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ABSTRACT
Artificial Intelligence (AI) supported by Deep Artificial Neural Net-
works (ANNs) is booming and already used in many applications,
with impressive results, and we are still its infancy. For many sens-
ing applications it would be advantageous if we could move AI
from cloud to Edge. However this requires huge improvements in
energy-efficiency. The CONVOLVE project (convolve.eu) aims at
enabling smart edge devices through a concerted effort at all layers
of the design stack. This ranges from using much more efficient
models and mappings, like exploiting Spiking Neural Networks
(SNNs), to new processing architectures, like compute-in-memory
(CIM), use of approximation, and using new device technology, like
memristors. However these latter changes make HW more suscep-
tible to noise and other disturbances. Online continuous learning
(i.e. adapting weights) may alleviate these problems. This paper
shows several CONVOLVE developments in the crucial areas of
CIM architectures, SNN accelerators and online learning.

1 INTRODUCTION
With the rise of smart applications powered by AI in almost every
edge device, there is a pressing need for an ultra-low-power (ULP)
edge AI System-on-Chips (SoC) or Smart Edge Processors (SEP)
that offloads computing closer to the source of data generation. This
is necessary to address the limitations of using the cloud, such as
privacy, latency and bandwidth. According to current projections,
the SEP market is expected to grow by about 40% per year, reaching
beyond 60 billion USD by 2028. In comparison to cloud computing,
SEP hardware is significantly more constrained in terms of energy
consumption. This is due to the fact that it is mostly battery powered
and/or restricted by thermal dissipation.

Figure. 1 shows the energy-efficiency of state-of-the-art SEP
chips optimized for Neural Network (NN) models of both ANNs
and SNNs. The trends indicate that ANN chips are more mature, ap-
proaching energy-efficiency close to 1 fJ/Op. Especially, CIM based
architectures have high-potential to go beyond 1fJ/Op, by reducing
the data-movement energy between memory and compute units.
Although SNN chips have high potential, their energy-efficiency
are currently at best in the 100 fJ/Op range.
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Figure 1: Energy-efficiency of SOTA edge-AI 𝜇Processors. Note that effi-
cient processors are typically far less flexible/programmable.

To beat the fJ/Op energy-efficiency barrier while being flexible
enough [1] to deal with future NN models necessitates combining
innovations from all levels of the design stack, including AI deep
learning models, online learning, compilers, architecture, micro-
architecture, circuits, and devices. The CONVOLVE project [2]
proposes a single framework that ties together the innovations from
different levels, as shown in Figure 2. CONVOLVE aims to achieve
100x improvement in energy-efficiency and quickly implement SEPs
combining innovations from different levels of the stack for a given
application by reducing design time significantly. This paper focuses
on the state-of-the-art, challenges and opportunities in three key
areas in CONVOLVE project: 1) SRAM based digital, and RRAM
based Analog CIM architectures; 2) SNN accelerators, reducing the
efficiency gap with ANNs, and 3) Online learning strategies by
getting rid of complex back-propagation in NN training.

2 CIM ARCHITECTURE
CIM is proposed as a promising computing paradigm as it integrates
the computation and storage in the same physical location. Such
integration overcomes the data transfer bandwidth challenge of
conventional architectures and unlock new potential for efficient
computing. CIM can be realised using both conventional memo-
ries (such as SRAM, DRAM and Flash), or (emerging) non-volatile
devices [3] such as resistive random access memory (RRAM), mag-
netic (STT-MRAM), phase change (PCM), or even ferroelectric field
transistor (FeFET). SRAM is primarily used as on-chip cache and
has enjoyed the benefit of scaling; hence, its advantage for CIM is
not only being embedded memory by nature, but also its commer-
cial availability at the latest technology node; this is not the case
for DRAMs. However, both SRAM and DRAM suffer from leakage
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Figure 2: The three pillar design methodology of CONVOLVE project;
energy improvements are addressed at all layers of the stack.

power; which negatively impacts battery-powered edge devices.
Non-volatile memories are thereforemore competitive in such cases.
In addition, they retain the stored value when they are turned off.
Moreover, they consume less silicon area than SRAM, and they
have the potential to deliver multi-bit per cell resulting in even
higher integration density. Among emerging non-volatile memo-
ries, RRAM is widely popular for CIM due to its larger Ron/Roff
ratio than STT-MRAM, less power consumption than PCM, and
more foundry available than FeFET. Therefore, CONVOLVE focuses
on SRAM and RRAM based CIM (presented in Sections 2.1 and 2.2),
as they are the most promising technologies for the near future.

2.1 SRAM based CIM
Digital CIM architectures using SRAM, as shown in Figure 3, suffers
from a power hungry adder tree which may consume over 70% of
power consumption. Innovations in digital CIM, such as integrated
approximate computing, promise substantial improvements to ad-
dress the challenge of the power hungry adder tree. Approximate
computing reduces computational resources (and power consump-
tion) while maintaining acceptable accuracy, particularly advanta-
geous in NNs where minor errors are tolerable. Retraining mitigates
the impact of noise introduced by approximate computing, ensuring
minimal performance compromise (Section 4). Here we focus on
approximate computing in CIM by encoding the weights of NN in
Fibbinary format [4], which prohibits values with consecutive ones
in the binary representation of the weights. This in combination
with the support for multi-bit multipliers allows increased through-
put and flexibility. Of course this may impact accuracy. Therefore,
we aim to loosen this weight constraint to allow consecutive ones,
as long as those bits are not accessed by the same multiplier. This
modification increases the number of possible weights by 12.5%,
47.2%, and 154% for 4b, 8b, and 16b, respectively. By modifying the
weights, the CIM architecture can benefit from custom multi-bit
multipliers that are significantly smaller than standard multi-bit
multipliers (76%) and use less power (66%). It further benefits from
simplifying the intermediate bandwidth, leading to fewer required
adders in the adder tree. Approximating the adder tree will be our
next research topic.

2.2 RRAM based CIM
RRAM based CIM comes with its own challenges, particularly aris-
ing from the parallel configuration of RRAMs in the crossbar. If
given enough size, the output crossbar currents, whose magnitude

XIN[255:0][3:0]

+

+
+

+

Adder tree Shift & accumulator

+

x

x

x

x

Row address[1:0]

SR
A

M
 c

el
l

Mult-bit Multiplier

32

W
[1

27
:0

]

Bank address [4:0]

Enable

W
[3

:0
]

512(2bx256)

5b

6b

14b 18b

ou
tp

ut
 [3

1:
0]

[1
7:

0]

>>

1024(4bx256)

18b

Shift control

25
6x

4

Row decoder

Figure 3: Instantiation of a digital 32Kb SRAM based CIM architecture
showing the bitcell array, multiplier, adder tree and bitshift & accumulator.

represents the output of the VMM operation, may accumulate to
orders of magnitude higher than individual currents generated
within a RRAM, leading to high power consumption. Moreover, the
impact of RRAM non-idealities such as variability of conductance
states, non-zero conductance in ’off’ state and read disturb can
significantly degrade the accuracy [5].

While taking the above into consideration, CONVOLVE pro-
poses a novel RRAM-based CIM architecture, referred to as C3CIM
(Constant Current Crossbar CIM), as illustrated in Figure 4a [6].
The architecture has three unique features. First, it uses a constant
current reading to enable low-power computation i.e. irrespective
of the number of selected operands (rows), the value of the read
current per column is constant and fixed by design. Thus, the output
voltage per column is in linear proportion to the number of selected
cells with high resistance for the entire range of operation. Second,
as shown in Figure 4b), it uses 2T1R bit cell (1T1R in parallel with
1T); this is required to use the constant current as first operand,
depending upon the path selected and its resistance. Apart from
enabling CIM using this approach, it also has inherent advantage of
compensating for the non-zero resistance of the access transistor by
having complementary inputs and maintaining a constant number
of access transistors in the current path, which can be addressed as
constant offset during post-processing. Third, it not only supports
various Neural Network (NN) flavors with the selection of a suitable
periphery; but it can also leverage any emerging non-volatile mem-
ory technology, even though it was developed for RRAM to begin
with. By incorporating CMOS-based non-volatile memories like
FeFET, it can also compensate for non-zero low resistance states of
these memories, leading to further improvement in accuracy.

The preliminary evaluation of the C3CIM reveals impressive
results. A custom BNN as well as SNN model was developed over
MNIST dataset to benchmark the proposed architecture against
state-of-the-art [7, 8]. An energy efficiency of 30 fJ/MAC oper-
ation (for 64 RRAMs per column, 1-bit per RRAM ) is realized;
normalized to 1-bit by 1-bit MAC, this translates to around 0.5fJ per
operation. In addition, for the BNN model, having a topology of 784
(Input)X3136 (Hidden layer)X10 (Outputs), the average energy con-
sumption was 14.6 nJ per inference. Similarly, for the SNN model,
with a topology of 324 (Input)X81 (Hidden layer)X10 (Outputs) and
time steps=60, the average energy consumption was 11.24 nJ per
inference. Going by the performance results, this architecture can
be used to drive various edge applications such as Classification,
abnormal detection, de-noising audio signals, object detection, etc.



(a) Novel approach
(b) Implementation

Figure 4: Overview of C3CIM architecture

In summary, CIM based architectures have huge potential for
achieving PetaOps/W processing. RRAM based CIMs using con-
stant current reading and 2T1R cells enables reliable operation
and achieve high computational accuracy. While approximate com-
puting based Digital CIM can reduce the power consumption of
adder-tree significantly.

3 SNN ARCHITECTURE
Recently, SNNs have been proposed as an alternatives to ANNs for
low-power processing of sensory data. In contrast to ANNs, SNNs
consist of neurons having state, while communicating using sparse
binary spikes. This sparsity can be exploited by neuromorphic ar-
chitectures for energy-efficient processing of SNNs. However, SNNs
often achieve lower accuracy than ANNs on the same task. Recently
deep SNNs can be efficiently trained, without converting trained
ANNs, avoiding costly back-propagation through time (BPTT). This
allows SNNs to bridge the accuracy gap with ANNs (see Figure 1).

There are neuromorphic architectures that can run large SNNs.
E.g., SpiNNaker 2 [9] is a scalable digital neuromorphic architecture
consisting of many ARM M4 cores. The SpiNNaker 2 chip contains
6 chip-to-chip communication links, which allow to form a multi-
chip network. Due to this scalability, SpiNNaker 2 is able to run
deep convolutional SNNs. However, because of its high flexibility,
its energy efficiency is lower than most neuromorphic edge archi-
tectures. Similarly, Loihi 2 by Intel is a scalable architecture with
128 dedicated neuromorphic cores per chip. It contains 6 chip-to-
chip communication links, which can scale to 1000s of cores. The
neuromorphic cores in Loihi 2 are programmable, allowing the user
to implement different neuron models. However, like SpiNNaker 2,
Loihi 2 is not very energy efficient. A more energy efficient neuro-
morphic architecture is Sparse Neural Engine (SNE). SNE performs
convolutions is an event-based manner. By performing event-based
convolutions, the number of operations SNE performs is propor-
tional to the number of input spikes. While having less flexibility
than both SpiNNaker 2 and Loihi 2, SNE only consumes 0.91 pJ per
Synaptic OPeration (SOP). However, SNE has not been shown to
efficiently run deep convolutional SNNs.

Efficient neuromorphic architectures running deep (convolu-
tional) SNNs require an appropriate memory hierarchy, especially
since SNNs have additional neuron state. Most neuromorphic ar-
chitectures include one level of memory, which can only fit small
SNN. However, when an SNN does not fully fit in the on-chip mem-
ory, layers need to be swapped out to an external memory, which
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Figure 5: Mega: SNN architecture with a memory hierarchy uses 32x3x3
PE clusters. The use of small memories allow reuse of states/weights, and
adds flexibility in scheduling.

dominates the power consumption. We introduce Mega, a scalabale
architecture with a memory hierarchy, as shown in Figure 5, con-
sisting of 9 PE clusters, input spike (L1) buffer, weight (L1) buffer,
neuron state (L1) buffer, and a global (L2) memory. The small low
power memories near PEs allow for reusing states and weights,
which prevents accesses to the larger memories or to external mem-
ory. Moreover, a memory hierarchy also allows for flexibility in
scheduling. By choosing the right schedule, weights and state can
be reused more, increasing the energy efficiency up to 0.292 pJ/SOP
for a single output channels; it is expected to improve a lot when
adding many (32) output channels.

In summary, SNN architectures can exploit the sparse nature of
these spikes for energy-efficient computing. However, there exists
an accuracy gap between state-of-the-art DNNs and SNNs. Tomatch
the accuracy of DNNs, we can build deeper SNNs similar to DNNs.
While existing shallow SNNs can be mapped in the local memory
of state-of-the-art neuromorphic accelerators, deeper SNNs require
larger memories and efficient memory hierarchy.

4 ONLINE LEARNING
Incorporating online learning in neuromorphic edge AI is highly
desirable as it would endow systems with the capability to learn
and adapt continuously in non-stationary environments, akin to
the human brain. Moreover, online learning increases the system’s
resilience and robustness by conferring robustness to the substrate
heterogeneity and drift; this is crucial when using Analog RRAM
based CIMs and ULP hardware. However, conventional training
algorithms based on back-propagation through time (BPTT) and
back-propagation of error (BP) are a poor fit for implementing
online learning on edge AI systems due to their associated costs.
The main problems are due to backward-locking and their high
memory and compute-requirements due to the need for storing
intermediate activation maps which makes it difficult to operate
them on long sequential data.

Many tasks relevant for edge AI require temporal processing
of sequential data. To avoid BPTT is thus one prime desiderata.
While real-time recurrent learning (RTRL) avoids the aforemen-
tioned problems of backward-locking and its memory requirements,



it is computationally even more costly than BPTT. Fortunately, bio-
inspired gradient approximations can be obtained in recurrent net-
works with slowly evolving neuronal variables like encountered in
spiking neural networks (SNNs). In this setting, effective diagonal
approximations of RTRL based on eligibility traces exist [10, 11].
Their computational cost is comparable to BP, albeit with a vastly
reduced memory footprint and avoiding backward-locking in time.

Unfortunately, the situation is different for BP through space
and addressing the spatial credit assignment problem requires al-
ternative approaches. Recent studies focus on dynamic algorithms
in the flavor of equilibrium propagation (EP) that use the intrin-
sic network dynamics to implement credit assignment. However,
classic EP is sensitive to substrate noise which leads to biased gra-
dient estimates. In recent work we proposed holomorphic EP that
partially addresses this issue [12] and gives a glimpse of what al-
gorithmic advances can offer. While holomorphic EP alleviates the
noise sensitivity (Fig. 6a,b,c), it relies on weight symmetry and com-
plex numbers. While the former issue can be addressed through
suitable homeostatic learning objectives [13] (Fig. 6d), a major fu-
ture goal is to provide a real-numbered version of the algorithm,
for instance, by mapping complex information onto oscillations
using phase modulation.
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Figure 6: a) In holomorphic EP, the neuronal error required for spatial
credit assignment is computed online in a noise-robust manner through
temporal integration of oscillations. b) Validation error on MNIST digit
recognition task, reproduced from [12, 13]. c) Topology of dynamical net-
work with bidirectionally connected layers of neurons. d) Jacobian of the
network near the prediction, whose symmetry encouraged by the homeo-
static loss.

Another possible strategy that avoids costly back-propagation is
to use greedy local learning rules that operate at different layers
independently. Despite exciting progress on local learning rules that
draw ideas from self-supervised learning (SSL) and extend to SNNs
[14], there still remains a gap to end-to-end optimized networks
which needs to be addressed before these methods mature into a
viable option.

Finally, heterogeneity, device mismatch, and noise pose consid-
erable challenges for neuromorphic hardware. Once more, online
learning algorithms running on-device may offer a way out by
effectively allowing the circuit to self-tune through learning. While
initial work has demonstrated such capabilities for SNNs trained
with surrogate gradients on analog neuromorphic hardware [15],
this was accomplished through in-the-loop training; an on-chip
demonstration is still pending.

While online learning holds great promise for building ULP and
highly adaptable neuromorphic edgeAI systems, essential questions
remain open. We must channel our future efforts onto lightweight

learning rules with the following properties. First, any online learn-
ing algorithm must be robust to noise and heterogeneity to be
compatible with ultra-low-power (ULP) devices. Second, develop-
ing strong alternatives to BP is imperative. To that end, theoretically
motivated algorithms like holomorphic EP are promising, but we
must formulate them as practical, real-numbered implementations
applicable to streaming data. Finally, we need to simultaneously
advance the efficiency of local learning rules that further close the
gap between greedy learning and end-to-end learning. Crucially,
advancing the state-of-the-art on the above points and improving
online learning for edge AI will only be possible through concerted
efforts in joint algorithms and hardware developments.

5 CONCLUSION
The CONVOLVE project aims at enabling smart edge devices, run-
ning Deep Learning models directly on edge sensing devices. This
requires energy-efficiency improvements at all levels of the design
stack. This paper addresses several problems and potential solutions.
In particular it highlights our efforts in 3 areas: 1) Designing CIM
architectures, both digital SRAM and analog RRAM based (having
different pros and cons), enabling sub-fJ per MAC operation; 2)
How to efficiently support highly promising SNN models, closing
the current gap with ANNs accelerators, and 3) Showing recent
efforts in enabling continuous online learning, by getting rid of the
extremely expensive back propagation (in time and in space). The
latter is important to make ULP AI-architectures robust for various
disturbances and changing environments.
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