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Summary

Coastal facilities such as desalination plant or a nuclear power plant need a continuous discharge of salty
water to carry out their functions. Hereby an intake structure, such as a velocity cap, can be used to take in
water from the sea. These intakes are open seafloor founded constructions mounted at a water depth rang-
ing between 10 and 20 meters. It is composed by a top part with openings and guiding walls, and a vertical
hollow shaft which is the beginning of the discharge pipe. The specific geometry prevents the formation of a
whirlpool from the surface and avoids that bed sediments or floating debris are taken in.
In order to design such an intake cap in an offshore environment, the action of waves and in general of un-
steady flows is the most important design load to be accounted for.

This thesis has the aim to investigate the nature of the forces and turning moment acting on the structure
and to provide tools, in the form of hydrodynamic coefficients, that can be used to compute the design loads.
These coefficients are only known from literature for simple geometries and defining them for the specific
shape of the velocity cap can optimize the design. The analysis is based at first on experimental records
collected during a previous campaign which included forces and surface elevation measurements as well as
Particle Image Velocimetry (PIV). The measurements are then used to validate a CFD model in OpenFOAM®.
The focus is mainly on the loads generated by the passage of solitary waves which were simulated both ex-
perimentally and numerically.
The characterization of the flow field is based on the analysis of the inline velocity which is used to estimate
the Keulegan-Carpenter number (KC ) and the frequency number (β). The availability of PIV measurements
allowed studying the development of the turbulent patterns around the cap during the passage of a solitary
wave. Structure-induced turbulence is shown to be fundamental to define the total loads on the structure in
the numerical model. The use of a turbulence closure is in fact observed to be needed in order to come to a
validation of the CFD model.
The visualization of the flow field computed by the model showed that the turbulence development after the
solitary wave has passed was not captured correctly. Although this is likely to be the reason why the tail of
the computed force signal underestimates the experimental records, the peak of the force signal is predicted
with an accuracy of ± 8%. In the case of the vertical load the error observed between numerical results and
experimental records reached up to 15% but part of the mismatch is attributed to a bias in the experimental
records.

Once the CFD tool is validated, it is used to generate additional test cases on solitary waves and regular waves
in order to expand the scope of this research. The hydrodynamic force coefficients are defined fitting both the
experimental records and the load estimates of the numerical model by means of the weighted least squares
method. The inline force characterization followed the theory of the Morison equation which is shown to
provide a good fit in all analyzed cases. Good agreement is found between numerical and experimental re-
sults with regards to the estimate of the inertia coefficient while the numerical estimate of the drag coefficient
is up to 19 % lower than the experimental estimate.
Vertical force and overturning moment signals were originally fitted with the most common formulas used in
literature which relate the variation of these two loads to a horizontal drag term only. The mismatch between
the fit obtained and the original signals suggested that the classical formulas needed to be expanded with
one or more extra terms. The best fits for the vertical force are found with an equation that includes the effect
of the horizontal drag, the vertical drag and of the vertical inertia, while in the case of the turning moment
the best fits are obtained with a combination of horizontal drag, vertical drag, horizontal inertia and vertical
inertia.
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1
Introduction

1.1. Context

Different infrastructures such as a desalination plant or a nuclear power plant, share the feature that they all
need a relatively constant discharge of water that is collected from a source, which in many cases is the sea.

One of the intake structures that can be used for this purpose is the so-called velocity cap. These intakes are
open seafloor founded constructions mounted at a sufficient water depth and connected to a pipe or a tunnel
generally called intake conduit. The particular shape of modern caps derives form the patent of Larson and
Downs (1975) and it prevents the formation of a whirlpool from the surface. The collocation of the vents at
a certain height over the seafloor makes sure that both floating debris and sediments at the bottom are not
discharged together with the water. At the end of the intake conduit the water is collected in a sump where
a pump finally sends it to the location of utilization (Pita and Sierra, 2011). Figure 1.1 gives an overview of a
typical layout of a velocity cap.
In the case of a power plant the water is then pumped up to the cooling system. For this application, the
structure of the velocity cap often has the specific aspect sketched in figure 1.1 and it is typically located 1 to 5
km offshore, in water depths ranging from 10 to 20 meters. In particular, in the case of nuclear power plants,
the cooling system assumes importance with regard to human safety as the notorious nuclear accident of
Fukushima testifies. In that case, the combined damages to the power supply and to the cooling system
caused the meltdown of the three cores (World nuclear association, 2018).

Figure 1.1: Diagram showing a velocity cap intake structure.
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2 1. Introduction

In coastal regions, these structures are subject to the offshore environment, which brings about particular
design loads. A submerged structure founded at the bottom of the sea will be subject to the forces originating
from the surrounding flow field. Without considering geotechnical or other external aspects (such as, for
instance, landslides or collision with objects), two main phenomena can generate loads on a velocity cap:
currents and waves.

Marine currents can be generated by long period waves such as tides and tsunamis and they can be modelled
as a sequence of steady states. The loads generated by steady state currents, however, are not analyzed in this
thesis.
Sea waves are mostly described as an irregular field of wind waves fully characterized by a spectrum. The
design rules of offshore structures around the world generally take into account the loads generated by these
types of waves but for particular locations, such as for instance the Pacific coast of the Asian continent, the
loads caused by tsunamis must also be considered. Tsunamis are long period waves that often behave as fast
tides inducing relatively fast water level changes and strong currents. In shallow, mildly sloping foreshores,
the tsunami wave can shoal and increase its amplitude and steepness resulting either in a solitary wave or,
after breaking, in a turbulent bore (Glasbergen, 2018).

In common engineering practice the design loads are often determined by desk studies which follow relatively
simple models such as the Morison equation (Morison et al., 1950) or by physical model testing. In case of
more complex numerical investigations, the focus has been mostly on simpler shapes (for instance a cylinder,
see Paulsen (2013)), while the geometry of the velocity cap has been analyzed only seldom (Christensen et al.,
2015).

The present thesis has the aim to derive hydrodynamic force and moment coefficients for the loads on the
velocity cap and to validate a numerical CFD tool against experimental evidence for the simulation of labo-
ratory wave condition on this specific geometry. This tool is also used to analyze the differences between the
loads generated by solitary waves and regular waves. Regular waves in this context are studied as a simplifi-
cation of real wind waves and are used to draw conclusion on the nature of the loads on such a structure.

1.2. Physical model tests at Deltares

The knowledge institute Deltares has already investigated by means of physical model tests the loads due
to irregular waves on the specific geometry of a velocity cap. In 2017, an additional experimental campaign
was carried out with the specific aim of modelling the effect of particular types of waves passing above the
cap. The two types of waves that were tested are irregular waves (JONSWAP spectrum) and solitary waves
(or solitons). The second typology was analyzed with greater detail and the total number of tests involving
solitary waves was much bigger than the one involving irregular waves. Solitons have already been used in the
past for modelling tsunamis (Madsen et al., 2008) and the aim of the experimental campaign was to collect
data relative to the loads generated by those waves passing or breaking over the velocity cap.

The data-set relative to those experiments consists of measurements of the surface elevation and the forces
on the cap and, for some tests of PIV measurements as better described in chapter 3. Part of this thesis
project is strongly related to that experimental campaign, because it presents and analyzes the outcome of
the campaign. As explained in more detail in section 1.3, the addition of this thesis regards the validation of a
CFD model and its utilization to characterize the forces on the cap with more detail and to draw conclusions
on the relevance of solitary waves compared to regular waves for the design loads of these structures.
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Figure 1.2: A photograph of the scale model of the cap.

1.3. Research question

Having seen the nature of the physical phenomena under analysis and having taken into account how the
geometry of a velocity cap was studied in the past, the main research question for this thesis is formulated as:

"How to characterize the forces on a submerged velocity cap in unsteady flows?”

To better explain the path that is followed to answer the main research question, the three following sub-
questions are formulated:

1. What are the characteristic flow features with regards to turbulence and to ensemble averaged flow field
along the center-line of a velocity cap under unsteady flow (solitary waves)?
The availability of PIV measurements on the center-line of the cap for the solitary wave test cases allows
an analysis of the velocity field around the velocity cap.

2. How to characterize the forces and the turning moment on a velocity cap under different types of wave
loads by means of the Morison, lift force and the turning moment equation models?
The characterization of the loads consists in the derivation of the force coefficients of the relative force
or moment equations.

3. To what extent can the loads and the flow field be reproduced with a detailed CFD model?
The calibration and validation of a CFD model using the open-source library OpenFOAM is the most
complex objective of this thesis and it is treated in several steps.
At first, the records of the forces on the velocity cap and water surface elevation and the velocity profiles
extracted from the PIV dataset are compared with the results of the numerical model.
Secondly the numerical estimate of the forces and overturning moment are used to to define force and
moment coefficients for several scenarios of KC number and for different types of waves.
Lastly, the validated numerical model is used to model the case in which the velocity cap is discharg-
ing water to an utilization point in the presence of wave loads. The effect of the additional discharge
through the cap is addressed only briefly to point out the differences between the loads studied in this
analysis and more realistic working conditions.

1.4. Thesis structure

The objective of this thesis is to provide a study of the loads on the velocity cap supported both by experimen-
tal evidences and numerical simulations. The experimental and numerical investigations run parallel in this
thesis as described in diagram 1.3. The multiple connections between the two are depicted by the horizontal
arrows.
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Figure 1.3: Phases carried out during the present thesis project.

After having presented the concepts and the knowledge gained during the literature study in chapter 2, the
thesis proceeds in chapter 3 with the presentation of the set-up of the physical model tests and the exper-
imental data collected during the campaign. This data are then used to calibrate and validate the two nu-
merical models used in this thesis and presented in chapter 4: Oceanwave3D (potential flow solver) and
OpenFOAM (open-source library for computational fluid dynamics).
The numerical part of the investigation is based on the output of the OpenFOAM model. Therefore, in chap-
ter 5 particular attention is dedicated to the validation of this model. The experimental data presented in
chapter 3 are here compared with the output of the model and the observed mismatch are discussed.

The velocity estimate probed in the CFD domain during the numerical simulation is then used in the Morison
and vertical force equations to fit the experimental and numerical force signal and to obtain the values of the
force coefficients.
The fits and the coefficients obtained are presented in chapter 6 for the experimental force records and in
chapter 7 for the numerical force records. Given the capabilities of the OpenFOAM model, in the case of the
numerical analysis the overturning moment is also studied.
Additionally at the end of chapter 7, the effect of a discharge passing through the velocity cap is modelled in
OpenFOAM and the main results are presented.

Eventually the last two chapters (ch. 8 and ch. 9) present a critical reflection on the significance of the findings
and a summary of the answers to the research questions respectively.



2
Literature review on hydrodynamic

force characterization

The forces on the intake cap described in the introduction have been studied by means of physical model tests
and numerical simulations. What is missing however is a complete characterization of the forces by means of
force coefficients and a study on the dependency of these on relevant parameters. This chapter presents the
common approaches used to define and characterize the loads on the structures benefiting from publications
regarding loads on cylinders and bridge decks as well as intake or diffuser caps.

In the first part of this chapter, the theory used in literature to analyze the loads in unsteady flow on offshore
structures is presented. The loads that are analyzed are linear forces (inline and lift) and turning moment.
Furthermore a description of the mathematical method used to derive the force coefficients is also given.
At the end of the chapter, examples of analysis of wave loads are presented. In the reviewed literature, the
concepts described in the first part have been used to determine force and moment coefficients, both in
experimental set-ups and numerical simulations.

2.1. Unsteady flows and forces on an object

The flow field generated by any type of wave motion (excluding tides or other very long period waves) is
unsteady. Sumer and Fredsøe (2006) carried out a study of the possible flow regimes in both steady and
oscillatory state around a cylindrical object. Cylinders are of big importance for the offshore industries and
in the present thesis the formulas generally used for cylindrical objects are adapted and applied to the shape
of the velocity cap in order to assess their validity.

The classification of the flows in the oscillatory situation is done by recalling the notion of Reynolds number
(Re), the Keulegan-Carpenter number (KC ) and their ratio (β). Re describes the ratio between the inertial
forces and the viscous force acting on the flow and it is defined as:

Re = DU0,max

ν
(2.1)

In this expression, D is a representative length for the flow field (in case of the hydrodynamics around a
cylinder it is generally assumed equal to the diameter of the cylinder), ν is the kinematic viscosity and U0,max

is the maximum horizontal velocity undisturbed by the presence of the object.

In the case of an oscillatory flow, however, Re is not able alone to classify completely the flow and it is generally
paired with KC defined as:

KC = U0,max T

D
(2.2)

5
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Where T is the period of the oscillation. In the case of a perfectly sinusoidal wave, it holds that

U0,max = 2πa

T
(2.3)

Where a is the stroke of the wave motion. In this way the KC number for the sinusoidal case can be written
as

KC = 2πa

D
(2.4)

From this last formulation it is clear that the KC number gives information on the ratio between the oscilla-
tory motion of the water and the dimension of the object immersed in the flow. A large KC number means
that the object is small compared to the excursion of water particles during each half-period. In the case
analyzed by Sumer and Fredsøe (2006), KC > 7 means that the flow is in shedding regime. In that situation,
the vortexes that form behind the cylinder in every half period (feature already observed for KC >1.6) start
shedding in the downstream part of the cylinder determining an oscillation in the force on the object both in
the stream-wise and cross-flow direction.

The formulation of the KC number of eq. 2.2 can be applied also in the case of irregular waves simply as-
suming that T is a representative period of the wave spectrum. In the case of solitary waves, instead, Chian
and Ertekin (1992) reported a different definition of the KC number that is indicated in this thesis with the
subscript ’s’:

KCs = r

D
(2.5)

r (t ) = ∫ t
−∞U0d t ′ is the total excursion of the fluid particle when the wave is passing, t the time needed to

the wave to pass and t ′ is written with a prime to indicate the time axis and not to generate confusion with
the extremes of the integration. In this case the quantity r (t ) describes a linear motion only along a line
parallel to the x-axis. This definition assumes that the vertical motion of the water particle is negligible. In
the solitary waves analyzed in this thesis, this is not considered an appropriate assumption. Especially for
the sake of comparison between regular waves and solitons, the definition of KC number for solitary waves
is modified. If, in a simplified approach, the total excursion r is posed equal to 2a (horizontal excursion in
case of a sinusoidal wave) it is easy to see that:

KC = 2aπ

D
= KCsπ (2.6)

Therefore in the present study, the KC number for solitary waves is computed according to equation 2.6.

The last dimensionless parameter is known as the frequency number or Sarpkaya β (Sarpkaya, 2005) and is
defined as the ratio between Re and KC . Dividing eq. 2.1 and eq. 2.2 it is possible to write this parameter as:

β= Re

KC
= D2

νT
(2.7)

The parameter β can be interpreted as the frequency of the oscillation that determines a specific flow regime.
A given KC , in fact, can be obtained with a high-amplitude, slow oscillation (low umax and high T ) or with a
short amplitude, fast oscillation (high umax and small T ).

The main features of the flow analyzed in this thesis can be well captured by the last two dimensionless
number (KC and β). The results of the study are therefore presented according to the classification made
through these parameters.
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2.1.1. Inline and vertical forces

MORISON EQUATION

In many engineering publications, the characterization of the inline forces on the cylinder in the case of the
oscillatory flow follows the concept of the Morrison equation (see for example Sarpkaya (2010), Sumer and
Fredsøe (2006), Journée and Massie (2001) and Burrows et al. (1997)). This formula defines the inline total
force per unit height as composed by a drag force varying with the square of the velocity and an inertia force
varying with the acceleration. Figure 2.1 is taken from Sumer and Fredsøe (2006) and it represents how the
force is decomposed in an drag and inertia component in the case of regular waves.

Figure 2.1: Decomposition of the total force on a cylinder between inertia and drag (Sumer and Fredsøe, 2006). This case describes
the case of regular sinusoidal waves. The phasing has been observed to change in case of other

The original equation by Morison et al. (1950) was defined for cylindrical objects extending from the bottom
up to above the water surface, held stationary under the action of waves. For its determination the assump-
tions were that the waves needed to be not too steep and the cylinder diameter small compared to the wave
length.
Sarpkaya (2010) already highlighted the limitations of the Morison equation in case of steep, nonlinear waves
and when flow separation is particularly severe. However the author also pointed out that attempts in finding
a better formula for estimating the force history for oscillatory flows have not produced satisfactory results.
If the coordinate system used is such that the inline component is on the the x-direction, the Morison equa-
tion is written as:

Fx,c yl =
1

2
ρCD DU0|U0|+CMρA

∂U

∂t
(2.8)

In this equation, Fx,c yl is the inline force per unit height, ρ is the density of the water, U0 is the undisturbed
velocity (as it would be measured in absence of the object), A is the cross-sectional area of the cylinder, CM is
the inertia coefficient and CD the drag coefficient. In particular, CM and CD are proven to depend on many
parameters such as the geometry of the object, the Keulegan-Carpenter number (KC ) and the frequency
number (β).
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In the work by Sumer and Fredsøe, it was observed that small KC numbers (0 < KC < 20−30) are linked to
inertia-dominated situations. If the particle motion is small compared to the dimension of the object, in fact,
the drag component of the total inline force is negligible compared to the inertia term. On the contrary, when
the KC number increases the inertia component was observed to decrease while the drag was becoming more
important. The extreme situation of infinite KC can be thought as a stationary flow in only one direction,
situation in which the inertia does not play any role at all.

With regards to the estimation of the force coefficients, a theoretical and an experimental method can be
pursued.
In the theoretical approach, also known as asymptotic theory (Sumer and Fredsøe, 2006), potential-flow the-
ory is used at first to define the inline load on the cylinder. Subsequently, the oscillating boundary layer on the
surface of the object and the perturbation due to this on the outer flow is computed. The final in-line force
computed is therefore induced by the perturbed potential flow plus the boundary layer shear stress. The
expression of the obtained inline force can be used to derive analytic formulas for the the drag and inertia
coefficients.

Experiments show that this theory is valid only for low value of KC (below 1.6 approximately) and low values
of β (∼O(103)) which correspond to a situation where the flow remains attached (Sarpkaya, 1986). For higher
values of KC and β, setting up experiments or a detailed CFD model is necessary to find an estimate for the
coefficients.
The experimental results by Sarpkaya (2010) give a picture of the dependency of the inline force coefficients
of KC and β for the case of a single cylinder in a harmonically oscillating flow. His research was carried out in
a U-shaped water tunnel and the coefficients were obtained by means of Fourier averaging equations. Figure
2.2 shows the dependency of the Morison coefficients for several values of β as a function of KC . In the left-
hand part of the lower graph of the figure, the constant value of CM = 2 for all values of β is in agreement with
what is found theoretically. The drag is instead totally different from what found in theory.

Figure 2.2: Variation of the drag (top) and inertia (bottom) coefficients versus KC (called K in the original label) for various values of
β (source: Sarpkaya (2010)).

In this thesis, the characterization of the inline force on the velocity cap follows the approach of the Morison
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equation, despite its original formulation for cylindrical objects. In the case of the complex geometry, these
equations is not expressed per unit height. Considering the total force on the object, the formulas are now
written:

Fx = 1

2
ρCD AU0|U0|+CMρV

∂U0

∂t
(2.9)

In this formula A is the frontal area of the velocity cap and V is the volume of the cap1.

Sumer and Fredsøe (2006) analyzed also the influence of diffracting waves on the inertia component of the
inline force. It was observed that when the ratio D/L (D= diameter of the cylinder and L= wavelength) be-
comes larger than 0.2, the waves start diffracting around the cylinder. This influences the inertia coefficient
CM and it introduces a phase lag of the inertial component of the force (Sumer and Fredsøe, 2006). For the
present application, the ratio D/L shall be defined to assess whether the diffraction effect must be taken into
account.

VERTICAL FORCE EQUATION

Besides the inline force the structure experience also a vertical component. This force, in a way, can be
thought as the cross-flow component of the drag force and may be written in the following form:

Fz,c yl =
1

2
ρCLDU 2

0 (2.10)

It has to be noted that the lift force, in the formulation followed here, is still a function of the undisturbed
stream-wise velocity squared. Fz,c yl is again defined per unit height and CL is the lift force coefficient.
Other formulations can be found in literature that link the lift force to the undistrubed vertical velocity and
the vertical acceleration only. The obtained formula is identical to the Morison equation but defined along
the vertical. However in the present study, it was preferred to start the analysis with the traditional lift force
equation in order to define coefficients that are more often used in literature and during a design.

Adjusting the formula for the more complex geometry of the velocity cap, the used equation reads:

Fz = 1

2
ρCL AU 2

0 (2.11)

2.1.2. Overturning moment

The last type of load analyzed is the turning moment. In the case of a structure as slender as the intake cap, it
can be expected that overturning might be taken into account for the design verification.

In case of structures subject to dynamic loads caused by the motion of a fluid, the moment can be stud-
ied looking at two contributions. In first place, if an estimate of the inline and vertical forces is known, the
moment around a point O different from the center of mass (CoM) can be determined by the cross prod-
uct between the force vector acting ideally on the center of mass of the structure and the arm vector which
connects this point and the considered center of rotation. This component can therefore be written as:

M f ,O = ~F ×−−−−→
CoM O (2.12)

By definition, M f ,O is equal to 0 when the center of rotation considered is the center of mass. This approach is
only based on the estimates of the vertical and inline force and it offers the advantage of simplicity. However,
this computation does not give a total estimate of the moment. In fluid dynamics in fact, the center of mass of
the structure and the center of pressure in a flow field do not always coincide. In other words, this approach
can be too simplistic in some cases, because of the complex pressure distribution on the structure when the
wave is passing.

1More information on how these two constants are defined are included in appendix A
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A second component is the moment around the centroid, which can be estimated with more complex tech-
niques such as CFD simulations. This moment, also known as pitching moment, is determined taking into ac-
count the distribution of pressure on the surfaces of the structure and its evolution in time. Such estimate can
then be related to the undisturbed velocity U0. In studies regarding bridge design, such as in Kornel Kerenyi
and Guo (2009), the pitching moment is determined by the formula:

MCoM ,br i d g e =
1

2
ρCmomU 2

0 (LW 2) (2.13)

L indicates the span of the bridge girder and W is its width. The flow is generally assumed to be perpendicular
to the length of the bridge. In other publications, the moment is expressed per unit length and L is taken out
(Wei Zhang, 2011).

In the case of a submerged cap the proposed formula resembles equation 2.13 and it expresses the total
centroidal moment on the structure as:

MCoM = 1

2
ρCmomU 2

0 (AD) (2.14)

The geometrical constants are here the frontal area A and the main diameter D .

~F

θCoM

O

M f ,O

MCoM

Figure 2.3: Visualization of the moment caused by the inline and vertical forces and of the centroidal moment.

Extending the analysis to the centroidal moment allows to derive information with regards to the rotation of
the velocity cap which cannot be obtained by the estimate of the inline and vertical forces only. The turning
moment equation 2.14 is defined in a way that captures the moment due to the specific geometry of the
structure and pressure distribution in presence of a flow. The total overturning moment Mtot ,O around a
point of rotation O is then determined by the summation between the component M f ,O and the centroidal
moment MCoM as in equation 2.15.

Mtot ,O = M f ,O +MCoM (2.15)

2.2. Force coefficients determination

Several force fitting techniques are documented in literature for the determination of the coefficients pre-
sented in the previous section (see for instance Journée and Massie (2001)). When time series of the ve-
locity and of the forces are available the most commonly used methods are the least squares method and
the weighted least squares method. Examples of the application of the these methods can be found in
Chakrabarti (1981), in Hur and Mizutani (2003) and in Hecimovich (2013). In this thesis, the second method
is used.

2.2.1. Least Squares

Knowing the geometrical properties of the object under analysis, the determination of the coefficients is pos-
sible if the velocity and of the measured forces are known as a function of time. In this case, it is possible to
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set an over-determined system of equations, solving which the force coefficients can be found. The number
of equations corresponds to the number of time-steps in the time window. In offshore engineering this fitting
technique is mostly used for determining the coefficients of the Morison equation which has 2 coefficients. It
is important to note, however that theoretically the number of coefficients of the fitting equation can be any,
provided that the system of equations remains determined.

The specific description of the system of equations obtained as well as the procedure to find the coefficients
can be found in appendix D.
For any system specified, the only unknowns are the force of moment coefficients and the systems can be
solved directly.
One approach to solve the system is to use the regular least squares method, which minimizes the error
obtained as:

ε2 = 1

N

n∑
i=1

[
F f i t (ti ,CD ,CM )−Fexp (ti )

]2 (2.16)

where N is the number of time steps considered.

In order to minimize the error, this expression is derived with respect to the unknown CD and CM (∂ε2/∂CD ,
∂ε2/∂CM ) and the derivatives are set to zero to find explicit formulas for the unknowns.

2.2.2. Weighted least squares

A variation of the least squares method is the weighted least squares method. The aim of this method is to
give a better fit of the force peaks than the original version. Wolfram and Naghipour (1999) performed an
exhaustive comparison of several methods of force signal fitting and their conclusion was that the weighted
least square method provided the best fits for determining Morison force coefficients.

The error that is minimized in this approach puts extra attention on the experimental force time series and it
reads

ε2 = 1

N

n∑
i=i

[
[F f i t (ti ,CD ,CM )−Fexp (ti )]2 ∗Fexp (ti )2]

Based on the conclusions by Wolfram and Naghipour (1999), it is preferred to base the estimation of force
coefficients on this second method.

The formulas for the force coefficients are derived following the same approach as for the regular least squares
(∂ε2/∂CD and ∂ε2/∂CM set equal to zero to find explicit formulas for the unknown).

In chapter 6 and 7, it is shown that the fitting equations described in the previous section do not provide good
fit to the force and measurements signals. Therefore new force and moment equations are proposed and the
formulation of the least squares method is adjusted.

2.3. Studies on loads on offshore structures

The theory described in the previous sections is often used in engineering practice to determine the loads on
offshore structures. This can generally be done with desk studies (see for example Mogridge and Jamieson
(1978) and Capel (2012b)) or with physical model tests (see for example Mogridge and Jamieson (1978) and
Cornett et al. (2015)). Besides this approach however, the increasing computational power of modern com-
puters made possible to solve numerically the equations of motion of fluid bodies in relatively large domains.
This is the field of computational fluid dynamics (CFD) and examples of application of CDF models can be
found in literature (see for example S. Kiran Raju et al. (2014) or Christensen et al. (2015)).

2.3.1. Physical model investigations

BUNDLE OF CYLINDERS

After the publication by Morison et al. (1950), many experimental studies have been performed in order to
shed some light on the values of the relative coefficients and their dependency on several parameter describ-
ing the flow regimes, the roughness of the cylinder and the proximity of the cylinder to a wall. In the panorama
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of the publications analyzed for this thesis, the work by Dr. Turgt Sarpkaya throughout a number of papers
and books is remarkable (see Sarpkaya (1979), Sarpkaya (1986), Sarpkaya (2005) and Sarpkaya (2010)).
In particular, in Sarpkaya (1979), the author carried out experiments that involved a circular array of cylinders
and a central pipe. The aim of his research was to assess the effect of such a set-up on the force coefficients
for KC number bigger than 12-15. The interaction of the wakes of the several cylinder was studied varying
the diameter of the cylinders in the outer circle and by computing total coefficients for the whole system.
It was shown that the drag coefficient correlates negatively with KC while the inertia coefficient positively.
It was also observed that the value of the inertia coefficient was considerably higher than the values found
for a single cylinder. The reason for the high values of the inertia coefficient was linked to the fact that the
bundle of cylinders traps a volume of fluid between them and as a consequence the added mass of the sys-
tem increases (see figure 2.4). The relevance of this findings for the present application lies on the fact that
the shape of the intake cap analyzed here consists of a support cylinder and of a top part composed by two
horizontal plates and a set of support columns. Therefore, even if the focus here is on a different geometry,
the values of the coefficients from the studies from Sarkpaya were used to assess how this work relates to the
previous knowledge regarding cylinders.

Figure 2.4: Drag and inertia coefficients versus the KC number. The data are relative to the two configuration studied by Sarpkaya
(1979).

DIFFUSER AND INTAKE STRUCTURES

Besides for cylindrical shapes, the approach of the Morison equation has already been tested in experimental
campaigns also for the more complex shape of intake or diffuser caps.

Mogridge and Jamieson (1978) analyzed the effect of regular and irregular, breaking and non-breaking waves
on a diffuser-cap type outfall attached to the seabed (shown in figure 2.5). The physical model results were
compared with the results from the linear numerical diffraction theory, which was applied to the case of a
closed cylinder sealed to the bed with size similar to the outer diameter of the diffuser structure. The study
showed that there were indeed some differences in the behaviour of the loads (inline and lift force were stud-
ied as well as the turning moment) both with regards to the phasing between the loads and the respective
amplitudes. In particular with respect to the phasing, it was noted that the peaks in horizontal force and
turning moment occur in both cases at approximately the mean water level that precedes the wave peak. The
maximum uplift, however, was observed to occur at different times with respect the wave profile: at the wave
trough for the sealed cylinder and again at mean water level for the diffuser cap. This suggests that the large
openings of the diffuser allow an internal flow that determines a different timing of the loads.
One last topic addressed by Mogridge and Jamieson (1978) is the effect of a discharge. An increase of the ver-
tical force was observed for the case in which a discharge (see figure 2.5) was passing through the openings.

The master thesis by Hecimovich (2013) and the subsequent paper by Cornett et al. (2015) describe the exper-
imental study on an intake-cap structure under the action of regular and irregular waves. The cap studied was
made of four support cylindrical columns, a top cap and a central pipe. The set-up used allowed to isolate the
parts of the intake structure and define force coefficients for each of these. The result of that study showed
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Figure 2.5: Side cross view and plan view of the diffuser structure used by Mogridge and Jamieson (1978) for the physical model tests.

Figure 2.6: Typical results of the experiements by Mogridge and Jamieson (1978) on a open diffuser-cap type outfall.

that the Morrison equation can predict the general character and the timing of the loads. The hydrodynamic
coefficients found were in agreement with the research by Sarpkaya (1979) proving the analogy between the
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bundle of cylinder and the open intake structure. With regards to the magnitude of the loads, however, this
approach could only predict the forces caused by smaller amplitude waves. The poor prediction suggested
that the method was not reliable in case of high amplitude nonlinear shallow water waves.

2.3.2. Numerical model investigations

Another important way to look at the forces on offshore structures is computational fluid dynamics (abbrv.
CFD). The shape of a cylinder is generally of major importance in literature (see Paulsen (2013) and Paulsen
et al. (2014)), where validated model are shown to perform well when computing the loads for irregular waves
for vertical and horizontal cylindrical structures. Other examples of CFD investigations can be found for
caisson types breakwaters (Bricker et al., 2015) or caisson type emerged intake (S. Kiran Raju et al., 2014).

Less literature is available for the specific geometry of the velocity cap. With this regard, it is important to
quote the study by Christensen et al. (2015) where the authors set up an OpenFOAM model to study the flow
around the velocity cap and to look in more detail at the decomposition of the force between inertia and drag
components. The research focused on very low KC numbers, in the range between 0.30 and 1.5. Besides, the
dependency of the force coefficients of geometrical ratios of the cap was also analyzed. In their model, the
authors were using a symmetrical one-dimensional oscillation (thus without any vertical component). One
of the conclusions stated in their paper was that, unlike what found by Sarpkaya (2010), the inertia coefficient
increased with KC number instead of decreasing. The possible explanation suggested by the authors was that
the complex geometry of the cap was affected differently by the wave motion when changing the KC number,
which determined changes in the forces regimes.
Their findings however can also be explained by the "bundle effect" encountered also in Hecimovich (2013).
This effect is explained as the increase in added mass of a bundle of pipes due to the large fluid mass trapped
between them. Also in Hecimovich (2013), the dependency of CM shows a positive trend when plotted against
KC .

Numerical simulations aimed to the study of turning moment (or pitching moment) have also been per-
formed. This topic is particular important for hydro- and air-foils given the importance of the pitching mo-
ment on moving vessels or air crafts. In civil engineering, the topic is often relevant in the case of bridge
design when inundation due to river flood (Kornel Kerenyi and Guo, 2009) or tsunami waves needs to be
taken into account (see Bricker and Nakayama (2014) and Xu et al. (2017)). Both in the case of a swollen river
and a tsunami simulation the flow conditions studied were showing a slowly varying velocity of the current.
In this scenarios the inertia was always playing a limited or no effect on the moment and on the loads in
general. With this regard, the present study has the double purpose of assessing the values of the turning
moment coefficient for cases where inertia is more important and the geometry is different.

2.4. Relevance of this thesis

The literature review confirmed the need of an extension of the research on the behaviour of the force coeffi-
cients for a velocity cap for varying numbers of KC .

The determination of force coefficients was often limited to inline force. In this thesis, the analysis on vertical
force and moment coefficients aims to extend the characterization of the loads in order to provide simple
numerical values and graphs that can be used during the design.

In order to aid this process, the validation of a numerical (CFD) model which can reproduce the actual motion
of free surface waves is also carried out and adds to the present state of the research. By means of this model
the analysis could be extended in the future with more scenarios. To already contribute to this extension, the
effect of a discharge through the cap on the force coefficients is briefly addressed at the end of the numerical
analysis.



3
Experimental data

The experiments analyzed in this thesis project were carried out in summer 2017 in the water laboratory of
Deltares located in Delft. The aim of the study was to collect more information regarding the loads on the
type of velocity cap described in the introduction, focusing particularly on the effect of solitary waves. This
chapter summarizes the part of the experimental campaign that constitutes the starting point of the present
research. The summary includes a description of the main features of the physical model, the different test
cases and the several sources of measurement data.

3.1. Geometry and scaling

The geometry of the cap and the scaling rules applied for this set of experiments were already used in previous
physical model tests at Deltares (see Capel (2012a) and Capel (2012b)). In this section the main features of
the physical model are presented.

3.1.1. The facility

The tests were performed in the Scheldt Flume of the Deltares Hydrohall. This flume has a width of 1 meter
and a length of 110 m and it is provided with a piston-type wave-maker at both ends able to generate regular
and irregular wave. For the experiments, the flume was divided in two sections of 55 m, of which only one
was used. A wooden frame was prepared to create a 1:50 slope in order to induce shoaling and, in some cases,
breaking of the waves. Eventually, given the position of the velocity cap, the useful length for the propagation
of the waves was approximately 20 m. The velocity cap was positioned on a horizontal segment of this frame,
0.3 meters long, preceded and followed by the 1:50 slope. No particular measures were taken to prevent wave
reflection.

Table 3.1: Measures and features of the flume set-up used in the experiments.

Wave maker Piston type
Total length of the flume 55 m
Dist. between wave maker and cap 20 m
Dist. between wave maker and start of the slope 2.35 m
length of the slope before the cap 17.5 m
Slope 1:50
Height of the frame at the level of the cap 0.35 m
(from the bottom of the flume)

15
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3.1.2. Scaling

The full scale prototype of the velocity cap has a height of approximately 8 meters and the widest part has a
diameter of approximately 10 meters. In the present set of physical model tests, the scale factor chosen was
1:46.25.
For free surface wave modeling, inertial and gravitational forces play generally a dominant role (Hughes,
1993). For this reason, Froude scaling, which preserves the ratio between these two forces, was applied (Capel,
2012a). The Froude number (F r ) can be written as follows.

F r 2 = u2

g L
(3.1)

The symbols u and L indicate a velocity [m/s] and a length [m] respectively. Table 3.2 gives an overview of
the scaling factors used to prepare the model set-up. By using them, it is possible to translate the outputs
of the experiments into full scale values. The table also includes conversion factor for forces and velocities.
In particular the force scaling factor is corrected with the constant 1.025 in order to account for the different
density of the water between prototype and model conditions.

Table 3.2: Scale multiplier to transform the model-scale dimensions into the full scale dimensions.

Model Scale Length Time Velocity Acceleration Mass Force
1:46.25 46.25

p
46.25

p
46.25 1 46.253 46.253 ·1.025

= 6.8 = 6.8 = 98931 = 101413

The results of the physical model observations, described in the first part of this thesis, are reported in SI
model-scale values. The velocity cap used in the experiments measures 0.168 m in height and 0.22 m in
diameter (see figure 1.2). Besides, differently from the prototype, the vertical support cylinder of the model
is full. More specifications regarding the geometry of the cap as well as the drawings of the scaled model are
included in appendix A.

In case of scale models, it is impossible to preserve all the force ratios that can be defined (Heller, 2011). In
the experiments described here, scale effects could be due to the fact that force ratios, such as Reynolds num-
ber and the Weber number (commonly considered in physical model tests), are not thoroughly preserved.
However, in both cases, it can be shown that the scale effects are negligible for the present application. A
quick calculation shows that, following the scaling described in table 3.2 and the formulation of the Reynolds
number of eq. 2.1, it can be expected that in real-world Re is on the order of 107 −108, while in laboratory it
assumed numbers in the order of 105 (see section 6.1.3). With these Reynolds numbers, turbulence is already
fully developed and the physical features of the viscous forces acting at Re = 105 are similar to the ones acting
at Re = 107−108. Therefore, the Re of the laboratory experiment is considered big enough to neglect Reynolds
scaling effects.

The Weber number instead describes the ratio between the inertial force and surface tension of the water.
Given the intrinsic difficulty of scaling a molecular property of water such as the surface tension, Weber scal-
ing is hardly used. Hughes (1993) suggested simple rules of thumb for preparing free surface wave experi-
ments in which the effect of the surface tension on the wave length is less that 1%. According to these rules
the water depth needs to be bigger than 0.02 meters and the period of the waves needs to be bigger than 0.35
seconds. For the cases analyzed here these requirements are met with a large margin (see tables 3.3 and B.1).

The scale effects related to the Weber number might also be considerable in case of wave breaking where air
entrainment plays a role in modelling the free surface (Heller, 2011). Some of the tests performed involved
wave breaking but the possible influence of the surface tension at the surface is of minor importance. In this
thesis, in fact, the focus is on the loads on a submerged structure and these are really little influenced by the
air entrainment at the surface.

3.1.3. Water depths

The value of water depth used in the experiments is based on the general conditions in which these caps are
found in operation. Three water depths are analyzed and the choice of these is based on the geometry of the
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cap. Figure 3.1 shows the relation between the height of the opening of the cap and the several water depths.
The values shown in the figure correspond in prototype scale to water depths ranging between 10 and 15
meters which represent approximately the conditions in which these structures are installed.

Figure 3.1: Technical drawing reporting the relation between the three water levels tested and the geometry of the cap. For more
specification about the geometry of the cap see appendix A.

3.2. Test cases

The tests performed included solitary waves, irregular waves and N-waves. The specific type of wave was
generated by the wave-maker by means of steering files prepared to achieve specific target values for wave
height (or significant wave height), wave shape and spectrum.
The analysis in this thesis focuses on the solitary wave test cases which were the main focus of the experi-
mental campaign as well. An attempt was also made to extend the analysis to the irregular wave tests but
technical complication while setting up the numerical model for these cases suggested to focus the attention
on the solitary waves only. More details on the analysis of the irregular waves experimental evidences as well
as why these cases were not considered further in the analysis can be found in appendix B.

In this section a brief presentation of the solitary wave test cases is given.

3.2.1. Solitary wave tests

In the case of the solitary waves the combination of three different water depths and three values of the ratio
H0/h0 (wave height over water depth) originated 9 different tests conditions. The steering files relative to
these conditions were generated by means of a MATLAB script developed by Dr. ir. Bas Hofland. The wave
period was always set to 10.0 seconds while the dimension of the wave was controlled by the parameter
H0/h0, which was equal to 0.4, 0.6 and 0.78.
These values were used to generate the steering files used during the experiments, however they have little
relevance to the observed conditions. In practice, that value expresses the characteristics of a wave as soon
as it travels out of the wave paddle but, as said, the propagation of the wave was immediately affected by the
presence of the slope. That is the reason why in this thesis, it is preferred to use the observed ratio between
the wave height and the water depth measured by the wave gauge at the velocity cap itself as a reference
parameter. H/h is therefore the height of the solitary wave above the cap normalized by the water depth at
the cap. Each of these tests was repeated 5 times, except for one condition (’T201’) that was tested 40 times
to obtain a good estimate of the ensemble averaged flow properties.
The set-up of the several experiments is summarized in table 3.3.
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Table 3.3: Description of the 9 test cases involving solitary waves.

Test name
(Solitons)

Water depth (h)
[m]

H0/h0 H/h Breaking Test repetitions Period [s]

T101 0.22 0.4 0.92 no 5 10.0
T102 0.22 0.6 0.97 yes 5 10.0
T103 0.22 0.78 0.82 yes 5 10.0
T201 0.28 0.4 0.68 no 40 10.0
T202 0.28 0.6 1.12 no 5 10.0
T203 0.28 0.78 0.95 yes 5 10.0
T301 0.33 0.4 0.56 no 5 10.0
T302 0.33 0.6 0.95 no 5 10.0
T303 0.33 0.78 1.07 no 5 10.0

The specific combinations of wave height, water depth and slope were aimed in some cases to generate a
breaking wave and in the table above a test is characterized by a ’yes’ under the field ’breaking’ if breaking of
the solitary wave was observed at the cap or before reaching the cap.

3.3. Measurements

The measurements taken are of three types. The first two are generally referred to as "Delft measure system".
This method consists of using wave gauges to measure the surface elevation at a given locations and force
sensors on the object of interest. The sampling rate of these two types of measurements was 60 Hz. The third
type of was taken only for the test relative to the solitary waves and consists of Particle Image Velocimetry
(PIV) measurements. Considered the general magnitude of the velocity expected during the tests and the big
dimension of the PIV files, a sampling rate of 30 Hz was preferred.

3.3.1. Surface elevation measurements

The measurements of the water surface were taken by means of seven wave gauges. The information relative
to the position of the first wave gauge (the closest to the wave paddle) was proven wrong by the simulation
run with the numerical model OceanWave3D (see section 4.1). The clear mismatch between the prediction
by the numerical model and the experimental record showed that the position of that sensor was not the one
indicated in the tests log. Adjusting the value to get a better match led to the conclusion that the wave gauge
was at 14.45 m from the velocity cap and not at 17.5 m as originally prescribed while setting up the facility.
The uncertainty about the position of the sensor however suggested not to use the data from that wave gauge
for the force reconstruction described in chapter 6.
Figure 3.2 reports the geometrical details of the set-up, including the positions of the wave gauges. The pre-
scribed position of the first wave gauge (in red) and the estimated new position are also shown. In the pic-
ture, as well as in the rest of the document, the several wave gauges are indicated with the abbreviation WHM
(’Wave Height Meters’).

17.5 0.3

1:50

1:50

0.3 0.3

3.1

2.2

4.4

6.6

14.5

WHM1
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2.35
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Wave paddle

Figure 3.2: To scale sketch of the test set-up. The position of the first wave gauge reported in the experiment log is shown in red. The
purple lines show the actual positions of the wave gauges (called WHM) that were used to record the water elevation. The small red
segment shows the horizontal section of the bed where the cap was positioned. The indication of the distances of the wave gauges
are all referred to the center of this red segment corresponding to the center line of the velocity cap.



3.3. Measurements 19

With regards to the distance from the center line of the flume, there is a difference between the three wave
gauges placed in proximity of the cap and the other four. The three closer to the cap were located at a distance
of 10 cm from the side wall of the flume, while the others were placed in the middle of the flume.
These sensors are developed by Deltares and consist of two parallel stainless steel rods mounted underneath
a small box containing the electronic component. The wave gauges operate measuring the resistance of
the water between the rods and determine the level of the surface elevation based on the principle that the
resistance is proportional to the immersion depth of the rods (Deltares, 2016). The calibration records show
that the accuracy obtained was on the order of 0.002 m. Figure 3.3 shows the typical plot of the surface
elevation recorded by the 7 wave gauges.

Figure 3.3: Measurements of the surface elevation of test T201.

3.3.2. Force measurements

The force sensors were mounted at the base of the velocity cap as illustrated in figure 3.4 and could measure
the linear forces acting on the cap in all directions.

Force Box

Threaded pin

Tube profile with flange

on both sides

Aluminium plate

Aluminium plate

Figure 3.4: Sketch of the setup of the force sensors. The dimensions are expressed in mm.

The sketch shows that the base of the cap was mounted on an aluminum plate then screwed to the force
sensor box. In order to let the object free to move, therefore the block formed by the aluminum plate plus the
velocity cap was surrounded by water. This caused a mismatch between the results obtained with the CFD
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model and the experimental records because the numerical model does not take into account penetration of
water under the bottom. More detail with this regard are included in chapter 5.

The experiment logs report that, for the set of repetitions of the first 3 tests (namely T101, T102, T103), the
force sensors were not correctly calibrated giving records for the forces approximately a factor 2 too high.
When the problem was noticed, the tests were not repeated and the force records were replaced with the one
obtained with the single repetition of the calibration test1. For these tests, the records of the surface elevation
instead were correct and were maintained in the final database.
The reason for these incorrect measurements was related to the presence of small plastic floaters found
trapped close to the base of the velocity cap which probably caused the cap to be clamped to the floor. With
the cap unable to move freely the force transducer did not measure the actual hydrodynamic force acting
on it. Draining the flume, cleaning the water and removing the plastic floaters close to the base of the cap
prevented this problem from happening again.

Figure 3.5 shows the typical phasing between loads and surface elevation observed in the tests involving
solitary waves. It can be noted that the vertical force is directed downwards. From a design point of view
therefore the absence of a lift force that could make the structure more unstable works in favour of safety.

Figure 3.5: Example of the phasing between loads and surface elevation in the case of test T101. The scale factor is 50 for the inline
force and 70 for the vertical one.

Figures 3.6 and 3.7 show the plots of the peaks of the inline and lift force for the different test cases over the
ratio H/h of table 3.3 (only the ensemble average for every test case is plotted).

Figure 3.6: Peaks of the inline force per every test case (ensemble average) plotted over the measured H/h. In red the symbols relative
to the tests that involved breaking.

1Every test was simulated in advance with one test repetition (called calibration) with instrumentation running and same parameters to
check if the set-up was working properly.



3.3. Measurements 21

Figure 3.7: Peaks of the vertical force per every test case (ensemble average) plotted over the measured H/h. In red the symbols
relative to the tests that involved breaking.

3.3.3. PIV measurements

In addition to the Delft measures, PIV measurements were also taken in the case of the tests involving solitary
waves. The sampling rate of the PIV measurements was different from the one of the Delft measures, but
during the experiments the two measuring systems were linked in order to obtain a synchronization of the
time axes.

The particle image velocimetry technique consists of lighting up the particles present in the water (bubbles
or impurities) on a thin plane and then taking pictures at small time intervals of these particles in order to
capture their movements in the domain of the camera.

The PIV window (i. e. the domain of the camera) for all the experiments was wide enough to include the free
surface (see schematic of figure 3.8). However the processed results were obtained for a smaller window 63 cm
wide (the width corresponding to the x-axis of the flume) and variable in height. The height of the window
depends on the water depth. In fact, the free surface and the areas with an excessive number of bubbles
needed to be cut out. In particular, wave breaking in test T103 caused large areas of the frames captured to
be in shadow and therefore no information could be obtained. For this reason no post-processing has been
attempted for the PIV measurements of T103.

Figure 3.8: Sketch of the PIV set-up. The laser sheet used to light up the particles was parallel to the direction of propagation of the
flow. The scaled model of the velocity cap was realized with a strip of transparent material at the center-line (see figure 1.2) so that
the laser beam could pass through and light up the particles right next to the lower support cylinder.
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PIV POST-PROCESSING

The raw data generated by the camera were post-processed by means of the commercial software DaVis 8
developed by LaVision. The software allows to select the parameters for the velocity vector calculation and
the filters to remove incorrect vectors.

While processing the data, the total window is divided in smaller interrogation areas, from each of which
a velocity vector is then computed. In order to obtain a good quality velocity field reconstruction, each of
these interrogation areas needs to contain a sufficient amount of particles. It is also possible to get a better
correlation between areas and an overall finer reconstruction by defining a percentage of overlap between
areas. However, this procedure, better described in picture 3.9, also introduces oversampling and in common
practice the percentage of overlapping areas should never be greater than 75 %.
In the present study the combination of interrogation area size and overlap originated post-processed results
with a resolution between 2.5 and 5 mm.

Figure 3.9: Overlapping parts of interrogation areas. The parameter a is the percentage of overlap.

ANALYSIS OF THE VELOCITY FIELD

The flow features are analyzed focusing on ensemble averaged properties. The analysis of the PIV data is
based on the results from test case T201 which was repeated 40 times and whose estimate of the ensemble
average is therefore the most reliable.

In order to study the convergence of the ensemble average around the velocity cap, the estimate based on 40
test repetitions was compared with the ones obtained considering only 5, 10 and 20 repetitions. The compar-
ison was based on the velocity profile extracted from six vertical transects of the PIV window selected with a
spacing of 0.05 m along the x-axis. In this way the vertical profiles of the horizontal velocity according to the
several estimate of the ensemble average could be observed. Figure 3.10 shows that nearly everywhere in the
PIV domain no appreciable difference could be observed between the estimates obtained with 20 repetition
and with 40. This means that already with 20 tests the ensemble average is converging. This is not completely
exact in the region of the jet coming out of the velocity cap (see panel in the lower right corner of figure 3.10)
where probably more test repetitions would have given slightly different results. Even in this location however
the differences are really small (O (cm/s)).

For the same locations shown in figure 3.10, also the standard deviation of the ensemble averaged results is
plotted over the vertical. In this way the graphs of figure 3.11 show how much variation in the horizontal
velocity is observed between the 40 test repetitions for several locations in space.
The standard deviation of the horizontal velocity is small throughout the entire water column for the only
considered location in front of the velocity cap. For the other locations, where the cap is inducing turbulence
development, the variation between tests increases considerably. In proximity of the top of the velocity cap
and at the location of the jet after it, the standard deviation reaches a value of 0.35 m/s. Knowing from figure
3.10 that the maximum velocity in those locations is approximately 1 m/s, this means that the value of the
standard deviation reaches in those locations approximately one third of the total velocity.

An estimate of the undisturbed flow field can be derived from the observation of the left-hand part of the PIV
domain. Figure 3.12 shows the ensemble-averaged results for an instant in which the wave was entering the
domain of the PIV camera. Colours towards yellow are used for higher velocities and blue for still water. The
data points at the far left of the graphs are selected to show the dependency of the horizontal velocity over the
vertical. A difference of approximately 10 % can be observed between the top and the bottom of the section
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Figure 3.10: Ensemble-averaged vertical velocity profile for six representative locations in proximity of the velocity cap. The orange
line of the estimate obtained with 20 repetitions is often covered by the one the relative to the estimate obtained with 40 repetitions.

Figure 3.11: Standard deviation of the horizontal velocity plotted over the vertical for the six locations shown in figure 3.10. The white
spaces correspond to the locations where no velocity was measured due to the presence of the cap.

of the water column captured in the measurements. This shows that that the wave is behaving as a shallow
water wave but the velocity is not completely constant over the vertical.

The velocity field corresponding to the instant of the occurring force peaks, shows specific flow patterns re-
lated to the geometry of the velocity cap. Due to the sharp edges of the object, flow separation and recircula-
tion zones are observed on the top surface of the velocity cap and behind it, as soon as the wave approaches
the cap. In particular, the recirculation zone at the top leading edge of the velocity cap originates as a small
eddy of few centimeters of diameter and grows in time, extending over approximately one half of the top of
the cap at the instant that corresponds to the peak of the inline force. Inside the cap, the openings of the
structure allow the flow to go through it, as can be seen from the high velocity measured behind the object
(see figure 3.13).
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Figure 3.12: Upper panel: plot of the horizontal velocity component at a given moment in time for test T201. The color of every point
in the graph corresponds to a value of the velocity (the horizontal component only).
Lower panel: plot of the horizontal velocity over the water column for the position highlighted in red in the upper panel (on the far
left).

Figure 3.13: Example of a PIV velocity reconstruction and synchronization with the forces time series for test case T201. The top panel
shows the force signals and red vertical line indicates from which instant the velocity field of the lower panel is taken from. Also here
the colours in the lower panel correspond to the magnitude of the horizontal velocity.
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Numerical models

In the present chapter, the two numerical models used in the numerical analysis are described. These are the
potential flow solver OceanWave3D (abbr. OCW3D) and the Computational Fluid Dynamics (CFD) library
OpenFOAM.
The solution of OCW3D is used as a boundary condition to the CFD simulation carried out by means of the
open-source library for CFD OpenFOAM, used with the wave generation toolbox wave2Foam. The potential
flow solver OCW3D, in fact, is not appropriate to solve the flow just around the velocity cap and compute the
loads on it. Therefore, the CDF model is used to study the forces on the velocity cap in more detail.

4.1. OceanWave3D

The OceanWave3D model is presented in Engsig-Karup et al. (2009) and is described as a fully-nonlinear 3D
potential flow solver based on finite difference discretion method. It makes use of a robust flexible order
scheme that offers fast and accurate computations for offshore applications.

4.1.1. General description

The assumption of potential flow has the limitations of neglecting viscous terms that, in coastal application,
may become important close to solid boundaries and in case of wave breaking. However, dealing with a
potential flow solver allows the use of numerical higher order schemes (and therefore smaller error) both in
space and in time. In oceanic waters, when the flow is not turbulent (i. e. far away from solid boundaries or
structures and when severe wave breaking does not occur), therefore, the viscous terms are negligible and the
utilization of a numerical model such as OCW3D can be preferred for the sake of accuracy and computational
time. The authors themselves specify that when the assumption of potential flow is not true, a more refined
viscous flow solver should be used.

In the situation of the physical model tests described in chapter 3, the main phenomena that can be captured
by OCW3D are the propagation and the shoaling with the consequent change in shape of the waves. In this
perspective, OCW3D solves the propagation of waves in one direction and it is used in this thesis for two
purposes. In first place, in chapter 5 the OCW3D solution is used to force the computation of OpenFOAM®

in the relaxation zone at the inlet (see section 4.2.3), secondly in chapter 6 and 7, the estimate of the flow
dimensionless number (KC and β) is based on the reconstruction of the undisturbed velocity field computed
by this model.

The loads on the velocity cap could not be studied directly with OCW3D for two reasons. First of all the
geometry of the velocity cap (i. e. the presence of sharp edges) causes the flow to separate and become tur-
bulent even in the case of small Reynolds numbers. Besides that, the finite difference discretization method
is not capable to handle geometrical complexities such as multiple interfaces between bottom and numerical
domain on one single vertical line (see figure 4.1).

25
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Figure 4.1: The geometry of the velocity cap would pose problems with regards to the spatial discretization to simpler flow solvers.
In this extremely simplified sketch of the velocity cap, multiple interfaces between bottom (outside of the domain) and numerical
domain can be noted along the red dashed line.

4.1.2. Governing equations

The potential flow problem is solved based on an Eulerian approach where the free surface elevation (η) is a
single-valued function of the horizontal coordinates x and y . In the present thesis the full 3D capabilities of
the model were not used because the focus was on the 2D propagation of a wave. However, the description
that follows includes the terms in the y as described in the original paper by Engsig-Karup et al. (2009).
The fluid is assumed inviscid and irrotational and the velocity field (u, v, w) is defined by the gradient of a
scalar velocity potentialφ(x, y, z, t ). Kinematic and dynamic boundary conditions (eq. 4.1 and 4.2) determine
the evolution of the free surface.

∂η

∂t
=−∇Hη ·∇H φ̃+ w̃(1+∇Hη ·∇Hη) (4.1)

∂φ̃

∂t
=−gη− 1

2
(∇H φ̃ ·∇H φ̃− w̃2(1+∇Hη ·∇Hη)) (4.2)

In these two equations, the operator ∇H only indicates the gradients on the horizontal plane (∂/∂x and ∂/∂z).
The potential and the vertical velocity are expressed in terms of the surface elevation so that φ̃ = φ(x, y,η, t )

and w̃ = ∂φ/∂z
∣∣∣

z=η
.

Solving the Laplace equation for the water column (eq. 4.3) and the kinematic boundary condition at the
bottom (eq. 4.4) allows to find the value of w̃ and to proceed in time. The Laplace equation is solved by a
flexible-order finite difference scheme.

∇2
Hφ+ ∂2φ

∂z2 = 0, −h ≤ z < η (4.3)

∂φ

∂z
+∇H h ·∇Hφ= 0, z =−h (4.4)

In the actual implementation of the problem, the vertical coordinate is modified in order to map the solution
to a time-invariant domain. The moving surface elevation in fact would make the vertical grid time depen-
dent which is not convenient for the computations. The vertical coordinate is therefore modified by means
of the σ-coordinate transformation expressed as:

σ= z +h(x, y)

η(x, y, t )+h(x, y, t )
(4.5)

The solution to the Laplace problem is therefore found in a time-invariant (x,σ)-domain. Once the potential
is known the velocity field can be derived.
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4.1.3. Domain

The length of the flume simulated in OCW3D is approximately 50 meters but its length in the numerical do-
main is computed automatically by the model depending on the steering file specifications. At the beginning
of it, a numerical wave paddle is modelled by means of Dirichlet boundary conditions to impose the veloc-
ity profile over the vertical. At the end, a pressure zone guarantees the absorption of the waves and avoids
reflection. In the present application, the length of the pressure zone at the end of the domain corresponds
to one wave length of a wave whose period is the peak period specified by the steering files. The peak period
for solitary waves was always set to 10.0 seconds and the calculation of the corresponding wave length based
on the dispersion relation gives the values of the pressure zone. All simulations are two-dimensional and
therefore the width is equal to one single cell.

Depth Length of the domain Wave length

0.22 48.3 14.7
0.28 52.3 16.4
0.33 55.7 17.9

Table 4.1: Specifications of the OCW3D domain. The information are dependent of the water depth considered. Length of the
pressure zone at the outlet of the OCW3D domain for the three water depth considered. The computation follow from the dispersion
relation and the period is always 10 seconds as contained in the steering files.

4.1.4. Convergence study

In order to assess the quality of the estimation of the numerical method, the solution is compared with the
experimental records from the physical wave gauges. Figure 4.2 and 4.4 show an example of this comparison.
The several lines that are observed are the signals of the 7 wave gauges plotted together. All the figures shown
in this chapter are relative to solitary wave tests in which only one wave was generated.
When reproducing the conditions obtained during a physical model test, OCW3D can be preferred to many
other flow solvers for the possibility of using exactly the same steering files used for the wave paddle during
the physical model tests. Importing the steering files leaves to the user only to select the appropriate POT 1

and breaking parameter 2.

Several values of these two parameters have been used in the preliminary simulations. The observation of
the results that match the best with the experimental records has led to the selection of the values reported
in table 4.2.

Table 4.2: POT values and breaking parameter for the 9 soliton test cases.

Test case POT breaking parameter

T101 0.65 0.42
T102 0.65 0.40
T103 0.64 0.42
T201 0.65 0.42
T202 0.65 0.50
T203 0.62 0.42
T301 0.65 0.42
T302 0.65 0.42
T303 0.63 0.65

In OCW3D the refinement of the grid is determined by the number of points per cut-off. This number tells
how many grid points are defined per cut-off frequency wavelength, which is the smallest wavelength solved
by the model. The cut-off frequency is computed in OCW3D multiplying the peak period of the simulated
wave or spectrum times a constant. Modifying the spatial accuracy changes the shape of the computed waves

1The value of the POT represents a tuning coefficient to determine how much power to give to the wave generator. The default value is
0.8 but after observing a mismatch with the surface elevation recorded during the experiments that value has been changed.

2The breaking parameter of OCW3D is defined as br =− 1
g · ∂w

∂t , where w is the vertical velocity and generally it holds that 0.4 < br < 1.0

(Paulsen et al., 2014)
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Figure 4.2: Match between experimental measures and computed surface elevation relative to test T201. The plot includes the lines
relative to every wave gauge and the line showing the sixth peak in time represents the data relative to the wave gauge at the velocity
cap (used later for the force reconstruction).

such that a higher value of grid points is selected to obtain a better convergence. Note that the convergence
study described in this section is relative to the test case T201, used as a sample to determine the grid refine-
ment then used for all other the solitary wave test cases. Using several numbers of points per cut-off showed
convergence to the final solution obtained for 80 points per cut-off. To show that, the shape error RMSEppc

of the single wave is computed for every run relative to a particular number of points per cut-off (abbr. ppc).

The error is computed as:

RMSEppc=x =
√

(ηppc=x −ηppc=80)2

ηppc=80,max
(4.6)

Figure 4.3 shows the graph relative to the convergence study of test T201 used as an example. The value on
the vertical axis reports a percentage error: the error between the results of a discretization 80 ppc and 40 ppc
is approximately 1.5 % according to the definition of eq. 4.6. Therefore the parameter of 80 points-per-cutoff
is used for all the OCW3D runs.

Figure 4.3: Different values of the RMSE for different point per cut-off (test case T201).

Table 4.3 summarizes the number of cells in the x-direction used in the OCW3D computations and the re-
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spective errors. It must be noted that the domain of the OCW3D simulation starts at the wave paddle and
extends up to a few meters after the velocity cap for a total length of 23.2 meters.

Table 4.3: Overview of the discretization parameter used for the OCW3D computations relative to test T201 and the respective errors.

ppc 10 20 40 80

∆x [cm] 48 24 12 6
Nx 109 217 433 865
RMSEppc=x [%] 5.67 3.60 1.46 0

In figure 4.2 the match of the surface elevation predicted by the model and the one from the experiments for
test T201 is shown. The match was considered good when the shape of the wave up to just after the wave
peak and the peak amplitude estimated by the model were showing a good agreement with the experimen-
tal record. The remaining part of the signal (i.e. the trailing front of the wave) can hardly be modelled with
OCW3D because the structure induced turbulence as well as the wave reflection happening to a certain de-
gree in the physical model could not be included in the numerical simulation.

With regards to the celerity of the solitary wave, a small mismatch is observed between the OCW3D sim-
ulations and experimental records. The analysis of the results obtained with the Navier-Stokes/VOF solver
shows that a mismatch is still present also for those simulations. In the section treating the OpenFOAM re-
sults a quantification of this error is given.

4.1.5. Breaking waves

Oceanwave3D, as said, is a potential flow solver that can solve fully nonlinear wave motions for cases in
which the surface elevation does not curl such as in the case of wave breaking. This poses a limit to the use
of this model because some solitary wave tests included breaking, since one of the aim of the experimental
campaign was to characterize the loads on the cap also in case of breaking solitons.

The already described figure 4.2 and figure 4.4 show two examples of the obtained match of the water surface
elevation between experimental measures and results computed by OCW3D. The first one shows a case in
which no wave breaking is observed (T201) while the second is relative to a test that originated breaking of
the solitary wave (T103).
It can be observed that in the first case the signals from all the 7 wave gauges match reasonably well with the
experimental records. The mismatch becomes more considerable in the left hand side of the peaks where
turbulence and the interaction with the structure cause a more considerable divergence of the results. This
is not affecting much the goodness of the force reconstruction because the biggest attention is on the peaks
(of the surface elevation and of the horizontal velocity) and those are fairly well modelled by the numerical
simulation.
The second graph shows instead a case in which the model has to take breaking into account. In practice
the breaking parameter only sets a limit to the shape of the wave and reduces artificially those that pass that
limit. Even using a breaking parameter that predicts breaking at the right location, the match is quite poor and
the reconstruction of the velocity is very little reliable. Therefore in the remaining chapters, the tables that
contain information derived from the velocity computed by OCW3D show in red the specifications relative to
the tests in which breaking is observed.

4.2. OpenFOAM

The CFD model used is the Open Source Field Operation and Manipulation (OpenFOAM®) C++ library3.
OpenFOAM is described in the user manual as "a framework for developing application executables that use
packaged functionality [...]. OpenFOAM is shipped with approximately 250 pre-built applications that fall
into two categories: solvers, that are each designed to solve a specific problem in fluid (or continuum) me-
chanics; and utilities, that are designed to perform tasks that involve data manipulation" (The OpenFOAM
Foundation, 2017). In this thesis, the specific solver used was combined with the wave generation toolbox

3The version of OpenFOAM used in this thesis is v1606+
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Figure 4.4: Match between experimental measures and computed surface elevation relative to test T103. It can be observed that the
wave breaks more or less at WHM4 and that the match at the following wave gauges is quite poor.

waves2Foam developed by Jacobsen et al. (2012). The next sections give a description of the numerical frame-
work of OpenFOAM model and of the wave tank set-up used to analyze the loads on the cap.

4.2.1. Governing equations

The model used in this thesis includes an air and a water phase. The fundamental equations are the Reynolds-
averaged Navier-Stokes momentum equations (abbreviated RANS, eq. 4.7) coupled with the continuity equa-
tion for incompressible and viscous fluids (eq. 4.8). The solution for the set of equations is sought simulta-
neously for the two immiscible phases by a fully nonlinear solver. The specific solver used here is waveFoam,
an extension of the OpenFOAM basic interFoam two-phase flow solver.

∂ρu

∂t
+∇· [ρuuT ] =−∇p∗− g · x∇ρ+∇· [µ∇u+ρτ]+σTκ(γ)∇γ (4.7)

∇·u = 0 (4.8)

u = (u, v, w) is the velocity field in Cartesian coordinates, p∗ is the pressure in excess of the hydrostatic, g
is the acceleration due to gravity, µ is the dynamic molecular viscosity and τ is the specific Reynolds stress
tensor. Further information regarding the implementation of the specific Reynolds stress tensor can be found
in Jacobsen et al. (2012). The last term takes into account the effect of the surface tension coefficient σT and
the surface curvature κγ but their presence is of minor importance in civil engineering applications.

For the spatial discretization, OpenFOAM uses an Eulerian approach where the grid remains still with the
observer and the water particle are free to move through it. In this thesis, the x-axis is positive in the direction
of propagation of the waves and the z-axis is positive upwards.
In OpenFOAM the fully non linear Navier-stokes solver is combined with a volume of fluid (VOF) surface
tracking scheme, described in Hirt and Nichols (1979). The free surface is tracked using a scalar α which
varies between 0 and 1, where 0 corresponds to the air phase and 1 to the water phase. OpenFOAM uses
an improved version of this technique where the distribution of this parameter is modelled by means of the
equation:

∂α

∂t
+∇· [uα]+∇· [urα(1−α)] = 0 (4.9)



4.2. OpenFOAM 31

where u is the previously computed velocity field and ur is a relative velocity. The last term on the left-hand
side is an addition to the original advection equation suggested by Hirt and Nichols (1979) and it aims to
reduce the smearing of the interface. This improvement is developed by OpenCFD®, and it is documented
in Berberović et al. (2009). Using the α-field one can then determine the variation of a generic fluid property
Φ (such as µ and ρ) by means of the expression:

Φ=αΦw ater + (1−α)Φai r (4.10)

This method in any case originates a set of cells in which the value of α is between 0 and 1 excluded. This can
constitute a problem if a specific value of the surface elevation is needed but a solution can be obtained for
instance by means of the wave gauge functionality introduced by wave2Foam. Numerical wave gauges can
be defined at several location of the domain that compute the free surface η as:

η=
∫ z1

z0

αdx −h (4.11)

Here z0 and z1 are the extremes of a vertical line that constitute the wave gauge and h is water level at still
water conditions.

4.2.2. Turbulence modeling

Turbulence modeling is a controversial aspect in the case of wave loads for non-breaking irregular waves.
As shown in Capel (2012b) and Christensen et al. (2015), the inertia was dominating over the drag for the
determination of the total force. The magnitude of the drag coefficient CD is associated to the development
of the turbulent boundary layer on the surface of the object and vortex shedding. Given that the drag force was
observed to be small, for those cases turbulence modeling was actually not a crucial aspect. The application
of a complex turbulence closure would have not been necessary.
In the case of solitary waves, it is shown in chapter 5 and 6 that the drag plays a more important role. Therefore
for part of the simulations presented in this study, a turbulence model is applied for the specific purpose of
capturing the loads on the submerged structure.

The turbulence model applied in the present thesis is a variation of the k-ωSST model presented by Menter
(1993). Differently from the original version, here, the importance of the density variation between the two
immiscible phases is taken into account to avoid severe diffusion of turbulent energy production across the
surface. The variables it involves are, (just as in the original version) the turbulent kinetic energy k and the
specific rate of turbulent energy dissipation ω.

4.2.3. Boundary conditions

In order to solve the differential equation of the fluid motion, boundary conditions need to be defined for the
variables used in the numerical schemes, namely α, p∗, and u.
In OpenFOAM the surfaces that delimit the numerical domain are named patches.
In the present study, the analysis starts with a simple 2-dimensional case in which the only patches are the
sides of a flume slice (only one cell in the y-direction), an inlet, an outlet, the atmosphere and the bottom.
This set-up is used to define the characteristics of the background mesh and to check the convergence of the
model for the wave propagation and shoaling. No turbulence closure is applied here.

Once the convergence study is completed the third dimension and the .stl surface of the velocity cap are
added. As shown in figure 4.5, the cap is split in three parts (top part, cylinder and base plate) in order to
analyze the forces on the different components.

In the 3-dimensional set-up the boundary conditions for inlet, outlet and side walls stay the same as for the
2-dimensional case. On the patches that constitute the bottom of the flume and the velocity cap, the bound-
ary conditions vary depending on whether a turbulence closure is applied or not.
In the case no turbulence model is used, the boundary conditions are the ones of a rigid wall with slip condi-
tion on the bottom and no-slip on the patches of the velocity cap.
In the cases where turbulence is applied, besides the three variables already mentioned, additional variables
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Figure 4.5: Visualization of the several patches which are split in for the purpose of the analysis . In red the bottom of the flume and
in gray the side wall.

are given boundary conditions. These are treated with wall functions, which avoid resolving directly the re-
gions closest to the wall (namely the viscous and buffer layers).

The applied boundary conditions can be summarized as follows:

• Inlet. At the beginning of the domain, the u field and the α parameter are defined by the potential flow
solver OceanWave3D.

• Outlet. At the end of the domain the waves need to exit avoiding reflection as much as possible. This
is implemented with a Sommerfeld boundary conditions recently developed in OpenFOAM by Niels G.
Jacobsen (Researcher/advisor at Deltares).

• Side walls. The sides of the domain are modelled as rigid walls applying slip condition to the velocity
field.

• Atmosphere. Atmospheric boundary condition.

• Bottom and velocity cap. The correct bathymetry of the flume is generated by means of a .stl surface.
The geometry of the cap (also imported in the domain as a .stl surface) is split in three parts (top cap,
support cylinder and base plate).

– Laminar simulation The resulting patches are treated again as a rigid wall with slip condition for
the velocity field.

– Turbulence model applied The patches are treated as rigid walls with no-slip condition for the
velocity field. Turbulent properties are defined with specific wall functions.

The generation and absorption of the waves at the boundaries is done utilizing the toolbox waves2Foam. The
particular value of waves2Foam for the present application is that it allows the user to couple the original
CFD environment with another solver that works on wave generation and propagation (OCW3D) by means
of relaxation zones. The next two sections elaborate more on the conditions applied at the inlet and outlet.
Figure 4.6 gives a schematic representation of these two zones.

RELAXATION ZONES

A key feature of the wave toolbox waves2Foam consists in the implementation of relaxation zones able to
prevent wave reflection from the outlet boundary or to avoid that internally generated waves interfere with
the wave generation at the inlet. In the present model only one rectangular relaxation zone is used at the
inlet. In this zone the fields α and the velocity are updated at every time step according to the expression:

Φ=αRΦt ar g et + (1−αR )Φcomputed (4.12)

where Φ can be one of these two quantities. In the schematic of figure 4.6 the variation of the αR parameter
is shown as a function of the local coordinate χR . The dependency is described by the expression:
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Figure 4.6: Schematic of the relaxation zone at the inlet and the outlet

αR = 1− eχ
3.5
R −1

e −1
(4.13)

The target values are the ones defined by the potential flow solver OceanWave3D presented in section 4.1,
while the computed ones are the numerical results of the Navier-Stokes/VOF solver. The target solution is
provided on the time axis generated by OCW3D. By means of waves2Foam, the user can then select a segment
of the time axis of OCW3D to start and stop the more expensive CFD simulation.

The introduction of relaxation zones makes the coupling between the two models described in this chapter
possible: OCW3D and OpenFOAM. Outside the computational domain of OpenFOAM, the solution is com-
puted by the potential flow solver that is much faster than the Navier-Stokes/VOF solver. Only inside the
smaller OpenFOAM domain the solution is computed also by the N-S/VOF solver. The link between the two
models is possible through the relaxation zones where gradually the solution computed in the outer domain
is used as a target solution for the more complex computations performed by the N-S/VOF solver (Paulsen
et al., 2014). This is known as the one-way domain decomposition strategy. Other applications of this strategy
can be found in Paulsen (2013) and in Bruinsma (2016).

SOMMERFELD CONDITION

At the outer boundary the definition of a relaxation zone is not necessary. The only requirement is to let the
wave exit the VOF domain without reflection. The condition used is a Sommerfeld radiation condition which
is defined as weakly reflective. This means that reflection is not fully prevented but as far as the inner VOF
domain ends far enough from the structure under analysis, the said condition performs good enough (i.e.
the weak reflection of the wave does not influence the loads of the velocity cap). Therefore, the boundary
condition applied at the outlet reads:

∂φ

∂t
+ c

∂φ

∂x
= 0 (4.14)

where c = ξ
√

g h. The constant ξ is a parameter introduced to take into account possible discrepancies
between the theoretical shallow water wave celerity (

√
g h) and the actual propagation speed of nonlinear

waves. In the case of a solitary wave, the wave celerity is defined as c =√
g (h +H) where h is the water depth

and H is the height of the solitary wave over the mean water level. A sensitivity analysis showed that varying
this parameter in the range between 1 and 1.3 did not result in appreciable variations of the loads on the cap
in the tested set-up.
In the simulations presented in the following chapters this parameter is set equal to 1.075.
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NEAR-WALL TREATMENT

Near-wall regions need to be modelled with particular care in order to generate accurate results from the
point of view of turbulent properties. In the simple case of a steady current in an open channel where tur-
bulence is fully developed, the whole water column can be divided in three layers. The closest to the wall is
called viscous sub-layer because of the strong importance that molecular viscosity has at this short distance
from the wall. Moving away from the wall, the relative importance of molecular viscosity decreases and iner-
tia starts dominating the flow allowing turbulence to develop; this is called logarithmic or log-law region. In
between the two regions the so called buffer layer is a region where the first behaviour gradually switches to
the second.
In literature, the parameter used to describe the wall distance and therefore the passage from one region to
another is y+ (see for instance Pope (2000)). This parameter expresses the non-dimensional wall distance
according to the following equation:

y+ = yuτ
ν

(4.15)

where uτ is the friction velocity defined as
√

τw
ρ with τw the wall shear stress. y is the distance to the wall in

meters which, in a CFD context, assumes the meaning of the distance of the first cell center from the wall.
There is the following agreement between experts (Pope (2000), Nieuwstadt et al. (2016)):

• y+ < 5 corresponds to the viscous sub-layer.

• 5 < y+ < 30 corresponds to the buffer layer

• 30 < y+ < 300 corresponds to log-law region.

When solving the flow by means of a Navier-Stokes/VOF solver, refining the grid down to the viscous sub-
layer thickness can pose a severe limitation to the stability of the solver or to its speed because of the smaller
time step needed. This would mean that the fist cell center is at a distance from the wall such that y+ < 5.
The preferred approach is then the use of wall functions. Wall functions are empirical equations used to sat-
isfy the physics of the flow in the near wall region. As a consequence, the first cell center can be placed in the
buffer layer. In this way instead of computing directly the turbulence properties and momentum transport
down to the wall itself, the wall functions provide boundary conditions that link the fully turbulent region
and the inner viscous layer (Tu et al., 2008; 2013).

OpenFOAM offers a number of wall functions defined for different applications. In the present study, the
factors that influence the choice are:

• The flow is unsteady and the y+ changes in space and in time.

• It is computationally expensive to use a mesh fine enough to always retain y+<5 on all the patches of
the velocity cap.

This lead to the choice of the following wall functions for the three different turbulence variables:

• k, kLowReW al lFuncti on. This wall function is particularly suitable for the present application. Even
though the name can mislead, this function is defined to perform well both in case of low and high local
Reynolds number. This means that as far as the first cell center is at least inside the buffer layer (y+ <
30) the function is able to predict a reliable value of k.

• ω, omeg aW all Functi on. In the case of omega OpenFOAM offers a single wall function which bene-
fits from the fact that this quantity is known for the viscous sub-layer and for the log-law region. The
function is based on the blending expression suggested by Menter and Esch (2001).

• νt, nutUspal di ngW all Functi on. This wall function takes advantage of the unique expression for
the relation between y+ and u+ (non-dimensional velocity) proposed by D. B. Spalding in 1961. This
equation fits the behaviour of u+ in the whole region, from the log-layer down to the viscous sub-layer.
Note that νt is not needed as a variable for the computations but is tracked because of the importance
for the OpenFOAM utility yPlus. This uses the estimate of y+ determined by the wall function specified
for the νt field.
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Figure 4.7: Sketch of the domain size and positions of the wave gauges and of the cap in the test cases regarding solitary waves (excl.
T103).

These wall functions could predict well the turbulence properties in situation where y+ was ranging between
0 and 30 approximately. More information about the implementation of the specific wall functions can be
found online at openfoam.org or in the paper by Liu (2016).

4.2.4. Domain size

The coupling with the solver OCW3D allows to make the domain as small as possible so to reduce the com-
putation time. The propagation of the waves along the flume in fact can be better modelled in a potential
flow solver for the sake of time. The only constraint is that OCW3D cannot reproduce turbulence due to the
interaction with the structure nor due to wave breaking. Hence, the space around the velocity cap from the
location where breaking was observed to approximately five diameters (5·D) after the cap are discretized and
solved in OpenFOAM.

The test during which breaking was observed the farthest from the structure was T103, when the solitary wave
broke at approximately the fourth wave gauge (see fig. 4.4). Given that that wave gauge is at - 4.4 m in front
of the cap, in order to include some margin for the relaxation zone, the offshore boundary is located at - 5.1
meters. Only for the test case T103, does placing the offshore boundary at -7.1 m improve the prediction of
the location of breaking. Therefore for that test case, the domain is longer.
The boundary ideally closer to the shore is instead 1 meter after the cap in order to make sure that the weak
reflection associated to the Sommerfeld condition does not affect the loads.

At the position of the flume where wave gauges were used in the physical model tests, numerical wave gauges
are also defined in order to have a direct comparison with the experiments.

4.2.5. Convergence study

The finite volume discretisation used in OpenFOAM® is based on unstructured grids consisting of arbitrary
convex polyhedrals. In the present work, it can be made a distinction between background mesh and refined
mesh. The former is generated by the utility blockMesh and it has the coarsest dimension of the grid cells
far from the structure, while the latter is the finer mesh obtained by means of the utility snappy HexMesh
refining the background mesh. The criterion used to determine the dimension of the background mesh is the
convergence by grid refinement of the propagation of the solitary wave and the comparison with the surface
elevation measured during the experiments.
The aspect ratio of the hexahedral cells generated by blockMesh is maintained equal to 1 because, as ob-
served by Jacobsen et al. (2012), a higher ratio is responsible for a wrong prediction of the position of wave
breaking.

The convergence study is based on test case T101. Figure 4.8 shows the relative error obtained with different
refinement of the background mesh.

In a similar way to the computation of the RMSE in the case of the OCW3D, the error is computed as:

https://cpp.openfoam.org/v3/a10800.html
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Figure 4.8: RMSE error computed for the different grid sizes of the background mesh (previous to refinement). Result relative to test
T101.

RMSE∆s=x =
√

(η∆s=x −η∆s=2.5)2

η∆s=2.5,max
(4.16)

where ∆s is the side of the hexahedral cell.

As shown in table 4.4, the error is already approximately 0.3 % with a background mesh with∆s of 2 cm. A finer
mesh is therefore considered unnecessary. On the other hand, a coarser mesh of 4 cm, also attractive from
the point of view of the small error, is discarded. The reason is that, as explained in chapter 5, the refinement
of the mesh around the cap determines a big variation of the cell size between near and far from the structure.
A too big variation could have consequences in the reconstruction of the flow field and therefore it is avoided.

Table 4.4: Overview of the background mesh grid sizes used for the OpenFOAM computations relative to test T101 and the respective
errors.

∆s [mm] 160 80 40 20 10 5 2.5
RMSE∆s=x [%] 9.5 2.4 0.4 0.3 0.2 0.1 0

4.2.6. Wave celerity prediction

It has been noted that the wave celerity is not perfectly computed by the potential flow solver OCW3D. Also
in the case of the N-S/VOF solver the wave celerity is slightly different from what recorded during the exper-
iments. Table 4.5 reports the wave celerity computed at WHM6 for both the experimental records and the
OpenFOAM results. The celerity is estimated as the ratio between the distance between WHM5 and WHM 7
and the time needed to the wave crest to travel from WHM5 to WHM7.

Table 4.5: Wave celerity at WHM6 as computed by the model and as obtained from the experimental records. Breaking cases are
reported in red. Test case T303 is not considered as a breaking case because the wave was breaking right after the cap, however, the
location of breaking is slightly different in physical model tests and in the numerical simulation and this influences the computation
of the wave celerity.

T101 T102 T103 T201 T202 T203 T301 T302 T303

Experiments 2.33 2.64 4.95 2.47 2.83 2.47 2.64 2.83 3.05
OpenFOAM 2.20 3.14 3.67 2.27 2.75 3.88 2.36 2.64 2.64



4.2. OpenFOAM 37

The analysis of the surface elevation plots clarifies that the dynamics at the wave crest are not perfectly pre-
dicted even if the match between the numerical and the experimental records is overall good (see figure 4.9).
In the non-breaking cases the wave at the velocity cap is undergoing a small decrease in wave height which is
not captured by the model. It is probably due to this discrepancy that the local wave celerity at the sixth wave
gauge is also showing a small difference.

Figure 4.9: Match between surface elevation computed by the N-S/VOF solver and measured for test case T101. Given the dimension
of the OpenFOAM domain only wave gauges WHM3, WHM4, WHM5, WHM6 and WHM7 were included.





5
Validation of the OpenFOAM model

In chapter 4, the water surface elevation predicted by the model has been validated in terms of convergence
by grid refinement and by comparison to the experimental records. Here, the validation is extended to the
force signals. A good agreement between numerical results and measurements is found for the inline force.
The lift force prediction shows perfect agreement with regards to the phasing, but the peak value is not accu-
rately predicted, possibly due to a bias in the experimental records.

At the end of the chapter a direct comparison between PIV measurements and OpenFOAM results is also
presented. The velocity field from the model (analyzed in the x-component only) compares well with the
measurements except for the prediction of the boundary layer development at the top leading edge of the
velocity cap and in some locations in the jet coming out of it at the trailing side.

5.1. Synchronization

The comparison with the experimental measures is the key aspect used in this chapter to achieve the val-
idation of the model. In order to enable a comparison, the numerical and the experimental time axis are
synchronized to match the shape of the wave profile (surface elevation) at the location of the velocity cap
(sixth wave gauge).

This synchronization is implemented in two steps. First, the time axes are roughly synchronized by matching
the peak of the surface elevations. Secondly, the correlation function is computed between the numerical
and experimental curve for a range of positive and negative offsets. The synchronization that results in the
highest correlation is then selected for the rest of the analysis. Basing the synchronization only on matching
the peaks of the surface elevation results sometimes on a relatively poor correlation between measurements
and numerical results. This happens because in some cases the computed and measured wave profile has a
slightly different steepness and skewness, which leads to a mismatch of the location of the wave crest in the
wave profile.

5.1.1. Limitation of the synchronization method

Matching the time axes only based on the property of the wave at the sixth wave gauge has the limitation of
neglecting wave celerity differences between experiments and numerical models, which in section 4.2.6 were
shown to be present.

However this type of synchronization makes sure that the comparison between numerical results and exper-
iments is consistent for any phase of the wave. This is particularly important when comparing the velocity
field of the wave (see section 5.4) but above all it is important when studying the decomposition of the forces
between drag and inertia components which is presented in chapter 6.

39
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5.1.2. Links between time axes

Once the surface elevation computed by the N-s/VOF solver is synchronized with the experimental measures,
all other field variables such as velocity estimate and forces are automatically synchronized as well. As de-
scribed in figure 5.1, all the experimental time axes are already adjusted to correlate with each other during
the experimental phase (see ch. 3). The numerical time series instead are all based on the OCW3D com-
putations. The N-S/VOF solver in fact uses the segment of the time axis of OCW3D specified by the user, as
described in section 4.2.3.

It is important to note that this procedure was needed to correlate two sets of time series otherwise unrelated:
on one side the experimental ones and on the other the numerical ones. The diagram of figure 5.1 shows more
visually the relationships between the several time axis.

Figure 5.1: Relationships between the time axes of the different time series used during this study.

5.2. Laminar simulations

The numerical investigation started without including any turbulent closures and applying slip conditions
on all wall patches (side walls, bottom and cap patches). In this way the flow is assumed to be laminar every-
where in the domain and the viscous boundary layers are neglected.
This is done because the development of turbulence does not significantly affect the load prediction in case
of inertia-dominated regimes. In order to have such a regime, the KC number needs to be small (0 < KC <
20−30 (Sumer and Fredsøe, 2006)), which means that the excursion of the water particles is small compared
to the dimensions of the structure under analysis. If this is the case, vortex development around the structure
and their shedding stay contained and do not influence the loads. For the sea states analyzed for civil engi-
neering purposes, KC mostly falls in this range.
Moreover, a turbulence closure requires often a very fine mesh near the solid boundaries, which increases
considerably the computational time, and this explains why running laminar simulations is a common ap-
proach in offshore applications (see for instance Paulsen et al. (2014) and Bruinsma (2016)).

5.2.1. Experimental bias and pressure correction

The raw OpenFOAM outputs include the hydrostatic pressure component and therefore even before the wave
is arriving, the vertical force has a constant negative value. During the physical model tests, the force sensors
were zeroed in presence of water and this component is not visible in the records. Hence, in order to compare
the results, the initial value of the vertical force of the OpenFOAM results is subtracted from the total signal.
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The first obtained results show a consistent underestimation of the inline force peak and overestimation of
the vertical force as can be seen in the graphs of figure and 5.2.

Figure 5.2: Comparison of the experimental and numerical estimate of the forces for test case T101. Laminar simulation with slip
condition applied on the cap patches.
Top panel: water surface elevation at WHM 5, 6 and 7. The thicker lines correspond to the surface elevation at the velociy cap (WHM
6).
Mid panel: inline force.
Lower panel: vertical force. The OpenFOAM plots show the results both including and excluding the force component on the patch
of the base plate. This is done because the inclusion of the base plate has only relevance for the validation of the results in terms of
comparison with the experimental measurements. In real applications the base plate is not a part of the velocity cap.

The reason for this mismatch is partly attributable to a bias in the experimental measures. As already in-
troduced in section 3.3.1, the velocity cap needed to be free to move slightly in order for the force sensor to
register a force. The small openings between the base of the cap and the rest of the wooden frame, however,
could have allowed a flow of water or at least the transmission of the pressure from above to beneath the base
plate.

Figure 5.3 is a detail of the force sensors set-up shown in figure 3.4. The blue arrows show the possible in-
filtration of water in the opening. Therefore, an algorithm is implemented in order to determine what the
additional effect of the water pressure on the sides of the base plate and on the lower surface is.

The pressure computed with the Navier-Stokes/VOF solver is probed on 200 equally spaced points along the
sides of the base plate as shown in figure 5.4. The outputs of the probes are then used in MATLAB to determine
two components of the pressure correction:

1. A force component parallel to the plane of the base plate (inline) computed as the integration of the
probed pressure over the thickness of the base plate (25 mm, see fig. 5.3).

2. A complete pressure field under the cap computed by means of linear interpolation of the scattered
points (see figure 5.5). The integral of this field over the colored area of figure 5.5 gives the force com-
ponent perpendicular to the base plate (vertical). The white area that is not considered corresponds
approximately to the width of the force sensors box.

The definition of the area under the velocity cap (white area in figure 5.5) is potentially a tuning parameter to
get a better match for the vertical force. However in the present study, it is preferred to focus on the validation
based on the inline force which is more relevant for the design and whose measurements are less affected by
the set-up bias during the experiments.
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Figure 5.3: Drawing of the gaps between the base of the cap and the rest of the wooden frame constituting the bottom of the flume.
The force sensor were water-proof and all the part of the flume below the wooden frame was also filled with water.

Figure 5.4: Probed points at the location of the sides of the base
plate. For each point a time series of the total pressure is output
during the simulation.

Figure 5.5: Pressure field obtained by interpolating linearly the
pressure probed at the contour.

5.2.2. Force estimate

In the rest of the document the force estimates obtained by subtracting this correction to the raw force mea-
surements are called corrected force estimates. In figure 5.2 and in the next plots the corrected force estimates
can be observed. The improvement is considerable for both horizontal and vertical component. However,
even if for case T101 the match of the predicted downward force between numerical and experimental es-
timate is particularly good, the observation of other test cases shows that using the same algorithm for the
pressure correction still produces an error in the prediction (see lower panel of figure 5.8).

Looking at the shape of the mid panel of graph 5.6, it can be noted that not only the peak of the model pre-
diction is underestimating the measurements, but it also occurs slightly earlier. In particular, the prediction
of the force evolution is fairly good when the force is increasing, but really poor with underestimation of 50 %
or more when the load is past the peak.
Recalling the phasing between inertia and drag component in the Morrison equation, in the case of a per-
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Figure 5.6: Comparison of the experimental and numerical estimate of the forces for test case T101. Laminar simulation with slip
condition applied on the cap patches. In this plot the correction is subtracted form the experimental record. The summation of the
orange and red curves results in the plot of the original measurements as plotted in figure 5.2.

fectly sinusoidal wave the inertia precedes the drag with a quarter of a period (see fig. 2.1).
The particular shape of the OpenFOAM results leads to the hypothesis that the inertia is captured in an ap-
propriate way but the drag is not. Assuming that the flow is laminar means accepting that the viscous forces
that constitute most of the drag component are not captured accurately, given the lack of a turbulence clo-
sure and the application of slip conditions. If the inertial loads are dominant over the drag, the assumption of
laminar flow can still give good results but In the case of solitary waves it is observed that a turbulent closure
is needed.

A more careful observation of the relation between the shape of the incoming wave and the force prediction
supported the idea that inertia is well predicted by the model while drag is underestimated. When the solitons
assume the shape of a steep breaking wave or of a bore with a steep front, in fact, the acceleration is higher
than in the case of a smooth wave. Case T203, where the wave was breaking right at the cap, shows that if the
loads are dominated by the acceleration, the laminar model gives fairly good estimate of the inline force peak
(see figure 5.7).

On the contrary test T301 generated the smoothest wave of the set and the underestimation of the force peak
is the most considerable (see mid panel of figure 5.8).

5.3. Reynolds Averaged simulations

The last step towards the validation of the present CFD model consists in running Reynolds averaged simula-
tions (RAS) using the formulation of the k-ωSST turbulence closure described in chapter 4. Test case T301 that
which showed the largest error for the force prediction in the laminar simulations, is used here as example.
Appendix E shows the plots for all the test cases.

5.3.1. The importance of the grid refinement

In order to meet the requirements described in section 4.2 with regards to y+, a mesh fine enough close to the
structure needs to be generated. The OpenFOAM utility used for the mesh refinement is snappy HexMesh.
This utility allows to define the levels of background mesh refinement and the addition of cell layers close to
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Figure 5.7: In line estimate for the breaking test case T203. Laminar simulation with slip condition applied on the cap patches.

Figure 5.8: Comparison of the experimental and numerical estimate of the forces for test case T101. Slip condition applied on the cap
patches. The error between the measurements (corrected) and the model results reaches 16 % at the negative peak of the force.

a structure in order to be precise in the definition of the dimension of the first cell center height. The first
cell thickness was set to 0.12 mm. Such a mesh is suitable to estimate the viscous forces on the structure, is
shown in the next section. However it must be noted that the requirements for y+ are not met everywhere on
the patches of the cap.

Figure 5.9 shows visually where y+ is below 30 during an instant of the T301 simulation. On oblique sharp
edges and on curved surfaces in fact snappy HexMesh fails in adding the cell layers. The reason for this
behaviour of the utility is not analyzed further seen the overall good level of layer addition.
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Figure 5.9: Visualization of the value of y+ computed on the cap patches (screen-shot taken from ParaView). Results relative to test
case T301. Any dark red point indicates a location where y+ is above 30. The maximum value computed for this simulation is 52.

5.3.2. Force results

The use of the k-ωSST turbulence closure gives a much better convergence of the results in terms of match
with the experimental (corrected) evidence. Figure 5.10 shows the results for test T301

Figure 5.10: Results of the RAS computations for test case T301.

Figure 5.11 and table 5.1 give an overview of the relation between the computed and measured corrected
forces. The error between these two estimates is computed as

ε=
√

(Fexp,peak −FOF,peak )2

|Fexp,peak |
(5.1)

The magnitude of the relative error for the inline force estimate is overall smaller than the case of the vertical



46 5. Validation of the OpenFOAM model

force. However, very little can be said with regards to the breaking cases (T102, T103, T203). Even if the
location of breaking is in relatively good agreement with the experimental measures, the hydrodynamics
are too chaotic to be able to compare the prediction of the model with the measurements. One last note is
that T103 and T203, which are the cases where the wave was already breaking in front of the cap, are better
modelled in the laminar simulation than in the RAS.

Figure 5.11: Plot of the computed peak force against the measured one. The red line is included as a reference for the 1:1 line.

Table 5.1: Relation between computed and measured results. The relative error between computed and measured forces is expressed
in percentage. The results reported in red corresponds to the test cases in which breaking was observed.

Test case ε(Fx ) [%] ε(Fz ) [%]

T101 7.37 5.04
T102 1.61 6.63
T103 21.43 6.53
T201 5.92 10.51
T202 1.89 9.18
T203 16.31 7.79
T301 8.24 14.34
T302 4.00 10.72
T303 2.21 6.27

5.4. Comparison with the PIV measurements

In order to visualize and present the numerical results, the data analysis and visualization application Par-
aView1 is used. Among the functionality of this software, the user can choose to cut the domain and visualiz-
ing slices of the flow field plotting any of the variables computed by the solver.
Such a feature can be used to operate a direct comparison between the PIV measurements taken during the
experiments and the numerical results. For this purpose the full fields (p∗, U, α, k, ω, νt ) saved every 0.1
seconds in the OpenFOAM time directories could be processed in ParaView. In particular, the results regard-
ing the u component of the velocity field, on the same plane where the PIV measurements were taken, were
exported as .csv tables for further manipulation in MATLAB.

The different spatial discretization of the information differs for the two data sets (uniform grid with spacing
2 or 4 mm for the PIV measurement and variable grid depending on the level of refinement for the model

1Version 4.4.0 64-bit
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results). This problem is overcome by interpolating the results on a uniform grid with spacing 3 mm for
plotting purposes.
This procedure allows plotting figures such as 5.12 and 5.13. These two plots represent velocity maps for a
domain as wide as the PIV window.

Figure 5.12: OpenFOAM horizontal velocity estimate for test T201.

5.4.1. Synchronization analysis

The effort of interpolating the results on the same grid and synchronizing the time axes allows subtracting
the two velocity estimates in order to have a direct impression of which flow structures are captured by the
model and where the discrepancies are the most evident.

The accuracy of the synchronization is analyzed by applying a range of time offset to the newly defined PIV
time axis. Therefore, once the velocity map is extracted from one OpenFOAM time directory, the PIV velocity
maps corresponding to the instants immediately preceding and following are also extracted.
The error between the numerical velocity prediction and the PIV measurements is computed in two ways for
each offset considered. The first one (referred to as er), is a scalar and it indicates the overall disagreement
between the two velocity maps, while the other one (mismatch) is an error field and is used in the following
plots to show where this disagreement was the largest. The scalar value er is computed as

er =
Ï

PIV wi ndow
|uPIV (x, z)−uOF (x, z)|d x d z (5.2)

The error field mismatch is computed as:

mi smatch(x, z) = uPIV (x, z)−uOF (x, z) (5.3)

These two error estimates are evaluated for every time offset. In particular, the minimum value of er is used
to select which time offset gives the best correlation between PIV and OpenFOAM estimates. Shifting the
time axis of the PIV measurements of three frames backwards and forwards in time allowed computing the
values of er for a number of time directories, which are reported in table 5.2. The minimum value of the
error is always found for an offset of PIV time axis of one frame. Given that the sampling frequency of the PIV
measurements was 30 Hz, this corresponds to a shift in the time axis equal to 0.033 seconds.

The reason for this offset can be related to the sampling rate of the PIV. An offset of ± 1 frame can be just
due to the synchronization used to align the different time axis. The fact that the best correlation between
numerical results and PIV data is always found with an offset of one frame confirms that this offset is needed
because of the procedure used for the synchronization and not because the model is predicting a different
speed in the evolution of the velocity field.

Time directory 313.6 is now used as an example to show the comparison between numerical and experimen-
tal data. This moment in the simulation corresponds to the passage of the wave crest over the cap. The PIV
velocity map to be compared with the OpenFOAM data is extracted from the frame preceding in time the one
obtained with the original synchronization and it is presented in figure 5.13.
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Time offset (nr. frames)
Time directory -3 -2 -1 0 1 2 3

313.4 0.0066 0.0029 0.0014 0.0047 0.0082 0.0116 0.0147
313.5 0.0061 0.0030 0.0021 0.0048 0.0072 0.0088 0.0101
313.6 0.0051 0.0034 0.0033 0.0042 0.0056 0.0074 0.0094
313.7 0.0063 0.0046 0.0033 0.0042 0.0069 0.0103 0.0138

Table 5.2: Estimate of the overall disagreement (er) between the 7 offsetted PIV velocity maps and the OpenFOAM results. The time
directories corresponding to the moments when the wave is passing over the cap are presented.

Figure 5.14 shows, in the lower panel, the error field mismatch computed as the subtraction between the
velocity field shown in figure 5.14 and the one shown in 5.12. Warm colours are associated to zones where
the model is underestimating the velocity as measured by the PIV and cold colours to the zones where it is
overestimating it. The discrepancy between the experimental and numerical measures are also analyzed by
plotting the velocity profiles in top two panels for representative locations in the PIV windows (just upstream
of the cap and just downstream). More observations on the comparison between numerical results and PIV
measurements are included in section 5.4.2.

Figure 5.13: Ensemble averaged horizontal velocity computed from the PIV measurements relative to the 40 repetitions of test T201.
Test case T201 was taken as a reference because the 40 repetitions of the test allowed to have the best estimate of averaged flow field.

If different time offsets are considered, the disagreement increases as shown in figures 5.15 and 5.16. This is
clearly visible in the top panels that show the velocity profiles over the vertical. In the plot of the error field
the difference can be seen in the slight change of the background colour.

5.4.2. Observation on the velocity field prediction

After discussing the validity of the synchronization on which the comparison is based, this section discusses
how the numerical predictions of the velocity field compare with the PIV measurements. The prediction of the
flow patterns is investigated analyzing the mismatch between numerical and PIV results for time directories
313.4, 313.5, 313.6 and 313.7.

The relevance of studying these time directories in the case of test T201 can be understood by considering
the following information:

• 313.4 is the instant in which the flow detachment at the top leading edge of the velocity cap starts being
clearly visible.

• 313.5 corresponds approximately to the peak of the inline load.

• 313.6 is the instant in which the wave crest is above the velocity cap. The peak of the undisturbed
velocity at the location of the cap occurs approximately at this instant.

• 313.7 is used to show the evolution of the flow patterns right after the passage of the wave.

Figure 5.14 already showed the mismatch between measurements and numerical model for the instant cor-
responding to the passage of the wave on top of the cap. The analysis of this plot shows an almost prefect
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Figure 5.14: Comparison between the PIV and OpenFOAM velocity estimates for test T201 at time 313.6. The PIV velocity map used
in the comparison has an offset of 1 frame (-0.033 seconds).
Top panels: comparison of the velocity plotted over the vertical for test T201. The x locations where the velocity where taken from
0.125 m in front and after the velocity cap and they are highlighted in the lower panel by red segments.
Lower panel: plot of the mismatch between horizontal velocity estimates computed as in eq. 5.3.

match between model results and the PIV measurements in the region preceding the velocity cap (see top left
panel of figure 5.14) and and for distances larger than approximately 4 cm above the cap.
The velocity field at the top leading edge of the velocity cap is instead not correctly solved by the N-S/VOF
solver. The red stain of the lower panel of figure 5.14 shows clearly that the interface between the recircula-
tion zone and the outer layer is not predicted accurately by the model. The big value of the mismatch is due
to the fact that in that region the numerical simulation estimated a negative velocity, while the PIV measured
positive velocities. The numerical simulations are therefore predicting a wider extension of the recirculation
zone at this location.
The prediction of the velocities at the location of the jet coming out from the opening of the cap at the trailing
side is also showing some inaccuracy. This area is characterized by high turbulence development and the
numerical results are slightly different from the PIV measurements. However for the present application it
can be assumed that an accurate prediction of the flow downstream of the cap is of little interests when de-
termining hydraulic loads on the structure. What is more relevant is the prediction of the flow field close to
and inside the cap and even if the jet outside the structure is not perfectly captured by the model the velocity
captured inside it is instead in good agreement.

In order to assess the accuracy of the model in capturing the development of the boundary layer separation,
the error fields mismatch computed from the two previous time directories are also presented (313.4 and
313.5).

Figures 5.17 and 5.18 show that the a small mismatch in the prediction of the recirculation zone extension
is present at the top leading edge of the velocity cap since the beginning of the flow separation. However
the velocity in proximity of the structure is in good agreement with the PIV measurements. Figure 5.18 in
particular shows the velocity field disagreement for the instant that corresponded to the peak of the inline
force. The analysis of this picture is useful to understand that, even if the Reynolds-averaged flow patterns
around the velocity cap are in general not perfectly captured, the values of the velocities near the cap are
in overall good agreement with the PIV data. This explains how the comparison between experimental and
numerical estimate of the inline force shows a reasonable agreement. Extending the analysis to instant 313.7
(see figure 5.19), it is visible how the flow on top of the cap is predicted in a considerably different way by the
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Figure 5.15: Comparison between the PIV and OpenFOAM ve-
locity estimates for test T201 at time 313.6. The PIV velocity map
used in the comparison has an offset of 2 frames (-0.066 sec-
onds).
Top panels: comparison of the velocity plotted over the vertical.
The x locations where the velocity where taken from 0.125 m in
front and after the velocity cap and they are highlighted in the
lower panel by red segments.
Lower panel: plot of the mismatch between horizontal velocity
estimates computed as in eq. 5.3.

Figure 5.16: Comparison between the PIV and OpenFOAM ve-
locity estimates for test T201 at time 313.6. The PIV velocity map
used in the comparison is determined using the original syn-
chronization and therefore it has zero offset.
Top panels: comparison of the velocity plotted over the vertical.
The x locations where the velocity where taken from 0.125 m in
front and after the velocity cap and they are highlighted in the
lower panel by red segments.
Lower panel: plot of the mismatch between horizontal velocity
estimates computed as in eq. 5.3.

model with respect to the PIV results. After the wave has passed, flow separation and wakes shedding from
the structure are not captured correctly by the OpenFOAM model.

The velocity field prediction can explain the mismatch observed earlier between numerical results of the in-
line load and corrected experimental records. The plots of the inline force predicted by the model can be
found in appendix E, which shows an accurate prediction of the front part of the force signal by the model.
From the peak until the tail of the force signal the OpenFOAM estimates are generally lower than the cor-
rected experimental records. This inaccuracy is foremost present when the peak of the wave has passed the
cap.
From the point of view of the determination of the loads, this affects the distribution of the the viscous shear
stress and of pressure on the cap patches. The former was observed to be accountable for only 2-3% of the to-
tal inline force and is therefore considered of lesser importance. The latter is instead determining the greatest
part of the load. The incorrect pressure field distribution must have therefore caused the mismatch between
the corrected experimental records and the numerical results.
In chapters 6 and 7, the experimental and the numerical estimates of the inline load are decomposed follow-
ing the Morison equation model between inertia and drag components. The obtained differences between
the experimental and numerical estimates help understanding the limitations of the OpenFOAM model with
regards to the load prediction. This is described in chapter 8.

5.5. Summary

The results obtained with the N-S/VOF solver including a k-ωSST turbulent closure have been compared with
the experimental measures presented in chapter 3. An important finding is that the set-up of the velocity cap
during the physical model tests determined an experimental bias on the force measurements. The numerical
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Figure 5.17: Comparison between the PIV and OpenFOAM ve-
locity estimates for test T201 at instant 313.4. This frame corre-
sponds to the beginning of the strong flow separation at the top
leading edge of the velocity cap. The PIV velocity map used in
the comparison has an offset of 1 frames (-0.033 seconds).

Figure 5.18: Comparison between the PIV and OpenFOAM ve-
locity estimates for test T201 at instant 313.5. This frame corre-
sponds to the moment when the inline load was at its peak. The
PIV velocity map used in the comparison has an offset of 1 frames
(-0.033 seconds).

Figure 5.19: Comparison between the PIV and OpenFOAM velocity estimates for test T201 at instant 313.7. This frame show the
development of of the flow and of the wakes 0.1 seconds after the crest of the wave has passed the center of the velocity cap. The PIV
velocity map used in the comparison has an offset of 1 frames (-0.033 seconds).

model is used to estimate a pressure correction which has been applied to the raw experimental records in
order to allow a comparison with the numerical output.

The inclusion of the turbulent closure is found to be necessary to come to a match between numerical results
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and corrected experimental records for the inline force. In the case of the vertical force, instead, the model
results underestimate the corrected experimental records.

At the end of the chapter a comparison between the PIV measurements and the OpenFOAM estimate of the
velocity field has been presented. This comparison has resulted in the detection of the regions where the
model failes in predicting the velocity field. These regions are characterized by flow seperation and high
turbulent development. The incorrect prediction regards the extension of the recirculation region and the
wakes behind the cap.

In the next two chapters the force records obtained experimentally and numerically are fitted in order to de-
fine force coefficients. Eventually the comparison between the two estimates of the coefficients is presented
in chapter 8.



6
Experimental characterization of

the loads for solitary waves

In this chapter, the characterization of the inline and vertical forces acting on the cap as measured during the
experiments is presented. In this perspective, the chapter is organized as follows.

• First of all, it is shown how an accurate estimate of the undisturbed velocity at the position of the cap is
obtained.

• Once the velocity is known, the experimental force signal are fitted in order to estimate the force coef-
ficients. The fitting equation used are the Morison equation in the case of the inline force, while for the
vertical force both the original lift force equation and a modified vertical force equation are used.
The use of a modified vertical force equation is shown to be necessary in order to capture the evolu-
tion of the vertical force. The new equation consists of three terms and take into account the velocity
components along the horizontal and vertical axis and the vertical acceleration.

• At the end of the chapter the coefficients are plotted against the KC number and other dimensionless
numbers used to characterize the flow.

During the numerical study it has been observed that the raw force signals analyzed in this chapter are af-
fected by an experimental bias (see section 5.2.1). Nevertheless, this chapter focuses on those records. The
relevance of the findings is then analyzed in detail in the discussion (chapter 8).

6.1. Undisturbed velocity

The equations used to characterize the forces in this chapter link the force to the undisturbed velocity (−→u0 =
(U0, W0)) and its derivatives by using specific coefficients. These coefficients are not known a priori for the
geometry of the velocity cap and getting a first estimate of those is the aim of this chapter.
In the definition of the force equations, the undisturbed velocity is the velocity that would be measured in
absence of the structure (in this case the velocity cap) but the experiments did not include any test with this
set-up. Therefore, in order to know the force coefficients, in first place, a good estimate of this velocity was
sought.

The undisturbed velocity estimation has been focused at first on the horizontal component only (U0) and has
followed five different approaches, which are:

• Extraction from the PIV measurements.

• Continuity equation integration from the surface elevation.

• Analytic equation for the horizontal velocity derived from the solitary wave theory (Svendsen and Jon-
sson, 1980).

53
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• Results from the OCW3D model.

• Results from the OpenFOAM model.

Eventually, the OpenFOAM reconstruction of the velocity is used to derive the force coefficients. The results
from OCW3D, which are in good agreement with the OpenFOAM results, are only used to determine the di-
mensionless numbers that characterize the flow for the reason described in section 6.1.3. A brief presentation
of how the velocity estimate is obtained according to the first four approaches is included in appendix C.

6.1.1. Velocity and acceleration from the N-S/VOF solver

The velocity signal estimated by the N-S/VOF solver and probed during the RAS simulations is used as an
estimate of the undisturbed velocity to apply the weighted least squares method and to estimate the force
coefficients. The probed signal is a vector that includes the components along the x, y and z axis. Therefore,
even if the results described here regard the horizontal component (U0), exactly the same procedure is used
for the vertical component (W0).

The location selected for the extraction of the OpenFOAM velocity time series is 0.115 m above the bottom
level and 0.05 m from the side of the wall. The height of this position corresponds approximately to the height
of the center of mass (0.116 m). It is useful to remember that the flume was one meter wide, the velocity cap
was at the center and its bigger diameter was 0.22 m. The distance between the probed location and the
closest point of the structure is therefore 0.34 m (see figure 6.1). This specific location allows to have directly
an estimate of the horizontal velocity synchronized with the flow and forces computations but unaffected by
the presence of the cap due to its distance from the center-line.

Figure 6.1: Location of the probed velocity. The dimensions are in meters.

The derivative of such a signal gives the acceleration of the water. The first attempts to find an estimate of
the velocity gradient from the OpenFOAM probed output, however, resulted in a signal that was at times very
coarsened by the noise (high frequency wiggles, see figure 6.2). In order to improve the estimate, the following
algorithm is used to obtain the acceleration:

1. The velocity signal is interpolated to an equally-spaced time axis

2. The gradient of the obtained signal is computed

3. The noise of the raw gradient is filtered by means of a moving-average filter with window size seven1

A final remark on the OpenFOAM reconstruction of the velocity is that the validation of the OpenFOAM model
has not been possible for the test cases involving wave breaking as presented in chapter 5. Therefore the ve-
locity estimate computed for those cases is not considered accurate enough for the coefficients computation.
Therefore the dimensionless parameter and the force coefficient estimated for the breaking cases are reported
in red in the tables and are not included in the final plots of the coefficients presented in the next sections.

1The filter is applied in MATLAB by means of the built-in function filter.
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Figure 6.2: Example of the estimate of the velocity and acceleration obtained from the OpenFOAM computations. In the lower panel,
a zoomed detail of the upper plot shows more closely the high frequency wiggles observed.

6.1.2. Differences between OCW3D and OpenFOAM estimate of the undisturbed velocity

Both models described in this thesis can give an estimate of the undisturbed horizontal component of the
velocity.
Even if the equations solved are different between the two, for all non-breaking cases, a good agreement
in the velocity estimation is observed. The reason for this is that for non-breaking waves the flow remains
irrotational and therefore the Laplace equation solved by the potential flow solver is a good approximation
of the complete N-S equations. The OpenFAOM estimate shows an overestimation of the peak velocity of
2-3 % with respect to the OCW3D results. Figure 6.3 shows an example of the comparison for test T201. The
substantial difference between the estimates is that the set-up used in OCW3D is 2-dimensional and it does
not include the presence of the cap while the OpenFOAM one is 3-dimensional and it includes the presence
of the cap.
The overestimation of N-S/VOF solver is thought to be mainly due to the fact that the presence of the cap in
the flume was inducing flow contraction and therefore an acceleration of the water at the sides of the cap.
The forces recorded with that set-up were therefore perturbed by the flow contraction. In order to take this
into account, the coefficients estimation is based on a velocity reconstruction that is also accounting for this
small contraction of the flow (i.e. the one from OpenFOAM).

6.1.3. Characterization of the flow field

In order to classify the flow (always unsteady), two dimensionless numbers are used as introduced in section
2.1: the Keulegan-Carpenter number (KC ) and the frequency number (β). The computation of the latter
parameter is obtained by computing the ratio of the Reynolds number (Re) and the KC number.
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Figure 6.3: Comparison between the OCW3D horizontal velocity estimate and the solution computed by the N-S/VOF solver. Data
relative to test case T201

The Reynolds number (Re) is defined as:

Re = DU0,max

ν
(6.1)

The numerator is the product of the diameter of the structure and a velocity that, in this case, is taken as the
maximum of the horizontal velocity obtained from OCW3D when the waves are passing. The denominator
represents the kinematic viscosity (ν).

The Keulegan-Carpenter number is described in equation 2.6. That formula can be rewritten as:

KC = rπ

D
(6.2)

From a computational point of view, r is calculated integrating the velocity U0, obtained with the model
OceanWave3D, over the time in which the velocity is bigger than 0.001 m/s. Looking at the integration of
the velocity signal (see figure 6.4) one can see that the model predicts an initial part of the test with a slow
negative displacement of the particles (towards the left if the wave is propagating towards the right). When
the wave arrives, the direction of the movement reverses suddenly and the particles are quickly brought back
to their original position. Integrating the velocity signal after this flow reversal gives the total displacement of
a particle in one direction. In Figure 6.4, the top panel shows the velocity computed for test T201. The lower
panel presents the integral of the same signal (computed by means of cumulated trapezoidal integration). In
this panel, it is possible to see the slow drift of the particles for approximately 2 meters at the beginning of the
simulation and the sudden movement in the positive direction when the velocity in the top panel is positive.
The red lines highlight the period of time between the arrival of the wave and the following maximum in the
horizontal displacement. This period is then used as t in the expression r = ∫

t U0d t ′.

Using the N-S/VOF solution for the undisturbed velocity discussed earlier in this chapter is not possible be-
cause the duration of the simulation in the cases of a solitary wave was too short to apply the procedure just
described. The velocity signal, in fact, needs to be known for the whole time interval in which it remains
higher than 0.001 m/s. Simulating a longer time interval in OpenFOAM for every test cases would have in-
creased considerably the computational time. Moreover, the OCW3D estimate of the velocity does not differs
in a significant way from the N-S/VOF solver estimate in the simulated interval (see figure 6.3).

After Re and KC are defined, the last relevant parameter β can be defined as the ratio between the two. Table
6.1 shows the values of the dimensionless numbers described above for the several test cases.
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Figure 6.4: Example of the computation of the displacement r . Data relative to test case T201.

Table 6.1: Dimensionless numbers relative to the 9 test cases involving solitary waves.

Test case
Re
×105 KC

Re/KC
×103

T101 1.89 27.24 6.94
T102 2.08 36.04 5.77
T103 2.29 43.00 5.33
T201 1.77 24.47 7.25
T202 2.33 32.21 7.22
T203 2.36 36.68 6.44
T301 1.69 22.61 7.46
T302 2.30 29.83 7.72
T303 2.49 34.34 7.26

6.2. Force fits

The aim of this chapter is to determine the force coefficients of Morison and vertical force equations 2.9 and
2.11 based on the raw experimental records obtained during the experiments. In engineering practice, those
coefficients are known for a number of geometries and are heavily used in desk studies that often come with
a design.

The coefficients are derived fitting the force signal in a time window of 1.2 seconds centered at the peak of the
considered force (the positive inline force peak and the negative vertical force peak). The algorithm used was
implemented in MATLAB and it is based on the weighted least squares method described in chapter 2. The
implementation of the metrod is described in appendix D.

It has to be noted that the set-up used during the experimental campaign introduced an additional pressure
component due to the penetration of water under the base plate and presence of the base plate itself. These
two factors are obviously not observed in the case of a real installation, where the foundations extend below
the bed level and do not work as a gravity base. The presence of this bias was observable only when setting
up the numerical model, which was prepared in a way that allows to include or exclude these components.
In chapter 7, the force coefficients are computed making use of the OpenFOAM estimates.
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6.2.1. Inline force fits

In the present application, the Morison equation offers a relatively good fit to the measured force records
both with regards to the peak of the force and general shape of the signal as shown in figure 6.5. In the figure,
the decomposition between inertia and drag component of the force obtained with the force coefficients that
give the best fit is also shown. In all test cases the peak of the force is approximately for one half due to inertia
and for the other half to the drag.

Figure 6.5: Force fit obtained for the inline force recorded during test T201. The decomposition between inertia and drag is also
shown.

Even if some discrepancies are visible in the plots no attempts to fit the inline force signal with a different
equation are done. The main reasons are that the Morison equation is well known and broadly used in engi-
neering applications and, besides, that the overall fit obtained with this equation is already satisfying.

6.2.2. Vertical force fits

In the case of the vertical force, it is observed that the fits obtained with the simple lift force equation show a
clear mismatch both with regards to the general shape of the signal and the peak amplitude.

Figure 6.6: Force fit obtained for vertical force recorded during test T201.

The dependency of the said force is therefore studied with regards to other components as well. It is clear that
the simple formulation of the lift force equation, defined for steady and one-dimensional flows, is unable to
characterize accurately the evolution of the vertical force in this application. In order to suggest a formulation
that could capture better the evolution of the vertical force in time new terms are added to the original lift
force equation.
It is observed that the velocity field is unsteady and 2-dimensional. In In the physical model tests, the ratio
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H/h reached values up to 1.1, meaning that the surface elevation in some tests became more than twice as
high as in the case of calm surface. This suggested that the vertical velocity and the vertical acceleration
should also be taken into account.
The improvement in the quality of the fits obtained with the new vertical force equation bolstered the validity
of the observation just made. In this way the original horizontal drag component is coupled with a vertical
drag component and a vertical inertia component.

The resulting equation expresses the evolution of the vertical force as:

Fver t i cal =
1

2
ρCLx AU0

√
U 2

0 +W 2
0 + 1

2
ρCLz AW0

√
U 2

0 +W 2
0 +CM zρV

∂W0

∂t
(6.3)

Where CLx is the horizontal drag coefficient, CLz is the vertical drag coefficient and CM z is the vertical inertia
coefficient.

The formulation of the drag components needs a specific description in this case. Given the 2-dimensional
feature of the flow, the undisturbed velocity is written in vectorial form as −→u0 = (U0, W0). In the case of such
a velocity field, if it holds that the force on an object is F ∝ u0

∥∥−→u0
∥∥ then the decomposition between x and z

component of the force can be written as: (
Fx

Fz

)
∝ ∥∥−→u0

∥∥ (
U0

W0

)
(6.4)

Focusing on the vertical force and writing explicitly the norm of the velocity vector, it holds that:

Fz ∝W0

√
U 2

0 +W 2
0 (6.5)

For some test cases all three force components play a role in determining the total load, as shown by the
fit obtained with the new vertical force equation of figure 6.7. The component of the drag due to the hori-
zontal velocity is clearly the most important term. However, for all test cases the contribution of the vertical
acceleration is needed to come to estimate the right shape and peak amplitude of the force signal.

Figure 6.7: New force fit obtained with equation 6.3. The decomposition of the total load between the 3 components is also shown.
The summation of the dashed lines gives the total data relative to test T101.

With regards to vertical drag, its importance varies considerably from test to test. Figure 6.7 shows the case
of test T101 for which the vertical drag is contributing in a significant way to the final shape of the fit. The
relevance of including this term is instead very low for test T301 (see figure 6.8) because its amplitude remains
close to zero. Including this term is shown to be relevant also when characterizing the vertical forces obtained
by means of the numerical model as discussed in chapter 7.
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Figure 6.8: New force fit obtained with equation 6.3. The decomposition of the total load between the 3 components is also shown.
Data relative to test T301.

6.3. Coefficients results

This section describes the results of the fitting procedure presented above. The coefficients are presented
both in tabular form and by means of graphs that represent the relationship between the force coefficients
and the dimensionless parameters (Re, KC and β).
In order to study the match of the fit to the measurements, a shape error is computed as the standard devi-
ation of the difference between the experimental record and the fitted signal normalized by the peak of the
relative force (see equation 6.6).

ε= std(Fexp −F f i t ted )

|Fpeak,exp |
(6.6)

6.3.1. Inline force coefficients

The coefficients presented in table 6.2 are estimated by fitting the inline force signal by means of the Morison
equation (see equation 2.9). The analysis of the fit shown in the previous section as well as the quantification
of the error on the estimation of the peak force shows that the original formulation of the Morison equation
is suitable to fit the force signal in the case of solitary waves.

Table 6.2: Morison coefficients computed from the raw experimental force records. The errors (ε) are expressed as a percentage of
the computed signal and are estimated as in equation 6.6.

Inline force
Test case CD CM ε(Fx ) [%]

T101 1.16 0.71 6.02
T102 1.04 0.78 6.90
T103 1.75 0.13 27.50
T201 1.24 0.88 6.85
T202 1.07 0.86 7.86
T203 0.89 0.88 10.67
T301 1.35 0.85 4.96
T302 1.19 0.81 5.89
T303 1.06 0.89 7.54

The first plots of figures 6.9 regard the coefficients of the Morison equation for the inline force. The inertia
coefficient remains relatively constant, while the drag shows a slight negative trend when plotted against KC .
The parameter β is between 2000 and 7000 approximately.
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Even if the number of the data points on which to rely on is limited, the behaviour of the drag and inertia co-
efficients is in analogy with what found in Sarpkaya (2010) for the case of a single cylinder for similar values
of KC and β.
What is considerably different is the magnitude of the coefficients. The inertia coefficient found for the ge-
ometry of the velocity cap is between 0.80 and 0.90 with only one exception around 0.70, while values for a
single cylinder are close to the theoretical value of 2. With regards to the drag, the coefficient predicted here
is between 1.05 and 1.35 while for similar values of β (β = 5260) Sarpkaya (2010) found values between 0.60
and 0.80.

The differences can probably be explained considering how the frontal area and the volume of the cap are
computed in this study. As described in appendix A, the visible area in the front view is used in the Morison
equation. Therefore the area of the support columns on the trailing side of the open part of the cap are not
taken into account in the computation of the area. The flow however might feel this back part of the cap as
well. Therefore the low estimate of the frontal area is balanced by a higher drag coefficient.

In the case of the volume instead, the estimate of the top part of the velocity cap is obtained without subtract-
ing the internal hollow part. The used estimate is therefore overestimating the actual volume of the cap and
as a consequence the inertia coefficient decreases.

Figure 6.9: Force coefficients for the Morison equation plotted over representative parameters for the flow conditions. In these and
in the next plots only the results from the tests that did not involve breaking are included.

6.3.2. Vertical force coefficients

In the case of the vertical force, the raw experimental signal was fitted in two different ways. First with the
original lift force equation (eq. 2.11) and secondly with the modified formula 6.3. Table 6.3 reports the co-
efficients estimated in both ways but given the better quality of the fit obtained with the new vertical force
equation, the graphs only focus on the three coefficients of equation 6.3.

Table 6.3: Vertical force coefficients computed from the raw experimental force records. The errors (ε) are expressed as a percentage
of the computed signal and are estimated as in equation 6.6.

Original eq. New vertical force eq.
Test case CL ε(Fz )(1) [%] CL x CL z CM z ε(Fz )(2) [%]

T101 -3.76 14.54 -4.70 2.47 -2.79 9.07
T102 -3.40 11.49 -4.46 -4.24 -3.50 19.35
T103 -4.43 20.05 -4.92 1.90 -2.11 12.73
T201 -4.42 11.66 -5.61 -0.55 -5.15 3.95
T202 -3.47 11.72 -4.36 -1.12 -3.53 8.48
T203 -3.39 12.14 -3.89 -7.04 -3.22 8.84
T301 -5.10 11.52 -6.49 -0.17 -8.47 3.84
T302 -3.66 13.70 -4.76 0.57 -6.34 7.78
T303 -3.22 11.32 -4.09 -3.26 -5.16 8.98

The three vertical force coefficients do not show a particular trend when plotted over Re/KC (graph not in-
cluded) while the relation with KC only and with the value H/h (already presented in table 3.3) are more
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explicative (see figures 6.10 and 6.11). All three coefficients show a considerable variation in the range of KC
analyzed . The horizontal drag shows a positive trend when plotted against the KC number and against H/h.
The two other coefficients instead do not show a clear dependency of these dimensionless numbers.

Figure 6.10: Vertical force coefficients plotted over the KC number.

Given the importance of the vertical inertia coefficient, its dependency has been studied with respect to sev-
eral parameters. The strongest relation found is shown in figure 6.12, where the coefficient is plotted over
the ratio W0,max /U0,max . This parameter is found in literature to define the level of eccentricity of the or-
bital motion of the water particle (Sumer and Fredsøe, 2006). When the orbital motion is particularly flat
(low W0,max /U0,max ) the vertical inertia coefficient has a high negative value, while, for more round orbital
motions (high W0,max /U0,max ), it becomes smaller in absolute value .

6.4. Summary

The aim of this chapter was to give an analysis of the forces and of the force coefficients based on the raw
experimental records. It was observed that the Morison equation is able to model the inline force signal
shape and amplitude in the case of solitary waves if a good estimate of the undisturbed velocity is known. In
the case of the lift force, the original formula (eq. 2.10) is not sufficient to characterize the vertical force when
the vertical component of the velocity field is not negligible and for unsteady flows, as in the case of large
solitary waves. The new equation (see eq. 6.3) modifies slightly the horizontal drag component and takes
into account the contributions of the vertical drag and of the vertical inertia. The better fits obtained with
this new formula suggest indeed that these extra terms cannot be neglected.
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Figure 6.11: Vertical force coefficients plotted over the ratio H/h.

Figure 6.12: Vertical inertia coefficients (CM z ) plotted over the ratio W0,max /U0,max .

The analysis of the inline force fits showed that the drag and inertia component are equally important in
determining the value of the peak force. The computed coefficients for the inline force show approximately
the same dependency of the KC number as found in literature but a different magnitude. This difference can
be due to the way the frontal area and the total volume of the structure were computed.

In the case of the vertical force fits, it was observed that the three terms included in the new vertical force
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equation are not contributing in equal way and that their relative importance changes among the test cases.
The component due to the horizontal drag is shown to be the most important for determining the amplitude
of the peak of the vertical load. The relative value of the coefficient (CLx ) is always negative and it increases
with increasing KC number. The contribution of the other terms is however very important to determine the
right value and evolution of the vertical force. All vertical force coefficients show a considerable variation.
The correlation with KC and H/h is however not clear in the case of the two other coefficients (CLz , CM z ).
In particular, the change of the vertical inertia coefficient (CM z ) seems to be related to the eccentricity of the
orbital motion estimated by computing the ratio W0,max /U0,max .



7
Numerical characterization of the

loads

In this chapter the numerical model validated in chapter 5 is used to define force and moment coefficients for
the geometry of the velocity cap. Here the analysis focuses on the set-up of the cap that excludes the presence
of a base plate and therefore of any pressure corrections. In particular, the plots of the vertical force in this
chapter correspond to the lines that are labelled "OF without plate" in chapter 5. The model used is the last
presented in the chapter 5, which includes the k-ωSST turbulent closure and the use of wall functions.

The database of the numerical investigation is expanded and does not only include the original test cases
simulated during the experimental campaign. The reason is to gain more information for cases with a KC
number lower than in the original soliton tests. The test cases analyzed are therefore:

• nine original test cases on solitary waves used in the previous chapter for the validation of the model

• seven new cases on solitary waves

• five new test cases on regular waves

The coefficients found are then plotted against the Keulegan-Carpenter number, since this parameter has
already been proven useful in literature to compare different configurations of single or groups of cylinders
in oscillating flows.

The test cases that involved wave breaking are also modelled in OpenFOAM. However, the mismatch between
inline force signal computed and measured and a preliminary assessment of the dynamics of the wave break-
ing predicted by the model show that the wave breaking is not predicted in an accurate way. This leads to the
decision of not including the force coefficients relative to those tests cases (T102, T103, T203) in the final plots
of the results. The data regarding those tests are reported in red elsewhere.

7.1. Additional test cases

The nine test cases involving solitary waves allow drawing conclusions on the values of the force coefficients
for a range of KC numbers between 20 and 40 approximately. In order to expand this range and to compare
the results with different types of waves, additional tests cases are prepared. The seven new test cases on
solitary waves are prepared using the same bathymetry as the experiments while the five regular wave cases
are modelled using a flat bed.

7.1.1. Additional solitary wave tests

The boundary conditions for the solitary wave cases are once again provided by the solver OCW3D. The steer-
ing files for these computations are generated ad hoc making use of the same script by Dr. ir. Bas Hofland

65
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Table 7.1: Description of the 7 additional solitary wave cases.

Test name
(Solitons)

Bed type h [m] H0/h0 H/h Breaking Period [s]

T201_5 orig. bathymetry 0.27 0.3 0.51 no 10.0
T301_4 orig. bathymetry 0.33 0.2 0.30 no 10.0
T301_5 orig. bathymetry 0.33 0.3 0.44 no 10.0
T301_6 orig. bathymetry 0.33 0.35 0.73 no 10.0
T401_1 orig. bathymetry 0.38 0.03 0.04 no 10.0
T401_2 orig. bathymetry 0.38 0.05 0.07 no 10.0
T401_3 orig. bathymetry 0.38 0.10 0.14 no 10.0

presented in chapter 3. In order to obtain values of KC number lower than 20, the ratios H0/h0 used to gen-
erated these new steering files are 0.03, 0.05, 0.1, 0.2, 0.3 and 0.35 (in the original cases they were 0.4, 0.6 and
0.78). Table 7.1 presents the features of the additional solitary wave cases.

The obtained waves are of smaller amplitude and longer wavelength when compared to the original test
cases. In the case of the T401_1, T401_1 and T401_3, the outputs of force and moment signals by the model
show wiggles as can be seen in figure 7.1. The reason of these behaviour is still unknown but fitting the signal
with the relative equation could in any case provide an estimate of the coefficients and the fit are of good
quality.

Figure 7.1: Inline force estimate relative to test case T401_1. The signal is affected by high frequency and low intensity oscillations.

7.1.2. Regular waves

The model used for the regular waves differs from the one used for solitary waves with regards to the inlet
and outlet boundary conditions. Instead of applying the relaxation zone at the inlet, waves2Foam also offers
a range of wave theories that can be used to generate a boundary field for the variables used in the com-
putations. In the present application the regular waves are modelled by means of the stream function wave
theory.

The estimates of the target KC numbers for various values of the period (T ) and wave height (H) have been
computed by means of the linear wave theory.
Even if the stream function wave theory is based on a nonlinear formulation, the obtained results (reported
in table 7.2) differ only slightly from the target computations. Table 7.2 gives an overview of the characteristic
parameters of the regular wave cases.

The duration of each simulation is adjusted in order to include at least three full wave periods in the simula-
tion. The stream function used generated waves with an increasing level of asymmetry for growing KC as can
be seen from the comparison between figure 7.2 and figure 7.3.
With regards to the phasing between loads and surface elevation, the peak of the inline force occurs approx-
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Table 7.2: Description of the 5 additional regular wave cases.

Test name
(Regular waves)

Bed type h [m] T [s] H [m] Duration of the simulation KC

R1 flat 0.4 1.27 0.06 8.0 0.60
R2 flat 0.4 1.27 0.10 8.0 0.97
R3 flat 0.4 1.60 0.10 8.0 1.41
R4 flat 0.4 2.07 0.10 12.0 2.09
R5 flat 0.4 2.47 0.12 15.0 3.33

imately when the wave profile is at the still water level and the peak of the uplift occurs approximately at the
wave through. The loads follow therefore the same phasing found in Mogridge and Jamieson (1978) for the
case of the sealed cylinder. The phasing between uplift and inline force shows therefore that for the intake
cap studied in this thesis the analogy is bigger with a closed cylinder sealed to the bottom than to the very
open structure studied experimentally by Mogridge and Jamieson (1978).

Figure 7.2: Water surface elevation, inline and vertical force computed by the model for test case R1. In the top panel the surface
elevation probed at the location of the 5th , 6th and 7th wave gauge is shown.

Figure 7.3: Water surface elevation, inline and vertical force computed by the model for test case R5. As in the previous figure, the
surface elevation probed at the location of the 5th , 6th and 7th wave gauge is shown in the top panel.

7.1.3. Characterization of the flow field

The characterization of the flow field is done as in chapter 6, by computing the main dimensionless parame-
ters: KC , Re, and their ratio β. The KC number is computed as in eq. 2.2 for the regular test cases and as in
eq. 2.6 for solitary wave cases.
The OCW3D estimate of the velocity is used to evaluate these parameters for all cases except for the regu-
lar wave cases. The reasons, as explained in chapter 6, are that the OpenFOAM velocity signal is too short
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for the procedure to be implemented and that OpenFOAM and OCW3D velocity reconstructions are in good
agreement.

Table 7.3: Re, KC and β defined for the additional test cases. The KC number relative to the regular cases, already presented in table
7.2, are here repeated for completeness.

Test case
Re
×105 KC

Re/KC
×103

T201_5 1.46 11.64 12.58
T301_4 1.02 10.70 9.56
T301_5 1.41 12.28 11.45
T301_6 2.01 15.74 12.77
T401_1 0.19 4.93 3.77
T401_2 0.30 6.29 4.77
T401_3 0.56 8.53 6.58
R1 0.22 0.59 37.82
R2 0.36 0.94 38.07
R3 0.44 1.39 31.35
R4 0.51 2.07 24.71
R5 0.68 3.30 20.51

7.2. Force and moment fits

This section describes how the force and moment signals are fitted in order to find the force coefficients pre-
sented in section 7.3. The fits and the estimates of the total coefficients are found by applying the weighted
least squares method described in chapter 2 and applied in chapter 6. The detailed description of the imple-
mentation of this method is included in appendix D.
The time window considered consists of the whole simulation in the case of the regular wave cases and of an
interval of variable size in the case of the solitary waves. For the nine original test cases, the time window is
the same used in the experimental characterization (1.2 seconds centered at the peak of the inline force). For
the additional solitary wave test cases, the time window is increased in order to account for the longer wave
length.

The force signal analyzed is the summation of the components acting on the top part of the velocity cap and
the support cylinder. Any other force components defined earlier is dropped. In section 7.4 the analysis of
the inline forces is extended by looking at the distribution of the loads between top part and support cylinder
and by computing partial coefficients for the two different parts of the structure.

7.2.1. Inline force fits

The relative importance of drag and inertia can be determined by looking at the fits obtained. As described
by Sumer and Fredsøe (2006), the smaller the KC number the more important the inertia component. Figure
7.4 and 7.5 show the fit obtained in the case of a regular wave test and of a soliton test. The test cases on
regular waves show the lowest values of KC number and, in those cases, the bigger part of the load is due to
the inertia. For the bigger KC number computed for solitary wave cases the peak of the force is generally due
for one half to inertia and to the other half to drag.

7.2.2. Vertical force fits

The vertical force for the solitary waves always determines a pressure downwards on the velocity cap. This
load is therefore working in favour of stability. The vertical load generated by regular waves instead has both
a positive (upwards) and negative (downwards) peak.
With regards to the fitting equation to use the case of the vertical force both the original lift force equation
and the new vertical force equation defined in chapter 6 are used.

In the case of the solitary wave simulations, it is observed that the original lift force equation (eq. 2.11) could
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Figure 7.4: Fit of the inline force for test case R1. The biggest part of the load is determined by the inertia.

Figure 7.5: Fit of the inline force for test case T201. Here both drag and inertia are playing a role for determining the amplitude of the
inline force peak.

give a better fit to the new force signal computed by the N-S/VOF solver than the raw experimental force
record. Even if the peak and the general shape of the force signal remains not accurately predicted, the over-
all fit improves.
It can be assumed that some physical features of the vertical force change by neglecting the pressure compo-
nents on the base plate. In a real installation, this part of the cap is not present and, therefore, the force signal
computed by the model for the case that does not include the base plate is assumed to be more representative
to conditions of the real world.
In all solitary wave cases however, the new vertical force equation (eq. 6.3) continues to give a better peak
force fit. Figures 7.6 and 7.7 present the vertical force fits relative to test case T202 chosen since it is well rep-
resenting the overall features observed for all non-breaking solitary waves force signals. The decomposition
between the three components (horizontal drag, vertical drag and vertical inertia) showed that the biggest
part of the load is attributable to the horizontal drag. The vertical inertia is counteracting the drag force and
has a relative smaller importance, while the last component hardly influences the value of the peak force
contributing in particular way to the force fit when the force is increasing and decreasing.

Also for the test cases involving regular waves the force is first fitted with the original lift force equation and
then with the new vertical force equation. It is noted that the more the wave becomes asymmetrical with
respect to the horizontal axis the poorer the peaks are predicted by the original lift force equation. By using
this equation, the uplift peaks are underestimated and the downwards peak overestimated. The highest level
of asymmetry is observed for test case R5. Figures 7.8 and 7.9 show the fits to the relative force signal obtained
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Figure 7.6: Fit of the vertical force obtained with the original lift force equation 2.11 for test case T201.

Figure 7.7: Fit of the vertical force obtained with the modified vertical force equation 6.3 for test case T201. The decomposition
between the three components that build up the total force are also shown in dashed lines.

with the two equations.

The fits obtained with the new vertical force equation instead predict much better both the positive and the
negative force peaks (see figure 7.9) even if the overall shape of the force signal is not in perfect agreement.

Focusing the attention on figure 7.9 it can be observed that horizontal drag and vertical inertia play the most
important role in defining the peaks of the fitted signals.

7.2.3. Centroidal moment fits

The first estimates of the moment signal are obtained by means of the CFD model. The selected center of
rotation is the center of mass of the velocity cap. The convention of the signs is that the turning moment is
positive when clockwise.

The analysis of the centroidal moment offers the advantage of determining that component of the moment
due to specific geometrical properties of the object and not due to the forces acting on the cap. In order to
show the amplitude of the centroidal moment, this is compared with the linear moment (Ml ) around the base
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Figure 7.8: Fit of the vertical force obtained with the original lift force equation for test case R5.

Figure 7.9: Fit of the vertical force obtained with the modified vertical force equation for test case R5. The four force components
estimated are also shown.

of cap computed as in equation 2.12. Multiplying the inline force times the moment arm (the distance of the
center of mass from the bottom, 0.116 m) the linear moment around the projection of the center of mass at
the level of the bottom could be obtained.

In the case of the solitary wave tests, it is found that the centroidal moment computed is always between 10
and 20 % percent as big as the linear moment. This means that neglecting the centroidal moment in a design
would cause an underestimation of the moment around the base of approximately 10 to 20 % (see figure 7.10).

In the case of the regular wave tests the centroidal moment is in counterphase with the moment measured at
the base. Therefore the contribution of the centroidal moment reduces the total moment acting at the base
(see figure 7.11).

The shift of phase between the cetroidal moment and the moment at the base MO is observed to be decreasing
with KC . From approximately 180° in the case of the regular waves to approximately 0° for the high KC
solitary wave tests.
Comparing figure 7.10 and 7.11, it is observed that the evolution of the centroidal moment signal shows a
clear difference in the case of solitary waves and regular waves. In the former case, the signal often shows two
positive peaks while in the cases of regular waves one peak per wave period is observed.

As far as the fitting procedure is concerned, it is clear that the nature of the centroidal moment appears more
complex than a simple dependency of the inline velocity and the geometry as suggested by the the moment



72 7. Numerical characterization of the loads

Figure 7.10: Comparison between the overturning moment for test T202 computed by the N-S/VOF solver around the center of mass
(MCoM ), around point O at the base of the structure (see drawing 2.3, MO ) and as computed with the equation 2.12 (M f ,O ).

Figure 7.11: Comparison between the moment for test R3 computed by the N-S/VOF solver around the center of mass (MCoM ),
around point O at the base of the structure (see drawing 2.3, MO ) and as computed with equation 2.12 (M f ,O ).

equation 2.14 described in chapter 2.
In fact, the first attempts to fit the centroidal moment signal show that equation 2.14 fails in predicting the
overall shape and peak of the computed signal, and the results are not presented in this report.

As in the case of the lift force equation, the dependency of the centroidal moment is studied also with regards
to other component. What is generating the greatest part of the moment around the centroid is the distribu-
tion of the pressures on the surfaces of the cap which also determines the largest part of the inline force and
vertical force1. In order to characterize the centroidal moment with higher accuracy therefore a new fitting
equation is used to include all the terms that have been proven relevant for inline and vertical force charac-
terization. These are horizontal drag, vertical drag, horizontal inertia and vertical inertia.
The newly defined formula reads:

MCoM ,new = 1

2
ρCD,mom,x ADU0

√
U 2

0 +W 2
0 + 1

2
ρCD,mom,z ADW0

√
U 2

0 +W 2
0 +

+CM ,mom,xρV D
∂U0

∂t
+CM ,mom,zρV D

∂W0

∂t
(7.1)

In this equation, coefficients CD,mom,x , CD,mom,z are defined as drag coefficients and CM ,mom,x , CM ,mom,z as
inertia coefficients. Figures 7.12 and 7.13 show the fits obtained with the new expression for regular wave and

1A minor part is also due to the viscous shear stress.
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soliton test cases. The dashed lines show the four components of the total overturning centroidal moment
equation.

Figure 7.12: Fit of the centroidal moment obtained for test case R3.

Figure 7.13: Fit of the centroidal moment obtained for test case T202.

Both in the case of the solitary waves and regular waves, the newly obtained fits are almost perfectly matching
the moment estimate.
The analysis of all plots obtained shows that the importance of the several components varies significantly
among the test cases. In the case of the regular waves, the inline inertia is by far the most important compo-
nent determining phasing and amplitude of the load. On the contrary, for solitary wave tests all component
are approximately equally important considering their contribution to the total load.

7.3. Coefficients results

In this section the coefficients obtained through the fitting procedures described in the previous section are
presented. The coefficients are computed for the totality of the velocity cap. The results are plotted against
relevant parameters such as KC and H/h.

The coefficients computed for the breaking wave cases are not included in the following graphs. All coefficient
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results are also reported in tables in appendix F.

7.3.1. Inline force coefficients

In figure 7.14, the inline coefficients are plotted against KC . In this plot, it is easy to individuate the original
test cases on the right (the highest KC numbers), the additional solitary wave tests at the center/left and the
regular wave tests on the far left (lowest KC ). It can be observed that the drag coefficients tend to assume
bigger values for decreasing KC . The biggest drag coefficients computed are in fact relative to the regular
wave tests.
This behaviour of the drag coefficient does not correspond to what is found in literature for a smooth vertical
cylinder in oscillating flows. In his research on low KC number regimes, Sarpkaya (1986) found that for any
value of the parameter β, CD experiences a dip at approximately KC = 2−4. No dip is observed in plot 7.14
where instead the drag coefficient decreases monotonically with increasing KC .

The inertia coefficient instead shows a much smaller variation. The highest values correspond again to the
regular wave simulation and they are about 0.9. For KC bigger than 10 a small decrease is observed until the
value of 0.8 that then stays relatively constant. The evolution of the CM correlates to the case of a smooth
cylinder much better than CD . Even if the magnitude of the coefficient is considerably smaller than in the
case of a cylinder, its independence of the KC number is also observed in the results by Sarpkaya (2010) for
comparable values of β.

It is remarkable that the behaviour of the inline force coefficients does not seem affected by the wave type.
Even if an overlapping area where both solitons and regular waves results are known for the same KC number
range, no jump in the value of the coefficients between the regular waves and solitary waves is observed.

When plotting CD and CM against the dimensionless wave height (H/h), instead, the curve described by the
regular wave estimates differs from the one described by the ones of the solitary waves (see figure 7.15). It
is difficult to assess with certainty if the trend is different in the case of the the inertia coefficient because,
as already noted, it remains relatively constant. The difference is instead quite apparent in the case of the
drag coefficient which, in the case of the regular wave, has higher values than in the case of solitary waves for
similar vales of H/h.

Figure 7.14: Inline force coefficients plotted against the KC number.

In order to deepen the investigation on the inline force coefficients, the loads are also recorded for the two
parts of the velocity cap separately. Section 7.4, presents the results of that analysis which are used to under-
stand better the magnitude and the behaviour of the total coefficients presented here.

7.4. Partition of the structure

Dividing the geometry of the velocity cap in two patches, it is possible to analyze the two fractions of the
inline force independently.
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Figure 7.15: Inline coefficients versus the ratio H/h.

The aim of this section is to determine the force coefficients for the inline force relative to the two components
of the velocity cap in order to understand how the total coefficients presented in the previous section build up.
For this purpose, the force fits are computed with two new velocity estimates taken at different heights in the
water column. In the case of the computations regarding the lower cylinder the estimate of the undisturbed
velocity is given by the OpenFOAM reconstruction probed at 0.04 m from the bottom, while for the top part
the velocity is probed at 0.13 m from the bottom. The geometrical properties of the velocity cap appearing
in the fitting equation are also adjusted and they are relative to the single part of the cap considered (see
appendix A). Figure 7.16 represents in a 3-dimensional sketch the location of the probed velocity.

Figure 7.16: 3-dimensional sketch of the locations from which the velocity used for the computation of the partial coefficient was
extracted. The dimensions are in meters.

The presentation of the results is based on the dimensionless parameters Re, KC and β defined locally for the
two parts of the structure. The velocity estimates are based on the OCW3D reconstruction and they are taken
from the same respective heights discussed above and shown in figure 7.16. Table 7.4 reports the results of
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the computations for the three dimensionless numbers.

Table 7.4: Re, KC and β defined for the two components of the velocity cap.

Top part Cylinder

Test case
Re
×105 KC

Re/KC
×103

Re
×105 KC

Re/KC
×103

T101 1.91 27.24 7.01 0.92 54.50 1.69
T102 2.09 36.04 5.81 1.02 72.11 1.41
T103 2.31 43.00 5.37 1.12 85.99 1.31
T201_5 1.47 11.64 12.64 0.72 23.30 3.10
T201 1.78 24.47 7.28 0.87 48.96 1.78
T202 2.34 32.21 7.27 1.14 64.45 1.77
T203 2.37 36.68 6.47 1.16 73.39 1.58
T301_4 1.02 10.70 9.58 0.51 21.42 2.37
T301_5 1.41 12.28 11.48 0.70 24.57 2.84
T301 1.69 22.61 7.48 0.83 45.24 1.85
T302 2.31 29.83 7.76 1.14 59.68 1.90
T303 2.50 34.34 7.29 1.23 68.70 1.79
T401_1 0.19 4.93 3.77 0.09 9.86 0.94
T401_2 0.30 6.29 4.77 0.15 12.58 1.19
T401_3 0.56 8.53 6.58 0.28 17.08 1.64
R1 0.23 0.61 37.82 0.11 1.21 9.46
R2 0.37 0.97 38.07 0.18 1.93 9.52
R3 0.44 1.41 31.35 0.22 2.82 7.84
R4 0.52 2.09 24.71 0.26 4.18 6.18
R5 0.68 3.33 20.51 0.34 6.65 5.13

Figure 7.17 gives an example of the partial force time series plotted together with the total signal. In the
solitary wave test cases approximately 70 % of the total load is acting on the top part of the cap and slightly
less for the regular wave cases (60-65%).

Figure 7.17: Force decomposition for the two parts of the velocity cap.

Fitting the two force signals for all test cases allows to determine the two sets of inline force coefficients. The
numerical results are included in appendix F. The values of the force coefficients are then plotted against the
KC number in figures 7.18 and 7.19.

The results plotted in the first graph can be directly compared with the experimental data regarding cylin-
der in unsteady flows found in literature. The data by Sarpkaya (2010) for the drag coefficient on a smooth
cylinder presented in figure 2.2 relate well with the computed CD of figure 7.18. The increase of the drag until
the value of about 1 for KC number smaller than 10 is observed in the present numerical results and in the
ones from literature. The scatter observed in the right-hand part of the graph can be due to the fact that the
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Figure 7.18: Drag and inertia coefficients for the support cylinder of the velocity cap plotted over the local KC number. Given that
the diameter of the cylinder is smaller than the one of the top part the values of KC are always bigger.

Figure 7.19: Drag and inertia coefficients for the top part of the velocity cap plotted over the local KC number.

flow field that generates the force on the cylinder is also affected by the presence of the top part. Figure 7.20
shows that indeed the quality of the force fit for the signal of the force acting on the cylinder is sometimes of
poor quality. The wide shape of the force signal suggests that the velocity estimate used for the cylinder is not
representative enough of the flow close to the cylinder.
With regards to the inertia coefficient of figure 7.18, a good match with the theoretical value of 2.0 is found
for KC smaller than 10. However, unlike in the results by Sarpkaya (2010), for increasing KC only a decrease
of the inertia coefficient is observed and not a local minimum.
Overall it can be said that the loads and the coefficients found for the support cylinder of the velocity cap
show good agreement with the reviewed values of the coefficients obtained in the case of a single isolated
cylinder in unsteady flows. The differences observed can be due to the modification of the flow field caused
by the presence of both the top part and the cylinder.

The analysis of figure 7.19 instead shows approximately the same behaviour already observed for the total
coefficients. It it clear now that given that the biggest part of the force is acting on the top part of the velocity
cap, the coefficients computed for this part alone play a predominant role in defining the total coefficients.
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Figure 7.20: Force fit for the inline component acting on the support cylinder of the velocity cap. Data relative to test case T301.

As observed when describing the experimental estimate of the force coefficients, the reason for the low value
of the inertia coefficient can be related to the volume estimate that is overestimating the actual volume. Nev-
ertheless, the constant value of the coefficient is in good agreement with what found in literature for values of
β bigger than 5000. In the same way for the drag coefficient, it can be assumed that the frontal area suggested
is too small for small KC number where every small column between the openings of the top cap feels the
flow almost individually.

Figure 7.21: Force fit for the inline component acting on the top part of the velocity cap. Data relative to test case T301.

Putting the results of figure 7.18 and 7.19 together, it can be understood that the value of the force coefficients
of the total structure are mainly determined by the coefficients found for the top part. CD for the total struc-
ture is approximately the one found for the top part of the cap reduced of an offset while CM resemble closely
the inertia coefficient of the top part for KC bigger than 20 and it is slightly increased for lower values of KC
due to the effect of the cylinder.

7.4.1. Vertical force coefficients

In this and in the next section the coefficients are again computed for the totality of the structure.
In the case of the vertical force characterization a direct comparison of the experimental and numerical re-
sults was not carried out. In chapter 5, the vertical loads were still showing a considerable mismatch. Com-
paring force coefficients relative to those signals would not produce valuable information as the origin of the
difference in the force signals is still not fully explained. As in chapter 6 the analysis is focused on the coeffi-
cients relative to the new vertical force equation 6.3 which has been shown to provide a better match with the
force signal. The estimate of the original lift coefficient CL is only reported in table F.3 included in appendix
F, together with the ones obtained with the new formula, and it is not included in the following graphs.
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Figure 7.22: Horizontal drag coefficient versus the KC number. Figure 7.23: Vertical drag coefficient (CLz ) versus the KC num-
ber.

Figure 7.24: Vertical inertia coefficient (CM z ) versus the KC number.

The estimates of the three coefficients of formula 6.3 are plotted here against the KC number and the dimen-
sionless wave height.
The expansion of the data set made the picture of the vertical force coefficients more complex and the range
of values that the vertical force coefficients assume is much wider than in the case of the inline force ones.
The dependency of the KC number is depicted for the three force coefficients in figures 7.22, 7.23 and 7.24.
The correlation with the H/h ratio is clear only in the case of the horizontal drag coefficient CLx and therefore
only this coefficient is plotted against this ratio (see figure 7.25).
For the three coefficients, the values and the trend shown change considerably between regular waves and
solitons. besides, among the solitary wave cases, a big difference in value is observed between the last three
additional cases (T401_1, T401_2 and T401_3) and the others. The computed values of KC and H/h were
the lowest for these three test cases since the generated wave is low, the shoaling is contained and the water
depth is the highest.

In the case of the regular waves, the horizontal drag coefficient CLx does not show a clear dependency of the
KC number nor of H/h and it ranges between -16 and -11 approximately. In the case of the solitary waves
it instead shows a positive trend when plotted both against KC and H/h. The slopes of the curve seems
changing depending on the KC number: steeper for low values of KC and flatter for high ones. The solitary
wave cases corresponding to the lowest KC numbers give values of CLx between -40 and -13 while in the case
of the other test cases the values stays bound between -6 and -1.5.

With regards to the vertical inertia coefficient (CM z ), in the case of regular waves, its value decreases changing
sign with increasing KC number, from 2.6 to -5.2. In the case of the solitary waves, the vertical inertia coef-
ficient remains always negative. This coefficient reaches big negative values (from -60 to -30) in the solitary
wave cases corresponding to the lowest KC numbers. As for CLx , the lowest values and the highest variation
of the vertical inertia coefficient CM z are found for low KC but as can be seen in figure 7.24 when the overall
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steepness of the graph decreases for higher values of KC , this coefficient stays in the range between -8 and 0
approximately without showing a clear dependency of KC .

It is more difficult to characterize the vertical drag coefficient (CLz ). In the case of the regular waves, this
coefficient correlates negatively with KC and it varies between 10 and 5 approximately. In the case of the
solitary wave cases it does not show a clear trend when plotted against KC . Even though the relevance of
the vertical drag has been proven by the goodness of the fit obtained, it is still uncertain how accurate the
estimate of the relative coefficient is. Especially for test cases T401_1, T401_2 T401_3, the vertical velocity
amplitude is very low compared to the one of the vertical load and the fitting method determined at times
high values (positive and negative) of the coefficient even if the contribution to the total fit remaines low.

Figure 7.25: Horizontal drag coefficient versus the dimensionless wave height H/h.

In the case of CLz and CM z a correlation is also found with the eccentricity of the wave defined as W0,max /U0,max

(see figures 7.26 and 7.27). Neglecting the three data points on the left-hand side of the graph of figure 7.26
are relative to solitary wave tests involving the lowest low KC number, the vertical drag coefficient shows a
mild positive correlation with the eccentricity parameter W0,max /U0,max . Such a correlation has not been
found when fitting the experimental force signals of the six non-breaking solitary wave cases.

Looking at figure 7.27, the vertical inertia coefficient correlates much better with this property of the wave
than with the KC number. For a value of the eccentricity equal to 0.15 approximately the coefficient is com-
puted for both solitary waves and regular waves but they do not match. Even if the comparison is based on
a small number of points this suggests that also other characteristics of the wave may influence the value of
the vertical inertia coefficient.

Figure 7.26: Vertical drag coefficient (CLz ) versus the ec-
centricity of the orbital motion expressed by the parameter
W0,max /U0,max

Figure 7.27: Vertical inertia coefficient (CM z ) versus the ec-
centricity of the orbital motion expressed by the parameter
W0,max /U0,max .

To conclude, it is clear that further research is needed on the the newly defined vertical force coefficients for
regular and solitary waves. The need of these coefficients is more urging in the case of the uplift generated by
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regular wave, while in the case of a solitary wave the dynamic pressure downwards can probably be omitted
in a design stage because it would only improve the overall stability of the structure.

7.4.2. Centroidal moment coefficients

This section focuses on the four new coefficients defined in equation 7.1. As in the case of the vertical force
coefficients, the moment coefficients assume different values and show different trends between regular and
solitary wave cases. Figure 7.28 shows the results for the four coefficients extracted for the centroidal mo-
ment. The relation with other parameters such as H/h has been studied but no clear correlation is found and
the plots are not included here. For all coefficients the amplitude stays on the order of 10−1 except for the
case of CD,mom,z (vertical drag moment coefficient) which is one to two order of magnitude bigger. One last
observation is that the coefficients computed for solitary waves are always positive the only exception being
CM ,mom,x (horizontal inertia moment coefficient) which is always negative. In the case of the regular waves
instead the coefficient often change sign the only exception being again CM ,mom,x which stays negative.

Figure 7.28: Centroidal moment coefficients versus the KC number.

As for the vertical force coefficients, the moment coefficients have been defined in this thesis for the first time
and it is not recommended to use the values found in a design. However this results can be used as a starting
point for further research.

7.5. Influence of the discharge

In order to model a case more representative of the working conditions of the velocity cap, two additional
simulations (one for the solitary waves and one for the regular waves) are considered including the effect of a
discharge through the velocity cap.

7.5.1. Numerical set-up

The two simulations are identical to test cases T201 and R3 with regards to wave conditions, domain size and
boundary conditions. However, the geometry of the velocity cap is modified in order to allow a discharge to
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flow through it. The outlet of the pipe is modelled with a new patch on which the boundary conditions for
pressure and other variables are set to a zero gradient and the velocity to a uniform constant value to control
the discharge. The value of the velocity in the internal field of the computational domain is instead set to zero.
The simulations therefore include a few seconds before the waves reach the velocity cap so that the velocity
field in the space inside the and closely surrounding the cap can adjust to flow induced by the discharge. This
condition and the new velocity cap used are shown in figure 7.29.

Figure 7.29: Longitudinal cross-section at the center-line of the new geometry used during a simulation. The red arrows have a
dimension proportional to the velocity of the water. At instant depicted in the figure no wave has arrived at the velocity cap yet.

The different geometry of the velocity cap also determines a different vertical load in absence of the discharge
(hydrostatic conditions). In order to determine the total force in absence of any flow, in fact, the model
integrates the pressure field over all surfaces of the velocity cap. The integral over horizontal surfaces results
in the vertical component of the force. Given that the total horizontal surface used in the hollow model is
different from the one of the full one, the hydrostatic vertical force differs as well. The hydrostatic component
of the vertical force is subtracted before presenting the results and it is determined by means of a separate
simulation run with the same hollow geometry but no discharge nor waves.

The value of the discharge is derived from the study by Christensen et al. (2015). The shape of the velocity cap
analyzed in their paper is similar to the one studied here. Therefore the discharge applied at pipe outlet is
obtained by means of scaling considerations from the value used by the authors. The scaling factor takes into
account the different dimension of the velocity cap. In the numerical simulation by Christensen et al. (2015)
the vertical pipe has an inner diameter of 5.5 m while in the modified shape of the cap used in this thesis
the inner diameter is 0.076 m. The computations done to come to the final value of the velocity imposed
as boundary conditions are summarized in table 7.5. The exact value of the velocity used in the analysis by
Christensen et al. (2015) is not known and the value reported here is an estimate. In the present work, for
simplicity instead of the result 0.074 m/s, the value of 0.1 was used.

Table 7.5: Main dimensions needed to come to the value of the velocity to apply to the pipe outlet. The scale computed between the
model used in this thesis and the model used by Christensen et al. (2015) is 1:72.37.

Christensen et al. (2015) Present thesis

Inner pipe diameter [m] 5.5 0.076
Area of the pipe [m2] 23.75 0.0045
Discharge [m3/s] 15 0.00034
Velocity [m/s] 0.63 0.074 → 0.1

7.5.2. Force analysis

In the plots of figure 7.30 and 7.31, the inline and vertical loads relative to the two test cases involving the
discharge are plotted together with the results obtained for the same test cases without a discharge.

The results show that the difference on the inline load is very small. In both cases the case, including a
discharge results in a slightly larger inline force but the difference is approximately 4 % in the case of the
solitary wave and less than 2 % in the case of the regular waves. This leads to the important conclusion



7.5. Influence of the discharge 83

Figure 7.30: Inline and vertical force for test case T201. The re-
sults with and without discharge are plotted together. The simu-
lated time interval extends from second 309.5 until second 315

Figure 7.31: Inline and vertical force for test case R3. The results
with and without discharge are plotted together. The entire sim-
ulated time interval is plotted.

that no big differences are expected with regards to the inline force if the simulations include or not the
discharge considered here. The findings of the previous sections are therefore expected to be only slightly
underestimating the more realistic scenario in which the velocity cap is discharging water when attacked by
the waves. With regards to the vertical loads instead, its amplitude decreases when a discharge is taken in by
the cap. Both the force downwards determined by the solitary wave and the uplift generated by the regular
waves are smaller in absolute value when a discharge is present. The decrease is about 22 % for the maximum
pressure downwards determined by the solitary wave and about 24 % for the maximum uplift determined by
the regular waves.

The findings can be compared with the results by Mogridge and Jamieson (1978) who also modelled a dis-
charge passing through a diffuser cap. In their study the discharge was exiting the cap and being discharged
in the ambient flow while here the opposite happens. Nevertheless, the difference in inline load observed
above compares quite well to what stated in their analysis.
In the case of the vertical load the authors observed a considerable increase of the uplift force determined
by regular waves. This increase can be explained by the fact that the continuous flow of water is exerting a
vertical push on the cap while flowing out.

The force coefficients for the newly obtained force signal are computed using the undisturbed velocity probed
in the simulations that do not include the discharge and the geometrical properties determined for the filled
velocity cap. Comparing the force coefficients for the two scenarios (discharge, no discharge) for the two test
cases shows that in the case of the inline load the most considerable difference is on the drag coefficient. In
the study by Christensen et al. (2015), the authors suggested that this additional flow of water could change
the angle of attack and therefore the added mass of the structure. However it is observed here that the biggest
variation determined by the discharge influences the drag rather than the inertia coefficient.

In the case of the vertical load it is more difficult to relate the differences in the load to the differences in the
coefficients. However, the variation interests in the most significant way the vertical inertia coefficient which
is defined as an added mass coefficient. The argument by Christensen et al. (2015) can therefore be valid with
regard to the vertical added mass. The fact that the vertical component of the flow is deflected at the height
of the openings by the presence of the discharge might be responsible for a reduction of the volume of water
inside the cap that is interacting with the outer flow and, as a consequence, of the added mass. The reason
why this effect is so mild in the vertical can be explained by the fact that the amplitude of the horizontal
velocity is considerably larger than the vertical one and therefore the deflection operated by the discharge is
not as relevant.
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Table 7.6: Drag and inertia coefficients computed for the inline load in the case with and without discharge.

Test case CD CM CLx CLz CM z

T201
Disch. 0.99 0.80 -2.12 4.60 -0.64

No disch. 0.94 0.79 -3.34 2.92 -2.00

R3
Disch. 2.74 0.94 -10.50 9.39 0.40

No disch. 2.57 0.93 -13.72 9.80 0.75

As a concluding remark, it is good to note that the uplift determined by the regular waves is reduced by the
effect of the discharge and this is working in favour of safety. Therefore the coefficients determined in absence
of discharge are stricter parameters which can be more relevant in a design.

7.6. Summary

In this section the numerical results computed by the N-S/VOF solver are used to define coefficients for the
inline force, the vertical force and the overturning moment around the centroid.

It was found that the inline coefficients correlate best when plotted against the KC number. The definitions
of KC used differ for solitary wave and regular wave and the correlation found suggests that they manage to
link the properties of the flow in the two wave conditions.
The specific values of the coefficients are mainly determined by the fraction of the load acting on the top part
of the cap as could be observed by looking at the partition of the inline load between top part of the cap and
support cylinder.

Vertical force and moment coefficients found are plotted against several parameter and the best correlation
is found with the KC number. In the case of the vertical force coefficients CLz and CM z , a correlation is also
found with the eccentricity of the wave orbital motion expressed as W0/U0. However more research is needed
in order to better characterize these two loads.

At the end of the chapter the analysis of the more realistic scenario of a discharge flowing through the cap
is also presented. This condition has a really small effect on the inline load while the vertical force results
reduced in amplitude. This decrease is thought to be related to a reduction on the vertical added mass of the
cap caused by the flow deflection due to the discharge.
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Discussion

In order to analyze the significance of the concepts and findings presented in the previous chapters and their
relations with previous works, the discussion is organized as follows. At first, the newly suggested vertical and
centroidal moment equations are discussed. Secondly, the validity and limitations of the numerical model
validated in this thesis are discussed. Finally the focus is laid on the comparison between the inline force
coefficients estimated in this thesis and the results found in literature.

8.1. Vertical force and centroidal moment equations

The equations most commonly used in literature for the characterization of inline force, vertical force and
centroidal moment have been applied in the present analysis in order to estimate the relative coefficients.
The utility of these coefficients is that they allow a reconstruction of the loads on a particular structure with an
estimate of the undisturbed velocity as the only input. However, the load reconstructions obtained with the
original lift force and overturning moment equations provide a poor fit to the records. It is worth observing
that in the case of the centroidal moment reconstruction the numerical estimate is the only one available and
the results could be compared with any experimental evidence.

The original equations 2.11 and 2.14 are derived for one-dimensional steady flows in which it holds that
W0 ¿U0 and therefore any inertial and vertical component can be neglected (Wei Zhang, 2011).
In the present application instead, the undisturbed flow is unsteady and it has a strong component along the
x axis and a smaller component on the z axis. In the case of the vertical force characterization, an attempt has
also been made to use a formulation of the Morison equation over the vertical but the obtained results are
not significantly better. This approach is often followed in the case of the characterization of the forces on a
horizontal cylinder under the action of waves (Ramberg and Niedzwecki, 1982), but in the case of a structure
sealed to the bed like the velocity cap it did not result in satisfactory force fits. It is shown that the effect
of the vertical drag (dependency of W0

∥∥−→u0
∥∥) and of the vertical inertia (dependency of ∂W0/∂t ) can not be

neglected in order to come to good force fits.

With regards to the centroidal moment all components which are contributing to the total vertical or inline
force are observed to be relevant. To the author’s knowledge no studies have been carried out to determine a
fitting equation for the centroidal moment characterization for any kind of structure in highly unsteady flows.
In the cases reviewed in literature, the flows under analysis were steady or slowly varying and the simple
formulation of the centroidal moment equation (eq. 2.14) was giving sufficiently good results (Kornel Kerenyi
and Guo, 2009). In the case of a submerged structure under the effect of waves, the said equation does not
capture accurately the evolution of the centroidal moment and its use is not recommended in a design.

The newly suggested formulas come from the considerations about which flow components may be responsi-
ble for the additional load or moment on the velocity cap and their validity is supported by the improvements
on the fits obtained.
The coefficients results, however, both in the case of the vertical force and the centroidal moment are far less
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consistent than the ones regarding the Morison coefficients and it is more difficult to characterize their de-
pendency of parameters such as the KC number. This feature is common also for the results regarding the
old formulation of CL according to the lift force equation. It was already pointed out by Sarpkaya (2010) that
in the case of a cylinder under the effect of waves the transverse force coefficient CL experiences dramatic
changed at vortex shedding stages. For the case of an intake cap, the characterization of the vertical force
and the centroidal moment due to solitary and regular waves is not possible by means of the conventional
formulas but the study on the dependencies of the newly defined coefficients still needs to be deepened.

8.2. Validity of the OpenFOAM model

The OpenFOAM model presented in this thesis is an important tool that has the potential to assess the loads
on the velocity cap. However the validation process pointed out several aspects which still show discrepancies
between the model and the experimental data. The presentation and quantification of these discrepancies is
important in the perspective of a safe utilization of the model for design purposes.

8.2.1. Experimental and numerical reconstruction of the velocity field

The PIV measurements on the center-line of the velocity cap allowed a direct comparison with the flow field
computed by the CFD model. The Reynolds-averaged results show consistent differences with the PIV en-
semble averaged results with regards to the flow separation on the top of the cap and the velocity profile of
the jet coming out of the openings of the cap.

In terms of force reconstruction the observed mismatch is certainly having an effect even if it can be assumed
that the influence on the inline force estimate is low.
All the forces acting on the structure are computed by the model as the summation of pressure forces and
viscous forces. The former are determined integrating the computed pressure field over the surfaces of the
velocity cap while the latter are due to the viscous shear stress acting tangentially to the cap surfaces. The
forces computed as the integration of the viscous shear stress over the cap patches, in fact, do not exceed 3 %
of the total inline load, which is in agreement with what reported by Sumer and Fredsøe (2006). Therefore the
biggest part of the load is determined by the pressure forces. The mismatch observed in the flow field recon-
struction at the top of the structure is likely to cause a wrong pressure field and shear stress reconstruction.
However the former does not results in a net horizontal component and the latter influence the total load
only for a fraction of the 3 % already computed.
Therefore, although it is true that the flow separation and the vortex shedding is not accurately captured by
the model, these features have little effect on the determination of the peak of the inline load which shows a
good agreement with the measurements.

The poor agreement with the tail of the inline force signal and also the error on the peak of the vertical force
can be due to an incorrect velocity reconstruction of the model which resulted in an incorrect pressure field.

8.2.2. Experimental and numerical estimate of the inline force coefficients

The comparison between the experimental and numerical estimate of the inline coefficients is used to an-
alyze the degree of accuracy to which the force components are predicted by the model. The coefficients
presented in chapter 6, however, are obtained fitting the force records affected by the experimental bias. The
pressure component on the base plate determines a difference in the force estimation. The two force signals
(numerical and experimental) are therefore simply not comparable since they represent different set-ups.
Hence, the coefficients are re-computed for the corrected force signals presented in chapter 5. Those force
estimates have been used in that chapter to show how the numerical results compare to the experimental
estimate of the forces.

The comparison is presented in figure 8.1 and it is based on the six original solitary wave cases that did not
involve breaking. The inertia coefficients estimated in the two cases are very close and they assume values be-
tween 0.8 and 0.7. A bigger difference is observed with regards to the drag coefficient. The CD estimated fitting
the N-s/VOF solver results is generally smaller than the one estimated form the experimental records. The
underestimation increases with decreasing KC number reaching up to 19 % in case of test T301 which corre-
sponded to the lowest KC number of these six simulations. One possible reason for the observed mismatch
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can be that numerical model does not predict accurately enough the evolution of the velocity in proximity
of cap. This would result in an underestimation of the form drag and the skin friction (viscous shear stress).
However it is important to be also aware that the original force measurements could not be used directly and
there is no possibility to assess with certainty how closer to reality the suggested correction brings the results.

Figure 8.1: Comparison of the inline force coefficients plotted over KC for the six test cases simulated both in physical and numerical
model tests. The experimental values are obtained with the corrected force signals (exp. corrected).

It is important to note that the decomposition between drag and inertia and the consequent coefficient esti-
mates are highly dependent of the synchronization used between numerical and experimental time axis. As
presented in chapter 5 the validity of this type of synchronization allows to match the wave profiles at the
sixth wave gauge in the best possible way. However, in this way, one loses information on the differences
between the wave celerity estimated numerically and experimentally.
The origin of the observed difference and the influence of the wave celerity difference on the undisturbed
particle motion was not investigated in this thesis.

8.3. Comparison with previous works

The coefficients found in the case of the vertical and moment equations formula have not any documented
counterpart in literature and therefore no direct comparison can be made. In the case of the inline force
instead many studies have been carried out to classify the inertia and drag coefficients on several geometries.

The coefficients found by Sarpkaya (2010) for a single cylinder in sinusoidally oscillating flows are first ana-
lyzed in comparison with the numerical results. The plots of the inertia coefficient found for the geometry
of the velocity cap against the KC number (see figure 7.14) showed a similar trend to the one reported by the
author for the same range of KC and similar values of β. The magnitude however is different. The drag coeffi-
cient is instead showing both a different behaviour and magnitude when plotted against the same parameter.
The study by Sarpkaya (1979) focused on a more similar set-up to the present thesis, analyzing two configura-
tions that involved a central pipe surrounded by a circle of smaller cylinders. The values reported by the au-
thor for the inertia coefficients do not compare with the numerical results of this study. However the negative
trend observed for CD when plotted against KC is a common feature. The different value of the coefficients
found for the velocity cap can be explained based on the estimates of the volume for the inertia coefficient
and of the frontal area in the case of the drag coefficient. The way in which these constants were estimated is
overestimating the actual volume of the cap and underestimating the actual area of all the surfaces that face
the flow.
The clear negative correlation between CD and KC can therefore be explained by considering the evolution
of the flow regime. For low KC numbers the vortex detachment stays contained and the interaction of the
wakes shed by the several vertical columns between the openings in the top part of the cap weakly interact
with each other. The area that faces the flow is therefore underestimated if only the area that is visible in
the front view is considered. In the case of high KC number, the interaction of the wakes is probably heavily
influencing the drag force and the flow feels the top part of the cap more as a whole. In this situation, the
frontal area becomes a more accurate estimate of the surface of the structure that faces the flow and the drag
coefficient decreases consequently to a value close to 1. For the considered values of the frequency number
β, the inertia coefficient does not show a big variation. With this regard, it can be noted that for such high
numbers of β the added mass does not change considerably for changing KC .
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Finally a comparison with the work by Hecimovich (2013) is also addressed. In his thesis, the author analyzed
the inline force coefficients for an intake cap which showed a more open geometry than the one of the cap
used in this thesis project. The drag coefficient reported is very close to the one found in this study and
it shows a similar trend when plotted against KC . The values and the trend of the inertia coefficients are
instead different. The difference regarding this parameter cannot be fully explained but it can be related to
the different geometry of the velocity cap analyzed: more open in the case of study of 2013 and more bulky in
the present application.
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Conclusions

The presentation of the conclusions is given in form of answers to the research question presented in chapter
1. After the research questions have been answered, this chapter also contains the recommendations for
further studies.

The main research question has been formulated as:

"How to characterize the forces on a submerged velocity cap in unsteady flows?”

The answer to this complex question has been sought by by splitting it into three sub-questions.

1. What are the characteristic flow features with regards to turbulence and to ensemble averaged flow field
along the center-line of a velocity cap under unsteady flow (solitary waves)?

The study of the flow field has been carried out through PIV measurements taken for the test cases involving
solitary waves. In all cases, flow separation occurs even for small velocities due to the sharp edges of the
velocity cap. In particular a recirculation zone creates at the top leading edge of the cap which extends with
time when the wave is passing. The flow is also observed to develop through the cap as it is shown by the jet
coming out of the cap at the height of the openings at the trailing side.

2. How to characterize the forces and the turning moment on a velocity cap under different types of wave
loads by means of the Morison, lift force and the turning moment equation models?

The Morison equation is able to provide good force fits for the inline force signal. It is observed that drag and
inertia components contribute in equal amount to the determination of the peak inline force due to solitary
waves.
The characterization of the vertical load and of the centroidal moment, instead, is done by means of different,
newly suggested equations which include new terms to better describe the evolution of the relative load. In
the case of the vertical force the contributions that are shown to be important are the horizontal drag, the
vertical drag and the vertical inertia , while in the case of the centroidal moment they are the horizontal drag,
the vertical drag, the horizontal inertia and the vertical inertia. The new equations (eq. 6.3 for the vertical
force and 7.1 for the centroidal moment) are shown to provide much better fits to the load records than the
original equations (eq. 2.11 and 2.14).

3. To what extent can the loads and the flow field be reproduced with a detailed CFD model?

In order to come to a validation of the model the the use of a turbulence closure is necessary. The N-S/VOF
solver used with a slightly modified version of the standard k-ωSST turbulence closure gives a reconstruction
of the inline load that gives an error on the peak of the prediction within 8 % with respect to the measured
forces. In the case of the vertical load the observed mismatch reaches 14 %.

The flow field reconstruction captures with a good accuracy the development of the flow when it remains
potential around the structure as the comparison with the PIV measurements has shown. However where the
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structure is inducing turbulence in the flow the prediction of the model shows differences from the measure-
ments that in some areas are considerable.

To dig deeper in the capabilities of the OpenFOAM, the force and moment coefficients were computed from
the numerical estimates of the loads obtained for a set of simulation including solitary and regular wave
cases.
The fits of the inline force showed that inertia and drag are equally contributing in determining the peak
inline force in the case of the solitary wave cases, while inertia is dominant in the case of the regular wave
cases. Drag and inertia coefficients correlate well with the two definitions of KC number adopted for regular
and solitary waves and it seems that the coefficients results between regular and solitary waves converge to
the same values for similar value of KC . The inertia coefficient varied very little throughout the simulations,
assuming values between 0.75 and 0.95. The drag coefficient assumed a wider range of values: from 2.8 in
the case of low KC until a relatively constant value of 0.95 for KC bigger than 10-15. The comparison with
the coefficients obtained from the corrected experimental records shows that the inertia coefficient is in good
agreement while the drag coefficients results slightly underestimated by the model and the underestimation
seems increasing with decreasing KC .
The coefficients defined for the vertical force and centroidal equation experience a considerably bigger range
of variation and they show different trends and values depending on the type of wave analyzed.

The main results regarding the coefficients are summarized in table 9.1.

Table 9.1: Summary of the force and moment coefficients. The minimum maximum and mean value are computed without consid-
ering the three test cases for which breaking was observed.

Solitary waves Regular waves
Coefficient Min Max Mean Min Max Mean

CD 0.91 1.30 1.01 1.80 2.81 2.43
CM 0.74 0.93 0.81 0.91 0.95 0.93
CLx -39.88 -2.63 -8.90 -15.82 -11.11 -13.82
CLz -12.41 29.92 2.38 5.80 10.34 9.02
CM z -65.28 -0.70 -14.42 -5.21 2.60 -0.53
CD,mom,x 0.10 0.16 0.13 -0.15 0.21 0.09
CD,mom,z 1.16 6.28 2.96 -1.83 1.32 -0.22
CM ,mom,x -0.22 -0.07 -0.16 -0.11 -0.10 -0.11
CM ,mom,z 0.02 0.30 0.19 -0.08 0.03 -0.03

The capabilities of the OpenFOAM model are also explored by simulating the case of a discharge passing
through the velocity cap. According to the computational results the inline force due to a discharge taken in
by the cap is higher by few percents (2 - 4 %) while the vertical load is considerably smaller in amplitude (22 -
24 %). Computing the Morison coefficients in the two cases shows that largest variation interests CD meaning
that the perturbation of the flow field due to the discharge affects more the drag force than the added mass
properties of the structure. The considerable variation observed for the vertical force can instead be related
to a variation of the vertical added mass due to the fact that the discharge changes the angle of attack of the
flow.

9.1. Recommendations and future works

The final recommendations regard critical aspects observed during the research.

• In first place, the experimental set-up used to study the loads on the velocity cap determined a force
bias that needed to be taken in account when comparing those records with the numerical results. For
future campaigns, a set-up needs to be prepared such that the water penetration under the base plate
is prevented.

• With regards to the numerical model, it was noted the importance of obtaining a good mesh in the
region near the structure. In chapter 5 it is observed as the OpenFOAM utility used to generate the
mesh failed in properly refine the mesh close to some edges. In order to improve the validity of the
results, the mesh should be correctly refined in this regions. This together with a sensitivity analysis
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on other turbulence closures could lead to better understanding of the discrepancies observed and
possibly to an improvement of the force results.

• Finally, it needs to be pointed out that the coefficients reported for the vertical force and moment fits
can be the object of deeper research and for the time being it is not recommendable to use the results
reported in this thesis for a design.

Looking at the future, possible further developments are listed below.

• The present project could not exploit in the analysis all the data collected during the experiments. The
next phase of the research on load characterization for a velocity cap could focus with more detail on
the irregular wave and N-wave tests not considered here. An experimental estimate of the force coeffi-
cients would be extremely useful, especially for the cases on irregular waves where the KC number is
generally lower than for solitary waves. This could allow assessing whether the underestimation of the
drag coefficients persists and if it evolves in some way and whether the estimate of the inertia coeffi-
cient remains in good agreement with the experimental results.

• The analysis on the dependency of the vertical force and moment coefficients can be object of deeper
research. This could be achieved by applying the OpenFOAM model to other wave conditions. Looking
at the plots obtained for the dependency of the several force and moment coefficients of the dimen-
sionless number discussed, it can be argued that the addition of test cases in the same range of KC but
for different values of other parameters (for instanceβ and W0/U0) would give more information on the
coefficients themselves and on the performances of the model. The use of the coefficients in a design
could in fact only follow from the full understanding of their dependencies of relevant flow parameters.

• In the perspective of preparing a tool that could aid the design on many sides, a coupling with other
numerical models could be an asset. Seeing the importance of the foundations for such an offshore
submerged structure a geotechnical model that could compute soil deformation and bearing capacity
would be beneficial.
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A
Geometrical properties of the

velocity cap

The dimensions of the velocity cap are derived from the original technical drawing of the velocity cap under
analysis and are expressed in millimeters. The dimension are obtained scaling down the velocity cap by a
factor 46.25 (see chapter 3).

Figure A.1: Front view of the velocity cap.

The model-scale velocity cap is composed by a full vertical cylinder and an open top part and so is the vir-
tual model used in all CFD simulations that do not include a discharge through the cap. In the case of the
CFD simulations involving a discharge, instead, the geometry of the velocity cap is different and the verti-
cal cylinder is hollow. However, in all computations of the force and moment coefficients (therefore also the
ones in which the velocity cap is hollow) the value of the frontal area and of the volume are the one presented
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98 A. Geometrical properties of the velocity cap

hereafter which assume that the structure is not hollow.

A.1. Frontal area

Drawing A.1 is then used for the determination of the frontal area A and the total volume V used in the force
formulas (ch. 6). Looking at the sizes reported, the frontal area is determined summing a component for the
top part of the cap and one for the neck drawn in different colours.

A1 = 220∗54.1− (13+8)∗54.1 = 17432mm2 (A.1)

A2 = (2∗10.8+2∗110.3)∗10.8/2+ (83.2−2∗10.8)∗110.3 = 6915mm2 (A.2)

Which give a total area of 24347 mm2.

A.2. Volume

With regards to the volume, first the area of the octagon of the cap and of the bases of the cylinder are com-
puted. The diameter is not constant for the height of the neck and this is taken into account.

Aoc = 2202 −2∗ (60.52) = 41079mm2 (A.3)

Ac y,1 = π

4
∗ (110.3+10.8)2 = 11518mm2 (A.4)

Ac y,2 = π

4
∗110.32 = 9555mm2 (A.5)

Then the volumes:

Vtop = Aoc ∗ (54.1+17.3+13) = 3467110mm3 (A.6)

Vneck = Ac y,1 ∗10.8∗2+ Ac y,2 ∗ (83.2−10.8∗2) = 837367mm3 (A.7)

Which give a total volume of 4304476 mm3. For simplicity it was preferred not to subtract the empty volume
that is inside the top part of the cap.

A.3. Center of mass

The center of mass, also called centroid, is a property of the geometry for the cap. For the complicated shape
of the velocity cap, the open-source software Salome was used to compute this value. The computations
does not take into account the bottom plate that is inserted in the floor of the flume. The computation of the
center of mass height is based on the model whose vertical cylinder is filled. The computed centroid is 11.61
cm above the flume floor and this corresponds to the center of mass of the coloured part of the cap in figure
A.1 (yellow plus light blue).



B
Irregular wave tests

Similarly to the solitary wave testes, the irregular waves tests are also 9 and come from the combination of
the same three water depths described in 3.1.3 and 3 different spectra (and therefore different HS ).

In table B.1, the specification of the irregular waves tests are relative to the steering files properties. In the last
column, the number of repetitions of the test (only one in this other tests) is replaced by the total duration of
one simulation.

Figure B.2 and B.3 show the horizontal and vertical forces peaks per single wave plotted against the ratio
H/h. Even if the peaks of the vertical forces oriented downwards were generally slightly bigger than the
one oriented upwards, the uplifts are more important from the poin of view of a design. It is important to
remember that the value of H for the irregular waves is the distance between the wave trough and the wave
crest obtained by means of a zero-crossing analysis. This is different from the case of the solitary where the
surface elevation always stands above the still water level.

As found by Cornett et al. (2015) the inline force peaks show a positive linear trend when plotted against H/h.
Furthermore, differently form the case of the solitary waves where the maximum vertical force is a pressure
downwards and no lift was observed, in the case of the irregular waves the uplift was almost as important as
the downward component.
It is interesting to note that Mogridge and Jamieson (1978) found that, in the case of an open diffuser cap,
the maximum uplift and the maximum inline force occurred both approximately at mean water level. The
situation observed here is different (see figure B.1). The peak inline force is occurring at MWL while and the
peak uplift is observed at the wave trough. This behaviour resembles more what found by the authors in the
case of a submerged sealed cylinder. This can mean that the loads on the velocity cap analyzed in this thesis
do not differ much in nature from the ones on a submerged cylinder and that the openings of the cap are not
so important to determine secondary internal flows that can generate the phase lag observed by Mogridge
and Jamieson (1978).

Table B.1: Description of the 9 test cases involving irregular waves.

Test name
(Irregular waves)

Water depth (h)
[m]

Hs [m] Tp [s] Test duration [s]

JS101 0.58 0.1 2.07 518
JS102 0.58 0.1 1.60 400
JS103 0.58 0.1 1.27 320
JS201 0.62 0.1 2.07 518
JS202 0.62 0.1 1.60 400
JS203 0.62 0.1 1.27 320
JS301 0.68 0.1 2.07 518
JS302 0.68 0.1 1.60 400
JS303 0.68 0.1 1.27 320
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100 B. Irregular wave tests

Figure B.1: Example of the phasing between loads and surface elevation in the case of test JS101. The scale factor is 50 for both the
inline and vertical force.

Figure B.2: Plot of the maximum inline force due to a single wave for all the nine tests involving irregular waves.

Figure B.3: Plot of the maximum uplift due to a single waves.

B.1. OCW3D modelling of the irregular wave cases

In a perspective of characterizing the experimental records of the loads on the velocity cap, an estimate of
the undisturbed horizontal velocity needed to be defined so to fit the records with Morison and lift force
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equations. Given that no PIV measurements were taken for these test cases, an OCW3D set-up with the
steering files of the irregular waves was prepared.

As for the solitary waves tests the calibration of the model was based on matching the surface elevation time
series obtained with the model and from the experiments.

Several combination of breaking criterion br and POT value were analysed but the match was overall not
accurate enough to proceed to the study of the numerical estimate of the velocity. Figure B.4 shows the case
of JS102 as an example. Especially in the case of the highest waves of the simulation the model predicted
significantly lower waves.

Figure B.4: Surface elevation at the sixth wave gauge as measured during the experiments and as computed by the potential flow
solver. Data relative to test case JS102.

OCW3D has already been used successfully to model the surface elevation of an irregular wave field generated
during physical tests, as documented in the work by Wilting (2017). However in that case the physical set-up
was including a way to dissipate the wave energy at the end of the flume (i. e. a rubble mound). In the
experiments examined in this thesis the wave energy that was not dissipated due to wave breaking at the end
of the slope could propagate backwards and therefore modifying the irregular wave field generated by the
wave paddle. The potential flow solver could not account for this condition and therefore the results were not
matching the experimental records.

This mismatch prevented the modelling of those test cases in OpenFOAM because the results of OCW3D did
not provide accurate inlet boundary conditions for the one-way domain decomposition strategy described
in section 4.2.3.





C
Preliminary undisturbed velocity

estimates

The velocity used in the force characterization was obtained sampling the horizontal velocity field next to
the structure in the OpenFOAM simulations. The reason for this choice are described in chapter 6. Other
ways to define the undisturbed velocity were also pursued and were eventually discarded. In this appendix a
description of those estimates is presented.

C.1. PIV estimate

The availability of ensemble-averaged PIV measurements allowed to extract velocity time-series that could
be used for the comparison with the other numerical estimates described later. The point selected for the
extraction was chosen at a location as far as possible from the structure, but still in the PIV domain, in order
to obtain an estimate of the velocity as unaffected by the presence of the cap as possible. The velocity was
taken from a point 31 cm in front of the cap and 11.6 cm above the bed. It was decided to avoid depth
averaging procedures in order to base the force coefficient calculation on a relatively simple velocity estimate
that, when designing, could be obtained in a fast and cost effective way. The location along the x axis in the
PIV window was highlighted by a red line in figure 3.12.

Figure C.1 shows the PIV velocity estimate extracted for test T201. As a reference, the signal of the velocity are
reported also for the other points at the same location but at different water depths (the first 16.7 cm from the
bottom, corresponding to the height of the cap).

Even if the PIV data provides the only direct observation of the velocity field around the velocity cap this
velocity reconstruction is not used as an estimate of the undisturbed velocity. The reason regards the fact that
in many cases only 5 test repetitions have been carried out and the resulting ensemble average gives a signal
not smooth enough to be clearly representing the averaged flow conditions. Moreover, the Morison equation
depends of the derivative of the velocity signal and the presence of wiggles is amplified when computing the
derivative and the results are coarsened.

C.2. Analytic estimates of the horizontal velocity

A way to define the horizontal undisturbed velocities consists in integrating the kinematic boundary condi-
tion of the continuity equation. Knowing the time-dependent signal from the wave gauges for the surface
elevation η, it is in fact possible, under the assumption of potential flow, to reconstruct the amplitudes of the
velocities in the water column at the position of the cap. For the mathematical derivation, the equations used
were continuity equation, neglecting the term in cross-flow direction (eq. C.1), and the kinematic boundary
conditions at the bottom (eq. C.2, at z =−h) and at the free surface (eq. C.3, at z = η).
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104 C. Preliminary undisturbed velocity estimates

Figure C.1: Plot of the horizontal velocity approximately 31 cm in front of the cap, at the height of 0.116 m above the floor. Data
relative to the ensemble-averaged results obtained from the 40 repetitions of test T201.

∂u

∂x
=−∂w

∂z
(C.1)

w = 0 (C.2)

w = ∂η

∂t
+u

∂η

∂x
(C.3)

In the kinematic boundary condition, in this case, one should not neglect the non linear term given the shal-
low water situation and the intrinsic nonlinearity of a solitary wave.
In addition, when a wave is propagating with (almost) constant shape, it is possible to switch operator so to
pass from a time derivative to a spatial derivative in the following way:

− c
∂

∂x
= ∂

∂t
(C.4)

Thanks to eq. C.4 the continuity equation and the kinematic boundary condition at the surface can now be
written as:

∂w

∂z
=−1

c

∂u

∂t
(C.5)

w = ∂η

∂t
− u

c

∂η

∂t
(C.6)

Equations C.5 and C.6 are now written in a more convenient form because the information available from the
experimental measures are time-series from the wave gauges and therefore they are function of time.
Ignoring that the vertical velocity is not linear over depth, the vertical gradient of the vertical velocity reads:

∂w

∂z
' w

η+h
= 1

η+h

(
1− u

c

) ∂η
∂t

(C.7)

A first estimate of the horizontal velocity was therefore obtained by integrating in time the following differen-
tial equation 1:

1To solve this implicit differential equation the MATLAB function ode45 was used (for reference see MATLAB Documentation).
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∂u

∂t
= 1

η+h
(c −u)

∂η

∂t
(C.8)

The obtained signal is independent of the depth and showed always an overestimation of approximately 10 to
15 % with respect to the velocities recorded with the PIV measurements. The reason for this big mismatch is
probably mostly related to the fact that the vertical velocity profile is not linear over the vertical and therefore
eq. C.7 is not accurate enough.

The second approach consisted in using the formula for the horizontal velocity derived by Svendsen and
Jonsson (1980) from the Boussinesq solitary wave theory. According to the pure solitary wave theory the
expression for the surface elevation of such a wave propagating over a flat bottom is:

η= H sech2

[√
3H

4h3 (ct −x)

]
(C.9)

Where H is the wave height and the wave celerity c is defined as c = √
g (h +H). The formula by Svendsen

and Jonsson then reads:

u(z, t ) =
√

g ·h ·
(
η

h
−

( η
2h

)2
+

(
1

3
− 1

2
·
(

z +h

h

)2)
·h · ∂

2η

∂x2

)
(C.10)

In this formula, the velocity is function of the free surface elevation η, its second derivative in space (which
can be written as a time derivative thanks to the operator swap of eq. C.4), the total water depth h and the
vertical coordinate z.

The implementation of that approach gave results that were not matching the PIV measurements nor the
subsequently obtained results from the numerical model (OCW3D). The reason is probably because the pure
solitary wave theory and therefore the formula by Svendsen and Jonsson for the horizontal velocity was based
on the assumption of a flat bottom and constant amplitude and shape of the wave. In the case treated here,
the bottom has a slope and the solitary waves are shoaling and changing shape. This means that the general
formula that describes a solitary wave in the Boussinesq model does not hold anymore and, therefore, so
does not the formula by Svendsen and Jonsson (1980).

In both approaches, the operator swap of equation C.4 cannot be applied because the wave is not propagating
with constant amplitude, (i.e. it is shoaling) nor with constant shape. The mismatch with the measured
velocities from the PIV led to the decision not to work further with these first results.

Figure C.2 shows the estimates obtained with the methods of above and a comparison with the ensemble
averaged PIV measurements relative to the tests repeated 40 times (’T201’).

C.3. Velocities from the OceanWave3D computations

After the first results, the numerical model Oceanwave3D was used to obtain a better estimate for the hori-
zontal velocity in absence of the cap. The description of the numerical set-up was given in chapter 4. The
velocity was probed at the locations of the 7 numerical wave gauges defined in the OCW3D domain. The
velocity reconstruction discussed here is based on the one at the position of the velocity cap (WHM6).

In all test cases, the comparison between the measured PIV data and the OCW3D results showed a good
match. For plotting purpose only, the peak of the velocity in the PIV time-series was matched with the one of
the computation of the numerical model.

Figure C.3 shows the comparison between the results of the numerical model and the PIV measurements
plotted together with the old estimate obtained with the simple continuity equation integration. Both the
PIV records and the OCW3D output consist of several time-series at the location of the velocity cap, one per
vertical grid cell. The lines plotted in the figure are taken from the cell whose center is the closest to the height
of the center of mass (0.116 m above the floor).
As far as the OCW3D results are concerned, an extra step is needed. The vertical discretization implemented
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Figure C.2: Comparison of the first two attempts to compute the undisturbed velocity with the records extracted from the PIV mea-
sures. The result of the eq. by Svendsen and Jonsson (1980) dependents of the depth and is plotted in multiple lines. The fraction of
water column for which the relative velocities are plotted is the height of the velocity cap above the bottom (16.7 cm).

in this model is the so-called σ-layer. This means that the outputs of the velocity are relative to the value σ
= const. which is not equal to the value of the velocity at a constant depth. Before averaging, therefore the
OCW3D output was interpolated at the desired heights (16 grid points over the height of the cap). Finally,the
velocity signal was extracted from the grid point the closest to the center of mass of the cap. With regards to
the peak of the signal, the model predicts velocities slightly bigger than the one observed in the PIV measure-
ments. The reason can be that the velocity observed in the PIV window are not undisturbed by the presence of
the cap or that a small mismatch between surface elevation computed by the numerical model and measured
during the experiments was still observed after the tuning process.

Figure C.3: Comparison of the results for the horizontal velocity at the position of the cap from the first computation attempted, from
the PIV measurements and from the OCW3D model.



D
Implementation of the weighted

least squares method for the
coefficient fitting

The time-series of the loads were interpolated following the weighted least squares method. These method
puts additional emphasis in fitting the curve around its peak being therefore a good instrument for finding
force coefficients to be used in a design. This appendix contains the information on the actual implementa-
tion of this method and the formulas and procedures used to extract the force and moment coefficients.

D.1. General description of the weighted least squares method

From the algebraic point of view any curve in time c(t ) can be interpolated by means of a function f (t ) of the
form

f = a1 f1(t )+a2 f2(t )+a3 f3(t )+ ...+am fm(t ) (D.1)

where a1, a2, ... are the coefficients and f1, f2, ... are generic functions of the variable t . Knowing the quantities
f1, f2, ... and the curve that needs to be fitted c(t ), the coefficients can be found by solving the system of
equations that in matrix form reads


f1(t1) f2(t1) ... fm(t1)

f1(t2) f2(t2) ... fm(t2)

...
...

...
...

f1(tn) f2(tn) ... fm(tn)




a1

a2

...

am

=


c(t1)

c(t2)

...

c(tn)

 (D.2)

or in compact notation

M a = b (D.3)

Here the matrix of the known terms M has dimension n ×m being n the number of time steps in the time
window considered and m the number of coefficients in the fitting equation.
The weighted least squares method theory then defines the error vector taking into account also a diagonal
matrix of the weights.

e =W (M a −b) (D.4)
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108 D. Implementation of the weighted least squares method for the coefficient fitting

Without taking into account any weight all the equations of the system described above have the same im-
portance in the determination of the final results of the coefficients. When fitting a force or a moment curve,
however, it is more interesting to fit the curve at its maxima or minima. That is why in this thesis the weight

matrix W was used. The weight matrix is of dimension n×n and it has on its diagonal the squares of the loads
that wants to be fitted.

The solution for the vector of coefficients a is sought minimizing the error matrix defined as E = eT e by setting
its derivative with respect to the coefficients equal to zero.

dE

d a
= 0 (D.5)

solving which for a gives

a =
[

M
T

(
W

T
W

)
M

]−1

M
T

(
W e

T
W

)
b (D.6)

This expression allows finding the the vector of unknown coefficients. In the reviewed literature however
the fitting equation is generally only function of two coefficients as in the Morison equations. In those cases
instead of solving big systems of equations, a computationally cheaper solution is generally used.
When the fitting formula is the Morison equation ( f = f (t ,CD ,CM )) and c is a generic known inline force
time-series, the square error can be written in a different way as

ε2 = 1

N

n∑
i=1

[
[ f (ti ,CD ,CM )− c(ti )]2c(ti )2] (D.7)

Setting the partial derivatives ∂ε2/∂CD and ∂ε2/∂CM equal to zero allows so define explicit formulas to define
the force coefficients without solving any system of equation.
Depending on the number of coefficients of the fitting equation used the first or the second method was used.

D.2. Inline force fitting

The equation used to fit the inline force was the Morison equation. This equation is of the form

f =CD fD +CM f I (D.8)

Where CD and CM are the force coefficients and fD and fM are functions of the velocity and of the acceleration
respectively.

fD = 1

2
ρAU0|U0| (D.9)

f I = ρV
∂U0

∂t
(D.10)

In this situation it is convenient to use the equations proposed in literature to derive directly the force coeffi-
cients without setting the system of equations in matrix form. Once the time-series fD , f I and the time-series
of the inline force Fx are known, the solution for the coefficients is

CD =
∑

(F 3
x fD )∗∑

(F 2
x f 2

I )−∑
(F 3

x f I )∗∑
(F 2

x fD ∗ f I )∑
(F 2

x f 2
D )

∑
(F 2

x f 2
I )− (

∑
(F 2

x fD f I ))2
(D.11)

CM =
∑

(F 3
x f I )∗∑

(F 2
x f 2

D )−∑
(F 3

x fD )∗∑
(F 2

x fD ∗ f I )∑
(F 2

x f 2
D )

∑
(F 2

x f 2
I )− (

∑
(F 2

x fD f I ))2
(D.12)
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The summations are clearly on the number of elements of the Fx , f I and fD time-series and it depends on
the duration of the time window considered. This formulas are broadly used in literature (see for instance
Hur and Mizutani (2003) Hecimovich (2013)) and are obtained by setting the derivative of equation D.7 with
respect to the coefficients equal to zero.

D.3. System of equations solved for the vertical force

The vertical force has been fitted in two ways. In the case of the lift force model the fitting equation can be
written as:

f =CL fL (D.13)

where

fL = 1

2
ρAU0|U0| (D.14)

when computing the weighted least square error the unknown is only one, so the equation to find CL is only
given by one partial derivative, which results in

CL =
∑

(F 3
z fL)∑

(F 2
z ∗ f 2

L )
(D.15)

In the case of the new vertical force equation defined by 6.3 it is instead more convenient to write the problem
in matrix form again. The system of equations set for computing the force coefficients would be written as:



1

2
ρAU0(t1)

∥∥∥−−−−→u0(t1)
∥∥∥ 1

2
AW0(t1)

∥∥∥−−−−→u0(t1)
∥∥∥ ρV

∂W0(t1)

∂t
1

2
ρAU0(t2)

∥∥∥−−−−→u0(t2)
∥∥∥ 1

2
AW0(t2)

∥∥∥−−−−→u0(t2)
∥∥∥ ρV

∂W0(t2)

∂t
...

...
...

1

2
ρAU0(tn)

∥∥∥−−−−→u0(tn)
∥∥∥ 1

2
AW0(tn)

∥∥∥−−−−→u0(tn)
∥∥∥ ρV

∂W0(tn)

∂t



 CLx

CLz

CM z

=


Fz (t1)

Fz (t2)

...

Fz (tn)

 (D.16)

where [t1, ... , tn] is the time window considered and the norm of the vector u0 is
∥∥∥−−−−→u0(tn)

∥∥∥=
√

W 2
0 +U 2

0 . The

solution for the coefficients is then computed as in equation D.6.

D.4. System of equations solved for the centroidal moment

In the same way as for the vertical force fitting equation the system of equations reads:



1

2
ρADU0(t1)

∥∥∥−−−−→u0(t1)
∥∥∥ 1

2
ADW0(t1)
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ρV D
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1

2
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∥∥∥ 1

2
ADW0(t2)
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∥∥∥ ρV D

∂U0(t2)

∂t
ρV D
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...

...
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...

1
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∥∥∥ 1

2
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CD,mom,x

CD,mom,z

CM ,mom,x

CM ,mom,z

=


MCoM (t1)

MCoM (t2)

...

MCoM (tn)


(D.17)

where [t1, ... , tn] is the time window considered. The solution for the coefficients is then computed as in
equation D.6.





E
Plots of the forces obtained in the

RAS simulations

The plots of the force results obtained applying turbulence are included here. As in chapter 5 the experimental
records are corrected in order to get rid of the additional pressure component.
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F
Numerical coefficients estimates

In this appendix the coefficients computed fitting the force and moment output of the numerical model are
included.
The coefficients relative to the breaking cases are reported in red in the tables.

F.1. Inline force coefficients

Table F.1: Inline force coefficients computed from the OpenFOAM records of the inline loads. The coefficients are the drag and inertia
coefficients defined as in equation 2.9. The error (ε) are expressed as a percentage of the computed signal and are estimated as in
equation 6.6.

Inline force
Test case CD CM ε(Fx )
T101 0.93 0.77 5.67
T102 0.93 0.75 4.33
T103 0.77 0.69 13.55
T201_5 0.98 0.80 3.95
T201 0.94 0.79 5.73
T202 0.91 0.75 5.15
T203 0.93 0.76 4.30
T301_4 1.01 0.86 3.38
T301_5 0.98 0.81 3.86
T301_6 0.96 0.75 3.81
T301 0.95 0.79 5.54
T302 0.93 0.74 5.30
T303 0.91 0.74 4.68
T401_1 1.30 0.93 1.51
T401_2 1.24 0.91 2.56
T401_3 1.10 0.90 3.38
R1 2.81 0.91 1.92
R2 2.76 0.91 3.27
R3 2.57 0.93 4.37
R4 2.19 0.94 5.77
R5 1.80 0.95 5.39
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F.2. Partial inline force coefficients

Table F.2: Inline hydrodynamics coefficients for the two components of the velocity cap. The error ε are express in percentage and
are computed as in equation 6.6.

Top part Cylinder
Test case CD CM ε(Fx,top ) CD CM ε(Fx,c yl )

T101 0.93 0.60 2.28 0.77 1.39 15.18
T102 0.95 0.57 2.97 0.83 1.37 14.30
T103 0.68 0.49 15.83 0.85 1.50 12.75
T201_5 0.88 0.66 3.49 1.06 1.26 8.87
T201 0.84 0.66 5.75 1.03 1.22 10.32
T202 0.83 0.62 4.54 0.98 1.19 11.35
T203 0.87 0.61 4.92 1.00 1.26 12.00
T301_4 0.88 0.72 4.43 1.17 1.31 7.39
T301_5 0.84 0.69 5.29 1.15 1.22 7.69
T301_6 0.82 0.64 5.37 1.14 1.11 7.29
T301 0.80 0.68 7.57 1.12 1.17 8.89
T302 0.79 0.63 7.21 1.10 1.09 9.64
T303 0.79 0.63 5.84 1.07 1.10 11.02
T401_1 1.31 0.70 2.71 0.96 1.80 11.60
T401_2 1.16 0.72 2.54 1.12 1.65 12.66
T401_3 0.97 0.74 3.91 1.30 1.39 7.06
R1 3.17 0.63 2.56 0.48 1.96 1.03
R2 3.06 0.64 4.15 0.75 1.96 1.86
R3 2.83 0.66 5.37 0.90 1.95 2.39
R4 2.36 0.69 7.06 1.06 1.90 3.38
R5 1.93 0.71 6.44 1.12 1.81 3.71
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F.3. Vertical force coefficients

Table F.3: Vertical force coefficients computed from the OpenFOAM records of the vertical loads. The reported coefficients are the lift
force coefficients CL as defined by equation 2.11 and the three new coefficients defined by equation 6.3.

Original eq. New vertical force eq.
Test case CL ε(Fz )(1) [%] CLx CLz CM z ε(Fz )(2) [%]

T101 -2.72 11.01 -2.88 4.22 -0.70 4.03
T102 -2.34 8.77 -2.75 0.46 -1.30 11.30
T103 -2.78 17.75 -1.45 1.60 2.86 27.95
T201_5 -3.42 8.09 -3.95 1.73 -2.60 5.29
T201 -2.90 9.24 -3.34 2.92 -2.00 1.91
T202 -2.36 9.57 -2.71 2.24 -1.42 4.66
T203 -2.32 4.41 -2.49 -0.17 -0.93 5.41
T301_4 -5.19 9.16 -6.24 -4.01 -7.77 5.31
T301_5 -3.81 8.51 -4.58 -0.06 -5.07 5.02
T301_6 -2.74 7.84 -3.30 1.58 -3.43 4.44
T301 -3.18 8.78 -3.83 1.71 -3.85 0.84
T302 -2.43 9.02 -2.89 2.17 -2.65 2.10
T303 -2.23 7.87 -2.63 0.80 -2.30 4.35
T401_1 -31.83 9.63 -39.88 29.92 -65.28 5.64
T401_2 -19.71 11.35 -26.03 0.13 -60.33 6.77
T401_3 -10.44 10.79 -13.42 -12.41 -30.09 8.13
R1 -30.93 13.70 -15.83 10.34 2.60 8.48
R2 -18.34 13.91 -11.11 10.13 2.11 8.68
R3 -15.52 13.34 -13.72 9.80 0.75 11.54
R4 -12.89 13.19 -15.43 9.17 -2.89 15.39
R5 -9.50 14.20 -13.02 5.68 -5.21 17.12
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F.4. Centroidal moment coefficients

Table F.4: Centroiddal moment coefficients defined from equation 7.1. The errors (ε) are expressed as a percentage of the computed
signal and are estimated as in equation 6.6.

Test case CD,mom,x CD,mom,z CM ,mom,x CM ,mom,z ε(MCoM ) [%]

T101 0.13 1.16 -0.07 0.08 7.22
T102 0.12 1.99 -0.13 0.10 3.30
T103 0.10 1.85 -0.16 0.07 20.57
T201_5 0.13 2.99 -0.21 0.12 12.03
T201 0.14 2.17 -0.16 0.15 5.29
T202 0.14 2.10 -0.16 0.15 3.82
T203 0.12 1.88 -0.12 0.12 8.26
T301_4 0.13 4.06 -0.22 0.21 10.20
T301_5 0.15 2.94 -0.20 0.27 5.48
T301_6 0.16 1.78 -0.13 0.30 6.28
T301 0.15 2.43 -0.18 0.25 3.78
T302 0.15 1.83 -0.14 0.26 5.55
T303 0.15 2.73 -0.22 0.29 6.96
T401_1 0.10 2.62 -0.11 0.02 2.11
T401_2 0.11 5.35 -0.15 0.14 6.62
T401_3 0.11 6.28 -0.21 0.24 10.99
R1 -0.15 -1.78 -0.10 -0.08 7.32
R2 0.03 -1.83 -0.10 -0.06 9.57
R3 0.14 0.07 -0.11 -0.05 8.85
R4 0.21 1.32 -0.11 -0.02 8.70
R5 0.20 1.11 -0.11 0.03 7.58
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