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List of notations

symbol unit quantity

b m model (cylinder) span

C deg/s frictional damping rate

D s! viscous damping rate

Fy N normal force

Fr N tangential force

f Hz frequency

g m/s? gravitational acceleration: g = 9.81 m/s?

h m characteristic dimension of the cylinder cross section (for the

rectangular models used in the experiments the chord length is taken)

I kg.m? moment of inertia

k N.m (torsional) spring stiffness

[ m length

anc’ M N.m frictional damping moment (components)

kg mass

N.m.s viscous damping component

Pa dynamic pressure (%pUz)

m oscillator arm length

m model reference area (b x h)

s time

m/s flow velocity, wind speed

model displacement velocity components
m coordinate in streamwise direction
m horizontal cylinder displacement
m coordinate in normal direction

m vertical cylinder displacement

deg angle of attack

deg oscillator angular displacement
kg;‘rn3 density

rad/s radial frequency: = 2xf
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coefficients and dimensionless numbers:

c Clo frictional damping coefficient

cy Fy/qhb normal force coefficient

cr F/qhb tangential force coefficient

cr 28, /uu (sectional) aerodynamic damping coefficient
u U/oR reduced wind speed

u phbR*/1 mass parameter

€ D/w viscous damping coefficient

notation conventions:

x (dot) denotes time derivative of a variable
x (hat) denotes amplitude of a variable
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Preface

This report presents the progress of research carried out at the Faculty LR within the
framework of an interdepartmental project on aeroelastic oscillations. In the project, which
is funded as a ’Commissie Beek’ project, the Faculty of Aerospace Engineering (LR) and the
Faculty of Mathematics and Informatics (TWI) participate. The TWI group addresses the
formal mathematical analysis of the nonlinear differential equations that describe flow-induced
vibration phenomena, on the basis of quasi-steady aerodynamic force modelling. The subject
of the work at LR is the design and realisation of an experimental set-up, in order to acquire
experimental data with which the modelling and theoretical analysis can be verified.

The preceding investigations have been directed towards the analysis of different types
of one-degree-of-freedom (1-DOF) galloping, notably that of the rotational galloping
behaviour of the type referred to as a ‘see-saw oscillator’. In this configuration the model
cylinder is rotated around a hinge axis that is parallel to the cylinder axis. As the distance
between hinge axis and cylinder is large in comparison to the cross-sectional dimensions of
the cylinder, the effect of cross sectional motion can be approximated by the instantaneous
rotation angle and a linear displacement velocity, whereas the direct effect of the angular
velocity can be neglected. This allows a quasi-steady modelling of the unsteady aerodynamic
loads to be performed with much more confidence than in the case of 'pure rotation’, where
the hinge axis is close to the cylinder.

The theoretical analysis has been the specific subject of a number of previous reports
[1-3], while details of the related experimental work, comprising the development of the
experimental set-up and extensive measurements, have been reported in [4-5]. Several further
publications have been devoted to the combined results [6-9].

In the present report the extension of the oscillator to a two-degrees-of-freedom (2-
DOF) configuration is described.

Acknowledgements

With regard to the experimental work the contributions of H.J. Raaymakers, H. Keus and
C.W.J. Lemmens in the design of the set-up and its instrumentation are gratefully
acknowledged, as well as the assistance of the other members of the technical staff at the Low
Speed Wind Tunnel Laboratory, where all experiments were carried out.




1. Introduction

1.1 Background

The object of the experimental part of the research project ’Aeroelastic Oscillations’ is the
design of an experimental set-up to study flow-induced oscillations in a wind tunnel. The
experimental data of the set-up are used for a comparison with analytical models that describe
aeroelastic phenomena, in particular galloping. Characteristic aspects are in this respect the
nonlinear nature of the oscillations (a damping which is amplitude-dependent), which can give
rise to the occurrence of limit-cycles (steady oscillations with finite amplitude).

Galloping can be characterised as being a low-frequency instability phenomenon of
an aerodynamic nature. In practice it may occur on slender, lightly damped structures in cross
flow, such as ice-covered transmission lines, high towers or bridge decks [10]. The cause of
galloping lies in the occurrence of a negative aerodynamic damping: the aerodynamic forces
generated by small relative motions of the structure act to amplify these motions, which
results in a growing oscillation amplitude. Nonlinear effects provide a limiting effect, so that
a stable oscillation with a finite, but often appreciable, amplitude may result.

1.2 The 1-DOF rotational galloping of the ’see-saw oscillator’

The case of one-degree-of-freedom (1-DOF) translational galloping under weakly
nonlinear forcing conditions has been considered in detail by G.V. Parkinson [11,12], using
a quasi-steady modelling of the aerodynamic forces. This approach entails that the
aerodynamic forces at each instant during the oscillation of a structure can be taken equal to
the forces that occur in an equivalent steady situation, where the same relative motion
between structure and flow exists. This is assumed to be valid when the oscillation frequency
is low with respect to the frequency that is characteristic of the flow, such as the vortex-
shedding frequency. Static aerodynamic characteristics are derived from wind tunnel
measurements on a stationary model.

In the case of rotational oscillations, both the angular displacement, which changes
the angle of incidence, and the angular velocity are relevant. The dynamic effect of the latter
is vital for the description of galloping (as this produces the aerodynamic damping term), but
cannot be modelled realistically for pure rotations of the cross section. For the see-saw
configuration, where the rotation arm is much larger than the diameter of the cross section,
the rotation velocity effect can be approximated with that of a translation velocity [6]. In this
way a configuration is obtained that can be regarded as an extension of Parkinson's
translation model by adding a rotation that is coupled to the translation.




1.3 Basic characteristics of rotational galloping

Applying the quasi-steady modelling concept the effect of the aerodynamic forces can be
interpreted as resulting in combined aerodynamic (nonlinear) damping and stiffness effects,
where the latter can be neglected as long as the perturbation of the mechanical system by the
aerodynamic forcing remains small (weak-forcing approach).

In the presence of a constant wind field the harmonic oscillatory motion of the
cylinder induces a harmonic variation of the effective angle of attack (o) with respect to the
oncoming wind. Previous analysis revealed that the aerodynamic damping, when properly
scaled, is a function only of the amplitude of a, and applies to both rotational and purely
translational motions alike. Hence, in absence of any system damping, limit cycle amplitudes
vary with wind speed such as to maintain a constant value of the amplitude of o, and the
different galloping behaviour of translating and rotating structures is only due to the different
ways in which o is related to the oscillator motion. For translational motions o is equal to
the ratio of the translation velocity and the wind speed, so at a constant oscillation frequency
the galloping amplitude increases linearly with wind speed. For rotation the situation is more
complex as o is determined by a combination of angular displacement and velocity. As a
result, the oscillator displays a translational behaviour for small reduced wind speeds with
amplitude increasing with wind speed, but possesses a pure torsional regime for large reduced
wind speeds with the amplitude remaining essentially constant.

When considering galloping oscillations in the presence of viscous damping, it is
possible, owing to the unique dependence of the damping on the amplitude of ¢, to obtain
a normalisation of the galloping curve when considering the aerodynamic amplitude’ (i.e. the
amplitude of o) and scaling the wind speed with the damping level. This normalisation, which
is similar to that reported earlier for translational galloping [11-12], indicates that the
galloping behaviour is essentially similar for different amounts of damping, as e.g.
bifurcations and the occurrence of multiple limit cycles with increasing wind speed are
concerned [6,7]. This normalisation is affected when a more complex damping behaviour is
considered, such as the combination of viscous and frictional damping displayed by the
experimental set-up [5,9].

Galloping tests were performed for a large number of configurations, and the limit-
cycle amplitudes were found mostly in good agreement with a quasi-steady assumption, in
that when properly scaled the results fall on a single curve, which is in reasonable agreement
with predictions. Significant deviations occurred for large amplitude oscillations at low values
of u (smaller than 5), possibly indicating a violation of the quasi-steady assumption under
these conditions due to modulation of the cylinder wake or other unsteady effects.

For increasingly large wind speeds the aerodynamic stiffness effect may become
significant, as the aerodynamic forces remain no longer small with respect to elastic and




inertial forces. A strong-forcing approach was developed, where the system is described as
a weakly perturbed Hamiltonian system, provided that the leading-order aerodynamic terms,
which are of conservative nature, are included in the Hamiltonian [5,8]. Tests at high forcing
levels confirmed the predicted behaviour of increased limit-cycle amplitudes and amplitude-
dependent oscillation frequency, and in addition the phenomenon of dynamic divergence at
sufficiently high wind speeds.

1.4 The 2-DOF oscillator configuration

In the present investigation the galloping behaviour is extended to a 2-DOF configuration in
the study of what can be considered a 'double see-saw’ oscillator. The construction is
depicted schematically in Fig.1, while Fig.2 provides views of the actual set-up. The heavy
lines in Fig.1 represent a structure similar to that investigated in the 1-DOF case, consisting
of a pendulum-type oscillator with hinge point R;. Instead of having the model (i.e. the
cylinder upon which the wind forces are acting) rigidly attached to the structure, it forms part
of a second ’see-saw’ that is hinged in point R,. Counter weight C, is used to balance the
model weight w.r.t. Ry, whereas counter weight C, balances the weight of the complete
second see-saw w.r.t. R;. The structure is described by the two degrees of freedom 6, and
6,, which are the angular displacements of the 'main’ and "model’ see-saws, respectively (see
also Fig.3). Pendulum-type restoring forces are provided by weights P, and P,. Note that both
pendulums hinge (independently) at R, while the second pendulum is connected to the model
see-saw by means of a push-rod, instead of being directly attached to it. This construction has
the large practical advantage that the two rotation angles can now be measured at the
stationary point R,, instead of having to measure 6, at the moving point R,. In addition, the
pendulum weight P, does not affect the balance of the main see-saw, allowing more freedom
in the independent adjustment of the different oscillator properties.

The mode shape of the isolated degrees of freedom (i.e. when either 6, or 6, is zero)
are depicted in Fig.1b. This shows that in 'mode 1’ (8, = 0) the model see-saw remains
horizontal, and the cylinder performs approximately a translational motion only. In *'mode 2’
(8, = 0), on the other hand, the cylinder displays a rotational motion identical to that of the
1-DOF see-saw configuration considered in previous investigations. For this reason, modes
1 and 2 are called the ’translation mode’ and the 'rotation mode’ of the 2-DOF oscillator. As
revealed by the oscillator equations of motion for this configuration in the next chapter
(linearised for small displacement angles), these two modes correspond exactly to the
uncoupled natural modes of the oscillator. In addition, further use will be made of a third
mode, viz. the rotational 1-DOF configuration which results when both modes are rigidly
coupled, such that 6, = 8,. This 'coupled mode’ will be referred to as *mode 0.



2. Construction and modelling of the 2-DOF oscillator

2.1 Construction of the oscillator

The actual construction of the 2-DOF oscillator structure is shown in Fig.2. The main see-saw
structure is supported by a frame on knife-bearings, while the mode-2 pendulum hinges on
the main oscillator frame by means of ball bearings. Also the other hinges (R, in Fig.1 and
the hinges of the push rod) are equipped with ball bearings. The electromagnetic damper was
installed as in the picture, but has not been used in the experiments.

Note that as mentioned in the previous section both motions are recorded at stationary
positions, at either side of the main oscillator hinge axis. As angle encoder 1 the same
instrument was used as in the previous investigation of the 1-DOF oscillator, which is a
Heidehahn ROD426 opto-electric digital angle encoder with a 0.09° resolution (1024 intervals,
quadruple mode) [5]. As the ball bearings of the encoder axis had been found to introduce
a notable amount of frictional damping in the system, it was decided to select a contactless
version for the second encoder with which the motion of the much lighter second mode is
recorded. It was found that the original choice of a Heidehahn 1024-interval type was
unsuitable in the present construction, for its sensitivity to the exact positioning of the encoder
housing with respect to the encoder shaft that is attached to the mode-2 construction. Instead,
a readily available 500-interval Hewlett Packard encoder was used, which proved to be more
tolerant to this positioning. Operated in the same quadruple mode, this encoder yields a
resolution of 0.18°. The timing of the data sampling was carried out using the BIOS-timer of
the PC, which allows a sampling interval of (any integer multiple of) 3600/65536 sec = 55
ms, the BIOS clock period. For all dynamic measurements to be reported a single timer
period was used, resulting in a sampling frequency of 18.2 Hz.

2.2 Experimental set-up and model configurations

To allow a larger range in the motions of the oscillator a test section with enlarged height was
constructed, with a cross section of 0.6 m and 0.4 m (was: 0.4 m x 0.4 m). The length of the
test section is 1.4 m, and the oscillator frame was placed at the exit of the test section as can
be seen in Fig.2. To accommodate the larger test section height, a new contraction section
was designed according to the method of Mikhail [13].

In Table 1 the major dimensions and mechanical properties are given for the different
oscillator configurations that have been investigated. These configurations, involving different
cylinder models and/or different values of the frequency ratio, are denoted as follows:



frequency ratio f/f, model cross section

A 0.98 Rectangular cross section 40 mm x 25 mm
it ; ;

B 127 (with short side facing the flow)

C 1.01 Square cross section 30 mm x 30 mm

Configuration A and B both have the same cylinder model, but a different frequency ratio
obtained by changing the pendulum weight P,. Configuration A and C are both in near
resonance, but differ in the cylinder model. More details of the construction in general and
of the cylinder models in particular, including the aerodynamic characteristics, can be found
in a previous report [5]. Note, however, that the configuration codes used there have no
relation with these used in the present context.

2.3 Modelling of the 2-DOF oscillator properties

With reference to the structure in Fig.1, the equations of motion for the 2-DOF are derived,
neglecting structural damping but including the aerodynamic forces Fy, and Fy (see Fig.3),
which after linearisation for small angles 6, and 6,, can be written as follows:
I8 +k 8 = R {Fy+Fr® -8y} 2.1
1,8, +ky 0, = R, Fy (2.2)

For the details of the derivation, see [14]. When the model, counter weights C,; and C, and
pendulum weights P, and P, are regarded as concentrated masses, and the mass of all
connection elements is neglected, the inertial moment and restoring force coefficient for the
two modes are given by the following expressions:
= 2 2 2 = 2.3
[1 (mM # mc2)R1 mcl !CI * mPI IPI kl mPIIPIg ( )
- 2 2 a
Il = mMRz +mC21C22 + mpzfpz kz —mpztng (2'4)

while it has been assumed that the counter weights have been adjusted such as that both see-
saws are in balance, as mentioned in section 1.4, with:

(mM + mCE)Rl = "ﬂc-i [CI mM.R2 = mcz !CZ (2.5)
Here m indicates the mass of the respective component with subscript M denoting the model,

1 is the arm length to the corresponding hinge point (i.e. R, for C,, and R, for C,, P| and P,)
and g is the gravity constant.



The expressions of Eqs.(2.1) and (2.2) show that, because of the absence of cross-
coupling inertial terms, mode 1 and mode 2 are the natural uncoupled modes of the linearised
mechanical oscillator equations. In addition to the aerodynamic coupling of the modes as
expressed by the right hand terms of (2.1) and (2.2), further coupling may be caused by
internal friction forces (see section 2.4) and possibly by nonlinear inertial effects.

The equation of motion describing the 1-DOF mode that is obtained by coupling the
two modes (mode 0, as discussed in section 1.4) is obtained by adding Eq.(2.1) and (2.2)
while putting 8, = 6, = 6, whereas the additional coupling forces cancel as being internal
to this mode, yielding:

where Iy = I, + I, , kg =k, + k, and Ry = R, + R,.

The mechanical oscillator properties for the different single-DOF modes of the
oscillator are given in Tab.1, where the restoring force stiffness &; (i = 0,1,2) was determined
from static force calibration (Fig.4). The frequency-amplitude characteristics (Fig.5) were
derived from free oscillation tests, using a level-crossing algorithm for the oscillation period
and a detection of the extremes for the oscillation amplitude. The (linearised) natural
frequency f; was then obtained from a data fit of the theoretical curve for the pendulum
oscillator (see [5] for details of the procedures).

Modelling the aerodynamic forces
When the aerodynamic forces are modelled according to a quasi-steady approach, they are
assumed to depend on the magnitude and direction of the instantaneous relative wind vector,
which are derived from Fig.2 as:
U, cosat = (U+Vy) cosB, + Vy sin6, 27
(U +Vy) sinB, - Vy cosB,

tano. = : (2.8)
(U +Vy) cosB, + Vy sinb,

where Vy and V, are the components of the displacement velocity of the model centre, which
are given by:

(2.9

Linearisation of Eqs.(2.7) and (2.8) under the condition of small angles 6, and 6,, and
assuming further that Vy and Vy are small with respect to U, yields:

R0, + R, 8
_ MY 2Y) U

e i (2.10)
U rel
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2.4 Modelling of the damping properties

As discussed in the previous report [5] the damping properties of the 1-DOF oscillator can
be expressed as a combination of viscous and frictional damping, with the former producing
an additional moment that is proportional to the angular velocity and the latter a moment of
constant value. The frictional damping was mainly caused by the ball bearings of the encoder,
whereas the natural damping of the structure itself was predominantly of a viscous nature, due
to the low-friction knife bearing supports. Both components can easily be determined from
free decay measurements [5]. In the 2-DOF configuration the situation is complicated by the
presence of the mechanical interaction of the two modes, but under some simplifying
assumptions the damping properties can be derived from observing the decay behaviour of
the separate single-DOF modes (the oscillator modes 0, 1 and 2), as explained below.

The wind-off behaviour of a 1-DOF oscillator affected by both viscous and frictional
damping can be written as follows:

I,8 +k 6 = -N; 6 - M, sign®) @.11)

with i =0, 1 or 2. N, is the coefficient of viscous damping and M; that of frictional damping.
Applying a two-time scale approach by assuming that the free motion is approximately a
harmonic oscillation at the undamped natural frequency w; with an amplitude changing slowly
with respect to the oscillation period, Eq.(2.11) can be written as an amplitude-transient as:

%=-D;95-Ci=—mi{§iéi+ci} (2.12)

where the damping rate parameters C; and D; are derived from the observed amplitude decay
(see [5] for details), and which are related to the damping coefficients as:
N.
D‘ = C{m‘ = _l Cl = C,w, = i (213)
21 i,

To describe the damping behaviour of the 2-DOF oscillator it is assumed that each
mode is affected by a viscous and a frictional component, each with a part that is due to the
direct motion of the mode itself and another part caused by the relative motion between the
modes:

I, 6, + ky 8, = = Npy0, - N, (6,-6)) - My,sign(6,) - M,,sign(6,-6,) (2:15)

When it can be assumed that the cross-terms are predominantly caused directly by the relative
motion between the modes, this interaction must be symmetric, which means that Ny =Njp,
and M, = M;, . Considering the single-DOF modes obtained by either by blocking one of
the modes, or by coupling them, the oscillation behaviour is for each case given by Eq.(2.11),
with the 1-DOF damping parameters N; and M; related to the 2-DOF parameters as:




N,=N N
mode 0 0,=6,=80, 0 11+ N2z
My=M;; + M,
N,=N;;+ N
mode 1 8,=0 =2
My=M; +Mp,
N,=N,,+N
mode 2 6,=0 £l
My =My, + Mj,

From the experimentally determined damping parameters of the different 1-DOF modes the
damping parameters N;; and M;; of the 2-DOF motion can now be derived as:

The results of the experimental determination of the damping properties for the different
oscillator configurations are given in Tab.2. The inaccuracy of the damping rate parameters
is estimated to be of the order of 5%, giving an error in N;; of 0.0001 Nms and in M;; of
0.0002 Nm. As configuration B is nearly identical to configuration A no mode-0 analysis was
performed for the latter, while the results for the modes 1 and 2 confirm that the damping
properties are indeed quite similar. Further, although the values found for configurations A
and C are not identical the ratio of corresponding parameters is comparable.

Further scrutiny of the values reveals that for mode 1 the damping effect of the direct
motion is approximately three times that of the relative motion, for both the viscous and the
frictional component. For mode 2 the direct motion effect is approximately half the magnitude
of that due to the relative motion for the viscous component. For the frictional component
only that due the relative motion is relevant, the value of M,, being effectively zero within
experimental accuracy. The results for the frictional parameters are quite plausible regarding
the construction of the oscillator, with M, corresponding to the friction in the bearing of
angle encoder 1 and M, to the friction in the bearings R, and R, and the hinges of the
connection rod, while M), is virtually zero as encoder 2 is contactless.

The damping character of all terms is clearly revealed by observing the decay of the
total oscillator energy, which is obtained from multiplying Egs.(2.14) and (2.15) by 6, and
92, respectively, and which after adding yields:

d 16, + k8.2 + L + k,0,”
dr 2
= N1 62 = Npp(0,-6,)% - Njn®)® - My 16,] - M, 16,-6,] - My, |6,

where all terms are seen to be dissipative.

(2.16)
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2.5 Phase-space characterisation of the oscillator motion

Regarding the equations of motion, Eqs.(2.1 and 2.2), and employing the quasi-steady
aerodynamic assumption discussed in section 2.3 as expressed by the effective aerodynamic
angle of attack o according to Eq.(2.10), the dynamics of the oscillator for a given
construction (mechanical and damping properties) and under constant experimental conditions
(wind speed, air density), may be expressed as follows:

§ = F(s), s =(0,.6,,6,,6,) 2.17)

Here F is a (in general, nonlinear) function of the state vector s, thus describing the oscillator
motion in a four-dimensional parameter space. Upon decomposition of F into a linear and a
nonlinear part, where in accordance with the discussion of section 2.3 (see also [14]) the
former includes only inertial and structural stiffness effects, while in the latter the
aerodynamic aspects and all remaining higher-order (nonlinear) structural aspects are
represented:

§ = Fpns + Fopun(s) (2.18)

Note that the viscous damping components can be included in the linear term, whereas the
frictional damping terms must be considered in general as nonlinear effects. If the nonlinear
term is small, the system can be treated with the method of two time scales, where the
oscillator motion is considered to be composed of the natural modes of the oscillation, with
amplitudes changing on a time scale that is large with respect to the oscillation period. As in
the present system the isolated single-DOF modes (‘'modes 1 and 2’) correspond to the
uncoupled eigenmotions of the linear part of Eq.(2.18), the motion can be written as:

8,(r) = 8, sing,(n = 8, sin(w,) (2.19)

8,(1) = 8, sind,() = 6, sin(w,t + ¢) (2:20)

where hatted variables denote the mode amplitude, and ¢, = $,(0)-¢,(0) is the initial phase
difference between the modes. At any time ¢ the instantaneous oscillation behaviour is
described by the values of the mode amplitudes (8,,6,), frequencies (®;,®,) and phase
difference Ad(t) = ¢ ,(1)-¢,(t). For a linear system the natural frequencies ®; and o, are
constants and follow from the solution of the equations of motion. For weakly nonlinear
systems the mode-shapes may remain approximately harmonic, so that the expressions (2.19
and 2.20) can still be used, but with frequencies becoming dependent on the mode amplitude.
Hence, the oscillation can be characterised in the three-dimensional parameter space
(8,,6,,A¢) with initial conditions (8,(0),8,(0),0,). As the phase difference A¢ changes
over a time scale proportional to |, —m2|'1. its effect may be averaged out for non-

resonant, weakly nonlinear forcing cases, for which the oscillation can then be characterised
in the {91 ,92)-plane.
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2.6 Free motions of the 2-DOF oscillator

A number of tests under no-wind conditions are considered to illustrate the free oscillation
behaviour of the 2-DOF oscillator for the different configurations. For each test run the
ﬁgures(") present the oscillation data as separate plots of both 8, and 6, time records, and
in the form of a Lissajous figure. In addition, the oscillation records have been analysed so
as to extract the variation in time of the amplitudes and frequencies of the two modes, and
the phase difference between them, the latter plotted as (¢,-¢)/2x. For each configuration
different initial conditions have been considered.

Configuration A

Fig.AOa shows how a situation where initially only mode 1 is present, the coupling forces
induce mode 2 to be initiated. When both modes possess nearly the same amplitude, the
modes become approximately locked, as reflected by the nearly zero value of the phase
difference, while the frequency of mode 2 jumps to that of mode 1. Both the excitation of the
mode-2 motion and the friction locking are possible because the two natural frequencies of
the independent modes are close together. As Fig.AOb reveals the inverse phenomenon is not
observed: a purely mode-2 motion does not induce a mode-1 motion, which can be explained
from the values of the damping parameters in Tab.2, which show in particular that the M,
friction term is too small to overcome the M;, term. Fig.AOc shows the situation where
initially both modes are present but in counter-phase. During the gradual decay of both modes
the phase difference decreases, and the modes become approximately locked, after which a
combined decay occurs, very similar to what happens in Fig.AQa.

Configuration B

Configuration B differs from A in that now the two natural frequencies are significantly
different. As a result an isolated mode 1 motion does not induce a mode 2 motion, for lack
of phase correspondence (Fig.B0a). Also an isolated mode 2 motion persists at its own natural
frequency (Fig.BOb). Fig.BOc shows the result when both modes are initiated with
approximately the same amplitude. Both modes displays on average the undisturbed
frequency, but for mode 2 the coupling forces result in a modulation of both the frequency
and the amplitude decay, which follows the phase difference between the modes.

! The figures of oscillation test data are collected in the Appendix, where also the index
to the figure and run codes is given.
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Configuration C

Similar tests, with initially only mode 1, mode 2 or both modes in counter-phase, were carried
out for configuration C as well (see Figs. COa, COb and COc). Also for this configuration the
natural frequencies of the modes are nearly equal, resulting in a behaviour roughly
comparable to that of configuration A. However, the exact details are quite different as
reflected by the Lissajous patterns. Also, the frictional lock-in is not observed in Fig.COa as
it is in Fig.AOa. Partly responsible for this may be the larger initial mode 1 amplitude in the
case of Fig.COa, so that at the point where both amplitudes are equal the frictional forces are
apparently insufficient to effectuate the coupling. This is illustrated in Fig.COg, where due to
a smaller initial amplitude of mode 1, the coupling is indeed observed to occur.

Note that as under these conditions of free oscilllations, in the absence of aerodynamic
forces, the viscous and frictional damping forces are the only forces that provide the coupling
between the two oscillation modes, whilst simultaneously providing the only mechanism of
energy dissipation. Hence, these forces are responsible for both the amplitude transient and
the mode coupling, and the ratio of the different components strongly determines the
combined transient 2-DOF behaviour, even when the forces are small in absolute sense in
which case a similar behaviour can persist but on a larger time scale. The coupling effect they
have on the apparant oscillation modes can, however, be assumed to be much less significant
when studying the system under wind loading, where the aerodynamic coupling is more
important than that due to the small mechanical damping forces.
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3. Aeroelastic behaviour

3.1 Effect of the aerodynamic forces on the oscillation modes

The equations of motion governing the dynamics of the 2-DOF oscillator, given by Eqs.(2.1)
and (2.2) as presented in section 2.3, are repeated here for convenience:

I 8 +ky 8, = R {Fy@ + Fr(e) 8 - 8} G.0)
L6y + ky 8, = R, Fy(®) (3.2)

Adopting the quasi-steady aerodynamic approach the normal force F and tangential force Fi
are modelled by means of the static aerodynamic force coefficients ¢y, and c; as:

where g = %pU? is the dynamic pressure of the wind flow and S = hb the reference area of
the cylinder model, while the instantaneous angle of attack o is given by:
_Ri8; + R, 6,
U

As long as the aerodynamic forces remain small with respect to the inertial and elastic
stiffness forces, the former can be regarded as being a weak perturbation of the undisturbed
mechanical oscillator system. The theoretical analysis of this weakly nonlinear system can
then proceed by investigating the stability of the modes of the linear system, which in the
present case is the Hamiltonian (conservative) system given by the left hand side of the
equations of motion (3.1) and (3.2). Possible limit-cycles of the nonlinear system and phase-
space trajectories in general, can then be approximated by the orbits of the Hamiltonian
system [1-3].

For the case of the 1-DOF rotational oscillator the above weak-forcing’ method has
been extended for increased wind speeds [5,8]. As the aerodynamic stiffness terms are of
order U and the aerodynamic damping terms of order U, the former represent the leading
order effect at increased wind speeds. In the ’strong-forcing” approach the oscillator system
is now regarded as a weakly perturbed Hamiltonian system, where in the latter the
aerodynamic stiffness is incorporated. The orbits of this new Hamiltonian system then yields
an improved approximation of the trajectories or limit-cycles of the perturbed system.

For the 1-DOF system the aerodynamic stiffness effect results in a change of the
oscillation frequency and a distortion of the (originally harmonic) mode shape. The influence
of the frequency on the limit-cycle behaviour is not very large, while the mode shape
distortion depends on the nonlinearity of the aerodynamic forces and becomes significant only
at very high wind loads, where it may result for example in divergence of the oscillator

o= (34)
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motion. Therefore, for the description of the dynamic behaviour of the 1-DOF system the
original 'weak-forcing’ approach can be used even up to moderate wind loads.

As in the present 2-DOF system the phase difference between the individual modes,
and hence the frequency ratio, plays an important role, it can be expected that aerodynamic
stiffness effects may need to be included in the analysis even at low wind loads. As a first
identification of the aerodynamic stiffness effect, its influence is investigated on the behaviour
of the effective Hamiltonian system that is obtained when aerodynamic damping effects are
excluded. In the analysis it may be assumed for convenience that the model cross section is
symmetric around =0, so that F(-a) = -Fj(o) and F{(-01) = Fra).

Linearised aerodynamic forcing
With the following linearisation of the aerodynamic force coefficients applied:
ey(@ = a0 cr(@) = b (3.5)

the equations of motion become a linear system. Solutions are sought of the following form,
employing the complex notation:

By = Qe By = Qye ™ @8
where the s is the complex frequency and Q| and 0, complex amplitudes, with:
s=-D+io 8, =0/ 6,=10,] A =arg(Q,/0)) 3.7
Upon substitution the equations of motion can be written in matrix form as:
Iis%+k,~bygSR,  (by-ap)aSR, |(Q, __ @S R? RR,|(0 (3.8)
0 !152+k2-a1qSR2 %) v RR, R ||2

where the left hand side represents the Hamiltonian system of the mechanical oscillator with
the aerodynamic stiffness included, while the right hand side represents the aerodynamic
damping effects. The natural frequencies and modes of the Hamiltonian system follow from
the eigenvalues of the matrix on the left, which allows the following two modes to be
identified:

ky, -bygSR
iode i m]2 L i B % -
!I Ql
ky-a,4SR a,-bg) SR
mode 2: mi: 2" N9 &=(I 0) 45K,
g % nek-e)

This shows that mode 1, the ’translation mode‘, is still a purely 8,-motion, because the 6,-
equation remains decoupled when the aerodynamic stiffness is included in the Hamiltonian
system. As a result the rotation motion is not excited by the translation motion. Due to the
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coupling of 6, to the 6,-equation, the second mode includes a combination of rotation and
translation. However, as the 8,-equation is decoupled the frequency of this mode is the same
as for the single-DOF rotation motion which would result if the translational freedom were
restrained. This mode can hence be regarded as an independent 8,-motion, which induces a
6,-motion as if the latter were subjected to a forced excitation. Note that in agreement with
this concept the two motions in the second mode may be either in-phase or counter-phase,
depending on the frequency ratio w,/®, being either smaller or larger than unity, and the sign
of (a;-by). With the coefficients representing the linearisation of the force characteristics
around =0, the configurations under consideration here typically display a;<0 and by>0.
Therefore, the effect of an increase in wind speed (and hence, g) is in this case to decrease
o, and increase @,, where for the present configuration with R,/,/R,I, = 6, the effect on ®,
is largest. Note furthermore that when ®,>®, both motions are in-phase (4,/4,>0).

Nonlinear aerodynamic forcing

The complete aerodynamic stiffness terms are obtained by considering the full system of
Egs.(3.1) and (3.2), but omitting the dynamic effects from the expression for the angle of
attack, Eq.(3.4), resulting in:

1,8, +k 8 = R {Fy(®,) + F1(8) 6, - 68y} (3.9)
I, 8, + ky 8, = R, Fy(8)) (3.10)

Although the concept of oscillation modes is not as meaningful for nonlinear systems as it
is for linear systems, as without the possibility of superposition it is no longer possible to
express a solution as a linear combination of such modes, it is still possible here to identify
two different independent modes, which can be regarded as the generalisation of the modes
found in the linear analysis. To this end it is observed that the above system can be
considered to be of the following general form (where ®, and ®, should here be interpreted
as the mode frequencies of the undisturbed system):

B, + 0,208, = F(6,,6,) G.11)
92 + (ﬁzz 92 = FZ(QZ} {312)

As the second equation is decoupled from the first, it is directly obvious that it is again
possible for a pure 6,-motion to exist, which is recognised as the translation mode, and
characterised by the following Hamiltonian expression:

2 e O
4|0 + 00 _ (3.13)
- RO [Fi©,00d8, | =0

Note that in the present case F| is linear in 8, see Eq.(3.9), so that the resulting mode shape
is harmonic.
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The 6,-motion is not affected by 8, as it is governed independently by the decoupled
second equation, which is also of Hamiltonian form:

a| 83 + 026 (3.14)
S R sz{ez)afa2 =0

2

This motion induces a 8;-motion as if through a forced excitation. It can be shown that now
again an independent mode can be obtained, where both motions coexist in (counter-)phase.
In that case it is possible to write:

0, = 8(6;) (3.15)

with which the Bl-equation, Eq.(3.11), becomes:
é] ¥ 0)]2 0, = Fi0,.2 _](81)) S Fl*(e]) (3.16)
which can again be written in a Hamiltonian form. The specific expression for g is found

from the condition that Eqgs.(3.11,12 and 15) be satisfied simultaneously. From Eq.(3.15) the
following expression is derived by repeated differentiation:

8, = ¢g”®y 922 + Sf(ez) 0, (3.17)

in which the prime indicates differentiation with respect to the function argument, 6,. Also,
solution of the decoupled 6,-equation, Eq.(3.14), directly reveals that:

6,2 = fi6,) (3.18)

Note that the expression for f depends on ®, and F,. Replacing all 8;-terms in Eq.(3.11) with
the appropriate 8,-functions, by means of Eqs.(3.17) and (3.15) and substituting Egs.(3.12)
and (3.18), the following equation that determines g is obtained:

18 8" 8) + [Fy6) -,26,) 8/ 8) + 0, 28y = F (6.0 (19
which relates g to ®;, , and the forcing functions F; and F,. The complexity of the above
equation prevents an analytic solution for g to be obtained in general, but note that when both
F, and F, are linear functions, it is easily verified from substitution that g is linear in 8,. As
a consequence 8,/6, = g(8,)/6, is a constant, which corresponds to the result of the linear
analysis given earlier.

This analysis shows that also for the nonlinear equivalent Hamiltonian system obtained
by including the aerodynamic stiffness effect, it is possible to distinguish two independent
oscillation modes. The first mode is a purely 8;-motion (translation), which is moreover
harmonic in shape as the aerodynamic forces remain constant. The second mode is a mixed
mode of 8;- and 8,-motions, taking place at the frequency dictated by the rotation motion,
and which induces a 6,-motion as if through a forced oscillation. As in this mode the two
motions are either in-phase or counter-phase, the trajectory in the (8,.8,) plane follows a
single curve for both increasing and decreasing angles.
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3.2 Single-DOF galloping tests

Before proceeding to the aeroelastic behaviour of the full 2-DOF oscillator configuration, it
is illustrative to consider the galloping behaviour of the configuration in the different 1-DOF
configurations that were identified in section 1.4. By restraining either one of the motions the
translational 'mode 1’ or the rotational 'mode 2’ is obtained, while applying a rigid
mechanical coupling between the motions results in the rotational 'mode 0’. The equations
of motion for these modes, according to the quasi steady approach, are given by:

Rl 91
mode 1: 1,8, +k,0, = R{Fy(@) +Fr(@8)} o= i (3.21)

Rotational galloping modes
The above equations show that both mode 0 and mode 2 are indeed rotational galloping
modes identical to the 1-DOF see-saw oscillator considered in previous investigations, so that
the galloping behaviour for these modes should compare directly to the results found there
[5]. Including the viscous and frictional damping components, see Eq.(2.11), the motion is
described by:

1,6, +k; 6, = - N; 0, - M, sign®,) + %apU2hbR,c)(t) (3.23)

with i = 0 or 2. Applying the averaging approach of the ’weak forcing’ method (¢f. also

section 2.4) the following amplitude-transient equation is obtained:
a6, Ni o 2 M M U

—— =0 - 2 - @ § (3.24)
dt 21; nlw;, 2R,

where the mass parameter pu = pthl-jﬂf-, and with the aerodynamic damping coefficient cr

defined as:
o = ~—p [c“’m e,-] - [—c”(a}“} (325)

o’R; | 6?2 o2

where square brackets indicate the averaging opera{or(').

T
! For a function periodic in ¢, with period T, averaging is defined as: [f(f)] = _} ff(:) dr.
0
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Note that Eq.(3.24) confirms the statement made earlier that for a small change in the
frequency has no great influence on the 1-DOF galloping behaviour. The above equation is
written in dimensionless form as:

db. u;

Vs ol B =g 3.26)
Ko O O (
! 4 i I I
dot g h

with the reduced wind speed u; = U/{®;R;). For (stable or unstable) limit-cycle oscillations
the left hand side vanishes, so that from the observed limit-cycle amplitudes the corresponding
value of ¢ can be calculated as:
s é + C.
= -2 SO e (3.27)
Miu; 8¢

In Fig.7a the 1-DOF rotational galloping results are given for the cylinder with the rectangular
cross section (25 mm x 40 mm) that was applied in configurations A and B, and in Fig.7b
for the square cross section (30 mm x 30 mm) of configuration C. In each figure the
measured static cp~curve [5] is shown in the top graph, and the limit-cycle amplitudes as a
function of wind speed U in the centre. At the bottom the values of cg derived with Eq.(3.27)
are depicted, where according to the quasi-steady theory are plotted against the value of the
aerodynamic amplitude, that is given by:

1 +u? (3.28)

u?

a6 = 6

The curve in the lower graph gives cy as predicted by the quasi-steady theory [5] and based
on the static c)~data. In the case of the rectangular cross section (Fig.7a) the measured values
for the different configuration agree well, and correspond to the earlier experiments [5], where
the same deviation from the theoretical curve was observed. Although the data for the
rectangular cross section (Fig.7b) is rather sparse, a fair agreement is again observed in this
case. Note that the data for the smaller amplitudes is based on the amplitude of unstable limit
cycles, and may therefore be subject to increased inaccuracy.

Translational galloping mode

Due to the presence of the extra contribution of the tangential force Fy in Eq.(3.21) the
motion of mode 1 is not strictly identical to that of one with a purely vertically translating
cylinder, but for the low-forcing galloping behaviour this has no effect. This is revealed by
the galloping equation, which can be written in the same form as for the rotational mode
Eq.(3.24), and with the adapted definition of the aerodynamic damping coefficient ¢y being:
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U cy(a) +cp(a) B,

cr = - 0
¢ mlz R, sz l
(3.29)
(o) o
= [Yey(@) + (o) e iz = N_z
o’R, o 6

where for any periodic motion the contribution of ¢ vanishes identically upon averaging.
Although the governing equations for this translational galloping mode is identical to those
of the rotational modes, the true structural galloping behaviour is different in that, instead of
Eq.(3.27), the structural and aerodynamic amplitudes are now related as:

& = (3.30)

:Iq:»

Because of this linear relationship stable limit-cycle amplitudes are predicted to occur at much
larger values of the oscillator amplitude than in the case of the rotational modes. For the
configuration under consideration, the predicted amplitudes increase beyond the limits of the
test section, and furthermore also beyond the bounds of validity of the theory where relatively
small angles are assumed. Therefore, no distinct limit-cycle behaviour of this mode can be
recorded, as illustrated in Fig.8, where the theoretical stability boundaries are calculated for
the different configurations (using an approximation of the cy-curves of Fig.7). Only the lower
branch (of unstable limit-cycle oscillation) is observed in the region of wind speeds and
amplitudes of practical interest. Qualitatively, a similar behaviour was indeed observed in
practice, where mode 1 oscillations were predominantly damped for all combinations of wind
speed and oscillation amplitude investigated, except for configuration C, where a weakly
unstable behaviour occurred at a sufficiently high wind speed and initial amplitude.

3.3 2-DOF galloping tests

A number of galloping tests were carried out, for each of the different 2-DOF oscillator
configurations, to get an impression of the dynamic behaviour of the system and to try to
identify the possible existence of stable limit-cycle oscillations. Note that in the 1-DOF
oscillator it is fairly easy to identify unstable limit cycles as well, as the initial condition of
the system is characterised by a single parameter (the oscillation amplitude), which allows a
systematic investigation of this one-dimensional parameter-space. For the 2-DOF case the
initial condition is given in three-dimensional space (two amplitudes and a phase difference),
a full investigation of which is quite impractical - even more because an oscillation starting
from a static situation is limited to either in-phase or counter-phase.
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In the next discussion several oscillation trajectories are followed in the{él,ﬁz)
amplitude plane (Figs.9-11). Note that as the oscillation is characterised in a three-dimensional
(8,.8,.A0) space, the amplitude plane provides a projection of the parameter space, and
hence cannot be considered to yield a phase-plane representation. Each run is identified by
the configuration code in the upper right corner of the graph, and a letter denoting the
individual run given next to the circle that indicates the recorded initial state of the
oscillation. The full configuration-run code allows the corresponding oscillation record figure
to be retrieved in the Appendix, which presents time records of both oscillation modes as well
as derived data, such as instantaneous values of the mode frequencies and amplitudes and the
phase difference. Note that abbreviated codes, as explained in the Appendix, are used for
reference in the main text and for the figure numbering of the Appendix.

Configuration A: model 25 mm x 40 mm; frequency ratio 0.98

In Fig.9a several runs with different initial conditions are given, with separate graphs for
oscillations starting with predominantly mode-1 (top), mode-2 (centre) or in-phase (bottom)
motions. This shows that, depending on the initial conditions, either the equilibrium positions
is approached (A3h,fk), or a limit-cycle oscillation results where both modes are present
(A3a,b,c,e,1,j), with approximately (Gl ,§2)={4°,] 19). In this limit cycle both modes are nearly
in phase, as can be seen from e.g. Figs.A3a,b, with the phase difference A¢/2w in the order
of 0.01; the (slightly) positive value indicating that the orbit in the (8,,0,) plane is traversed
clockwise with 8, leading 8. The 6,-amplitude is slightly larger than that for the pure mode-
2 motion under the same conditions (see Fig.7a), which may result from the effect of the
additional 6,-motion on both the aerodynamic coupling and the damping forces.

The same situation is observed for a slightly increased wind speed (Fig.9b and c), with
the limit-cycle properties varying only little. Under the conditions of Fig.9c, however, some
records (A2c,d,g) appear to suggest the existence of an additional, significantly different limit
cycle, with (8,,6,)=(18-20°,13°), a distinct negative phase difference and with a frequency
on average at a lower level than that of the first limit cycle. Also, a distinct variation in the
orbit shape is observed, which is reflected in particular in fluctuations of the amplitude and
frequency of the rotational mode (6,). However, as witnessed from run A2j, under this
condition this oscillation pattern is not entirely stable, as the oscillation is seen to return to
the *first’ limit cycle. Note that an oscillation pattern reminiscent of that of the ’second limit-
cycle’ was encountered in transient at a lower wind speed, cf. Fig.Ald. With a further
increase in wind speed, Fig.9d, the situation is reversed, and the ’first limit-cycle’ seems to
have disappeared while the "second limit-cycle’ has indeed been established. Note that the
instability in the oscillation pattern has further increased, as seen in Figs.A4b and f, especially
as the properties of the rotation-mode are concerned. This is shown in more detail in Fig.12,
which depicts a selected time interval from run A4f.
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In general, the galloping behaviour of the 8,-motion can be related quite well to that
of the 1-DOF rotational behaviour. This then provides an excitation mechanism for the 8-
motion, the amplitude of which would then be expected to probably increase with wind speed.
A summary of the properties of the "approximate’ limit-cycle oscillations are given in the
table below.

code | U (m/s) *first type’ limit cycle second type’ limit cycle
(6,,8,) Ad2m | f (Hz) 6,.6,) A¢2r | f(Hz)

A3 3.7 (4°,11°) 0.01 | 0478

Al 5.1 (35,119 0.01 0.490

A2 12 (4°,12° 0.01 | 0490 | (18-20°13° | -0.08 | 0.450

A4 8.8 (23-27°,13% | -0.10 | 0.445

Together with the observation that the phase difference between the modes is nearly
zero, the observed 'first type’ limit-cycle appears to correspond to the mixed-mode limit cycle
discussed previously in section 3.1. Note the clear change of the ’basin of attraction’ of the
limit-cycle with increased wind speed, as evidenced from comparing motions that start
approximately as pure 6,-motions. At low wind speeds (A3a, Alc) both mode frequencies are
nearly the same and the interaction allows the rotational motion to be excited. At higher wind
speeds (A2a, Adc), however, the aerodynamic stiffness effects have apparently driven the two
frequencies so far apart to prevent this interaction to take sufficient effect.

The ’second type’ limit-cycle has a quite distinct character, with a significant phase
difference between the modes and a much larger unsteadiness. From the experimental
observations, however, it remains unclear if the latter must be contributed to random
disturbances of the ’quasi-steady equations of motion’ due to the unsteady wind force
components discarded in the quasi-steady modelling, or whether it is a fundamental property
of the quasi-steady system, resulting in periodic or even chaotic behaviour in the phase-space.

Finally, it can be concluded that due to the fact that the natural frequencies of the two
free oscillation modes are close together (near-resonance case), a strong interaction between
modes results under the effect of aerodynamic forces. This means that when an analytic
analysis of the oscillator dynamics is attempted using perturbation methods, the phase
difference must be included as well. Furthermore, the significant variations observed in the
occurring frequencies strongly suggest the need to model the aerodynamic stiffness effects.
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Configuration B: model 25 mm x 40 mm; frequency ratio 1.27

Configuration B is aerodynamically similar to configuration B, but with the translational mode
frequency being significantly lower, it is expected that for due to the absence of internal
resonance the interaction of the modes is much reduced. This is indeed confirmed in Fig.10,
and only a single limit cycle was observed. As shown in Fig.7a the amplitude of the rotational
mode 2 corresponds to that of the 1-DOF motion with the other mode restrained. Therefore,
it can be concluded that this behaviour can be understood as the nearly 1-DOF galloping of
the unstable rotational mode. This excites the translational motion but due to the large
frequency separation the translational amplitude is much smaller than for configuration A.
Note also that mode shape, phase difference and frequencies (see also the table below) are
comparable to the limit cycle of the *first type’ observed for configuration A.

code | U (m/s) limit cycle

(6,.,6,) A¢2m | f (Hz)

Bl 37 (0.5°,9.5% 0.03 0.480

B2 7.2 (1.5°119 0.02 0.495

Configuration C: model 30 mm x 30 mm; frequency ratio 1.01

In this configuration both free oscillation modes are again in near-resonance, so that a strong
interaction between the modes can be anticipated. The difference with Configuration A lies
in the aerodynamic properties of the cylinder. As revealed from a comparison of Figs.7a and
7b, the cylinder with the rectangular cross section displays under the prevailing damping
conditions a hard-galloping behaviour, where instability requires a finite initial oscillation
amplitude. As a consequence, the equilibrium position (8,,8,)=(0,0) remained stable under all
conditions considered. For the square cross section instability of the equilibrium position
occurred at a sufficient wind speed for the 1-DOF rotational modes (Fig.7b). Hence the 2-
DOF system will become unstable as well, where the excitation of the translational motion
by the 8,-mode can become significant due to the near resonance in frequency.

Figure 11 confirms that indeed for sufficiently high wind speeds the equilibrium
position becomes unstable (C3a, C4a), and that a sustained oscillation results with both modes
present. In addition to the growth of the mode amplitudes with wind speed, the unsteadiness
of the oscillation pattern is seen to increase as well, but in contrast to the situation for the
*second type’ limit cycle for configuration A, it appears that now particularly the translational
motion is affected (¢f. C3a,b,c and C4a,b). Both records of oscillations starting from rest (C3a
and C4a) or from a rotation-only mode (C3c) show large modulations of the amplitude of the
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translational motion. Records C3b, C3d and C4b show details of sustained oscillations, where
this modulating oscillation pattern is clearly illustrated. Note that the growth and decay of the
translation amplitude is accompanied by, respectively, negative and positive values of the
phase difference between the modes. In the present context it could not be established whether
this pattern is only a transient behaviour, where the modulation effect may decrease gradually
(but prone to excitation by random disturbances), or that it represents an inherent periodic or
chaotic pattern of the system. (In phase-space these possibilities would correspond to,
respectively, a singular point, a periodic orbit, or a chaotic attractor).

code | U (m/s) limit cycle

(8,.8,) AY2m | f (Hz)
Cl 5.0 - - -
c2 7.1 (3.5°,13.59 0 0.53
Cc3 8.8 (4.5°,15% 0 0.53
C4 10.3 (4-8°,15.5%) 0 0.52
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4. Discussion and conclusions

In this study the non-linear dynamic behaviour has been considered of a mechanical oscillator
with two degrees of freedom under the effect of aerodynamic forces. The present oscillator
configuration is an extension of the 1-DOF aeroelastic oscillator investigated previously. Its
construction is such that the two independent motions that characterise the free oscillation
behaviour (the uncoupled modes) are those where the model cylinder either performs a nearly
translational motion (mode 1) or a rotational motion similar to that of the 1-DOF
configuration considered previously (mode 2). Free oscillation tests were used to determine
the mechanical and damping properties of the construction.

Under aeroelastic conditions the two originally independent modes become coupled
by the aerodynamic forces acting on the cylinder. A first impression of the effect of this can
be gained by considering the Hamiltonian system that results when the aerodynamic stiffness
of the system is included. This is achieved by omitting all dynamic effects on the
aerodynamics, and assuming all fluid forces a function only of the instantaneous angle of
attack produced by the angular displacement of the cylinder. For the system under
consideration the rotation mode is decoupled from the translation mode. Hence, two
independent modes can be distinguished, viz. one which is purely translational and a second
where the rotation motion is present and excites a translational motion in (counter-)phase.
These two modes can also be identified in the presence of nonlinear aerodynamic force
characteristics, although due the nonlinearity of the system the possibility of other periodic
oscillation modes cannot be excluded.

Dynamic tests were performed at various wind speeds and for different oscillator
configurations, in order to study in particular the influence of the aerodynamic characteristics
and the frequency ratio of the modes. Especially the occurence of self-sustained oscillations
were investigated. In contrast to the 1-DOF system studied earlier, the resulting dynamic
behaviour is complicated by the interaction of the two oscillation modes, in particular when
the mode frequencies are of the same order. Mostly, the galloping behaviour of the 2-DOF
system could be understood from the instability of the rotational mode, and with its excitation
effect on the translational mode being strongly determined by the frequency ratio of the two
modes. In the absence of resonance the translational mode is only slightly excited. For near-
resonance the translational mode becomes appreciable, while configuration A displayed the
transfer to a different limit cycle type, with a significant phase difference between the
motions. Also, under several conditions the oscillation pattern was observed to display
significant modulation effects, with mode amplitudes and phase differences changing
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periodically. In the present experimental context it could not be established whether such
patterns represent only a transient behaviour, where the modulation effect may decrease
gradually (but prone to excitation by random disturbances), or that they indicate an inherent
periodic or chaotic behaviour of the system.

The observations of strong mode interactions strongly suggest that when attempting

to construct an analytical model of the behaviour, the aerodynamic stiffness effects and a
phase relation must be included to describe the dynamic behaviour of the 2-DOF system.
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Table 1: Mechanical properties of the different oscillator configurations.

(Values for natural frequency and restoring force stiffness have been determined

experimentally, apart from values between brackets which were inferred.)

configuration code: A B &
main dimensions:

model span b (m): 0.35 0.35

arm R, (m): 0.20 0.20

arm R, (m): 0.15 0.15
model cross-section:

width x height 40 mm X 25 mm 30 x 30 mm
natural frequency:

fo (Hz) 0.462 (0.369) (0.468)

fi Hz) 0.462 0.357 0.468

f, (Hz) 0.452 0.452 0.472
frequency ratio: f; /f, 0.978 1.266 1.009
restoring force stiffness:

kg (Nm) 3.008 (1.827) (3.008)

k, (Nm) 2.683 1.507 2.686

ky (Nm) 0.320 (0.320) 0.322
moment of inertia:

1, (kg.m%) 0.357 0.340 0.348

1, (kg.m?) 0.318 0.300 0.311

I, (kg.m?) 0.040 0.040 0.037
inertial moment ratio: I /I 0.126 0.133 0.119
mass parameter:

Ho 0.00200 0.00208 0.00153

My 0.00041 0.00044 0.00032

Ky 0.00140 0.00140 0.00113
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Table 2: Damping properties of the different oscillator configurations.

Configuration: A mode 0 | mode I | mode 2

I; (kg.mz) 0.357 0.318 0.040

k; (Nm) 3.008 2.683 0.320

; (rad/s) 2.903 2,903 2.840

viscous component

D; s 0.0028 0.0034 0.0097 | N,; =0.00169 (Nm.s)
C; =D, /o; 0.0010 0.0012 0.0034 | N,, = 0.00031
N; = 2D; I; (Nm.s) 0.0020 | 0.0022 0.0008 | N,;, = 0.00047
friction component

C; (deg/s) 0.091 0.137 0322 | M;; =0.00253 (Nm)
¢; = C; /w; (rad) 0.0005 0.0008 0.0020 | M,, = 0.00005
M; = Yamc; k; (Nm) 0.00259 | 0.00347 | 0.00099 | M, = 0.00094
Configuration: B mode 0 | mode 1 mode 2

I; (kg.m?) 0340 | 0300 | 0.040

k; (Nm) 1.827 1.507 0.320

; (rad/s) 1.159 2.243 2.840

viscous component

D; (s 0.0034 | 0.0096

N; = 2D; I; (Nm.s) 0.0020 0.0008

friction component

C; (deg/s) 0.180 0.355

¢; = C; /w; (rad) 0.0014 0.0022

M; = Vanc; k; (Nm) 0.00332 | 0.00110
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Table 2 (continued): Damping properties of the different oscillator configurations.

—ENE R 111

Configuration: C mode 0 | mode 1 mode 2

I; (kg.m%) 0348 | 0311 | 0037

k; (Nm) 3.008 2.686 0.322

@; (rad/s) 2.941 2.941 2.966

viscous component

D; s 0.0020 0.0026 0.0075 | N;; =0.00123 (Nm.s)
;= D, /o, 0.0007 0.0009 0.0025 | N,, = 0.00016

N; =2D; I; (Nm.s) 0.0014 0.0016 0.0006 | N;, = 0.00039
friction component

C; (deg/s) 0.096 0.140 0.250 M;; = 0.00273 (Nm)
¢; = C; /w; (rad) 0.0006 0.0008 0.0015 | M,, = -0.00003

M; = Yarc; k; (Nm) 0.00269 | 0.00351 | 0.00074 | M;, = 0.00078
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model

(a) Definition of the geometry.

(b) Mode shapes.

Figure 1: Schematic construction of the 2-DOF oscillator configuration.
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Figure 2: The 2-DOF oscillator set-up.
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Figure 3: Definition of the aerodynamic configuration.
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Figure 4: Determination of restoring force stiffness.
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Figure 5a: Free oscillation characteristics (configuration A).
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Figure 7a: Single-DOF rotational galloping characteristics for configurations with the
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Figure 9: Oscillations in the amplitude-plane (Configuration A).
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Figure 9 (continued): Oscillations in the amplitude-plane (Configuration A).
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Figure 11: Oscillations in the amplitude-plane (Configuration C).
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Figure 11 (continued): Oscillations in the amplitude-plane (Configuration C).
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Figure 12: Oscillation record (detail) showing unsteadiness of limit cycle.
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Appendix. Oscillation records

This Appendix contains an extensive description of the individual oscillation tests, both free
and under wind load conditions, in the form of a set of figures that present time records of
both oscillation modes, as well as derived data such as instantaneous values of the mode
frequencies and amplitudes and the phase difference, the latter given as (¢5-0,)/21 on the
interval (-0.5,0.5). In addition to the separate time records of both modes, the oscillation is
further represented in the form of Lissajous graphs on the right hand side of the figure, with
the start of the run indicated by a small circle. For the free oscillation tests a single Lissajous
graph is given that depicts the entire time record. For clarity for the tests with wind loading
only selected intervals are considered, where the number in brackets in the top right corner
of each Lissajous plot corresponds to the time interval indicated at the top of the first time
record. At the upper right corner of this record the run code is given, which identifies the
configuration and experimental conditions according to the index given below:

prefix configuration series runs wind speed air density
(m/s) (kg/m”)
2D0 A 00 a-c 0
01 a-h 5.10 1.179
02 a-j 7.16 1.179
03 a-k 3.72 1.174
04 a-f 8.78 1.175
B 00 a-c 0
01 a-f 372 1.174
02 a-h 7.17 1.174
C 00 a-h 0
01 a 5.04 1.166
02 a-c 7.13 1.166
03 a-d 8.81 1.166
04 a-b 10.29 1.166
49
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The 0 in the prefix was used to indicate, in correspondence with the notation used in previous
experiments [5], that no additional (inductive) system damping was applied('). For reference
purpose in the main text to test conditions and individual runs, and for the figure numbering
in this Appendix, use is made of abbreviated codes for convenience: for example, Alb
corresponds to the full run code 2D0A_01b.

! Note, however, that the configuration codes A, B and C used here have no relation to
those of the 1-DOF configurations [5].
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The non-linear dynamic behaviour is considered of a mechanical
oscillator with two degrees of freedom under the effect of
aerodynamic forces. Free oscillation tests are used to determine the
mechanical and damping properties of the construction. Dynamic
tests were performed for different oscillator configurations and at
different wind speeds. Especially the occurence of self-sustained
oscillations were investigated. In contrast to the 1-DOF system
studied earlier, the resulting dynamic behaviour is strongly
complicated by the interaction of the two oscillation modes, in
particular when the mode frequencies are of the same order. When
attempting to construct an analytical model of the behaviour, the
strong mode interaction suggests that the aerodynamic stiffness
effects and a phase relation must be included to describe the
observed behaviour.
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