
An Architecture with Integrated Image Processing

for Autonomous Micro Aerial Vehicles
Christian Dernehl∗, Dominik Franke, Hilal Diab, Stefan Kowalewski

RWTH Aachen University, Germany

ABSTRACT

This paper presents an overall MAV design with

an integrated camera system. It shows the inte-

gration of the camera into the hardware and soft-

ware architecture and how camera information

can be used within the logical design for improv-

ing flight control. The presented architecture will

be tested and evaluated during the International

Micro Aerial Vehicle Conference and Competi-

tion 2011 (IMAV 2011)1.

1 INTRODUCTION

During the last decade research and development of mi-

cro aerial vehicles (MAV) have increased and new applica-

tion areas have been discovered. With the improvement of

smaller and better cameras, camera systems found their way

as additional and important components in MAVs. By having

a camera system available on a MAV the efficiency of this

air vehicle increases and new fields of applications become

available. For example, this is needed in military operations,

where targets have to be identified. Such an identification is

often done by a human on ground, to reduce the probability of

mistakes. But a camera system is also helpful if a MAV shall

autonomously fly through an arch. In such a scenario cam-

era image evaluation can be integrated into the flight control

system to help navigation. In addition tiny cameras today are

not only getting cheaper, but also capable of high resolution

pictures. Together with improved computing power of em-

bedded systems on-board video processing becomes possible.

By having video processing on-board of a MAV the reliability

of the video processing system increase, since it is not nec-

essary to send video data via a network connection to some

other device (e.g. base station) for evaluation. Further, such

an approach improves the performance of the overall system,

because the time and effort of sending video data to another

device and receiving results can be omitted.

In this work we present an autonomous MAV system de-

sign with an integrated camera system. On the one hand we

show the integration of the camera system in the hardware ar-

chitecture. On the other hand we also show how to integrate

the camera system into the MAVs software architecture. The

camera is integrated into the logical system by introducing

∗Email address(es): {dernehl, franke, diab,

kowalewski}@embedded.rwth-aachen.de
1See www.imav2011.org .

sensor weighting in the MAVs decision making process. We

also indicate, how one can use the additional, and often pow-

erful, camera system for load balancing of the overall system.

This architecture is implemented in a tilt wing MAV,

which takes part in the International Micro Aerial Vehicle

Conference and Competition (IMAV) 2011. During this com-

petition MAVs have to perform specific tasks, described in the

section below.

The remainder of the paper is organized as follows. Chap-

ter 2 presents functional and non-functional demands on the

presented MAV system. In Chapter 3 we list some of the

related work on this area. Chapter 4 introduces the MAVs

hardware architecture, which is the basis for the software ar-

chitecture, presented in Chapter 5. Chapter 5 further explains

the integration of the camera system into hardware and soft-

ware. Chapter 6 concludes this work.

2 REQUIREMENTS

There are several missions which the MAV has to accom-

plish in the IMAV 2011 competition. These include take-off,

landing, flying through an arch, hitting a balloon, drop a lis-

tening device, record audio from the listening device, identify

a vehicle and observe a group of humans. In addition to these

tasks, there is an endurance mission, focusing on energy con-

sumption and speed of the MAV. In all tasks, extra points are

given for autonomy. In fact, autonomy can win the competi-

tion, since the factor 12 is multiplied to the total score if full

autonomy is given, i.e. the MAV needs no instructions from

humans. From these missions, requirements on the MAV can

be derived.

There are various functional requirements. One goal is to

have a MAV, which is capable to control itself with respect

to environmental interferences, such as wind. In addition au-

tonomy needs to be implemented to fulfill the missions. For

instance autonomy means, that the MAV is capable to observe

humans and depending on their actions, the MAV shall react

appropriately without human interaction. A camera system

is crucial with respect to the observation missions. But the

camera can also be used to improve the flight control system

during other tasks, such as landing. Finally safety regula-

tions, including a safe landing in case of GPS loss, have to

be fulfilled. Furthermore, an emergency system is required,

allowing a human operator to operate the MAV in case the

autonomous flight control does not work properly.

In addition to functional requirements , some non-

functional requirements can also be derived. Only small ve-

Proceedings of the International Micro Air Vehicles conference 2011 summer edition

138



hicles of a limited size are allowed. Furthermore, vehicles,

which are longer than 1m, have a disadvantage in the rat-

ing process. This implies a limited size of the MAV. More-

over, there is a maximum weight of 25kg and a momentum,

defined as mass times speed, of 20kgm

s
is allowed. As our

goal is to achieve high points at the endurance mission with

a high air speed, we have strict limitations to the mass of the

MAV. The computation hardware components of the MAV

shall only have a total weight of less than 150g.

3 RELATED WORK

The related work are separated into two parts. In the first

part we present work related to the architecture of MAV. The

second part presents related work done in the area of object

recognition.

Architecture Autonomous aerial vehicles are being devel-

oped since multiple decades. In 1996, Johnson et al. [1] built

an aerial vehicle capable of taking off, landing and discov-

ering certain items with an attached camera system. In their

work, the UAV transmits video data to the base station, which

processes the images and sends the results back to the UAV.

There is no automatic image processing component on-board

of the MAV. Instead images are processed at the ground. In

our approach video processing is performed on-board of the

MAV, which we expect to be faster and more reliable (no

transmission delays and faults).

Pastor et al. [2, 3] developed an architecture for UAVs,

which includes a base station, an on-board camera system, a

communication subsystem and a mission controller. The au-

thors use the IEEE 802.3 standard2 (Ethernet) for communi-

cation between their components. On top of the IEEE 802.3,

application layer protocols are used, such as web services [4].

This architecture allows a high degree of flexibility, since

components are easily exchangeable by other components

implementing the suitable application protocol. In contrast

to our work, an implementation of such a complex protocol

stack is not necessary, since we face strong hardware con-

straints and do not make use of high-level protocols like Eth-

ernet. This is due to the fact that in our project MAVs are con-

sidered, whereas the work of Pastor was applied to UAVs in

general. Compared to their work our approach is on one side

more low-level, but on the other side also more lightweight.

Maranhão et al. [5] designed in their work a hardware and

software architecture for UAVs. The main idea is to connect

components with the Universal Serial Bus (USB), in which

a normal PC, performing fast image processing, is the mas-

ter while other microcontrollers and the camera act as slaves.

Compared to our work, Maranhão focuses on the USB con-

nection between the PC and the microcontroller, controlling

the UAV. In our work we use the USB only to connect the

camera module to the camera system and use the I2C bus for

2See www.ieee802.org/3 .

other purposes. Our focus is on the integration of the camera

system into a flight control system.

Handling multiple UAVs at the same time is the focus of

the work of Tisdale et al. [6]. The authors developed an ar-

chitecture containing a communication system via which the

UAVs transmit data to each other. With respect to the commu-

nication, a hybrid approach was chosen, featuring communi-

cation between UAVs and data transmission to a base station.

The base station assigns tasks to the UAVs. These tasks are

then processed by one of the UAVs, being capable of accom-

plishing this mission. Our work, however, focuses on camera

evaluation within one single MAV, so no other sensor data

from other MAVs are available and, for video evaluation, no

connection to a base station is necessary.

Object Recognition In 2011 Chiu and Lo [7] developed a

system, in which a camera module is attached to an UAV,

transmitting data to a base station. The base station evaluates

the video and is connected to a adapted RC receiver in a way

the base station can control the UAV. With the detection of the

skyline, flight control only by video evaluation is possible.

Similar research has been done by Bao et al. [8], focusing

primary on horizon extraction. In our work, we incorporate

other sensors as well and perform video evaluation on board.

Tisdale et al. [9] used in 2008 multiple UAVs to identify

and locate objects in a certain area. In their work, the authors

focus on data fusion, which arises from the different available

data sources and implement a particle filter, performing in

their scenario better than a default Kalman filter.

Chen and Dawson [10] analyzed the tracking problem

with UAVs. In their scenario, one UAVs has an attached cam-

era and follows another UAV. The main focus of their work

is, however, based on the coordinate system transformations

between real world coordinates and the image planes of the

UAVs.

4 HARDWARE ARCHITECTURE

A flight control system is responsible for the stability of

an aerial vehicle by reading and interpreting sensor data and

controlling the engines and other actuators. Since the be-

havior of the environment, i.e. wind and other interferences,

cannot be modeled perfectly, a closed loop control model is

chosen. In this model the impact of the environment on the

aerial vehicle is measured and fed back into the controller.

Basically, there are three types of components: controllers,

sensors and actuators. The main component is the controller

itself, described in the next subsection. In the second subsec-

tion sensors are introduced, measuring the environment and

transmitting the measurement data to the controller. There-

after actuators, executing the actions of the MAV are pre-

sented. Finally in the last paragraph a summary of the ar-

chitecture is provided.

Proceedings of the International Micro Air Vehicles conference 2011 summer edition

139



4.1 Microcontroller

In our work an Arduino3 based platform was chosen

consisting of a software library, providing hardware ab-

straction, and hardware, the ArduPilot Mega board. The

board can be programmed via USB, e.g. by a desktop

computer. A (FTDI)-chip, converting USB data streams to

other data streams like RS232, connects the hardware to the

USB. Besides, the ArduPilot Mega board features two Mi-

crocontroller Units (MCUs), an ATmega1280 and an AT-

mega328 from Atmel. The ATmega1280 offers 16MHz fre-

quency and 128K RAM, while the ATmega328 provides up

to 20MHz frequency and 32K RAM. The less powerful AT-

mega328 increases reliability by working independent of the

ATmega1280 as an emergency system. If the ATmega1280

is not available due to heavy overload, the ATmega328 is

still capable of controlling the MAV via forwarding incoming

RC signals in a well-specified way to the corresponding ac-

tors. The ATmega1280 is used for autonomous flight control,

which includes reading data from the sensors and telemetry

devices and the evaluation of this data for controlling pur-

poses. All devices within the MAV are connected by wires

and various bus systems are used for communication. The

ATmega1280 features four universal asynchronous receiver

and transmitter (UART) devices and offers registers to attach

the I2C bus to the MCU. The ATmega328 provides one sin-

gle UART.

For the camera system we decided to chose a dedicated

embedded system. Our choice is the BeagleBoard xM4,

including a 1GHz ARM A8 MCU and 512 megabyte of

RAM. Further, the Beagle Board xM features an I2C port

and an USB host chip. Having its own floating point unit

the ARM A8 is wide spread for image processing.

Concluding, the airborne computer consists of three

microcontrollers, an ATmega1280, ATmega328 and an

ARM A8 processor. Each microcontroller is responsible for

specific tasks. The ATmega1280 is the main airborne com-

puter and designed for controlling and the decision making

process. The decision making process evaluates the current

sensor data, e.g. camera data, with respect to the current mis-

sion goals and chooses an action. The ATmega328 is used for

backup in case the ATmega1280 fails. While both ATmega

microcontrollers are responsible for controlling the MAV, the

ARM A8 microprocessor has to perform different tasks, i.e.

evaluating data from the camera.

4.2 Sensors

Choosing the appropriate sensors is important especially

for flight control, in order to get as many reliable information

about the environment as needed to follow the current mis-

sion. Sensor data is critical for the closed control loop. They

include air speed, acceleration, altitude, attitude and position

of the aerial vehicle. Each of these environment variables can

3See www.arduino.cc .
4See beagleboard.org/hardware-xM .

be measured by a suitable sensor. A very important sensor

unit is the Inertial Measurement Unit (IMU), which consists

of gyroscopes, measuring the attitude, and an accelerometer,

measuring the acceleration. Only with the IMU already all

six degrees of freedom can be determined. Additional sen-

sors are an air speed sensor with an attached pitot tube and a

pressure sensor, which can be used for height sensing. With

respect to low altitudes, an ultrasonic sensor might also be

used in combination with the pressure sensor to improve the

height estimation. Finally a GPS receiver locates the aerial

vehicle in space.

For this scenario the ArduPilot Oil Pan IMU Shield,

which has also been developed within the ArduPilot project,

has been chosen. This board contains gyroscopes, ac-

celerometer, pressure sensor and a 12-bit Analog Digital Con-

verter (ADC). For instance, ADC is used to convert the sen-

sors on the IMU Shield. The IMU board is located on top of

the ArduPilot Mega board.

4.3 Actuators

After the controller has evaluated data from the sensors,

the appropriate actions are performed. Data is transmitted to

actuators in order to change the MAV’s fly route accordingly.

With respect to the type of the MAV, available actuators dif-

fer. For example, a rotary based aircraft has two actuators,

motors for the main rotor and the tail rotor. On the contrary

a fixed wing aircraft has two motors, a rudder, an elevator

and the aileron. One result of the composition of the rotary

and fixed wing concept is the tilt wing aircraft, which can

flip its wings up to 90 degree during flight. Compared to the

fixed-wing concept, there exist additionally one tail rotor and

another motor, regulating the degree of the wings. Further-

more, there might be actuators for specific mission tasks, for

example a chute to drop specific items.

In our scenario, only electric motors are considered, even

for the main propulsion. This fact allows the usage of Pulse

Width Modulation (PWM) to control all actuators. PWM sig-

nals can be generated by the ATmega1280 MCU. In this way

the controller can directly interact with the actuators without

an external, additional engine controller.

4.4 RC System and Telemetry

There are two ways to control the actuators of the MAV,

the first is via the airborne computer and the second is via

the RC system. The RC system operates in Europe on either

35MHz or 2.4GHz and consists of a remote and a receiver. In

most cases data transmission on these frequencies is analo-

gous. When using an airborne computer in autonomous flight

mode, the RC system is used as an emergency system, al-

lowing the operator to control the MAV in case the airborne

computer is not available (e.g. due to a failure).

Since the RC system serves for manual control of the

MAV and as an emergency system, other data (e.g. video

data) have to be transmitted to the base station in a different

way. Video streaming requires a high transmission rate and

Proceedings of the International Micro Air Vehicles conference 2011 summer edition

140



ATmega 

1280 

ATmega 

328 

RC 

Receiver 

XBee 

UART 

GPS 

UART 

UART 

IMU 

Airspeed 

Magneto

meter 

ADC 

UART 

FTDI UART
UART 

I2C 

analog 

analog 

Pressure 

Sensor 

analog 

I2C 

ATmega 

328

RC

Receiver 

RC System 

Camera 

Board 

Camera 

Module 

USB 

Camera 

Board 

Camera 

Module

USB USB

Camera System 

IMU

ADC 

analog 

Pressure 

Sensor 

analog 

T
I2C 

IMU Shield 

Figure 1: Hardware Architecture

is usually done via digital protocols. The ZigBee specifica-

tion includes a protocol for digital data transfer and is com-

parable to other protocols like Bluetooth. In fact, Bluetooth

and ZigBee reside both in the IEEE 802.15 working group.

Unlike analogous RC transmission, the ZigBee specification

is packet based and includes its own MAC layer, so multi-

ple devices can be addressed. This is useful, when operating

multiple MAVs with a single base station. ZigBee operates

on the 868MHz, 902-928MHz, 2.4GHz frequencies.

In our scenario two XBee modules, operating at 2.4GHz,

are provided. XBee modules implement the ZigBee speci-

fication. One module serves as the base station controlling

the MAV, and one communicates with the airborne computer.

The base station in this scenario is a laptop.

4.5 Overall Hardware Setup

The hardware architecture presented in Figure 1 describes

the interactions and connections between the different hard-

ware components. The essential part of the architecture is the

airborne computer (ATmega1280) and the IMU board (IMU

Shield). The ATmega1280, providing four UART modules,

which are used for communication between two hardware

components, is responsible for the manual as well as au-

tonomous flight control. In the ArduPilot project the first

UART module is assigned to communicate with the FTDI

chip. This allows the developer to upload Arduino programs,

i.e. programs written in the C language and linking the Ar-

duino libraries, via USB to the ATmega1280. The second

UART module is used to communicate with the GPS receiver.

The third UART module is utilized to read data from sensors.

Analogous sensor data is first transmitted to a 12-bit ADC,

before processed by the ATmega1280. In comparison to the

UART modules, supporting data transmission between two

devices, the I2C bus can handle multiple devices in a master-

slave fashion. The ATmega1280 was chosen to be the mas-

ter device, whereas the magnetometer and the camera system

work as slave components. Note that the camera system is

computationally more powerful than the airborne computer.

However, the airborne computer with its access to all sensors

and actuators is responsible for the decision making process.

Therefore, the airborne computer was chosen as the master

component.

5 SOFTWARE ARCHITECTURE

After providing an overview of the hardware architecture,

this section describes the software architecture. The Ardupi-

lot Mega project provides a general purpose flight control sys-

tem, capable of navigating to given GPS locations. However,

the software architecture needs to cover the additional camera

system, as well.

5.1 Camera System

The camera system consists of two components, first a

camera board for video processing and second a camera mod-

ule, connected via USB to the camera board. In contrast to

the ATmega MCUs, the powerful camera board is capable to

execute a full Linux operating system. It has no hard disc

drive, so Linux is installed on a flash card. Since a RS232

port is available, the console can be accessed via the serial

interface to communicate with the operating system during

the development process. The USB host chip on the camera

can be accessed through the Linux USB drivers. So the de-

veloper can run software on the camera board, which reads

RGB frames from the camera module. For image process-

ing a software module is implemented, which takes advan-

tage of the OpenCV library. Image processing in this context

includes the recognition of objects and deriving from this a

flight control suggestion, which is sent to the ATmega1280.

For this scenario a camera module with 30 frames per sec-

ond with a resolution of 640x480 pixels is used. The com-

puter vision algorithms of OpenCV can process 7 frames per

second on our hardware, if color frames are evaluated. In-

stead of calculating color images, about 15 greyscale images

can be calculated in a second. Evaluation means here that

items, e.g. an arch, within a taken picture are recognized and

their position in the picture determined (x- and y-coordinates

in pixels relative to the image border). Assuming a cruise

speed of about 10m

s
this allows 0.7 frames per meter in color

mode or 1.5 frames per meter in greyscale mode.

5.2 Airborne Computer

The software of the airborne computer is based on the

Arduino Mega platform, which again is based on the open

source Arduino platform. Next to the introduced hardware

the Ardupilot Mega provides also various libraries, e.g. for

autonomous stabilization and GPS navigation.

The airborne computer in our setup consists of a telemetry

module, the flight controller, mission controller and is influ-

enced by the camera system. Further, it has access to all sen-

sors and actuators (see Figure 2). The camera system trans-

mits flight control suggestions to the mission controller. This

Proceedings of the International Micro Air Vehicles conference 2011 summer edition

141



Telemetry 

Actuators 

Sensors 

Flight 

Controller 

Mission 

Controller 

Camera 

System 

Missions 

MissioFlightFlight Mis

Figure 2: Software Architecture

is explained in detail in the next subsection. Consider the

MAV approaching a balloon. The coordinates of the balloon

are fixed and known, stored in the mission database. Then

together with the IMU and GPS the flight route can be set

accordingly. However, when the MAV is very close towards

the balloon the frequency of data measured from the IMU and

GPS might not be sufficient to hit a balloon with a diameter

of 60cm flying in about 10 meter height. From then on, the

MAV can fly assisted by the camera system. Additionally,

plausibility tests have to be performed on the mission con-

troller to check the reliability of the camera suggestions or to

detect a failure in the camera system. For instance, the camera

system suggests to fly lower to hit the balloon. Then the mis-

sion controller checks, if this can be confirmed by the current

IMU and GPS data (e.g. flight direction and last GPS coor-

dinates indicate that the MAV is flying towards the expected

GPS position of the balloon). Furthermore, the mission con-

troller is capable of turning the camera system on or off, e.g.

for energy efficiency reasons if the camera is not needed in a

mission.

Missions are stored in a database, attached to the mission

controller. In this way delays, resulting from loading mis-

sion data, are minimized and do not interfere or depend on

the current communication load. Mission data is also used by

the mission controller for further improvements of the flight

control system. For example, in some missions certain sen-

sors are more important to flight control than others. The

sensor importance can be expressed by a weighting function,

assigning a weight to each sensor before the decision making

process (e.g. which actuator is activated) starts. Therefore,

the airborne computer can behave differently in each mission.

Consider a mission to land the MAV and another one to ob-

serve an area. During landing the altitude is crucial, whereas

during observation, the exact altitude is of lower importance,

but camera data becomes significant. Therefore, in a landing

mission, the altimeter and ultrasonic sensors have a higher

weight than the camera.

Laptop 

XBee 

USB 

RC 

Remote 

Laptop 

XBee 

USB 

RC

Remote 

XBee 

ArduPilot 

Mega 

ArduPilot 

IMU 

RC 

Receiver 

Camera 

Board 

Camera 

Module 

USB 

XBee 

ArduPilot 

Mega 

ArduPilot 

IMU

RC

Receiver 

2.4GHz 

2.4GHz UART 

UART 

UART I2C 

Airborne 

Computer 

Base Station Camera System 

Figure 3: Overall Architecture

In the autonomous mode the mission controller, knowing

what the next task is, works together with the flight controller,

which has access to all actuators and sensors (details in next

subsection). Since the flight controller implements a closed

control loop, current state values are read from the sensors

and output data is transmitted to the actuators. The telemetry

module allows the user to set the current state of the mission

controller, e.g. skip mission x and proceed with mission y.

The decoupling of the mission controller from the flight

controller increases, by encapsulation, the reusability of the

software modules. Consider the type of the MAV changes

from fixed wing aircraft to rotary wing aircraft. In this case

the flight controller module needs to be replaced with an ac-

cording module. The mission controller, however, does not

need any additional changes.

In Figure 3 the overall structure is depicted. On the left

side, the system used for the base station is illustrated. Sig-

nals are transmitted either with the RC remote or the XBee

module to the airborne computer. The airborne computer is

attached via the I2C bus to the camera system. For intercon-

nections within the airborne computer UART is used, except

for the magnetometer, which is not included in the illustra-

tion.

5.3 Integration of the Camera System into the Airborne

Software Architecture

In this chapter we explain the interaction of the camera

system with the airborne computer in detail. If the current

mission, chosen by the mission controller, needs the camera

system, it will be switched on by the mission controller. Fur-

ther, the mission controller tells the camera system, which

object shall be recognized by sending an object ID. For this

purpose a set of corresponding objects with IDs are already

specified in the flash storage of the camera system. The

camera system is then responsible for recognition, process-

ing and evaluation of the object (e.g. with OpenCV, as ex-

Proceedings of the International Micro Air Vehicles conference 2011 summer edition

142



10 m 

A 

Figure 4: Calibration of Object Size

plained above). Finally evaluation results has to be send to

the mission controller, which is capable of interpreting them

as flight suggestions. The interpretation in the mission con-

troller is dependent on the current flight mode (manual or au-

tonomous), the current mission (does camera play a role?)

and reliability and relevance of the camera system informa-

tion (do GPS and IMU also confirm, that the MAV is ap-

proaching the balloon position?).

To get a better idea of this concept, we take a close look on

the communication protocol between the camera system and

the airborne computer. Our communication protocol between

these two systems contains the following elements:

Status Bit This bit is set to 0, if the camera system does not

recognize the wanted object. It has the value 1, if the object is

recognized by the camera system. Only in this case, the other

three parameters are available to the mission controller.

Size of Object This parameter contains the size of the rec-

ognized object, which is needed in the mission controller to

estimate the distance to the object and derive from this the

intensity of future actions, like adjusting the route.

The size is given in a relative manner. In a calibration

process on the ground each object is placed exactly 10 meters

ahead of the MAV. The object is then recognized by the MAV

and the area that the object takes on the camera images during

this recognition is defined as 100%. Figure 4 shows the setup

during calibration and recognition of a balloon. In our project

the balloon recognition is based on color and shape features.

The balloon area is labeled A. We chose area as measurement

unit, since it can be fast computed with our camera system.

A distance of 10 meters is chosen with respect to the flight

speed and size of the available objects during the IMAV com-

petition. If an object is closer than 10 meters to our flying

MAV, then reacting on corresponding images becomes diffi-

cult as less than one second is left to pass the object in fixed

wing mode. But values greater than 100% are possible as

well. This is the case, if the object is closer than 10 meters.

We chose a relative measure to keep the encapsulation of

Distance [m] 

Object Size 

[pixel*pixel] 

Figure 5: Relation between Object Size and Distance

C 100% 

Deviation (60%) 

Figure 6: Computation of Deviation

our software and hardware modules high. For instance, if a

camera module is replaced, then no adjustments have to be

made to the mission controller, since the relative value will

not be changed. In case of a camera replacement only the

calibration on ground has to be repeated to define the size of

100% area of each object and store this value in the camera

processing hardware.

Concluding, the size of the recognized object, as area A

on the camera picture, is passed as a relative value to the

mission controller. The mission controller has a model con-

taining the size of objects relative to distance. The model is

sketched in Figure 5. This model is based on the fact that size

of objects recognized on camera images, relates exponential

to the distance of the objects. The current size of the ob-

ject together with the size of the object during calibration, are

used by the mission control system to derive the current dis-

tance to the object. Based on this knowledge the strength of

the necessary action (e.g. steer hard or soft left) is computed

by the mission control algorithm.

Deviation Another parameter passed by the camera system

to the mission controller is the deviation of the recognized

object in the camera image from the center of the image.

Figure 6 sketches the computation of the deviation param-

eter. It is computed as the distance between the center of the

camera image and the center of the recognized object. We

Proceedings of the International Micro Air Vehicles conference 2011 summer edition

143



C 

B
C 

Figure 7: Close to Object

again pass a relative value to the mission controller, for the

same reason as with the size of the recognized object. For the

deviation 100% are defined as the distance from the center of

the image to the left and right border of the image (see Fig-

ure 6). The deviation parameter is larger than 100%, when

the center of a recognized object is located one of the cor-

ners of the image, since the diagonal of a rectangle is larger

than its width. Together with the parameter size of object, the

deviation parameter is used within the mission control algo-

rithm to compute how hard a corresponding reaction of the

flight controller has to be executed. For instance, if the mis-

sion controller detects with the parameter size of object, that

it has a large distance to the recognized object (as explained

above), and the deviation parameter has a value of 80%, then,

although deviation is large, the mission control algorithm in-

structs the flight controller for a soft reaction, since the dis-

tance to the object is large.

If the center of the camera image is within the recognized

object (see Figure 7), deviation is likely to be still greater than

zero (figure 7, distance between center of image C and center

of recognized balloon object BC). This is due to the fact, that

it is within fixed wing flight mode and some certain speed

improbable that the center of the recognized object remains

exactly on the center of the camera image. Therefore, the

mission controller additionally has for each stored object, de-

pending on its size, a certain deviation tolerance. This means,

if it for example approaches the balloon, for which it com-

putes that the distance is about 12 meters, and the deviation

is 5%, no reaction is necessary. As another example, if it ap-

proaches orthogonally an arc, with a width of 10 meters and a

height of 5 meters, and computes out of the previous parame-

ters a left distance of 12 meters, then even a deviation of 30%

does not imply any reaction, since the arc is large enough to

pass properly through with the current route.

Direction The fourth parameter passed by the camera sys-

tem to the mission controller is a suggestion, to which direc-

N NNE 

NEE 

NE 

E W 

S SSW SSE 

NNW NW 

SE SW 

SEE SWW 

NWW 

Figure 8: Identification of Direction Parameter

tion the plane should adjust its route. Therefore, we divide the

camera image to different areas, as presented in Figure 8. The

center of this pattern complies with the center of the camera

image. The different areas are named by cardinal points (N =

north, NNE = north north east, NE = north east, NEE = north

east east, ...). To keep the protocol between the camera sys-

tem and airborne computer short and high-performance these

abbreviations are passed from the camera system to the mis-

sion controller.

For instance, if a balloon is recognized in the bottom right

corner of the camera image (see Figure 8), then depending on

the area, in which the center of the balloon is placed, the cor-

responding abbreviation is passed to the mission controller.

The mission controller interprets this direction parameter as

a flight suggestion. In case of the balloon, the corresponding

flight suggestion would be SSE, meaning that the flight route

has to be adjusted down and a bit right.

With the first three parameters the plane knows if an ob-

ject is recognized (status bit), what the distance to the object

is (derived from the size of the object) and the deviation of the

object from our current flight route. So the mission controller

can compute if a reaction is needed and the strength of cor-

responding actions. However, it has no information about the

direction, in which the action shall be applied. With the di-

rection parameter the mission controller gets a suggestion, in

which direction the flight route has to be adjusted. Depending

on the current speed of the MAV and the distance to the tar-

get, the mission controller decides, if an action is performed,

or not.

With these parameters from the camera system together

with sensor data (position, orientation, speed), the model of

size-distance relation (see Figure 5) and the current mission

objectives the mission control system is able to autonomously

control the MAV via the flight control system.

Proceedings of the International Micro Air Vehicles conference 2011 summer edition

144



6 CONCLUSION

This work presents an overall MAV architecture with a

completely integrated camera system. We present the inte-

gration on hardware as well as on software layer. While the

integration on hardware layer is often given by the available

connection types, the software architecture integration can

become pretty challenging.

For the communication between the camera system

and the airborne computer, we introduce a modular and

lightweight protocol. The structure of this protocol consists

of four elements: status bit, size of object, deviation and di-

rection. All four values are computed within the camera sys-

tem. We show how this parameters can be used in the mission

control system together with the flight control system, to in-

tegrate image processing into autonomous flight control.

By introducing a modular and lightweight protocol for

the communication between the camera system and airborne

computer, we also clearly separate the tasks of these two mod-

ules. We separate the following tasks (on software layer):

1. image recognition

2. image processing

3. image evaluation

4. deriving flight suggestions based on the evaluated im-

ages

5. sensor weighting

6. and decision making

Such an encapsulated approach has different benefits on

hardware as well as on software layer. On hardware layer, if

the camera itself has to be replaced, then only the modules

1 and possibly 2 have to be adjusted. Furthermore, image

processing hardware, like the BeagleBoard xM, is often more

powerful than the flight control hardware (here Atmega1280).

This is why we execute tasks 1-4 on the BeagleBoard xM and

tasks 5 and 6 on the Atmega1280. Such a load balance can

even be enhanced by outsourcing even more tasks from the

flight control hardware to the video hardware (e.g. sensor fu-

sion). This depends on the overall architecture of each single

MAV system.

Next to load balancing our approach also increases the

safety and reliability of the MAV. If the BeagleBoard xM

crashes due to complex tasks or heavy load, this has just a

small effect on the separated flight control system. In our case

the Atmega1280 will simply notice, that one sensor, namely

the camera system, is not available any more.

As future work of this project the evaluation of this

presented approach in different flight competitions like the

IMAV 2011 is planned.

ACKNOWLEDGEMENTS

This work has been supported by the UMIC Research

Centre, RWTH Aachen University, Germany.

REFERENCES

[1] E.N. Johnson, P.A. DeBitetto, C.A. Trott, and M.C.

Bosse. The 1996 MIT/Boston University/Draper Lab-

oratory Autonomous Helicopter System. In Digital

Avionics Systems Conference, 1996., 15th AIAA/IEEE,

pages 381 –386, oct 1996.

[2] E. Pastor, J. Lopez, and P. Royo. An Embedded Archi-

tecture for Mission Control of Unmanned Aerial Vehi-

cles. In Digital System Design: Architectures, Methods

and Tools, 2006. DSD 2006. 9th EUROMICRO Confer-

ence on, pages 554 –560, 0-0 2006.

[3] E. Pastor, J. Lopez, and P. Royo. UAV Payload

and Mission Control Hardware/Software Architecture.

Aerospace and Electronic Systems Magazine, IEEE,

22(6):3 –8, june 2007.

[4] Francis McCabe, David Booth, Christopher Fer-

ris, David Orchard, Mike Champion, Eric New-

comer, and Hugo Haas. Web Services Ar-

chitecture. W3C Note, W3C, February 2004.

http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/.

[5] D. Maranhao and P. Alsina. Project of a Hardware and

Software Architecture for an Unmanned Aerial Vehicle.

In Robotics Symposium (LARS), 2009 6th Latin Ameri-

can, pages 1 –6, oct. 2009.

[6] J. Tisdale, A. Ryan, M. Zennaro, Xiao Xiao,

D. Caveney, S. Rathinam, J.K. Hedrick, and R. Sen-

gupta. The Software Architecture of the Berkeley UAV

Platform. In Computer Aided Control System Design,

2006 IEEE International Conference on Control Appli-

cations, 2006 IEEE International Symposium on Intelli-

gent Control, 2006 IEEE, pages 1420 –1425, oct. 2006.

[7] C.-C. Chiu and C.-T. Lo. Vision-only automatic flight

control for small uavs. Vehicular Technology, IEEE

Transactions on, 60(6):2425 –2437, july 2011.

[8] Gui-Qiu Bao, Shen-Shu Xiong, and Zhao-Ying Zhou.

Vision-based horizon extraction for micro air vehicle

flight control. Instrumentation and Measurement, IEEE

Transactions on, 54(3):1067 – 1072, june 2005.

[9] J. Tisdale, A. Ryan, Zu Kim, D. Tornqvist, and J.K.

Hedrick. A multiple UAV System for Vision-based

Search and Localization. In American Control Confer-

ence, 2008, pages 1985 –1990, june 2008.

[10] Jian Chen and D.M. Dawson. UAV Tracking with a

Monocular Camera. In Decision and Control, 2006 45th

IEEE Conference on, pages 3873 –3878, dec. 2006.

Proceedings of the International Micro Air Vehicles conference 2011 summer edition

145




