As ;—%— 0*=0, the first term is a second order approximation of -—jz 0
T |L= .
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-y. - 4y + 6y, + 4y,

= 1-3,] 1-2,] 3 1-1,] L) for i = N-1 (I.18c)
20AL
3 _ - -
ke B _ Yia, i R R T A B
sE672 28E8z?
(1.19)
3 - - o
S50 Vg T M, P Vi gor T Vo gen e, T Viog,ge
s£2s¢ 20g%ac
(I.20)
3
&7y, . =120y, . + 36y, ... - 8y, .. . + 3P, .
wl;J - Yi, wl,J*; Yi,ge2 T i, 54 for j = 1 (I.21a)
Sk 24AE
Y. . F 20, . =29, L+, .
o 1,3=2 i,] 13 1,3+1 i,j+2 for 1<j<M-1 (I.21b)
2AE
-39, . .+ 8. . , - 36y, . .+ 120y, .
Rk 75 i,] 23 1,)-1 o) for j = M-1 (I.21c)
24LAE :
2
¢ Y. . . L= 2. .+ Y. .
wlsJ = lpl"']a.] wléJ lpl_]’-] (1.22)
6;2 Ag
2 - -
A7 Vi ge T Vien e T Yienio1 T Ve, e (1.23)
SEST 4AEAT
§%y. . Yo oy =20, . Y. .
i,j _ fi,j+l i,j i,j-1 (1.24)
s¢” ag*
(n) (n) _  (n)
i3 YLie T ¥ e (1.25)
§& 2Ag
sy o7V .
—22)  ang ] . see (I.13) and (I.12), respectively.
SE 8T '
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In the viscous terms the discretizations are
4
SV, . 192, . - 108y, . . + 32y, . . = 3. . .
e — 12,0 1) fori= 1 (1.26a)
6¢C 12Ag
L T - | U S
- 202 171,) 41’3 1-1,) 122, for 1<i<N-1 (I.26b)
Ag
64y, . =S4y, . .+ 160, . . = . . .
= 1.] 171,) 7 12,] 1-3,] . for 1 = N-1 (I.26¢)
10Az
4
$¥i5 _
selo”
O e T R T I T T s T T T R T I R S s ST
AEZACZ
(L. 27)
4
Y. . 192y. . - 108y. . + 32¢. . - 3. .
. l"Z’J Midaie ¥ Y51 - Yigra T s j=1 (1.28a)
(X3 12AE
Vo oo =AY, .+ 6y, L =LY, .+ Y. .
- 1,2 i,j=1 i, 1,i*1  T1,0%2  £or 1<j<M-1  (I.28b)
4
Ag
192y. . - 108¢y. . + 32¢. . - 3y. .
= lpl’-] wl’J_l ¢1’J—2 w1’3—3 for j = M-I (I.28c)
1208
6-3¢i . 634;1 . _
———§ll and-————%% : see (I.21) and (I.19), respectively
S SEST
sy, . &Y. .
i i,] "
Z,J and 2 : see (I.24) and (I.25), respectively.
6E §g
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i
In the source term 2J

is discretized by

du. . =10u, . + 18u. . = bu. .+ u. .
i,J _ Ui,i Y, i+2,7 ~ "i+3,j for i = 1
8z 12Ag
u, . = 8u, . + 8u. s = MWy 5
o _1-2,] 1=15] 1+1,] i+2,] for : 1<i<N-1
12Azg
34u. . = 18u. . - 18u. .+ 2u. "
= u1+1)J ul:J u1-19.] . ul_z’J for i = N-1
36A¢

4, Discretization of the pressure equation

Equation (2.44) for the pressure p can be rewritten as:

32E+82E+83E eng[al}) 33y a3y & 3% . 5% B
2t atrw s 2 lEl T3t 2T 2t 2,
13 oL 13 9EDL 9 r- 3
3 3 2
A e e T I S
Y o I | S
2 2
" oz
where
2 2
E=p+€2Rev_;"1._

The relevant boundary conditions read

3
oE €9V
_— - = — at ¢ = -1
9k ¥ 3;3
oE _ -
a—c'—o at ¢ 0_

(I.29a)

(I.29b)

(I.29c)

(1.30)

(1.31)

(1.32)

(1.33)

(I.34)
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Equation (I.31) is discretized for 1 < i < N, 1< j < M-1,

making use of the following f .ite difference approximations:

2 E. .., - 2E. . +E, . e o.v = By o
2_% + £2E _ 1,341 i, " Fi,5- + £ Bi,i01 ~ B (1.35)
SE r of Ag2 rj 2AE
2 E. . = 2E, ..+ E,
E +1] Ti=1,]
2o= ) Ll 17l for g o< < N (I.36a)
14 .., Ag '
2B, , . - 2B, .
= 2 5 L) for i = N-1 (1.36b)*
Az
%% and —% see (I.12) and (I.13), respectively
83 33 32111 . 9
2y +3¥_e3V ., W, gee (1.19), (I.21), (1.24) and (I.25)
2 3° T 2" T2%¢
9£9dC 9 9 r o
33¢ 33 € 82
1Y 4 ——%—— - ?'EE%L' : see (I.18), (I.20) and (I.23)
ag”  dE“er. & .
For accuracy reasons similar to those mentioned in section 1 of
this Appendix, five point schemes are employed for the wz—term
du .
and for 3E in (I.30):
2 =480y, . + 252y, . . — 32¢. ... + 3y. .
a 3 = 1’-] 1’J+1 2 1’J+2 1’J+3 for j = l (1.373)
9E 576A¢ :
-, . o+ 16y, . =30y, . + 16y, .. . = V. .
= i,j-2 i,j-1 5 i,j i,j+1 1,3%2 - i <j <M1
LAl (1.37b)
=480y, . + 252y, . .+ 32y, . . + 3y, .
- =4 1,)-1 ~5 1,)=2 1,073 for § = -1 (I1.37c)
*567AE
33E 32E'
As — =0, this is a second order approximation of —

3z~ lz=0 ot 1z=0
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2. =480Y, . + 252y.. . = 320, . . + 3. .. .
3 g = 2] 1+1,) 5 1+2,] 3ty for i =1 (I.38a)
14 576Az"
Y. o .+ 16y, . =309, .+ 169, . . — V... .
- 1-2,] i-1,7 21,J i+l,] 1*2,] for | < i< N
12AE '
(1.38b)
Vi n o« = 16y, , . + 174y, = . = 304y, .
- 1733 172,] 21 ) 1) for i = N-1 (1.38c)
120Ag
=0 for i = N (1.38d)
Applying second order finite difference schemes to the
derivatives of Y in the boundary conditions (I.32) and (I.34),
2y TP T iea,g Ve (1.39)
3;3 ig=~1 Az;3
3%y _ € 3%y C I e YO 5e2 TV 54
(a 3 E 2 I T a3
£ £ '€ 7d
- E lOSlJJi’j+l - 27¢i,j+2 + 4¢i’j+3 (I 403)
Ty 18052
(33\[‘ - E 32¢) | - lswi’j—l - Gq)i’j_z * lpi,j_3 .
3 r . .2 B 3
13 g g =+ Prl Ag
108y. . . = 27¢. . . + 4y. .
_E lp1,_]—! lp1,3—2 wl,]"3 (1.40b)
T

2 180E2

the values of E on the fixed boundaries can be determined by

integrating (I.32) and -(I.34) along these boundaries.
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Figure 3. Comparison with analytical results for a square pipe at low Dean numbers
(a) Main velocity at the surface
(b) Main velocity in the centreline
(c) Stream function at half depth
(d) Stream function in the centreline
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Figure 7. Transition to double helical flow pattern in a square pipe
(a) Main flow isovels for De = LT.h
(b) Streamlines of the secondary flow for De = LT.h
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(b) Streamlines of the secondary flow



L 3 d4/B = 0.5
[ Az = 0.1 |
AE = 0.1 1

+  present model ( € = 0.0357)

e Joseph, Smith and Adler, 1975 aD
Austin and Seader, 1973 ;
(circular pipe)

10

——» Re Ap

lllllll

10,

5 50 500
—— De
l' - R o w B

7<AF;éure §.-Transverse pressure drop at the surface compared with results for a square and a circular pipe



>
‘ 154

1.0

0.5

present computations
De = 9.9}
measurements

De = 18.0 ) ]
De = 38.2 Mori, Uchida and Ukon, 1971 .

— — — computations Cheng, Lin and Ou, 1976

0 1 1 1 0 L 1 1
-1.0 -0.5 0 0.5 10 0 -0.25 -0.50 -075 -100
«—t—>f [ —————

(a) (b)

Figure 10. Comparison with Mori, Uchida and Ukon's measured data for a square pipe
(a) Main velocity at the surface
(b) Main velocity in the centreline



g
o

20
o De=0
"

2

d/B = 0.1
c = 0.04

ag = 0.1
ag = 0.1

0 i X
-50 -25 0 25 50 0 -0.25 050 -075 -100
= [ ([ «——
(a) ) (b)
)
(BocgBR g 0
N

i -0.25

L  -0.50

5 L -075

.0 30 20 10

B

10 20 30 40 50 60

du D
—pe O U
ot

E [E=-5 20 |§=5

20

-~ 40
2250
2|

(c)

Figure 11. Influencé of the Dean number on the main flow in a shallow channel
(a) Main velocity at the surface
(b) Main velocity in the centreline
(¢) Main velocity gradients normal to the fixed boundaries
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Figure 13. Influence of the Dean number on the secondary flow in a shallow channel
(a) Stream function at half depth '
(b) Stream function in the centreline
(¢) Maximum of the stream function compared with values for a square pipe
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(a) Total pressure at the bottom
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Figure 15. Influence of the Dean number on the total energy in & shallow channel
(a) Total energy at the surface
(b) Total energy in the centreline
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Figure 16 Influence of the curvature ratio on the flow in a shallow channel
(a) Main velocity at the surface
(b) Main velocity in the centreline
(¢) Main velocity near the inner wall
(d) Mean velocity
(e) Main velocity near the outer wall
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Figure 17. Influence of the channel aspect ratio:
(a) Main velocity at the surface
(b) Main velocity in the centreline
"(c) Mean velocity near the inner wall
(d) Mean velocity near the outer wall
(e) Main velocity near the sidewalls
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Figure 17. Influence of the channel aspect ratio.
(f) Stream function at half depth
(g) Stream function in the centreline
(h) Vertical velocity near the inner wall
(i) Vertical velocity near the outer wall
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Figure 18, Perturbation of the main velocity due to advection

(a) Vertical distribution of the perturbation due to radial advection
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(a) All terms of the equation included
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(a) Separate influence of the secondary velocity components, lateral diffusion and the bed shear stress
(b) Separate influence of the secondary velocity components in case of slipping sidewalls
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Figure 2L4. Influence of secondary flow inertia on the flow in a shallow channel
(a) Main velocity isovels
(b) Streamlines of the secondary flow
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Figure 25. Influence of neglecting all radial derivatives in the stream function
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(a) Radial distribution of the stream function at half depth
(b)-(a) Vertical distributions of the stream function
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Fiéure 26. Successive approximation of the main velocity by low Dean number
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(a) Main velocity at the surface
(b) Main velocity in the channel axis
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Figure-27. Basic solution for the central region

(a) Radial distribution of the main velocity at z=0

(b) Vertical distribution of the main velocity at £=0
(c) Radial distribution of the stream function at £=-0.5
(d) Vertical distribution of the stream function at £=0
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Figure 29, Solution of u from depth-averaged equations derived from the low Dean number
' expansion (zero order approximation of the secondary flow)

(a) Convergence of semi-implicit procedure

(b) Mean velocity distribution
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(a) Convergence
(b) Mean velocity distribution
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