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Preface 

I’ll go immediately to the point, I swear. During these 5 years of Ph.D. I was constantly 
advised to keep focus on my own research, and to avoid useless text in my papers. Now, 
after more than one year of writing and deleting, I am repenting not to have learnt the 
lesson earlier. This thesis could have been two times thicker and dealing with traffic flow 
operation issues, behavioral studies, game theory, etc. Thanks to the constant remarks of 
a few colleagues, and especially of my supervisor, Professor Henk van Zuylen, I was 
able to produce this book, which deals with only one specific problem: the queuing 
process at signalized intersections. 

This thesis describes in fact the progress made in the modeling of queues and delays at 
traffic signals and discusses the limitations of these models in describing the stochastic 
and dynamic behavior of these service systems. Starting from a well-established theory 
in operations research, the renewal theory of Markov Chains, which has been applied in 
the past to investigate and analyze the dynamic behavior of overflow queues at fixed 
time signals, we developed and integrated within this modeling framework a 
probabilistic formulation also for the queue behavior within each cycle. This model 
enables one to deal with queues using a continuous time approach, and it describes the 
effect of the variability of the arrivals in the service time process, which reflects into the 
variability of the delay caused by the signal operation. The flexibility of this modeling 
framework allows its application in more sophisticated service systems, i.e. paired 
intersections, multiple service points and demand-responsive signals. 

During the research, several people have contributed to its successful ending. Firstly, I 
would like to thank AVV to financially support this Ph.D. project and my supervisor, 
Professor Henk van Zuylen to believe in my potentials, even if sometimes our lines of 
thought were not completely matching. Thanks also to Dr. Yu Sen Chen for giving a 
critical view on a few articles and for allowing the use of AIMSUN at DHV. Many 
thanks go also to the TRAIL Research School, which to my opinion makes a good job in 
guaranteeing an intense knowledge exchange between Ph.D. students belonging to this 
school and in promoting their research outside. 

I am particularly grateful also to two exemplary professors, Professor Piet Bovy and 
Professor Serge Hoogendoorn, who well describe the continuity of research beyond the 
walls of our department. Their comments and remarks during these years and their 
support during the writing period have undoubtedly increased the quality and solidity of 
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the issues described and relaxed in this book. The success of our research group starts 
from very good mentors, but flourishes with the enthusiasm and the ensemble of the 
researchers that formed it during these years. We are now too many to acknowledge them 
all and thank them one by one, but every one of them knows how much I appreciated to 
spend my days with them talking about work, football, movies etc. and to play ping pong 
sharing always good laughs and a lot of emotions. One special hug I want to reserve to 
Dr. Hans van Lint, who convinced me to move to the Netherlands. Without you I could 
never appreciate this country so much! 

Thanks also to my family in the Netherlands, my HippoDG housemates, and my friends, 
the buitenlanders. Finally I would like to thank my parents and my brother, who I missed 
so much during these 5 years and whom I am going to miss a lot every day I won’t spend 
with them in the coming years. 

And now, Mariangela, I would like to start a new project together with you…  
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1  
Introduction 

Traffic congestion on freeways and urban areas causes nowadays enormous economic 
losses worldwide. In the Netherlands the Dutch Ministry of Transport (AVV) has 
estimated, for the year 1997, a loss due to traffic congestion of 1.7 billion Gulden (nearly 
1 billion €) (AVV 1998). Every day the traffic on the Dutch motorways produces serious 
delays to the drivers due to congestion, represented in an average working day by 200km 
of queues (Bovy 2001). To give another example, a large-scale report for the American 
highways (the 2005 Urban Mobility Report), involving 81 major cities in the U.S., 
estimated for the year 2003 an average yearly loss for a commuter of 47 hours of delays 
(against only 16 hours in 1982) and 28 gallons of extra fuel consumed, resulting in an 
average loss of $722 per commuter per year. The worst congestion levels increased from 
12% to 40% in the peak period travel in the largest cities and uncongested periods 
decreased from 70% of the day to only 33% in the period 1982-2003 (Schrank 2005). 

Congestion levels are therefore becoming more and more severe and peaks of the 
demand are involving longer time periods. Recent policies, meant to relieve this traffic, 
motivate the development of new transport management strategies with the objective of a 
more efficient utilization of the system. A large contribution in this direction is given by 
the partnership of computer technology and scientific research through the development 
of technologically advanced systems (usually referred to as Intelligent Transportation 
Systems, or simply ITS) to support the driver and manage the traffic. The objective of 
these systems is to guarantee safety and comfortable conditions to the drivers, and, 
whether it is possible, to reduce congestion. Reduction of congestion is therefore 
achieved by means of a more efficient use of the existing physical capacity, i.e. by 
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strategies that directly affect the demand for travel (e.g. information, route guidance 
systems, telecommuting, pricing) or that modify the capacity dynamically according to 
the actual need for road space (e.g. signal control, speed control, ramp meters, incident 
management). It is expected that the implementation of these systems will provide the 
following effects (Van Zuylen 2003): 

• Motorways: 20 - 30% less queues 
• Rural roads: 2 - 20% 
• Urban roads: 10 - 20% less delays. 

These represent only approximate estimates, since they do not consider either future 
growth of the demand and its response to changes in the supply system (e.g. induced 
demand, re-routing, shift of congestion to other parts of the network etc.). The 
assessment is done by simulation programs, where the traffic flow propagation on the 
network is simulated as realistic as possible and the demand is estimated using iterative 
procedures like the traffic assignment. Therefore, analytic models, which require small 
computation times, are very appealing for traffic planners. On the other hand, traffic flow 
models should give estimates that are consistent with real life, i.e. they should deal with 
the dynamic and probabilistic character of traffic processes. 

This issue affects especially urban networks, where the drivers have usually more routing 
possibilities. Researchers pointed out that disagreement between traffic flow models and 
actual travel times and choices in urban networks are for a consistent part due to poor 
estimation of delays at intersections, especially during congested conditions (e.g. see 
(Rouphail 2000)). In these conditions the dynamic behavior of delays is strongly 
dependent on the queuing process caused by the control mechanism. There is still lack of 
a complete understanding of the dynamic behavior of queues, and large uncertainty still 
characterizes its predictability. 

This thesis provides a methodology to analyze the dynamic and probabilistic character of 
the queuing process at signalized intersections and its effect on the drivers’ delay; this 
methodology considers explicitly the variability of the state variables (i.e. demand, 
capacity etc.). Particular interest is given in this thesis to the delay estimation problem at 
signalized intersections because of its fundamental role in the total delay drivers 
experience in urban areas and in the estimation of the network performance, e.g. in the 
estimation of the level of service. 

The probabilistic approach described in this thesis has been adopted for various 
purposes: 1) to validate and compare previously published formulas based on static (or 
quasi-static) assumptions, 2) to give insight into the dynamic and stochastic character of 
queues and delays depending on the random nature of the transportation system, 3) to 
inspire new formulations, which overcome the limitations of the formulas currently 
applied in planning and design of signalized network problems and 4) to model the 
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queuing process at signalized intersections in complex systems like with multiple lanes 
and dynamic arrival-dependent controls. The probabilistic modeling of delay processes, 
i.e. the mesoscopic approach, allows the estimation of performance measures adopted in 
most planning and design problems, e.g. level of service or travel time, and the 
estimation of their variability in time. 

This introductory chapter is organized as follows. Section 1.1 describes the problem and 
briefly defines the area of research covered by this thesis. In Section 1.2 the objectives 
and scope of the research are described. The implications and the contributions of this 
thesis to the state-of-the-art in traffic flow modeling at traffic controls are summarized in 
Section 1.3 while Section 1.4 gives an outline of this thesis. 

1.1 Problem formulation 

Traffic congestion on a road section is in general caused by part of the demand that 
exceeds the available capacity during a certain time period. A way to reduce this problem 
is intervening on the infrastructure, e.g. by adding new lanes or building new roads. This 
type of intervention implies however high costs and long periods of inconvenience for 
the traffic due to the necessary road works. Moreover, this intervention may be beneficial 
for a small period of the day, e.g. during peak periods, while it may represent a waste 
during off-peak periods. As an alternative, transport managers can improve the network 
conditions by using the available network infrastructure more efficiently. Some of these 
alternative management strategies are referred to as Dynamic Traffic Management 
(DTM) measures. These strategies are designed with the objective of using the network 
infrastructure efficiently, while keeping high levels of safety and comfort. This objective 
is obtained by adapting (dynamically) the road capacity to the demand (e.g. dynamic 
traffic control, speed control, ramp metering etc.) or vice versa (e.g. by using pricing 
policies or by guiding the drivers towards alternative routes). The design and planning of 
such systems require models that predict the expected benefits on the traffic system. A 
good estimation or prediction of network flows together with the corresponding costs 
(e.g. delay, fuel consumption, air pollution etc.) as a function of the applied DTM 
strategies is very important for an optimal set-up of such measures according to the 
policy objectives, and therefore for acceptance by the road authorities and the road users. 

Transport planning and design have been historically concerned with travel behavior and 
the transport system in some nominally “typical” conditions (Clark 2005). Therefore, 
these problems have been typically solved using analytic travel time models, based on 
some average conditions of traffic. The reasons for this approach are various: they 
require small computation times, therefore they are suited for optimization algorithms or 
for iterative procedures, and they directly relate the performance measures to the state 
and control variables, allowing e.g. sensitivity analyses. An alternative approach to the 
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analytic approach is using simulation; while microscopic simulation models simulate the 
traffic in a very detailed way, i.e. by simulating the movement and the characteristics of 
each vehicle, macroscopic simulation models need less computational effort, since they 
simulate the traffic flow process at a higher aggregation level. 

The estimation and prediction of travel times is, however, largely affected by the 
complex structure of urban networks and by the dynamic and stochastic behavior of 
demand and supply systems. From this perspective both analytic and simulation based 
approaches have limitations. Analytic models and macroscopic simulation models lack in 
catching these dynamic and stochastic effects because of their relatively simple model 
structure, while microscopic models simulate only one of the possible situations that can 
occur and several simulations are needed to obtain long-term estimates. 

This problem affects in particular the modeling of delays at signalized intersections. An 
intersection operates at different traffic conditions and it may operate at level of services 
accepted by the policy makers only for a fraction of the day. This does not occur when it 
should serve the upmost part of the total daily demand, i.e. at peak periods. The scientific 
forum agrees that large improvements are still needed in the modeling of delays, above 
all, because of the behavior of queues forming and dissipating within a cycle and cycle-
by-cycle at controlled intersections and their effects to the capacity and the throughput of 
a network, such as spill back. In particular, control delay models are lacking of a good 
queuing formula, which enables one to fully catch the dynamic and the stochastic 
behavior of traffic. Contribution to this gap is necessary due to a lack of a queuing 
formula that gives correct estimates of the dynamic effects of congestion. 

To overcome this problem most of these approximate formulas have been modified 
based on heuristics. For example, Webster’s formula (see Chapter 3, Formula (3.9)) was 
corrected to fit better simulation data using a heuristic correction term, which does not 
have any theoretical meaning. Different heuristics were used first by Kimber and Hollis 
(Kimber 1979) and later by Akcelik in both his time-dependent travel time functions 
((Akcelik 1980), (Akcelik 1991)), who applied the coordinate transformation technique 
to derive time dependent formulations for the expectation value of queues and delays 
from their exact expressions in the static context. 

The heuristic foundation of these models implies that there is still no clear insight into 
the real dynamic behavior of these measures. If there is no clear insight into the delay 
and queuing behavior through a theoretically sound methodology, then all models will be 
deficient in catching the real dynamics of traffic. Modeling queues and delays through 
probabilistic models can help in better understanding this behavior and inspire new 
approximate analytic formulas, as it is demonstrated in this thesis (Chapter 6). Analyzing 
traffic at signals using Markov Chains is not a completely new approach; a few studies 
can in fact be enumerated (e.g. (Van Zuylen 1985), (Olszewski 1990) among others, see 
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Chapters 3 and 4 for a more detailed descriptions of these studies) and very few used this 
methodology to derive approximate analytic expressions (e.g. (Brilon 1990), (Wu 1990), 
(Fu 2000)). 

Probabilistic models are an alternative to analytic and microscopic simulation models. 
These models use true macroscopic relationships between state, control variables and the 
resulting performance measures, and they assume these variables as statistically 
distributed according to a known probability distribution function. Consequently, also the 
performance measures are calculated in a probabilistic fashion. This class of models is 
increasingly gaining the attention of the traffic analysts, since it can catch the stochastic 
character of the performance measures, i.e. their variability. Among this class, 
probabilistic models based on renewal processes, i.e. Markov Chains (see Appendix A 
for a general statistical overview of these theories) enable one to consider also the 
dynamics of traffic that are observed in congested conditions, i.e. the effect of past 
conditions on the actual and future conditions. The convenience of this approach in 
comparison with the microscopic approach is in its faster computing times. 

A probabilistic approach gives the opportunity to analyze the statistical properties of 
traffic and give estimates of the expected conditions and of the variability of traffic via 
the computation of e.g. standard deviation or 10-90% confidence values. Modeling the 
dynamic and the stochastic character of queues and delays at signals is needed for the 
following reasons: 

• Theoretical improvements and insight into the behavior of traffic performances: 
traffic flow models should describe the transportation system as well as possible. The 
available models are bound to have rather simple formulations for reasons of 
tractability and they are often limited by some assumptions that simplify the state and 
control variables or their effect on the way vehicles propagate on the network. 
Therefore, improvements of these models still need to be performed both at the 
operational level (e.g. insight into the network capacity, throughput, clearance times, 
etc.) and at the behavioral level (e.g. car-following behavior, gap acceptance, etc.); 

• Assessment of existing management strategies: the effects of existing DTM measures, 
like traffic control, need to be evaluated via improved models of travel times and 
their effects on the demand for traveling. In some studies it is also important to have 
knowledge of the confidence levels of these effects; 

• Design and planning of new infrastructures and control strategies: insight on how 
one or another management strategy or intervention on the road infrastructure affect 
the transportation system reveals how a desired change in the system can be 
achieved. A deeper insight into the dynamics and the stochastic character of traffic 
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through improved models can result in a more efficient set-up of strategies in time 
and degrees of confidence for achieving the desired results can be evaluated; 

• Effects of travel time on the network flows: a better understanding of the dynamic and 
stochastic character of travel times at urban networks may improve the estimation of 
flows at urban networks, i.e. the route flows and their behavior in time. The 
knowledge of the variability of travel times can be used to evaluate the drivers’ value 
of travel time uncertainty. These features can be for example useful in Dynamic 
Traffic Assignment (DTA) problems; 

• Improvement in short-term model-based travel time predictions: the knowledge of 
how likely the traffic is going to perform in time and how large this information can 
be uncertain can be used in model-based travel time prediction and control problems. 

This thesis shows that all available analytic models lack in describing theoretically the 
dynamic and the stochastic character of overflow queues and delays at signalized 
intersections, which is instead caught by the Markov model. A new expression for the 
expectation value of the overflow queue is derived from the data simulated by the 
Markov model, which is shown to fit well this dynamic behavior. Moreover, an 
expression for the standard deviation of the overflow queue is also proposed, which 
represents to the author’s knowledge the first time-dependent expression for this measure 
that can be found in literature (an expression of the standard deviation of the delay was 
recently proposed by Fu (Fu 2000) under the assumption of stationary demand conditions 
for the whole period of analysis). The estimation power of the probabilistic models, 
together with their relatively simple formulations, motivates a much larger research in 
this direction, as it is shown in Chapter 8. Probabilistic formulations can therefore be 
done for more complex situations than the single lane, fixed controlled intersection; 
examples are given in the context of arterial corridors, multiple lanes and vehicle 
actuated controls. 

1.2 Research objectives and scope 

This thesis aims at giving a thorough analysis of the effects of traffic dynamics and  
travel time variability and to provide tools for improving estimation and prediction of 
urban travel times. The following objectives have been pursued in this study: 

• To improve dynamic and probabilistic modeling of traffic flows at controlled 
intersections; 

• To gain insight into the travel time variations caused by the variability of the demand 
and supply systems; 
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• To develop a model that is flexible and general enough to model the behavior of 
traffic at more complex control areas, intersections with multiple lanes and traffic 
streams, with different types of control systems, area network controls, etc.; 

• To derive a formula for the time-dependent expected value of the overflow queue 
length in time, which improves the analytic delay estimation by considering the 
stochastic effects in time of congestion; 

• To derive a formula for the standard deviation of the queue length, which may 
improve planning and design problems that aim to estimate the reliability of a 
transportation network; this measure can be also helpful in the estimation of flows if 
the users’ choice process considers explicitly a cost of travel time uncertainty. 

The description of this research is limited to motorized vehicles, in particular to 
passenger cars, while no attention is given to different vehicle classes and to the effect of 
one specific class on the others. Therefore heterogeneity of the traffic composition is not 
covered in this thesis. Moreover this thesis refers particularly to the delay incurred by 
vehicles at signalized intersections, therefore non-signalized intersections, roundabouts 
and uninterrupted facilities are not explicitly considered. The variability of traffic is 
intended to be derived from both within day and day-to-day variations, although the 
assumption of a known probability distribution may be different from the one observed 
during a day or at different days; therefore, refinement of the assumed probability 
distributions may be deduced from direct observation of traffic (i.e. by differentiating the 
day of the week, or peak hours and off-peak hours etc.). Chapter 2 discusses this issue in 
more detail. 

1.3 Thesis contributions 

1.3.1 Scientific contributions to the state-of-the art 

This thesis contributes to the state-of-the-art of traffic flow modeling at urban signalized 
intersections in various ways: 

1. It gives an empirical analysis of the relationship between the variability of the 
demand and the variability of travel times at urban networks (Chapter 2). Knowing 
the variability of travel times is shown to be as important as knowing their 
expectation value both for the traffic analyst and for the road traveler. 

2. An exact probabilistic formulation of the queuing process within a cycle has been 
developed in Chapter 4. This model, combined with the cycle-by-cycle Markov 
Chain queuing process  used already by other authors in the past (e.g (Van Zuylen 
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1985), (Olszewski 1990), (Brilon 1990)) enables one to estimate the probability 
distribution of queues and delays dynamically and for general arrival patterns. 

3. Behavior of the expectation value and of the standard deviation and their mutual 
relationship has been analyzed, uncovering the underestimation error that one makes 
by neglecting the dynamic effects created by the random nature of traffic. 

4. In order to obtain an analytic expression of the queuing process over time, which 
overcomes the elaborate computations required by the Markov model, a new formula 
for the expectation value of the overflow queue length has been derived (Chapter 6, 
referred to as the Van Zuylen-Viti model). This time-dependent model improves the 
available analytic expressions  in that it considers the effect of the variability of the 
traffic states (demand, capacity etc.) under the following assumptions and properties: 

• It considers the stochastic effects when queues are both increasing and 
decreasing. No such effect was modeled explicitly so far also when queues are 
decreasing. If long queues need to be cleared and the signal operates often near 
capacity these effects can be very important and expected clearance times are 
considerably longer if for example they are estimated by a deterministic model. 

• It models the expectation value of the overflow queuing process also for non-
stationary demand conditions, allowing one to model this process dynamically 
and simulate the transition between congested and uncongested conditions and 
vice versa, e.g. in peak period analyses. 

• It models the dynamics of the expectation value as a continuous function, which 
can be a desirable property in e.g. optimization algorithms. The first derivative is 
step-wise continuous if one assumes a step-wise demand to model non-stationary 
conditions, e.g. in Dynamic Traffic Assignment problems. 

5. In order to have an estimate of the variability of overflow queues a new approximate 
expression of the standard deviation is provided in Chapter 6. The model has a 
similar formulation to the one of the expectation value and it shares the same 
properties and assumptions described above. 

6. Consistency between macro, meso- and micro models in estimating traffic for long 
term planning and design problems is established at isolated intersections. The Van 
Zuylen-Viti models of the expectation value and the standard deviation of the 
overflow queue length are shown to give statistically the same results as the Markov 
model and the results of widely used commercial microscopic simulation software 
(Chapter 7). 
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7. The probabilistic approach is shown to be suited for more complex scenarios than the 
isolated, single lane fixed, controlled. Examples of these models are given in the 
context of arterial corridors, multiple lanes and vehicle actuated signals. 

The probabilistic models are recommended for various applications in the transportation 
practice (Chapter 9). Planning, design and operational problems will improve their 
estimation results if an improved model of travel times is applied.  

1.3.2 Research relevance and practical contributions 

This research is relevant for planning and design problems, which involve a cyclic 
service process, especially when large random fluctuations of the state variables 
(demand, capacity etc.) are observed. This is the case of signalized intersections as well 
as ramp meters, toll plazas, etc. It can also be used to give a probabilistic description of 
delays due to e.g. incidents. 

The Markov Chain process presented in Chapter 4 represents a very powerful technique 
for modeling such processes, since it treats variables at the probabilistic level and it 
simulates traffic by exact expressions based on mass-balance equations. This computing 
property makes mesoscopic models more suitable than microscopic models for planning 
purposes, since they simulate the variability of traffic and analyze causes-effect 
relationships between state variables, control variables and performance measures within 
reasonable computing times. Moreover, Chapter 7 will demonstrate that mesoscopic 
models give results consistent with microscopic models that are simulated under the 
same assumptions. On the other hand, modeling traffic operations with mesoscopic 
models enables one to obtain more accurate results than analytic models, which are based 
on more limiting assumptions, especially in dynamic networks. Analytic models and 
probabilistic models share the desirable property of directly relating the state and control 
variables to the performance measures (e.g. easiness in calibration and model validation), 
but they are capable of giving better insight into the statistical properties of these 
relationships. The models derived throughout this thesis using a probabilistic approach 
(Chapters 4, 6, and 8) for the signalized intersection under different inflow (stationary, 
non-stationary), geometric (single lane, multilane, isolated or in a network), control set-
up conditions (fixed, pre-phased, dynamic control) represent only a few examples of 
application of this technique. 

The property of Markov Chains to generate data within little computation times allows 
the traffic researcher to analyze the sensitivity of performance measures from the state 
and control variables and to derive simple heuristic and easy-to-use models when no 
simple formulas can be obtained by using exact macroscopic relationships. One example 
is given by the Van Zuylen-Viti models for the expectation value and the standard 
deviation proposed in Chapter 6. Applications in many other traffic problems and 
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contexts are expected to give large contributions to a better insight on how to 
dynamically model traffic. 

The analytic queue models presented in chapter 6 have particular relevance for traffic 
practitioners, since they give quick estimates of expected conditions and the possible 
uncertainty associated with these estimates in planning and design problems. On the 
practical importance of analytic functions for simulating travel times for design and 
planning purposes one may refer to Rose et al. (Rose 1989). These models are also 
valuable tools to apply in model-based travel time estimations and predictions for travel 
information systems and to analyze the effects of travel time on the distribution of flows 
along a network. 

This thesis gives also valuable insight into the variability of queues and delays a traveler 
can experience driving through a signalized network. This information can be used by 
traffic analysts to evaluate reliability measures like travel time reliability, capacity 
reliability, network reliability etcetera (see chapter 2 for the definition of these 
measures). 

1.4 Thesis outline 

This section briefly describes the contents of each chapter of this thesis and the 
connection between them. 

Chapter 2 gives an empirical overview of the causes and the effects of travel time 
variability at urban networks. The relationship between this variability and the day-to-
day and the within-day dynamics of the travel demand is analyzed by looking at real 
traffic measurements. This variability is shown to highly affect the level of service of a 
network; a probabilistic expression of this level of service (in time) can be therefore 
derived by knowing the probability of travel times to be experienced by the driver. An 
estimate of the travel time variability is also shown to be fundamental in reliability 
studies and in flow estimation methods (e.g. DTA), which have an explicit driver’s cost 
for uncertainty. 

Chapter 3 provides a state-of-the art of analytic queue and delay models. It discusses the 
modeling implications of choosing this approach instead of a microscopic approach. 
Theoretical and approximate approaches have been described for both steady state and 
dynamic conditions, as well as for isolated intersections and arterial corridors, and for 
fixed-timed and time-dependent control schemes. These models and their limitation due 
to their simplifying assumptions will be discussed. In particular, all models were found to 
be deficient in dealing with the dynamic and stochastic behavior of queues when the 
signal operates near capacity. As a consequence, these models are not very well suited to 
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analyze dynamic situations, e.g. peak hours. Moreover, very little is known about the 
variability of these queues, since very few studies analyzed this issue. 

Chapter 4 describes the probabilistic approach to the modeling of overflow queues, 
which considers the process as a one-step Markov Chain process, i.e. the probability 
distribution of the queue after one cycle depends only on the distribution at the previous 
cycle and the arrivals and departures during the cycle. This method allows the analyst to 
estimate and predict the dynamic evolution of queues and the propagation of their 
distribution in time, quantifying the uncertainty around this estimation and/or prediction. 
However, this model, does not tell anything about the dynamics of the queue length and 
the delay within the cycle. Therefore, a new formulation for the expectation value of the 
queue length and the delay within a cycle is presented. This model contributes to the 
state-of-the-art presented in that it is an exact formulation which enables one to consider 
the effect in time of the variability of arrivals within the cycle. The new formulation for 
the within-cycle queuing process was recently proposed (Van Zuylen 2006) 

Chapter 5 analyzes the statistical properties of overflow queues and delays using the 
Markov model. Analysis of the different behavior that can be observed under these 
assumptions has revealed that conditions of traffic in the neighborhood of saturation are 
strongly influenced by the random nature of demand and supply systems, creating an 
overflow queue and delay, which can be much larger than uniform and incremental delay 
components. Combined analysis of average and standard deviation of the queue in time 
shows strong interdependence among these two characteristics, especially in saturated 
conditions of traffic, therefore the ratio between standard deviation and mean influences 
the dynamic behavior of queues. This implies that an analytical expression for the 
standard deviation is also an important research issue. This chapter is inspired by earlier 
works of the author ((Van Zuylen 2003), (Viti 2004) among others). 

Chapter 6 provides a new overflow queuing formula for the expectation value, which can 
be applied in the delay functions for planning purposes described in Chapter 3. Using the 
data simulated with the Markov chain process as benchmark for the development of 
empirical models, heuristic functions have been derived for the expectation value and the 
standard deviation of the overflow queue length in time. These models have a broader 
area of use than official manuals as for example the Highway Capacity Manual 2000 
(TRB 2000), since they reproduce the expected evolution of queues and their variability 
as a function of time, without the necessity to fix an evaluation period but they provide 
estimates for every cycle. The derivation of the formula was initially presented in (Van 
Zuylen 2003) and the parameters were estimated in (Viti 2004). The simplified formula 
was finally presented in (Viti 2005). 

Chapter 7 compares the results of the probabilistic model with several microscopic 
simulations of a commercial software package, VISSIM (PTV 2003). For this 
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comparison microsimulation represents the only valid alternative to field data since it is 
rather unlikely that one can observe in real life sufficiently long periods of stationary 
demand conditions. The consistency between the three approaches in various conditions 
of traffic validates the two lower-level methods. This represents an important 
contribution to traffic managers and practitioners, since it proves that the dynamics of the 
overflow queue are well estimated with all three different level-of-detail models. The 
consistency between the models also in a dynamic scenario with non-stationary demand 
rates implies that the Van Zuylen-Viti model may contribute to the development of 
improved network loading models in DTA Processes. This chapter is based on a 
benchmarking study made by the author (Viti 2006). 

Chapter 8 proposes the application of the Markov approach described in chapter 4 in 
three directions: arterial corridors, multilane sections and time-dependent controls. While 
there is very little difference in the formulation of the Markov model for isolated 
intersections from an intersection within a network, i.e. the shape of the arrival 
distribution, modeling the interactions between lane choice of drivers and queue lengths 
appears more complex. To account for this interaction the Markov model has been 
combined with a probabilistic lane-changing model. By doing so, the distribution of 
arrivals has been shown to have a dynamic character, according to the dynamic character 
of the overflow queue length. Furthermore, the Markov model at multilane sections 
allows one to account for spillback effects, which is useful information for a correct 
estimation of delays and for the design of exclusive turning lanes. Finally the assumption 
of fixed control settings has been relaxed by formulating a probabilistic model of vehicle 
actuated controls. This approach allows one to compute the probability of green time 
extension depending on the variability of arrivals and their headway distribution in time. 
The probability of overflow queues is computed accordingly. These model extensions are 
inspired by recently presented works ((Viti 2005), (Viti 2005), (Viti 2006)). 

Chapter 9 discusses the potential applications of the Markov model and the potential 
future developments that can be expected with this modeling approach. Examples of 
application have been given for design and planning problems, in the modeling of traffic 
operations, in the travel time estimation and prediction problems etc. 

Chapter 10 concludes this thesis and gives future directions of research. 

The following flowchart, drawn in Figure 1.1, explains the relationship between the next 
chapters of this thesis. 
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UFigure 1.1: Structure of the thesis chapters 
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2 
Causes and effects of travel time 

variability in urban networks 

2.1 Introduction 

The advancement of technology and informatics applied to the transportation systems 
gives opportunity for a more efficient use of the road infrastructure. Nowadays, 
transportation policies in large cities and metropolitan areas are giving increasing 
attention to the development of dynamic strategies of traffic management designed to 
reduce congestion by using these new technologies. Among these, Dynamic Traffic 
Management (DTM) strategies are designed for an optimal use of the network, achieved 
by adapting dynamically the road capacity to the demand (i.e. dynamic traffic control, 
speed control, ramp metering etc.) or by redistributing the demand in time and among all 
routes according to the available network capacity (i.e. in-vehicle or en-route information 
and guidance systems). 

Travel times have important role in the assessment of DTM measures, since they affect 
the travelers’ choices and they are determinants of the attractiveness of network links or 
routes. A good estimation or prediction of network flows together with the corresponding 
costs as a function of the applied DTM strategies has therefore a central role in the 
optimal set-up of such measures. However, estimation and prediction of travel times is 
largely affected by the complex structure of urban networks and by the dynamic and 
stochastic behavior of demand and supply systems. 
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The development of management strategies designed to adapt the road capacity to the 
actual demand (e.g. responsive controls) or vice versa (e.g. in-vehicle guidance systems) 
have supported an increased research over the causes and the effects produced by the 
variability of traffic. A quantitative definition of the role of the variability of travel times 
may improve the assessment of these DTM measures, since it can explicitly control the 
effects of these measures on the dynamics and the stochastic behavior of the 
transportation system. The knowledge of the variability of travel times is valuable for 
example to quantify the reliability and robustness of a transportation system and to assess 
the impact of traffic responsive and adaptive control systems. A deeper insight into what 
causes this variability can tell what part of it is systematic (or recurrent) and therefore 
predictable or controllable. 

2.1.1 What causes travel time variations? 

Travel time variability stems from several reasons and its relationship with the demand 
and supply characteristics has not yet been clearly defined. This problem is especially 
challenging in congested networks, since travel time variability increases with road 
occupancy and congestion (Van Lint 2004). The stochastic nature of the demand is 
widely acknowledged to be one cause of travel time variability (see e.g. (Clark 2005)). 
Variation in road capacity is also shown to strongly affect travel time (un)reliability, 
especially on motorways (see e.g. (Tu 2006)). Debate is nowadays around which of these 
two variations causes the largest variability of travel times. 

Day-to-day as well as within-day demand variations are in fact observed in all 
transportation networks. The way activities are scheduled and their distribution in an area 
can give a rough estimate of how demand can be distributed in time and space. Large 
variations can be observed during the day and among days and in some cases the network 
is not able to serve the demand at a certain time and queues and delays are frequently 
observed. In other times of the day these parts of the network can have a large part of the 
capacity that remains unused. The network use is thus unbalanced during the different 
times of the day. These large variations of the traffic states have a degree of 
predictability, which can be improved by selecting an appropriate model (e.g. modeling 
travel times by specifying the time of the day, the day of the week and even the season as 
determinants of this variability). There are also variations in the traffic demand, which 
cannot be explained by specifying external factors. Part of travel time variability remains 
unexplained as it stems from the random nature of human behavior, i.e. their driving 
behavior and their travel choices. 

Travel times at urban networks are for a large part determined by the delay drivers 
experience at (controlled) intersections; the variability of control delays is, in these 
systems, mainly affected by the variations of the demand, although the variations of 



Chapter 2. Causes and effects of travel time variability at urban networks 17 

capacity can also be large (e.g. in case of priority rules for public transport modes). The 
important role of the stochastic character of the demand is proved by the existence of 
several models, which explicitly assume stochastic distributions for the arrivals at the 
intersections. This stochastic character justifies for example the existence of a random 
delay component directly related to the variability of the demand in most of the delay 
formulas developed since the seminal work of Webster (Webster 1958). This component 
has very little role at low demand rates, while it represents the main component of the 
average control delay if the intersection operates near capacity. The demand variations at 
signal controls are therefore affecting travel time variability especially in their relation 
with the capacity. The importance of the relationship between demand variations and 
signal capacity has supported the research throughout this thesis. 

This chapter gives insight into what causes travel time variability; variability of travel 
times is discussed both from the point of view of the traffic analyst and of the road users 
(Section 2.2); in particular a differentiation between what is predictable and what remains 
uncertain is discussed (Section 2.3). The value of uncertainty in the departure time-route 
choice process of travelers is later discussed using a survey (for more details see 
Appendix B) to give an idea of how people value uncertainty with respect to their value 
of time in their learning process and how they combine their experiences with 
information (Section 2.4). The different viewpoints of looking at travel time variability 
motivates the various definitions of reliability, which can be found in literature (Section 
2.5). Finally Section 2.6 gives a synthesis of this chapter and summarizes the motivation 
for the research presented in the remaining parts of this thesis. 

2.2 Predictable vs. uncertain 

Travelers estimate and predict the costs of their trips by experiencing individual travel 
times. Past travels enable the drivers to build their personal experience, perception and 
opinion on an alternative for traveling. Past experiences can therefore tell the driver 
something about the uncertainty of these costs too. The traffic analyst does not know in 
general each traveler’s individual travel time but only aggregated travel times can be 
observed. Some monitoring tools (e.g. loop detectors) enable the road manager to 
estimate and predict average travel times. Some other monitoring techniques can trace 
the single trajectories (e.g. cameras, number plates recordings etc.) allowing the manager 
to collect individual travel times. Both with the collection of average travel times, for 
example during several days, and with the collection of individual travel times, the road 
manager can estimate the variability of these characteristics. 

The notion of travel time variability is closely associated to the concept of (un)reliability. 
By its nature, reliability implies a notion of repetition and regularity (Bates 2001). 
Transportation networks are affected by various sources of uncertainty, which influence 
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the drivers’ choices. The sources of uncertainty stem from demand and supply variation. 
The variation in demand can be recurrent and show some cyclic properties (like daily or 
weekly traffic patterns), or non-recurrent (e.g. events like strikes or football matches), or 
by the variation of travelers’ behaviors. The variation of the supply system may be a 
temporary or permanent (e.g. road works, construction of a new road etc.) and caused by 
external factors like adverse weather conditions, incidents or natural disasters. A good 
prediction of the expected conditions by accounting for day-to-day and within day traffic 
dynamics can catch partly this regularity, but uncertainty due to random unpredicted 
fluctuations will still affect this prediction. Since unpredicted variations can occur 
because of demand or supply variations, and they can be reduced by a change in both 
characteristics, many concepts of reliability have been proposed. A classification of these 
measures is given in Section 2.5. 

From the travelers’ viewpoint, the evaluation and prediction of route travel times and 
their variability is done by means of individual experiences during past trips. It is still not 
completely clear how people build their own opinions about each alternative of travel, 
and especially how much they value travel time variability in their choice process. Past 
studies have proposed to include the travel time uncertainty for example by considering 
the predicted travel time as sum of the average experienced travel time and an extra time 
as safety margin related to the uncertainty felt for that trip (e.g. (Uchida 1993), (Luo 
2003)). These approaches have been on the other hand considered too simplistic to 
encompass the discrepancy between choice model predictions and observed travel 
choices. Different risk attitudes, memory skills, taste for habit and curiosity etcetera 
influence the perception of travelers and their learning process towards the most 
convenient choice. The value of reliability for the travelers and their decision-making 
process under uncertainty are not central issues in this thesis, although section 2.4 and 
appendix B briefly discuss the effects of travel time variability in the route-departure 
time choice process. For a more detailed research on these topics one can refer to e.g. 
(Van Berkum 1992), (Bates 2001), (De Palma 2005), or (Bogers forthcoming). 

The concept of reliability used in this thesis is strictly connected to the uncertainty and 
the variability of travel times in the network, and in order to define the network reliability 
one needs to understand how the characteristics of the transportation system determine 
uncertainties and how these uncertainties influence the travelers’ behavior. 

2.3 Determinants of travel time variability 

The following Figure 2.1 schematizes the various factors which determine travel time 
variability in a general network. This scheme does not consider the eventual re-routing or 
departure time adjustments due to variations in travel times and delays. 
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Figure 2.1: Factors influencing travel time and delay variability 

The following of this section describes the role of these factors to the dynamic and the 
stochastic behavior of travel times. 

2.3.1 Day-to-day demand fluctuations 

The demand for traveling is primarily governed by the way activities are scheduled. For 
example, strong differences in flow rates are measured between working and non-
working days, or between summer and winter seasons, both because of the concentration 
of holidays during warm seasons and because of an increasing use of the vehicles during 
cold seasons instead of other modes for traveling (bikes, motorbikes, etc.). 
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Figure 2.2: Total daily volumes of traffic detected on the Kruithuisweg (Delft) during October-
December 2000 with resultant average and confidence intervals 
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Figure 2.2 shows how daily volumes of traffic changed in the autumn of 2004 in an 
urban road of Delft, in the Netherlands. The total number of vehicles within a day was 
measured with loop detectors placed under the road surface. It looks that the average 
daily demand does not change consistently during working days (Monday to Friday) 
while it is considerably lower during Saturdays and Sundays. Analysis of the standard 
deviation shows a relatively small variation of daily traffic within each weekday (around 
10% of the mean). 
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Figure 2.3: Day-of-the-week travel time offsets estimated on a Dutch motorway (Van Der Zijpp 
2002) 

Some studies (e.g. (Van Der Zijpp 2002), (Thomas 2006)) evaluate the predictability of 
travel times on motorways and urban roads by specifying the impact of daily, weekly, 
seasonal and weather variations. Van Der Zijpp et al. evaluated this impact by 
considering travel times as sum of a “typical” travel time, calculated using a whole-year 
data, and travel time offsets, which are determined by these variations. Large 
improvements in travel time predictions are achieved by simply gathering and analyzing 
historical data from a location to forecast the expected travel time and its variability. 

Figures 2.3-2.4 show the estimated daily variations (represented by time offsets from the 
average) observed in a whole year analysis on a Dutch motorway (A13) in the year 2000. 
Figure 2.3 shows the offset one should take into account at each day of the week as 
compared to the average daily pattern; Figure 2.4 shows instead the same variations if 
one specifies which month. 



Chapter 2. Causes and effects of travel time variability at urban networks 21 

06:00 09:00 12:00 15:00 18:00 21:00 00:00
-50

-40

-30

-20

-10

0

10

20

30

40

50
jan-mrch 2000

Tr
av

el
 ti

m
e 

of
fs

et
 [s

ec
]

Departure time 

Januari
Februari
March

 
06:00 09:00 12:00 15:00 18:00 21:00 00:00

-80

-60

-40

-20

0

20

40
apr-jun 2000

Tr
av

el
 ti

m
e 

of
fs

et
 [s

ec
]

Departure time 

April
May
June

 

06:00 09:00 12:00 15:00 18:00 21:00 00:00
-100

-50

0

50

100

150
jul-sep 2000

Tr
av

el
 ti

m
e 

of
fs

et
 [s

ec
]

Departure time 

Juli
August
September

 
06:00 09:00 12:00 15:00 18:00 21:00 00:00

-20

0

20

40

60

80

100

120

140
okt-dec 2000

Tr
av

el
 ti

m
e 

of
fs

et
 [s

ec
]

Departure time 

October
November
December

 
Figure 2.4: Monthly variations as compared to the average working day (Van Der Zijpp 2002) 

Day-to-day variation can be caused also by the property of flows to adapt themselves to 
changes in the system, for example if new roads are built, or the capacity of some 
existing roads is changed (i.e. due to road works), or new traffic policies are adopted. 
These changes are certainly rarely predictable using historical data and only model-based 
approaches can give an expectation of the future traffic conditions (e.g. demand 
forecasting models, traffic assignment processes etc.). 

2.3.2 Within-day demand fluctuations 

The way activities are located and scheduled, and the limited network capacity, 
determines the existence of peak hour congestion in most of the big cities. Fluctuations 
of the demand pattern during a day are therefore determined by the desire of road users to 
travel during their most convenient time and route to reach their destination. If travel 
demand is low, there is little interaction among vehicles and the travel time is nearly 
constant, equaling the so called free-flow travel time. If travel demand is higher, but less 
then the capacity, vehicle interactions force drivers to reduce speed, leading to a slight 
increase of travel time. When the road space is insufficient to serve all vehicles driving 
on one location at the same time some travelers experience uncomfortable driving 
situations; the interaction between drivers is very strong and the behavior of one vehicle 
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is conditioned by the behavior of neighboring vehicles and stop-and-go and queuing 
phenomena are frequently observed. Some drivers anticipate or postpone their time of 
departure or change route to avoid these bad conditions but sometimes this adapting 
behavior is not sufficient to reduce the demand below the actual capacity. 

 
Figure 2.5: Hourly volume of traffic detected on the Provincialeweg (Delft) for both directions 

Figure 2.5 shows how traffic can be scattered. The variation of the demand in time is 
much more evident than in the total daily volume. Moreover, the figure clearly shows the 
influence of the activity locations. In fact, the highest peak in direction north appears in 
the morning, while in direction south the largest volume is observed in the afternoon. 

Since starting time and location of many activities are concentrated in certain points in 
time and space, peak periods frequently lead to congested conditions, increasing travel 
times on links. Figure 2.6 shows the effects of the peak period in terms of travel times (in 
seconds) again on one arterial road in Delft. The capacity of the road is sufficient to keep 
travel times at low values for most of the time. In the morning the travel time is much 
larger than in off-peak hour and the standard deviation is comparable with the average. 
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Figure 2.6: Hourly volume of traffic detected on the Kruithuisweg (Delft) 

Fluctuation of the demand during the day makes road capacities inefficiently utilized. 
They are in fact observed in this case both for the time the peak is observed and for the 
duration of congested conditions. 

2.3.3 Variations in capacity 

Traffic composition, heterogeneous speeds and differences in travelers’ driving behaviors 
in traffic networks are also causes of variable travel times. This issue is dealt with 
marginally in this thesis although the hypothesis of stochastic arrival distribution at the 
traffic signal assumed in the next chapters encompasses these variations.  

Variability between vehicles that make the same journey in the same period (inter-
vehicle variability) is very difficult to catch in a macroscopic viewpoint, while it 
represents a fundamental characteristic at the microscopic level, for example in modeling 
the variations in car-following behavior of travelers (Ossen 2006). Tampere (Tampere 
2004) investigated the dynamics of congestion in conditions of flow near capacity by 
assuming some source of variability in vehicles or drivers’ characteristics. This 
variability can be both in traffic composition and drivers’ behavior (e.g. different desired 
speed, or car-following and lane changing behavior etc.). He concluded that variability in 
driving behavior increases the probability of breakdowns and affects traffic condition 
stability. This issue has supported the development of driver’s assistance systems 
designed to reduce these perturbation effects and consequently the risk of breakdowns at 
conditions near congestion. Advanced vehicle guidance systems like the Advanced 
Driver Assistance Systems (ADAS) are therefore expected to reduce travel time 



24  TRAIL Thesis series 

variability by constraining drivers to more homogeneous drivers’ operations, e.g. lane 
changing, gap acceptance and platooning (Minderhoud 1999). 

At urban networks the variable traffic composition seems to have a larger impact than the 
speed variations and driving skills of the drivers, but up to date no empirical evidence is 
known. Some studies use microsimulation to investigate this issue (e.g. (Kang 2000)). 
Large decrease of capacities has been estimated at urban controlled intersections with an 
increasing presence of heavy vehicles and with priority rules for public transports. 

A behavioral approach like Tampere’s may partially explain the large variations in 
vehicle throughput, which can be observed in real life, but these variations do not fully 
explain why different capacity values can be measured. Reductions of capacity are also 
due to external factors, which implicitly modify both travelers’ driving behavior and road 
physical capacity, i.e. degraded road pavement, bad weather conditions and visibility etc. 
A different approach than the one of Tampere can be found in Brilon et al. (Brilon 2005), 
where the authors do not analyze explicitly the causes and the effects of stochastic 
demand propagation on travel times, but they analyze directly the road capacity as a 
stochastic variable. 

Apart from stochastic variation of capacities due to the random nature of the demand, 
other factors can influence the capacity and cause unexpected fluctuations of travel times. 
Unexpected or non-recurrent events can affect temporarily or permanently the road 
capacity, e.g. accidents can block one or more lanes of a freeway, creating a bottleneck 
for the incoming vehicles. 

Some of the capacity fluctuations can finally be caused by exogenous factors (e.g. 
adverse weather conditions, natural disasters, bad visibility etc.). For example, strong 
evidence relates the weather conditions with the travel time estimations (Van Der Zijpp 
2002). Figure 2.7 shows how travel time offsets have been computed on the Dutch 
motorway A13  by considering conditions of good weather, light rain and heavy rain 
(taken from (Van Der Zijpp 2002)). As one can notice very bad weather conditions cause 
congestion to build up earlier, apart from being more severe. A model which considers 
adverse weather conditions as causes of an offset of travel times from the average can 
more accurately estimate and predict such extra-delays. 
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Figure  2.7: travel time offsets with different rain conditions 

Combining this model with models that estimate delay offsets conditioned by departure 
time, day of the week and season as shown in Section 2.3.1, in which the trip is made, 
can further reduce the uncertainty on the travel time prediction (Van Der Zijpp 2002). 

In conclusion, part of the daily travel time variability can be explained by recurrent (or 
periodic) variations. The predictability of these variations, from the point of view of the 
traffic manager, depends on the way the system is monitored and on the estimation 
model chosen to represent it. Travelers are also able to estimate in some way these 
periodic variations using their past experiences and by gathering information from any 
available source. Both managers and drivers cannot on the other hand achieve a perfect 
prediction of future costs because of random variations which are not driven by any 
explainable factor, and match between predicted travel time and actual travel time 
remains only probable. Knowing how variable travel times are expected to be can 
therefore quantify how much information can be reliable and trustworthy. Knowing how 
much travelers value this variability in their choice process is also valuable to understand 
how they will react on the available information and how much they will rely on their 
own perception or expectation of costs. 

2.4 The value of uncertainty for the travelers 

Assessing the influence of travel time variability on travelers’ decisions has been 
addressed as one of the challenges in recent transportation research. Several authors 
emphasized the importance of including uncertainty about travel conditions as a factor 
influencing travel decisions, especially in terms of route choice and departure time choice 
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(e.g. (Bates 2001), (Avineri 2003), (Chen 2004), (De Palma 2005)). The expectation of 
travel time variability from the travelers’ viewpoint is strongly related to the concepts of 
perception and information. The greater the variation of these costs, the more difficult it 
will be for travelers to acquire reliable information and to perceive a correct expectation 
of the travel costs. Clearly, the ability to predict variations in demand will also vary 
within the traveling population (Bates 2001). 

Variability of costs, conflicting objectives, competing alternatives and heterogeneous risk 
attitudes among drivers make decision making variable among travelers and 
consequently difficult to predict. The variability of travel times, which a driver or 
different drivers can experience, together with the variability of each driver’s 
characteristics makes the prediction of their choices a challenging task. Some behavioral 
models assume travelers to choose their preferred routes according to the costs they 
expect for all known alternatives; in reality decisions may be made under complete or 
partial information about the real travel costs, or under time constraints, or even 
depending on the traveler’s emotional state at the time of deciding (Bechara 2005). 

Travelers get to know about how variable their next travel time can be from two sources: 
from their own past experiences, thus how many times they traveled using an alternative 
or another, and from the information they acquire from external sources, i.e. variable 
message signs, road maps, radio, internet etc. Past experiences and information are 
combined in order to have a higher degree of confidence on the expected travel costs 
(Bogers 2005). Travel times experienced and traveler’s attitudes at each trip (his level of 
habit, curiosity, risk acceptance, experience and reliability towards roads and 
information) are combined to get an expectation of the utility the traveler might have 
from the next trip, and how uncertain these costs can be. In some situations travelers 
seem to prefer a reduction in variability than in the mean travel time ((Bates 2001), 
(Bogers 2005)). 

2.4.1 Experience and learning mechanisms in car traveling 

People get to know about the possible costs they may face by experiencing the routes for 
various days, and sometimes during different periods of the day. If a traveler has little 
knowledge about the status of the roads at the time of departure, he might assign a very 
large safety margin to the expected travel time, in order to avoid long travel times 
causing also very long delays at the arrival point. If instead the traveler has experienced 
the roads quite often, given his past experiences he may exclude the possibility that at the 
time of departure delays may occur. The level of experience may thus considerably 
influence the perception of uncertainty and the choice under risk. 

The level of perception given by the experience is then an influencing factor in the 
travelers’ decision-making process. This level of confidence may be influenced by the 
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number of travel conditions experienced using an alternative, related to the variability of 
travel times, but also on travelers’ individual characteristics like memory skills, habit, 
curiosity, stress etc. Travel time variability and experience are therefore highly correlated 
and this relationship can affect the way flows distribute along the competing alternatives. 
Based on former route and departure time choices, the travelers have personal 
experiences. From these experiences, they can learn about the characteristics of the 
routes they have chosen, about how to interpret travel information and about the 
reliability of this information. 

2.4.2 Acquiring travel information 

Experience is often combined with other sources of information (i.e. in-vehicle, en-route 
and off-route information systems) in order to get a better perception of which costs a 
traveler will experience until arrival at destination. While past experiences might help the 
traveler at having a guess of what kind of conditions are likely to be found on a certain 
route and time and how much a trip “usually” costs, information can provide a measure 
of the actual (or forecasted) status of the roads. 

Information systems are therefore designed with the scope of directing the traveler 
towards the most convenient choice of travel. This effect is on the other hand related to 
various factors, which may cause the actual effects to deviate from the desired. Rerouting 
effects may simply move congestion from one location to another; information can have 
poor impact on the demand or be inaccurate. 

Travel time variability affects in fact the quality of information and the impact of the 
latter to the users. Some users may still rely on their personal opinion instead of 
following the suggestions eventually given by the information if information is 
frequently imprecise. For the assessment of ATIS systems it is important to know how 
travelers combine past experiences with past information. Bogers et al. (Bogers 2006) 
give evidence that past experiences have less influence than travel information in an 
uncertain environment. 

2.4.3 Individual characteristics 

Even if travelers increase their level of experience and information in order to reduce as 
much as possible their uncertainty about the expected costs of a trip, uncertainty still 
affects their choice if travel times are variable. 

Research on decision-making under risk and uncertainty has its origins in behavioral 
science like economy and psychology with the works of Bernoulli (Bernoulli 1738), who 
found in his studies discrepancy between objective variability and subjective perception 
of this variability. In the last two centuries this research has been carried on from 
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different disciplines, economics and psychology among others, to define the human 
factors, which primarily influence this choice process. Travelers decide which alternative 
of travel to take accepting the risks that this choice implies. Even the with the same 
information and experience, people can decide to use different alternatives of travel for 
their next trip because of different risk attitudes. The strong relationship between risk and 
uncertainty motivated several studies from Bernoulli, which gave the foundations to the 
Expected Utility Theory (Von Neumann 1944). Studies in the risk behavior of travelers 
have suggested the investigation of both heterogeneity of risk attitudes among travelers 
(e.g. (De Palma 2005)) and individual non-linear risk aversion depending on the 
distribution of costs (e.g. (Avineri E. 2003)). Bogers et al. (Bogers 2004) found from a 
survey that truck drivers show a linearly increasing risk aversion with the standard 
deviation of travel times. 

Apart from travelers’ risk attitude, several human factors make the choice of travelers 
variable. Individual characteristics like habit, curiosity or short memory limit human 
minds and impede the correct estimation of expected costs (Bogers 2005). Drivers may 
value in a different way their driving times, or delays, or waiting times at queues. 

2.4.4 Effects of travel time uncertainty in travel choices: a survey 

Perception levels vary among road travelers due to different experiences, information 
used and individual characteristics. This is reflected in variability in travel choices. 
Special attention is given in this section to the effects of travel time variability on the 
route and departure time choice process of travelers. 

The valuation of travel time reliability can be done by means of descriptive models, i.e. 
using Random Utility Theory (RUT). Even if several criticisms have been underlined, 
especially on the assumption of traveler as rational utility optimizer, this method is still 
useful to model the impact of different traffic performances and variables on drivers’ 
choices. Since travel choices are often discrete variables (e.g. route, mode) or 
approximated as discrete (e.g. time of departure) it is difficult to associate these choices 
to continuous variables like e.g. travel time, or travel time variability. Discrete choice 
models (Ben-Akiva 1985) are therefore very appealing since they model the travel 
choices through utility maximization criteria: the traveler selects the alternative, which 
gives him the highest utility among the chosen set of alternatives. Utility functions are 
represented by all investigated variables together with parameters, which quantify the 
relative importance of a change of a variable on the travelers’ choice. These parameters 
are therefore calibrated from a sample of observed choices. 
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Figure 2.8: Screenshot of the route choice phase in the TSL 

This section shows some results taken from two laboratory experiments made with the 
web-based tool Travel Simulator Laboratory (TSL, (Hoogendoorn)), designed at the 
Delft University of Technology (Delft, the Netherlands). A description of the tool and the 
set-up of the experiments are given in appendix B. The role of uncertainty in choice 
behavior is investigated by analyzing empirical results of the choice process of travelers 
under uncertain conditions in terms of route and departure time. The respondents asked 
to repeat 25 times a certain trip with a fixed origin and destination on the motorway 
network around the city of Amsterdam (see Figure 2.8) and to select at each round a time 
for starting the trip and, after receiving the information about the expected status of the 
roads, the route to use. 

Travel times have been calculated in TSL using a stochastic simulation model, which 
computes travel times according to a normal distribution and assigns a random sample to 
each respondent out of this distribution. Information is given, whenever the panel is on, 
displaying the length of queue in kilometers. To simulate the stress of waiting in a queue 
a waiting time proportional to the total travel time spent a scaling factor was applied. 

The first experiment presents the choice of two routes with similar expected travel times 
and variance while the second experiment involves two routes where the travel time of 
the first is highly variable while the second has a markedly higher expected travel time 
but very high reliability (see Table 2.1). For the first experiment data from 52 
respondents were available; for the second one there were 63 respondents. It concerned 
highly educated people mainly from The Netherlands, Italy and Portugal, most of them 
being engineers. For a more detailed explanation about set-up of the scenarios and the 
design of the experiments see also (De Groot T. 2004). 
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The value of past experiences and information in their decision-making process was 
analyzed in a simple scenario involving two alternative routes and an interval of possible 
departure times. After the collection of some individual characteristics like age, gender, 
driving experience etc. the respondents were asked to give their preference regarding the 
following travel time attributes: arriving early, in-vehicle travel time, arriving late. 
During the experiment, a score was determined by the sum of the normalized weights for 
a route attribute times the number of minutes spent for that attribute. The respondents 
were told that their goal would be minimizing this score: let ,  ,  ik ik ikα β γ  be respectively 
the weight assigned for a minute lost for early arrival, driving time and late arrival at 
destination, and ( ),  ( ),  ( )early driving late

ik ik ikt n t n t n  the respective quantity of minutes that 
respondent i  loses selecting an alternative (route and departure time) k  during step n . 
The score is computed for each individual by: 

( ) ( ) ( ) ( )early driving late
ik ik ik ik ik ik ikn t n t n t nα β γΙ = ⋅ + ⋅ + ⋅      (2.1) 

 

Table 2.1: Characteristics (in minutes) of the routes in both experiments  

  Experiment 1 Experiment 2 
Route 1 Average  17.68 23.05 
 Standard deviation 4.25 6.65 
Route 2 Average 19.86 25.31 
 Standard deviation 3.92 2.43 

The respondents’ utility function for choosing the alternative k  has been assumed linear 
and having a mixed Logit model structure, following the relationship: 

( ) ( )ik ik ikU n n ASC ε= ⋅ + +β X        (2.2) 

The indexes ,  ,  i k n  represent as the above Formula 0H(2.1) respectively the alternative 
index, the respondent index and the time step. β  and ( )ik nX  are respectively the vector 
of free parameters and the vector of explanatory variables related to person i  and 
alternative k , which are found significant in the choice of users. ikASC  represents the 
alternative specific constant related to person i  and route k  while ε  is the error term, 
which models some choice variability. The choice of a mixed Logit is justified by the 
time-dependent characteristic of the choices for each respondent and the strict correlation 
among these choices. For a detailed description of the model and the model results see 
Bogers et al. (Bogers 2005). 



Chapter 2. Causes and effects of travel time variability at urban networks 31 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

day nr

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
day-to-day choice of route 2 for the second experiment (in fraction)

day nr

day-to-day choice of route 2 for the first experiment (in fraction)

revealed preference
"ideal" preference

revealed preference
"ideal" preference

 
 Figure 2.9: day-to-day fraction of choices for route 2 in the two experiments 

Figure 2.9 shows the average preference of the respondents to the two routes in the two 
experiments in terms of fraction of choices. In the first experiment route 1 is generally 
preferred to route 2, according to the lower expected travel time. Average preference in 
fact does not exceed 40% during the whole experiment. Moreover, the fraction of people 
choosing route 2 is in accordance with the “ideal” preference, represented by the fraction 
of times route 2 had actually a better score than route 1. In the second experiment, route 2 
is definitely preferred to route 1. Although the average travel time is higher, respondents 
preferred the reliable route on average 70% of the times. Comparing the revealed 
preferences to the “ideal” ones (the times route 2 was actually faster than route 1) there is 
a consistent difference, giving an idea of the importance of reliability in user’s decisions 
and to what extent this characteristic may play a role in the utility of travelers. 

The results shown in Figure 2.9 can point at two conclusions closely related to each 
other. The first is the relevance of the reliability of route 2 in the second experiment for 
the route choice of travelers. It appears that travelers on average overestimate the utility 
of the reliable route with respect to the actual expected costs, and are willing to refrain 
from saving some driving time in order to be more on time. Note that, during the 
preliminary steps, the majority of people declared to pay the most attention to scheduled 
delays, followed by driving time, and at last they care about arriving early. The choice of 
a faster route would have led to a better score, but respondents consistently chose the 
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slower but more reliable route. In this choice process people show to be highly risk 
averse, as found also by Bogers et al. (Bogers 2004) in freight transport. 

The second conclusion relates the penetration of the information given to the respondents 
to the variability of route 2 in the second experiment. In fact, looking again at Figure 2.9 
it appears that respondents of the first experiment respond more thoroughly to the hint 
given by the information panel. This conclusion is confirmed by looking at the best-
fitting values of the parameters in the mixed Logit models (see (Bogers 2005)). In both 
experiments the information given, represented as variable by the number of kilometers 
displayed by the road panel for each route, and the experience, represented by the last 
experienced travel time and the last scheduled delay, are found significant. In both cases 
the value of information is much higher than the experience.  

In the first experiment the information given represents 80% of the utility, while in the 
second it represents only 45% of it. Even if the last travel time is a significant factor, it 
represents only around 2% in both experiments. Also the last experienced scheduled 
delay has little role in both experiments (respectively 8% and 3%). Experience is also 
controlled by a third factor, namely the number of times the route was previously chosen, 
which can be seen also as an indication of habit. This factor represents about 10% in the 
first case and even up to 27% in the second experiment. In this case travelers who have 
selected the reliable route are more likely to select it also in the future, giving less 
attention to what information they get. In conclusion, both the value of information and 
past experiences are affected by uncertainty. 

Figure 2.10 compares average experienced travel time at each iteration to the average 
shortest ones (average of the smallest travel times at each simulation), displayed in the 
left two figures, and the average delay (here intended as both early and late arrivals 
according to their chosen departure time) to the delay people would have experienced if 
choosing always the fastest route (right two figures). Respondents in the first experiment 
have average travel times delays in accordance with the lowest scores, while in the 
second an increase of travel time (an average increase of 15%) is balanced by a 
consistent decrease of average delay, which is nearly zero. Looking again at Figure 2.10 
one can have an insight of the learning mechanism of travelers. It appears that while the 
average travel time is not changing with the experience of the users in both experiments, 
the average delay clearly decreases in time. 
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Figure 2.10: day-to-day evolution of travel times and delays in the two experiments 

A conclusion that can be drawn from these results is that users are willing to spend more 
time on the road in order to guarantee a higher probability of on-time arrivals. The role of 
travel time variability is therefore important in the departure time choice of travelers too. 
This conclusion is supported also by Bates et al. (Bates 2001) who point at departure 
time choice to be the most sensitive choice level to travel time variability. In the first 
experiment the respondents chose their time of departure with a safety margin of around 
11% with respect to the average travel time (arithmetic average of the two alternatives 
travel times) while in the second experiment this value is 6%. In this case it is interesting 
to note that the interval selected for traveling is nearly equal to the average travel time of 
the reliable route. The standard deviation of this interval does not appear to change 
consistently (around 0.5 of the mean in both cases). 

The above experiments have shown empirical evidence of the relevant role of uncertainty 
and reliability of travel times in the decision-making of travelers. Both route choice and 
departure time choice are affected by uncertainty in various ways. As seen in the last 
section, reliability is valued in a positive way in the utility to an alternative of travel. This 
implies that the effort in estimating travel time variability should be comparable to the 
estimation of the average travel time. The various sources of uncertainty, which have 
been shown to affect the transportation system, yield different definitions of reliability, as 
discussed in the next section. 



34  TRAIL Thesis series 

2.5 Measures of Reliability 

Reliability and variability are often dealt with as related characteristics. Nevertheless, 
they are different in focus, they are measured in a different way, and they suggest 
different potential solutions. Lomax et al. (Lomax 2003) provides two distinct concepts 
for reliability and variability: 

• Reliability is commonly used in reference to the level of consistency in 
transportation service for a mode, trip, route or corridor for a time period. 
Typically, reliability is viewed by travelers in relation to their experience. Travel 
time reliability is only one example but this concept can be related to other 
characteristics of the transportation system (e.g. link, network, etc.). 

• Variability might be thought of as the amount of inconsistency in operating 
conditions. This definition takes more of a facility perspective and, therefore, 
relates the concern of transportation agencies. An example is the travel time 
variations described in Section 2.3. 

The distinction in viewpoint underlined by Lomax et al. gives insight into the difference 
between the two concepts. Reliability is differently viewed if the individual traveler’s 
perception or the average behavior of all travelers is analyzed. Moreover, different 
perception and knowledge of the variability is obtained from these two viewpoints, since 
the former is strongly dependent on the drivers’ level of experience, while the latter on 
the way the system is analyzed and monitored. 

Some objective measures that have relationship with reliability/variability are the 
following (Lomax 2003): 

1) Statistical Range: these measures typically take the form of an average value plus or 
minus a value that encompasses the expectations for a certain % of the trips (e.g. the 
standard deviation encompasses about 70% of the trips, the double 95%). These 
usually appear as variability measures. Examples are the Travel Time Window (e.g. 
average travel time ± standard deviation), the Percent Variation, i.e. the ratio of 
standard deviation and travel time, or the Variability Index (ratio between 95% travel 
time during peak periods and 95% during off peak), which encompasses information 
regarding predictable fluctuations like day-to-day fluctuations. 

2) Buffer Time Measures: these measures usually indicate the amount of extra time that 
must be allowed for a traveler to achieve destination in a high percentage of the trips. 
These measures illustrate reliability. Examples of this group are the Buffer Time, 
which gives the minutes of extra time needed to guarantee a statistically minimum 
number of arrivals within the preferred arrival time at destination, or the Buffer Time 
Index, which is the ratio between Buffer Time and average travel time. 
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3) Tardy Trip Indicators: These measures use a threshold value to identify an acceptable 
late arrival time. A measure of this class is the On-Time Arrival, which indicates the 
percentage of trip travel times that are within an arrival time window. The arrival 
time window is defined by the travelers’ characteristics (e.g. importance of the 
activity at destination) and the expected duration of the trip. Another measure is the 
Misery Index, which weights the fraction of long trips by the average number of 
minutes lost with these trips. 

In transportation reliability has also different definitions depending on which 
characteristic of the network this quantity is associated to. Clark and Watling (Clark 
2005) clarify that the word reliability has meaning only if a performance measure is 
specified and it is measured in terms of probability only if a critical value is also 
specified. Here are some examples: 

4) Travel time reliability is intended as the probability that a trip on a link or route can 
be completed within an upper bound assigned. Another definition can be related to 
the ratio between the travel time and a fixed percentile, e.g. its standard deviation. 
Another travel time reliability measure is the buffer time index (Lomax 2003), where 
the standard deviation in the ratio is replaced by the difference between 95th and 
expected travel time. 

5) Since uncertainty in travel times depends also on the supply system and the way it 
connects all origins to the destinations, capacity and connectivity reliability represent 
also important factors, since they measure the probability that capacity is lower than 
expected. 

6) In a DTM problem of how to provide traffic information to the users, the reliability of 
information represents a primal component. The more reliable the travel time 
estimated by the road authority, the more accurate information can be provided to the 
travelers. If information is very reliable, the perception of uncertainty (consequently 
the risk of doing non-optimal choices), may become very small. 

The fundamental role of travel time variability and performance indicators like the 
standard deviation of travel times in all measures of reliability and variability motivates 
the research presented throughout this thesis, which focuses on the study of this 
characteristic at urban signalized intersections. 

2.6 Summary 

This chapter focused on the central role of travel time and travel time variability in 
transportation analysis, and especially to its characteristics of variability and reliability. 
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An overview of causes and effects of travel time dynamics and variability is given both 
conceptually and with empirical analyses. 

Road managers who provide information to the traveler may increase the network 
performance by simply redirecting part of flows towards routes, which will give lowest 
travel times. To do so, the manager needs models able to give accurate estimates of 
expected travel times, as well as the uncertainty around such travel times. On the other 
hand, a road manager who plans a management strategy should also estimate well the 
travel times, queues, their dynamics, and the variability, which can affect the system, in 
order to effectively assess the effects of one or another possible control strategy. 

Travel times at urban networks are characterized by their strong dynamic and stochastic 
character, principally because of the stochastic character of the demand. The next section 
will show that this characteristic is stronger when links operate near capacity. However, 
better estimation and prediction can be achieved with enhancing the road monitoring 
system and by using improved travel time models, only part of the demand fluctuations 
can be forecasted (e.g. day-to-day and within-day). This chapter has made a clear 
distinction between the various sources of variability that stem from the demand. 

Travel time variations are dependent on the stochastic nature of the demand, but it is also 
vice versa. Travelers take in consideration travel time variability sometimes even more 
than mean travel times. Especially when time constraints are involved (e.g. important 
meetings) a road user is very concerned about the risk of long unexpected travel times 
and is willing to spend extra time on the road if this is more predictable and implies less 
risk of late arrival. 

The importance given by road analyst and governments to the travel time reliability and 
the reduction of uncertainties, and the impact of travel time variability on road drivers 
should motivate as much research on these characteristics as for the expectation value of 
travel times. This has motivated the research presented in the next chapters. In particular, 
the research focuses on delays and queues at signalized intersections, which represent the 
main cause of travel time variations in urban networks as it is explained in the next 
chapter. 



3  
State-of-art of traffic flow 

modeling at signal controls 

3.1 Introduction 

Chapter 2 has introduced the notions of travel time variability, uncertainty and reliability 
in a general transportation context. The causes and the effects on travelers of these travel 
time characteristics have been described by empirical analysis of traffic data and by a 
survey. From these results, travel time variability has been shown to influence largely the 
travelers’ choices, especially in terms of route and departure time choice. Since travel 
times at urban road sections operating near capacity are characterized by a large 
variability, a better insight into the dynamic and the stochastic behavior of these travel 
times is very important especially within this range. The following of this thesis refers in 
particular to delays at urban signalized intersections. 

Urban travel time is usually subdivided into a travel time component spent for traversing 
links and one for passing the road junctions. Vehicles propagate in an urban network and 
modify their speed when interacting with each other. The delay experienced at one 
intersection depends, among other factors, upon the implemented control method (non-
signalized or signalized control) and on the demand that needs to be served in time. This 
delay is determinant of the largest part of the total delay at urban networks, since non-
signalized intersections are usually implemented only when low flow rates are involved, 
while roundabouts often require too much space. Moreover, waiting times at signals have 

  37 



38  TRAIL Thesis series 

a larger impact than running times in the perception of travel costs of most of travelers 
(Horowitz, 1978). 

This chapter presents the state-of-the-art of queue and delay models at such intersections, 
with particular regard to the analytic models developed up to date. The next section 
defines the different components of route travel times in an urban context, defining the 
factors determining such travel times and their variability. Section 3.3 deals with the 
state-of-art and practice of analytic delay models at signalized intersections. The strong 
relationship between the queuing process and the dynamic and stochastic behavior of 
delays is clarified by the queuing theory described in Section 3.4 in the context of 
isolated, pre-timed controlled intersections. The assumptions and limitations of the 
presented methodologies are discussed in Section 3.5. Section 3.6 describes the modeling 
of delays at more complex control scenarios, i.e. the delay and queue models in the case 
of arterial corridors, multiple lane sections and time-dependent control schemes. Section 
3.7 discusses the possibility to estimate travel times using a simulation approach. Finally 
Section 3.8 gives a synthesis of the chapter and gives the motivations for the 
methodology applied in the following chapters. 

3.2 Traffic flow in urban networks 

A schematic representation of an urban network is usually defined by a couple ( )  
where  is the set of nodes and  is the set of links in the network. Each characteristic 
contributes to a part of the total network travel time. Link travel times are primarily 
determined by the time a vehicle takes to traverse the link, with a speed, which is also 
influenced by the presence of other vehicles on the road. Waiting times at nodes are 
determined by the interaction between different streams converging to the node and the 
way traffic is regulated.  

,Ν Λ
Ν Λ

A categorization of flows in a transportation facility is given in Kang (Kang, 2000): 

• TUninterrupted flowsT: belonging to this category are all flows in road sections where 
the only interaction is among vehicles belonging to the same flow. It is the main 
type of flows in freeways and facilities where there are no intersections or other 
external factors. 

• TInterrupted flowsT: Traffic signal controls, stop or yield signs and other types of 
control devices influence the progression of vehicles along the section. Flows 
driving along these sections are said to be interrupted. Congestion may occur 
because of frictions internal to the traffic stream, because of interactions among 
streams and also because of the way traffic is regulated. 
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The driving time represents the main determinant in all uninterrupted flow sections. This 
characteristic is determined in time by tracing the position of each vehicle in between 
two sections. The difficulty to derive the instantaneous speed for each vehicle motivates 
the use of traffic flow models based on average conditions (macroscopic approach). In 
these models traffic states are represented in a road section by means of descriptive 
parameters like average flows, densities and speeds. Travel times are then estimated 
without consideration of each single vehicle trajectory but they are representative of all 
vehicles in the section. After Greenshields’ fundamental diagram (Greenshields, 1935), 
which assumed a simple linear relationship between speed and density, several analytic 
relationships between speeds, densities and flows have been proposed to model traffic 
with more realistic assumptions (e.g. (Lighthill, 1955), (Greenberg, 1959), (Drew, 1965), 
(Van Aerde, 1995)). 

The need for travel time models that directly relate the state variables (i.e. flows, 
saturation flows, etc.) in a simple formulation have motivated the development of 
heuristic time dependent models (e.g. (Davidson, 1966) or (Akcelik, 1991)), which are 
particularly appealing in design and planning problems. At interrupted flow sections the 
speed of vehicles has little role since the travel time is primarily influenced by the 
waiting time at the junctions. The fundamental role of traffic delays and queues is 
confirmed by its use in the computation of the level of service (e.g. in the Highway 
Capacity Manual (TRB, 2000), in the design of infrastructures, and in the estimation of 
environmental costs (e.g. fuel consumption and gas emissions). Performance assessment 
is based on assumptions regarding the characterization of the traffic arrival and service 
processes (Rouphail, 2000). 

Interrupted flow sections are subdivided into non-signalized and signalized intersections, 
according to the type of regulation adopted. The service time on the first type depends on 
the probability for a driver to have enough gap between vehicles of the conflicting 
streams to pass the intersection safely. The service time of second type is instead 
determined by the control system, which controls the section. The remainder of this 
chapter deals with the development of delay and queuing models at signalized 
intersections, which give foundations to the development of the methods presented later 
in this thesis. For an extensive overview of queue and delay models at non-signalized 
intersections one can refer for example to Troutbeck and Brilon (Troutbeck, 2000). 

3.2.1 Overview of modeling approaches for signalized intersections 

The most important traffic performance, which determines the functionality of signalized 
intersections, is the signal delay. This characteristic is usually defined as the extra 
(waiting) time a traveler experiences due to the signal. This measure is therefore defined 
as the difference between the time spent to be served at the signal and the time the driver 
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would have spent if the road section was uninterrupted. Section 3.3 deals with the delay 
models which have been developed in the last 50 years. Focus is given to the analytic 
models while Section 3.7 discusses the opportunity to use simulation. Since signal delay 
is partly caused by queues forming upstream the signal, the modeling of these queues 
represents also an important area of research, which is described in Section 3.4. 
Particular interest is given to the modeling of overflow queues, which occur when the 
number of arrivals is larger than the departures during one cycle, or during more cycles. 
A third important characteristic at signalized intersections is the signal capacity, which 
represents the (possible or probable) number of vehicles that can be served within an 
interval of time, e.g. a cycle or an hour. This characteristic is usually input for analytic 
delay and queue models and for macroscopic simulation, while it is an output measure in 
microscopic simulation programs. Since this thesis deals primarily with analytic and 
macroscopic simulation based models the modeling of this characteristic is not covered 
in this state-of-the-art. Critiques to the queue and delay models described in this chapter 
have been discussed in Section 3.5. 

The modeling of delays and queues depends also on the type of application it is 
developed for. Therefore, different models are developed for isolated intersections, i.e. 
intersections whose performance does not depend on the performance of other signals 
upstream. Classification should be done also for models for fixed controls and dynamic 
controls. The effect of upstream signals is further discussed in Section 3.6. For sake of 
clarity, it is important to differentiate the models described in this chapter also from three 
other perspectives: 

• Assumptions on the process: a model is usually static or dynamic depending on the 
assumption of stationariety or non-stationariety for the arrivals and/or the departure 
process. 

• Level of detail: depending on the level of detail of the input and the output 
characteristics a model can be classified among macroscopic, mesoscopic, and 
microscopic. The first type deals with input and output characteristics as 
aggregated, i.e. link or route flows. The second type usually treats macroscopic 
characteristics as probabilistic variables. Finally the third level deals with the 
modeling of the movement of individual vehicles interacting one with another. 

• Modeling technique: models can be finally classified into stochastic (or 
probabilistic) or deterministic whether they take or not into account the variability 
of the input and the output variables. Models can be further classified into analytic 
or simulation based if they are described or not by direct relationships between the 
input and the output variables. 
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This systematic classification inspires the following Table 3.1, which frames the different 
models presented throughout this chapter. 

UTable 3.1: Overview of models presented in this chapterU 

TModelT TAppl. typeT TAss. processT TOutput typeT TModel tech.T 

TMACROSCOPIC 
TBeckman et al. (1956) 

TMcNeill (1968) 

TWebster (1968) 

TClayton (1941) 

TMiller (1963) – (1968) 

TNewell (1965) 

TMay and Keller (1967) 

TKimber and Hollis (1979) 

TMiller (1968) 

TAkcelik (1980) – (1993) 

TRouphail (1992) 

TVan As (1990) 

TTarko and Rouphail (1990) 

TStephanopoulos et al (1979) 

TLin and Mazdeysa (1983) 

THCM (TRB, 2000) 

CTM (Daganzo, 1994) 

LTM (Yperman, 2006)T 

Bliemer (2007) 
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3.3 Delay models at signalized intersections 

Traffic control on intersections is done by means of traffic lights that are most of the time 
operated automatically using a cyclic sequence of green, amber and red lights. The 
timing of the green and red duration can be fixed and predetermined (fixed time or pre-
timed control). Another alternative is semi-actuated control. The main flow is interrupted 
after a green time of at least the minimum green time if the detector on the side road is 
activated. The green time on the minor road is determined by gap measurements, i.e. the 
green phase terminates when the gap between two vehicles is larger that a certain 
maximum. Fully actuated control is the mode of operation where all approaches have 
detectors and all green phases are controlled by means of detector information. Demand 
responsive control is a method in which green phases are only shown if there is demand 
and the length is also determined by demand as in fully actuated control. 

The choice of the control type and the determination of the optimal control phases to 
adopt at one intersection are mainly done with the objective of reducing the delay to the 
vehicles. Delay is usually defined as the difference between the travel time experienced 
by a vehicle passing an intersection and the travel time experienced if the vehicle passes 
the intersection at cruise speed. With this definition delays are determined by waiting 
times because of signal operations and queues, and by lost times due to individual 
vehicle acceleration and deceleration characteristics. Delays are commonly referred to as 
Tcontrol delaysT if one considers the delay due to only signal operations and queues, and 
Tstopped delaysT if also lost time due to acceleration and deceleration is computed. 

Measurements of delays, stops, queue length etc. can be done using video, automatic 
detectors or visual observations. Such measurements give a more or less approximate 
estimate of the actual (or past) traffic conditions (data-driven approach). Alternatively, 
one can use the models presented in this chapter, which allow a prediction of the future 
conditions of traffic, or the estimation of expected effects of changes in the network 
status (model-based approach). The state-of-art presented in the following of the chapter 
deals primarily with the component of delays caused by signal operations and queues, 
while little importance is given to the acceleration and deceleration effects. As a 
consequence, the following state of the art deals exclusively with control delay models. 

3.3.1 Basic concepts 

Vehicles arriving during the green phase pass the stop line without delay if there is no 
queue to be served waiting at the intersection. Vehicles arriving during the red phase, and 
while a queue needs still to be dissolved, experience a delay, which depends on the signal 
phase plan, on the capacity of the road sections and on the traffic flow conditions. During 
the red phase, the arriving vehicles queue up, while they will be served within the next or 
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later green phases. Figure 3.1 illustrates schematically an example of queuing process 
and its relationship with the delay within a cycle and for one traffic stream. 

The three signal phases (green, amber and red light) are, in the scheme, simplified into 
two phases, effective green time gt  and effective red . The effective green time is the 
green time from which the green start lag is subtracted and a green end lag is added. The 
green start lag is partly due to the reaction time of the first driver passing the intersection 
during green, but most of the time is the consequence of the vehicles’ acceleration 
operations, which make the speed of the first few vehicles passing the signal lower than 
in the middle of the green phase. At the end of the green phase, during the amber, 
vehicles still enter the intersection. The average time that the amber phase is still used by 
vehicles entering the intersection is called the green end lag. Using the concept of 
effective green time, the flow is assumed to reach instantaneously the maximal saturation 
flow rate  at the moment the signal turns green, and to stop when it turns red. 
Therefore, if one assumes constant arrival rate  and constant departure rate  the queue 
will increase linearly during the red phase and, if 

rt

s
q s

q s< , it will decrease till the end of the 
effective green phase, otherwise it will still increase but with a rate of . q s−

Cumulative 
vehicles 

Arrivals q 

 
UFigure 3.1: Relationship between arrivals, departures, queue length and total delay in 
undersaturated intersections with uniform arrivals and departures 

Time 

Queue 
length 

Time 

Cycle length 

Departures s 

Effective green Effective red 

QBmax 

Total 
delay 



44  TRAIL Thesis series 

In reality vehicles do not generally arrive at constant rates, and also the number of 
departures may be different from cycle to cycle due to vehicle composition, drivers’ 
reaction skills etc. If a signal is undersaturated, as in Figure 3.1, the arrivals during the 
red phase and accumulating at the stop signal are likely to be served within the following 
green phase. 

Cumulative 
vehicles 

U(b) Cumulative expected arrivals and departures in an undersaturated 
case with a non-zero initial queue

Time 

U(a) Cumulative arrivals and departures in an oversaturated case 
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UFigure 3.2: evolution of arrivals and departures with overflow delay 
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If arrivals and departures are assumed arriving uniformly in time the delay is simply 
computed by the area of the triangle bordered in bold in Figure 3.1. This area computes 
the so-called uniform delay component in an undersaturated signal. If an intersection is 
oversaturated, the assigned green phase is not sufficient to serve all vehicles arriving 
during the cycle and a residual queue will occur. A residual queue may be observed also 
if an undersaturated period follows an oversaturated one and a non-zero initial value is 
assumed. The residual queue is usually called Toverflow queueT and the corresponding 
delay Toverflow delayT. Figure 3.2 schematizes the queue evolution in the assumption of 
uniform arrivals and departures within a cycle for both cases, showing the evolution of 
the overflow queues and delays. 

Figure 3.2 (a) illustrates the oversaturated queue with the assumption of zero initial 
queue and average flow larger than the capacity. The shaded areas show uniform delay 
and overflow delay generated by the overflow queue. The same applies to Figure 3.2 (b), 
which shows the undersaturated case with a positive initial queue length. While in the 
first graph the overflow queue increases with cycles, in the second case the initial queue 
will generate extra delay to the vehicles arriving at following cycles until the line 
representing the cumulative arrivals intersects the one of the cumulative departures. After 
this moment the intersection behaves like in Figure 3.1 and the only component of delay 
is represented by the uniform one. 

 
UFigure 3.3: overflow delay caused by stochastic arrival process 

Chapter 2 has shown that vehicle headways are unlikely to be uniformly distributed in 
time but stochastic fluctuations can be observed. If a period of stationary arrival rate is 
assumed, the arrivals at each cycle can vary around this value. Therefore, it might be 
likely that one or more cycles are unable to serve all arrivals within the assigned green 
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times but one or more cycles may also be needed to serve part of these vehicles. In this 
case an extra delay is computed together with the uniform one (Tstochastic delayT). Figure 
3.3 gives an example of this temporary queue and the consequent stochastic delay. 

Stochastic queuing can also occur because of the stochastic behavior of the service rate. 
Departures can vary in time due to several reasons, e.g. variable reaction times, different 
car-following criteria among drivers etc. The smaller the flow to capacity ratios the more 
likely that each cycle starts and ends with a zero overflow queue and the stochastic 
character of the demand plays little role in the estimation of delays. In these conditions 
the queue length can be considered stationary over cycles and steady-state delay models 
can be applied with little error. As traffic intensity increases, there is an increasing 
likelihood that some cycles will begin or end with an overflow queue of vehicles even 
when the average flow is smaller than the capacity. The stochastic component in this case 
can also be considerably larger than the uniform component and represents the main 
cause of delays. The closer the demand to the capacity, the longer time is needed to 
dissipate the effect of these queues. 

At extremely congested conditions, the stochastic queuing effects are minimal in 
comparison with the size of oversaturated queues and deterministic models based on 
fluid theory have been demonstrated to be appropriate. Undersaturated periods following 
oversaturated ones are not yet sufficiently investigated if the demand is close to the 
signal capacity. Considering that most real-world signals are desired to operate as close 
as possible to the capacity, time-dependent models are of particular relevance for this 
range of conditions (Rouphail, 2000). For this reason several approximate expressions 
can be found in literature for both steady-state and dynamic models, which form the basis 
for the formulas suggested by most of the capacity guides. Some examples of these 
expressions are given in this chapter. 

3.3.2 Steady-state delay models 

Steady-state delay models are developed under the assumption of stationary conditions 
for the overflow queue length, thus they are applicable only to undersaturated cases. 
Exact expressions can be derived from mathematical relationships under some 
simplifying assumptions, as described in subsection 3.3.2.1. The gap between exact 
expressions and field data justifies the development and adoption in practical studies of 
several approximate expressions, as described in subsection 3.3.2.2. 

3.3.2.1 UDerivation of exact expressions 

The seminal work of Beckmann et al. (Beckmann, 1956) includes the first derivation of 
expected delay at isolated traffic signals with the assumption of constant service rate and 
Binomial arrival distribution. The expression derived is the following: 
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With: 

• [ ]E W  expectation value of the delay (sec), 

•  signal cycle, Ct

•  length of the effective red, rt

•  arrival flow rate, q

•  saturation flow and s

• [ O ]E Q  expectation value of the overflow queue length (in vehicles). 

The expectation value of the delay is thus in linear relationship with the expectation 
value of the overflow queue length { }OE Q , which should also be estimated. 

McNeil (McNeill, 1968) derived an exact formula from general arrival distributions by 
assuming the delay as sum of two components: 1W W W2= +  where  is the total 
vehicle delay experienced during the red phase and  during the green phase. The 
components (expressed in veh*sec) are computed with the following integrals: 
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Where  is the assumed initial queue length at the starting of the red phase and (0)Q ( )A t  
is the cumulative arrival distribution within the red phase. During the green phase the 
delay is only a function of the queue length in time . Taking the expectations of 
Formulas X(3.2)X one can derive the expectation value of delay. Assuming the arrivals as 
stationary (with average rate ) the first component can be expressed as: 
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The total vehicle delay experienced during the green phase  is derived by computing 
the total waiting time for a queue  to be fully served. Therefore, if one defines TZTB2B as 
a random variable expressing the total delay experienced during green when the cycle  
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is infinite, the total waiting time in a busy period for a queuing process with arrival rate 
 and deterministic service time 1/  and initial system state  is expressed by: q s (0)Q
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In formula X(3.4)X the variability of flows is considered introducing the following index of 
dispersion: 

( ) / CI A q tσ= ⋅          (3.5) 

The second component of the delay function can thus be then expressed by: 
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So far, no assumptions have been made on the dynamics of the queue length. The above 
expression is thus valid also when the queue length is not in stationary conditions. If 
instead one assumes stationary queue length as much as arrivals, skipping some 
arithmetic manipulations (see (Rouphail, 2000) for more details) one arrives at the exact 
expression of the average vehicle delay: 

{ }2 1[ ] (0) 1
2 (1 / ) 1 /

r
r

C

t IE W t E Q
t q s q s q s

⎧ ⎫⎛ ⎞
= + + +⎨ ⎬⎜⋅ ⋅ − −⎝ ⎠⎩ ⎭

⎟     (3.7) 

This model is valid TonlyT if the mean of the queue length is stationary in time and under 
demand in steady-state conditions. For non-stationary queue conditions, the expected 
delay can only be computed using Formula X(3.6)X, which still requires the knowledge of 
the expectation value of the queue at the start and end of the green phase. This justifies 
why the research has moved towards the research of exact expressions for the expected 
value of the queue length instead of directly calculating delays. 

3.3.2.2 UApproximate expressions 

Webster (Webster, 1958) was the first to propose an approximate expression for the 
delay formula combining formulas from theoretical relationships with results of 
simulations: 
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1
2 2 3 2 5( / )

2

(1 / )
0.65

2 [1 ( / ) ] 2 (1 )
g Ct tC g C C

g C

t t t txW x
t t x q x q

+⋅ − ⎛ ⎞
= + − ⋅ ⋅⎜ ⎟⋅ − ⋅ ⋅ ⋅ ⋅ − ⎝ ⎠

   (3.8) 

where /x q c=  is the degree of saturation and /g Cc s t t= ⋅  is the signal capacity. The first 
term is the analytical derivation of uniform delay, while the second is a characterization 
of random or stochastic delay, analytically derived assuming Poisson arrivals and 
deterministic service rate. The last term has been introduced to reduce the discrepancy 
with results observed from simulation data and it is thus purely empirical. This term is 
frequently assumed to be around 10% of the first two terms, thus Formula X(3.8)X is often 
simplified with the following expression: 

2 2(1 / )
0.9

2 [1 ( / ) ] 2 (1 )
C g C

g C

t t t xW
t t x q x

⎧ ⎫⋅ −⎪= +⎨ ⋅ − ⋅ ⋅ ⋅ −⎪ ⎪⎩ ⎭

⎪
⎬       (3.9) 

This formula is still widely used in practice and it is frequently used as benchmark for the 
derivation of approximate expressions assuming different arrival processes and optimal 
signal settings. An approximation of the exact Formula X(3.7)X has been proposed even 
earlier by Clayton (Clayton, 1941) in the assumptions of LIFO discipline (Last In, First 
Out) and sufficiently heavy traffic conditions: 

2(1 / ) [ (0)][ ]
2 (1 / )

C g Ct t t E QE W
q s q

⋅ −
= +

⋅ −
       (3.10) 

As said, the exact expression derived by McNeill (McNeill, 1968) reprinted in Formula 
X(3.7)X is subject to the derivation of a sufficiently accurate estimation of the expectation 
value of the overflow queue. Initially research was concerned with deriving upper 
bounds of overflow queues instead of expected values. Miller (Miller, 1963) proposed to 
use the following Formula X(3.11)X which computes an upper bound for the value of 

 starting from the analytical true relationship: [ (0)]E Q

2 2 ][ ] [[ (0)]
2 [ ]
c q cE Q

E c q
σ σ− − Δ

=
⋅ −

        (3.11) 

where  is the reserve capacity in one cycle: cΔ (0)   if (0)c Q q Q q c− − + <

]

, 0 otherwise. 

Since  decreases when cΔ [E c q−  approaches zero, an upper bound is obtained by 
neglecting the second term of the numerator. Using the index of dispersion X(3.5)X one can 
obtain the following expression: 
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[ (0)]
2 (1 )

aI xE Q
x

⋅
≤

⋅ −
         (3.12) 

Newell (Newell, 1965) proposed another approximation of delay Formula X(3.7)X, which 
includes a component related to the variability of arrivals aI : 

2
a
2

(1 / ) (1 / )[ (0)][ ]
2 (1 / ) 2 (1 / )

C g C g Ct t t t t IE QE W
q s q s q s

⋅ − − ⋅
= + +

⋅ − ⋅ ⋅ −
     (3.13) 

Moreover, Newell proposed in the same work a modification of Miller’s queue Formula 
X(3.12)X in order to obtain the expectation of the overflow queue instead of the upper 
bound by simply adding a multiplicative factor: 

[ ] ( )
2 (1 )

a
O

I xE Q H
x

μ ⋅
= ⋅

⋅ −
        (3.14) 

where 

g C

g

s t q t
I s t

μ
⋅ − ⋅

=
⋅ ⋅

         (3.15) 

The multiplicative factor ( )H μ  was provided by Newell in a graphical form, while 
Cronje (Cronje, 1983) gave an empirical approximation using simulation data: 

2

( ) exp
2

H μμ μ
⎡ ⎤⎛ ⎞

= − −⎢ ⎜ ⎟
⎝ ⎠⎣ ⎦

⎥         (3.16) 

More examples of overflow queue models under steady-state conditions are given later in 
Section 3.4. 

3.3.3 Time-dependent delay models 

The methods described in Section 3.3.2 can give approximate estimates of steady-state 
delays and queues in one cycle but no information on the duration of such states, and 
consequently on the dynamics of delays can be made, with those approaches. An infinite 
period of stable traffic conditions is required, which is clearly an unrealistic assumption. 
Equilibrium models can be therefore acceptable only for low flow to capacity ratios; the 
closer the flow to the capacity, the longer time should be needed to reach equilibrium. 
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However, it is unlikely that above certain demand conditions one can observe evaluation 
periods, which are long enough to observe equilibrium queues. Alternative approach is to 
assume stationary demand and capacity for the entire evaluation period, while the 
resultant queuing process is non-stationary. 

Alternatively, the time-dependent arrival profile of the overflow queue length can be 
subdivided into fractions of the whole evaluation period where it is assumed stationary 
(using e.g. step-wise demand, parabolic or triangular shapes) and compute the queue as 
stepwise too. If an expression of arrivals and departures in time is provided one can adopt 
the method given by May and Keller (May, 1967) for the computation of queues in time: 

0

0

[ ( )] [ (0)] ( ) ( )

( ) ( )

( ) ( )

t

t

E Q t E Q A t D t

A t q d

D t c d

τ

τ

τ τ

τ τ

=

=

= + −

=

=

∫

∫

       (3.17) 

An estimation of average vehicle delay within a period of length T is then given by: 

0

1[ ( )] ( )
( ) t

E W T Q t dt
A T =

= ∫
T

        (3.18) 

The authors showed the results of this method by considering a triangular shaped arrival 
profile and constant capacity. However, results using this approach do not explain the 
delay propagation in conditions near capacity because of the strong influence of arrival 
and departure variability. 

Heuristic methods were proposed in order to fill the gap in delay models when demand is 
near to the capacity. Kimber and Hollis (Kimber, 1979) used the coordinate 
transformation technique to adapt static models to give them some way of a time 
dependency. The coordinate transformation technique was addressed as a possible 
method for the derivation of time-dependent models of delay starting from the 
assumption that total delay is nearly equal to the uniform component  (the first term of 
Equations X(3.8)X, X(3.9)X, X(3.10)X and X(3.13)X) for very low degrees of saturation while it is 
asymptotically equal to the following deterministic expression in cases of highly 
congested situations: 

1W

1( ) ( 1)
2
TW T W x= + ⋅ −         (3.19) 
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To model the transition between uniform delay experienced at undersaturated conditions 
and Formula X(3.19)X at oversaturated conditions, Kimber and Hollis applied the 
coordinate transformation technique to the queuing process. The theoretical evolution of 
expected value of the queue length under steady-state conditions assumes that queues 
tend asymptotically to infinity when the demand approaches capacity. The behavior of 
queues in oversaturated conditions follows instead an evolution that follows Formulas 
X(3.17)X. If arrivals and departures have a constant rate and they are uniformly distributed, 
Formula X(3.17)X can be rewritten as: 

[ ( )] [ (0)] ( 1)E Q t E Q x c t= + − ⋅ ⋅        (3.20) 

The deterministic evolution of queues in undersaturated conditions is thus linear if 
demand and capacity are stationary. Kimber and Hollis assumed that, in conditions near 
the capacity and with a finite evaluation period T , the evolution of queues is a 
combination of the two trends, as shown in Figure 3.4. To combine the two different 
behaviors the authors simply mathematically transformed the vertical asymptote of the 
static formulas with the linear function X(3.20)X. 

Steady-state 
evolution 

Time-dependent 
evolution 

Queue 
length 

Deterministic 
queuing 

 
1 Degree of saturation 

UFigure 3.4: Coordinate transformation of the overflow queue model 

The heuristic rule applied in this transformation is to rotate clockwise the vertical 
asymptote of the static queuing process until it coincides with the linear deterministic 
queuing model. By doing this, both queue and delay models have been approximated by 
a formulation in the form 2 1/ 2 . The expressions of  and  have been 
provided by the same authors: 

 1/ 2 [( ) ]a b a⋅ + − a b
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{ }
(1 ) 1 [ (0
4 [ (0)]

c

c

a x t T E Q
b E Q x t T
= − ⋅ ⋅ + −

= ⋅ + ⋅ ⋅
      (3.21) 

)]
  

Although this approach ov
deterministic time-dependent models, doubts still surround this approach since the 
coordinate transformation technique does not represent a theoretically valid approach but 

The research in traffic flow modeling at signalized intersections is still developing a 
general theory, which encloses and describes the queuing and delay processes with 
realistic traf odels sometimes require very elaborate computations, as 

ercomes the gap between static steady-state models and 

only a heuristic. 

3.3.4 Capacity guides 

fic states. Exact m
for the case of the delay model X(3.6)X. On a parallel track, transportation practice trades 
off model exactness with model handiness allowing the approximation that characterizes 
any model presented so far. Several practical models have been collected in the official 
transportation manuals. The most frequently used manuals are the American Highway 
Capacity Manual (TRB, 2000), the Canadian Capacity Guide (ITE, 1995), the Australian 
Capacity Guide (ARR, 1995). 

3.3.4.1 UHighway Capacity Manual 2000 

The Highway Capacity Manual 2000 measures the performance of a signalized 
intersection by comput
Manual this delay a

where 

•  is the uniform stopped delay per vehicle (s/veh) 

 is the incremental, or random stopped delay (s/veh) 

ination 

 given by the following formulas: 

ing the expected stopped delay per vehicle. According to the 
n be decomposed into three terms: d c

1 2 3W W PF W W= ⋅ + +          (3.22) 

1W

• W2

•  is the initial queue delay 3W

•  is the progression factor, to account for signal coordPF

The first two delay components are

( )2

( )1 0.5
1 min(1, ) /

g C
C

1 /

g C

t t
W t

x t t
= ⋅ ⋅

− ⋅
      

−
 (3.23) 



54  TRAIL Thesis series 

2
2 900 ( 1) ( 1)

8 k I x
W T x x

⎡ ⎤⋅ ⋅ ⋅
= ⋅ ⋅ − + − +⎢

⎢ ⎥⎣ ⎦

where the parameter  is respectively 1 for fixed time controls, 0.5 for semi-actuated 
signals and in betwee .04 and 0.5 for actu

f

c T
⎥

⋅
     (3.24) 

k
n 0 ated controls). fI  is the filtering adjustment 

factor. The stochastic component is similar to the delay formulation provided by Kimber 
and Hollis. Accordingly, this formula assumes the queue length to be constant and finite 
if 1x <  while it behaves according to the linear deterministic function for 1x > . 

The third component is computed by specifying the parameters of the formula: 

3
1800 (0) (1 )Q u tW ⋅ ⋅ + ⋅        

c T
=

⋅
 (3.25) 

A procedure to derive the values of the parameters  and  can be found in the 
Appendix F of chapter 16
linear deterministic model X(3.20)X, therefore it considers  value only if the 
previous period was oversaturated. 

u t
 of the Manual. The initial queue (0)Q  is computed using the 

 a positive

3.3.4.2 UThe Canadian Capacity Guide 

The Canadian Capacity Guide considers only uniform and incremental delay 
components, while no initial queue delay is present: 

         (3.26) 1 2f

with 

W W k W= ⋅ +

 replacing PF of Formula (3.22) but very little difference can be found fk X X

comparing the c
with Formula X(3 X

omputation of the two parameters. While the expression of 1W  coincides 
.23), the incremental delay is given by: 

2
2

24015 ( 1) ( 1) xW T x x
c T

⎡ ⎤⋅
= ⋅ ⋅ − + − +⎢ ⎥⋅⎣ ⎦

      (3.27) 

3.3.4.3 UThe Australian Capacity Guide 

Similarly to the Canadian Guide, the Austra
delay due to a positive initial queue and has the same Expression X(3.23)X for the uniform 
delay component, but it does not consider the progression factor: 

          (3.28) 

lian Capacity Guide does not consider a 

1 2W W W= +
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The incr on to Formula X(3.24)X: emental delay has another analogous formulati

2 0
2

( )900 ( 1) ( 1) m x xW T x x
c T

⎡ ⎤⋅ −
= ⋅

In case of 

⋅ − + − +⎢ ⎥⋅⎣ ⎦
     (3.29) 

uniform arrivals 12m =  and the analogy becomes also evident with the 
Akcelik’s queue formula presented in the next section. 

 
following periods, proved by the recent introduction of the initial queue delay in the 
HCM only in its latest version, can indicate t
and motivates the research throughout this thesis. 

 lanes cannot be modeled without the 
estimation of the queue length and its variability. 

)X were 
proposed in the last decades for the computation of the exact delay Formula X(3.7)X. Miller 

The newly introduced issue of estimating the effect of oversaturated periods on the

hat research on this direction is a key issue 

3.4 Analytic queue models at isolated fixed time signals 

Queuing models are needed to evaluate the delay the travelers experience, for example 
using Formula X(3.7)X, but it can also be helpful to evaluate other characteristics, which 
cannot be easily assessed evaluating expected delays. For example, spillback effects and 
the evaluation of the length of exclusive turning

Concerning the steady-state expression several approximations of Formula X(3.14

(Miller, 1968) for example proposed the following simplification: 

1exp 1.33

2 (1 )

g

O

xs t
x

Q
x

⎡ ⎤−
− ⋅ ⋅ ⋅⎢ ⎥
⎣ ⎦=

⋅ −
       (3.30) 

Akcelik (Akcelik, 1980) further simplified this expression with the following: 

0
0

1.5 ( )               when 
1

0                                 otherwise
O

x x x x
Q x

⋅ −⎧ >⎪= −⎨
⎪⎩

      (3.31) 

The parameter  represents the value above which overflow queues can be considered 0x
non-negligible and it has the following expression: 
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0 0.67
600

gs t
x

⋅
= +          (

These formulas assume an infinite time period for stable traffic conditions to be 

queue is infinite. If the degree of 
saturation is low, the equilibrium value of the overflow queue is reached after a few 
cycles and steady-state formulae can still be a valid approximation. If the degree of 
saturation is nea
opportune knowing the behavior of the queues at the end of a pre-determined period. 

Akcelik (Akcelik, 1980) formulated the expression that is most frequently used by 

3.32) 

achieved. In these ideal conditions, if the degree of saturation is equal or larger than one, 
the expected equilibrium value of the overflow 

rly one it may take too long to reach the equilibrium and it is more 

Kimber and Hollis’ approach represents a good approach in this sense since it computes 
both characteristics and gives them a dynamic feature. Their model is although derived 
under the assumption of zero initial queues, constant degree of saturation within a fixed 
time period. Despite these limiting assumptions, this approach is still very appealing, and 
for this reason their model is still widely applied. For example this model is used in the 
TRANSYT program (Robertson, 1980). 

practitioners for the expectation value of the overflow queue in time. He provided a 
formulation of the queue evolution using also the coordinate transformation technique: 

2 0
0

12 ( )( ) 1 ( 1)        when 
4O

O

x xc TQ T x x x x
Q c T

⎧ ⎛ ⎞

0                                                                               otherwise

⋅ −

⎠

⎩

 a 
fixed time period  in both undersaturated and oversaturated conditions. Regarding the 
com sed another expression for Formula X(3.14)X: 

⋅
= − + − + >⎪ ⎜ ⎟⎜ ⎟= ⋅⎨ ⎝

⎪
  (3.33) 

Similarly to the Kimber and Hollis model, this model has the property to give time-
dependency to the expectation of the overflow queue and to estimate such queues in

T
putation of delays, Akcelik propo

2(1 / )
         when 1

2 (1 / )
( )

                    when 1
2

C g Ot t Q

C g C Ot t t Q x
q s cW

x
c

⎨
−⎪ + ≥⎪⎩

This formula is probably the most used model in case of flows approaching capac

⎧ ⋅ −
+ <⎪⎪ ⋅ −=       (3.34) 

ity and 
initial queu . A recent extension of the former model for including the effect of 

ound in the aaSIDRA manual (Akcelik, 2002). The author adds a 
e (0) 0Q =

an initial queue can be f
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term to the flow rate , which considers the residual queue generated in the previous 
intervals. 

The model is assumed valid in ideal conditions of constant arrival and departure rates and 
empty signal at the start of the evaluation period. Moreover, the model has been shown to 

en the evaluation period is fixed to 15 

authors develop a heuristic formula for the expected overflow queue as 

Firstly, main critique is in the way the previous approaches deal with the transition 
odels and 

understanding of 
the dynamics of traffic in e.g. peak period analysis. A methodology that is able to catch 

chastic behavior 

he use of the coordinate transformation 
technique is a convenient, but not rigorous way of solving the problem. For this reason 
several mo  models have been proposed so far by 

q

well represent overflow queues and delays wh
minutes, which is a typical interval in practical studies. On the other hand, Brilon and Wu 
(Brilon, 1990) showed, using a Markov Chain approach to generate the overflow queues, 
that the Akcelik model does not properly approximate the expected value of queues and 
delays if arrival rates are not constant. Starting from a parabolic shape of the demand in 
time, the 
alternative to Akcelik’s model. 

3.5 Critiques to analytic queue and delay models 

The many approaches developed to model the behavior of traffic at signalized 
intersections, and presented in this chapter, reflect the lack of a general theory, which 
encompasses the various dynamic and stochastic aspects of queues and delays under 
different conditions of traffic. 

between uncongested and congested states. The gap between steady-state m
time-dependent models still remains a weak point. This issue affects the 

the smooth transition between the dynamics of traffic in undersaturated conditions and 
oversaturated ones will help in filling this gap. 

3.5.1 Dynamic and sto

Large inconsistencies have been found between the delay models of Webster (Webster, 
1958), McNeill (McNeill, 1968) and Miller (Miller, 1968) among others and with field 
data (Ohno, 1978). The main reasons for these inconsistencies stand in the dynamic and 
stochastic behavior of traffic, and the way the flows propagate along the network, which 
rise serious doubts on the assumption of stationary conditions assumed by all steady-state 
queue models in undersaturated conditions. T

difications of the above queue and delay
simply adding multiplicative factors to account for the variable profile of traffic (e.g. 
(Rouphail, 1992), (Akcelik, 1993), (Fambro, 1993)). 
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It appears that the dynamics of the overflow queue is strongly affected by the dynamic 
and stochastic properties of the arrivals and the departures. Especially in conditions of 
demand near capacity the overflow queues show a strong stochastic behavior and the 
standard deviation can be of the same magnitude as the mean, making the prediction of 
expected travel times very difficult (Van Zuylen, 2003). The strong stochastic behavior 
of queues in conditions near capacity justified a stochastic modeling approach, the 
Markov Chain model, adopted in the past by several authors. Chapter 4 and Appendix A 

for the queuing process within 

does not allow any investigation of spillback effects of this queue on other 
links or nodes. This assumption affects the computation of the link travel time functions, 
w  mic network loading processes (Bliemer, 

Examples of this modeling approach applied to the queuing process are the Cell 

describe in detail this methodology which has inspired consistently the models developed 
in this thesis. Among others, Van Zuylen (Van Zuylen, 1985), Olszewski ((Olszewski, 
1990a), (Olszewski, 1990b), (Olszewski, 1994)) and Brilon and Wu ((Brilon, 1990), 
(Wu, 1990)) used the Markov Chain technique to simulate the evolution of the overflow 
queue length at the end of a green phase in a stochastic modeling fashion. Apart from the 
work of Brilon and Wu, no other study attempts to derive an empirical formula for the 
expected value of the queue with non-stationary arrivals. 

This methodology has been applied so far only in a cycle-to-cycle process, i.e. the queue 
length probability distribution at one cycle is determined by simply the overflow queue 
state at the previous cycle. This means that no information is given on the queuing 
process within the cycle. An implication of this lack is for example in the estimation of 
maximum queue lengths in a cycle. Gridlocks or spillback effects may be produced by 
these inner queuing process, e.g. in a multi-phased control system. Chapter 5 fills this 
gap by proposing a probabilistic model formulation also 
each cycle. 

3.5.2 Vertical vs. horizontal queues 

The modeling of the expected value of the overflow queue using the analytic approach 
described in Section 3.4 assumes queues to build up ‘vertically’ (Tvertical queuing 
analysis)T, meaning that they do not deal with the physical space occupied by the vehicles 
but they are only interested in their expected number at one point in time. This 
assumption 

hich are often considered fixed in e.g. dyna
2007). 

Higher level models like microscopic simulation programs enable the analysis of the 
queuing process in great detail allowing Thorizontal queuing analysisT. Spillback can be 
accounted for by these models, but at the price of long computation times, yet unbearable 
for some transportation problems (e.g. traffic assignment, signal optimization etc.). 

Some macroscopic simulation-based models can also deal with horizontal queues. 
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Transmission Model (CTM, e.g. (Daganzo, 1994)) and the new Link Transmission 
Model (LTM, see (Yperman, 2006)), which account for the dynamics of queuing by 

ly by 

extended these models to signalized intersections. 

theory at freeways. For detailed analytic description of the traffic phenomena in 
m  pic relationships one can refer to e.g. 
(Hoogendoorn, 1996), (Helbing, 1997), or (Ngoduy, 2006). 

subdividing a link into discrete cells. 

The dynamic propagation of queues in time and space, and therefore the behavior of 
queues within each cycle, can also be computed using shockwave theory. Apart from 
using microscopic models, traffic flow dynamics can also be computed analytical
means of aggregated characteristics like flows, speeds and densities of each road section. 
Using fluid-dynamic relationships, the dynamic propagation of the traffic flow and 
especially the congestion effects can be tracked on a network. Lighthill and Whitham 
(Lighthill, 1955) and Richards (Richards, 1956) successfully implemented fluid-dynamic 
theories to demonstrate the existence of shockwaves propagating in time and space in 
highways. Rorbech (Rorbech, 1968) 
Stephanopoulos and Michalopoulos (Stephanopoulos, 1979) and Michalopoulos and 
Stephanopoulos (Michalopoulos, 1980) demonstrated the existence and investigated the 
behavior of shockwaves at traffic signal caused by the periodic signal operations. The 
benefit of applying the shockwave method in the opportunity to deal with horizontal 
queues was shown in Michalopoulos and Pisharody (Michalopoulos, 1981), where the 
authors developed a control algorithm, which minimizes the total delay of a network 
taking into account maximum queue lengths allowed for each road section as constraints. 

3.5.3 One-lane vs. multiple lanes 

Road sections with more than one lane and with overtaking possibilities have 
consistently different behavior than single lane or restricted overtaking sections. The 
impact of different driving behavior of vehicles is counterbalanced by the possibility to 
overtake and reduce the interaction among vehicles. Lane changing possibilities are also 
subject to limiting factors like gap acceptance of vehicles or platooning effects. Multilane 
traffic flow modeling is an issue, which represents a large area of research in traffic flow 

ultilane road sections using macrosco

Lane changing behavior of travelers can strongly influence the dynamic and stochastic 
propagation of queues and delays in multilane signalized intersections. Lanes can be 
differently preferred by the travelers because of various reasons (e.g. stay on the right 
lane to favor the overtaking of a faster vehicle, or choose a lane, which favors an 
operation downstream, like turning, or parking etc.). This unbalanced distribution of 
flows among lanes can result in a different formation of queues at the intersection. The 
variability of such queues is thus dependent on the variability of the relative density 
among lanes. Lane changing behavior may reduce in some way this variability. Travelers 
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can decide to change their current lane with another one if they expect a reduction of 
their waiting time at the signal. This can strongly modify the distribution of vehicles 
among service points, and upstream among lanes. Knowing how vehicles can reduce this 
variability of queues can for example be important if toll plazas are planned in a road 
section and the modification of the infrastructure upstream should be designed in order to 
minimize the total expected delay. 

Very little research has been done so far on the performance of signalized intersections 
with multiple lanes per stream, and it is common in practice to consider flow equally 
distributed when approaching the intersection.  

There are a few principles for estimating lane flows, which implicitly account for the lane 
choice of travelers: 

• Equal degree of saturation: used in e.g. SIDRA (Akcelik, 2002). Drivers tend to 
distribute according to an equal utilization of lane capacity or with maximum 

rs (e.g. it is a shared lane). 

apacity Manual and in OSCADY (Burrow, 1987). It differs from the 

• 

• Minimum travel time: drivers always change lane according to a minimum route 

• 
4), AIMSUN (Barcelo, 2003), VISSIM (PTV, 2003) etc.), drivers are 

assumed to choose always the lane with the shortest queue. 

It is difficult to judge the validity of one or another criterion. While the first two seem 
“too simplistic”, as they treat lane choice as static and irrespective of the environment 

models, which are often assumed under steady state conditions. The travel time approach 

s oul
betwe
1989), on the other hand, replied that distinc
tactical decisions. At route choice level drivers may pre-select routes, while at 

throughput. This lane choice behavior is therefore static and based on travelers’ 
perception of lane capacity. In practice this makes difference when the capacity of 
one lane is affected by some penalty facto

• Equal flow ratio: based on flow-to-saturation flow ratios. This criterion is used in 
the Highway C
first criterion only because it does not consider difference in effective green times 
among lanes. 

Equal average delay: lane choice is based on a delay minimization criterion 
(Bonneson, 1988). 

travel time criterion. 

Equal queue length principle: adopted by some microscopic models (e.g. INSECT 
(Cotterill, 198

surrounding the intersection, the others suffer of a lack of good queuing and delay 

was supported by Fisk (Fisk, 1988), who stated that “a minimum travel time principle 
h d be used for traffic assignment and intersection calculations to achieve consistency 

en these two levels of modeling from a behavioral viewpoint”. Akcelik (Akcelik, 
tion should be made between strategic and 
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intersections they are more sensitive to direct measures (e.g. capacity). Akcelik finally 
stated that “any principle has a shortcoming: they are all steady-state approximations of a 
dynamic process. Lane choice of drivers may change with the congestion level, and it can 
vary between red and green interval”. 

Very recently, Tian and Wu (Tian, 2006) proposed a capacity estimation method for 
intersection approaches with a short flare that accounts for the dependence of the 
capacity underutilization on the arrival rate and its variability. They considered the 
effects of lane blockage by considering the distribution of traffic among lanes as 
stochastic and later they evaluated the influence of right-turn lane length, of the 
proportion of right-turn vehicles and the length of the cycle time to the signal throughput. 
The proposed approach computes the capacity value of the full approach and of the 
straight-through lanes and flares separately, but it does not compute the delay and the 
overflow queue incurred by this capacity reduction. Furthermore, there are two 

sa calculations, the difference between these 
ve n unt by giving them a weight. The adverse 

ration at signalized intersections. The HCM 

shortcomings in this approach: 1) the model considers only one lane dedicated to the 
through traffic, so no lane changing behavior is assumed and 2) the model does not 
consider the dynamics of the traffic arrivals in between cycles and therefore a residual 
overflow queue from previous cycles. Nevertheless, the model enables one to compute a 
fundamental input for the estimation of queues and delays at undersaturated approaches. 
Moreover its use in the equal degree of saturation principle should improve the lane flow 
estimation of programs like SIDRA by giving a demand-dependent flow distribution. 

It is still unclear how to model the selection criterion of travelers (or consumers in 
general) in a dynamic scenario. Jumsan et al. (Jumsan, 2005) recently analyzed the lane 
changing behavior of vehicles at an intersection in Seoul, Korea, which showed a 
dynamic behavior of lane changes near the intersection with different congestion levels. 

3.5.4 Effect of traffic heterogeneity 

All models described so far are based on the assumption of homogeneous traffic 
conditions; therefore they are not applicable in conditions of mixed traffic, which is 
however more likely to occur in real life.  

Heavy or high occupancy vehicles operational characteristics affect capacity and Level of 
Service (LOS) of roadways, particularly at intersections. Lorries, busses and trams need 
more time to pass than ordinary passenger cars. The headway is larger and thus the 

turation flow is lower. In order to simplify 
hicles a d passenger cars is taken into acco

effects of a heavy vehicle in a traffic stream are commonly taken care of by converting a 
truck to a Passenger Car Equivalent (PCE) number. The concept of passenger car 
equivalent (PCE) is used in Highway Capacity Manual to account for the adverse effects 
of heavy vehicles and buses on traffic ope
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2000 defines the term “passenger car equivalent” (PCE) as “the number of passenger cars 
that would use the same amount of freeway capacity as one truck/bus or RV under 
prevailing roadway and traffic conditions”. 

Traffic composition and vehicle type fractions are usually assumed constant in practical 
studies. In reality these fractions are random variables. This variability may affect the 
dynamic and stochastic behavior of overflow queues and delays. Little research has been 
carried on the impact of traffic heterogeneity in the estimation of queue lengths and 
delays at signalized intersections. Kang (Kang, 2000) used the microscopic software 
INTEGRATION (Van Aerde, 2001) to analyze queues, number of stops and delays in 
relation with the frequency of bus stops and the overall traffic density measured in 
Personal Car Equivalents (PCE). It turned out that all three measures are non-linearly 
increasing with the decreasing of bus headways and the increasing of the traffic density. 

us provide a more 
informative comparison of alternative signal plans in identifying optimal signal settings. 
B signal control strategies may be 
generated resulting in improved Level of Service (LOS) of signalized intersections. 

 

As a consequence, models derived under the assumption of homogeneous traffic cannot 
be applied in such conditions by simply converting the traffic composition into 
equivalent homogeneous car traffic with constant rates of conversion. 

3.5.5 The uncertainty of delays and queues 

Delays that individual vehicles may experience at a signalized intersection are usually 
subject to large variation due to randomness of traffic arrivals and interruption caused by 
traffic signal control (Fu, 2000). The assessment of dynamic control schemes would 
benefit from models of queues and delays, which consider also their variability and time-
dependency. For example, having knowledge of the variability of delays makes it 
possible to estimate the confidence limits about the mean delays and th

y considering the variability of delay, more reliable 

Very little consideration has been given to the estimation of the queue variability. Haight 
(Haight, 1959) firstly derived a probability distribution of the overflow queue length 
assuming Poisson arrivals and constant headway in the service process. This approach 
was extended by Mung (Mung, 1996) for a general arrival distribution. Both Haight’s 
and Mung’s models are characterized by a high complexity. Newell (Newell, 1971) 
formulates mathematically this problem using renewal theory (see also Appendix A). 
This approach inspired the work of Olszewski (Olszewski, 1990a) and other works from 
the same author (e.g. (Olszewski, 1990b), (Olszewski, 1993) (Olszewski, 1994)), who 
investigated the queue length distribution in time using a Markov Chain process. He
simulated various demand conditions and computed the average and the standard 
deviation of queues and delays showing a high coefficient of variation especially in 
conditions near capacity, which is the target of most of the optimal traffic control 
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schemes. Heidemann (Heidemann, 1994), inspired by the work of Meissl (Meissl, 1963), 
developed analytically the probability generating function of the queue length 
distribution assuming Poisson arrival process and fixed time control, but this method can 
only be solved numerically. Fu and Hellinga (Fu, 2000) firstly developed an approximate 
model for the variance of delays in time assuming stationary demand rate: 
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ement among 
them. 

There is no formulation however for the variability of queues. The knowledge of the 
overflow queue variability (e.g. by knowing the standard deviat
variance) with respect to the variability of the demand and the supply systems can also 
add a physical meaning to the computed queue length. A stochastic modeling approach 
for example may be appropriate to characterize the queue states with a known statistical 

ur. Chapter 8 discusses this issue in more detail. 

r can be 
coordinated with one another in order to maximize the likelihood that vehicles passing an 
intersection upstream will arrive at each intersection downstream during the green phase, 
optimizing the total throughput of the system. Therefore, the effect of an upstream signal 
on the operation of all subsequent downstream signals can be divided into two 
phenomena: 1) platooning effect and 2) filtering effect. 

⋅ −
+ ⋅⎨ ⎬⋅⎩ ⎭

   (3.35) 

where /y q s=  is the flow-to-saturation flow ratio. The model has been compared with 
Markov Chain results and with simulation demonstrating very good agre

ion, or the coefficient of 

distribution and compute the risk of designing an infrastructure according to expected 
queues and delays, or with a fixed percentile. This information can be valuable if one 
wants to compute more accurately the expected costs when for example spillback is 
likely to occ

3.6 Extensions for application in general networks 

3.6.1 Effect of upstream signals 

An isolated intersection works in general very differently from an intersection within an 
arterial street. In fact, the inflow on one intersection somewhere in an arterial road is 
limited by the capacities and green times of the different links on the upstream 
intersection. On the other hand, traffic signals placed in an arterial corrido
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UFigure 3.5: Time-space diagram and trajectory of vehicles at paired intersections 

Figure 3.5 schematizes the two effects by displaying the trajectory of vehicles in a tim
space diagram. Vehicles are assumed in the graph to arrive uniformly at the first sig
during a cycle, some vehicles arrive during the red phase and will pass the intersec
only after the signal turns green and the preceding vehicles in the queue have been 
served. Some vehicles arriving during the green phase need to stop or at least to
decelerate if at the moment of arrival there are still vehicles in the queue that need to
served, some others may not have time to be served within the green time because of this 
queue, or because they arrive late at the service point. Vehicles headways are sm
after the first signal, and if the distance among signals is small enough, they will st
bunched when arriving at the second signal (platooning). Moreover the first signal 
reduces the number of vehicles arriving at the second signal (filtering).  

The platooning effect is related to the arrival distribution of vehicles within a cycle, thus 

e-
nal 

tion 

 
 be 

aller 
ill be 

ns the variability 
of arrivals within the cycle, and in particular the maximum number of vehicles that can 
it influences primarily the uniform delay component. The second concer

pass an intersection during the green phase. This influences mainly the stochastic and the 
overflow components. 

3.6.1.1 UPlatooning effect 

The signal operation produces the effect of bunching vehicles arriving during one cycle, 
resulting in non-uniform headways for the departing ones, as seen in Figure 3.5. This 
effect can be exploited by choosing a proper time-offset among green phases of the 

cycle length 

space 

time 
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intersections constituting the arterial corridor. If then two closely spaced signals are 
properly coordinated, all vehicles leaving an intersection upstream can hypothetically be 
served within one green phase and no arrivals will be observed during the red phase. The 
way signals are coordinated influences the probability that vehicles passing an 
intersection upstream will arrive at a signal downstream during the green phase. This 
effect has been modeled by including a multiplicative factor to the uniform delay 
component (progression adjustment factor). 

All capacity manuals described in Section 3.3.4 agree in expressing this factor as the 
following formula: 

, ,1 /g u C u

PF
t t

=
−

         (3.36) 

The uniform component is therefore decreasing with the increasing probability coordP  of 
vehicles arriving during the green phase, with the ration between green time and cycle 
time , ,/

(1 coord p)P f− ⋅

g u C ut t  at the upstream intersection and with an adjustment factor pf , which 
depends on green-to-capacity ratio and the shape of the arrival profile. The probability P  
is estimated in the model using field data or making assumptions on the arrival profile. In 
reality this value is variable due to the way traffic propagates randomly in between the 
two intersections. Models of platoon dispersion have been given in the past in order to 
mathematically estimate the expectation value of the probability 

ne random and five non-random arrival types are identified. HCM-
estimated delays were found to be significantly different from field-measured delays by 
Benekohal et al. (Benekohal, 1999). 

The bunching property of signals diminishes with the distance among signals due to the 
variability of vehicle behavior. This phenomenon is usually referred to as platoon 

lly dist

P , especially in 
function of the signal distance and the average speed in the section. In the Highway 
Capacity Manual, o

diffusion or dispersion. Pacey (Pacey, 1956) proposed a travel time distribution function 
for the propagation of vehicles along a road with unrestricted overtaking assuming 
norma ributed speeds. Hillier and Rothery (Hillier, 1967) showed the diffusion 
phenomenon using field data and the distance-dependency of this phenomenon. They 
concluded that the signal offset influences the uniform delay component, while it does 
not influence consistently the overflow delay component. 

3.6.1.2 UFiltering effect 

If the impact of vehicles entering the system from secondary roads or other streams than 
the arterial roads can be neglected, the maximum number of vehicles approaching the 
downstream intersection will be somewhat related to the capacity of the upstream one. 
Therefore, the variability of arrivals and the maximum number of vehicles observed at 
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downstream intersections is strongly influenced by the metering property of upstream 
signals. 

Newell (Newell, 1990), Olszewski (Olszewski, 1990a) and Van As (Van As, 1991) 
contributed with the first theoretical studies. Newell studied an idealized arterial network 
with no turning traffic. The system was also considered in steady state equilibrium. 
Based on these assumptions, Newell concluded that the overflow delay depends only on 
the critical intersection. He assumed that in the corridor there is always one intersection 
among the others that works as bottleneck. If the signals are perfectly coordinated and 
equally rst in ork as a filter. This means that the overflow queue 

lusions given by Newell and Olszewski. The signal optimization program 

set the fi tersection will w
can be observed only in one intersection while in the others the stochastic component can 
always be neglected. The author concludes that, even with the best settings possible, the 
overflow queue will be simply distributed along the signals and not reduced. Olszewski 
confirmed these conclusions using a Markov Chain approach. Van As observed, using 
real data collected in South Africa, that all the available models at that time highly 
overestimated the overflow queue by assuming all intersections as isolated, confirming 
the conc
TRANSYT considers every intersection as isolated for the calculation of the random 
delay, regardless of filtering by upstream sections. 

Using a Markov Chain approach, Van As (Van As, 1991) developed also an approximate 
expression for the coefficient of variance allowing one to calculate in series the variances 
of all downstream intersections known the arrival distribution at the first signal. He 
provided an approximate formula to transform the dispersion index of arrivals aI , at the 
upstream intersection into the dispersion index of departures B : 

0.627exp( 1.3 )aB I F= ⋅ − ⋅         (3.37) 

with 

O

a

QF
I q c

=
⋅ ⋅

          (3.38) 

Tarko et al. (Tarko, 1993) studied a system with two intersections proposing two ways of 
correcting the delay formulae to account for the filtering effect. The practitioners can 
both reduce the departures from the upstream intersection or increase the capacity of the 
downstream one. The authors propose also to extend these modifications to the time-
dependent queue formula. Tarko and Rouphail (Tarko, 1995) tu s died an arterial network 
including turning and merging streams. The authors highlight three factors that have to 
be included in the calculation of the queues in an arterial network: merging, splitting and 
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filtering effects. Using statistical analysis they confirmed that from the practical 
viewpoint Newell's approximation method or the simple formula provided by Van As 
may be sufficient. 

3.6.2 Effect of dynamic controllers 

s about the progress of the control program. 

Th o with models derived under the assumption 
of fixed time control. 

 and to determine also the length of each phase. That 
an

has b the fixed time program has 
been designed are average volumes. In each cycle the arrivals will have random 

situat  

An a rrival of vehicles at the 

tion during the red phase and their headway distribution during the 
green phase. Main difference with the adaptive controllers is that actuated controllers do 

Signal modes of operation can be distinguished into three main categories (USDOT, 
1996): 

• Fixed and pre-timed controllers: where the structure and timing of the traffic 
control process are determined in advance; 

• Actuated controllers: where individual vehicles are detected and the information 
from detectors is used to influence the structure and timing of the control program; 

• Adaptive controllers: where information about the whole traffic situation is used to 
take decision

e previ us sections have exclusively dealt 

For pre-timed control the information about the traffic situation is used to develop a 
structure of the control program
me s that a fixed time control program is only suited for the traffic situation for which it 

een designed.  Moreover, even the volumes for which 

variations around the average pattern. Adapting traffic control to the actual traffic 
ion with traffic responsive controls like actuated and adaptive systems can reduce

these delays due to the demand fluctuations. 

ctuated controller operates signals according to actual a
intersection. Green times and cycle times are determined by the number of vehicles 
arriving at the intersec

not attempt to optimize traffic by means of e.g. total delay, number of stops, queue length 
etc. Adaptive signal systems monitor the traffic situation in real-time and adapt the signal 
settings in order to optimize the traffic operations. 

The different logic framing the two systems reflects in a different delay and queue length 
estimation problem. The various models in literature have been described in the 
remaining of the section. 
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3.6.2.1 UTraffic actuated signals 

The large number of vehicle actuated control types designed in the past and the complex 
architecture of such systems justifies the lack of a general theory of expectation values of 
queues and delays with traffic actuated controls (Rouphail, 2000). The first model of 
delay with a simple traffic actuated signal was proposed by Morris and Pak-Poy (Morris, 
1967) with an application on a signal coordinating two one-way streets. For each traffic 
condition they computed the optimal vehicle interval to minimize the total delay. Newell 

pectation values of green and red extensions in function of the 
average arrivals at fully-actuated signals. Dunne (Dunne, 1967) proposed a delay model 
derived by assuming a es determined by the queue 

(Newell, 1971) studied the same problem under the assumption of stationary arrival 
process in undersaturated conditions but near capacity. He developed approximate 
formulas of delays and ex

 Binomial arrival process and green tim
length detected. Cowan (Cowan, 1978) used bunched exponential distribution for the 
arrivals to compute expected green, red times and delay. Webster’s (Webster, 1958) 
delay Formula X(3.8)X was adapted by Courage and Papapanou (Courage, 1977) to 
compute the average cycle length with actuated signals. Optimal cycle lengths were used 
to compute pre-timed controls using the formula: 

* 1.5 5
1C

i
i

Lt
y

⋅ +
=

−∑
          (3.39) 

where L  is the total lost time in the cycle and iy  is the volume to saturation flow ratio. 
Fully-actuated signals are instead computed considering average cycle length. The 
Highway Capacity Manual (TRB, 2000) considers a discount factor of 0.85 to multiply 
the uniform delay component. The manual also gives an approximate expression of the 
average signal cycle: 
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where 

⋅

 is the critical volume to capacity ratio. The effective green is given by: cx

* *
,

i
g i C

i

yt t
x

= ⋅           (3.41)

where ix  and iy  are respectively the volume-to-capacity and the volume-to-saturation 
flow ratios for the approach i. 
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Lin and Mazde
using the above expressions 
parameters, 

ysa (Lin, 1983) proposed an extension of the Webster’s delay formula, 
for the green and cycle times, by including two extra 

 and 2K , in the form: 1K

* * * 2 2(1 / ) 3600t K t t K x1 2
* *0.9

2 [1 ( / ) ] 2 (1 )
C g CW

K t t K x q K x
⎧ ⎫− ⋅

1 2 2g C

Li et al. (Li, 1994) proposed to include a parameter k  in the Australian Capacity Manual 
time-dependent overflow delay

⋅ ⋅⎪ ⎪= +⎨ ⎬⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅⎪ ⎪⎩ ⎭
    (3.42) 

 model to account for fully actuated signals: 

82( ) 900 1 ( 1) k xW T T x x
cT

⎛ ⎞⋅ ⋅
= ⋅ ⋅ − + − +⎜ ⎟⎜ ⎟

⎝ ⎠
      (3.60) 

Using this formulation, Akcelik et al. (Akcelik, 1997) developed simple heuristic 
formulas to estimate average cycle times and green 
signal control. This method was successfully tested in
version of the Highway Capacity Manual (TRB, 2000). Analytical models for delay, 

Although several delay formulas have been proposed to account for traffic actuated 
control the complex behavior of such syste
environment. This will be the topic of Chapter 8 of

3.6.2.2 UAdaptive signals

times for various types of actuated 
 US and adopted in the 1997 

queue length, clearance time etc. were also developed and validated by comparison with 
microsimulation. 

m needs still to be fully explored in a dynamic 
 this thesis. 

 

on in practice started few years later with the model PLIDENT 
(Holroyd, 1971), but it did not succeed according to the expectations. Hunt et al. (Hunt, 

ATS (Lowrie, 1982). The 
two models had several successful implementations reporting an average 10-12% 
reduction of l de al pre-timed controls (Boillot, 1992). 

The development of adaptive control systems and algorithms is increasing with the 
advances in communication networks, computer processing speed and sensor 
technologies. The principle of adaptive control was first developed by Miller (Miller, 
1963), who proposed an optimization algorithm based on an online traffic model. The 
first implementati

1982) developed the model SCOOT, which minimizes the total delay by the smooth 
adaptation of splits, cycle times and offsets. Another network control system was 
developed and implemented in Australia under the name SC

 the tota lay with respect to optim
SCOOT and SCATS are still the most adopted control methods with 170 
implementations all over the world (Friedrich, 2002). Successful implementation in 
practice has been reported and confirmed by several applied studies after SCOOT, e.g. 
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MOVA in U.K. (Vincent, 1988), PRODYN in France (Henry, 1983), aaSIDRA in 
Australia (Akcelik, 2002) and OPAC in the U.S. (Gartner, 1982). 

The large number of implementations justifies the numerous assessment studies based on 
field data. On the other hand the traffic models employed are, due to online requirements, 
rather simple. Although the development of adaptive control algorithms are increasing 
and are consistently preferred to the traffic actuated ones, the research on queue and 
delay estimation with such control strategies is very limited. Brookes and Bell (Brookes, 
1991) used Markov Chains to compute the expected queues, delays and stops at adaptive 
signals. Optimal settings were computed using three heuristic approaches, while delays 
were computed in sequence using a rolling horizon approach. 

Despite the large improvement reported by these controls with respect to the pre-phased 
signal plans, these improvements are still limited by the lack of an accurate prediction of 

ough several modifications 

 represented by microscopic simulation 
programs. Since this thesis is focused primarily on analytic models, only a limited 

 is 
arge 

number of simulation software packets. For a more detailed explanation of how these 

traffic demands over the projected time horizon. 

3.7 Modeling queue and delay dynamics using simulation 

The vast set of models presented so far indicates that there is still no clear insight into the 
way delays are experienced by the drivers under the various conditions of traffic at 
signalized intersections. There is no general formula which could encompass all aspects 
of traffic heterogeneity and propagation across a signal. Alth
of the queue and delay models to account for all these aspects are still a subject of 
research, they still can represent real life up to a certain degree. This section discusses the 
alternative approach to the above analytic models

description of simulation methods is given. Moreover each simulation program
characterized by different modeling features, justifying the development of a l

systems work in each program one can refer to their user’s manual. 

Microscopic simulation models represent a way to estimate traffic conditions in a 
realistic way since they focus on the behavior of each single vehicle and the interactions 
with other vehicles in the system. The characteristics of each element and their 
interactions are modeled using still mathematical relationships, which represent, as 
accurately as possible, real world systems.  

The complexity and level of detail of such models is continuously increasing according 
to the increasing power of computers. Microsimulation models reach nowadays levels of 
detail, which are not expected to be ever reachable by analytic models. In fact, the supply 
characteristics represented in delay formulas by means of aggregated measures, like the 
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capacity, are derived in these programs by specifying the physical configuration of the 
network (e.g. length of the sections, width of the lanes etc.). The flow propagation is on 
the other hand simulated through an assigned demand, which controls the distribution of 
vehicle headways at the moment each vehicle is loaded in the system. The position of 
each vehicle is tracked all along the network taking in consideration its characteristics 

erate safety and impact analyses; 

 th
relati  makes some tasks 

optim oaches. 

ols to 
represent the traffic flow dynamics in a very realistic way. The complex behavior of 

ections has justified the large use of microscopic 
er different scenarios. The opportunity to 

control the input variables (e.g. by loading stationary or non-stationary demand patterns) 

(e.g. dimensions of the vehicle, desired speed, route choice etc.) and its interaction with 
the supply system and the other vehicles, which influence their free driving behavior (gap 
acceptance, car-following behavior etc.). This property allows one to use simulation 
programs successfully in a variety of transportation problems. Here are listed some 
examples: 

• When mathematical models do not catch the complexity of a process or to 
investigate the validity of such mathematical models; 

• To represent dynamic environments and analyze at the vehicle level some 
phenomena, which are difficult to understand at the aggregate level; 

• To evaluate the performance and compare different management strategies; 

• To test new infrastructures; 

• To op

On e other hand, these models are characterized by a complex architecture and a 
vely long processing time compared to analytic models. This

difficult, like solving iterative processes (like to solve traffic assignment processes or 
izations), and it justifies the appreciation still given to analytical appr

However, microscopic simulation programs represent undoubtedly valuable to

traffic flows at signalized inters
programs for analyzing the performance und

allows easy comparison with other models that are characterized by some simplifying 
assumptions. This property is confirmed by their frequent use in calibration and 
validation of macroscopic and mesoscopic models. 

For example Dion et al. (Dion, 2005) used the microsimulation program 
INTEGRATION (Van Aerde, 2001) to validate and compare different analytic 
approaches (vertical and horizontal queuing theory, and capacity guides) and they 
investigated the behavior of the standard deviation and the coefficient of variation of 
delays in a one lane road with fixed signal, showing the variability of results to be the 
highest when volumes to capacity ratios are near the unity. This approach is also adopted 
in chapter 7 of this thesis. 



72  TRAIL Thesis series 

It is certain a limitation of a model to be validated and calibrated using another model, 
although more refined. Validation using field data represent an indispensable and 

 
understanding of the dynamic and the stochastic behavior of the traffic flow at these 

its the validity and the 

It s
is still discrepancy between st stochastic component due to 
the variability of the arrival process, and the dynamic models. A smooth transition of the 

irreplaceable step. However, complex dynamic and stochastic systems like the traffic 
control process are sensitive to many state and control variables (Chapter 2 has shown 
the various sources of variability, which determine this process). It is difficult, if not very 
unlikely, that real traffic can be observed with e.g. long periods of stationary conditions. 
Alternative could be for example simulating this experiment with real cars, but this 
experiment is definitely too expensive and time consuming. The advancement of new 
data collection methods and monitoring tools may in the future overcome this limitation. 

3.8 Summary 

Traffic control is designed to guarantee safety conditions for the traffic operations at 
intersections while keeping reasonable waiting times for the travelers. Nevertheless, the 
delay at signalized intersections represents the main component of the total delay 
experienced by the urban road users. For this reason great importance has been given in 
the last 50 years to the development of delay models. Although the research has spent 
large efforts in deriving models, which could explain the complexity of the traffic 
operations at signal controls, it seems that little progress has been done so far in the

sections.  

This chapter gives three main contributions:  

1. It describes thoroughly the state-of-art and practice of analytic queue length and 
delay estimation models at signalized intersections. Theoretical and approximate 
approaches have been described for both steady state and dynamic conditions, as well 
as for isolated intersections and arterial corridors, and for fixed-timed and time-
dependent control schemes. 

2. It underlines the drawbacks of using the available analytic formulas, especially in the 
modeling of the variability of traffic. The complex behavior of queues at signals and 
the large variety of cases one can observe in real life lim
applicability of such models. 

3. It discusses the delay modeling issue by stressing the various assumptions 
underlining the models presented in this state-of-the-art chapter, e.g. signals within a 
network, multiple lanes, dynamic controls etc. 

eems that no model is able to describe the queuing process in a continuous way. There 
atic models, which include a 
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stochastic term is not yet caught in one exact formulation. Moreover, the available 
dels are not able to describe both the increasing and the decreasing phases of a 
uing process. This limits their application in e.g. peak-hour analysis, or dynamic 
work loading processes. 

mo
que
net

del
han timization algorithms or any iterative 

ation problems in general traffic systems. Chapter 7 shows 

An alternative to analytic approaches is using simulation, which allows the estimation of 
ays at the vehicle level and represent the network in a very realistic way. On the other 
d, some transportation problems involving op

process requires fast travel time models, and microscopic simulation is still not a 
competitive solution. Solution can lie in between; mesoscopic models can represent in 
some cases valid alternatives to macroscopic and microscopic models, and they can 
allow the analyst to evaluate travel times in a stochastic fashion. 

Chapter 4 will describe a mesoscopic approach to the queue length and delay estimation 
problem in a single lane isolated intersection, and it will show the opportunity to use this 
approach to travel time estim
some extensions to the simple problem presented in Chapter 4 in cases of arterial 
corridors, multilane sections and time-dependent control. 
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4 
Probabilistic formulation of 
queues and delays at signals 

4.1 Introduction 

Chapter 3 has described the state-of-the-art of modeling control delays at signalized 
intersections. The calculation of delays at an intersection is an old problem that has been 
studied and solved by many researchers in the last 50 years since the work of Beckmann 
(Beckmann 1956). Exact formulations for steady-state conditions as much as exact 
formulations for the delay in oversaturated conditions have been developed in the past, 
but no smooth transition is modeled in between these two states using a theoretical 
approach. In fact only heuristics have been used to solve this gap. It has been the merit of 
researchers like Kimber and Hollis (Kimber 1979) and Akcelik (Akcelik 1980) to solve 
this issue by introducing a kind of transformation that gives a smooth transition for the 
delay expressions for undersaturated and oversaturated conditions. The approach that is 
followed is a heuristic one, i.e. the formula that is derived fits with the asymptotic 
situations for very low and very high saturation of the intersection and in the regime of 
nearly saturated or slightly oversaturated intersections the length of the overflow queue is 
obtained by some interpolation approach. 

The main source of error lies in the way past models deal with the dynamic and the 
stochastic character of overflow queues, which are assumed in steady-state models to be 
in equilibrium during the whole evaluation period, while it has a time-dependent 
expression only during oversaturated conditions. In reality a time-dependency is 
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observable also in conditions of average arrivals below the capacity of the signal, as 
Chapter 4 shows by computing the probability distribution of the overflow queue length 
as a Markov Chain process. 

As already shown in past studies, the cycle-by-cycle Markov Chain model enables one to 
consider the effects of the stochastic nature of the arrival and the service processes in the 
dynamics of queues and delays regardless of what happens within a cycle. This 
methodology is however very useful to evaluate the time-dependent profile of these 
measures and their uncertainty but yet no information is given on what happens within 
the cycle, i.e. how the variable arrivals and departures affect the way queues form and 
dissolve within the cycle. 

This chapter reconsiders the problem by using a Markov chain model for the probability 
distribution of queue length at any point in time. The discrete-time formulation proposed 
by previous studies (as introduced in Section 3.5.1) and presented in the following of this 
chapter is extended to a continuous-time formulation. From the dynamics of the 
expectation value of the queue length, a formula for the delay in fixed time traffic control 
is derived. The effect of the overflow queue is therefore made explicit also within the 
cycle. The result is a new formula and, even more important, a clearer understanding of 
the role of the overflow queue in the control delay at a signal. 

This chapter is structured as follows. Section 4.2 presents the probabilistic model 
formulation for the queuing process at fixed time signals in discrete time. Section 4.3 
applies this methodology to the computation of the control delay in a cycle. Section 4.4 
compares the results of the newly developed model with well-known delay formulas 
presented in Chapter 3. Finally Section 4.5 summarizes the contributions of this chapter. 

4.2 The Markov chain process 

The process of traffic arriving and leaving at signalized intersections has a stochastic 
character; in particular, the queue length dynamics is the result of a stochastic process. 
This process is defined in its cycle-to-cycle case to be a temporal sequence of stochastic 
variables . The stochastic nature of this system derives from two 
sources: the input demand, mainly its composition and quantity, and the service 
mechanism or supply, namely the number of vehicles served within a cycle. An 
analytical representation of the signal system is formally equal to Catling’s deterministic 
expression (Catling 1977): 

0 1 2{ } { , , ,...}tQ Q Q Q=

1 max{ ,0}t tQ Q q+ = + − s         (4.1) 
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where  is the number of arrivals and q s  is the number of departures during [ , 1]t t + . 
What differs from the deterministic case is that all components of this expression are 
stochastic variables, thus represented by probability distributions. Consequently, also the 
queue length at a certain time is a realization from a probability distribution. 

The signalized intersection system is governed by a cyclic mechanism. This allows one 
to use discrete time steps, equal to the cycle length, instead of the continuous approach, if 
one is interested only in computing the overflow queue length distribution at the end of 
the green phases. If cycle lengths are invariant with time, for example in the case of fixed 
time controls, the time steps are usually equal in length, while in cases of time-dependent 
control schemes these time steps are variable. Thus, accounting again for its cyclic 
property and for the independence of the input variables demand and supply, a state 1tQ +  
is described only by the previous state  and the number of arrivals and departures 
during the interval[ , , according to Formula X(4.1)X. These assumptions allow the 
application of a standard method of renewal theory, the Markov Chains (Markov 1971), 
to solve analytically this problem and to compute a complete probability distribution of 
queues in time. 

tQ
1]t t +

Markov Chain models have already been applied to describe time-dependent processes in 
transportation, both in the signalized intersection context and in other contexts. Cronje 
(Cronje 1983) analyzed existing formulas, namely, Webster's (Webster 1958) and 
Miller's (Miller 1968) equations for average delay, overflow, and average number of 
stops for under-saturated conditions using a Markov Chains using a geometric 
probability distribution for the arrivals. The properties of the geometric probability 
distribution were applied to the equation to obtain a simple equation, thus reducing 
computing time. Olszewski ((Olszewski 1990), (Olszewski 1990), (Olszewski 1994)) 
used this technique to analyze the queue and delay probability distributions in time 
especially to consider the effect of non-zero initial queue and non-uniform arrivals.  

The convenience of applying this technique to simulate the possible traffic states in a 
stochastic environment is therefore not new in traffic flow theory. However, few studies 
have uncovered the opportunity to use this method to derive analytical expressions suited 
for planning and design purposes (e.g. (Brilon 1990), (Fu 2000)). The representation of a 
dynamic process using a Markov Chain approach can be a valid alternative to simulation 
programs and it can provide a sufficiently large dataset to obtain smooth representations 
of the expectation value of the queue and its variability and to derive analytical 
expression for both characteristics in time. The next section formulates the Markov 
Chain process applied to isolated signalized intersections, which will provide the dataset 
for the derivation of analytical formulas for the expected value and the standard deviation 
of the queue length in time developed in Chapter 6. 
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4.2.1 The isolated signalized intersection 

Given the analogous properties of Markov chain and queuing system processes, the 
dynamics of the queue length and its distribution can be computed with discrete time 
steps by simple matrix multiplications. Van Zuylen (Van Zuylen 1985) firstly described a 
Markov model for queues at isolated intersections assuming Poisson arrivals and 
normally distributed saturation flows. Olszewski (Olszewski 1990) independently 
developed the idea of applying the Markov chain technique to signal control problems. 
He showed the different behavior expected values of queues have if a different initial 
value is assigned together with a constant demand during the whole evaluation period. 
Variable demand conditions were later analyzed by assuming stepwise constant demand 
(Olszewski 1990). Following the approach adopted by van Zuylen and Olszewski, a 
similar Markov model is developed in this chapter to compute the distribution and its 
evolution in time of the queue length at the end of the green phase. The model computes 
the queue length distribution under the whole range of demand conditions, providing the 
dynamic behavior of queues both in undersaturated and oversaturated cases and with 
time-varying average arrivals. Expected value and standard deviation are derived from 
the computed probability distribution at each time step, capturing the transient behavior 
towards the equilibrium value in undersaturated cases, and the linear, deterministic 
behavior in highly oversaturated cases. 

Next section points out the assumptions of the model and the hypotheses gradually 
introduced throughout the chapter. Firstly the model is shown in its simplest case, 
namely isolated, single lane intersection with homogeneous traffic composition and fixed 
time traffic control. Analysis of average conditions and variability is presented under 
broad conditions of traffic. 

4.2.2 Model assumptions 

The Markov process requires the specification of the input demand and service rates 
within a cycle in terms of probability distribution. Beckmann (Beckmann 1956) derived a 
first expression of expected delay at fixed time signals assuming binomial arrival 
process, while Dunne (Dunne 1967) used the same assumption to derive an expression of 
delays with traffic actuated control. Apart from these exceptions, it is a generally 
accepted hypothesis to consider the arrivals at an isolated intersection within a cycle 
following a Poisson process (Kang 2000). In practice, the demand is subdivided into 
periods of stationary conditions, in which the average arrivals do not change significantly 
from each other. According to the definition of Poisson distribution, this average value 
represents the only parameter, which defines its shape. 
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The parameter of the Poisson distribution is assumed constant or stepwise constant 
within the period of analysis. This assumption allows one to analyze the dynamics in the 
simplest scenario and to specify the direct relationship between demand and queue 
evolution. Behavior towards and equilibrium value in undersaturated cases or behavior in 
oversaturated cases can be studied under this assumption. The hypothesis of Poisson 
distribution for the arrivals, on the other hand, determines the statistical behavior of the 
overflow queues computed in this chapter; it is expected that a different distribution will 
lead to different results. The Markov model can be numerically evaluated using any 
probability distribution. A distribution function can be characterized for example by 
collecting a sufficient amount of traffic counts under the same prevailing conditions and 
finding the most appropriate function to fit these real observations. 

It is assumed throughout this thesis that the flow can exceed the effective capacity at the 
stop line but it is still far below the saturation flow. In theory, a Poisson distribution does 
not consider an upper limit to the number of vehicles approaching the intersection from 
one of its arms, which is an unrealistic assumption, even if the very little chance given to 
these outcomes produces negligible effects on the resulting queue length distribution. In 
practice, the computation algorithm requires a finite input demand. The upper limit can 
be then fixed to the maximum number of arrivals determined by the capacity of the 
upstream link. The probability given to higher arrival rates is then assigned to the 
maximum value. This assumption can represent cases where the link is full, i.e. queues 
can build up somewhere upstream the intersection independently of the signal process.  

The intersection approach is assumed to serve a maximum possible number of vehicles 
within a cycle. This value can be also derived from the assumed saturation flow. 
Effective capacity per cycle, s , is either assumed to be constant or to have a Binomial 
probability distribution. In this chapter this random variable is considered independent of 
both the queue length observed at the starting of the cycle and the input flow q . This 
assumption may not be completely correct; different distributions may be observed with 
different congestion levels, as a result of a different car-following behavior (e.g. the 
stress for waiting at long queues may reduce the reaction time of drivers or make them 
accept shorter headways among one another). 

Apart from demand and capacity for each cycle, the computation of the queue 
distribution requires the specification of an initial queue state . This value can be 
represented by a deterministic value or also by a probability distribution. Both 
assumptions might be used in practice. For example a deterministic initial value can be 
assumed if the queue estimation follows the observation of a queue at a certain point in 
time and space and a prediction of the evolution from this state is forecasted. If the 
analyst wants on the other hand to estimate the dynamics and average time to clear the 
queue during a peak hour, every period of stationary conditions starts with a certain 
initial state, which is determined by the distribution computed at the previous period. 

0Q
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The opportunity to compute the number of queued vehicles and their variability allows 
the analyst to compute also the probability that this number exceeds the available road 
space designed to contain the waiting users. This feature allows the computation of e.g. 
the chance of observing spillbacks and gridlocks and to include these costs in the 
computation of the total delay of a road network or to evaluate the road infrastructure 
design (i.e. exclusive turning lanes). Nevertheless, the assumption of homogeneous car 
traffic may limit this computation. 

The road geometry is considered in this chapter simply consisting of one lane per 
direction for the sake of simplicity. Moreover, the signal is assumed in this chapter as 
isolated, i.e. the arrival distribution is invariant with time. The first assumption 
guarantees that the mass-balance equation is applicable within the lane, and FIFO 
condition holds. The second assumption implies that no effect of upstream signals is 
considered, i.e. filtering or platooning effects. Later in this thesis the effect of upstream 
signals and the multilane cases are discussed, and a Markov model for multiple lanes, 
which explicitly considers the lane changing behavior of travelers is later developed 
(Chapter 8). 

4.2.3 Description of the system 

This section describes the mechanism driving the evolution of queues in a single lane, 
isolated intersection. The system is defined in queuing theory as M/D/1 in the case of 
deterministic service and M/M/1 for the stochastic service case. As described in Chapter 
3, most analytic time-dependent queue models have been developed under the 
assumptions of isolated intersection and single service. To compare these models with 
the Markov model the same assumptions have been used to compute the queue length 
distribution in time. Figure 4.1 shows an example of this system. Let gt , and  
represent respectively the effective green, red and cycle times of the fixed control. Let  
be the total length of the road section upstream the signal. If the intersection has large 
capacity with respect to the demand within a cycle it is very likely that the whole demand 
is served before the end of the green phase. If the intersection is oversaturated the length 
of the green phase is insufficient to completely clear the intersection and residual queues 
will be most likely observed at the end of the green phase (overflow queues). 

rt Ct
L
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L 

 
UFigure 4.1– Scheme of a single lane intersection 

Deterministic models exclude the existence of residual queues if the average volume-to-
capacity ratio is less than 1. In reality although for a certain period of time the flow is, in 
its average, smaller than the capacity, its variability produces a non-zero chance that for 
some cycles the number of arrivals will be larger than the possible departures, and some 
vehicles will stop twice or more times before the signal in order to be served. The closer 
the volume of traffic to the capacity of the signal, the larger the chance to observe these 
residual queues will be. On the other hand, if the volume-to-capacity ratio is only slightly 
larger than the unity, there will be still at least for the first cycles a non-zero chance that 
the arrivals will be less than the departures. 

4.3 Overflow queue model formulation 

Let  be the maximum value of the queue length, which can be stored in the 
considered road section,  and respectively the maximum number of arrivals and 
departures possible within a cycle, Formula X(4.1)X can be computed in a stochastic fashion 
by first computing the transition matrix , which represents the probability that the 
queue length moves from a state 

maxQ
maxq maxd

ijQ
j  at time 1t −  to state at time t . If i 0j ≠  this 

probability is expressed by: 

max maxPr( )          ,   [0, ],   [0, ]
( )                  

0                                              otherwise
t t t t t

ij

i j q d j i d q q d d
Q t

= + − ∀ ≥ − ∈ ∈⎧
= ⎨
⎩

(4.2) 

Since queues are constrained to be non-negative, when the departures are larger than the 
sum of the arrivals and the queue at the starting of the cycle, the queue at the end of the 
green phase will be zero. Obviously, part of this green phase will not be used by any 
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vehicle. According to this consideration the chance of a queue i  to become zero is 
computed with the following condition: 

max
00

Pr( 0)          ,   [0, ]
( )                  

0                                         otherwise

td i

t t t
ki

k q i d q q
Q t =

⎧
− = ∀ ≤ ∈⎪= ⎨

⎪
⎩

∑
−

   (4.3) 

If the departures are deterministic, Formula X(4.3)X computes the probability for a specific 
queue length j  in the transition matrix from each couple . If departures are 
stochastic, given the range of possible departures  and the assumption of 
independence of departure and arrival distributions, the transition probability from a state 

 to a state 

( , )ti a td
max[0, ]d

i j  is given by: 

max

0
( ) ( , ) Pr( )

t

d

ij ij t t
d

Q t Q t d d
=

= ∑         (4.4) 
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UFigure 4.2 – Transition matrix for x=0.975 

Figure 4.2 shows an example of queue transition probability for an undersaturated case 
( ). If the queue has a non-zero initial state  there is a distribution of 0.95x = i
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probabilities that the queue stays among states adjacent to i . If the queue is zero, there is 
over 50% chance that it will remain zero also at the following cycle. 

Every time step t  is uniquely determined once an initial condition  is assumed. This 
value, as said, can be a specific value or a stochastic variable. In both conditions the 
initial condition can be expressed by a vector of initial queue probabilities 

0 max
 where the deterministic case can be seen as a 

special case of this vector where probability is 1 for the deterministic value and zero for 
the others. Since the queue probability distribution at every time  and the transition 
matrix  are, as defined, independent, the probability of each state 

0Q

0 1 2Pr (0) {Pr (0),Pr (0),Pr (0),...,Pr (0)}Q Q=

1t −
ijq j  is given by: 

max

0

Pr( , ) Pr( , 1) ( )
Q

o o
i

Q j t Q i t Q t
=

= = = − ⋅∑ ij       (4.5) 

Figure 4.3 displays an example of queue length distribution for a sequence of 20 cycles 
(x=0,975 and 0 10Q = ). The distribution is very flat, whilst the probability of observing a 
zero queue increases in time. Although it does not reach 10% of the cases it still 
represents the most likely state. This demonstrates the high variability of such queues and 
the higher uncertainty on the prediction of the queue length the longer the chosen 
prediction horizon. 
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UFigure 4.3 - Evolution of queue length probabilities for x=0.95 
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Expected values and standard deviations are computed with the following equations: 

max

0

[ ( )] Pr( ,
Q

o
j

E Q t j Q j t
=

= ⋅ =∑ )o         (4.6) 

maxQ
2

0

{ ( )} ( ) Pr( , )t
j

Q t j Q j tσ
=

= − ⋅∑        (4.7) 

The next chapter deals with the sensitivity of the above expectation value and the 
standard deviation of the overflow queue to the assumed stochastic variables (arrivals, 
departures and initial queue length). The next section describes the relationship between 
the dynamics of the queue length distribution and the dynamics of the vehicle delay. 
According to the way queue length has been formulated, delays are also formulated as 
Markov chain processes. 

4.4 Probabilistic formulation of the control delay 

Delays are characterized by probability distributions as much as queues, since direct 
relationship links these two characteristics. This relationship between queue length at 
each cycle and delay and between their variability was similarly developed by Olszewski 
(Olszewski 1994). Conventional analytical delay models provide only point estimates of 
delay, averaged over the period of analysis (typically 15, 30 minutes or 1 hour). Since 
delays have stochastic and dynamic behavior as much as queues, vehicle delay at each 
cycle may be consistently different from the computed average. Furthermore, the 
knowledge of probability distribution of delays in time would allow one to obtain 
standard deviation and confidence intervals in time, which are valuable input for 
reliability studies, or for the evaluation of the variability of the expected level-of-service 
computed when assessing the quality of an intersection or the impact of different control 
strategies. Travelers might also find this variability useful information to their daily 
travel decisions. 

As reported in Chapter 3, the total vehicle delay can be subdivided into three components 
(uniform, random and initial queue delay), according to the definition given by the latest 
version of the Highway Capacity Manual (TRB 2000). The uniform component 

reflects the average waiting time of a vehicle approaching the intersection if no queue 
is present at the intersection. This component represents the probability of a vehicle to 
arrive at the intersection when the signal is red. All manuals suggest the following 
formula: 

1W
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2

1 2 ( min( ,1))
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t t x

=
⋅ − ⋅

        (4.8) 

Particular attention is given to a range of volume-to-capacity ratio floating around the 
unity. In fact, the randomness of vehicle arrivals results in a delay function that tends to a 
uniform delay model at low v/c ratios and a deterministic over-saturation delay model at 
high volume-to capacity (v/c) ratios (in excess of 1.3). At v/c ratios in the range of 0.8 to 
1.2, the stochastic nature of traffic arrivals results in significantly higher delays than 
estimated by standard deterministic queuing models. In this range of v/c ratios, the non-
linear relationship between delay and the v/c ratio means that the marginal delay 
associated with an increase in demand is higher than the one associated with a decrease 
in demand. This causes the delay associated with random arrivals to be higher than the 
delay associated with uniform arrivals. 

4.4.1 Cycle delay model formulation 

To compute the overflow delay each vehicle experiences one needs to compute the 
propagation in time of this delay from the arrival of the vehicle at the intersection till the 
moment it leaves the intersection, which can happen several cycles onwards. 

 
UFigure 4.4 – Cycle delay with overflow queue 

Figure 4.4 displays the interaction between the three components in a simple schematic 
example and how a vehicle delay is distributed along adjoining cycles. Vehicles arriving 
before the vehicle arrives influence its delay only if they are still to be served and thus 
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belong to the queue . Accordingly, if a vehicle arrives at the approach in later cycles, it 
will not give any influence as well. 

kQ

Since a residual queue remains at the start or the end of a cycle, delay at a certain cycle t  
is caused by vehicles arriving at the intersection during previous periods and during the 
same cycle . It may happen that one cycle time is not enough to handle this residual 
queue and a new residual queue is observed at the end of cycle t . Vehicles arriving at 
cycle  will then experience a delay that is represented by the following areas showed in 
the figure: 

t

t

1 2tD D D D= − + 3          (4.9) 

The first component  represents the total delay accumulated within cycle  by all 
vehicles arriving during that cycle and the ones already waiting at the signal. The second 
term  is the delay experienced by only the vehicles waiting at the signal at the starting 
of cycle  and finally  is the delay experienced by the vehicles arriving during k  and 
caused by the presence of the residual queue . If the queue is not completely cleared 
at the end of a simulation period, one should then take into account that vehicles entering 
a road section in later periods have an extra delay caused by an overflow queue and they 
may still accumulate part of their delays after the end of the simulation. 

1D k

2D
k 3D

kQ

The following method, inspired by the work of Olszewski (Olszewski 1994), provides a 
systematic computation of vehicle delay for one cycle based on the geometrical 
relationship drawn in Figure 4.4. The number of departures  is assumed constant 
throughout the evaluation period. Area  is thus expressed by the following conditions: 
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   (4.10) 

If  cycles are needed to serve Q  vehicles, this last value will decrease cycle by cycle 
following the sequence  (where  is computed as the 
smallest integer value such that ). Based on this observation the total delay 
caused by Q  vehicles waiting at the start of a cycle t  will be computed with the 
following function: 

t
, ,d 2 ,...,Q Q Q d Q t d− − ⋅ − ⋅ t

0tQ t d− ⋅ ≤

2

t⎞
⎟( ) ( 1)

2 2
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Q t t dQ t Q
d
⋅ ⋅⎛Ψ = + + − ⋅⎜⋅ ⎝ ⎠

       (4.11) 
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The first term of X(4.11)X represents the delay incurred during the green periods while the 
second is the one incurred during the red periods. Areas and are then simply 
computed by substituting Q  respectively with and

2D 3D
tQ 1tQ + . The average delay incurred by 

a vehicle approaching the intersection during cycle t  is then computed with the 
following formula derived from Formulas X(4.10)X and X(4.11)X: 

1 ( ) ( )t
t

t

D Q QD
q

+−Ψ +Ψ
= 1t         (4.12) 

At each cycle, the queue length distribution is computed with the method as described in 
Section 4.3. The distribution of delays in time will then only depend on the distribution 
of queues at the start and the end of one cycle and the distribution of the arrivals at that 
cycle. Since these two characteristics have been assumed independent each other, the 
probability of each delay is computed by simple multiplications of these two 
probabilities. 

4.5 The within-cycle queuing process 

The overflow queue model has shown that the length of the overflow queue can be 
derived in a fundamental way by describing the probability distribution of the queue 
length as a Markov chain process in discrete time steps: the probability distribution of the 
queue length at the end of the green phase depends on the probability distribution of the 
queue length at the end of the previous green phase and the probability distribution of the 
arrivals during the cycle (Figure 4.5). 
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UFigure 4.UTU5UTU: The transition process of the probability distribution of the queue length at the end of 
the green phase from cycle to cycle 
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This relationship has both multiple-to-one and one-to-multiple properties, since each 
queue state at the previous cycle contributes to the probability of all queue states for the 
current cycle and, inversely, each queue state at the current cycle is determined by each 
probability state at the previous cycle. This relationship can be extended to a continuous 
time step by simply considering green and red phases separately. 

If one assumes deterministic departure rate, while no specific distribution is assumed for 
the arrivals, the transition following the Markov Chain approach in a cycle-to-cycle 
process can be described with the following general relationship: 
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   (4.13) 

Where: 

• (Pr ,oQ j τ=  is the probability of a queue length j  at the end of the green phase 
of cycle τ  

•  is the probability of l  arrivals in a cycle of length  Pr( , )Cq l tτ = Ct

The square brackets on the summation indicate the integer value of the number. The 
same approach can be applied for the queue length distribution at any moment during the 
cycle. Let the signal cycle be divided into two phases, i.e. the effective red and the 
effective green phase, as described in Chapter 3. During the red phase queues can only 
grow in time, and their variability is simply determined by the variability of the arriving 
vehicles. The probability distribution Pr( , )Q n t=  for  vehicles waiting in front of the 
stop-line at time  and during the red phase can be expressed as: 

n
t

0
Pr( , ) Pr( , ).Pr( , )t

j
Q n t Q j t t q n j tΔ

=

= = = − Δ = − Δ∑
n

     (4.14) 

Where P  is the probability that r( , )tq n j tΔ = − Δ n j−  vehicles arrive in the time between 
 and . The expectation value of the queue is then given by: t − Δt

n∞ ∞

t

0 0 0

[ ( )] Pr( , ) Pr( , ) Pr( , )t
n n l

E Q t n Q n t n Q n l t t q l tΔ
= = =

== ⋅ = = − −Δ ⋅ = Δ∑ ∑ ∑   (4.15) 

If this expression is rearranged it can be evaluated exactly: 
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Giving the intuitive result: 

[ ] [ ] [ ] [ ]( ) ( ) ( ) ( )Q t Q t t a t Q t tE E E E q−Δ Δ −Δ= + = + t⋅Δ     (4.17)  

Where  is the average arrival rate during q tΔ . Therefore, the expectation function of the 
queue length is a simple linear function of the time and grows proportional to the average 
arrival rate q . This justifies the simplified representation of the queue length as a linear 
function as is used in many estimations of the delay. 

In the green phase in a first approximation, a similar calculation can be made, in which 
the departures are subtracted from the expectation value of the queue. This means that the 
expectation value of the queue is a simple linear function as shown in Figure 4.6. Later in 
this section it is shown that the stochastic behavior of the traffic process causes some 
deviations of this simple model. 

Formula X(4.17)X expressed the expected queue length as a function of the time during the 
red phase. Similarly, one can express the queue length probability during the green 
phase: 
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 (4.18) 

Expression X(4.18)X is just the consequence of the fact that the probability distribution 
function has only finite values for positive queue lengths. Figure 4.6 shows the evolution 
process of the distribution function. 
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UFigure 4.6: The probability distribution of the queue length in the green phase. 

As long as the expectation value of the queue length is large, the probability of observing 
a zero queue during the green phase may be very little. If on the other hand the signal 
operates near the capacity, this probability can be very high. Comparing this figure with 
Figure 3.1 the effect of the variability of the arrivals at the end of the green phase is made 
explicit. The dynamics of the queue in the green phase becomes: 
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 (4.19) 

Formula X(4.19)X shows that the queue initially decreases linearly until the moment that the 
standard deviation of the queue length distribution becomes of the same order of 
magnitude as the expectation value of the queue, as shown in figure 4.6. 

Equation X(4.19)X can be rewritten by rearranging the summation: 
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  (4.20) 

This results in the following formulation: 
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The first three terms of Equation X(4.21)X are simply the expression of the linearly 
decreasing queue, the last term is the effect of the stochastic character of the arrivals. 
Equation X(4.21)X can simply be rewritten in terms of the probability distribution function 
of the queue at 0t = ,  the beginning of the cycle, i.e. at the start of the red phase.   
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One may easily verify that the expression approaches zero when . The calculation 
of the third term can be done numerically. If one assumes that the cycle begins with a 
deterministic state 

t →∞
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, the correction term in Equation X(4.21)X becomes: 
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Since the first terms of Equation X(4.21)X, the deterministic queue length, continues also 
after the moment that the deterministic queue disappears, the correction term has to 
compensate for that. The deterministic queue is therefore given by the following 
formulation: 
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Since the first part of Equation X(4.21)X continues to decrease, the correction term has to 
compensate the negative part. Figure 4.7 shows the expectation of the queue length 
computed with Formula X(4.21)X for different degrees of saturation if a Poisson distribution 
is assumed for the number of arrivals within the cycle. The results are computed using 

, ,  and 24gt = 60C = 1800 veh/hs = 0 0Q = . The behavior of the decreasing part of 
the queue length confirms the illustrative example drawn in Figure 4.6. 
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UFigure 4.7: Expected queue length within a cycle 

The fundamental role of the compensation term is clearly visualized at every demand 
condition. For very low degrees of saturation (as 0.5x =  in the figure) it is small error to 
consider no expected overflow queue at the end of the cycle. The larger this value, the 
larger positive expectation value results at the end of the cycle. The compensation term 
allows one to compute the expectation value also when x=1, cannot be calculated with 
static models. The new Formula X(4.21)X enables one to calculate a finite value for the 
overflow queue at the end of each cycle. This value is nonetheless dependent on the 
assumed probability distribution. One should expect this value to be different from the 
one displayed in Figures 4.7 and 4.8 if other distributions than Poisson are assumed. 

Figure 4.8 gives also insight into how different cycle lengths affect the expectation value 
of the queue at the end of the cycle. Although the increase is relatively small in the 
example, the larger the cycle length, the higher overflow queue is observed at the end of 
the cycle. 
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UFigure 4.8: Expected queue at x=1 

The compensation term does not have on the other hand particular role when the initial 
queue is large, as one can expect, since the probability of having zero queue at the end of 
the cycle is negligible (Figure 4.9). The expected value at the end of the cycle is very 
well represented by the deterministic term. 
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UFigure 4.9: Expected queue for Qo=20 
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The new queue model formulation overcomes the gap between queuing models in 
conditions of undersaturated and oversaturated states, since no assumptions in this sense 
is made during the development of the model. Moreover, the model is valid for any 
assumed distribution of the arrival profile since the expression of the queue length is 
given without assuming any specific probability distribution function. 

4.6 The control delay at one signal cycle 

The inclusion of the compensation term in the expression of the queue length affects also 
the computation of the delay at one cycle. This allows one to compute the dynamic 
effects of the variability of the arrivals also in undersaturated conditions, and to give a 
smooth transition between undersaturated and oversaturated conditions also for the 
control delay. The delay formula proposed by Olszewski (Olszewski 1994) and presented 
in Section 4.4 is very useful if one computes from the probability distribution of the 
overflow queue the probability distribution of delays. The method summarized by 
Formula X(4.12)X considers the queuing process within a cycle as deterministic; this 
implies that the delay is simply considered with this method consisting of two 
components, the uniform delay component and the overflow delay component. This 
section shows that also the stochastic delay component should be calculated as 
incremental. 

The expected total control delay is related to the dynamic of the queue length according 
to following relationship: 

0

[ ] [ ( )]
C

E W E Q t dt= ∫
t

         (4.25) 

Where  is the total delay in a cycle  and  is the queue length at time t. The 
queue length is in one single cycle a step function that increases with one at the arrival of 
a vehicle. If one takes the expectation value of the queue length it becomes a continuous 
function. 

W Ct ( )Q t

If one takes just the deterministic part of the queue he computes the uniform delay 
component: 

0 0
1] ( . )( . )[ 2( )

r rQ s t Q q tE W s q
+ += −       (4.26) 

Which reduces to the first term in Beckmann’s delay formula if 0 0Q = . The random 
delay component becomes: 
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This can be simplified to: 
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With 0( ) (C rt t Q s t s q= − + ⋅ − )  the undersaturated green time. Formulas X(4.26)X and 
X(4.28)X represent exact formulations of uniform and random delays within a cycle. 
Knowing the distribution of the initial queue length at the start of the red phase, the 
models presented in this chapter allow one to evaluate the dynamics of the queue and the 
delay during the cycle, explicitly including the effect of the variability of the arrivals in 
the dynamics of the queue length. This justifies the dynamics in the cycle-to-cycle 
process described in Section 4.3. In conclusion, a complete computation of the delay is 
now possible if the cycle-to-cycle Markov Chain model is combined with the newly 
developed model, as shown in the next section. 

The Expression X(4.25)X is not simple to evaluate by hand and the relationship with easily 
obtainable traffic characteristics is absent. The degree of saturation is in fact not directly 
visible in the expression for the random delay. However, the calculation can very easily 
be executed by a rather simple computer program. 

4.7 Comparison with other random delay formulas 

The elaborate formulation of the queue and delay processes presented in this section 
limits its application opportunities. The advantage on the other hand is that it is ‘clean’, 
not influenced by any approximation. Two options are although possible: to use Formula 
X(4.25)X as a validation for existing formulas of random delay or to search for a simple 
formula that approximates this expression. This last approach will be followed in chapter 
6 for the evolution of QB0B , the initial queue at the start of a red phase. The dynamics of 
the expectation value and its standard deviations have been approximated very accurately 
by a mathematical function. 

In this section we propose to follow the other approach, i.e. to use Formula X(4.25)X with 
the different random delay functions in the literature. For instance the well-known delay 
functions of Webster (Webster 1958) and McNeill (McNeill 1968) as representatives of 
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the equilibrium delay models and Akcelik (Akcelik 1980) for the time-dependent models 
can be compared with the new expression for the delay. 

If the probability distribution of the initial queue length Pr(Q=0) is known and the arrival 
is assumed distributed as e.g. Poisson, the random delay can easily be calculated 
numerically. Figure 4.10 shows that Expression X(4.25)X is consistent with Webster’s delay 
formula for low degrees of saturation (x < 0.96). 
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UFigure 4.10: Comparison of the results from equation X(4.25)X with the Webster’s and McNeill’s 
formulas. 

This error affects the estimation of delays at signals and consequently the correct design 
of signal controls. The newly developed models are supposed to overcome these 
limitations. To give an example of the effects of modeling exactly the effects of a 
variable demand in the optimization of a fixed control, Figure 4.11 shows the optimal 
cycle times (in terms of total delay minimization) computed with the well known 
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Webster’s formula (Webster 1958) and the ones computed with the probabilistic 
approach. 
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UFigure 4.11: comparison between Webster and Markov optimal cycle lengths 

The optimal cycle time method proposed by Webster (Webster 1958) in undersaturated 
conditions is derived with the assumption of infinite stationary demand conditions. This 
implies that overflow queues in the Webster formula are considered reaching 
instantaneously the equilibrium value. In practice, for degrees of saturation 
approximately near 1 one should need very long periods of stationary demand conditions 
to reach these equilibrium values, which is not a realistic assumption. In the Webster’s 
method the expected delays tend to infinite at conditions of traffic near the capacity. In 
reality stationary demand conditions may exist only for a limited time period and queues 
and delays are, within this period, finite and – in case of a degree of saturation above 0.8 
- considerably lower than the ones estimated with the Webster’s delay function. Optimal 
signal settings are therefore different if one replaces the theoretical expression of delays 
with a time-dependent model. The Webster’s method in fact optimizes green and cycle 
times in cases of low volume to saturation flow ratios consistently with the results of the 
Markov model. However, it overestimates the cycle length when the demand is near the 
capacity. 

The reason of this overestimation error can be found in the second term of the delay 
equation proposed by Webster and also introduced in chapter 3. This method computes 
the expected stochastic delay under the assumptions of no initial queue and uniform 
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arrivals. One drawback of this equation is that it cannot be used in conditions of flows 
larger or equal to the capacity, since the second term gives an infinite delay for 1x =  and 
it cannot be applied if 1x > .  

The difference between Markov Chain and Webster’s models appears in the expression 
of the optimal cycle length based on delay minimization (Webster’s formula has been 
given in Chapter 3). Figure 4.12 shows the expectation value and the standard deviation 
of the control delay using different cycle lengths. The right hand picture displays the 
standard deviation (continuous lines) and the corresponding average values (dotted). 

The knowledge of the variability of delays can be also a helpful tool also in the 
optimization of signals. Figure 4.12 shows the behavior of the standard deviation, which 
decreases with increasing the cycle length. Comparing the behavior of the standard 
deviation with the corresponding expectation value one can estimate the coefficient of 
variation (ratio between average and standard deviation) having a measure of the 
reliability of delays given the total expected demand of the signal in time. 
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UFigure 4.12: Expectation value and standard deviation of the delay with different cycle times 

For low demand conditions the standard deviation of the delay at the optimal cycle length 
is small. For higher demand conditions, if one increases the cycle length with respect to 
the optimal value, the expectation of delay does not increase consistently, while the 
standard deviation is strongly reduced. In conclusion a control policy with particular 
regard to the reliability of a traffic control should design, in nearly congested conditions, 
longer cycle lengths than the computed optimal ones. 

According to the conclusions drawn in this section the optimal cycle length computed 
with the Markov method are smaller than the ones computed with the Webster method. 
This is especially evident in the busiest period, where the optimal cycle length is 
considerably lower than the Webster’s optimal length. Average delays within each period 
are also lower than the ones computed with the Webster optimal cycle, and in the busiest 
period they are even less than half. 
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UTable 4.1 – Assigned demand and resultant average delay with Markov chain and Webster methodsU 

Flow (veh/h) 600 700 750 800 750 700 600 500 

Webster opt. cycle 60 90 120 150 120 90 60 45 

Webster delay (s) 22.4 34.6 46.8 73.1 46.8 34.6 22.4 15.2 

Markov opt. cycle 58 90 126 126 126 86 58 50 

Markov opt. delay 19 30.1 31.1 31.8 30.9 30.2 19.5 14.1 

Finally comparison between the time-dependent formula of Akcelik (Akcelik 1980) and 
the Markov model is done in Figure 4.13. It seems that the heuristic approach made by 
Akcelik gives very consistent results with respect to the Markov model. 
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UFigure 4.13: The comparison of equation X(4.25)X with Akcelik’s model 
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4.8 Conclusions 

Although fixed time controllers are considered as old-fashioned while most intersections 
are controlled by closed loop controllers, the traffic dependent control becomes nearly 
fixed time during peak hours. That makes a good model for delays of fixed time 
controlled intersections still important. This chapter provided a methodology to simulate 
the dynamic and stochastic behavior of queue lengths and delays at pre-timed traffic 
control signals based on Markov renewal process theory. This method allows the analyst 
to estimate and predict the dynamic evolution of queues and the propagation of their 
distribution in time, quantifying the uncertainty around this estimation and/or prediction. 

Delay at fixed-time controlled intersections has been a study subject for many years 
already. Several mathematical expressions have been derived to represent the so-called 
random delay component, the delay caused by the stochastic character of arriving traffic.  
The new formulation of this random delay component in this thesis is derived without 
any assumptions about the statistical properties of the arrival process, apart from the 
assumption that the arrival distribution is uniform over the whole cycle. It fits for 
Poisson, binomial, Normal distributed arrivals. The numerical value of the new random 
delay component can easily be computed and compared with approximated expressions 
of other authors. 

More important than the possibility to calculate the random delay with a more general 
model than the existing ones is the insight that the derivation gives in the process that 
causes the random delay. The assumption used by some authors that the queue should be 
represented by a step function appears to be superfluous. The stepwise character of the 
delay is transformed to a smooth character of the expected delay, linearly increasing in 
the red-phase and the first part of the green phase. The expectation value of the queue in 
the green phase shows a non linear character as soon as the tail of the probability 
distribution comes close to zero. This phenomenon causes the overflow delay. 

Numerical evaluation of the delay model presented in this thesis allows one to evaluate 
the dynamic character of queues with the variability of the arrival process. This feature 
has been described so far by computing the expected overflow queue at the end of the 
green phase and by using a mass-balance equation. The approach used in this chapter is 
to compute this value by catching the dynamics from any point in time. This information 
is very important for example to consider spillback and gridlock effects. 

Comparison of the model with previously released analytic formulas shows that the latter 
are particularly incorrect at conditions near capacity and that they are not suited for 
analyzing the time-dependency of delays in e.g. peak hour analyses. A new time-
dependent analytic formulation is therefore needed to solve this issue. Chapter 6 is 
dedicated to the development of such model. 



5 
Dynamic and stochastic aspects 
of queues and delays at signals 

5.1 Introduction 

The variability of demand and supply systems to the behavior of queues and delays has 
been shown in Chapter 2 to have large impact especially in conditions near capacity. 
Travel time data analysis has shown that the standard deviation of travel times is as large 
as its mean value at congestion. This variability transmits large uncertainty to the queue 
distributions and consequently to the random component of delays. Expectation values 
are therefore determined by a wide distribution. 

All models for the expectation value of queues were found to have a deficiency in 
dealing with the dynamic and stochastic character of overflow queues in conditions near 
capacity. Chapter 4 has solved this by providing an exact time-dependent formulation of 
the expected queue length and the control delay within a signal cycle. This formulation 
adds new insight into the dynamics of the incremental component of the delay with 
respect to models based on heuristics (e.g. (Akcelik 1980)). 

Although the uncertainty in the queue length and delay estimation may be as important as 
their expectation values, little interest has been found in literature on this issue. Among 
the studies presented in Chapter 3, only very few discuss the variability of queues and 
delays at signals and only one model has been developed (Fu 2000).  

  101 
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This formulation describes the queuing process as a Markov Chain (Markov 1971), i.e. 
the queue length at one time step depends only on its distribution at the previous time 
step. This approach has been used other times in the past to compute the queuing process 
as a cycle-to-cycle process (e.g. (Van Zuylen 1985), (Olszewski 1990)) and to analyze 
the expected value of the queue length as a dynamic process.  

Less importance has been given to this methodology to analyze also the behavior of the 
variability of queues. In fact, this method enables one to calculate the statistical 
distribution of queues under controlled conditions in a few seconds of computation. The 
adopted method does not require the specification of each vehicle characteristic in the 
same detail of microscopic models, but it requires only the specification of probability 
distributions of the input variables to determine the queuing behavior in time. One may 
question the validity of using this methodology based on rigorous mathematical 
relationships to evaluate this behavior. Unfortunately, it is difficult to find a valid dataset, 
which can be used to solve this issue. Only comparison with microsimulation seems 
possible, as discussed in Chapter 7. 

The scope of this chapter is to analyze the statistical properties of queues and delays by 
using the Markov Chain process. The chapter is structured as follows. Section 5.2 
describes the reasons for adopting a probabilistic approach to operate the analysis of the 
dynamic and the stochastic aspects of queues. In Section 5.3 the probabilistic method 
described in Chapter 4 is applied to the fixed time, isolated signalized intersection 
problem under various conditions of traffic and initial states. Analysis of the variability 
of queues is made in Section 5.4 while in Section 5.5 the analysis of the queue behavior 
with non-uniform arrivals is presented. Section 5.6 finally gives a synthesis of this 
chapter. 

5.2 Reasons for a probabilistic approach 

Chapter 3 has shown that available time-dependent models have been developed under 
quite limiting assumptions. The simulation of a peak hour requires for example a model, 
which enables one to compute not only expected delays and queue lengths but also the 
duration of such queues. This would improve the evaluation and optimization of traffic 
performances in traffic control or information problems. Furthermore, the knowledge of 
the distribution of travel times is required in several contexts, like in information 
problems, or in reliability and robustness analyses. Therefore, a model for the standard 
deviation and a characterization of queue length distributions is needed, contributing to 
the evaluation and prediction of travel time uncertainty. In conclusion the research 
questions, which motivate the approach described in this chapter, are the following: 
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1) To formulate a stochastic time-dependent model that describes the dynamic evolution 
of expected overflow queues with variable conditions of traffic; 

2) To provide a stochastic time-dependent model also for the evolution of standard 
deviation of queues; 

3) To analyze the evolution of the queue distributions in time and to characterize such 
distributions with a known probability density function. 

5.2.1 Mesoscopic models 

To analyze the statistical properties of queues and delays at signal one needs to have a 
large dataset, both because different conditions of traffic need to be analyzed, i.e. 
different demand conditions, control settings, initial queues etc. and because the number 
of repetitions required to have an acceptable estimate of average and standard deviation 
of the queue length increases with the variance-to-mean ratio. The development of a 
time-dependent model of the expectation value of queues requires several observations 
under the same prevailing conditions. Observations with these assumptions are very 
difficult and expensive to gather.  The number of observations required is unrealistic both 
for time and monetary reasons, and because the arrival distribution is not controllable. 
Also measurement errors should be taken into account, since they also provide input for a 
travel time model. (Teply 1989) studied two approaches concluding that delay cannot be 
precisely measured and that a perfect match between the results of an analytical delay 
formula and delay values measured in the field cannot be expected. Thus, even if one has 
budget and time to collect data from any data collection system, there is still uncertainty 
on the correctness of this dataset. Alternatively, one may use microscopic simulation 
programs to generate these observations artificially. The opportunity to deal with the 
characteristics of any single vehicle increases the flexibility and power of microscopic 
simulation programs, but at the cost of an increased complexity, the need of extensive 
calibration, the risk of over-fitting and a reduction of computing speed. 

Both real observations and microsimulations are difficult, time consuming and very 
expensive to be collected. Under some conditions, the standard deviation of the queue 
can be of the same magnitude of the average value. Therefore, to obtain an estimate for 
example with 10% accuracy in these conditions, hundreds of observations are required. 
(Troutbeck 2000) showed that, while analyzing the validity of the models of (Newell 
1971) and Kimber and Hollis (Kimber 1979), even with 500 simulation runs of a 
microscopic model, the resulting curves representing the average conditions are not 
smooth. 

Alternative to microsimulation is represented by the class of mesoscopic models. The 
Federal Highway Administration (FHWA 2006) defines mesoscopic models as follows: 
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Mesoscopic simulation models combine the properties of both microscopic and 
macroscopic simulation models. Mesoscopic model travel simulation takes place on 
an aggregate level and does not consider dynamic speed/volume relationships. As 
such, mesoscopic models provide less fidelity than the micro-simulation tools, but 
are superior to the typical planning analysis techniques. 

Mesoscopic models use as input probability distributions, computing the probability 
distribution of some traffic characteristics applying some mathematical conditions that 
relate these characteristics (see also Appendix A). 

5.3 Evolution of queue length distribution in time 

Firstly, the assumption of stationary demand conditions for the whole evaluation period 
and the hypothesis of no queue at the start of the evaluation period and deterministic 
capacity are assumed. Hypotheses of constant departures and zero initial queues are later 
stressed in this section. 

5.3.1 Influence of stochastic volume-to-capacity ratio 

Figure 5.1 shows the average length of a queue for different volume-to-capacity ratios 
computed with the Markov method described in Chapter 4. 

As mentioned in Chapter 4, for low volume-to-capacity ratios ( 0.7x ≤ ) the chance to 
observe a residual queue at the end of the green phase because of random arrival rates is 
quite small. Consequently, delays are primarily given by their uniform component. The 
higher the demand rate, the higher the chance a residual queue due to its random nature is 
observed at the end of the green phase. Volume-to-capacity ratios in between [  
are influenced consistently by this fluctuation of volumes (as one can notice in the above 
figure) and the random delay represents the main component. For v/c larger than this 
range the queue increases linearly and the stochastic component is again negligible. 

0.8,1.2]

Figure 5.2 compares the Markov model with Akcelik’s model for a volume-to-capacity 
ratio of 0.95. The models give similar results although from visual inspection the first 
tends to give slightly higher results than the latter. If several cycles are investigated, this 
difference reduces until both models reach equilibrium in undersaturated conditions, 
which is in accordance with the steady-state expressions of McNeil (McNeill 1968) and 
Miller (Miller 1968). 
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UFigure 5.1– Average overflow queue length for different degrees of saturation 

Empirical models based on the static ones have been developed in the past (e.g. (Kimber 
1979)) by applying the coordinate transformation technique. Akcelik (Akcelik 1980) 
developed a model with the property of expressing both undersaturated and oversaturated 
conditions with a single formulation, as seen in Chapter 3. This formula is the most used 
model in case of flows approaching capacity and initial queue 0 0Q = . On the other side it 
cannot reproduce queues increasing or decreasing from a non-zero initial value. A recent 
extension of the model for including the effect of an initial queue can be found in the 
aaSIDRA manual (Akcelik 2002). The authors add to the flow rate  a term that takes 
the residual queue generated in the previous intervals into account. The model uniformly 
distributes the extra flow over the calculation period adding the ration , where  
is the expected residual queue from the previous time step and T  is the time step length. 
Akcelik’s model computes the expected queue length at the end of the evaluation period, 
set to 15 minutes. Capacity is assumed deterministic in this model. 

q

0 /Q T 0Q

Comparison between the analytical formulae adopted by the Australian, American and 
Canadian manuals and with other simulation approaches (shock wave theory, 
microscopic models) has already demonstrated the consistency of such models under all 
degrees of saturation if the above assumptions are made. Dion et al. ((Dion 2005) Figure 
10, page 17) reports the comparison of these models in comparison to the results of a 
microscopic simulation program, INTEGRATION (Van Aerde 2001). All Manuals use 
time-dependent models that are structurally similar to the Akcelik’s function.  
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UFigure 5.2– Markov and Akcelik overflow queue models for an under saturated condition 

In oversaturated conditions the Markov model provides average overflow queues that 
well represent the linear deterministic behavior. Figure 5.3 shows this comparison in case 
of x=1.15. The stochastic behavior influences the expected conditions only for a small 
part during the first cycles. 
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UFigure 5.3 – Markov and linear overflow queue models for an oversaturated condition 
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This difference in behavior can be explained by looking at the probability distribution  
Figures 5.4-5.5 display the evolution of probability distributions in time for respectively 
x=0.90 and x=1.15. 
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UFigure 5.4 – Evolution of probability distributions for x=0.90 and QUBU0UBU=0 

For under saturated conditions the highest chance is attributed to the zero state, which 
begins with the assumed  and gradually decreases until it reaches, in the example 
shown, a value of around 50%. The distribution seems to be well approximated by an 
exponential distribution. Although the chance for the queue to be zero is the predominant 
state, in nearly half of the chances the queue will not be zero. The curvature of the 
average state is then determined by this gradual transmission of probability from the zero 
to the non-zero states. 

(0) 1P =

The oversaturated case shows a different behavior. The probability for a queue being 
zero becomes already unlikely from 5 cycles (0.001%). The distribution is well 
approximated by a Normal distribution, in accordance with the conclusions of Newell 
(Newell 1971), who characterized the queue length distribution as Normal using the 
statistical law of the weak numbers. The expected value of the queue moves cycle by 
cycle away from the zero state. This explains the linear behavior showed plotting the 
average value. Accordingly, the distribution in under saturated cases can be 
approximated by a Normal distribution too, bounded to be non-negative (Viti 2004). 
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UFigure 5.5 – Evolution of probability distributions for x=1.15 and QUBU0UBU=10 

5.3.2 Influence of stochastic departures 

The number of vehicles departing at each cycle depends primarily on the effective green 
time assigned to each arm. Variability of vehicle headways and reaction times, the 
presence of heavy vehicles, the occurrence of incidents, or simply distraction or slow 
reaction of travelers may also influence consistently the number of vehicles departing at 
each cycle and consequently the capacity. 

Olszewski (Olszewski 1990) concluded from some observations in the city of Singapore 
that the number of departures within a cycle can be characterized by a Binomial 
distribution with coefficient of variations within the range [  and suggested the 
computation of stochastic capacity using this distribution and assigning a coefficient of 
variation of 0.10 to include somewhat a safety margin. Therefore, the parameters 

0.03,0.08]

p and 
 of the Binomial distribution are computed by fixing this coefficient of variation 

(CoV ) and the average departures  with the following system of equations: 
n

d

(1 )

np d

p CoV
np

=⎧
⎪

−⎨ =⎪
⎩

         (5.1) 
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The first condition is derived from the definition of average of a Binomial. For example 
for average departures of 12 veh/c and 0.10CoV =  one obtains the values  and 

. Under these assumptions, the average random queue for degrees of saturation in 
between[0  increases with a maximum increase of 18-20% of the corresponding 
deterministic case. This computation is higher than the computation made by Olszewski 
(Olszewski 1990), which estimated an error of maximum 7%. 

0.88p =
14n =

.80,0.98]

Figure 5.6 compares the average queue length computed with deterministic and with 
stochastic capacity for a degree of saturation of x=0.97 and for 1 hour simulation. 

2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

cycle number

E
[Q

]

 

 

deterministic service
binomial service distibution

 
UFigure 5.6 – Behavior of average queue length with deterministic and stochastic capacity 

The larger the degree of saturation the smaller the effect of stochastic capacity influences 
the average queue until under oversaturated conditions the influence of stochastic 
capacity becomes negligible as much as the stochastic arrivals. 

5.3.3 Influence of an initial queue 

So far, the queue length distribution has been analyzed starting from the condition that no 
queue exists at the starting of the evaluation period. Under this condition, the overflow 
queue increases with time for every condition of traffic, as seen in Section 4.7. If an 
initial queue is assumed, the overflow queue has a different behavior, decreasing when 
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the initial value is larger than the equilibrium value computed in the zero initial queue 
case. The presence of this residual queue causes an extra delay to the vehicles 
approaching the intersection for several cycles onwards, as demonstrated in chapter 4. 

Catling (Catling 1977) suggested computing the evolution of the decreasing queues with 
the simple linear function described by Formula (4.1) or with the following expression if 
steady-state equilibrium is computed: 

0max{ ( 1) , }tQ Q x ct= + − ⋅ eQ         (5.2) 

where  represents the average number of departures per cycle and  is the equilibrium 
value computed under steady state conditions. This function has a descending trend as 
long as  is larger then the equilibrium value and later stabilizes at the equilibrium 
value. The Highway Capacity Manual (TRB 2000) specifies a third component in the 
delay model, which is caused by this initial value. The component of the total delay 
caused by the residual queue assumes that the queue decreases linearly following 
Formula X(5.2)X. 

c eQ

tQ
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UFigure 5.7 – Behavior of average queue length with different initial values and x=0.95 

The decreasing behavior is initially computed with the Markov model assuming 
deterministic initial values. This assumption can still have a practical use; if the traffic 
manager has somewhat the information about the actual queue length at a certain time T 



Chapter 5. Dynamic and stochastic aspects of queues and delays at signals 111 

(for example using cameras) he/she can then estimate how likely the average queue 
evolves from that time on, and give this information to the travelers. Therefore this 
method can be helpful for online short-term predictions. Figure 5.7 shows the evolution 
of the queue length computed with the Markov model for a degree of saturation of 0.95, 
effective green time of 24 seconds, cycle time of 60 seconds, total evaluation period of 
100 cycles and with a deterministic initial queue of respectively 0, 10 and 20 cycles. 

The queue evolves initially according to the deterministic function when the initial queue 
is larger than the equilibrium value while it keeps on increasing linearly if it is larger or 
equal than 1 and exponentially if the initial value is smaller than the equilibrium value. 

The computation of an initial queue that is close to the equilibrium value (the case of 10 
vehicles) gives a strange result of in terms of expected value of queues, which first 
decreases reaching a minimum below the equilibrium value and after some cycles 
increases again till equilibrium. The behavior is explained by considering the evolution 
of the distribution and noticing that the probability of a queue being zero is initially zero 
and the system needs some cycles before this probability could assume the same 
importance as in the case of queues that start with zero initial values. Since the 
probability of overflow queues for these first cycles are well approximated by a Normal 
distribution, the average of queue lengths for these initial cycles follows the linear 
evolution computed by Formula X(5.2)X. 
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UFigure 5.8 – Behavior of average queue length with deterministic and stochastic initial value 
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Starting from any initial value, the queue reaches a common equilibrium and the 
distribution of overflow queues is the same, thus the steady-state condition is an 
absorbing state to the system (see also Appendix A). Moreover, this finding implies that 
the initial queue value does not influence the final value at equilibrium. Looking at the 
evolution starting from 20 vehicles, the queue follows the deterministic behavior for 
about 10 cycles and reduces less sharply afterwards, following an asymptotic curvature 
till equilibrium. This implies that, if the queue behavior is simply computed by Formula 
X(5.2)X this will lead to an underestimation of the total initial queue delay. 

The error increases if the initial queue is stochastic and described by a probability 
distribution. Figure 5.8 shows the different behavior computed with the Markov model if 
a standard deviation of the initial queue is assumed equal to the average. Initial 
distribution is assumed Normal, bounded to be non-negative. Until the standard deviation 
is small with respect to the mean, there is very little chance that one can observe queue at 
the end of the green phase and the queue follows the linear deterministic behavior. If the 
standard deviation of the initial value is comparable with the mean the probability of a 
zero state is already large enough from the first cycles to influence the evolution of the 
expectation values. 

5.4 The variability of the overflow queue length 

The influence of the standard deviation on the expected value of the queue makes an 
analysis of the same standard deviation necessary and creates the need for an analytical 
model for it as much as it is needed for the average value. The analysis of the standard 
deviation follows the same criterion used in Section 5.3, starting with the simplest case of 
stationary demand, deterministic capacity and zero initial queue. 

5.4.1 Evolution of the standard deviation 

The evolution of the standard deviation in time does not differ much from the average in 
under saturated conditions. Given the absorbing property of equilibrium, the standard 
deviation tends to reach also equilibrium (as shown in Figure 5.9 for the case v/c= 0.95). 

For conditions of traffic near the capacity the standard deviation of the queue is always 
slightly higher than the average. Therefore, the uncertainty around the queue evolution in 
these conditions is very high. Since such conditions of traffic are often met in practice, 
the computation of the variability of queues can be useful, especially to compute the 
chance to observe spillbacks. 
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UFigure 5.9 – Behavior of standard deviation of the overflow queue length 

The difference between average and standard deviation decreases with increasing 
volume-to-capacity ratio. As already pointed out in Van Zuylen and Viti (Van Zuylen 
2003), the relationship between equilibrium value of the average and the standard 
deviation can be approximated by adding a simple multiplicative factor, ( )xς  (as 
displayed in Figure 5.10): 

[ ] [ ] ( )e eQ E Q xσ ς= ⋅          (5.3) 

The expression of the multiplicative factor ( )xς  is the following: 

1( )
0.15

xx xς −⎛= +⎜
⎝ ⎠

⎞
⎟          (5.4) 
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UFigure 5.10 – Relationship between the multiplicative factor ζ and the volume-to-capacity ratio 

Looking at the behavior of the standard deviation in oversaturated conditions (as 
displayed in Figure 5.9 for the case of v/c=1.05 and 1.15) the value becomes gradually 
smaller in time with respect to the corresponding average. Moreover, the evolution 
assumes a quadratic form. This conclusion is straightforward if one takes into account the 
relationship between average and standard deviation, and that the computed average is 
linear as seen in Chapter 4. For a zero initial queue and Poisson arrivals the standard 
deviation in undersaturated conditions is expressed by the following formula: 

{ }tQ xctσ = = at          (5.5) 

Under the assumption of a positive residual queue the standard deviation in overflow 
conditions does not change in shape, since the chance of observing a zero queue at the 
end of the green phase is even smaller than the zero case. Formula X(5.5)X is thus still 
applicable. 
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UFigure 5.11 – Evolution of the standard deviation for different deterministic initial queues for x=0.95 

In undersaturated conditions the initial queue influences the shape of the standard 
deviation, as one can see from Figure 5.11. In fact, if the initial value is assumed 
deterministic the distribution needs some cycles before a zero queue becomes the most 
likely state. Initially the standard deviation increases according again to Formula X(5.5)X. 
As far as the chance to observe a zero overflow queue increases, the standard deviation 
decreases and asymptotically tends to the same equilibrium met with zero initial queues. 
This can be explained by looking at Figure 5.12. During the first cycles the variability of 
the queue distribution increases but the chance to observe a zero queue is still very small. 
After 30 cycles the distribution is very flat, while as long as the distribution evolves in 
time the probability of observing no overflow queues increases and it becomes the largest 
value. The standard deviation would not have this decreasing behavior if queues were not 
bound to be non-negative. 
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UFigure 5.12 – Evolution of the overflow queue distribution for x=0.95 and Qo=40 

A practical application of these results can be in the estimation of the probability of 
spillback to occur. The probability distribution at the 150P

th
P cycle in the figure is 

statistically in equilibrium. If a maximum number of passenger car units is assumed 
upstream the road section, , one can compute the probability of spillback by 
computing the cumulative distribution value of . For example, a section that allows 30 
vehicles to queue up has from the example in figure 5.12 a 2% chance to be fully 
occupied, while a section of 20 vehicles has more than 10% chance. 

N
N

Inversely, in the design of a road section one may fix a maximum chance of spillback to 
occur (e.g. 1%), and derive from the above probability distribution the minimum length 
according to this value. A similar method has been recently developed in the design of 
weaving sections (Ngoduy 2006). The method applies in the same way also to signalized 
road sections. 

Third opportunity given by computing the probability distribution in time of overflow 
queues is the possibility to calculate the chance of spillback in time, which is particularly 
appealing in peak hour analyses. In these analyses one may be interested for example in 
evaluating the time of the whole peak period in which the probability of spillback is 
above the maximum allowed. 
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5.4.2 Relationship between expected value and variance 

The interdependency between expected value and variance of the overflow queue is 
particularly evident if one considers the results presented so far in this chapter. If the 
standard deviation passes from zero to a finite value, the behavior of queues has 
gradually an exponential behavior instead of the linear deterministic one. On the other 
hand, if the initial queue changes, also the behavior of the standard deviation clearly 
changes. It could be useful to determine then the proportion of the variance-to-mean 
above which the exponential behavior becomes predominant. With this aim, a simulation 
of two consecutive periods is made, in which an undersaturated condition of traffic 
follows a condition of traffic determined by a higher degree of saturation. This degree of 
saturation can be still under saturated and oversaturated. 

Three different initial demand conditions are simulated in Figure 5.13, respectively 
corresponding to a degree of saturation of 0.95, 1.05 and 1.15 for the first 30 cycles, 
while the second period, assumed equally long, is fixed to a degree of saturation of 0.90. 
Control settings do not change in between one period and another. 

One may observe that the smaller the variance-to-mean ratio at the end of the first period 
of constant average arrival rate, the longer the initial linear behavior describes the 
overflow queue evolution in time at the starting of the second period of constant average 
demand. In conclusion the coefficient of variance influences the behavior of the queue 
for the subsequent period. If the average is sufficiently larger than the equilibrium value 
and the standard deviation is less than 30% the average the linear behavior is certainly 
observed for the first periods. If instead one of these conditions does not hold, the queue 
will more likely start from the first cycles to show an exponential evolution. 
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UFigure 5.13 – Evolution of mean and standard deviation with two different periods of traffic 

5.5 Evolution under variable demand conditions 

This chapter has clarified the impact of variable conditions to the evolution of the mean 
and variance of the queue. To complete this study a simulation of a peak hour is here 
presented and compared with the results computed with the Highway Capacity Manual 
delay function. The simulation is made under the assumption of deterministic capacity, 
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keeping in mind that the conversion to stochastic capacity can be done by simply 
increasing the queue length of 20% the corresponding deterministic case. 

 
UFigure 5.14 – Simulation of a peak hour, resultant queue length ± the standard deviation 

The queue length does not show its maximum during the period of highest demand but at 
the end of the last oversaturated period (Figure 5.14). A static queuing model or any 
dynamic model, which does not properly include the effect of initial queues, cannot 
consider this behavior but it would predict the highest queue at the end of the highest 
volume-to-capacity ration. This would lead to and underestimation of the queue at the 
end of each subsequent period and consequently this error would be transmitted to the 
computation of vehicle delays. 



120  TRAIL Thesis series 

5.6  Summary 

Lack of a clear understanding of the relationship between the variability of the arrivals 
and the departures at a single signal motivated the analysis presented in this chapter. To 
operate this analysis the probabilistic approach presented in Chapter 4 has been applied. 
Such a method is valuable for two main reasons. It provides complete estimates of 
queues and delays by using aggregated data and due to this level of aggregation it 
enables one to compute these values with much higher computing speed than using 
microscopic simulation programs. On the other hand, this method can be used to generate 
a large dataset, which can be then used to derive empirical analytical formulas to solve 
long iterative processes like assignment problems or optimization problems.  

This chapter has focused particularly on the analysis of the dynamic and stochastic 
aspects of the overflow queue in fixed-timed, isolated and single lane intersections. The 
case of an isolated signalized intersection has been analyzed under the whole range of 
possible demand conditions and in cases of stochastic capacity and deterministic or 
stochastic initial queue values. Analysis of the different behavior that can be observed 
under these assumptions has revealed that conditions of traffic in the neighborhood of 
saturation are strongly influenced by the random nature of demand and supply systems, 
creating an overflow queue, which can be enormously larger than uniform and 
incremental delay components described in the Highway Capacity Manual (HCM, 2000).  

This method has quantified the error that affects standard analytical procedures like the 
HCM 2000 to compute vehicle delays especially when the model should compute 
decreasing queues after an oversaturated period, which frequently occurs during peak 
periods. All available methods up to date underestimate vehicle delays, or flatten delays 
within an evaluation period, instead of computing more accurately delays for each cycle. 
A new analytical method, which overcomes this problem, can be a valuable tool. This 
represents the main contribution of the next Chapter 6. 

Combined analysis of average and standard deviation of the queue in time shows strong 
interdependence among these two characteristics, especially in saturated conditions of 
traffic. Such conditions of traffic create a delay that propagates in time and causes extra 
waiting times for vehicles approaching the intersection even several cycles after 
congestion had occurred. The ratio between standard deviation and variance influences 
the dynamic behavior of queues. This implies that an analytical expression for the 
standard deviation is also an important research issue. 
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6 
Time-dependent models of 

overflow queues 

6.1 Introduction 

Available time-dependent functions provide expressions assuming an empty intersection 
at the start of the first red phase. Thus, only an increasing queue can be computed, both 
when intersections are oversaturated and when they are under-saturated. Akcelik’s 
function (Akcelik 1980) is an example of such macroscopic queue models. As said in 
Chapter 3, no alternatives to Formula (4.1) have been proposed that model both 
increasing and decreasing overflow queues. 

The opportunity to simulate the average and the standard deviation of the queue with the 
Markov model opens the opportunity to study various conditions of traffic. The behavior 
of the mean of the queue computed with the Markov model has been shown to be 
consistent with the results of the widely accepted models (i.e. (Akcelik 1980)) used in 
practice in the case of increasing queues with stationary demand conditions. Assuming 
the validity of the Markov model also in other conditions, namely non-zero initial queue, 
stochastic capacity, variable stationary demand conditions, a new macroscopic model for 
the dynamics of the queues is derived in this chapter. This new analytical model includes 
all these conditions in one simple and easy-to-use expression. The model presented in 
this chapter is able to represent faithfully the results of the average queue computed from 
the results of the Markov process in all conditions of traffic, both in assumption of 
uniform and non-uniform arrival rates. Moreover, having shown the important role of the 
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standard deviation to the dynamic behavior of the expectation value of the queue, an 
analytical model for the standard deviation of the queue length is accordingly derived 
from the results of the Markov model. 

The present chapter is structured as follows. Next section reviews the assumptions 
described in chapter 4 which apply also to the models derived in this chapter. Section 6.3 
presents the model together with the procedure that led to its derivation and the 
calibration of its parameters. In Section 6.4 the same procedure is applied to derive an 
analogous expression for the standard deviation of the queue. Comparison between the 
proposed model, the Akcelik’s model and the Highway Capacity Manual formula is 
presented in Section 6.5, showing the underestimation error one commits when a peak 
hour is simulated, especially in terms of decreasing queues. Comparison between the 
results in terms of delays gives analogous results. 

6.2 Model assumptions 

The linear deterministic function expressed by the Catling’s formula (Catling 1977) 
describes satisfactorily the dynamic behavior of the expected value of queues in periods 
of severe congestion (volume to capacity ratio larger than 1.2) and it also well represents 
the behavior of decreasing queues when the queue has to recover from such a period and 
a large queue needs to be cleared, for example after the peak of a morning busy period. 
This formula is then a good starting point to derive the heuristic formula for time-
dependent queues. For sake of clarity Catling’s formula is here rewritten: 

0max{ ( 1) , }t eQ Q x ct Q= + − ⋅   (6.1) 

In under saturated and infinite steady-state conditions of the arrival distribution the 
behavior of the expected value of the overflow queue gradually changes from linear into 
an asymptotic behavior towards the steady-state equilibrium value, as shown in Chapter 
5. A procedure to clearly visualize that the asymptotic behavior is sufficiently 
approximated by an exponential function as described in the next section. A simple 
method to combine these two trends is later proposed, together with a more simplified 
formula, which still satisfactorily follows the results of the Markov results.  

It is worth recalling the assumptions, which bound the validity of the new analytical 
model as they did to the Markov model. The arrivals are restricted to be Poisson, thus 
different shapes of the arrival profile may result in different slopes for the behavior of 
overflow queues in time. Newell (Newell 1971) observed that the Poisson distribution is 
reasonable in cases of isolated intersections, but this distribution is no more valid when 
two or more intersections are closely spaced. Moreover the model is valid for single-lane 
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sections and fixed controls. Implication in terms of average and standard deviation of the 
queue in such cases is discussed in chapter 8.  

The important step in the introduction of this new model for the expected value of queues 
is the opportunity to model both the increasing and the decreasing behavior with one 
analytic formula, and the opportunity to estimate the dynamic propagation of the 
expected value of delays in time cycle by cycle. The contribution increases its 
importance if the same procedure to derive the heuristic model for the mean is also 
applicable to describe the standard deviation in the same broad conditions. Assuming the 
validity of the quadratic expression presented in chapter 5, formula (5.5), this expression 
represents the starting point to derive the heuristic formula for the standard deviation in 
time. Section 5.5 shows that the proposed model represents well the results of the 
Markov model also when a step-wise demand is assumed, guaranteeing continuity and 
smoothness in results in a dynamic process when the traffic conditions vary with time. A 
quantification of the error that affects the deterministic model in this context is reported, 
showing that this under estimation is made especially when the peak hour has for its 
large part a sub-period of slight under-saturation. 

6.3 Time-dependent model for the expectation value 

Stating the range of application of the linear behavior described by formula 0H(6.1), the 
following analysis clarifies the behavior of such queues towards equilibrium when the 
demand distribution is assumed stationary for a very long evaluation period. 

Recall also that in under-saturated conditions the queue is assumed to reach after some 
time an equilibrium value, which is well described by the formula suggested by Akcelik 
(Akcelik 1980): 

0
0

1.5 ( )                   if 
(1 )

0                                  otherwise
e

x x x x
xQ

⋅ −⎧ ≥⎪ −= ⎨
⎪⎩

  (6.2) 

where the degree of saturation 0x  represents the value above which equilibrium values 
are assumed a non-negligible. This value is represented by the following formula: 

0 0.67
600

cx = +   (6.3) 

where c  is the assumed capacity (measured in vehicles per cycle). 
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As shown in Chapter 5 the linear behavior satisfactorily represents the expected value of 
the queue length only for some cycles and this interval of time depends on the value of 
the initial value and the coefficient of variance. The behavior towards equilibrium 
assumes gradually an asymptotic curve, and the equilibrium value is met only after 
several cycles, depending on the degree of saturation. An expression for this transition 
phase is derived in the following section. This expression should be also able to 
guarantee continuity, in order to guarantee its applicability in problems involving 
iterative processes (e.g. optimization problems, assignment processes). The derivation of 
this expression starts from considering the case of decreasing queues and analyzing the 
behavior towards the equilibrium value. An extension of this formulation to increasing 
queues follows. 

6.3.1 Derivation of the exponential evolution 

Figure 6.1 shows how the expectation of the overflow queue decreases from an initial 
deterministic value of 40 vehicles together with the growth of the standard deviation, for 
a volume-to-capacity ratio of 0.9x = . If the initial queue is large and the queue is 
decreasing, the standard deviation grows to a high value and when the queue becomes 
close to the standard deviation, the latter decreases and goes also to an equilibrium value. 
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Figure 6.1 – Evolution of mean and standard deviation of queues starting from Qo=40 with x=0.90 
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If one computes the logarithm of the derivative of the expectation value, a linear trend for 
the behavior after a certain number of cycles is observed, as it is shown in Figure 6.2. 
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Figure 6.2 – Logarithm of the derivative of the expected value for x=0.90 and Qo=40 

The logarithm of the derivative of the queue in time (expressed in cycles) can be 
therefore approximated by a linear function: 

( , )ln ( ) ( )Q t t
t

β γ∂⎛ ⎞ = +⎜ ⎟∂⎝ ⎠
y y y   (6.4) 

The vector y  represents the vector of state variables (number of arrivals, signal capacity, 
signal settings) that influence the value of the parameters β  and γ . These variables will 
be specified later in this chapter. An expression of the asymptotic behavior of the queue 
towards equilibrium can be derived by solving the first-order differential equation 1H(6.4). 
The approximate expression of the expected value of the queue length is thus found by 
computing the following integral: 

( ) ( )

2

( , )
T

Q t e dβ τ γ τ
∞

+= ∫ y yy   (6.5) 
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Assuming that lim ( , ) et
Q t Q

→∞
=y  with eQ  computed with formula 2H(6.2) being the value at 

equilibrium, the queue behavior towards equilibrium follows the expression described by 
Formula 3H(6.6): 

( ( ) )( , ) '( ) t
eQ t Q e βγ − ⋅= + ⋅ yy y   (6.6) 

where  

( )

'( )
( )

e γ

γ
β

−

=
y

y
y

  (6.7) 

This asymptotic behavior describes the evolution of the expected value of the overflow 
queue length after a certain number of cycles for both increasing and decreasing cases.  
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Figure 6.3 –Queue, linear initial trend and exponential asymptotic behavior for x=0.90 and Qo=40 

The behavior of the logarithm of decreasing queues, as shown in figure 6.1, is initially 
linear until time T1, then follows a transient phase and gradually modifies its behavior 
towards the exponential trend at T2. Figure 6.3 displays the queue computed in the 
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example in Figure 6.1 together with the linear and the exponential functions that 
approximate the first and the last areas subdivided by T1 and T2. 

In the case of increasing queues the logarithm of derivative of the queue length shows, 
after some cycles, a linear behavior, whose slope is equal to the analogous decreasing 
case, while the constant 'γ  will change. The case of increasing queues does not show the 
linear initial behavior since no deterministic queue can be observed but only a transient 
phase will precede the exponential behavior in such conditions. 

6.3.2 The three-phase model for the decrease of overflow queues 

The transient state is approximated by introducing a time-dependent weight ( , )tα y  to 
the linear linQ  and the exponential trend expQ : 

exp( , ) [1 ( , )]lint Q t Qα α⋅ + − ⋅y y   (6.8) 

The transient weight function varies in the domain [ 1, 2]T T  and maps in the co-domain 
[0,1] , it is decreasing and satisfies the following conditions: 

1 2

( , ) ( , ) 0
T T

t t
t t

α α∂ ∂
=

∂ ∂
y y

  (6.9) 

The above conditions guarantee that the transient phase extends the linear and the 
exponential functions with continuity together with their first derivatives. Section 5.3.3 
describes the method to derive an approximate expression for the weight function. 
Summing up, the behavior of decreasing queues starting from a deterministic initial value 
is expressed by the following three-phase model: 

( , )
0( , ) ( , ) [ ( 1) ] (1 ( , )) [ '( , ) ] t t

eQ t t Q x c t t Q t e βα α γ − ⋅= ⋅ + − ⋅ ⋅ + − ⋅ + ⋅ yy y y y  (6.10) 

In the following of the thesis this model will be referred to as the Van Zuylen-Viti 
formula. 

6.3.3 Calibration of parameters 

In order to compute analytically the overflow queue expressed by Formula 4H(6.10) one 
needs to have a closed form expression for the transient function α  and for the 
parameters β and  'γ . The parameter β  controls the curvature of the exponential 



128  TRAIL Thesis series 

function. Figure 6.4 shows the behavior of the logarithm of the derivative of the queue 
with respect to different degrees of saturation and different initial queues. 
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Figure 6.4: Behavior of the logarithm of the overflow queue with different degrees of saturation and 
different initial queues 

Analysis of overflow queues for different degrees of saturation, cycle lengths and initial 
queues show that the parameter β depends only on the first state variable and it can be 
expressed by the following formula: 

2(1 )
0.2

xβ −
=   (6.11) 

The parameter γ controls the position at which the exponential follows after the linear 
and the transient phases. The higher the initial queue value, the later in time the 
exponential state is expected to occur. Analysis of the Markov data shows that this 
parameter depends also on the degree of saturation and it can be approximated by the 
following formula: 

0(1 ) 1.5x Qγ = − ⋅ +   (6.12) 

The function ( , )tα y  should be a function that assumes the value 1 until the moment that 
the standard deviation is about 50% of the expected queue value. The function should 
become zero when the extrapolated linear decrease arrives at the zero queue length. An 
example of ( , )tα y  is given in Figure 6.4, obtained by solving the simple problem of 
finding the value of a  of the equation below, for any value of t : 

exp(1 )MC linQ a Q a Q= ⋅ + − ⋅   (6.13) 

where MCQ  is intended the result of the Markov simulation. 
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Figure 6.5 – Weight function alpha for x=0.90 and Qo=40 

The transition phase in the example starts after around 10 cycles, while the exponential 
behavior is dominant after 30 cycles. A reasonable approximation of the function ( , )tα y  
is for example a logistic function: 

( ) ( ) ( )( )0, ,

1,
1 t t T t

t
eμ

α
−

=
+ y y

y   (6.14) 

where ( )0 ,T ty  is the time that the standard deviation is equal to the expectation value of 
the queue length and ( )1/ , tμ y  is approximately equal to the time between the time that 
the standard deviation becomes equal to 50% of the expected value of the queue, T1, and 
the time that the standard deviation is approximately equal to the expected value of the 
queue length, T2, (as seen in Figure 6.1). 

Analysis of the influence of the state variables shows that the duration of the transition 
phase depends only on the degree of saturation. The parameter μ  can be approximated 
by the following formula: 

2

0.1
(1 )

x
x

μ ⋅
=

−
  (6.15) 

The parameter 0T  controls the position in time of the transition phase, and it is both 
dependent on the degree of saturation and the initial queue length. An approximation of 
this parameter is given by the following formula: 

0
0

0.15
2(1 )

Q xT
x

⋅ ⋅
=

−
  (6.16) 
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6.3.4 Simplified bi-phase model 

Formula  5H(6.10) can replace the Catling’s Formula 6H(6.1) and it has also the property of 
describing the non-linear behavior described by several models presented in chapter 3, 
among others the Akcelik’s Formula (3.31). However, its expression can be simplified 
with, as it will be shown, little extra approximation. Formula 7H(6.6) can in fact be 
rewritten equivalently in the following form: 

exp ( ) ( ) t
e eQ t Q Q Q e β−= + − ⋅   (6.17) 

obtained by simply substituting 'γ  with an equivalent parameter, ( )eQ Q− . 

The simplified formulation can be derived by considering simply the exponential 
function extended by the linear function in the point in which the latter equals the 
derivative of the exponential. Analyzing the parameters β  and 'γ , the first determines 
the curvature of the exponential function while the second determines the position. If one 
considers the parameter β  determined with formula 8H(6.11) while γ  unknown, he can 
determine the point *Q  where the derivative of the exponential equals the deterministic 
function by a simple mathematical problem: find the value of *Q  at time *t  that 
respects the system of equations: 

exp

exp

* *

( *) ( *)linear

linear

t t

Q t Q t

QQ
t t

=⎧
⎪

∂∂⎨
=⎪ ∂ ∂⎩

  (6.18) 

where  

0

exp

( ) ( 1)

( ) ( * )
linear

t
e e

Q t Q x ct

Q t Q Q Q e β−

= + −

= + − ⋅
  (6.19) 

The value of *Q  is thus found by solving the system of equations under the variable t . It 
is possible to show that the system of equation leads to the equation: 

1
tt

eββ κ− =   (6.20) 

where  
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( )0
( 1)
Q Qe
x c

βκ −
−

=   (6.21) 

Equation 9H(6.20) has a closed form solution: 

( )* lambertW et
κ κ

β
−

=   (6.22) 

where lambertW  is the Lambert or Omega function. If *t  is positive the solution is 
applicable and the value of *Q  can be then found substituting this value in the linear 
function, otherwise the linear part is neglected and the queue assumes the expression: 

0( ) ( ) t
e eQ t Q Q Q e β−= + − ⋅   (6.23) 
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Figure 6.6 – Comparison between Markov results and heuristic formula for decreasing queues 

Figure 6.6 shows an example of overflow queue computed with 0.95x =  and initial 
value of 40 vehicles in comparison with the result of the simplified formula. Visual 
inspection clearly shows the good fit of the approximate expression. 
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6.3.5 Extension to increasing queues 

Formula 10H(6.23) can also well approximate increasing queues, both starting from a zero 
initial queue and with an initial queue that is smaller than the equilibrium value. Figure 
6.7 compares the Markov simulation results with the results of applying Formula 11H(6.23). 
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Figure 6.7 – Comparison between Markov results and heuristic formula for increasing queues 

Apparently, the approximate formula works better when the queue is not zero. This 
might be explained by the stronger influence of the transition phase in this condition. 
One may consider to slightly modify the value of the parameter β  in order to obtain a 
better representation of this case. 

In conclusion, the dynamics of the overflow queue is represented both in the decreasing 
and in the increasing case by analogous expressions. The average overflow queue 
represented is continuous and differentiable within each period of stationary demand 
conditions and fixed control settings, while it is still continuous if computed with non-
uniform arrivals. This finding confirms the importance of such heuristic method in 
problems, which require continuous Dynamic Loading Processes or involves 
optimization methods. 
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6.3.6 Behavior under variable demand conditions 

To test the goodness-of-fit of the Van Zuylen-Viti formula is compared with the Markov 
model and the Catling’s (Catling 1977) formula in a simulation of a peak period. The 
example of figure 5.14 computed with the mesoscopic model is shown again in Figure 
6.8 together with the two analytic expressions. 
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Figure 6.8 – Comparison between Markov results, Catling’s and heuristic formula in a peak hour 

The heuristic formula follows faithfully the results of the Markov chain, while the 
Catling’s expression underestimates the queuing evolution during the whole evaluation 
period, since it does not compute an average overflow queue for the first periods and it 
increases the error at the tail of the evaluation period. This underestimation of overflow 
queues causes an underestimation of expected delays. Section 6.5 shows how much this 
error affects the result of analytical models most frequently used in practice. 

6.4 Time-dependent model for the standard deviation 

Under the assumption of deterministic initial values, the standard deviation of the queue 
starts evolving according to formula (5.5). One more time, the queue displayed in Figure 
6.1 is used as example to derive an expression to the standard deviation that is analogous 
to the one for the expectation value expressed in formula (5.5). Computation of the 
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logarithm of the derivative of the standard deviation shows also a linear behavior after a 
certain number of cycles and the slope is the same as in the case of average overflow 
queues. Thus, this part is well approximated by formula 12H(6.4). Figure 6.9 compares the 
standard deviation computed for 0.90x = , initial queue of 40 vehicles and for 100 cycles 
with the correspondent exponential and quadratic first and third phases. It looks also that 
the three phases of the standard deviation are delimited according to ones defined for the 
mean. 
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Figure 6.9 – Standard deviation, quadratic and exponential approximations 

The quadratic behavior, in the assumption of deterministic non-zero initial values, 
increases, but after few cycles it starts decreasing and later on a transition phase precedes 
an exponential evolution. This suggests the introduction of a three phase model for the 
standard deviation in the same manner the evolution of the average was derived. 

Formula (5.5) was derived in the case of zero initial value. The quadratic form follows a 
slightly different behavior, and the position in time of the maximum value depends on 
the length assumed for the initial value. It is assumed that the initial condition follows the 
form: 

2{ }Q at bt cσ = + +   (6.24) 
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Since the initial value is assumed to be zero then 0c = . Different initial values show that 
the initial evolution for the first cycles does not change. This finding suggests that the 
parameter b  depends only on the degree of saturation and not on the initial queue length. 
Analysis of different degrees of saturation shows that a good approximation of b  can be 
obtained with the following expression: 

1
2

xcb
t

=   (6.25) 

The parameter a  can be derived by considering the value of the maximum for different 
initial values and different degrees of saturation. The maximum, according to the 
Expression 13H(6.25) is given at the value 2 / 2t b a= . The following expression 
approximates the parameter a : 

0

1 2.4 (1 )
2

xa x c t
Q
⋅ −

= ⋅ ⋅ ⋅ ⋅   (6.26) 

The following formula extends formula (5.5) to include cases of non-zero queues: 

3

0

1 2.4 (1 ) 1[ ]            for 1
2 2

xQ x c t x c t t T
Q

σ ⋅ −
= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ <  (6.27) 

If the initial value is assumed stochastic the initial quadratic behavior does not occur and 
the behavior of the standard deviation can be sufficiently described by simply the 
exponential expression: 

0{ } { } ( { } { }) t
e eQ Q Q Q e βσ σ σ σ − ⋅= + − ⋅   (6.28) 

where [ ]eQσ  is the value at equilibrium computed by using formulas (5.3)-(5.4). 

Figure 6.10 shows the behavior computed with the Markov chain process in comparison 
with the exponential function. The slight difference during the first cycles is caused by 
the assumed Normal distribution for the starting value with standard deviation equal to 
the average value. 
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Figure 6.10 – Comparison between Markov results and exponential function for Qo=16 and x=0.90 

These considerations suggest a general expression for the standard deviation, which is 
similar to the one introduced for the average value. 

6.4.1 Three phase model 

The analogy with the three phase behavior of the average overflow queue suggests the 
introduction of a similar formulation for the standard deviation. If the transient phase is 
represented by the same form of Formula 14H(6.10) the model for the standard deviation can 
be shown to be approximated by using the same weight function obtained by using the 
alternative formulation of the exponential function 15H(6.17): 

exp{ ( , )} ( , ) (1 ( , ))   SD quad SDQ t t Q t Qσ α α= ⋅ + − ⋅y y y  (6.29) 

The function ( , )SD tα y  is slightly different from α . The functional form can be still 
satisfactorily approximated by the logistic function in Formula 16H(6.14). The duration of 
the transition phase does not change significantly, thus Formula 17H(6.15) for the parameter 
μ  is also applicable in this context. The expression for the duration of the transition 
phase 0T  can instead be approximated by multiplying Formula 18H(6.16) with the 
multiplicative factor approximated with Formula (5.4). 
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6.4.2 Simplified bi-phase model 

The expression of the standard deviation introduced in Formula 19H(6.29) can be simplified 
in the same way it was done for the expression of the mean. The transition phase can thus 
be neglected with a reasonably small payoff in terms of model accuracy if the following 
system of equation is solved: 

exp

exp

* *

( *) ( *)quad

quad

t t

Q t Q t

Q Q
t t

=

∂ ∂
=

∂ ∂

  (6.30) 

The system of equations provides the value of  t  and the value of the standard deviation 
in which the quadratic and the exponential functions have the same value and the same 
first derivative. The solution does not have a closed form expression as in Formula 
20H(6.22) but it is solvable numerically. Figure 6.11 compares the results of the Markov 
model and the simplified analytical formula for the standard deviation computed with 
Formula 21H(6.30). 
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Figure 6.11 – Comparison between Markov results, and simplified model for Qo=40 and x=0.9 
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6.4.3 Behavior under variable demand conditions 

For sake of completion the standard deviation of the overflow queue in the example of 
Section 5.3.4 is here presented and compared with the presented empirical model. 
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Figure 6.12 – Comparison between Markov results, and simplified model for a peak hour 

It looks that the empirical model underestimates the model computed with the Markov 
chain. This error is produced only during the first period, where the results of the 
mesoscopic model are computed under the assumption of zero average and standard 
deviation of the overflow queue. The underestimation error is although always smaller 
than 2 vehicles even for oversaturated conditions. 

6.5 Comparison with the HCM 2000 delay formula 

The estimation power of the models proposed in this chapter can be quantified in terms 
of average delay. The Highway Capacity Manual (TRB 2000) control delay formula 
represents one of the most frequently used set of formulas practitioners use in planning, 
design and evaluation of travel times in transportation networks. There is no specific 
computation of the variability of the delay in the manual, but only an average delay 
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formula is provided, as presented in Section 3.3.4. The control delay expressed in this 
and all other official manuals evaluates the average vehicle delay for a fixed analysis 
period, thus this value is uniformly distributed during the whole period. Moreover the 
manuals assume stationary demand conditions within this period. 

The computation of cycle delay as described in Section 4.6 allows the traffic analyst to 
compute the vehicle delay according to the evolution of the queue cycle by cycle, as 
computed with the Markov model and with the empirical formula. The Markov and the 
Van Zuylen-Viti models give also the opportunity to represent the delay as continuous 
functions, while the one computed with the HCM2000 is step-wise. From the distribution 
of the queue length one can also derive the probability distribution of the delay a traveler 
may occur. In Chapter 2 it has been observed that this information is very important if 
one includes travelers’ response to congested and variable conditions. The benefits of 
these approaches for example in a Dynamic Traffic Assignment are thus evident. 

The HCM2000 subdivides the control delay in three components, as seen already in 
Chapter 3. The first component represents the effect of a vehicle to arrive during the 
effective green or red periods. The queue in front of the signal in this condition is always 
assumed zero. The random component is instead related to an overflow queue to occur, 
and it computes the extra delay the temporary overflow occurred in a cycle can produce. 
Finally the third component evaluates the extra delay an initial queue value produces.  

 

Table 6.1 – Assigned demand and resultant average delay with Markov chain, model and HCM 

Flow (veh/h) for 15 minutes intervals Average 
delay 

648 684 756 828 792 684 648 540 

HCM 22.42 23.66 53.74 113.02 105.89 79.07 63.05 37.77 

QMC 25.32 36.47 70.99 156.91 243.28 246.84 189.36 84.83 

Qmodel 28.19 40.86 74.18 161.89 260.60 278.07 201.24 98.05 

σ{QMC} 28.72 43.94 83.06 171.43 255.82 260.98 210.74 109.52

σ{Qmodel} 34.71 46.73 62.90 85.66 102.26 121.58 130.24 114.62

 

The models proposed in Chapter 4 and the Van Zuylen-Viti formulas compute the 
overflow queue, which might occur in a period of either stationary, or non-uniform 
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arrivals. The computation of delays using these models and the formulas presented in 
section 4.4 is equivalent to computing both second and third components. For this reason 
the results below are only referred to these components. Table 6.1 compares the results of 
delays derived from the queue evolution presented in the example in Figure 6.8 for the 
expected value and figure 6.12 for the standard deviation measures. 

For the first two periods the delay computed with the Highway Capacity Manual is only 
consisting on the incremental delay, while no initial queue delay is considered. Initial 
queue delay is computed with the Catling’s Formula 22H(6.1). Looking at Figure 6.8 the 
deterministic function starts increasing only during the third period and it clears in the 
middle of the last period. The overflow computed with the Markov and the Van Zuylen-
Viti models have already a positive average value during the first two periods and it does 
not clear completely the queue at the end of the last period. This positive residual queue 
produces delay also outside the total evaluation period. The method described in section 
4.4 computes the extra delay one has to consider for all vehicles entering in one period, 
since a part of them may be served only after several cycles or even at the end of the 
evaluation period. 

Table 6.1 shows the enormous difference between the average delays computed with the 
HCM2000 and the Markov model of queues combined with the computation of cycle 
delay. The difference is particularly evident in the period of decreasing queues, when the 
HCM2000 computes a smaller delay for the entering vehicles, while a consistent part of 
the flow, which has entered the system during the growing-up part of the queuing 
process, still has to be served and creates a delay, which is larger than the one associated 
to the peak flow. In the decreasing part of the peak period the delay computed with the 
Markov model is over 3 times the one computed with the HCM2000. A small fraction of 
this difference is due to the consistent underestimation of the queue length computed 
with the Catling’s formula, while a large part is due to the different method for 
computing the expectation value of the delay, especially when there is an initial queue 
delay component. 

In all periods the standard deviation assumes a value approximately equal to the average. 
These findings give a qualitative impression about the uncertainty in the value of delays 
in such peak periods, and how uncertain is the time these delays propagate involving off-
peak periods. The standard deviation appears to be underestimated by the heuristic 
model. Since there was very small difference in terms of standard deviation of the queue, 
this error is due to the use of average queues and arrivals in the computation of cycle 
delays as described in Section 4.6. 
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Figure 6.13 – Comparison between delays from Markov, heuristic and HCM models for a peak hour 

Comparing the vehicle delay computed with the analytical queue model and the method 
described in Section 4.4 with Markov and HCM models it seems that the results of the 
Van Zuylen-Viti models are much more consistent with the Markov model results. 
Figure 6.13 compares the results of the empirical formula with the ones computed with 
Markov and HCM models. 

6.6 Summary 

Traffic practitioners agree that no valid queuing formulas exist which are general enough 
to be used in evaluation or prediction problems and in several transportation problems 
like assignment processes and optimization problems. Available macroscopic models of 
overflow queues and delays have assumptions which limit their estimation power in 
dynamic scenarios. 

This chapter has presented a new set of analytical formulas for the expectation values of 
queues and delays at isolated signalized intersections. The data simulated with the 
Markov chain process have been used for this. A linear decrease followed by an 
exponential behavior has been found when queues recover from large initial values and 
the signal operates near capacity.  This finding has suggested a new formulation for the 
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dynamics of the overflow queue, which combines the deterministic linear behavior with a 
smoother asymptotic behavior towards the equilibrium value. 

Heuristic functions have been derived for the expectation value and the standard 
deviation of the queue in time. These models have a broader area of use than official 
manuals as for example the Highway Capacity Manual 2000, since they reproduce the 
expected evolution of queues and their variability as function of time, without the 
necessity to fix an evaluation period but they provide estimates for every cycle. Their 
easy formulation makes them appealing in design and planning problems. 

The models proposed can compute queues and delays assuming both uniform and non-
uniform arrivals. This feature makes them suitable for Dynamic Loading processes, but 
also to make short-term prediction of expected waiting time. Given the large difference 
between the results of the manuals and the ones computed with the Markov model 
described in chapter 4 and the models proposed in this chapter, delays computed with the 
manuals strongly underestimate the delays produced by congested conditions, especially 
fail in evaluating the dynamic propagation of delays forward in time and the 
consequences a congested period causes to off peak periods. 



7  
Consistency between 

probabilistic models and 
microscopic simulation 

7.1. Introduction 

The analytical Van Zuylen-Viti queue models presented in Chapter 6 have the property 
to describe the dynamic evolution of the overflow queue and its temporal distribution 
with two simple analytical expressions. These models enable the traffic analyst to 
evaluate the stochastic effects of demand fluctuations especially in conditions near 
capacity and to model the transition between low degrees of saturation to large ones and 
vice versa with a continuous function. The model has been derived from taking the 
expected value and the standard deviation of the results of the Markov model, which also 
approximates the evolution of queues by computing the probability of each overflow 
queue state from the distribution of arrivals and departures at each time step and from the 
queue length distribution at the previous time step. 

One may question whether this method is a valid representation of reality or not. The 
traffic system is a complex combination of physical and behavioral mechanisms, while 
the Markov model is simply a combination of mathematical relationships between 
probability distributions. Validation of the analytical and the Markov models should be 
made using field data. It is rather difficult acquire such dataset, since several days of 
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observations should be made in order to make valid estimates of mean and standard 
deviation of queues. Even if one can collect the queue length dynamics for several days it 
is rather unlikely that one can observe periods of stationary demand conditions, which 
are long enough to observe equilibrium conditions for the average overflow queue 
length. Moreover, collection of such an amount of real data constitutes an enormously 
expensive job in terms of time and costs. Teply (Teply 1989) stated that, even after 
collecting such a large amount of field data, a perfect match with any model can never be 
expected.  

A microscopic simulation program may represent in this case alternative to field data. 
Therefore, this chapter compares the results of the Van Zuylen-Viti analytical formulas 
and the Markov model with simulations computed with a microscopic program, VISSIM 
(PTV 2003). This simulation has been done for two situations: the isolated intersection 
and the intersection in a network. 

To do so, Section 7.2 introduces the microscopic simulation technique and explains the 
property of microscopic models to catch the dynamic and stochastic aspects of flows 
propagating on a network. Section 7.3 presents the scenario analyzed using the 
microscopic software program VISSIM. Section 7.4 analyses the distribution of the 
simulated overflow queues under stationary demand conditions. Section 7.5 compares the 
simulated data with the results of Markov and proposed models in various conditions of 
traffic in an isolated, single-lane intersection. Section 7.6 analyzes the influence of an 
upstream signal and finally Section 7.7 gives a synthesis and points out the main 
conclusions of this chapter. 

7.2. Queue comparison with microscopic simulation 

Microscopic simulation programs are very powerful tools used in several areas of the 
transportation theory and practice. The Federal Highway Administration considers 
microscopic simulation to be a very effective technique in the traffic analysis, since “this 
approach allows one to evaluate heavily congested conditions, complex geometric 
configurations, and system-level impacts of proposed transportation improvements that 
are beyond the limitations of other tool types. However, these models are time 
consuming, costly, and can be difficult to calibrate” (FHWA 2006). Pursula (Pursula 
1999) recognises microscopic models to be applicable in all fields of the traffic 
engineering. 

These programs can be used, and have been used in past studies, to validate analytic 
models and assess their accuracy since Webster (Webster 1958). In his seminal paper 
Webster already pointing out the complexity of validating delay models through direct 
observation since variations in traffic are uncontrollable. He therefore decided to use “a 
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method whereby the events on the road are reproduced in the laboratory by means of 
some machine which simulates behavior of traffic”. Akcelik (Akcelik 2001) discusses the 
pros and cons of this approach in the validation of analytical formulas, giving 
appreciation to this method for the way it models the complexity and uncertainty 
characterizing the urban traffic. On the other hand he warns on a misuse of this approach 
since it is still a representation of the reality, therefore conclusions among the mutual 
accuracy and reasonableness of models can be done, but no conclusion can be done 
whether a model is better than another. 

Since Webster few studies have considered the large variation that can be calculated in 
the simulation results. Tian (Tian 2002) analyzed the problem under various conditions 
of traffic, stressing the importance of using a sufficient number of simulation runs to 
estimate the variations of the delay. Both Tian and Dion (Dion 2005) agree in pointing at 
the largest variation and disagreement between the available analytic models and 
microsimulation when the degree of saturation is near one. Moreover Tian finds 
disagreement also between different microscopic programs in evaluating the variability 
of delays, especially when a link is highly saturated. Despite these issues, microscopic 
programs still remain necessary to evaluate lower level-of-detail models. 

Several random simulations are needed to give accurate estimations of the expected value 
of overflow queues and their standard deviation. Moreover, several different traffic 
conditions had to be analyzed in order to assess the consistency of the microscopic 
results with the model proposed in chapter 5 and with the Markov model results. To do 
so, microscopic simulations have been run in this chapter according to the modeling 
assumptions used to develop the probabilistic models. To the author’s knowledge, this is 
the first comparison that considers non-stationary traffic process and that analyses the 
dynamic and stochastic behavior of queues also in the decreasing phase of congestion. 

7.3. Set-up of VISSIM simulations 

VISSIM is a microscopic software package, which is widely applied in research and in 
practical studies, for different evaluation and planning studies (i.e. signal control 
schemes, multi-class and multimodal networks etc.). VISSIM simulates traffic in a 
network based on individual vehicle characteristics representing multiple vehicle classes 
and heterogeneous driving behavior. The software users’ manual (PTV 2003) gives an 
overview of the possible applications of the software and the available built-in tools in 
VISSIM. This section briefly explains the basic methodology used in the program to 
simulate how flow propagates and generates queues in a network. 



146  TRAIL Thesis Series 

7.3.1. Simulation assumptions 

Networks are modeled in VISSIM by choosing static characteristics (length and width of 
each road section or lane, connection between road sections or lanes, static road signs, 
detectors etc.) and dynamic features (traffic volumes and composition, route choice 
decisions etc.). The underlining driving criterion is that a vehicle tends to keep its desired 
speed all along the selected route, unless is constrained to modify this speed because of 
other vehicles on the road, or because of road signalization. The transition process from 
the desired speed to a new speed is thus modeled as a sequence of accelerations and 
decelerations towards the target speed. 

Several parameters in VISSIM are defined as a probability distribution rather than a fixed 
value (drivers’ desired speed, acceleration and braking skills, reaction times, etc.). The 
program user can feed the program with a specific model for the generation of the 
demand according to field observations or according to a known probability function. 
The loading process can vary also because of the stochastic flow composition. This 
option is not used in the comparative analysis presented in this chapter, since the impact 
of variable vehicle characteristics is not emphasized in this thesis. 

It is logical that the distribution of queue lengths and delays strongly depends on the 
assumed arrivals, i.e. on the arrival headway distribution, since this represents the only 
source of variability assumed in the system. VISSIM models this distribution with a 
negative exponential function, which implies a Poisson distribution of vehicle counts in a 
discrete time period. This is consistent with the assumed distribution in the Markov and 
the Van Zuylen-Viti models. 

Special attention is given in the program to the behavior of vehicles approaching an 
intersection. Drivers’ level of alertness, threshold distance and lane change stimulus are 
different when vehicles approach a traffic signal (100m). The different attention level 
influences both average lane-changing and car-following behavior of vehicles. Other 
specific characteristics are considered in the modeling of a signal; for example reaction to 
amber light is modeled in the program by assuming a probability of a vehicle to stop if 
signal is amber. Other specific characteristics (i.e. different built-in control or routing 
decision methods, transit characteristics etc.) do not belong to the area of interest of this 
thesis and thus the reader may find more information in the manual. 

7.3.2. Representation of the network scenario 

To do microscopic simulations with the same assumptions as used in the previous 
chapters the network studied in VISSIM initially consists of only a one lane intersection 
with fixed control and homogenous traffic composition, namely passenger cars with all 
the same characteristics. The network consists of one lane road of 3 km in which a fixed 
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control signal has been placed at 2.5 km from the origin. Two detection points were 
placed respectively before and immediately after the signal to detect arrival and 
departures at the chosen time step. Speed limit is set to 50 km/h for the whole road 
section, and the control is fixed, set with a cycle of 60 s and green of 24 s. 

Although demand rate, traffic composition and flow distribution can be controlled since 
they are input variables, the capacity of the signal is not an input of the microscopic 
model but it can be determined directly from the results of the simulations. Moreover, 
signal settings are pre-defined in the program, but effective green and red times, used in 
the probabilistic models, have to be determined afterwards, since they will depend on the 
assumed traffic flow characteristics (acceleration, vehicle composition etc.). First step for 
the comparative analysis is therefore the determination of the signal capacity, together 
with the effective green and red time values. This is done by simulating the signal in a 
busy period, as described in the next section. 

7.3.3. Determination of signal capacity and saturation flow 

While the flow rate and its distribution are pre-determined in the program, the saturation 
flow is not pre-determined, as in most microsimulation programs. Since the capacity of 
the road is not an input parameter for the program but is the result of the roads, vehicles 
and drivers’ characteristics assumed it needs to be estimated from a preliminary 
simulation. 
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UFigure 7.1 – Observed departure counts and departure time in a cycle and for several simulations 
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Using the regression method (Branston 1978), one can derive the average saturation flow 
of the road section and the effective green time. This criterion looks at the departure 
times of vehicles from the stop line and from the start of the green phase. The assumption 
is to consider in this computation only oversaturated cycles, i.e. an overflow queue 
occurs at the end of the green phase. A reason for this assumption is explained by 
looking at the histograms of vehicle counts shown in Figure 7.1 Effective green time and 
saturation flow are then determined by a regression method. Figure7.1 shows the 
simulated departure times of vehicles within a cycle, for 60 cycles and 10 simulations at 
a rate of 1000 vehicles per hour and only for saturated cycles. The detection points record 
the number of vehicles passing the road section within a pre-determined time interval (2 
seconds). The regression line gives estimation of 1 second for an initial time lost for 
acceleration (green start lag) and 1 second of green end lag. The saturation flow is 
finally determined by its slope giving a value of approximately s=2200 vehicles per hour. 

The effective green time is the green time from which the green start lag is subtracted 
and a green end lag is added, as said in chapter 3. The green start lag is due to vehicles 
accelerating during the initial part of the green phase. The green end lag is instead given 
by the behavior of people during the yellow phase, i.e. some people decelerate and stop 
while at the same time some others may not decelerate or even accelerate to pass the 
signal before it turns to red. Knowing the number of vehicles  that can pass during a 
cycle, one can check the correctness of these estimated by looking at the condition: 

N

1 2( gN t ) / sλ λ= − +          (7.1) 

where gt  is the green time as assigned to the traffic light,  is the estimated saturation 
flow (in vehicles per second), 

s
1λ  is the green start lag and 2λ  is the green end lag. The 

term in parenthesis is an expression of the effective green phase. 

Once the saturation flow and the effective green time are estimated from the 
microsimulations, one can determine the degrees of saturation corresponding to slight 
undersaturated and oversaturated conditions. The following simulations have been done 
for several different values of the demand near capacity, since the main characteristic of 
these two approaches is the modeling of stochastic overflow queues. 

7.4. Overflow queue observations with stationary arrivals 

First part of the comparison aims to analyze overflow queues when they gradually 
increase from an empty signal and for a very long evaluation period of stationary demand 
conditions having average below the capacity. Scope if the analysis is to validate the 
approximate expressions for the equilibrium of overflow queues in such conditions and 
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the dynamic of these queues towards equilibrium. In oversaturated conditions the 
overflow queue does not reach any equilibrium but it increases as long as the road 
section is larger than the total queue length. The evolution of the expectation value is 
compared in this range with the deterministic queuing Formula (4.1), here reprinted: 

1 max{ ,0}t t tQ Q a d+ = + − t         (7.2) 

where  is the number of arrivals and  is the number of departures during [ , . ta td 1]t t +

The computation of the overflow queue at the end of a time step can be easily made 
using the arrivals and the departures at each cycle and by computing Formula X(7.2)X for 
each simulation. Since vehicle interaction is low even in slight undersaturated conditions 
at sufficient distance from the signal and FIFO holds on the single lane road of the 
simulation, this assumption sounds reasonable. 

7.4.1. Derivation of overflow queues in conditions near capacity 

The microscopic simulation program has been run assuming various demand rates (i.e. 
degrees of saturation in the interval [ ). The demand is also assumed stationary for 
a total evaluation time of one hour. Green and cycle times are set in this section to 
respectively 24 and 60 seconds and the number of random seeds to 100. Tian (Tian 2002) 
consider a sufficient number of repetitions with less than half of this value (40) to obtain 
statistically valid results in terms of delay estimates. 

0.7,1.3]

Figure 7.2 shows the overflow queue computed from the observed arrivals and 
departures under low demand conditions (x=0.7), slight under-saturated (x=0.95) and 
oversaturated cases (x=1.1). The simulated queues are displayed by a sequence of dots. 
The continuous lines represent the resulting average values while the dashed lines are 
obtained by summing and subtracting the standard deviation to the mean. As one can see 
from the large spread of points, at undersaturated conditions also the microscopic 
program estimates a standard deviation approximately equal to the average, meaning that 
a driver may encounter, with the same average flow rates, no queue at all or the double of 
the expected value. These considerations confirm the conclusions given in Chapter 4 
using the Markov model. 
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UFigure 7.2: Overflow queue observations and resultant average and standard deviation 

Both average and standard deviation show a concave form. A steady-state expectation 
value of the overflow queue is therefore observed in undersaturated conditions, while in 
oversaturated conditions this value follows a linear behavior. This can be explained by 
analyzing the sequences of overflow queues. In any simulated scenario the number of 
arrivals exceeds the number of departures within at least 15 cycles and overflow queue 



Chapter 7. Consistency between probabilistic models and microsimulation 151 

occurs 100% of the times thereafter. The resultant linear behavior of the expectation 
value is in accordance with Formula X(7.2)X. 

7.4.2. Characterization of queue distributions 

Despite of arrival distributions, which are stationary for the whole evaluation period, the 
queue distribution of one cycle changes depending on its distribution at previous cycles, 
so no aggregation of different cycle times can be done resulting in a non-smooth 
behavior of expected values and standard deviations if one uses only 100 simulations.  

The Law and Kelton method (Law 2000) allows one to compute the minimum number of 
replications in order to have statistically valid estimates. This method provides the 
minimum number of random simulations needed to obtain average arrivals, departures 
and queues within a k% interval of error with a pre-determined confidence interval α%. 
Since arrivals and departures do not vary in time, they can be aggregated in one 
distribution along the whole evaluation period. This means that fewer simulations are 
needed for the analysis of the arrivals and the saturation flow rate with respect to the 
analysis of queue lengths. 

To compute the required number for analyzing the overflow queue length, firstly an 
initial number of replications in a pilot experiment is fixed, in this study 100. The 
computation is done by considering an average demand rate of 810 vehicles per hour 
(x=0.9) and at conditions near equilibrium (after 30 cycles). This choice is due to the 
higher variability of slight under-saturated conditions with respect to the oversaturated 
cases. It is under these conditions that one expects to need the largest number of 
replications. In this condition the queue assumes and average of 3.05 vehicles and a 
standard deviation S of 3.85. The Law and Kelton method computes the required number 
of replications with the following formula: 

2

*
*

= ⋅⎛ ⎞
⎜ ⎟
⎝ ⎠

h
n n

h
          (7.3) 

where 

• n* total number of replications required 
• n number of replications of the pilot experiment 
• h confidence interval of the pilot experiment 
• h* accepted confidence interval of the whole experiment 

The confidence interval h, for the pilot experiment, is computed with the following 
formula: 
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1;1 / 2α− −= n

S
h t

n
         (7.4) 

where  is the value of the t-student probability density function correspondent to 
a α% confidence interval (for 90% and n=100 is 1.66). With the fixed confidence interval 
one obtains a value h=0.64. The accepted error should be 0.1*3.05=0.305. This value is 
then not acceptable to consider the computed average to be correct. According to 
Formula X(7.3)X the minimum number of replications acceptable is 455. To get a 
sufficiently accurate distribution, and a smooth representation of mean and standard 
deviation, the number of simulations was increased to 1000. 

1;1 / 2nt α− −

The following analysis is referred to a demand of 810 vehicles per hour with a degree of 
saturation of 0.9. Figure 7.3 displays the histogram of observed queues. 
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UFigure 7.3: Distribution of overflow queue observations for a demand of 810 vehicles per hour 

When the intersection is under-saturated the distribution is not clearly defined with a 
known probability density function. The queue length probability profile is in fact clearly 
influenced by the large probability of observing no overflow queue at the end of the 
cycle (almost 50% of the cases). The drop observed between the probability of observing 
zero vehicles and of observing non-zero vehicles justifies the decomposition of 
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probabilities between zero and non-zero queues as described in the Markov models of 
Chapter 4. 

This would be different if the simulation was run starting from a large overflow queue. 
The distribution of queues would be equal to the one displayed in Figure 7.3 (below) 
only after a sufficient number of cycles. In the transient phase, as long as the chance to 
discharge completely the queue is small, the queue shows a bell-shaped profile as in the 
oversaturated case, displayed in Figure 6.4 (second to fourth graphs). The program has 
been run in this case with an average arrival rate of 1000 vehicles per hour (degree of 
saturation of 1.1). 

As it can be seen, in oversaturated conditions the distribution is initially influenced by 
the large chance of observing a zero residual queue, but after few cycles it assumes a 
more definable distribution, which can be approximated, within a cycle, to a Normal 
distribution. This is also in line with the conclusions given in Chapter 4. 
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UFigure 7.4: Distribution of overflow queue observations for a demand of 1000 vehicles per hour 

The variability of queues is again shown to be very large and the distribution shifts 
gradually giving higher and higher average values. 
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7.4.3. Equilibrium conditions 

In undersaturated conditions the queue distribution becomes stationary after few cycles; 
therefore, the expectation value reaches equilibrium. Looking again at the bottom picture 
of figure 7.3, there are observations where the queue is large, even over 35 vehicles, but 
still the probability of having zero overflow queue at the end of the green phase has a 
very large probability (here around 45%) while the probability that the queue is larger 
than 5 vehicles is relatively small (less than 20%). The expected value of the observed 
queues is consistent with the analytical expressions provided by Miller (Miller 1968) and 
Akcelik (Akcelik 1980), and the equilibrium values found with the Markov model. 
Therefore, the analytic expressions derived in steady state conditions sufficiently 
describe the behavior of the expectation value of the overflow queue when equilibrium is 
reached. The larger the flow rate, the longer time is needed to reach this equilibrium 
value from a non-equilibrium state. 

Figure 7.5 shows the behavior of the overflow queue when an initial value of the queue 
of 20 vehicles is assumed. 

 
UFigure 7.5: Overflow queue observations for a demand of 810 vehicles per hour and QUBU0UBU=20 
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The expected value of the overflow queue evolves with a linear behavior during the first 
cycles, when the residual queue cannot be served completely within one cycle. After 
some time the expected value does not evolve anymore according to Formula X(7.2)X but it 
asymptotically reaches the same equilibrium value reached assuming zero initial queues. 
The standard deviation has a peak at around 10 cycles. The chance to observe no queue at 
the end of the green phase starts being larger and consequently the standard deviation 
decreases in time also reaching the same equilibrium value computed when the initial 
queue is zero. 

7.5. Comparison with macro- and mesoscopic results 

This section compares the expectation value of the overflow queues and their standard 
deviation simulated with VISSIM and the ones computed with the Markov and the Van 
Zuylen-Viti models both in case of increasing and decreasing queues, with 
undersaturated and oversaturated conditions. To complete the analysis the overflow 
queue simulated in a peak hour scenario, shown in Chapters 4 and 5, is presented again 
using the microscopic approach. 

7.5.1. Stationary demand conditions 

The transition phase is analyzed by simulating stationary demand conditions for a 
sufficient number of cycles in the undersaturated case to observe expectation values close 
to equilibrium. Figure 7.6 shows again the average and the standard deviation of the 
queue for a demand of 810 vehicles (x=0.9) (top) and one of 1000 vehicles (x=1.1) 
(bottom), compared with the ones computed using the Markov chain process. 

For the under-saturated case, the two characteristics simulated with the microscopic 
program are well reproduced with the Markov model. In both cases there is a slight error 
at the starting of around half a vehicle. At equilibrium the two curves have a statistically 
insignificant error. Given the consistency between the Markov model and the analytic 
formula, the consistency between the three approaches is clarified in these conditions 
since the Markov and the Van Zuylen-Viti models have been compared similarly in 
Chapter 6. Oversaturated cases are consistent as well, as Figure 7.6 (bottom) shows.  
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UFigure 7.6: Comparison between microscopic simulation and mesoscopic simulation results for 
increasing overflow queues 

The average and the standard deviation of the decreasing overflow queues illustrated as 
example in Figure 7.5 are compared in Figure 7.7. Although comparison of the 
expectation value with the mean value of the VISSIM results seems satisfactorily, large 
difference is found in comparing the standard deviation.  



Chapter 7. Consistency between probabilistic models and microsimulation 157 

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

cycles

nu
m

be
r 

of
 v

eh
ic

le
s

Mean VISSIM
St. deviation VISSIM
Mean Markov model
St. deviation Markov

 
UFigure 7.7: Comparison between microscopic simulation and mesoscopic simulation results for a 
decreasing overflow queue 

In conclusion, the results from VISSIM show two main differences as compared with the 
Markov model: 

1. When queues start from zero the expected value of the overflow queue increases 
more rapidly in VISSIM and for a considerable number of cycles in 
undersaturated conditions; 

2. When queues start from large values the standard deviation of the queue increases 
less rapidly in VISSIM. 

Both differences can be appointed at the arrival profile of VISSIM as compared with the 
assumption of Poisson arrivals in the Markov model. One possible explanation of the 
above inconsistencies between models can be in the car following characteristics of 
VISSIM. The arrivals are generated in the microscopic program at 2.5 km from the signal 
and only the loading of the vehicles is assumed as Poisson. In reality, while vehicles 
drive along the section they tend to disperse or form platoons according to the car-
following behavior assumed in VISSIM. Therefore, the arrival at the signals should not 
be Poisson. This effect is quite visible at large demand conditions. This explanation is 
confirmed by Tian (Tian 2002), who found large differences in the results of three 
microscopic simulation programs (CORSIM (FHWA 1999), VISSIM (PTV 2003) and 
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SimTraffic (Corporation 1999)), especially in terms of variability of the performance 
measures. He concluded that “it is suspected that when a link is highly saturated, drivers 
tend to behave more uniformly, resulting in reduced variations on the performance 
measures”. Akcelik (Akcelik 2001) agrees upon this dynamic character of the saturation 
flow rate. He recommended analyzing this behavior in a microscopic program in function 
of the queuing, acceleration and car following model parameters of the microscopic 
program. 

7.5.2. Variable demand conditions 

To conclude the comparative analysis, a peak period is simulated by assuming a step-
wise average demand. Demand is then assumed stationary only for a limited period of 
time, which in this section is assumed 10 minutes. Figure 7.8 shows the results of the 
simulation from the microscopic approach. 

 
UFigure 7.8: Simulation of a peak hour in VISSIM 
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The top picture shows the assigned demand while the bottom picture displays the 
simulation results in terms of queue lengths for at each simulation, together with average 
and standard deviation of all simulations. In terms of dynamics of the average and 
standard deviation of the queue, the exponential behavior at the shoulders and the linear 
behavior at the central periods it is observable, according also to the results presented in 
(Viti 2004). 

The program has been run for this case with 200 different random seeds. One can clearly 
see the very similar behavior of expected value and standard deviation in conditions of 
undersaturated traffic, while the variance-to-mean ratio decreases consistently in slight 
oversaturated conditions, reaching around 0.25. When the queue starts decreasing the 
behavior follows the linear decrease as expected while for the last two sub-periods the 
queue evolves exponentially. 
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UFigure 7.9: Comparison of overflow queues between Markov, Van Zuylen-Viti and linear models 
with the results of VISSIM 
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Figure 7.9 compares the results in terms of average (Figure 7.9 (a)) and standard 
deviation (Figure 7.9 (b)) measured with VISSIM, with the Markov the Van Zuylen-Viti 
models and the deterministic formula adopted in the Highway Capacity Manual (TRB 
2000) as done in the example in Chapter 6. 

Comparison between expected values derived from the software program VISSIM, the 
Markov model and the Van Zuylen-Viti formula are very good (Figure 7.9, top), and the 
error remains smaller than 2 vehicles for the whole evaluation period, while the error 
made using the deterministic Formula X(7.2)X, which is used in the HCM, appears 
consistently larger. This represents an important contribution to traffic managers and 
practitioners, since it proves that the dynamics of the overflow queue are well estimated 
with all three different level-of-detail models under non-stationary demand assumptions. 

Moreover, the assumption of Poisson arrivals does not seem to be limiting in terms of 
average overflow queue length, since the comparison between microscopic and 
mesoscopic simulations shows good consistency even if the Markov model does not 
consider any car-following behavior. 

The consistency between models showed by comparing the average values is not 
completely confirmed with the comparison of standard deviations. The Markov and 
analytic models show a smoother behavior but also considerably higher values especially 
at the highest peak. This difference can be again appointed at the non-uniform arrival 
distribution of vehicles during peak periods due to the car-following behavior assumed 
by the microscopic program. 

7.6. Overflow queue variability in arterial corridors 

The arrival profile should differ if another signal is placed in a short distance upstream, 
as discussed in Chapter 3. This problem has been simulated in VISSIM assuming a 
sequence of two signals. 

Effect on the overflow queue behavior is given in this system by the filtering effect. The 
reduced number of possible arrivals within a cycle results in a lower chance to observe an 
overflow demand in roads where the secondary roads play little role. According to 
Newell (Newell 1971), overflow queues in those corridors would appear mostly at the 
first signal, if the capacity of the downstream signal is at least equal to the upstream one. 
The upstream signal works in these conditions as filter for the downstream one. Since a 
limited number of vehicles can pass the signal within the green time, all exceeding 
vehicles would wait at the upstream signal till their service time. The additional number 
of vehicles at the downstream signal is thus very small. As consequence, there is little 
chance to observe long overflow queues at downstream signals, even if the demand 
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entering the network at each cycle exceeds the capacity. To observe this phenomenon 
using microsimulation and give an estimate of the reduction of overflow queues at 
downstream signals, two signals were placed at relatively short distance. 

Figure 7.10 displays the detected vehicles at the origin of the road section (figure 7.10-
(a)), right after the first signal (Figure 7.10-(b)) and immediately after the second signal 
(Figure 7.10-(c)) for a demand of 810 vehicles per hour ( 0.90x = ). Signals were placed 
at 500m distance. It looks that the arrival and departure distributions at the second signal 
are very similar one to another, suggesting that nearly all vehicles leaving the first signal 
are served at the second signal within one cycle. 
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UFigure 7.10: Vehicles detected per cycle at the three detection points for a demand of 810veh/hr 
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Looking at the evolution of overflow queues in figure 7.11 it seems that the increase of 
the average demand rate arriving at the first signal from 810veh/hr to 1000veh/hr (x=0.9 
and x=1.1 respectively) does not influence significantly the distribution of queues at the 
second signal, as one can see by looking at figures 7.11-(c) and 7.11-(d). In both cases 
the average number of vehicles, which statistically is not served within one cycle, is 
nearly 1. In conclusion, overflow queues are very small at downstream intersections and 
their contribution to the overall delay of vehicles is expected to be very small too. 
Obviously this effect reduces if the capacity of the downstream signal is reduced, or if 
other flow streams converge to the downstream intersection. 

 
UFigure 7.11: Overflow queues in paired intersections for demands of 810veh/hr and 1000veh/hr 

In conclusion, the estimation of delays incurred by overflow queues in arterial corridors 
is in accordance with the findings of Newell. This conclusion applies only if there is very 
little contribution from turning flows upstream and the capacity of the downstream signal 
is at least equal to the one upstream. With these settings, the isolated intersection 
represents the worst case scenario one can compute for the estimation of overflow delays 
at traffic signals, while the above represents the most optimistic scenario for the 
downstream intersection. The next chapter extends the Markov model for isolated 
intersections also to arterial corridors by simply adding a constraint to the maximum 
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number of arrivals within a cycle randomly generated by the model depending on the 
flow rate arriving from the upstream section. 

7.7. Summary 

This chapter compares the mesoscopic method based on Markov chain processes 
described in Chapter 4 and the analytic formulas developed in Chapter 6 for the expected 
value and the standard deviation of the overflow queue length with several simulation 
runs of a commercial software package based on microscopic programming, VISSIM.  

Microsimulation is the only practical alternative to field data for this study, since it is 
rather unlikely that one can observe in real life sufficiently long periods of stationary 
demand conditions. To operate the analysis presented in this chapter (i.e. behavior 
towards equilibrium, behavior with an initial queue, behavior with non-stationary 
demand rates etc.) data were needed which repeated the overflow queuing process under 
the same assumptions.  

The stochastic processes make it necessary to repeat several microscopic simulations for 
situations that are close to saturation. Hundreds or even thousands of simulations are 
needed if an accurate estimate of random queues or delays is required. This justifies a 
lack of a thorough analysis, which is done in this chapter. To the author’s knowledge, 
this is the first study that attempts a comparison of models in a non-stationary demand 
rate scenario that gives special importance to the behavior of overflow queue lengths 
from large initial values. Only a few studies have instead compared models in the way 
they deal with the variability of traffic at signals. 

The Markov and the Van Zuylen-Viti formulas have been compared with the results of 
the VISSIM microsimulation showing very good agreement. The consistency between 
the three approaches in various conditions of traffic validates the two less detailed 
methods. This represents also an important contribution to traffic managers and 
practitioners, since it proves that the dynamics of the overflow queue are well estimated 
with all three different level-of-detail models. The analytic function presented in chapter 
6 is therefore suitable for planning and design purposes and contributes to a better 
estimate and prediction of the signalized network performances. The consistency 
between the models also in a dynamic scenario with non-stationary demand rates implies 
that the Van Zuylen-Viti model may contribute to the development of improved network 
loading models in of the models has also shown an inconsistency between the models 
considered in the initial behavior of expectation values and standard deviations. The 
standard deviation shows consistently larger values in the Markov model with respect to 
the simulated results of VISSIM especially when recovering from a large initial overflow 
queue at the start of a new sub-period. This has been explained by a more uniform 
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behavior of the vehicles in the microscopic program with the increase of congestion due 
to the assumed car-following logic. 

Finally, microscopic simulations in an arterial corridor show that overflow queues at 
downstream signals give little contribution to the overflow delay component if signals 
have the same settings. The upstream signal works in these systems as filter, reducing the 
chance of cycle overflow to the downstream ones. In this sense, isolated intersections 
represent the upper bound. A reduction factor should be applied (for example like the 
model of Van As, (Van As 1991) presented in Chapter 3) in order to compute the 
overflow queue at downstream signals. Several widely applied models (e.g. TRANSYT, 
(FHWA 1984)) do not account for this effect, resulting in an overestimation of overflow 
queues at downstream sections. The next chapter considers the application of the Markov 
model for more complex scenarios than the isolated, fixed time, single lane sections, 
among which the effect of upstream signals is discussed. 



8 
Probabilistic delay models for 

arterial corridors, multiple 
lanes and dynamic controls 

8.1 Introduction 

Chapter 7 showed that a probabilistic model is able to give statistically consistent results 
with respect to microscopic simulation at isolated signalized intersections. Both 
mesoscopic model and microscopic simulations have been computed under very simple 
assumptions. The method presented in Chapter 4 has been in fact developed in the 
assumptions of traffic uniformly distributed within a cycle time (isolated intersection), 
fixed-time control and FIFO (First In, First Out) discipline, which is a valid assumption 
only at single lane sections or sections with prohibited overtaking. Nevertheless, these 
assumptions characterize most of the analytic models used in practice, as Chapter 3 
showed. In Chapter 6 the results of the Markov model developed in Chapter 4 have been 
used to develop models for the expectation value and the standard deviation of the queue 
under weaker assumptions than the currently adopted models. 

The probabilistic approach gives the traffic analysts the opportunity to include dynamic 
and stochastic features to the travel time estimation problem. The potentials of this 
method have not been highlighted yet, and its application is still quite limited in practice 
by its simplifying assumptions. Fixed controls are being increasingly replaced by more 
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advanced control devices, as already discussed in Chapter 3. Moreover, the assumption 
of isolated signal represents an upper bound for the estimation of overflow queues in 
urban networks, especially when signals are closely spaced, as shown in the case of two 
intersections simulated in Section 7.6. A question is also whether FIFO condition holds 
at such intersections that may have more lanes dedicated to a traffic stream. The lane 
selection criterion at multiple service points represents an interesting research question 
also for other purposes, for example for the design of road sections and service points at 
toll plazas, or if one takes into account spillback effects in the estimation of delays and in 
the design of exclusive turning lanes. 

This chapter addresses these issues by showing the possibility to model the distribution 
of queues and delays using the Markov model also in the context of: 

• Arterial corridors: stochastic delays are influenced by the filtering effect of signals, 
while they are not primarily affected by the platooning effect, which instead 
influences the uniform delay component, as explained in the literature research 
presented in Chapter 3. Filtering effects are considered in the Markov model by 
simply adding a constraint in the distribution of arrivals at the intersection, as it 
will be shown in Section 8.2. 

• Multilane sections: stochastic delays can be influenced by an unbalanced 
distribution of traffic among lanes. Different streams merging or splitting at any 
interrupted flow section may not distribute uniformly among all lanes. Unbalanced 
distribution of traffic among lanes affects the lane changing behavior of travelers, 
who might decide to try and move to the lane with the smallest queue in order to 
minimize their expected waiting time. Lane changing possibilities are on the other 
hand limited by the density of traffic on the target lane. Section 8.3 describes how 
the Markov model can be extended to multilane sections. 

• Dynamic controls: the Markov model can be extended to estimate queues and 
delays in demand-responsive controls, characterized also by variable signal 
settings. This modeling issue is analyzed in Section 8.4 where a probabilistic model 
for vehicle actuated controls is developed. 

The extensions proposed in this chapter contribute to the modeling of delays, but they 
contributes also to the analysis of the variability of travel times in general urban 
networks, given the possibility to compute the distribution in time of such delays. These 
are only examples of the modeling opportunity of the probabilistic approach. It is 
envisaged by the author that this modeling technique can be used in any (traffic) process 
that is characterized by a strong dynamic and stochastic behavior. 



Chapter 8. Probabilistic models for arterial corridor, multilanes and dynamic controls 167 

8.2 Overflow queues in arterial corridors 

The effect of upstream signals can be subdivided into two elements: the platooning and 
the filtering effects. The first effect is due to the bunching of vehicles during the red 
phase and the movement of vehicles in platoons during the green phase. The second is 
due to the limited number of vehicles, which can pass the upstream intersection within 
the green phase and it is primarily determined by the signal capacity. This effect has been 
considered in the delay models by simply assuming a progression adjustment factor in 
the uniform delay component that accounts for the signal coordination quality (Chap. 3). 

Even accounting for the natural dispersion effect of vehicles due to the car-following 
logic the platooning effect has negligible impact on the overflow delay component. For 
this reason platoon and dispersion effects are not considered in the following 
considerations regarding the overflow queue and the development of a Markov model 
extension to account for a different arrival profile due to the effect of upstream signals. 

The filtering effect modifies the arrival distribution at the signals and therefore the 
stochastic and overflow delays. The distribution of arrivals at isolated intersections is 
characterized by an upper bound, which is at least determined by the saturation flow. 
Therefore, a positive number of vehicles can be observed up to a maximum value. An 
intersection inside an urban network is connected to other intersections and the maximum 
number of vehicles, which can be observed within a cycle, depends on the way other 
controls operate, and on the way they are connected one to another.  

qBl 

qBu qBd 

A B 
a b 

L 

qBr 

UFigure 8.1: Scheme of two intersections in an arterial corridor 

Figure 8.1 shows for example a schematic representation of two intersections shortly 
distanced each other. For sake of illustration the road section in between sections a and b 
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is a one-way road connected to two secondary roads in the nodes denoted by A and B. 
The arrival profile dq  at node B is determined by all streams converging from node A 
and directed towards the second intersection, thus the flows denoted with uq  for the 
arrivals at the upstr m intersection, lq  and rq  respectively for the flows converging 
from the left and from the right secondary roads to the arterial road. 

The estimation of the arrival profile at the downstream intersection is strongly influenced 
by the green time given to all three streams ensuing from the upstr

ea

eam signal and the 
volume of traffic observed on these streams. The maximum number of arrivals in the 
distribution of dq  has still an upper bound, determined by the saturation flow of the 
upstream section. Let s  be the maximum number of vehicles within a cycle, which is 
determined by the saturation flow. In the assumption of no shared green time among 
traffic streams, the upper limit of the distribution of arrivals in a cycle at the downstream 
intersection can be mathematically formulated by the following condition: 

,

,

max{ } min ,g i
d i

i C u
dq s s

t
t⎧ ⎫⎛ ⎞

= ⋅⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑        (8.1) 

where  is the saturation flow at the downstream section, while  and are 
respectively the saturation flow and the green time assumed from the upstream

il
m 

velopment of the overflow queue and its 

⎪ ⎪

ds ig is
 flow 

coming from direction i  and uC  is the cycle time of the upstream signal. 

In Chapter 7, Figure 7.10 the f tering effect was shown in terms of overflow queue using 
microsimulation. It turned out that in a signalized corridor the effect of an upstrea
signal strongly reduces the overflow queue computed at the downstream signal, and that 
the arrival flow profile is strongly affected by the upstream signal. This effect can be 
reproduced using the Markov model by simply assuming an upper bound to the 
maximum number of arrivals. 

The result on the queue and delay dynamics is that the maximum outflow of the upstream 
intersection has a large influence on the de
standard deviation. Figure 8.2 confirms this result. A Markov model has been calculated 
for a volume-to-capacity of 0.95 and assuming different maximum arrivals If the 
maximum arrival value of the upstream intersection is high, small influence is found 
from the network, as one can see from the small difference between the dynamics of the 
expectation of the overflow queue assuming a maximum outflow of 21 and 23 vehicles. 
If the maximum number of arrivals is limited by an upstream intersection, the variation 
in the number of arrivals is limited too. If the maximum outflow of the upstream 
intersection is smaller than the capacity at the downstream signal no overflow queue will 
be observed. 
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UFigure 8.2: The dynamics of overflow queues assuming different maximum arrival rates 

In conclusion the Markov model can be applied in the context of arterial corridors by 
simply assuming a maximum number of vehicles in the arrival distribution if the traffic 

 thought if 
the traffic comes from two or more streams (e.g. bi-modal distribution for two main 

The Markov models presented so far in this thesis assume single service point. Within 
this system the drivers have no option than following their preceding vehicles and FIFO 
condition holds in the arrival and service processes. It is rather frequent in practice to 

comes predominantly from one main stream. A different distribution should be

streams). Historical traffic observations can suggest a realistic arrival profile to 
implement in the Markov model at each intersection of a network. Formula X(8.1)X can still 
give an estimate of the maximum arrival rate that can be observed. 

8.3 Multilane intersections 

8.3.1 Problem description 
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design intersections with more than one lane dedicated to a flow stream, as Figure 8.3 
shows. Furthermore, other systems where the queuing model can be applied are 

 mechanisms, e.g. toll plazas on motorways. Unequal 
 section may be frequently observed in 

e straight-through stream and one lane to right-turning vehicles. If a larger 

UFigure 8.3: example of a multilane section before a signal

characterized by multiple service
distribution of flows among lanes of a road
practice. For example, if the left lane is dedicated to overtaking operations, usually a 
larger percentage of vehicles will be observed on the right lane. The degree of lane usage 
can be also affected by the road geometry of downstream sections; for example a certain 
number of vehicles may decide to drive on one lane to facilitate turning operations at 
later sections. 

The distribution of flows may affect the queue and delay at signals and vice versa. In 
fact, if the road geometry allows the drivers to check the distribution of queues at the 
downstream intersection, they may try and move to the lane with the shortest queue 
observed at the time of their decision.  

Figure 8.3 shows an example of multilane section before a signal where two lanes are 
dedicated to th
percentage of vehicles drive on the right lane, it can happen that the queue building up on 
the right straight-through lane blocks the access to the exclusive right-turning lane, 
reducing the capacity and the operational efficiency of the intersection. In order to avoid 
this problem, some vehicles may try and move to the left straight-through lane. 

 

Often in practice exclusive turning lanes (or flares) are too short due to design constraints 
or bad design. An underestimation of a flare can lead to several problems, i.e. spillback 
with consequent increase of waiting times and lane blockage, which can imply serious 
decrease of safety. Cars may not be served within a green phase because they are blocked 
by cars spilling back from another lane; moreover they can try risky maneuvers to be 
served, increasing the chance of accidents. 

Not all vehicles that are willing to change lane have actually the possibility to do it; lane 
changing possibilities are, on the other hand, limited by the gap acceptance of the users. 
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A user might be willing to change lane but this intention can be somewhat limited by the 
presence of other vehicles on the target lane at the moment the traveler should change 
lane. This operation can be observed also if the queue building up on the exclusive 
turning lane spills back. In fact, if a queue builds up on the exclusive right-turn lane, and 

t from several microsimulations in a two-lane scenario. These 

dent on the 
headway distribution of vehicles driving on the target lane and the equality may not often 

lback effects from other 

he other hand, 

exceeds the length of this lane, it will block the right straight-through lane as well, 
producing hindrance to the vehicles arriving on that lane. This phenomenon will push the 
flows to increase the lane-changing maneuvers towards the left lane, reducing the total 
intersection capacity. 

The described lane changing phenomenon involves several different operational and 
psychological factors. Microscopic simulation models can give realistic estimates of this 
variability since they simulate the traffic propagation at the vehicle level. On the other 
hand also microsimulation models simulate the arrival distribution of vehicles using 
some lane selection logic (see Chapter 3). Appendix C gives an example of results from a 
macroscopic viewpoin
simulations confirm that vehicles have a strong lane changing behavior before a signal, 
and this behavior changes with the length of the queues waiting at the signal. 

8.3.2 Probabilistic model of lane changing behavior  

The unequal distribution of flows may affect the queue and delay at signals and vice 
versa. In fact, if the road geometry allows the drivers to look ahead to the distribution of 
queues at the downstream intersection, they will try and move to the lane with the 
shortest queue. The possibility to change lane is, on the other hand, depen

occur. Variability of these flows can be therefore observed. Spil
lane groups can also influence this lane changing behavior. This effect is a clear example 
of lane underutilization that should be taken into account in the design of the approach 
and in the computation of the effective capacity of the signal (Tian 2006). 

The queuing process depends on the randomness of arrivals and departures, but the 
distribution of the demand can be influenced by the queue distribution itself because of 
lane-changing behavior. It is assumed here that the user increases his “intention” to 
change lane the larger the difference between the queue at the driving lane and the target 
one. Since the queue length is characterized by a probability distribution, this intention 
can be described by a probability distribution too. Lane change is, on t
limited by the degree of occupancy on the target lane, since vehicles need a sufficient gap 
to operate the maneuver. One can apply a Bayesian updating rule to compute this chance, 
thus compute the conditional probability that a vehicle changes his current lane. This 
probability is simply computed by the product of the two probabilities, since it is 
assumed that they are independently distributed stochastic variables. 
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Let a  denote a lane of a road section and b  be an adjacent lane. Let suppose that the 
user has time to evaluate the queue length distribution among lanes at the downstream 
signal and (eventually) change lane. Let suppose also known average number of vehicles 
arriving at the intersection for each lane group, q  at a certain section upstream. For 
example the flow fraction on lane a  at time t  will be denoted with ( )a tα . Knowing the 
average and distribution of the split rates one can compute the flow distribution  for  ( )aq t
lane in a cycle by using the relationship ( ) ( )a aq t t qα= ⋅ . This component is also a 
random variable since this fraction can vary from cycle to cycle. Let suppose to know the 
queue distribution at the starting of the simulation for each lane, (0)aq . The travelers’ 
probability of intention to change from lane a to lane b, ( )a b t→Ψ , is assumed to depend 
on the difference in queue length ( ) ( )−a bQ t Q t  on lane a and b as  given by the following 
formula: 

 
( ) ( ( ) ( ))      if ( ) ( ) 0
( ) 0                             otherwise

a b a b a b

a b

t h Q t Q t Q t Q t
t

→

→

Ψ = − − >⎧
⎨Ψ =⎩

     (8.2) 

The above probability is supposed to be a known function h , which increases and gets 
closer to 1 the larger the difference between queues. Inversely, if the queue at the 
traversing lane is smaller, there is no reason to consider a possible lane change to the 
adjacent laneTPF

1
FPT. 

A user can change lane only if there is enough gap for the maneuver. Therefore, known 
the number of arrivals, one can deduce the headway distribution of cars and consequently 
the probability of having enough space to change lane. For example, if the arrivals are 
Poisson distributed, the time headway distribution can be approximated as negative 
exponential. The chance of having a sufficient gap to change lane is then equal to the 
probability Pr (b )l l≥  that the headway between observed cars, , is higher than a 
predefined threshold, 

l
l . Once these probabilities are computed, the number of vehicles 

i jη →  that move from lane a  to lane b  is given by the following formula: 

( ) ( 1) ( ) ( )a b a a b bt q t t P l lη → →= −

mber of ar

aq t

⋅Ψ ⋅ ≥        (8.3) 

The total nu rivals aq  at lane a will then be given by: 

) ( 1) ( ) ( )a a b b aq t t t( η η→ →= − − +        (8.4) 

                                                 

TP

1
PT This value may be positive if one considers the case of vehicles moving to the left lane to guarantee 

accessibility to the exclusive turning lane. This issue is not considered in this study. 
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This value is then used to compute th

It should be noted that, in the one-lane problem, the distribution of arrivals is 
variant with time, while 

in this case it becomes queue-dependent and thus time-dependent. 

8.3.3 Effect of a short flare 

Suppose now that there is an exclusive turning lane, , at the intersection and to know 

clusive turning lane is 
in real conditions, one can assume the green time for this 

 the straight through lanes, . Under these 
assumptions, the queue at the exclusive turning lane is computed exactly as a single lane 

e distribution of the arrivals Pr ( )q k . 

independent on the present queue, and the transition matrix is in

c
the flow rate, cq . For sake of simplicity, one can assume that the vehicles that arrive at 
the intersection and have to turn, are already at the closest lane before entering in the 
exclusive lane, thus no intermediate lane changing to reach the ex
considered. As it happens often 
exclusive lane to be different from cg

intersection using the standard single-lane Markov Chain. 

Let cα  be then the fraction of the total demand q  representing turning flows and let 
spillbackQ  be the maximum number of vehicles, which can be placed in the exclusive 

turning lane without creating spillback. Due to the randomness of arrivals, there is a non-
zero chance of having spillback. The probability that spillback occurs n be computed 
with the Markov model. In this condition the adjacent lane will be influenced by this 
phenomenon. If the length of the adjacent lane queue is 

ca

smaller than the accumulation 
lane queue the user will consider the latter for his lane changing behavior. Thus, all 

)

 by this phenomenon 
will be also small. If on the other hand there is a non-negligible chance that the green 
time is not sufficient to clear the queue at the accumulation lane, the adjacent lane will 
also reduce in some cases its capacity, creating extra demand on the other l
be shown in the case study section. 

behavior a constant demand for the whole evaluation period is assumed in this example. 

equations above do not change apart conditions X(8.2 X that become: 

( ) (max( , ) )      if ( )   and max( , )

( ) ( ( ) ( ))              if ( ) ( ) 0  and ( )

( ) 0                                     otherwise

a b a c b c spillback a c b

a b a b a a c spillback

a b

t h Q Q Q Q t Q q q q

t h Q t Q t Q t Q t Q t Q

t

→

→

→

Ψ = − > >⎧
⎪Ψ = − − > <⎨
Ψ =⎪
⎩

 (8.5) 

As long as the probability of spillback is small, the extra delay given

anes, as it will 

8.3.4 Two lanes example 

The estimation of queues in a two-lane road can be computed using the Markov model 
and using formulas X(8.2)X-X(8.5)X. To show the dynamic evolution of lane changing 
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Flows are assumed to drive with 70% of vehicles on the right lane. Saturation flow is set 
to 1800 vehicle per hour, while cycle and green time are set respectively to 60 and 24 
seconds. The accepted gap for a vehicle is expressed in time, and set to 3 seconds. 

UFigure 8.4: numerical examples of the expectation value of the overflow queue and flow distribution 
in time for x=0.96 and x=1 

Figure 8.4 shows (top pictures) the evolution of the average and the standard deviation of 
the queues at the two lanes. The bottom pictures show the lane-changing behavior 
expressed by the evolution of the split rates in time. Left figures show the condition when 
the aggregated degree of saturation of the signal is set to 0.96, while the right pictur
show the simulation with x=1. Because of lane changing possibility both lanes redu

es 
ce 

iation 

Due to gap acceptance limitation, the two lanes are still not having the same demand. 

their average overflow queue with respect to the single lane case. Standard dev
changes accordingly. The reduction of the variability of arrivals reduces both expected 
value and standard deviation of the queue. 

When the demand increases, here computed for a degree of around 1, lane changing also 
increases, since intention to change lane increases and flows tend to be equally 
distributed. When an equal distribution is met, queues tend asymptotically to increase 
with the same behavior.  
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Final remark should be made in the lane changing model. The proposed lane changing 
model results shown in the picture depend on the choice of the parameters for the lane-
changing aspiration, the gap acceptance, and the dynamic queuing models. The 

llback effect 

mple refers to a total demand on the two lanes upstream the 
intersection of 2000 vehicles per hour. A right exclusive lane is considered with green 

bove which spillback occurs, of 

calibration of these parameters is needed for its practical use. The parameters chosen for 
the example are only for illustration purposes and do not pretend to be realistic. For a 
more detailed description of the model calibration one can refer to (Hoogendoorn 1996) 
or (Ngoduy 2006). 

8.3.5 Three lanes example and spi

The presence of an exclusive turning lane, as displayed in figure 8.5, can influence the 
distribution of overflow queues among the lanes of a road section. In fact, the variability 
of the queue length can be such that spillback from the exclusive turning lane can reduce 
the capacity of the adjacent lane, forcing the vehicles driving on this lane to try and move 
to another lane in order to avoid an extra delay. 

The following exa

time of 10 seconds and a maximum number of vehicles, a
5 vehicles. Saturation flow is set to 1800 vehicle per hour, while cycle and green time are 
set respectively to 60 and 24 seconds for the straight through direction while only 10 
seconds are given to the right turning direction. The distribution among lanes is set again 
to 70 and 30% respectively for the right and left lanes. Figure 8.5 shows the results when 
the percentage of vehicles going to the exclusive turning lane is set to 20% and 25% of 
the flow in the right lane. 

As long as the chance to have spillback is small, the effect on the two adjacent lanes is 
small. The two left pictures are referred to a degree of saturation of 0.8 on the exclusive 
turning lane. If instead spillback is very likely to occur, as in the case of the example 
represented by the two pictures on the right side, the scenario changes consistently since 
a large part of vehicles will tend to move to the left lane. 
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UFigure 8.5: numerical examples of overflow queue and flow distribution in time for a percentage of 
right turning lane vehicles of 20% and 30% 

The presented model can calculate also the probability that spillback occurs. For example 
for an average degree of saturation of 0.95 on the right turning lane, the chance of having 
spillback in a 15 minutes interval is nearly 35%, which is quite high. 

8.3.6 Application of the multilane model in design problems 

The proposed method allows one to estimates the queue length at each lane and to 
evaluate the queue length distribution especially taking into account the spillback effects. 
If the problem is to evaluate an existing infrastructure, the road manager can use this 
method to estimate the delay at each lane, since the geometry is already fixed. The 
method estimates the lane flow distributions according to the equal queue length 
principle. The difference from other models already proposed is the use of a dynamic 
queuing model and a gap-acceptance model. This method can be also used to optimize 
signal settings. 

If on the other hand the road manager designs a new intersection or has the chance to 
modify the geometry, he can use this method to calculate the most convenient scenario. 
Since under the declared assumptions the lane changing behavior at the upstream section 
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does not influence the queue evolution at the exclusive turning lanes, the design problem 
of flares can be restricted to the use of the single-lane queuing model. 

Last remarks should be given to the underlying assumption of the method described in 
this section. A first remark regards the discussion whether a queue length-based lane 
changing approach is a valid approximation of real lane selection criterion of travelers at 
multiple service points. This represents certainly an approximation in some cases. For 
example drivers may not choose a shorter queue because of their awareness that one lane 
has a higher capacity or it favors some operations downstream (turning, merging or 
splitting lanes, lane drops). The equal queue criterion models drivers in these cases as 
“short sighted”. In other cases (a toll plaza for example) lanes (or service points) do not 
consistently make difference to drivers and the selection is more sensitive to large 
differences in queue lengths among lanes and this method may be the most appropriate. 
A solution to improve the model results can be combining the maximum queue length 
principle with e.g. minimum route travel time principle to combine these two effects. 

Some microscopic simulation programs (e.g. AIMSUN, (Barcelo 2003)) use often a 
combination of these criteria. Microscopic programs frequently are used in the evaluation 
of queues and delays at multilane intersections, given their property of treating each 
vehicle as a physical entity and the possibility to simulate lane changing at the individual 
vehicle level. Appendix C shows microscopic simulations done using the program 
AIMSUN (Barcelo 2003) to estimate the changes in time of lane flows depending on the 
overflow queue length downstream. A strong relationship between lane flow distribution 
and queue length distribution was indeed found. The lane changing behavior of vehicles 
approaching an intersection was simulated under different demand conditions. The 
program confirms the queue-responsive lane changing behavior since lane flows tend to 
be equal. Overflow queues are also reduced since, looking at the arrivals near the 
intersection, the probability of a large number of arrivals is reduced. 

Second remark regards the assumption of homogeneous traffic demand. This method 
does not consider the influence of heavy vehicles as reduction of throughput. This 
assumption should be stressed, since it is quite natural to expect that the presence of 
heavy vehicles affects the lane changing strategy of travelers. This investigation goes 
beyond the scope of this thesis and it is left for further research. 

8.4 Time-dependent controls 

The variety of dynamic control schemes designed and implemented in practice makes the 
development of a general Markov model very difficult. Nonetheless, the advantage to 
deal with each combination of queue lengths and number of arrivals in time is easily 
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shown in the dynamic control context. In this section, a Markov model is formulated for 
actuated control signals. 

8.4.1 Vehicle actuated controls 

Actuated control phase plans are in general determined by the headway distribution of 
the arrivals at the intersection. The basic mechanism is to assign a green time unit (unit 
extension) when a vehicle is detected by the detection point. Green time extension stops 
when distance between two vehicles is larger than a certain threshold. This green time is 
usually constrained to be within minimum and maximum values, which are mainly 
determined by the geometry of the intersection. Since the stochastic nature of the 
arrivals, different headways and different number of arrivals can be observed from cycle 
to cycle. Therefore, the assigned green times and the delay incurred are variable too.  

The assigned green times are thus variable according to the variability of queues forming 
during the red and green phases and to the variability of vehicle headways. If one 
considers that the queue formed during the red phase depends on the number of vehicles 
arriving during that phase and to the length of the red phase itself, which depends on the 
green time extensions given to all conflicting streams, the mathematical formulation of 
the expected travel time experienced by the travelers is quite complex. This section 
shows how this mechanism can be modeled using a probabilistic approach. 

8.4.1.1 UVehicle actuated mechanism 

Figure 8.6 explains how vehicle actuated signals work. The figure shows two loop 
detectors placed underneath the road pavement and at some distance from the stop line. 

UFigure 8.6: Loop detectors before a vehicle actuated signal 

Presence loop Passage loop 

The closest loop to the traffic signal (presence loop) detects whether at least one vehicle 
arrives during one cycle length. If no vehicles arrive the signal will never turn green. The 
second loop (passage loop) defines how long the green phase should be. The mechanism 
is explained more in detail with Figure 8.7. 
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(a) 

(b) 

(c) 

(d) 

UFigure 8.7: Vehicle actuated mechanism 

Figure 8.7 (a) represents the case of a queue located over the passage detector. This can 
be observed during the red phase, when the queue builds up, and also during the green 
phase, when vehicles are being served but other vehicles reach the back of the queue in 
the meantime. As long as the queue is detected by the passage loop the green time is 
extended, unless this time is in between a minimum and a maximum value. Figure 8.7 (b) 
and (c) are two cases in which green time is still extended because vehicles arrive in 
short distance among each other. Figure (b) represents the case of only one vehicle 
detected within the unit extension, while Figure (c) shows two vehicles lying on the 
detector within the same unit extension. In both cases the green time will be extended of 
only one unit extension. Finally Figure 8.7 (d) shows when the distance between two 
consecutive vehicles is larger than the length of the detector. A timer counts the 
maximum time allowed to extend the green time further and if no vehicle arrives the 
signal will turn to amber. Other vehicle actuated mechanisms consider a fixed time 
extension for each vehicle counted, independently on their time headway. This 
mechanism is therefore simpler to be formulated since green time extension becomes 
only function of the number of arrivals within a cycle. 
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8.4.1.2 UComputation of green time to clear the queue 

Let τ  be the unit extension, assumed known and constant. This unit extension is 
determined by the length of the passage loop, the speed at which vehicles drive on it and 
the time extension of the timer. The length of the loop detector is usually fixed in such a 
way that the queue formed during the red phase is completely served, avoiding that the 
signal changes while the queue is not yet fully served or unless the maximum green 
extension is met. If ( )Qr τ  is the total number of vehicles queuing up and waiting at the 
signal at the cycle τ  during the red phase ( )r τ  the expected green time given to serve 
these vehicles is given by: 

min min
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where  is the saturation flow, assumed here known and constant. This value does not 
consider yet eventual vehicles arriving during the green phase and while the formed 
queue is served. The queue length 

s

( )rQ τ  is determined by the number of vehicles 
arriving only during the red phase. If one assumes uniform time headway, the expected 
green time is computed with Formula X(8.6)X using simply the average flow rate. 

The probability distribution of green times at one traffic stream  is computed knowing 
the probability distribution of arrivals at stream  and the distribution of red times at the 
previous phase, which depends on the distribution of arrivals at all conflicting streamsTPF

2
FPT. 

i
i

If ( )ia τ  is the arrival rate (in vehicles per second), and ( )ir τ  is the red time at the 
previous cycle one can compute the probability of a certain number of vehicles  
queuing up during the red phase of length 
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The formula is obtained by assuming that the arrival rate and the red time are 
independent stochastic variables. The integrals are assumed computed within a maximum 

                                                 

T2 In practice the computation determines first the critical paths, which are all the conflicting streams with the largest 
demand.T 
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maxr  and a minimum red time . The formula to compute the probability of red time 
length is given later in this section. 

minr

The probability of a green time  needed to clear the queue at the end of the red 
phase to be a value  is given by the following condition: 

( )rg t
l

[ ]
(Pr ( ) ) Pr( ( ) )i

k s l

r rg l Q kτ τ
= ⋅

== ∑ =

max

       (8.8) 

While clearing the queue formed during the red phase, other vehicles may join the queue. 
Formula X(8.9)X computes the probability for these vehicles similarly to Formula X(8.7)X. 
The probability of red time is simply replaced by the probability of green time computed 
with Formula X(8.8)X: 
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Accordingly, Formula X(8.8)X is adapted to compute this extra queue with the following 
formula X(8.10)X: 
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The probability of green time due to all vehicles in queue  is thus given by the 
following relationship: 

g
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The total queue to dissipate within this time is computed accordingly: 

Pr Pr( ( ) ) ( ( ) ) Pr ( ( ) ))gr
i i i i i i

k l m
Q m Q t k Q t lτ

+ =
== = ⋅ =∑      (8.12) 

8.4.1.3 UGreen time extension due to short arrival headways 

Apart from the green time assigned to clear the queue, one should take into account that 
the green phase is extended as long as a vehicle passes the detector within the unit 
extension, which it can happen also when the queue has been fully served but vehicles 
are still arriving in short distance. To account for this extra-time one can use the 
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distribution of arrival headways instead of the number of vehicles arriving within the 
time period.  

The Poisson distribution can describe for example the probability of observing  arrivals 
in a period from 0 to  with the following expression: 

n
t

( )Pr ( )
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n
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tt

n
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= ⋅          (8.13) 

This equation gives information about how the probability is distributed over a time 
interval in terms of number of vehicles. In a sequence of  arrivals one can observe 
vehicles passing with a random headway distance. If no arrivals are observed within a 
time 

n

τ τ<  the signal will switch to amber. This probability is given by the following 
Formula X(8.14)X: 

0Pr ( )t e tλ− ⋅=           (8.14) 

This equation shows that probability that no arrival takes place during an interval from 0 
to  is negative exponentially distributed. Given the unit extension, one can compute the 
probability that no vehicle will be detected (around 0.8 in the example shown from the 
graph for a 4 seconds unit extension). 

t

If one computes the probability distribution of a sequence of  vehicles at times 

1 2  the probability of observing this sequence with 
n

0 ... nt t t t< < < < = 2 1t t τ− < , 3 2t t τ− < , 
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Even if green time extension is needed, one should compute the probability that this 
extension time is actually available. The probability of a certain number of seconds 
available for eventual green time extension before the maximum green extension is easily 
derived from the probability of green time due to the formed queue, Formula X(8.12)X. The 
probability of having an extension of exactly t  seconds (expressed as an integer value) is 
given by the following relationship: 
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max ( )( ( ) ( ) () extni i i )QeP g t P t t P g g ττ = = = ⋅ − ≥∑ t

Qtot e

     (8.16) 

The average total green time is finally given by computing the relationship  
( ) ( ) ( )g g gτ τ τ+= . 

The probability of a total green time ( )totg τ  is thus given by the following relationship, 
analogous to Formula X(8.11)X: 
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k l m
P g m P g k P g lτ τ

+ =
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Green times are computed using this method for each flow stream of the intersection and 
the total cycle is computed by summing up all green times at each conflicting stream, 
together with the corresponding lost times. Knowing then the green times and the cycle 
length one can finally compute the uniform delay component using for example the delay 
model as in the fixed time case (Chapter 4). If the green time assigned during the 
previous cycle is smaller than the maximum green extension no overflow queue is 
supposed to be present and only the arrivals during the red phase should be served. 

8.4.1.4 UComputation of the overflow queue length 

Overflow queues are likely to occur only when the intersection is oversaturated and the 
maximum green extension is met. If the signal assigns the maximum green extension, 
one should calculate the eventual overflow queue, which will have to wait for the next 
green phase. Overflow queue occurs then only if . In this case the overflow 
queue is computed by formula: 

max( )g gτ =Q

i ismax( ) ( )iOQ Q gτ τ= − ⋅

i

        (8.18) 

with s  the assumed saturation flow of the road section i . The corresponding probability 
is computed by the following formula: 
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8.4.1.5 UThe effect of overflow queues on green times 

Since an eventual overflow queue should be cleared in the next green phase, Formula 
X(8.8)X should also consider that, apart from the arrivals, also the eventual overflow queue 
should be served. Formula X(8.8)X is thus reformulated as: 
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8.4.1.6 UComputation of red time probability 

Last step to compute Formula X(8.8)X is to derive the probability distribution of red times at 
the previous cycle. The red time is determined by the sum of all the green times given to 
the conflicting streams and the total time lost of the signal: 

( ) ( 1)j
j i

r gtot TLτ − +=

s

≠
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The corresponding probability of a red time to be a certain value ( )r τ =  is thus 
computed with the following formula: 

( ( ) ) ( ( 1) )totP r s P g TL sj
j i

τ= = − + =
≠
∑τ        (8.22) 

Assumption should be made on the initial red phase probability and on the initial 
overflow queue in order to compute the distribution in time. Supposing an empty signal, 
initially one can fox as initial value the minimum red phase. 

8.4.1.7 UNumerical example 

In the following of the section the vehicle actuated control is modeled with the 
probabilistic approach in a simple case of two traffic streams crossing an intersection as 
the simple scheme in Figure 8.8 displays. Let  and a  be the average flows 
(expressed in vehicles per second) and AB CD

ABa CD

s 1800[ / ]s veh hr= = . Let assign the first 
green time to the direction  and an initial red time (0) 30ABrAB s= . Initial overflow 
queue is zero Q . The total lost time of the intersection is assumed and 
the unit extension is 

12TL s=(0) 0O
AB =

3t s= . Finally minimum and maximum green times are respectively 
set to min  and max 60g s=10g s= . Let assume the arrival rate distributed as Poisson and 
let the process have a stationary arrival rate for a period of 30 minutes. 

A B 

D 

C 

UFigure 8.8: Two conflicting streams example 
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UFigure 8.9: Expected green time length for stream AB for different demand conditions 
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UFigure 8.10: Expected overflow queue for stream AB for different demand conditions 
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Using Formulas X(8.6)X-X(8.22)X one can compute at each time step the probability 
distribution of green times and the eventual overflow queue in time. Expected green 
times and overflow queues have been computed for each couple ( , , each ranging 
from a value from 0.1 to 0.6 of the saturation flow. Figure 8.10 shows the expectation 
value as function of the couple  at the end of the period of stationary 
conditions. 

)AB CDa a

( ,AB CDa a )

example (70 vehicles) within the total period of analysis. 

ime

The expectation value is the minimum (or guaranteed) green time only when both flows 
are zero. The green time is sensitive to both the increase of each flow stream, but it has a 
steeper increase if increasing  of one unit. The expected value is equal to the 
maximum green time for a large overall demand. Overflow queues are more likely to 
occur in these conditions, as figure 8.11 shows, while its value is nearly zero for low 
values of the demand, especially if  is small. When one of the two streams has a very 
large demand overflow queue is likely to reach the maximum value assumed in the 

UFigure 8.11: Expected overflow queue and standard deviation in t
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ing a strong 
dynamic character. Figure 8.11 shows the example of 
The overflow queue in conditions of moderate saturation starts assum

0.5AB ABa s  and 0.2CD CDa s= ⋅ . = ⋅
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8.4.2 Comparison of pre-timed and vehicle actuated controls 

The formulation of the vehicle actuated control mechanism in a probabilistic fashion 
enables one to compare the performance of such controls with pre-phased controls based 
on the Markov model for fixed-time controls. Table 8.1 compares the results of the peak 
hour example computed previously in this thesis in terms of expected cycle length, 
expected delay and its standard deviation. The optimal cycle lengths set with the pre-
timed method are similar to the average cycle length computed for the vehicle actuated 
control method only for very low demand conditions. On the other hand, pre-phased 
cycle lengths are considerably longer than the average cycle length of the vehicle 
actuated control scheme when the demand increases and delays are around 50% larger. 
Standard deviation is relatively small for both methods. Due to its flexible mechanism 
and the opportunity to adapt the signal settings on the arrival distribution of vehicles at 
the signal, vehicle actuated controls have been shown to be a more efficient control 
method with respect to the optimization of cycle times. 

UTable 8.1 – Assigned demand and resultant average delay with Markov chain and Webster methodsU 

Flow (veh/h) 600 700 750 800 750 700 600 500 

Vehicle actuated control 

Average cycle (s) 57 65 75 85 75 65 57 51 

Expected delay (s) 14.7 16.5 18.5 20.9 18.5 16.5 14.7 13.2 

St. deviation (s) 5.4 5.9 6.4 6.9 6.4 5.9 5.4 5.0 

Fixed time controls based on total delay minimization 

Optimal cycle (s) 58 90 126 126 126 86 58 50 

Expected delay (s) 19 30.1 31.1 31.8 30.9 30.2 19.5 14.1 

St. deviation (s) 4.5 4.5 4.4 4.3 4.4 4.5 4.5 4.8 
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8.5 Summary 

This chapter stressed some hypotheses that characterize the Markov model for single-
lane fixed time controlled intersections described in Chapter 4. Three directions have 
been followed: arterial corridors, multilane sections, and time-dependent controls. 

The hypothesis of Poisson distribution, assumed for isolated intersections, does not well 
represent the arrival distribution when signals are at short distances one to another. The 
filtering effect of upstream signals influences the maximum number of arrivals 
observable within a cycle to the downstream intersections. To account for this effect in 
the Markov model one can simply assume a maximum arrival, which depends on the 
flow streams that converge to the downstream signal. Nevertheless, the hypothesis of 
isolated signal represents an upper bound for the computation of overflow queues and 
stochastic delays. 

One-lane sections work differently from multilane sections, since in the latter vehicles 
have the possibility to change lane. To account for this effect the Markov model has been 
combined with a lane-changing model. By doing so, the distribution of arrivals has been 
shown to have a dynamic character, according to the dynamic character of the overflow 
queue length. Furthermore, the Markov model at multilane sections allows one to 
account for spillback effects, which is useful information for a correct estimation of 
delays and for the design of exclusive turning lanes. Microscopic simulation programs 
use also similar lane changing criteria, as it is described in Appendix C. An improvement 
in the model would be combining the queue-responsive criterion with a route travel time 
criterion, to account for eventual effects of other delays upstream, 

Finally the assumption of fixed control settings has been relaxed by formulating a 
probabilistic model of vehicle actuated controls. This approach allows one to compute 
the probability of green time extension depending on the variability of arrivals and their 
headway distribution in time. The probability of overflow queues is computed 
accordingly. The knowledge of these two elements enables the computation of the 
expectation value of delays and their distribution in time as it was done for the fixed 
control case. The complexity of the formulation is still limiting its application; heuristic 
formulations can be searched as it has been done in Chapter 6. Moreover the validation 
of the model should be done in future research, for example using microscopic 
simulation as it was done in Chapter 7 for the fixed control case. Nevertheless, this 
formulation represents, to the author’s knowledge, the first delay estimation model, 
which accounts for both the effects of the dynamic and the stochastic character of flows 
to travel times and queues at vehicle actuated controls. 

 



9 
Recommendations and 

application perspectives 

9.1 Introduction 

The Markov model presented in Chapter 4 and the Van Zuylen-Viti models presented in 
Chapter 6 improve the delay estimation and prediction of queues and delays at signals 
with respect to the analytic models presented in Chapter 3 in two ways:  

• These models capture the dynamic and stochastic character of delays in a more 
realistic fashion than the existing analytical models by computing overflow queues 
under weaker assumptions. Computing of the probability of an initial overflow queue 
at each sub-period allows the traffic analyst to have estimates of route costs in time. 

• The relationship between overflow queues and delays described in section 4.6 
provides an explicit estimate of overflow queues and their effects on travel time 
variability. This information is important for estimating e.g. the route travel time 
reliability, the level of service of an intersection and for having a measure to compute 
the travelers’ utility in an uncertain scenario. 

Chapter 8 has given also an idea of the modeling power of the probabilistic approach. 
This approach has in fact been applied to evaluate the effects of upstream signals, 
multiple service points and dynamic controls in the dynamic and stochastic behavior of 
queues. These represent only examples of the opportunity given by this approach. 
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This chapter briefly discusses the potential areas of applications of the newly developed 
models. There are three main areas of applications for these probabilistic models. Figure 
9.1 shows these three areas in a scheme, together with the more specific application 
problems within these areas. 

 
UFigure 9.1: Fields of application for the probabilistic models 

Long term travel time predictions, used for example in design and planning problems, 
need delay models that simulate the traffic in its most likely states in the current network 
and under different hypothetical conditions (e.g. future growth of the demand, changes in 
the network infrastructure or in the signal control plans etc.). 

Despite the growing power of computers and therefore the growing interest in 
microscopic programs to simulate how the traffic propagates along a network, analytic 
travel time models are still considered a valid approach for design and planning purposes 
since the work of Davidson (Davidson 1966). For a general overview on this discussion 
one can refer to (Rose 1989) or (Akcelik 1991). 

The newly developed models contribute to having better insight into this system in three 
ways; it can be applied to estimate route flows, to design or manage the supply system 
and to estimate the (expected) travel times. The following sections give some examples 
of these applications. 

This chapter is structured as follows. The next section gives some possible applications 
of the probabilistic models in planning problems, while section 9.3 covers the area of the 
network design problems. Section 9.4 shows how the model can be applied in short term 
travel time predictions. Finally section 9.5 gives a synthesis of this chapter. 
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9.2 Applications in planning problems 

The estimation of route flows along a network, both in terms of time and space, strongly 
depends on the assumed travel time function, together with the utility function and 
selection criterion assumed for the travelers. If the applied travel time function is not able 
to catch the dynamics of traffic, an incorrect distribution of flows may be obtained.  

The newly developed models improve the estimation of traffic flows by giving the 
opportunity to catch the dynamics of travel times depending on the dynamic character of 
the demand system. Both the probabilistic approach and the Van Zuylen-Viti models 
give the opportunity to represent the overflow queuing process in time with results that 
are consistent with microscopic simulations. This can be used for example to estimate the 
effect of peak period congestion to urban travel times and to evaluate the effects on the 
choices of the drivers, e.g. route and departure time choice, under the assumption that 
expected travel time (and its standard deviation) are determinants of travel behavior. 

Another main improvement that can be granted is the opportunity to include the 
uncertainty in the choice process of travelers. Chapter 2 has shown the strong value 
stated by a sample of drivers to the uncertainty of travel times. Dynamic Traffic 
Assignment (DTA) processes based on deterministic travel times consider often the 
drivers to choose their alternatives of travel depending on expectation values. Stochastic 
traffic assignment procedures consider, on the other hand, a component of uncertainty by 
including a noise in the drivers’ perception of travel times. This error component is often 
considered in practice depending on the driver and not on the variability of travel times.   

The importance given by the road travelers to the variability of travel times shown from 
the web survey presented in Chapter 2 suggests that the application of DTA to an urban 
network would improve if travel time variability is considered in the choice process of 
the drivers. The probabilistic approach or the Van Zuylen-Viti expression for the 
standard deviation can be used in such estimation to have an estimate of this variability 
and therefore give consistent estimates of the travelers’ route choices with uncertain 
travel times. To give an example a TSL experiment where urban roads are presented to 
the respondents may improve the validity of its findings if travel times experienced 
during the experiment are drawn from a realistic probability distribution of travel times. 

The models developed in this thesis can also help in the estimation of the risk averseness 
of the travelers. Some results form the TSL experiment described in chapter 2 and 
Appendix C show the travelers to have strong risk averseness by preferring more reliable 
routes, but also to have a non-linear risk behavior with respect to travel times. The 
models developed can be used to estimate this risk averseness. 
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9.3 Application in network design problems 

Analytic travel time functions can be preferred to microscopic simulation in the design of 
an urban traffic network for several reasons; here are listed a few: 

• The design of a signal plan or the modification of a road section requires the 
evaluation of the effects of this intervention; therefore several set-ups for the signals 
and hypotheses on the kind of intervention to be done on the road geometry need to 
be analyzed; 

• Dynamic demand-responsive controls like anticipatory controls (see e.g. (Taale 
2003)) require long iterative processes to evaluate the effects on the demand and the 
consequent adaptation of the control settings to these changes; 

• The computation of supply characteristics like e.g. the intersection capacity requires 
models that enable the analyst to evaluate the sensitivity of these characteristics to the 
state and the control variables, e.g. the demand and the signal control settings; 

• The design of the road geometry requires also models that allow one to evaluate 
different types of intervention on the road infrastructure or variations in the road 
geometry (e.g. the length of a flare or the number of lanes per flow stream). 

In practice, the majority of transportation planning and design problems at urban 
controlled networks deal with delays by considering their expectation values. This 
approximation may lead to several drawbacks; for example, signal optimization may 
improve considerably the efficiency of one signal control when the actual flows are close 
to the average, but, on the other hand, it can be likely that this optimization creates large 
delays in a certain area when larger demands occur, for example creating gridlocks and 
blocks to other intersections upstream. This phenomenon may create extra delays, which 
cannot be computed if only expected values are considered. Chapter 4 has shown that the 
Markov Chain model can be used as an alternative to the Webster’s formula to calculate 
the optimal cycle time. 

The two main contributions given by the models developed in this thesis are therefore 
very appealing in the design of dynamic control plans, like pre-phased controls, or to 
evaluate the reliability of these control plans, for example by evaluating the probability 
of cycle failures and thus overflow queues to occur. Moreover, the introduction of a 
probabilistic approach for the computation of travel times opens up the opportunity to 
have a probabilistic planning and design of the road networks. This approach has been 
for example supported in the past for defining the efficient use of the motorway capacity 
((Brilon 2005)), or the optimal design of a flare ((Tian 2006)). It is therefore a very 
appealing methodology for measuring the reliability of the network design. 
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To give a few practical examples of these applications one can think of introducing, in 
the evaluation of the performance of a signal, a probabilistic definition of the level of 
service. The Highway Capacity Manual considers for degraded level of services (levels 
D, E and F) the possibility that large fluctuations in the demand produce unexpected 
large delays. The opportunity given by the new methodologies to calculate the chance of 
these large fluctuations in the delay experienced by the drivers enables one to have a 
quantitative estimate of this chance to occur. 

A second useful application of the probabilistic approach is in design problems that have 
particular regard to spillback effects from short lanes of from one link to other links in 
the network. The Markov method in fact improves the optimal cycle method by also 
considering the physical length of the queue together with its probability to occur in time. 
In the optimization of area controls, the area manager may be interested in setting the 
signals in such a way that the probability of spillback is low in some sections.  

 
UFigure 9.2: Examples of spillback effects 

Figure 9.2 shows two cases where the traffic manager might consider spillback effects in 
the optimization of signals. The top figure may be the example of a short exclusive 
turning lane. The Highway Capacity Manual proposes to compute the optimal green and 
cycle lengths by considering the two lanes as separated and not influencing each other. In 
reality, if green time on the exclusive turning lane is not properly set, there can be a non-
negligible chance that spillback occurs. The lower picture may represent a secondary 
road placed in short distance from a highly capacitated road. In both cases the road 
manager may apply the Markov method by simply computing the optimization of greens 
and cycles adding a constraint to the probability of a maximum queue length to occur. 
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Feasible solutions can thus be found by adding the condition that the probability of 
spillback does not exceed a pre-determined percentage of the total probability. 

Normally the assumption in such problem is that the queue length has a Poisson 
distribution. Chapter 4 has shown that this assumption is incorrect and the shape of the 
probability distribution changes consistently from undersaturated to oversaturated 
conditions. The opportunity given by the Markov model to compute these probability 
distributions in time enables one to correctly estimate the probability of spillbacks and 
select the most opportune length for the links and the signal plan. 

9.4 Application in travel time estimation and prediction  

Accurate short term travel time predictions are fundamental component for many 
advanced traveler information and management systems. So far, the research on 
developing accurate methods to predict travel times has mainly focused on freeway 
analysis, while very little can be found on the urban context (Liu 2006). The main reason 
for a consistent difference between freeway and urban travel time predictions is the 
difficulty of including the effects of controlled signals upon the traffic flow. 

Generally speaking, short term travel time predictions use measurements of the actual 
conditions of traffic (e.g. detectors, cameras) to give an estimate of how the system will 
behave a certain period of time afterwards. Since the collected data can give correct 
estimations of actual and past events, but no definite information is told about what can 
happen in the future, various methodologies have been proposed in the past to derive 
travel time forecasts from detector outputs (e.g. (Sisiopiku 1995), (Van Lint 2004)). 

The newly developed models are useful also in this type of applications in many aspects. 
A few possible areas of application are here listed: 

1. UModel-based travel time prediction:U short term travel time predictions in large 
networks require delay models that are able to predict how likely they will perform 
within a limited period of time. This information is useful e.g. in the implementation 
of ATIS systems and adaptive controls. 

2. UData completion/validationU: model-based models can improve data-driven models for 
two main reasons: 1) they can be used for the interpolation of missing data, which are 
typically scattered both in space and time and 2) they can be used in the data filtering 
process, for example detecting outliers. 

3. UIncident detectionU: in safety analyses it is often a difficult task to recognize when 
very long delays are due to traffic accidents and when these are simply due to the 
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stochastic nature of traffic. This information can be used e.g. in analyzing data or in 
real-time incident detection systems. 

In general a travel time prediction is affected by three source of error: errors in the model 
(due to e.g. its simplifying assumptions), errors in the dataset (e.g. missing or corrupted 
data) and errors in the combination of the model with the data. Some recently adopted 
techniques (e.g. Kalman filtering, (Liu 2006)) try to minimize the last source of error, but 
its result strongly depends on the first two types of error. While reduction in the error 
from the data is obtained simply by using more accurate data collection methods (e.g. 
tracing each individual vehicle trajectory), reduction in modeling errors is obtained 
adopting models that use the least simplifying assumptions possible. The newly 
developed models are therefore improving the modeling power since they better catch the 
dynamic and the stochastic character of delays under very general assumptions for the 
demand and the supply systems. Moreover, the new models enable one to measure the 
modeling error by computing the uncertainty that affects its prediction. This information 
is vital in travel time estimation methods that hybridize model-based and data driven 
approaches. 

In the first type of application the data collected from the current traffic status (or past 
traffic states) can be used to “refine” the prediction power of the models. Comparing the 
expected results computed with the probabilistic approach with data collected from any 
monitoring system, one can refine the model by e.g. having outcomes closer to the field 
data, or by having a better estimate of the relationship between the model parameters 
(flows, capacity, etc.) with the expected outcomes. Inversely, in the second type of 
applications the new models can be used to refine datasets, filling up missing data in 
space and time, or detecting outliers and “strange” data points. 

9.5 Synthesis: the usefulness of a probabilistic approach 

The newly developed models presented in this thesis, i.e. the probabilistic modeling 
approach presented in Chapters 4 and 8, and the Van Zuylen-Viti formulas developed in 
Chapter 6, give very important contributions to several areas of application in 
transportation problems. These areas of application are identified by three main classes: 
planning and design problems, traffic flow estimation problems and short term travel 
time prediction problems. 

The most important improvement is certainly in their better estimation power with 
respect to the available analytic formulas for planning purposes (e.g. the HCM 2000 
delay formula). It is recommended in these applications to use the new models since they 
give a better prediction of the dynamics of queues according to the dynamic and 
stochastic character of the arrivals and of the departures. Both the design of the signal 



196  TRAIL Thesis series 

plan and of the road geometry will improve using a probabilistic approach since it 
enables a probabilistic design of such characteristics and it enables the computation of 
the effects of spillback. Moreover, the probabilistic approach is a flexible methodology, 
which allows one to model accurately different types of control (e.g. pre-phased and 
vehicle actuated controls) and to select for each network scenario the most suitable type 
of control to implement. 

The models presented in this thesis can also be recommended for applications in flow 
estimation problems like Dynamic Traffic Assignment problems, since these models 
improve their validity if one applies a delay estimation method, which enables one to 
catch the dynamics of travel times and therefore of the travel costs experienced by the 
drivers. Moreover, the knowledge of the variability of such queues (and consequently of 
the overflow delays) can be very important if the utility of a route alternative depends on 
the uncertainty of the travel time drivers may experience in their next trip. 

Finally contributions can be found in the short term travel time predictions, since these 
predictions strongly depend on how general is the model in terms of correctness of its 
outcomes and of strictness of its simplifying assumptions. In this sense the newly 
developed models can help at refining the errors coming from the data collection method 
and to validate or complete such datasets. Finally, thanks to the knowledge of the 
variability of queues and delays depending on the variability of the arrivals and the 
departures, they can give a measure of the modeling error, which is fundamental 
information in hybrid model-based and data-drive travel time prediction models. 



10 
Conclusions 

This chapter summarizes the research developed and presented throughout this thesis. 
The main contributions to the current state-of-the-art and practice in queuing modeling at 
isolated single-lane signalized intersections are briefly described in Section 10.1. The 
flexibility of this methodology is later shown in Section 10.2, in which the probabilistic 
approach is applied to more complex traffic flow processes (paired intersections, multiple 
lanes and dynamic control systems). The importance of developing the queuing models 
presented in this thesis is testified by the numerous applications that are described in 
Section 10.3. The importance of computing delays in a probabilistic fashion and the 
flexibility of the methodology adopted motivates further research in this direction, as 
indicated in Section 10.4. Finally Section 10.5 concludes this thesis with some 
recommendations. 

10.1 Summary of research 

In many cities, traffic congestion is observed systematically for a large part of the day, 
producing enormous economic and environmental losses as much as stress and 
dissatisfaction. A study in U.K. in 2000 reported that the total delay experienced in urban 
networks is 4 times larger than the total delay experienced on motorways during 
congested periods, and even 7 times larger in the London Area (Department of Transport 
2000). There is general agreement that the largest part of the delay, due to congestion at 
urban networks, is caused by signalized intersections; this is justified both because non-
signalized intersections are usually designed to regulate low-demand areas and because 
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some signal service systems are often incapable of dealing with the variability and the 
dynamics of the arrival process (e.g. fixed timed controllers). The advances in computer 
technology and electronics have indicated a new direction of research towards a more 
efficient use of the transport network without the need of intervening on the physical 
infrastructure. Dynamic Traffic Management (DTM) measures are, among the so called 
Intelligent Transportation Systems (ITS), strategies that particularly have the scope of 
regulating the demand and the supply systems by either redirecting part of the demand to 
more capacitated alternatives of travel or by adapting the supply system to the actual 
demand. DTM strategies at signalized intersections are often designed to control the 
traffic flow by dynamically adapt the signal settings to the actual (or the expected) 
demand. To assess the impact of these strategies, and define optimal regulations, the 
traffic control planner needs models that correctly estimate the effects of these strategies 
on the network performances. To do so, deeper insight into the way the demand and the 
supply systems interact among each other is needed. Within these interactions travel 
times (and therefore signalized intersection delays) play a central role since they are 
determinants of the level of service of the supply and they influence the travelers’ 
choices. 

This thesis has the objective of improving the modeling and the understanding of the 
queuing and delay processes at signal controls; more specifically, it gives contribution to 
a clearer understanding of the dynamic and stochastic character of overflow queues at 
signal controls and the effects of these queues on the individual delay experienced by the 
drivers. This subject has been studied by many researchers in the past giving a vast 
amount of literature. This thesis presents a special approach to the delay problem by 
developing a new model for average or expected delay and its standard deviation. In 
particular, the effect of the variability of the arrivals on the formation and dissipation of 
overflow queues is thoroughly analyzed, giving insight into the queuing process 
especially in conditions of flows near capacity. Special attention is given to the 
variability of queues and delays, since travel time variability is fundamental measure e.g. 
to assess the travel time reliability, to evaluate the accuracy of information systems and 
to evaluate the travelers’ satisfaction towards one alternative. 

The objectives of this research are briefly summarized here: 

• To give insight into the effects of the variability of arrivals to the dynamic and 
stochastic behavior of queues and delays at signals; 

• To select a methodology suitable for simulating the effects of existing or newly 
developed management strategies in detail; 

• To develop a new formula for the expectation value of the overflow queue length 
in time, which improves the delay estimation methods available in literature; 
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• To develop also a formula for the standard deviation of the queue length, which 
may improve planning and design problems that aim to estimate the reliability of a 
transportation network; 

• To validate the newly developed analytical formulas. 

The main result of this thesis is the development of new probabilistic models based on 
Markov Chain renewal processes (see Appendix A for a general overview), which 
explicitly account for the stochastic character of the elements involved in the traffic 
control system, i.e. the demand and the capacity. Starting from a methodology developed 
and applied already in past studies (e.g. (Van Zuylen 1985), (Olszewski 1990), (Wu 
1990)) but limited to fixed controls and, apart from the work of Wu, to stationary 
demand conditions, new formulations for different types of controls (i.e. vehicle actuated 
controls), for multiple lanes, and for general traffic patterns were developed. Moreover, 
new analytic formulations for the expectation value and the standard deviation of 
overflow queues in time were derived from the results of the Markov model. The power 
of this methodology is testified by comparing its results to microscopic simulation, 
showing good consistency between them, and its flexibility is testified by the opportunity 
to apply this methodology to more complex scenarios. 

10.1.1 Conclusions from empirical analysis and state-of-art review 

Chapter 2 gives an empirical overview of the interrelation between the variability of the 
arrival process at urban routes and the variability of travel times. The causes and the 
effects of this variability are analyzed by looking at field measurements; differentiation is 
done between predictable variability and unpredictable (and therefore uncertain) one. 
Although estimation and prediction can be improved with enhancing the road monitoring 
system and by using detailed travel time models, only part of the demand fluctuations 
will be forecasted (e.g. day-to-day and within-day). The arrivals still remain stochastic, 
and this characteristic is especially affecting delays at signals that operate near capacity. 
This implies that, in terms of travel time uncertainty, signals should not operate too close 
to the signal capacity but spare capacity should be kept for the demand variations. This 
conclusion is in line with the concept of traffic efficiency used in the statistical concept 
of capacity at freeways used e.g. by Brilon ((Brilon 2005)) and the well know 
methodology to optimize traffic control settings of Webster ((Webster 1958)). Indirectly, 
this policy should be beneficial for travelers’ information systems, since less variability 
implies a higher predictability, and, directly, for the travelers’ satisfaction towards a 
route alternative, since drivers have been shown to be very sensitive to travel time 
uncertainty. 

Travelers in fact take in consideration travel time variability sometimes even more than 
mean travel times. Especially when time constraints are involved (e.g. important 
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meetings, delivery of goods within a time window), a road user is very concerned to the 
risk of long unexpected travel times and is willing to spend extra time on the road if this 
implies less risk of late arrivals. The management policy should therefore improve travel 
time predictability by reducing the sources of uncertainty. Moreover, travel choice 
models will improve their prediction properties if the costs for uncertainty are considered 
in the utility of a route and a departure time. 

This thesis limits its area of attention to the delay incurred by vehicles at signalized 
intersections and the uncertainty around this measure; therefore, non-signalized 
intersections, roundabouts and uninterrupted facilities are not explicitly considered. 
Furthermore, this research is limited to motorized vehicles, in particular to passenger 
cars, since no regard is given to different vehicle classes and to the effect of one specific 
class to the others. Although the research presented in this thesis refers to this area, the 
models developed can be applied to all systems characterized by a stochastic arrival and 
service processes (so called G/G/n queuing processes, (Tijms 2003)). For example they 
can be applied to toll plazas, box offices, etc. 

Since the seminal works of Beckmann et al. (Beckmann 1956) and Webster (Webster 
1958) the delay at fixed-time controls has been assumed consisting of two components: 
the uniform and the stochastic delay term. The first expresses the delay as the arrival 
process is perfectly uniform, thus it is proportional to the chance of a driver to arrive at 
the signal during the green or the red phase, while the second computes the extra delay 
due to the random nature of the arrival process. These models are valid only for 
undersaturated intersections, since they assume the expected queue length within a cycle 
to be statistically in equilibrium. Models for the expectation values of the overflow queue 
length in these conditions were proposed to justify the existence of the stochastic delay 
component (e.g. (Miller 1963) or (Newell 1965)). Time-dependent queuing models for 
oversaturated conditions started to interest the research field from the work of Catling 
(Catling 1977), who proposed to use a simple linear relationship when the average degree 
of saturation is larger than 1. A discrepancy between the static and the deterministic 
queuing was then affecting the delay estimation. Approximate formulas were proposed to 
reduce the discrepancy between theoretical relationships and real-life using mainly 
heuristics (e.g. (Webster 1958), among various others for the static case, and (Akcelik 
1980) for the dynamic case). 

The heuristic foundation of the models presented in the literature study suggests that 
there is still no clear insight on the real dynamic behavior of these measures. The 
scientific forum agrees that a large source of modeling error is caused by inexact 
estimation of the overflow delay due to queues, and points to a lack in estimating the 
transitions between congested and uncongested conditions. This gap is primarily due to 
the large contribution given by the random nature of the arrivals within a cycle and 
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among cycles. Clearer insight is therefore achieved if the relationship between the arrival 
distribution and the distribution of delays in time is well understood. 

10.1.2 The old theory revised 

Overflow queues are assumed to grow from cycle to cycle when the intersection is 
oversaturated, while in undersaturated conditions the overflow queue is assumed static 
and following e.g. the Webster’s formula. The unrealistic character of this assumption 
becomes clear in the analysis of the transition between undersaturated intersections and 
oversaturated ones. Near saturation the overflow queue becomes infinite, according to 
formulas like Webster’s, while it becomes finite and linear in time in oversaturated 
conditions. Heuristics have been used in the past to solve this discrepancy (e.g. (Kimber 
1979), (Akcelik 1980)), proposing some time-dependent expressions for the queue and 
the delay processes based on a coordinate transformation, but no clear insight of how to 
derive an exact time-dependent expression has been provided so far. 

Another assumption affecting the delay estimation is that both static and time-dependent 
queuing models are calculated starting from an empty signal, i.e. the initial queue is 
assumed zero. Only recently a third component has been considered necessary in the 
control delay estimation: the initial queue delay component, which expresses the extra 
delay caused by an initial queue that is larger than the random queue component. This 
component was adopted in the latest version of the Highway Capacity Manual ((TRB 
2000)). The drawback still limiting this expression is in the way the dynamics of 
overflow queues are calculated. This model in fact assumes that the expectation value of 
the initial queue decreases according to the linear relationship proposed by Catling until 
its complete clearance. This linear model has been shown, when compared to the cycle-
by-cycle Markov chain process, to underestimate the overflow queue. This error is 
particularly affecting the conditions of traffic near the capacity. 

As a consequence of these limiting approximations, the analytic formulas developed so 
far are not applicable for example in peak period analyses (except for the model of Wu 
(Wu 1990)) since they do not properly model the transition between congested and 
uncongested condition, i.e. the expected behavior of decreasing queues. This affects for 
example the estimation of flows rescheduling their trip from peak to off-peak period and 
the estimation of queue clearance times. 

The strong stochastic behavior of queues in conditions near capacity justified a stochastic 
modeling approach, the Markov Chain model, already adopted in the past by several 
authors (e.g. (Van Zuylen 1985), (Olszewski 1990), (Wu 1990)). Chapter 4 and 
Appendix A describe in detail this methodology, which has inspired consistently the 
models developed in this thesis. These approaches consider the queue length to be a 
dynamic process, i.e. a Markov Chain, where the probability distribution of overflow 
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queues at one time step depends only on the distribution calculated at the previous time 
step, i.e. in the case of overflow queues, the queue state at one cycle depends only on the 
queue state at the previous cycle. However, the models proposed in the past are limited to 
evaluate the queue length probability distribution cycle by cycle while no insight is given 
on what happens within a cycle. 

One main contribution of this thesis is the development of a Markov chain model also for 
the queuing process within a cycle, which extends the models developed in the past and 
helps understanding and explaining the overflow queuing phenomena observed in a 
cycle-by-cycle process. Chapter 4 has presented this Markov formulation; this model 
computes, in a probabilistic fashion, the expectation value of the queue length in time, 
growing during the red phase and being cleared during the green phase, which explicitly 
accounts for the effect of variable arrivals. While little difference is observable for 
relatively small volumes of traffic (i.e. below a degree of saturation of 0.8), the effects in 
time of the variability of the arrivals are rather considerable.  

This model contributes to the state-of-the-art presented since it is an exact formulation, 
which considers explicitly the temporal effect of the variability of arrivals at any point in 
time, and not only from one cycle to the following as it was done previously. The new 
formulation of this random delay component is derived without any assumptions about 
the statistical properties of the arrival process, apart from the assumption that the arrival 
distribution is uniform over the whole cycle. An interesting research direction can be for 
example assuming a different arrival distribution at the signal, for example to evaluate 
the queuing process also when arrivals are influenced by some signal coordination. 

The numerical value of the new random delay component can easily be computed and 
compared with the many approximate expressions developed in the past. More important 
than the possibility to calculate the random delay with a more general model than the 
existing ones, is the insight that the derivation gives in the process that causes the random 
delay. The assumption used by some authors that the queue should be represented by a 
step function due to the binary character of the arrival process, appears to be superfluous 
if the analysis is focused on the expectation value of the queue length. The stepwise 
character of the queue is transformed to a smooth function. The expectation value of the 
queue in the green phase shows a non linear character as soon as the tail of the 
probability distribution comes close to zero. This phenomenon causes the overflow delay 
also at undersaturated conditions. 

The contribution of the new delay formulation is particularly visible at intersections 
operating near the capacity. Comparison with well known models of Webster ((Webster 
1958)), McNeill (McNeill 1968) and Akcelik ((Akcelik 1980)) showed that these models 
are particularly inaccurate within this range. On the other hand, this method is limited in 
that it is solvable only numerically, i.e. no simple direct expression between degree of 
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saturation and delay is derived. This makes it unsuitable for planning purposes in its 
present form. Two options are possible for its application: 1) as a validation for existing 
formulas of random delay or 2) as a valid data-generator to search for a simple formula 
that approximates this expression. This last approach has been followed in Chapter 5 for 
the evolution of QB0B , the initial queue at the start of a red phase. 

10.1.3 New insight into the dynamics of traffic at signals 

The within-cycle delay model, combined with the cycle-by-cycle model presented in 
chapter 4 allows a full evaluation of the queue length and the delay distributions in time, 
regardless of what probability distribution for the arrivals is assumed. This enables one to 
estimate the delay incurred by the road users and the uncertainty around this estimation. 
This information, plugged in a network scenario, can improve the route travel time 
estimation and predictions and their uncertainty using model-based travel time prediction 
models or hybrid model-based and data-driven models (e.g. (Liu 2006)). Chapter 8 
discussed the potential opportunity of applications in this direction. More importantly, 
this formulation can be applied in planning and design problems, since it is especially 
suited for long-term travel time predictions and to estimate the route flows along a 
network in a dynamic scenario. The knowledge of the variability of travel times can be 
useful information if a component in the utility of the drivers dependent on this 
variability is assumed in the estimation of route preferences. Moreover it is fundamental 
element in the estimation of the network travel time reliability. 

The expected values of the queue length and its standard deviation have been found often 
to be of the same order of magnitude. The numerical evaluation using a Poisson 
distribution for the arrival process shows in fact the two elements to have nearly identical 
dynamics in time. If estimation is done assuming non-stationary flow conditions, but the 
arrival distribution is assumed stationary within sub-periods, the behavior of the queue 
length within each sub-period strongly depends on the queue length distribution at the 
end of the previous period and not only on its expectation value. To make an example of 
the implication of this remark one could think of two different applications for the model: 
if the model is used for planning purposes or for estimating flows through a dynamic 
traffic assignment process the delay estimated at a specific time (say, 8:30AM) will 
depend on the traffic pattern assumed in the past time periods. If on the other hand the 
model is used for short term predictions (e.g. (Liu 2006)) the information about the initial 
queue length is given by measuring the present state (e.g. by cameras); in this case the 
Markov model can be applied to predict the probability distribution on a future moment 
and it should be computed with a deterministic initial queue state. 

This method has also quantified the error that affects standard analytical procedures like 
the HCM2000 ((TRB 2000)) to compute vehicle delays especially when the model 
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should compute decreasing queues after an oversaturated period, which frequently occurs 
during peak periods. All available methods up to date underestimate vehicle delays, or 
flatten delays within an evaluation period, instead of computing more accurately delays 
for each cycle. 

10.1.4 New approximate formulas for the expectation value and the 
standard deviation 

The Markov process in Chapter 4 has inspired the development of a time dependent 
formulation for the expectation value of overflow queues, which well reproduces the 
results of the Markov model. This model is developed under milder assumptions than the 
heuristic formulas developed in the past (e.g. (Akcelik 1980), (Brilon 1990)) and it has 
been found to well reproduce also the results from microscopic simulations. 

The ratio between standard deviation and variance influences the dynamic behavior of 
queues. This implies that an analytical expression for the standard deviation is also an 
important research issue. Therefore, an expression for the standard deviation has been 
also developed. To the author’s knowledge this is the first time-dependent expression for 
the standard deviation of the overflow queue length. The two analytic models have been 
called throughout this thesis the Van-Zuylen-Viti models. 

These models have a broader area of use than the models presented in the literature study 
since they reproduce the evolution of the expectation value of the queues and their 
variability as function of time, without the necessity to fix an evaluation period but they 
provide estimates for every cycle. The models proposed can compute queues and delays 
assuming both uniform and non-uniform arrivals. This feature makes them suitable for 
dynamic and stochastic route choice processes, but also to make short-term prediction of 
expected waiting times. The standard deviation model is also very important to have an 
estimate of the uncertainty of a delay prediction, and it is valuable information for 
measuring the reliability of signalized route networks. Since the models have been 
developed for isolated intersections a multiplicative factor should be applied to the two 
models to consider the filtering effect of upstream signals when applied in a network. 

10.1.5 Model Validation 

Chapter 7 was dedicated to the validation of the Markov and the Van Zuylen-Viti 
models. Microscopic simulation has been used to validate the Markov approach and the 
analytic formulas proposed in this thesis. The alternative to use real life observations is 
practically impossible, since it is rather unlikely that one can observe in real life 
sufficiently long periods of stationary demand conditions. To operate the analysis several 
microscopic simulations were needed. Firstly the comparison was operated considering 
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different scenarios, i.e. long period of stationary demand conditions to analyze the 
behavior towards equilibrium, behavior with different initial queues, behavior with non-
stationary demand rates etcetera. For each scenario hundreds of microsimulations were 
necessary to obtain statistically significant estimates. The comparison was limited for 
situations that are close to saturation since the new models show consistent differences 
especially within this range. To the author’s knowledge, this is the first study that 
attempts a comparison of models in a non-stationary demand rate scenario and that gives 
special importance to the behavior of overflow queue lengths from large initial values. 
Only a few studies have instead compared models in the way they deal with the 
variability of traffic at signals. 

The results of the model comparisons are satisfactorily and the three models show the 
same dynamic behavior. The analytic function presented in Chapter 5 is therefore 
suitable for planning and design purposes and contributes to a better estimate and 
prediction of the signalized network performances. The results in terms of expectation 
value are nearly identical, while the standard deviation estimated with the Markov and 
the Van Zuylen-Viti models is slightly smaller than the microscopic simulation results in 
oversaturated conditions. The standard deviation shows especially larger values in the 
two models with respect to the simulated results of VISSIM (PTV 2003) especially when 
recovering from a large initial overflow queue at the start of a new sub-period. This has 
been explained by a more uniform behavior of the vehicles in the microscopic program 
with the increase of congestion due to the assumed car-following logic. It is not clear 
whether this different behavior is a weakness of the proposed models or of the 
microscopic car following behavior modeled in VISSIM. Future research will aim at 
solving this issue. 

Simulation of the queuing process of an upstream signal has suggested that the arrival 
distribution at one signal inside an arterial corridor should take into account of the 
filtering property of signalized intersections. The variability of the arrivals is in these 
conditions limited in its largest values, reducing the chance of overflow queues. 
Simulation of the queuing process using the Markov model should therefore be done 
using this filtering property. The simulation has been done considering a single flow 
stream coming from the upstream signal, i.e. no arrivals from other directions (e.g. 
turning flows or secondary entrances) and it is therefore applicable in arterial corridors, 
where the flow rate of the main stream is considerably higher than the flows coming 
from other sources. Future direction of research on this issue should investigate the 
influence of flows coming from any upstream section converging to the signal and 
especially the effects of their variability. 

The Markov and the Van Zuylen-Viti models are still valid for a single flow stream 
section and with fixed control. Although fixed time controllers are considered as old-
fashioned, while most intersections are controlled by closed loop controllers, the traffic 
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dependent control becomes nearly fixed time during peak hours. That makes a good 
model for delays of fixed time controlled intersections still important. Nevertheless, the 
model extensions presented in the next section show that the probabilistic modeling 
approach is a very powerful method to simulate the dynamics of a traffic flow process in 
more complex travel time estimation problems. 

10.2 Model extension to general networks 

Chapter 8 proposes the application of the Markov approach described in Chapter 4 in 
three directions: arterial corridors, multilane sections and time-dependent controls. 

10.2.1 Effect of upstream signals 

The hypothesis of isolated signal implies that the arrival distribution can be considered 
uniform in time, i.e. a vehicle is equally probable to arrive at every second of the cycle 
time. This hypothesis seems not suitable when simulating a sequence of signals. Signal 
coordination has been shown to affect only the uniform delay component, while it does 
not affect the overflow delay component. Upstream signals can affect the overflow delay 
component because of their filtering property. The filtering effect of upstream signals 
influences in fact the maximum number of arrivals observable within a cycle to the 
downstream intersections. 

Microscopic simulations using VISSIM has shown that the arrival distribution profile in 
an arterial corridor (i.e. only the one flow stream is considered coming from the upstream 
signal) differs considerably from the isolated intersection case, and indeed the main 
difference is in the maximum number of arrivals per cycle. Widely applied overflow 
queuing models like the program TRANSYT ((FHWA 1984)) do not take into account 
this effect, since they consider all intersections as isolated. 

To account for this effect in the Markov model one can simply assume a maximum 
arrival, which depends on the flow streams that converge to the downstream signal. 
Nevertheless, the hypothesis of isolated signal represents an upper bound for the 
computation of overflow queues and stochastic delays. 

A numerical evaluation of an arterial corridor shows that both expectation value and 
standard deviation of overflow queues reduce considerably when an upper bound to the 
maximum number of arrivals is assumed. Below a certain value this characteristic 
becomes negligible, confirming the theoretical results of Newell ((Newell 1971)), who 
proposed to consider in an arterial corridor overflow queues to occur only at the first 
signal while no overflow queues should be considered in the following signals. This 
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conclusion is although valid only below a certain number of arrivals assumed as 
maximum. 

10.2.2 Effect of variable lane distribution 

The hypothesis of single service point limits the applicability of the Markov model 
presented in chapter 4 in a multiple service point scenario. One-lane sections work 
differently from multilane sections, since in the latter vehicles have the possibility to 
change lane. To account for this effect the Markov model has been combined with a lane-
changing model. By doing so, the distribution of arrivals has been shown to have a 
dynamic character, according to the dynamic character of the overflow queue length. 
Furthermore, the Markov model at multilane sections allows one to account for spillback 
effects, which is useful information for a correct estimation of delays and for the design 
of exclusive turning lanes. 

The method estimates the lane flow distributions according to the equal queue length 
principle. The difference from other models already proposed is the use of a dynamic 
probabilistic queuing model and a gap-acceptance model.  

If the problem is to evaluate an existing infrastructure, the road manager can use this 
method to estimate the delay at each lane, since the geometry is already fixed. This 
method is also suitable to evaluate or design the optimal length of a flare. 

10.2.3 Markov model formulation for vehicle actuated controls 

The hypothesis of fixed control settings is also limiting the applicability of the Markov 
model. It is common to use loop detectors to control the intersections according to the 
actual traffic conditions. Vehicle actuated control is frequently implemented in these 
areas but the estimation of the delay caused by this control type is not yet clearly 
understood. 

The assumption of fixed control settings has been stressed by formulating a probabilistic 
model of vehicle actuated controls. This approach allows one to compute the probability 
of green time extension depending on the variability of arrivals and their headway 
distribution in time. The model assumes the green time subdivided into three main 
components: the green given to vehicles arriving during the red phase, the one assigned 
to the vehicles that arrive during the green phase but that have to stop because the queue 
has not yet been cleared, and the green time extension given to vehicles arriving in short 
headways while the queue has already been cleared. 
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The overflow queue is assumed to occur only when the maximum green time extension is 
met, and the probabilistic model computes its occurrence depending on the arriving flow 
rate of the stream and of the conflicting streams. 

10.3 Future applications of the models 

The central role of intersection delays at signalized intersections in many transportation 
problems justifies the many application areas where the models presented in this thesis 
can be placed. Here are listed only few examples: 

1. UUrban network travel time predictionU: both probabilistic and analytic models may 
contribute to improve model-based travel time predictions in a dynamic environment. 
Moreover, the Markov and Van Zuylen-Viti models enable an estimate of the 
uncertainty of these predictions, which is important in measuring the inaccuracy of 
the prediction due to the variability of traffic flows. Information systems may be 
improved with this information. 

2. UData completion/validationU: an accurate model-based prediction, which enables one 
to deal with the dynamic and the stochastic character of traffic, can improve data-
based travel time predictions for two main reasons: 1) it can be used for the 
interpolation of missing data, which are typically scattered both in space and time; 2) 
it can be used in the data filtering process, for example detecting outliers.  

3. UDevelopment of approximate formulasU: the probabilistic approach has been shown to 
be suitable tool to simulate a dynamic process accounting for the stochastic nature of 
the state and control variables. This approach has suggested new analytic formulas 
for the expectation value and the standard deviation of the overflow queues at fixed 
controls. A similar approach can be done for example for developing formulas with 
different assumptions (e.g. control type, arrival distribution, etc.). 

4. UOptimal design of signalsU: the models presented in this thesis improve the available 
models for design and planning purposes in two ways: 1) they catch well the dynamic 
behavior of the expectation value of the overflow queue and 2) they estimate the 
uncertainty of this value to occur. These two features improve the optimal design of 
signals, e.g. they improve the optimal pre-timed controllers, they improve the reliable 
design of network signals by computing the probability of spillbacks to occur etc. 

5. UOptimal design of road geometryU: the knowledge of the dynamic and stochastic 
behavior of overflow queues at signals can be helpful in the design of the geometry 
of the signalized intersection, e.g. the optimal length of a flare, the optimal number of 
lanes per flow stream etc. 
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6. UApplication in flow estimation problemsU: the solution of an assignment process 
strongly depends on the assumed cost functions and on the assumed utility function 
of travelers. The application of travel time functions, which are not able to catch the 
dynamics of traffic and their propagation in time and space, may result in an incorrect 
distribution of flows in time and space. Given the strong travelers’ risk averseness 
towards uncertainty, flow estimation problems will improve if both the value of 
uncertainty for the travelers is estimated and if a travel time function that estimates 
this uncertainty is applied. 

10.4 Recommendations 

This last section aims at giving directions for further research following the study 
presented in this thesis. 

10.4.1 Recommendations for model developments 

In the development of the models presented in this thesis some assumptions were made. 
Further research can release these assumptions in the following directions: 

• The assumption of Poisson distribution for the number of arrivals within a cycle and 
deterministic service rate is used as example throughout the whole thesis. Other 
distributions can also be used in the numerical evaluation of the overflow queue, 
probably modifying the shape of the expectation value and the standard deviation of 
the queue. This can lead to different approximate formulas than the Van Zuylen-Viti; 

• The hypothesis of uniform arrivals within a cycle can also be relaxed in the 
estimation of delays at vehicle actuated controls. The platooning effect of upstream 
signals can strongly modify the results of the numerical evaluation of the within-
cycle queuing process; 

• The assumption of homogeneous traffic composition is also limiting the model 
accuracy. It is recommended to analyze the impact of variable traffic composition 
both to estimate the variability of the signal throughput and of the overflow queues; 

• More complex delay estimations of dynamic control signals can be developed with 
the probabilistic approach, e.g. by including public transport priority, advanced 
network area controls etc.; 

• Acceleration and deceleration effects at the start and the end of the green phase are 
not considered in the models. It is assumed that the waiting time stops at the moment 
that the queue in front of a car has left. To compute individual delays these effects 
should be considered. 
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10.4.2 Recommendations for model calibration/validation 

The models described in this thesis have a strong theoretical background and therefore a 
few recommendations are needed for their application in practice: 

• Validation has been done using microsimulation for its tractability. However, the 
soundness of the model approaches presented in this thesis will improve considerably 
if comparison with real-life data is done. Although field data is practically impossible 
to be obtained, some controlled experiments (i.e. recruiting several vehicles and drive 
them in a test site) could be done. 

• The behavioral assumptions done to numerically evaluate the effects of overflow 
queues in the lane flow distribution have not been calibrated with field data. The 
sensitivity of drivers to lane change should be strongly dependent on the road 
intersection in analysis; also in this case a controlled experiment could be done. 

• The vehicle actuated control model should be validated by microsimulation as it was 
done for the fixed control case; 

10.4.3 Recommendations for model applications 

The recommendations for the application of the models presented in this thesis are here 
listed: 

• The models presented in this thesis are very appealing and should be used for design 
and planning purposes; 

• It is recommended to select the arrival and the service rate distributions according to 
the values analyzed with historic data; 

• These models can be used for short term travel time prediction if combined with data-
driven models, as it was discussed in chapter 9; 

• The models developed can be used in flow estimation problems, especially in 
Dynamic Stochastic Traffic Assignment processes, since they give one the 
opportunity to catch both the time-dependency and the uncertainty of queues and 
delays; 

• The models presented are valuable tools for the estimation of the network and the 
travel time reliability. 

The author envisages that the proposed probabilistic modeling approach opens new 
perspectives in the development of dynamic and stochastic travel time estimation 
problems and it is a suitable methodology for design, planning and reliability analyses. 
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A 
Markov Chains 

A.1  Stochastic models 

Stochastic models are strictly related to the definition of a stochastic process. A 
definition of stochastic process can be found in (Ross, 1996): 

A stochastic process { ( ), }X t t T= ∈X  is a collection of random variables. That is, 
for each  in the index set T , t ( )X t

( )
 is a random variable. We often interpret t  as 

time and call t  the state of the process at time t . X

Therefore, stochastic processes deal with phenomena explainable with probability 
distributions and that are often correlated in time. A mathematical formulation, which 
explicitly explains the time dependency, is the following: 

( ) { ( )} ( )X t E X t tε= +         (A.1) 

The stochastic process ( )X t  is then subdivided into two terms, a forecasted value 
{ ( )}E X t   plus a forecasting error ( )tε , where the error follows some probability 

distribution. 
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A.2 Poisson process 

Among the stochastic processes, the Poisson process is a counting process that counts the 
number of occurrences of some specific event through time. Application of Poisson 
processes include the counting of arrivals at a service point, or the occurrence of some 
natural phenomenon (earthquake, flood etc.) in a certain area. Definition of Poisson 
process can be found in (Tijms, 2003): 

The counting process { (  is called a Poisson process with rate ), 0}N t t ≥ λ  if the 
intercurrence times X1 2, ...X

{ } 1

 have a common exponential probability distribution 

function: 

x
nP X x e λ−≤ = −        (A.2) 

Figure A.1 displays the distribution of arrival headways using Formula (A.2) for an 
average arrival rate of 0.1 vehicles per second. 
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UFigure A.1: Distribution of arrival headways for an average arrival rate of  0.1 veh/s 

Poisson processes have been shown to well represent a large variety of real phenomena 
characterized by independent stochastic processes and each process having a very small 
probability of occurrence. The property of independence of random variables in a 
Poisson process implies that the k  independent draws out of a Poisson process, with a 
common exponential distribution, have a probability of occurrence in an interval of time 

 that follows the Poisson probability function: t

( ){ ( ) }
!

t tP N t k e
k

λ
kλ−= =         (A.3) 



Appendix A. Markov Chains  223 

A very important property of Poisson processes is the memoryless property, that is, at 
each point in time the waiting time until the next event has the same exponential 
distribution, regardless of how long ago the last event occurred. The memoryless 
property is a peculiar characteristic of Poisson processes and it justifies the mathematical 
tractability of such processes. 

A.3 Renewal process theory 

Many stochastic processes are regenerative, that is, they show the same probabilistic 
behavior from time to time. The time interval between two regenerations epochs is called 
a cycle. The sequence of regeneration cycles is commonly referred to as renewal process. 
Renewal theory is a generalization of the Poisson process, and it accordingly concerns 
the study of events occurring in sequence of time. Historically formulated to solve failure 
and replacement problems, renewal theory has been used for a wide variety of practical 
applications (among others, queuing systems, inventory, reliability). 

The average of the random variable  is called the renewal function. The excess 
variable is the time elapsed from epoch t  until the next renewal after epoch  and it is 
also called residual life. Renewal processes have, accordingly to the Poisson processes, 
the property of independence among variables, while the memoryless property is 
substituted by the cyclic property. This property gives some sort of dependency among 
the possible states of the stochastic variables. The easiest of the dependency is when the 
probability at one state depends only on the probability one step backward. In this case 
the renewal process is said to have a Markovian property (Markov, 1906) and the 
renewal process is said a Markov Chain. 

( )N t
t

A definition of Markov renewal process can be found in (Hillier, 2001): 

A stochastic process  is said to have Markovian property if: 0 1 2{ } { , , ,...}tQ Q Q Q=

{ }0 1 2 1                                                                      , , , , ,..., ti j k k k k −∀
1 0 0 1 1 1 1 1Pr{ | , ,... , } Pr{ | },t t t t t tQ j Q k Q k Q k Q i Q j Q i+ − − += = = = = = = =

(A.4) 

The conditional probability of any future state, given any past state and present state, 
is independent of the past states and depends only on the present state.  

Markov chain processes under this hypothesis are defined as one-step transition models. 
This property gives the opportunity to model dynamic stochastic processes characterized 
by non-stable behavior (i.e. day-to-day learning processes) in a very simple way. If the 
following condition holds: 
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{ }1 1Pr{ | } Pr{ | },     [0, ],       , ,k k t tQ j Q i Q j Q i k t i j t k+ += = = = = ∈ ∀ >   (A.5) 

then the Markov process is said to be stationary, that is the probability distribution does 
not change in time. A condition that guarantees a state to be transient is also given in 
(Hillier, 2001): 

A state is said to be transient if, upon entering this state, the process may never 
return to this state again. 

Consequently, a transient state can be visited only once. Another property relevant in this 
thesis is the absorbing property, which is typical from states that gradually tend to steady 
state: 

A state is said to be an absorbing state if, upon entering this state, the process never 
will leave this state again. 

Conditional probabilities can be represented in matrix form. Using the notation 
 an n-step transition matrix is formulated as the following: 1( ) Pr{ | }ij t tp t Q j Q i+= = =

⎥
⎥

N

N

−

00 01 0N

10 11 1N

N0 N1 NN

p (t)       p (t)     ...      p (t)
p (t)       p (t)     ...      p (t)

( )
   ...            ...        ...          ...
p (t)      p (t)     ...      p (t)

t

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

p       (A.6) 

Each element represents the probability of observing an evolution from the state in row 
to the state in column. The matrix has to satisfy the condition: 

0

( ) 1ij
j

p t
=

=∑           (A.7) 

If transition probabilities do not depend on t  the transition matrix is then stationary. The 
transition probability, in combination with the probability distribution of the previous 
cycle, gives the probability of a state i  to occur at time  as: t

0
( ) ( ) ( 1)i ij i

j
p t p t p t

=

= ⋅∑         (A.8) 

To solve this equation it is then simply required the specification of some initial 
conditions  for every state i . (0)ip
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B 
The travelers’ response to 

uncertainty 

B.1 Introduction 

Assessing the influence of travel time variability on travelers’ decisions has been addressed as 
one of the challenges in recent transportation research. Several authors emphasized the 
importance of including uncertainty about travel conditions as a factor influencing travel 
decisions, especially in terms of route choice and departure time choice (i.e. (Avineri and 
Prashker, 2003), (Chen and Mahmassani, 2004), (de Palma and Picard, 2004)). This appendix 
presents empirical evidence of how much people value the variability of alternatives in 
comparison with the expected values, in relation with the experience and the information they 
have at the decision time. 

When people face a decision that yields an uncertain result, their decision is sometimes not 
easy or straightforward. Variability of costs, conflicting objectives, competing alternatives 
and heterogeneous risk attitudes make decision making somewhat variable among travelers 
and consequently difficult to predict.  High variability of travel times limits the possibility for 
users to properly estimate the benefits associated to an alternative. Moreover, memory limits 
human minds and impedes a correct estimation of an average value. For example, people tend 
to forget or exaggerate unhappy events of the past (Van Zuylen and Kikuchi, 2001) deviating 
their perceptions from objective reality. 
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Behavioral models assume travelers to choose their preferred routes according to the costs 
they expect for all known alternatives. Conventional Random Utility Models (RUM) assume 
the users to have perfect knowledge of past and actual conditions and choose accordingly the 
alternative, which gives them the highest utility. The costs determine the systematic 
component of the utility while the perception of costs is usually randomized by including an 
error term. This term is introduced to model a noise factor to model a certain degree of 
perception error. In reality decisions may be made under complete or partial information 
about the real travel costs, or under time constraints, or even depending on the traveler’s 
emotional state at the time the decision is made. 

Travelers get to know about the expected costs of all available alternatives of travel from two 
sources: from their own past experiences, thus how many times they traveled using that 
alternative or another, and from the information they acquire from external sources, i.e. 
variable message signs, road maps, radio etc. Past experiences and information are combined 
in order to have a higher degree of confidence on the expected travel costs (Bogers et al., 
2005). When conditions are uncertain travelers may prefer reliable routes instead of risking a 
travel on an average shorter but uncertain one. 

Experienced travel times and traveler’s attitudes at each trip (his level of habit, curiosity, risk 
acceptance, experience and reliability towards roads and information) are combined to get an 
expectation of the utility the traveler might have from the next trip, and how uncertain these 
costs can be. Given the road conditions experienced during past trips and the ones perceived 
by external information, the users select the road and the departure time, which should 
maximize their utility taking into account the variability of this utility and the risk attitude 
they have. 

In conclusion, the expected utility travelers may associate to each alternative is assumed to 
depend not only on the expected network costs and their variability, but also on the learning 
process that leads to this value, on the property of each individual to cope with uncertainty 
and with information they get before and during the trip. This decision-making process is 
assumed to vary with: 

1) the TexperienceT a traveler has got regarding the available routes; 

2) the TinformationT collected before and during the trip and  

3) theT individual characteristicsT of travelers, like habit, risk attitude, anxiety, motivation, etc. 

The following considerations discuss the role of these three characteristics in the travelers’ 
decisions in terms of route and departure time choice. 
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B.2 Experience 

People get to know about the possible costs they may face by experiencing the routes for 
various days, and sometimes during different periods of the day. If a traveler has little 
knowledge about the status of the roads at the time of departure, he might assign a very large 
safety margin to the expected travel time, in order to avoid that large travel times cause also 
very large delays at the arrival point. If instead the traveler has experienced the roads quite 
often, given his past experiences he may exclude that at the time of departure delays or large 
travel times may occur. The level of experience may thus considerably influence the 
perception of uncertainty and the choice under risk. 

The level of confidence given by the experience is then an influencing factor in the travelers’ 
decision-making process. This level of confidence may be influenced by the number of travels 
experienced using an alternative, related to the variability of travel times, but also on 
travelers’ individual characteristics like habit, curiosity, stress etc. 

Travel time variability and experience are thus highly correlated and this relationship can 
affect the way flows reach equilibrium. Based on former route and departure time choices, the 
travelers have personal experiences. From these experiences, they can learn about the 
characteristics of the routes they have chosen, about how to interpret travel information and 
about the reliability of this information.  

B.3 Information 

Experience is usually combined with other sources of information in order to get a more 
accurate scenario of which costs a traveler may encounter until arrival at destination. While 
past experiences might help the traveler at having a guess of what kind of conditions might be 
encountered at a certain route and time and how much a trip “usually” costs, information can 
help at clarifying the actual status of the roads. 

Information can give estimates of actual or future conditions. It is not possible to guarantee a 
perfect estimation of costs, even with the most accurate models, since information is subject 
to the variability and the dynamics of the traffic states. Travel time variability affects in fact 
the quality of information and the impact of the latter to the users. Some users may still rely 
on their personal opinion instead of following the suggestions eventually given by the 
information if information is frequently imprecise. Knowing the impact of travel time 
uncertainty when travelers combine past experiences with information is thus important in the 
assessment of ATIS systems. 
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B.4 Individual characteristics 

Even if travelers increase their level of experience and information in order to reduce as much 
as possible their uncertainty about the expected costs of a trip, uncertainty still affects their 
choice if travel times are variable. Risk attitude of people can depend on various factors: on 
road conditions, trip purpose, traveler’s stress level, individual’s attitude, level of optimism 
and so forth. People tend to have different objectives and value differently the elements 
determining their utility. They may value in a different way driving times, or delays, or 
waiting times at queues. People may rely more on personal past experiences than information 
showing strong habit and sometimes it is the other way around. 

This role of uncertainty in choice behavior is illustrated in the next section, which provides 
empirical results of the choice process of travelers under uncertain conditions in terms of 
route and departure time. The value of past experiences and information in their decision-
making process is analyzed in a simple scenario involving two alternative routes and an 
interval of possible departure times. The way these characteristics are evaluated in the 
decision-making process of the travelers is analyzed using an internet survey. The reliability 
is shown to be a characteristic that clearly influences the preference of users towards certain 
routes. The data used to obtain these results have been collected with an SP (Stated 
Preference) experiment using the Travel Simulator Laboratory (Hoogendoorn, 2004).  

B.5 Empirical findings 

This section shows some results taken from two laboratory experiments made with the web-
based tool TSL, designed at the Delft University of Technology (Delft, the Netherlands). 
People were asked to repeat many times a certain trip with a fixed origin and destination on 
the motorway network around the city of Amsterdam (see figure 2.6) and to select at each 
round a time for starting the trip and, after receiving the information about the expected status 
of the roads, the route to use. 

Two major difficulties affect the choice analysis and valuation of the parameters: 1) data 
acquisition and 2) utility model selection. The first problem arises since information about 
travel choices and decisional variables is hardly complete; if travel choices are observed from 
reality, it is difficult to catch what have determined these choices since decisional variables 
are hardly controllable in real life. On the other hand, if choices are determined by simulating 
different scenarios and asking people’s preferences, a better knowledge and control of the 
variables is achieved, but question is whether a traveler would act similarly in real life; the 
result is then highly dependent on the way trips are simulated. The second problem is related 
to the form and the complexity of the model selected to represent the utility of a traveler; very 
simple models can poorly fit the results of the data, or miss some important characteristic that 
determine the travelers’ choice. On the other hand, very detailed and advanced models have 
the risk of overfitting the data and therefore give results that are hardly applicable to other 
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data than the calibrated. For a more detailed description of the problems and limitations of 
discrete choice analysis one can refer to (Ben-Akiva 1985) or (Cascetta 2001). 

B.5.1 Description of the experiments 

First step of the experiment is the collection of some individual characteristics of the 
respondents, age, gender, driving experience etc. Later it was asked what their preferences 
were regarding the following travel time attributes: arriving early, in-vehicle travel time, 
arriving late. During the experiment, a score could be determined by the sum of the 
normalized weight for a route attribute times the number of minutes spent for that attribute.  

Let ,  ,  ik ik ikα β γ  be respectively the weight assigned for a minute lost for early arrival, driving 
time and late arrival at destination, and  the respective quantity of 
minutes that respondent i  loses selecting an alternative (route and departure time) k  during 
step . The score is computed for each individual by: 

( ),  ( ),  ( )ik ik ikt n t n t nearly driving late

early driving late n

n

( ) ( ) ( ) ( )ik ik ik ik ik ik ikn t n t n tα β γΙ = ⋅ + ⋅ + ⋅      (B.1) 

They were told that their objective was to minimize the sum of the scores over 25 rounds. 

 

UTable B.1: Characteristics (in minutes) of the routes in both experiments  

  Experiment 1 Experiment 2 
Route 1 Average  17.68 23.05 
 Standard deviation 4.25 6.65 
Route 2 Average 19.86 25.31 
 Standard deviation 3.92 2.43 

Travel times are calculated in TSL using a stochastic simulation model, which computes 
travel times according to a normally distributed loading demand and a stochastic network-
loading model. Information is given, whenever the panel is on, displaying the length of queue 
in kilometers. To simulate the stress of waiting in a queue a waiting time proportional to the 
total travel time spent and computed with a speeding factor was applied. 

The analysis of the two experiments is finalized to: 

1) investigate the sensitivity of the users to information when routes are equally variable and 
when one route is clearly more reliable than the other, and quantify the relative 
importance of past experiences and information in the utility of the travelers; 

2) show the relevant role of travel time reliability in the utility of travelers, both in departure 
time and in route choices; 
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3) analyze the influence of reliability in the learning process of users towards the individual 
preferred route and departure time with and without a reliable route; 

The first experiment presents the choice of two routes with similar expected travel times and 
variance while the second scenario involves two routes where the travel time of the first is 
highly variable while the second has a sensibly higher expected travel time but very high 
reliability (see table B.1). For the first experiment data from 52 respondents were available; 
for the second one there were 63 respondents. It concerned highly educated people mainly 
from The Netherlands, Italy and Portugal, most of them being engineers. For a more detailed 
explanation about set-up of the scenarios and the design of the experiments see (De Groot and 
Hellendoorn, 2004). 

B.5.2 Results 

This section presents some results obtained from the analysis of the average response of users 
in terms of route and departure time and using the driving time, the lost time at arrival and the 
scores as performance measures. 

The respondents’ utility function for choosing the alternative k  has been assumed linear and 
having a mixed Logit model structure, following the relationship: 

( ) ( )ik ik ikU t t ASC ε= ⋅ + +β X         (B.2) 

The indexes  represent as the above formula (B.2) respectively the alternative index, 
the respondent index and the time step. β  and  are respectively the vector of free 
parameters and the vector of explanatory variables related to person  and alternative , 
which are found significant in the choice of users. 

,  ,  i k t
( )ik tX

i k
ikASC  represents the alternative specific 

constant related to person i  and route  while k ε  is the error term, which models some choice 
variability. The choice of a mixed Logit is justified by the time-dependent characteristic of the 
choices for each respondent and the strict correlation among these choices. For a detailed 
description of the model and the model results see (Bogers 2005). 

Looking at Figure B.1 one can have an insight into the learning mechanism of travelers. It 
appears that while the average travel time is not changing with the experience of the users in 
both experiments, the average lost time clearly decreases in time. A learning curve is clearly 
shown in Figure B.1 where a normalized score index is compared in time between the two 
experiments.  
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UFigure B.UTU1UTU: day-to-day average evolution of the score index 

The index is weighted by dividing each individual’s score by the minimum travel time which 
the respondent could have experienced during the same day by selecting the proper route 
and/or departure time: 

score index = / min( )ik ikk
Ι Ι         (B.3) 

Interestingly, the presence of a reliable route in the system does not appear to change 
consistently the learning behavior of the respondent. In both experiments the average shows 
to gradually become less steep after about 10 days of gradual learning. Yet, the equilibrium is 
still far from the optimal choices (around 30% error). In conclusion a network system where 
travel times are affected by some uncertainty, travelers are not likely to perfectly choose the 
best actual alternatives but they tend to make some estimation and prediction errors. 
Equilibrium conditions can be very different if one takes into account this uncertainty in 
travelers’ rational choice. For example, risk attitude of people in relation with the uncertainty 
in the network is a factor, which can contribute to having a better knowledge of travelers’ 
tastes and give some reason for selecting non-optimal choices. Several studies in 
transportation deal with the influence of risk attitude in decision-making (e.g. (Avineri E. 
2003), (E. A. I. Bogers, Viti, F., Hoogendoorn, S.P. 2005)). Bogers and Van Zuylen (E. A. I. 
Bogers, Van Zuylen, H.J. 2004) found from a survey involving truck drivers that individual 
risk aversion is in linear relationship with the relative variance of travel times between two 
route alternatives. An interesting direction of analysis is to evaluate then how travelers modify 
their risk aversion when receiving information about the status of the roads. In figure B.2 the 
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fraction of respondents that in the second experiment decided to use route 2 is compared with 
the fraction of cases where route 2 was actually the shortest alternative.  
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UFigure B.UTU2UTU: Violation of the conventional Expected Utility from a repeated experiment 

The curve of the best choices shows how information has been modeled as stochastic variable, 
and the curve is the representation of its cumulative distribution. The curve obtained by 
averaging the choice revealed by the respondents does not appear to follow the same 
behavior. Until route 1 has 25% of chances to be the shortest route the respondents 
overestimate the preference on route 2 showing risk aversion, while strangely it shows the 
inverse trend when route 1 has a lower probability to be the best alternative and some people 
become risk prone. In these results there is some evidence of the certainty effect and the 
inflating of small probability already found in Avineri and Prashker (Avineri 2003). The 
intersection point of the two curves drawn can be seen as the certainty equivalent related to 
the information, that is the users are indifferent between choosing the unreliable, or the on 
average longer but reliable alternative in those conditions. The underestimation of the 
preference in route 2 when it is clearly the best option can point at the second effect, thus 
some people gamble on the unreliable route feeling lucky. 

The above experiments have shown empirical evidence of the relevant role of uncertainty and 
reliability of travel times in the decision-making of travelers. Both route choice and departure 
time choice are in some way affected by uncertainty in various ways. As seen in the last 
section, reliability appears to give positive utility to an alternative of travel. 
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C 
Lane changing behavior in 

multilane sections 

C.1 Introduction 

Signalized intersections with multiple lanes per road section can be designed to dedicate one 
or more lanes to each specific traffic stream. Figure C.1 shows an example of how an 
intersection can be designed schematically assigning multiple lanes per traffic stream. In these 
situations the flow distribution among lanes can be very different. Lane changes upstream the 
intersection can in fact be influenced by a queue building downstream. Travelers might expect 
to have a smaller delay if they queue up behind the smallest queue. This maneuver can be on 
the other hand limited by the number of lane changes the vehicle should do to reach a smaller 
queue than the one the vehicle will find if keeping on driving on the same lane, and by the 
presence of other vehicles on the target and the intermediate lanes. Unbalanced distribution of 
flows among lanes can lead to an unbalanced distribution of queue lengths. On the other hand 
unbalanced distribution of queues can affect the lane changing behavior. 
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UFigure C.1: example of intersection with multiple lanes 

Most of models in literature deal with multiple lane sections as disaggregate, dealing with 
flows separately. The Highway Capacity Manual (TRB 2000) suggests some rules to define 
when some traffic streams should be separated or they should share a lane. Flows are 
considered equally distributed among lanes for the same flow stream if no estimation of flow 
distributions is available. As alternative, estimation of the expected distribution can be done 
for example by field data analysis. 

C.2 Microscopic simulation of lane flows 

Microscopic programs frequently are used in the evaluation of queues and delays at multilane 
intersections, given their property of treating each vehicle as a physical entity and the 
possibility to simulate lane changing at the individual vehicle level. VISSIM uses different 
parameters in the estimation of lane changing behavior approaching the signal than within a 
road section. Vehicles are assumed to have a smaller gap acceptance and an increased “degree 
of attention”, thus lane changes are more frequent in these conditions. A lane change occurs in 
the program when the vehicle approaching the signal has still some distance to drive if 
changing to the adjacent lane. This implies that lane changes due to unbalanced queue in 
between lanes occur only at the moment vehicles reach the queue. In reality, frequent lane 
changes are observed in, for example, large toll plazas already some distance before the 
position of the back of the queue. Travelers show in this case an anticipatory behavior, 
changing lane depending on the queue they expect to find when they arrive at the intersection. 
The microscopic program AIMSUN (Barcelo 2003) shows some anticipatory behavior in this 
sense by applying a different lane changing rule at intersections. Lane changes are driven all 
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throughout the network by the smallest path costs. If changing lane implies a reduction of the 
path cost, vehicles will try and change lane. Path costs are constantly updated using the 
average density, so that if queue builds up at one signal, vehicles will try and go to the queue 
that will imply the smallest route delay. Using this methodology, AIMSUN shows somewhat 
an anticipatory behavior of drivers approaching the intersection. Lane changes are also 
calibrated using a threshold value for the lane change decision, thus only a certain gain in 
terms of travel time reduction leads to a lane change desire. Furthermore, lane changes are 
balanced by a right-lane-driving rule. 

To evaluate the lane changing behavior of the users crossing an intersection, a similar simple 
scenario, like the one displayed in figure 6.2, is evaluated using AIMSUN. The new scenario 
consists of two lanes with permitted lane changing all along the road section. Green time is 
set to again 24s and cycle is set to 60s. Different stationary demand conditions have been 
simulated, together with different split rates in between lanes. Detectors have been placed 
every 500m until the signal and one detector has been placed at each lane after the signal. To 
compute average and standard deviation 100 random simulations were done. Results are 
presented in the following of the section. 

Figure C.2 shows the average flow rates detected on the two lanes. Scenarios 1 and 2 show a 
total demand of 1500veh/h and an initial split rate of respectively 15-85% and of 30-70%. 
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UFigure  C.2: Dynamics of the average flow distribution among lanes 

When vehicles are loaded, a certain percentage moves to the right lane according to the right-
lane-driving rule. The predictive property of vehicles approaching the intersection is shown 
after the 5P

th
P cycle, when split rates start to decrease in difference. Just before the intersection 

(detectors 8-9) the vehicles distribute nearly equally among lanes. Lane changes are only 
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slightly influenced by the gap-acceptance model, since the assigned demand is near capacity, 
but far below the saturation flow. 
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UFigure C.3: histogram of vehicle counts at the start of the section and before the signal 

Although the simplification made with the Highway Capacity Manual appears in these 
conditions correct, there are several reasons that make the hypothesis of equally distributed 
arrivals at intersections appear somewhat restrictive. Figure C.3 shows the distribution of 
vehicle counts from the detectors placed immediately after the origin of the road section and 
from the ones placed before the signal. A first interesting result is that the distributions of 
arrivals do not show very large outcomes. Although over 30 vehicles can be recorded in a 
cycle from the right lane and at the origin, very few times the detector before the signal has 
recorded more than 17 vehicles. This effect influences the variability of vehicle arrivals. In 
fact, if one computes the sum of the standard deviation of each lane, the variability of the 
system is reduced from around 7veh/cycle to 4.5veh/cycle. In conclusion, the presence of 
more than one lane for a traffic stream reduces the variability of arrivals, and consequently a 
reduction of the expectation value and the variability of the overflow queue should be 
expected too. 

Estimating the queue length at multiple lane sections can also be useful in design problems, 
for example to evaluate the optimal length of exclusive turning lanes, taking into account 
spillback effects and the physical space available to build the lane.  
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Summary 

Traffic congestion levels at urban networks are becoming more and more severe and 
peaks of the demand are extending over longer time periods. A way to reduce this 
problem is adapting the infrastructure, e.g. by adding new lanes or building new roads. 
As an alternative, transport managers can improve the network conditions by using the 
available network infrastructure more efficiently. Some of these alternative management 
strategies are referred to as Dynamic Traffic Management (DTM) measures. DTM has 
the objective to improve traffic safety and the utilization of the transport infrastructure. 
This is obtained by dynamically adapting the available capacity of the infrastructure to 
the demand (e.g. by using adaptive signal controls) or vice versa (e.g. by using dynamic 
pricing). The optimization of these DTM measures needs traffic models to predict the 
impact of measures and to find the measures that optimize the performance of the traffic 
system. Among others, the increase of reliability is an important objective, related to 
safety and capacity. Therefore, the knowledge of the variability of the performance 
measures, e.g. travel times, delays etc. becomes important too. 

The knowledge of travel time variability is fundamental in the evaluation of DTM 
strategies but also in travelers’ choices. In fact, travelers take in consideration travel time 
variability sometimes even more than mean travel times. Especially when time 
constraints are involved (e.g. important meetings) a road user is very concerned about the 
risk of long unexpected travel times and is willing to spend extra time on the road if this 
is more predictable and implies less risk of late arrival. The importance given nowadays 
by road analyst and governments to the travel time reliability and the reduction of 
uncertainties, and the impact of travel time variability on road drivers should motivate as 
much research on these characteristics as for the expectation value of travel times. 

Travel times at urban networks are for a large part determined by the delay drivers 
experience at (controlled) intersections; therefore, this thesis focuses primarily on signal 
control delays and their distribution, although the methodologies adopted to develop the 
models can be applied to several other operational and behavioral issues. 

The scientific forum agrees that large improvements are still needed in the modeling of 
delays, above all, because of the variable behavior of queues forming and dissipating 
within a cycle and cycle-by-cycle. The queuing process at signalized intersections has 
been studied already for half a century but it still remains a weak point in the traffic flow 
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theory at urban networks. The long list of heuristic models developed in the past testifies 
that a comprehensive theory, which explains how these systems operate, is still missing. 

Given the probabilistic nature of traffic, large uncertainty surrounds the estimation and 
prediction of the performance of signalized systems. Straightforwardly, only probabilistic 
traffic flow models are able to measure this uncertainty and to represent the dynamics of 
queues and delays without neglecting the long-term effects of the variability of traffic. 

Probabilistic models use true macroscopic relationships between state, control variables 
and the resulting performance measures, and they assume these variables as statistically 
distributed according to a known probability distribution function. Consequently, also the 
performance measures are calculated in a probabilistic fashion. A probabilistic approach 
gives the opportunity to analyze the statistical properties of traffic and give estimates of 
the expected conditions and of the variability of traffic via the computation of e.g. 
standard deviation or 10-90% confidence values. 

Starting from an earlier developed model of overflow queues at fixed time controls based 
on the renewal theory of Markov Chains, a probabilistic model that describes the queuing 
process also within each cycle was developed. This model allows the computation of the 
queue length at any time of each cycle; it extends the previously developed Markov 
model, which computes the queue length distribution using discrete time steps, and it 
justifies the dynamic and stochastic character of the overflow queues. The Markov Chain 
process presented in Chapter 4 represents a very powerful technique for modeling 
dynamic and stochastic processes, since it treats variables at the probabilistic level and it 
simulates traffic by exact expressions based on mass-balance equations. This computing 
property makes these models more suitable than microscopic models for planning 
purposes, since they simulate the variability of traffic and analyze causes-effect 
relationships between state variables, control variables and performance measures within 
reasonable computing times. 

The newly developed model is derived without any assumptions about the statistical 
properties of the arrival process. It fits for Poisson, binomial, Normal distributed arrivals.  
More important than the possibility to calculate the random delay with a more general 
model than the existing ones is the insight that the derivation gives into the process that 
causes the random delay. The assumption used by some authors that the queue should be 
represented by a step function appears to be superfluous. The stepwise character of the 
delay is transformed to a smooth character of the expected queue length, linearly 
increasing in the red-phase and the first part of the green phase. The expectation value of 
the queue in the green phase shows a non linear character as soon as the tail of the 
probability distribution comes close to zero. This phenomenon causes the overflow 
delay. 
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This method has quantified the error that affects standard analytical procedures like the 
HCM 2000 to compute vehicle delays especially when the model should compute 
decreasing queues after an oversaturated period, which frequently occurs during peak 
periods. All available methods up to date underestimate vehicle delays, or flatten delays 
within an evaluation period, instead of computing more accurately delays for each cycle. 
Combined analysis of average and standard deviation of the queue in time shows strong 
interdependence among these two characteristics, especially in saturated conditions of 
traffic. Such conditions of traffic create a delay that propagates in time and causes extra 
waiting times for vehicles approaching the intersection even several cycles after 
congestion had occurred. 

An exponential behavior has been found when queues recover from large initial values 
and the signal operates near capacity. This finding has suggested a new formulation for 
the dynamics of the overflow queue, called the Van Zuylen-Viti formula, which 
combines the deterministic linear behavior with a smoother asymptotic behavior towards 
the equilibrium value. Moreover, an expression for the standard deviation of the 
overflow queue is also proposed. The models proposed can compute queues and delays 
assuming both stationary and non-stationary demand conditions. This feature makes 
them suitable e.g. for Dynamic Loading processes, but also for model-based predictions 
of expected waiting times and for planning and design problems.  

The Markov and the Van Zuylen-Viti formulas have been compared with the results of 
the VISSIM microsimulation software program showing very good agreement. The 
consistency between the three approaches in various conditions of traffic validates the 
two less detailed methods. This represents also an important contribution to traffic 
managers and practitioners, since it proves that the dynamics of the overflow queue are 
well estimated with all three different level-of-detail models.  

The probabilistic approach allows one to model queues also under broader assumptions 
than the simple fixed time, single lane, and isolated intersection. While there is very little 
difference in the formulation of the Markov model for isolated intersections from an 
intersection within a network, i.e. the shape of the arrival distribution, modeling the 
interactions between lane choice of drivers and queue lengths appears more complex. To 
account for this interaction the Markov model has been combined with a probabilistic 
lane-changing model. By doing so, the distribution of arrivals has been shown to have a 
dynamic character, according to the dynamic character of the overflow queue length. 
Furthermore, the Markov model at multilane sections allows one to account for spillback 
effects, which is useful information for a correct estimation of delays and for the design 
of exclusive turning lanes. Finally the assumption of fixed control settings has been 
relaxed by formulating a probabilistic model of vehicle actuated controls. This approach 
allows one to compute the probability of green time extension depending on the 
variability of arrivals and their headway distribution in time. 
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The newly developed models presented in this thesis give important contributions to 
several areas of application in transportation problems. These areas of application are 
identified by three main classes: planning and design problems, traffic flow estimation 
problems and short term travel time prediction problems. The most important 
improvement is certainly in their better estimation power with respect to the available 
analytic formulas for planning purposes. Moreover, the knowledge of the variability of 
such queues (and consequently of the overflow delays) can be very important if the 
utility of a route alternative depends on the uncertainty of the travel time drivers may 
experience in their next trip. Finally contributions can be found in the short term travel 
time predictions, since these predictions strongly depend on how general is the model in 
terms of correctness of its outcomes and of strictness of its simplifying assumptions. In 
this sense the newly developed models can help at refining the errors coming from the 
data collection method and to validate or complete such datasets. 

The author envisages that the proposed probabilistic modeling approach opens new 
perspectives in the development of dynamic and stochastic travel time estimation 
problems and it is a suitable methodology for design, planning and reliability analyses. 



Samenvatting 

Congestie neemt in stedelijke netwerken steeds serieuzere vormen aan en pieken in de 
verkeersvraag zijn steeds van langere duur. Een manier om dit probleem te verkleinen is 
door de infrastructuur aan te passen, bijv. door het toevoegen van nieuwe stroken of het 
aanleggen van nieuwe wegen. Daarnaast kunnen verkeersmanagers de netwerk condities 
ook verbeteren door het beschikbare netwerk efficiënter te gebruiken. Enkele van deze 
alternatieve management strategieën vallen onder de noemer Dynamisch Verkeers 
Management (DVM). Het doel van DVM is om de verkeersveiligheid en het gebruik van 
de infrastructuur te verbeteren. Dit wordt gerealiseerd door de dynamische aanpassing 
van de beschikbare capaciteit aan de vraag (bijv. door de toepassing van adaptieve 
verkeerssignalen) of vice versa (bijv. dynamische tolheffing). Om de inzet van deze 
DVM maatregelen te optimaliseren zijn zowel verkeersmodellen nodig om de impact van 
de maatnamen te voorspellen als ook om de maatregels te vinden, die de prestaties van 
het verkeerssysteem optimaliseren. Onder andere vormt de verhoging van de 
betrouwbaarheid een belangrijke doelstelling, die gerelateerd is aan veiligheid en 
capaciteit. Derhalve wordt kennis omtrent de variabiliteit van prestatiematen, zoals 
reistijden, vertragingen, etc. ook belangrijker. 

Kennis omtrent de variabiliteit van reistijden is van fundamenteel belang in de evaluatie 
van DVM strategieën, maar speelt daarnaast ook een belangrijke rol in de keuzes van 
reizigers. Zo nemen reizigers reistijdvariabiliteit soms zelfs meer in acht dan gemiddelde 
reistijden. Vooral als er tijdsbeperkingen gelden (bijv. belangrijke vergaderingen) zijn 
weggebruikers zeer bezorgd over het risico van onverwacht lange reistijden en zijn ze 
daarom bereid een route te kiezen, die gemiddeld langer in beslag neemt, maar die 
voorspelbaarder is en daarmee de kans om te laat te komen vermindert. Zowel het belang 
dat tegenwoordig door verkeersanalisten en de overheid wordt gegeven aan de 
betrouwbaarheid van reistijden en het verminderen van de onzekerheid als de gevolgen 
van reistijdvariabiliteit op weggebruikers, vormen een belangrijke reden voor onderzoek 
van dit aspect van reistijden naast het onderzoek van gemiddelde reistijden. 

Reistijden worden in stedelijke netwerken voor een groot deel bepaald door de 
vertraging, die bestuurders oplopen bij (geregelde) kruispunten; vandaar dat dit 
proefschrift zich voornamelijk toespitst op vertragingen opgelopen door verkeerslichten 
en hun verdelingen, de methodes die gebruikt zijn om de modellen te ontwikkelen 
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kunnen echter ook worden toegepast op verschillende andere operationele en 
gedragsmatige onderwerpen. 

De wetenschappelijke wereld is het er over eens dat er nog steeds grote verbeteringen 
nodig zijn in het modelleren van vertragingen, bovenal door het variabele aspect van het 
vormen en verdwijnen van wachtrijen zowel binnen een cyclus als van cyclus tot cyclus. 
Het proces van de wachtrijvorming op met lichten geregelde kruispunten wordt al een 
halve eeuw bestudeerd. Desalniettemin blijft het een zwak punt in de 
verkeersstroomtheorie van stedelijke netwerken. De lange lijst van in het verleden 
ontwikkelde heuristieken getuigt van het feit dat een veelomvattende theorie, die kan 
uitleggen hoe dergelijke systemen werken, nog steeds ontbreekt. 

Gegeven de probabilistische aard van verkeer, bestaan grote onzekerheden rond de 
schatting en voorspelling van de werking van verkeersregelingen. Eenvoudig gezegd 
kunnen alleen probabilistische modellen deze onzekerheid beschrijven en de dynamiek 
van wachtrijen en vertragingen representeren zonder de lange termijn effecten van de 
variabiliteit van verkeer te verwaarlozen. 

Probabilistische modellen gebruiken juiste macroscopische relaties tussen de toestand, de 
regelvariabelen en de resulterende prestatiematen en nemen aan dat deze variabelen 
statistisch verdeeld zijn volgens een bekende kansverdeling. Dientengevolge worden ook 
de prestatiematen op een probabilistische wijze berekend. Een probabilistische 
benadering biedt de mogelijkheid om de statistische eigenschappen van verkeer te 
analyseren en om schattingen te geven van zowel de verwachte condities als de 
variabiliteit van verkeer door middel van de berekening van de standaard deviatie of 10-
90% betrouwbaarheidswaarden. 

Uitgaande van een eerder ontwikkeld model voor overbelastingswachtrijen van vaste-
tijdenregelingen gebaseerd op de renewal-theorie van Markov ketenprocessen, is een 
probabilistisch model ontwikkeld dat het proces van wachtrijvorming ook binnen elke 
cyclus beschrijft. Dit model maakt het mogelijk om de lengte van de wachtrij te bepalen 
op elk tijdstip binnen een cyclus; het geeft uitbreiding aan het eerder ontwikkelde 
Markov model dat de verdeling van de lengte van de wachtrij berekent op basis van 
discrete tijdsstappen en het rechtvaardigt het dynamische en stochastische karakter van 
overbelastingswachtrijen. Het Markov ketenproces dat in hoofdstuk 4 is gepresenteerd, 
representeert een zeer krachtige techniek voor de modellering van dynamische en 
stochastische processen, omdat het variabelen op een probabilistisch niveau benadert en 
het verkeer simuleert met behulp van exacte uitdrukkingen gebaseerd op massabalans 
vergelijkingen. Deze eigenschap van de berekeningen maakt deze modellen voor 
planningsdoeleinden meer geschikt dan microscopische modellen, omdat ze de 
variabiliteit van verkeer simuleren en oorzaak-gevolg relaties tussen toestand, 
regelvariabelen en prestatiematen analyseren binnen aanvaardbare rekentijden. 



 

 
Samenvatting  245

Het nieuw ontwikkelde model is afgeleid zonder enige veronderstellingen omtrent de 
statistische eigenschappen van het aankomstproces. Het is zowel geschikt voor Poisson, 
binomiale en normaal verdeelde aankomsten. Belangrijker dan de mogelijkheid om de 
willekeurige vertraging te berekenen met een meer generiek model dan de reeds 
bestaande is het inzicht dat de afleiding geeft in het proces dat de willekeur in de 
vertraging veroorzaakt. De veronderstelling, die enkele auteurs maken dat de wachtrij 
weergegeven moet worden als een stapfunctie blijkt overtollig. Het stapsgewijze karakter 
van de vertraging wordt getransformeerd in een glad karakter van de verwachte 
wachtrijlengte, lineair toenemend in de roodfase en het eerste gedeelte van de groenfase.  
De verwachte waarde van de wachtrij in de groenfase toont een niet-lineair karakter op 
het moment dat de staart van de kansverdeling dicht bij nul komt. Dit fenomeen 
veroorzaakt overbelastingsvertraging. 

Deze methode heeft de fout gekwantificeerd, die standaard analytische procedures als de 
HCM 2000 maken in de berekening van voertuigvertragingen. Dit geldt vooral wanneer 
het model afnemende wachtrijen moet berekenen na een oververzadigde periode, wat 
frequent voorkomt in piekperioden. Alle momenteel beschikbare methodes onderschatten 
vertragingen van voertuigen, of vervlakken vertragingen in een evaluatieperiode, in 
plaats van meer nauwkeurig vertragingen te berekenen voor elke cyclus. Een 
gecombineerde analyse van de gemiddelde tijd in een wachtrij over de tijd en de 
standaard deviatie hiervan toont aan dat er een sterke onderlinge afhankelijkheid bestaat 
tussen deze twee karakteristieken, vooral in verzadigde verkeerscondities. Dergelijke 
verkeerscondities doen een vertraging ontstaan die zich voortbeweegt door de tijd en die 
extra wachttijden doet ontstaan voor voertuigen, die de kruising naderen zelfs enige cycli 
nadat congestie is ontstaan. 

Een exponentieel gedrag wordt gevonden voor de situatie waarin wachtrijen herstellen 
van lange initiële lengtes en het verkeerslicht bijna aan zijn capaciteit zit. Deze bevinding 
heeft geleid tot een nieuwe formulering voor de dynamiek van overbelastingswachtrijen, 
die de Van Zuylen-Viti formule genoemd wordt. Deze formulering combineert het 
deterministische lineaire karakter met een glad aansluitend asymptotisch gedrag in de 
buurt van de evenwichtswaarde. Daarnaast wordt een uitdrukking voor de standaard 
deviatie van de overbelastingswachtrij voorgesteld. De voorgestelde modellen kunnen 
wachtrijen en vertragingen berekenen onder zowel de veronderstelling van stationaire als 
niet-stationaire vraag. Deze eigenschap maakt dat ze bijvoorbeeld geschikt zijn voor 
“Dynamic Loading” processen, maar ook voor modelgebaseerde voorspellingen van 
verwachte wachttijden en voor plannings- en ontwerpproblemen.   

De Markov en de Van Zuylen-Viti formules zijn vergeleken met de resultaten van het 
microsimulatie programma VISSIM, hierbij bleek een goede overeenkomst te bestaan. 
De consistentie tussen de drie benaderingen in verschillende verkeerscondities valideert 
de twee minder gedetailleerde methodes. Dit vormt ook een belangrijke bijdrage voor 



246  TRAIL Thesis Series 

verkeersmanagers en mensen uit de praktijk, omdat het aantoont dat de dynamiek van 
overbelastingswachtrijen goed benaderd wordt met alle drie de modellen, ondanks de 
verschillen in gedetailleerdheid. 

De probabilistische benadering biedt ook de mogelijkheid om wachtrijen te modelleren 
onder ruimere veronderstellingen dan de aannames van eenvoudige vaste-tijdenregeling 
en enkel-strooks geïsoleerde kruisingen. Terwijl er weinig verschil is tussen het 
formuleren van een Markov model voor geïsoleerde kruispunten en kruispunten in een 
netwerk (namelijk de aankomst verdeling), blijkt het een stuk lastiger te zijn om de 
samenhang tussen de strookkeuze van automobilisten en de lengte van de wachtrij te 
modelleren. Om rekening te houden met deze samenhang is het Markov model 
gecombineerd met een probabilistisch strookwisselmodel. Zodoende is aangetoond dat 
de verdeling van de aankomsten een dynamisch karakter heeft, in lijn met het 
dynamische karakter van de lengte van de overbelastingswachtrij. Daarnaast, maakt het 
Markov model voor meerstrooks kruispunten het mogelijk om rekening te houden met 
terugslag effecten, wat nuttige informatie biedt voor een correcte schatting van 
vertragingen en voor het ontwerp van aparte stroken voor afslaand verkeer. Tenslotte is 
de aanname van vaste-tijdenregeling versoepeld door de formulering van een 
probabilistisch model voor voertuigafhankelijke regeling. Deze benadering biedt de 
mogelijkheid om de kans op verlenging van de  groentijd te berekenen, die afhangt van 
de variabiliteit van de aankomsten en hun volgtijdverdeling over de tijd. 

De nieuw ontwikkelde modellen, die in deze dissertatie gepresenteerd worden, vormen 
belangrijke bijdragen op verschillende toepassingsgebieden in transport gerelateerde 
problemen. Deze toepassingsgebieden zijn in drie hoofdstromen te verdelen: plannings- 
en ontwerpproblemen, verkeersstroomschattingsproblemen en korte termijn 
reistijdvoorspellingen. De belangrijkste verbetering ligt zonder meer in de kracht van 
betere schattingen voor planningsdoeleinden ten opzichte van de beschikbare analytische 
formules. Verder kan de kennis betreffende de variabiliteit van dergelijke wachtrijen (en 
daarmee ook de variabiliteit van de vertragingen ten gevolge van overbelasting) zeer 
belangrijk zijn wanneer de waarde die toegekend wordt aan een route afhangt van de 
onzekerheid over de reistijd die bestuurders kunnen ervaren in hun volgende trip. 
Tenslotte is er een bijdrage in de korte-termijnvoorspelling van reistijden, omdat deze 
voorspellingen sterk afhankelijk zijn van de correctheid van de uitkomsten die het model 
geeft en de striktheid van de gemaakte vereenvoudigende veronderstellingen. In dit licht 
kunnen de nieuw ontwikkelde modellen hulp bieden in het opschonen van meetdata en 
het valideren en completeren van dergelijke datasets. 

De auteur voorziet dat de voorgestelde probabilistische modelleringsbenadering nieuwe 
perspectieven opent voor dynamische en stochastische  reistijdvoorspellingsproblemen  
en dat het een geschikte methode is voor ontwerps-, plannings- en betrouwbaarheids 
analyses. 
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