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Abstract

New measures have to be taken to combat fatalities caused by traffic accidents. Intelligent vehicles have the
potential to increase safety, but depend heavily on their automated perception ability. Acoustic perception,
an unused sensing modality in this field, has potential for the detection of nearby vehicles, an ability both
human drivers and autonomous vehicles could use assistance with. In this thesis two existing datasets,
AudioSet a large general purpose dataset and RoadCube a small dedicated vehicle recognition set, are evaluated.
Furthermore commonly used acoustic features and classifier algorithm are evaluated. Special attention is
given to the influence of a moving listener vehicle on the performance. For the evaluation a new dataset,
DriveSound, is captured. It contains samples captured from a listener car, both when its moving or idle.
Results show that RoadCube can be used for the detection of road vehicles, but only when the listener is
idle. The best performing classifier from RoadCube, a Gaussian Mixture Model classifier surpassed classifiers
trained on the evaluation dataset itself with a Matthews Correlation Coefficient (MCC) of 0.34. None of the
classifiers performed well on the samples captured by a moving listener, except for the DriveSound-driving
classifiers. The Support Vector Machine trained on this dataset attained a MCC of 0.56.

5





Acknowledgements

First of all I want to thank my supervisors, Julian Kooij and Thomas Hehn, for all the time and effort they
spent guiding me. They were always available if I had a question or wanted to discuss something. Especially
Thomas, who I bothered many times, was always available for a brainstorm or discussion. These sessions
were one of the foremost reasons I learned many new things. Secondly I want to express my gratitude for the
opportunity to do my thesis at the Intelligent Vehicles department. In this way I got a subject more suited to
my interests, than I would have gotten at Biomechanical engineering. I also got the freedom to investigate the
parts I find interesting. Of course it was a really bonus to get the opportunity to mount record sounds with a
real intelligent vehicle.

Thanks to the PhD’s and master students graduating at the Intelligent Vehicles section of the Cognitive
Robotics department, where I worked on my thesis. You work on a thesis individually, but it often felt that we
had a same goal. You kept me motivated. Finally thanks to Ronald Ensing and Frank Everdij who helped me
multiple times setting up a remote simulation.

7





1
Introduction

Drivers on the road are more and more assisted by their intelligent vehicles, which are able to perceive the
surroundings. It is a hot topic and many companies are working on driving automation. Many companies
are researching fully autonomous vehicles for example, including traditional car manufacturers: Volvo 1, VW
and Hyundai [2], Peugeot [3], Toyota [4] and others like Apple [5], Uber [6] and Alphabet’s Waymo 2. The
intelligence in these modern road vehicles is mainly provided by ADASs and automated driving systems. The
first type of system solely enhance the drivers situational awareness like a lane-departure warning system
(example in [7]) and the other type automates one or more of the driving tasks like adaptive cruise control
(example in [8]). There are thus large differences between the systems in the amount of automation provided
(more details in section 2.1.1: Autonomy levels of ADAS). The driving tasks automated, currently or in the near
future, range from pedestrian avoidance (example in [9]) to parking assistance (example in [10]). Automated
perception is a crucial step for all these kinds of systems, regardless of task or level of automation.

Intelligent vehicles mainly aim to make driving safer, because road safety is still a big issue. Previous
approaches focussed mainly on passive safety improvements like airbags, which lessen the impact of accidents
[11]. Intelligent vehicles influence the actions to perform driving tasks, thus can prevent accidents. Despite
the passive and previous active advancements on vehicle safety, traffic accidents still cause many deaths
and injuries annually. There is thus still much to be gained by additional measures, including new types of
automated driving systems. Each of these automated driving systems requires automated perception, which
is the subject of this thesis. Its scope is limited to vehicle detection, because they are often involved in severe
traffic accidents. These detections could thus be used to increase safety significantly. Section 1.1 goes further
into detail on the current safety levels on the roads and the choice for a automated vehicle recognition system.

Computer vision is the most often used sensing modality, i.e. input type of the sensor, in existing vehicle
detection systems and those currently under development [12], [13]. Passive acoustic sensing on the other
hand, is not used yet in the context of intelligent vehicles, despite its key advantages like its ability to detect
occluded vehicles. Examples of locations where vehicles could be occluded can be seen in figure 1.1. A
complete list of benefits can be found in section 1.2. A passive acoustic motorized vehicle recognition system
mounted on a listener vehicle, will be able to utilise the benefits of acoustics to reduce the amount of accidents
involving vehicles, which in turn can improve safety significantly. This thesis evaluates this type of system and
evaluates the components of this acoustic perception system: datasets, features and classifiers. Pedestrians
and cyclists are not targeted, because it is assumed they produce too little sound consistently to be detected
[13]. No acoustical detection systems like the one proposed here, is currently used on road vehicles [13] yet.

This chapter continues with more detailed statistics about traffic safety in section 1.1, followed by a
section about the potential of acoustic perception 1.2. At the end of the chapter the topic of this thesis, the
acoustic recognition of motorised vehicles, is formalised into research questions in section 1.3.

1.1. Traffic safety
Over 1.2 million people die each year on the roads in the world, while millions more are sustaining serious
injuries [17]. Traffic accidents are a leading cause of death among young people and the main cause of death

1Volvo - https://www.volvocars.com/intl/about/our-innovation-brands/intellisafe/autonomous-driving
2Waymo - https://waymo.com/tech/
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10 1. Introduction

Figure 1.1: Examples of locations where visibility is limited
left: Mountainous road with a low visibility corner (Source: [14]), middle: Urban road with buildings blocking the view close to the

intersection (Source: [15]), right: parked vehicle blocks visibility. (Source: [16]).

among those aged 15–29 years globally [17]. In the European Union (EU), where relative to other areas few
traffic deaths occur, accidents still accounted for more than 25.000 fatalities and 213.000 serious injuries
in 2018 [18], [19]. The current heavy usage of the roads and a possible future increase in road usage can
exacerbate the amount of traffic accidents even further [20]. Improving road safety has thus the potential to
save many lives and prevent many injuries. For the remainder of this thesis the focus will be on improving
safety in Europe, but a solution there can probably also increase safety worldwide. For this reason ambitious
goals where set by the EU to reduce the amount of road deaths by 50% by the year 2020, with respect to
the 2010 levels [18], [19], [21]. Multiple safety initiatives, including additional safety systems on vehicles,
have let to somewhat safer roads. Car manufacturers have made their vehicles safer by for example adding
an electronic stability control system or a lane departure warning system to their vehicles [12]. Governments
have enacted different policies to reach the EU goals, including introducing more low-speed enforcing infrastructure,
examining high risk sites and enforcing alcohol limits [19], [21]. The amount of accidents however, which
have resulted in deaths or serious injuries, is stagnating in the last years in large parts of the EU [18]. In the
last four years only a total reduction of 3% of fatal accidents was achieved, while the goal was a decrease
of more than 30% [18], [19]. This gap between reality and the reduction goal makes the 2020 goal almost
unobtainable. The gap between the aimed reduction of road deaths and the real traffic fatalities can be seen
in figure 1.2. Clearly current approaches are not effective enough thus new, different measures must be taken
[18], [19].

Figure 1.2: Reduction of the traffic fatalities in the EU. The dotted blue line depicts the 50 % reduction goal and the full blue line shows
the actual reduction achieved. Source: [19]

In the EU motorized vehicles, especially cars, are involved in the majority of traffic accidents. This is
indicated by reports of individual member states. In the Netherlands during 2015, for example about 74%
of the traffic accidents and 76% of the fatal traffic accidents involved cars [22], [23]. Additionally Denmark
stated that vehicle collisions are a major factor in the increase in deaths in 2016 [18]. A study examining the
causes of traffic accidents in some of the EU countries [24] found that 72% of the investigated crashes involved
causes related to the driver. This is consistent with earlier research [20] which stated that the behaviour and
decision-making of drivers are key influences on road safety. At the same time 46% of the traffic fatalities were
car occupants in 2015 in the whole EU, which translates to 12,090 people [25]. It is a significant number, but
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if it is compared tot the percentage of accidents with cars involved, then it can be concluded that other traffic
participants, like pedestrians and cyclists, are also often a victim to accidents caused by vehicles.

A machine perception system can be both be used to assist the driver or to automate tasks. There are three
main components of driver’s behaviour which can be assisted by a system like this: situational awareness,
hazard perception and inattention. Firstly situational awareness is a crucial factor for a driver’s performance
[26], Hazard perception ability is a skill, which is only developed slowly with experience. Thus novice drivers
in particular have difficulties with it [27]. As young drivers are a major cause of traffic accidents [18], enhancing
this skill can increase safety significantly. Inattention is a also large problem with human drivers. A large
study into driver behaviour ([28]) found that 93% of the rear-end crashes researched, involved inattention
of the driver as a contributing cause. A machine perception system, which is able to detect vehicles nearby
can assist the (automated) driver’s situational awareness and hazard perception abilities, without suffering
from inexperience or inattention. As vehicles are involved in the majority of accidents in the EU [18], an
increased ability to detect them can improve safety significantly. A critical part of this awareness is knowing
the location and type of other nearby, relevant actors. The relevance is in this case dependent on the speed,
type and distance to the observer. A heavy truck approaching quickly is of more concern than a cyclist riding
parallel to the observer. This thesis is about a system like the one proposed above. In the next section the
potential of the acoustic sensing modality for this kind of system is presented.

1.2. The potential of passive acoustic perception
Passive acoustic perception aims to capture the sounds emitted by sources in the environment (shown in
figure 1.3), as opposed to active acoustics (sonar), which emit a signal and catch their reflection. For this
reason passive acoustic methods can reveal properties of the object emitting the sound, instead of only
its location. Therefore the field can be divided into two types of problems: recognition and localisation.
Recognition aims to detect certain types of sounds including vehicles. Often machine learning methods
are used for this type of problem. Localisation on the other hand, aims to the estimate the direction and
or distance to the sound source. This is necessary due to the omni directionality of the microphones. Array
processing methods are often used for this type of problem, which combine the inputs from multiple microphones.
There are some examples of machine learning being used for localisation as well, sometimes in conjunction
with array processing [13]. In this thesis only the recognition problem is studied.

Figure 1.3: A car driving past the white listener vehicle. The sound emission from the blue target vehicle is captured by the microphones
mounted on the listener vehicle.

Passive acoustic perception has some properties, which can be useful for road vehicle detection. Initial
research has shown the following advantages in comparison with computer vision:

• omni-directional sensing [29]–[31]
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• ability to detect occluded vehicles [32]
• robustness to diverse weather conditions [29], [33], [34]
• cheap sensors [35], [36]
• low data transmissions [37]

Firstly the ability to sense in every direction (omni-directionality) is important because vehicles could be
coming from every direction. No additional sensors are required to detect vehicles from all directions, but to
determine the location of the vehicle multiple sensors need to be used together. Secondly vehicles occluded
by parked cars or buildings can be detected. On for example a cross-roads with limited visibility due to
buildings, the sound of approaching vehicles could be detected without seeing it. Robustness against diverse
weather conditions is also an important property, because this system needs to function outdoors. Microphones
are furthermore cheap and send only a limited amount of data. Instead of using acoustics as sole perception
modality, it can also be combined with other modalities to complement each other [38]. The robustness of
passive acoustics to diverse weather conditions can for example be utilised in a combined modality system.

Humans already use their hearing in traffic by for example listening to approaching vehicles. For car
drivers, as opposed to pedestrians and cyclists, this is much more difficult due to the insulation of in-car
environments against external sounds [39]. An automated acoustic perception system is thus required for
cars to use the earlier listed benefits. Passive acoustic vehicle detection is a unexplored modality for the
use in vehicles in comparison to vision-based traffic perception, despite its potential advantages for this
application. The lack of a clearly defined benchmark dataset, as the MNIST digits database for vision (proposed
in [40]), is an indication of this. It makes it harder to compare algorithms and systems directly. This thesis
evaluates commonly used acoustic perception methods for road vehicle recognition. The scope and research
question will be expanded on in the next section.

1.3. Research questions
In this thesis commonly used machine learning methods, for other acoustic perception applications, are
evaluated for vehicle detection. Both general purpose classifiers and acoustic feature detection algorithms
are evaluated. The following question is central to the research:

How well can the acoustic signatures of motorized road vehicles, captured by vehicle mounted
microphones, be discerned from other traffic and environmental sounds in an suburban

environment using machine learning methods?

Different datasets, features and classifiers are evaluated for this problem. Two existing datasets are used to
train the classifiers: Google’s AudioSet and RoadCube. AudioSet is a large scale, general purpose dataset, while
RoadCube solely contains specifically captured vehicle sounds at a much smaller scale. For the evaluation of
these datasets a new dataset is captured: DriveSound. The aim is to determine which relevant information
is present in the datasets and which tools are able to capture and use this information for the prediction of
present vehicles. Due to the small size of the RoadCube and the fact that the problem is not well understood
yet, a shallow classification approach is taken. Commonly used acoustic features and general purpose classifiers
are use for this problem. As in many learning problems the art is to select the best performing tools, i.e.
features and classifiers. Each method works in a different way and might be able to capture different pieces
of information from the sounds. The performance difference between these methods is investigated. Another
key aspect is the self motion of the listener vehicle. When the listener vehicle itself is moving, both the
relative velocities of the targets relative to the the listener and the absolute velocities of the target vehicles
are of interest. The acoustic signature of vehicle is namely dependent on the Vehicles travelling in opposite
direction for example, have a high speed relative speed. The significant effects on the detection performance
are investigated. It is expected that the general performance will be lower and that the self-motion will
introduce additional noise, most notably wind noise.

The aim of this thesis is to find the dataset, feature space and classifier, which is be able to determine
acoustically when there are vehicles being driven in the neighbourhood of the the listener vehicle. When
a vehicle is being driven on a road, other road users, especially vehicles, within a distance R of the listener
vehicle are of interest. This is shown in the drawing of figure 1.4, where this area of interest is drawn as a circle
with radius R. Inside the circle vehicles can be detected by their acoustic signature, while sound emitted
from outside the circle is considered noise. The target vehicles can have different types of motion inside the
circle, including driving with constant speed, accelerating, braking and cornering. This can have an effect
on the detection performance, because different motions produce different acoustic signatures. Additionally
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Figure 1.4: Drawing area around the listener vehicle. Target vehicles inside the circle with radius R should be detected, while vehicles
outside the circle are considered as part of the environmental noise. In this thesis it is assumed that target vehicles are driven with

constant speed. (The car graphic is taken from [41])

specific components may be used differently during different motion types. During cornering, the tyres will
make a different contact with the road for example, which might produces a different sound. For now, the
problem is limited to vehicles having a near constant speed and travel in a straight line, during their motion
in the detectable radius R. The detection algorithm will aim to detect the moment a vehicle is closest to the
listener vehicle.

Next steps would be to detect the vehicle on every moment in the circle, generalise to other types of
motion of both the target vehicles and the listener vehicle. Additionally the type of the vehicle and the amount
of vehicles present in R can be detected. Finally localisation methods can be added as pre-processing step to
find the direction and ultimately the location of the target vehicles.

This report continues with an overview of already performed experiments of acoustic vehicle detection
and some related fields (chapter 2: Related work). Subsequently the methods and procedures used in this
thesis are discussed in the chapter 3: Method. Elaboration on the datasets is done in a separate chapter,
namely chapter 4: Datasets. The results of the machine learning experiments are discussed in chapter 5:
Experiments and the conclusions are drawn in chapter 6: Conclusion.





2
Related work

Intelligent vehicles are broadly researched and machine perception systems provide a crucial role. Acoustic
perception however, is not used yet in commercial systems [13]. This chapter gives a reasoning why and how
acoustic perception can be used for the detection of road vehicles. First and an overview of the current uses
of traffic perception for intelligent vehicles systems is given in section 2.1: Perception in automated driving. It
includes a listing of the specific challenges of traffic perception and a comparison is made of different sensing
modalities with their advantages and disadvantages for this field. Here it is shown that acoustic perception
has some useful properties. Secondly section 2.2: Passive acoustic vehicle detection contains more details on
the characteristics of sound and sound emissions by road vehicles. Thirdly an overview is given on acoustic
experiments performed, including vehicle detection but also robot audition. Finally the contribution of this
thesis is elaborated. The author already did a literature review on the acoustic classification and localisation
of road traffic in [13]. Relevant parts have been reused here.

2.1. Perception in automated driving
The systems employed in intelligent vehicle rely for a large part on machine perception [12]. Some of these
ADASs send additional information to the human driver, which augments their situational awareness. These
warning systems and other perception enhancers, allow the driver to perform better on the driving task.
Current examples of employed in cars include: pedestrian detection (machine vision) [42], parking trajectories
by using a rear view camera (machine vision) [10] and parking sensors (sonar) [43]. Another example are night
driving systems [11], [12], which can improve the driver’s collision avoidance at night. Other types of ADAS
fully automate a certain driving task, for example in [44]. In this case the driver does not take the decisions and
actions of that task any more. Collision avoidance systems, which brake when another vehicle or pedestrian
comes too close, are an example of this. Autonomous vehicles automate all of the driving tasks normally
performed by humans (example in [45]). An example of a semi-autonomous system is highway platooning,
where vehicles use a control system to keep distance to each other on the highway. It is expected to reduce
congestion, because they increase the throughput of the road and reduce the risk [46]. Regardless on the level
of autonomy, all these types of systems are dependent on machine perception.

In the next sections the automation levels of the different systems is discussed. Afterwards subsection
2.1.2 compares the different sensing modalities for usage in traffic perception.

2.1.1. Autonomy levels of ADAS
Many different types of ADAS are employed in intelligent vehicles. An overview of the different types of
systems can be seen in figure 2.1. One dimension these systems are differ in is the automation level they
provide on a certain task. Two models are used here to describe the level of automation in a car: Sheridan’s
[47] and the Society of Automotive Engineers (SAE) [48]. Sheridan’s modes of human automated control
modes can be seen in figure 2.2. The control modes are for executing a single task. The spectrum ranges
from no computer involvement in the feedback loop to fully automatic control. Manual control can be both
without an computer or with computer aided perception. Supervisory control can be cooperative control
between the human and the computer or the human only intervenes in certain scenarios. Finally with
fully automated control the computer only displays the current state to the human, while there is no way

15
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Figure 2.1: Timeline for the development of different types of ADAS systems. The development is moving towards cooperative and
automated driving. The development predictions were made in 2014. Source: [12]

to intervene. The model from the SAE is focussed on the automation level of the dynamic driving task. It
defines the autonomy levels of a vehicle. The different levels of autonomy range from no automation of this
task to full automation where every aspect is automated in every condition.

Figure 2.2: Different feedback modes for computer aided control. On the left side no computer is involved, while on the right side the
process is fully automated. Source: [47]

As mentioned before ADAS [12] assist the driver in the execution of a task by augmenting their situational
awareness. These systems correspond to the second version of manual control in the Sheridan model (figure
2.2) and SAE level zero (no automation, figure 2.3). These include warning systems and other perception
enhancers. Another subset of ADAS can also intervene when necessary. This corresponds with the first
level of supervisory control in the Sheridan model (figure 2.2) and SAE level zero (no automation, figure 2.3).
ADAS which continually performs actions to assist the driver are the right model of supervisory control in
the Sheridan model (figure 2.2) and SAE level 1 (driver assistance, figure 2.3) if they control brakes and/or
steering.

In autonomous vehicles (example in figure 2.4) the driver is taken out of the loop and the vehicle will make
decisions. This corresponds to fully automated control in the Sheridan model [47]. It would correspond to
SAE levels 2 to 5 depending on the scenarios the automation enabled.

In systems perceiving the surroundings and conveying this information to the driver, the driver still takes
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Figure 2.3: Levels of automation of the dynamic driving task according to the SAE. Source: Lecture slides from Dr. Meng Wang, adapted
from [48]

Figure 2.4: Examples of autonomous vehicle with various sensors. Source: [49]

the actions but the available information is augmented. The system will not take action by itself. They can
be used to inform the driver continuously or only when a certain condition has been met. This can be an
unexpected or changing situation or for example a dangerous incident. Drivers have a reaction time before
they can act thus, especially for this kind of system, it is important to predict at least slightly into the future.
Drivers mainly use their visual senses on the road. Continuous information is often conveyed visually, while
auditory signal are more suited for high-priority warnings [50]. It is practical to keep the cue in the same
perception domain as the original observation, because drivers expect it [39]. For an acoustic detection
system this would mean that an acoustic cue is given when vehicle is detected very nearby or on collision
course. In the remainder of this thesis the perception performance is discussed in isolation, thus without
considering the feedback loop, because it will have impact on the design of the perception system.
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2.1.2. Comparison of modalities
Many different sensing modalities are in use for traffic perception, including vision, LIght Detection And
Ranging (LIDAR), radar, sonar [12]. They are used for various tasks:

• vision - pedestrian detection [42] or vehicle detection [51]
• LIDAR - autonomous parking [44]
• radar - vehicle classification [52]
• sonar - autonomous parking [43]

Out of these modalities computer vision is most widely used [12], [53]. Each of the modalities has very
different properties, which can be helpful for some applications but a limitation in others. The detection
range of the sensors is an example of this. These are shown in figure 2.9 along with a possible application.
Combining multiple types of perception can complement the weaknesses of individual modalities and increase
the robustness of the perception system. In the remaining paragraphs of this section the strengths and
weaknesses are listed for each modality, including passive acoustic perception. An overview of these strengths
and weaknesses is given in table 2.1.

Active/Passive directionality
Environmental

robustness
Occluded objects

Acoustics Passive omni
robust against
weather, light

changes

yes, if the obstacle is
not emitting sound

Lidar Active directional
very susceptible to
weather and bright

light
no

Radar Active omni
robust against
weather, light

changes
no

Sonar Active omni
robust against
weather, light

changes
no

Vision Passive directional
susceptible to

weather and bright
light

no

Table 2.1: Comparison of sensing modalities used for vehicle detection

Multiple advantages of acoustic perception exist for vehicle recognition. Microphones are omni-directional
[29]–[31], cheap [35], [36], [54] and cost less energy to operate [55] in contrast to for example cameras [34].
Due to the omni-directionality, it is not necessary to know the source location to process sounds [34]. Occluded
objects can be detected [29]–[31], [56], [57]. This last advantage over for example vision, can be helpful
on a crossroads when nearby vehicles are occluded by a building so they cannot be seen, but can still be
heard. This situation is depicted in figure 2.6. The obstacle, which blocks the view cannot have emit a sound
themselves. Furthermore, this mode is robust against weather and light changes [29], [33], [34], [54], [58],
which is helpful for operating in an outdoors environment. As it is a passive method, it is unintrusive to the
surroundings [35], because no sounds are emitted which could be annoying to others. The final advantage
of acoustic perception is that auditory processing will be less computationally demanding than vision [37].
On the other hand this modality is susceptible to random environmental noise and requires target vehicles
to emit a sound.

LIDAR sensors emit beams of light and sense their reflection, thus it is a form of active sensing. It provides
an accurate distance measurement It is very susceptible to bright light from for example the sun. It has a
limited range, due to a relatively high attenuation of the light on contact [11]. Furthermore the light beams
must be reflected back at the sensor instead of being absorbed or deflected [11]. A scanning laser can map
the surroundings in a 3D pointcloud, usable for object detection.

Radar sensors emit radio waves, which typically have a frequency of 20 - 80 GHz, and capture the reflections.
It is an active sensing method with omni-directional sensors [32]. It has a longer range, but a lower spatial
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resolution than LIDAR [11]. They are unable to detect occluded obstacles [35]. A schematic example of radar
used for the mapping of the environment can be seen in figure 2.5.

Figure 2.5: Intelligent vehicles which uses active sensing with radar to perceive the nearby traffic. Source: [59]

Sonar uses a sound emitter and captures the acoustic reflection. It is thus the active acoustical perception
variant. This technique is use for parking sensors [12]. Sonar is able to detect objects which are not emitting
sound themselves. It uses more energy than passive acoustics and has a lower range. Depending on which
frequencies are emitted, the sound emittance can be a nuisance, especially when multiple vehicles are emitting
at the same time, or it can affect other devices.

Vision is the most commonly used modality for traffic perception along with radar [12]. It is also a passive
method, because camera’s capture light coming from the environment. Vision has the primary advantages
that much information can be gathered at once and that the data is well interpretable by humans. Cameras
are directional however, so no information is gathered in the blind spot [32]. Furthermore, occluded objects
cannot be detected, thus larger vehicles can mask smaller ones [35]. Weather conditions, lighting changes,
caused by for example headlights, shadows and reflections can influence the observations [35]. Finally if
colours and intensities match between objects and their surroundings, it can cause confusion [35]. Examples
of vision based systems include night vision aids, rear view cameras and pedestrian detection systems.

Figure 2.6: An example sketch of an urban crossroads, where a vehicle cannot be seen from the listener’s perspective. Source: [32]

2.2. Passive acoustic vehicle detection
A sound wave is caused by a vibrating object producing waves which travel through the air or another medium.
Subsequently these waves are captured by a microphone, which samples the air pressure relative to the
atmosphere. In the case of road vehicles detection, the vibrating objects are multiple vehicle components,
like wheels and the engine.

2.2.1. The characteristics of sound waves
To understand acoustic perception, relevant characteristics of sound waves and and some modelling assumptions
must be understood. The relevant properties of sound waves are: the Doppler effect [60], diffraction [34],
interference [61] and reverberation [62]. These are shown in figure 2.7. The Doppler effect, is caused by
a difference in relative speed between the emitting source and the listener. The speed difference causes
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acoustic waves to reach the listener slightly earlier or later, which shifts the frequency of the sound [60]. Sound
is able to travel around obstacles. This is called diffraction and it is possible due to the wave characteristics of
sound. It can change frequencies and energy contents of the signal [63]. Occluded objects can still be detected
due to this characteristic [32]. Another wave characteristic is interference. When multiple waves meet at a
location the the signals are summed. This can result in a strengthening or suppression of the signals [64]. If
sound waves interact with a surface they can be reflected, which is called reverberation [65], [66]. Part of the
energy is absorbed, so the reflection will be less potent than the original signal [67]. An environment with
many reflective surfaces will result in many reflections. The listener will receive thus the same signal from
multiple directions, which makes it more difficult to determine the direction of the source.

Figure 2.7: Images depicting different sound characteristics.
Top-left: Interference: when a wave reach a certain point simultaneously, the wave are summed. Source: [68],

Top-right: Doppler effect: a source moving away from the listener is heard at a lower frequency and vice versa for movement towards
the listener. Source: [69],

Bottom-left: Reverberation: sounds can reflect of surfaces and travel in multiple paths to the target. Source: [66],
Bottom-right: Diffraction: Sound can circumvent obstacles and reach the listener when it cannot see the emitter. Source: [70]

Modelling assumptions can also be a factor in acoustic recognition. Common modelling assumptions
about the wave propagation are the point source, the narrowband and the no attenuation assumptions. The
first example, the point source assumption, simplifies the location of the sound source to be a single point.
The narrowband assumption expects that a sound emission only has significant power around a certain
frequency. This is called a narrowband signal, as opposed to broadband. Subsequently only the dominant
frequency of the signal is considered in further processing steps. Finally no attenuation assumes that no
energy of the sound wave is lost over its trajectory.

A microphone measures the pressure difference in the air. The microphone transforms the audio capture
to a discrete signal. The sampling frequency fs is a critical property of the signal, because it gives the relationship
between the time and frequency dimension of the signal. As opposite to taking a picture, sound is captured
over time and not at a specific moment. This means that a moment in time can only be approximated by
making the sound fragments very small. Longer fragments can have non-stationary effects like acceleration.

Furthermore noise is important to evaluate, both measurement noise and from non relevant sources [34].
An important metric for the strength of a signal is the signal-to-noise ratio. It is defined as µ

σ , where µ is the
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mean and σ is the standard deviation [71].

2.2.2. Acoustic vehicle signatures
The sound produced by a motorized vehicle is composed out of several components, which are emitted
from different parts of the vehicle. Most of the sound from a moving vehicle comes from the engine, tyres,
aerodynamics [56], [58] and intake system and exhaust [64]. Sirens of emergency vehicles are a special case,
which can be specifically targeted (as is done in [39]). The signals from the different components differ in
power, frequency or directivity [64]. The emitted sound signal from different vehicles may significantly vary,
due to the vehicle speed, vehicle type, vehicle orientation to the receiver, it’s technical condition or it’s load
[58], [60]. Vehicles of the same type however are emitting similar acoustic signals under identical conditions
[58]. Noise types from the engine and aerodynamics depend strongly on the vehicle type [58]. Tyre noise does
not [56], [58], which means that tyre noise is similar to tyre noise from another vehicle when travelling on the
same road conditions.

Depending on the situation one or more components will dominate the other. According to [72], when
the vehicle is travelling faster than 40km/h the tyre/road noise dominates, while [73] uses the rule of thumb
of 50 km/h and higher. Furthermore aerodynamic noise is significant for speed over 100 km/h [60]. Sandberg
[74] mentioned, in 2001, that for some more modern cars the tyre noise always dominates, without naming
hybrid or electric vehicles specifically. More modern sources such as [72], [73] (2013 and 2015 respectively),
don’t mention this. This undercuts the claim, because it is expected that this effect is larger on even more
modern cars in the future. On dirt roads, tyre noise is always dominant [60]. In the low frequency spectrum,
a vehicle noise is dominated by the intake and exhaust noise [60]. Motorbikes are a special case, where the
tyre/road noise is dominated by the exhaust noise [75].

Engine noise is emitted due to the pressure changes created during combustion. The main energy of
this noise lies between 800 and 3000 Hz, but this was range was found for military vehicles. Road vehicles
probably emit in a subset of this range, due to limited variance in engines. In the noise the cycling rate can be
discerned in the form of fundamental frequencies. Engine speed changes result in a change of these spectrum
peaks, and spectrum distance between those peaks [60].

The contact noise between tyres and the road is caused by resonance between the grooves of tyres and the
road [56]. According to Asahi [56] its spectrum is usually distributed around 1000 Hz, while Gorski [60] only
says its a has a high frequency characteristic. In [35] a bandpass filter is used within 940 and 1060, which also
accounts for the Doppler effect. The vehicle speed, type of tyres and the road surface influences the emitted
sound [58], [60]. The condition of the road, for example dry, wet, icy or snowy conditions, also produces
different acoustic signatures [76], [77]. Alonso mentiones that these conditions can be detected with passive
acoustics by using frequency features [72]. Uneven roads add a low-frequency part to this type of noise [60].

These systems are functioning outdoors, so there are a lot of sources of additional noise. Here the common
sources are discussed, but there can be many occasional ones as well, such as construction sites. Rain and
wind are sources of broad-spectrum ambient noise [58], [60]. According to Asahi [56] the frequencies of these
forms of noise are mainly less than 500 Hz, while [60] states that the wind noise is the most noticeable in low
frequencies, which is different from for example tyre/noise [56]. Thus it makes sense that ambient noise can
be filtered by a hi-pass filter [58] or band-pass filter [56]. It is expected that wind noise is more present in open
spaced areas or around tall structures. In urban areas more surfaces are present than in open space, which
can lead to an increase in reverberation.

No examples were found of systems targeting non motorized traffic, i.e. pedestrians and cyclists. It is
assumed that their sound emittance is too little and too inconsistent. The lack of engine noise is not the only
cause for the omission. Other noise types, including tyre and aerodynamic noise, are only recognisable at
higher speeds [13]. This makes detecting cyclists infeasible, but electric cars a possibility.

2.2.3. Challenges of acoustic traffic perception
Passive acoustic traffic perception with a moving listener vehicle has some specific challenges, due to the
outdoors environment and the motion of the listener vehicle. Operating outdoors requires handling unpredictable
environments and weather conditions. Road vehicles have to function in all kinds of environments, ranging
from plains to mountains and from forests to densely populated cities. Therefore the variety in environmental
conditions can be large, including building density, temperature, humidity and type of road surface. The
difficulty of uncertain environments is illustrated by the choice of predictable environment for current tests
with self-driving cars [78], because the vehicles can not handle random environments well [12], [45]. The
weather will make scenario’s even more unpredictable (examples in figure 2.8). Rain for example affects
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almost all sensors: it reduces visibility [79], it causes additional noise [60] and it disrupts lidar [33]. Acoustic
perception can be made robust against many weather conditions, including rain and bright light [29], [33],
[34]. Unpredictable noise sources, for example caused by roadside construction, could also be a problem.
[34]. It can introduce noise which in turn lowers the signal to noise ratio, which can be problematic. Two
possible solutions to this problem, segmenting the sounds from a single source and reducing the noise are
currently open problems [13]. Finally when a sound source is obstructed by another sound emitter, it is
difficult to discern them [58].

Figure 2.8: Examples of weather conditions, which affect the capabilities of sensors. left: hail. Source: [80], middle: darkness inside a
tunnel and bright light at the end Source: [81], right: heavy rain. Source: [82]

Another big challenge is the motion of both the target and the listener vehicles. The captured acoustic
signature of vehicles are dependent on both the target vehicle’s velocity and the relative velocity with the
listener vehicle [58], [60]. The absolute target velocity will influence the acoustic signature, while the relative
velocity influences the transmission of the sound through the air. The relative velocity is important, because it
will change the received sound waves [56], [65]. Due to the high speeds of vehicles it can thus be expected that
an oncoming vehicle’s signature will differ from an overtaking vehicle. The motion type of the target vehicles,
i.e. driving with constant speed, braking, accelerating or cornering, influences the acoustic signature as well
[83]. Another difficulty is that multiple sources must be detectable simultaneously. Apart that the sounds can
interfere with each other, localisation algorithms must identify the amount of sources and might need to track
them, which are no trivial tasks [38]. The speed differences put a strong real-time constraint on the solutions.
If the perception system operates too slowly, it might miss vehicles or report them too slowly to act on the
information. Additionally the system must be operational without manual calibration on the environment or
use other prior knowledge. Due to the real-time constraint the length of the sound fragments used as input is
limited. The hardware running the perception algorithm including sensors, must be implemented in or on a
car. This restricts the size, power consumption and cost of the system.

2.3. Related experiments
Although no commercial acoustic vehicle perception systems mounted on a vehicle exists, a few experiments
with these systems have been performed for research. In this section these experiments are discussed along
with experiments from adjacent fields: fixed position vehicle detection, military vehicle detection and robot
audition systems. First the road vehicle recognition systems are listed in subsection 2.3.1, starting with the
those with microphones placed at a fixed position. Subsequently the vehicle mounted systems are discussed.
In subsection 2.3.2 the recognition systems targeting military vehicles are listed. Finally a few robot audition
examples are showed in subsection 2.3.3.

2.3.1. Road vehicle recognition
[83] aims to determine certain properties of the vehicle from their acoustic emission, including vehicle’s
length and width, number of cylinders and engine revolutions per minute. The feature vector obtained is
specific to the make and model of the vehicle. The authors claim that it can be used for classification of the
different vehicle models, but no classification experiment is performed. A single microphone is used for the
recording and each vehicle is considered as a dipole sound source to take the interference between the tire
emissions into account.

Nooralahiyan [37] uses a neural network for a four class classification problem. The classes were buses,
cars, motorcycles and vans. Linear Predictive Coding (LPC) parameters are used as features. Fragments with
25 frames are processed at a time and a sliding window approach with 80% overlap is used to divide the
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Figure 2.9: Examples of ADAS with the used modality and operating ranges. Source: [84]

signal into fragments. The audio was captured at an empty airstrip and on urban public roads. In the former
scenario, much less noise was present. The urban area required more training iterations and performed worse
on classification. It must be noted that this system was proposed in 1998 and might therefore be less effective
than current methods.

Wu [85] uses frequency vectors as features. First the mean feature vector from the training set is substracted
and then Principal Component Analysis (PCA) is used to reduce the dimensions of the remaining spectral
variance vector. For each class the mean is calculated in the new projection space. Classification is then
calculating which of the trained means is closest to the new sample.

The system from [86] uses classification to estimate the direction a vehicle is currently located. Four
microphones are used to capture spectrograms. A SVM is used to classify the features calculated from the
averages and medians of the spectrograms. It aims to perform classification and localisation is possible in
a single step. It uses classes along a location-speed grid to estimate both. Adding vehicle type as a third
dimensions to this grid can steeply increase the amount of involved classes, which in turn raise the amount
training data required.

[57] aims to detect approaching vehicles. They utilise the principle that the energy level of the acoustic
emission for approaching vehicles is positive due to the Doppler effect (more information about the Doppler
effect in 2.2.2). The listener car, with a single microphone mounted on the right bottom wind shield, was
idling on the side of the urban road during the experiments. It was not reported what kind of engine was
in the listening vehicle and if it was turned on at that moment. Only vehicles separated by more than five
signals from other vehicles were included. Five bandpass filters between 1kHz and 2kHz were used to create
five channels. The signal was then compressed using a hair-cell function and a processed using a spike
generator. A learning vector quantization neural network was used for classification. This type of network
was chosen for its computational performance on specific hardware. The classification problem was binary
with an approaching class and a negative class.

In [75] experiments were performed where the listener car was travelling between 50 and 100 km/h. Their
program aimed to detect if sound frames contain sounds emitted by one or more vehicles. First the signals
are filtered between 400 and 1200 Hz. Subsequently both frequency vector features and MFCC features are
extracted. The extracted features are used by a neural network with ten hidden layers. Probably there is
redundant information between these vectors, because MFCC features are also spectral features (see section
3.2 for more details) and in this case the frequency range is limited.

Instead of detection separate vehicles [36] is estimating the traffic density into three classes: light, medium
and heavy. It uses Mel Frequency Cepstral Coefficients (MFCC) features and makes a comparison between a
SVM-Radial Basis Function (RBF) and a GMM classifier. Alonso [72] aims to detect different road conditions,
thus targets tyre/road noise. He uses the "relevant frequency components" as features. As tyre noise normally
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has a frequency around 1000 Hz (see section 2.2.2), it is assumed that this is the area of interest in the
frequency domain. The configuration of the SVM classifier is not mentioned. Afterwards the results are
filtered by a spurious events filter to limit false positives. In the paper it is not explained what kind of filtering
is used, but is probably uses some prior information about tire sounds. For example there tyre noise is located
around 1000 Hz (see section 2.2.2), thus there must be a peak amplitude at that frequency. The system is
specifically designed to be embedded in a car and runs in real-time.

2.3.2. Military vehicle detection
Military ground vehicles have different characteristics than regular road vehicles. Tracked vehicles are also
present in this category for example. Additionally military vehicle can have tracks instead of wheels. They also
operate mostly off-road, which changes the tire/ground contact noise significantly. Despite these differences
there, method used for the acoustic detection of these vehicles can also be useful for road vehicles.

Gorski [60] compares three kinds of features in the context of vehicle detection: Harmonic line, Schur
coeficients and MFCC features. Although it is not stated, it is assumed that they where extracted on a per
frame basis. It concluded that Harmonic line features and MFCC feature perform well. It must be noted that
the tests that the tests were done with military vehicles on dirt roads. This has two main effects. First of all
engine noises can vary more between different military vehicles, than between road vehicles. As Harmonic
line features are dependent on the engines. They might perform not as well with road vehicles. Secondly due
to the gravel roads it could be assumed that the vehicles were travelling at a relatively low speeds. Therefore
there is no dominant component source and there is a low frequency part added to the tyre noise (see section
2.2.2). The SVM classifier was used in a one versus all configuration (four classes). They were trained on
undistorted signals of approaching vehicles.

2.3.3. Robot audition experiments
Passive acoustic perception is in use in other fields besides traffic detection. In robotics it is used to have
conversations with humans [34] and is well-researched [13]. In robotic audition GMM classifiers are used
successfully [34]. These might perform well for vehicle classification as well. In comparison to robot audition
were, for example [87] uses 14 microphones, vehicle detection used only a few. Additionally more sophisticated
pipelines are used, combining classification of speech and localisation of the source. An example is shown
in 2.10. The algorithm in [75] first classifies a frame to contain vehicle sounds or not, with a neural network.
Subsequently the location of these sounds is estimated by the localisation part of the algorithm. No information
between the algorithms is shared, other than the raw signal. The classification is run on every frame, while
the localisation is only run on positive classified frames.

Figure 2.10: Flow diagram of a classical robot audition pipeline. First array processing techniques are used to localise and extract the
sounds produced by a single source. This extracted source fragment is then fed into the recognition part of the system. Source: [88].

2.3.4. Experiment summary
Not many acoustic perception systems for the classification of vehicles exist. Five systems were examined,
namely [75], [37], [85], [60] and [72]. Two of the five methods were created in the previous millennium and
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are probably overtaken by more recent methods. The aims of the systems differed slightly. In one case [75]
binary classification was used to determine if one or more vehicles were present. Three system [37], [60],
[85] determined the vehicle type. The type classes here were broad, for example buses, motorcycles, sedans
and vans. In general vehicle sound perception focusses mainly on regular cars, because they are the most
prevalent.

In summary many different kinds of features are used for the classification of vehicles, namely: frequency
bins, regular and PCA-decomposed ([72], [75]), Mel frequency cepstral coeficients (MFCC) [60], [75], Harmonic
line [60], Schur coeficients [60] and plain LPC features [37]. Both of [60], [72] use a SVM classifier. The systems
in [37], [75] use a neural network and [85] uses PCA in combination with a distance metric for classification.

2.4. My contribution
To make acoustic detection a valid alternative to vision-based vehicle detection system, its feasibility must be
clearly proven. This thesis makes a first step by evaluating the feasibility of cars driving in a straight line
on road with near constant speed. A key aspect of the acoustic vehicle detection challenge is the effect
of movement of the listener vehicle on the acoustic detection of other road vehicles. Performances are
compared between driving and idle scenarios and the effects of the driving scenario are further investigated.
The goal is to reach an intuition on the effects of driving and how to deal with them.

In the process commonly used datasets, features and classifiers are evaluated on their suitability to this
domain. Two existing datasets, Google’s AudioSet and RoadCube are tried and compared. Furthermore the
following feature types are investigated: energy, energy entropy, zero crossing rate, diverse spectral statistics,
Chroma features, harmonic line, LPC features, and MFCC (more details in section 3.2). Many come from
different fields and in this thesis their suitability for vehicle detection is evaluated. In the process of collecting
and implementing feature extraction methods, a new python library for acoustic feature collection was created.
It contains methods from LibRosa, pyAudioAnalysis, Scikit-talkbox and a few own implementations. The
repository can be found on https://github.com/pvanlaar/py_sound_feature.

Additionally four classifier types were used, namely: SVM, GMM classifier, MLP and Random Forest.
These classifiers are used in vehicle recognition (SVM, MLP) or robot audition GMM. Additionally the random
forest classifier was added due to its feature selection and lack of overfitting characteristics.

For the evaluation of the existing datasets another dataset was captured, called DriveSound. First of
all a new realistic dataset, , was created for the evaluation and comparison of the existing datasets. To the
knowledge of the author no similar dataset, which is captured from a moving listener vehicle, exists yet. It
aims to simulate the real world as closely as possible. Therefore it is captured without any preprocessing or
other alteration of the data. DriveSound contains eight scenarios, each on a different location with maximum
speeds of 30, 50 or 70 km/h. In three of those scenarios the listener vehicle is driving, while in the other cases
it is parked adjacent to the road. For this reason there are samples which are easier to classify while others
are very hard classify. Hard samples occur for examples when the listener vehicle is waiting for traffic light
on a busy intersection and it is surrounded by both stationary and moving vehicles. In the dataset many
different vehicle classes were discerned, which can be grouped at own insight for classification. The data is
annotated to get all the moments a vehicle is at the closest point to the listener vehicle. Camera and 3D lidar
scans are included, thus a re-annotation can be done when in another way when needed. Finally the dataset
is captured by multiple microphones thus it is suited for pipelines which include a localisation step. More
details about this dataset and the collection process can be found in de datasets section 4.3.

https://github.com/pvanlaar/py_sound_feature
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Method

The aim of this research is to evaluate different configurations of a machine learning pipeline, which are able
to distinguish between sound fragments containing vehicles and those without. This chapter explains the
methods and algorithms used for the classification pipeline and the evaluation of its performance. It starts
with section 3.1 where the classification process is explained. Subsequently the acoustic feature types are
listed in section 3.2, followed by the used classifier algorithms in section 3.3. Finally section 3.4 elaborates
the methods to evaluate the performance of the pipeline.

3.1. Classification pipeline
The classification pipeline consists of three elements during operation, namely the microphone, feature
extractor and the classifier. A schematic of this pipeline can be seen in figure 3.1. The microphone captures
the sound waves (more detailed information in section 2.2.1). The signal is then per sound fragment, a small
part of the signal of typically one to a few seconds, fed into the feature extractor. The feature extractor will
quantify one or more properties of the fragment in a feature vector. This abstracted and compressed form is
finally used by the classifier to discern between different classes. Classes are groups of sounds with a certain
commonality, for example they all contain cars. A model, trained on a dataset, contained in the classifier is
then used to categorise the feature vector belong to a certain known class. The output of the classifier and
thus the pipeline is a class label prediction for the captured sound at that moment.

Figure 3.1: An schematic overview of the classification pipeline. On the left side the sound is captured by a microphone, which
translates it to an one dimensional signal (with sample rate fs ). The feature extractor extracts certain properties of the signal. These

properties are subsequently used by the classifier to classify the sound as for example a vehicle. The bottom half of the pipeline is used
during the training phase. The samples from the dataset are used to train the classifier, which happens once. (The microphone is taken

from [89])

Before the classification pipeline can function, the classifier must be trained on a dataset. The dataset
contains independent sound samples of which all have a class label. The amount of classes and the sample
sizes of those classes are important parameters of the classification problem. The samples of the dataset go
into the same feature extractor as used when the pipeline is used for the prediction of new samples. In this
stage the parameters of the classifier model are tuned to the data. Commonalities from the dataset, in feature
representation, are captured in this model.

27
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3.1.1. Feature extraction

Features are an abstraction of data, which aim to capture certain properties. For a feature to be useful, it
must contain enough information and the information must be usable for classification. This means that the
samples of different classes must differ in the feature space, otherwise the classes cannot be distinguished
from each other by a classifier. Many different feature types exist and multiple types can used alongside each
other. Each element of the feature vector is considered independent [90]. Features are a more compact form
than an audio signal, which means that the amount of dimensions of the feature signal is lower. A higher
dimensional problem is more complex, but also increases the solution space for the classifier. It increases
the possibility that the best model exists in this space, but also increases the amount of required training
samples. There is thus a trade-off between user more and higher dimensional features and limiting the
amount of required training samples. The invariance of a feature type may also be a major factor for its
suitability to the problem. Invariance is a measure of robustness and makes certain types more suitable for
certain classification problem. For example when an acoustic feature is disrupted by wind noise, it probably
will not perform well outdoors.

Figure 3.2: The pipeline to extract a feature out of a audio fragment. The fragment is first divided into frames with a size of 2048
elements and a overlap of 0.5. For each frame a feature vector is extracted. This can be done in the time and frequency domain. The
feature vector can contain multiple types of features. For the frequency domain features, the signal a histogram with the frequency

content is taken using the Fast-Fourier Transform (FFT). The fragment feature vector is obtained by averaging over each frame

An audio fragment is represented by a feature vector with length F , which is thus the dimensionality of
the feature space. The feature extraction happens for each audio frame however, which is a small piece of
the fragment. In this thesis each fragment is divided into frames of 2048 elements with an overlap ratio of
0.5, regardless of the fragments length. Different methods for the frame feature extraction exist, which can
work in the time and frequency domain. For the frequency domain features the histogram is taken with the
frequency content using the FFT. The fragment feature vector is created by averaging the frame features.
Features from fragments with multiple lengths can be combined in this way. Depending on the feature type,
the feature extraction for a frame is done in the time and the frequency domains. When the acoustic The
acoustic feature types used in this thesis are discussed in section 3.2. After the extraction of all features the
whole dataset, the features are normalised. First of all each sample is mean normalised to zero to remove the
DC bias. Secondly the features are scaled in a way that each feature element has unit variance.

3.1.2. Classifiers

A classifier is a parametrized model used to predict the class of new, unseen samples. During the training
phase the parameters of the model are optimized for the prediction performance on the training set. The
amount of parameters of a classifier is an important property due to overfitting. When this effect occurs the
model is only performing well on the training data, but does not generalize to new samples (example in figure
3.3). Generally the simple models are easier to fit and compute, but span only a limited part of the possible
models or hypothesis. So there is a trade-off between computability and performance [90]. Another key
property is the training, which is the time to fit all the model to the training samples. In this thesis the training
time is not a key metric and the reported results should only be used for comparison of the algorithms. The
classifier types used in this thesis are discussed in section 3.3. Each type has parameters, which are set during
the training phase, and meta-parameters, which are chosen beforehand. Examples of the meta-parameters
of the model are the model complexity or the outlier cost in the learning algorithm. Each type of classifier has
very different meta-parameters.
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Figure 3.3: Schematic display of overfitting. On the left the training set is shown, which is a subset of the population. For the
classification of the whole population one of those lines is correct, where the dotted line is more complex, but has a smaller training

error. The middle picture shows the case where the dotted line is correct. In that case the straight line would underfit. In the right
picture the straight line is correct and the dotted line proved too dependent on the training data. This is called overfitting. Source: [91].

3.2. Acoustic feature types
Different acoustic feature types are used to extract the feature from an audio frame. Many of them were
used in earlier experiments (see section 2.3.4). Some of them extract from the time signal, while others are
extracted in the frequency domain. An overview of the feature types used, along with the domain they are
operating in, is given in table 3.1. This section will list the different types per the domain they are extracted
in, starting with the time domain. The frequency domain part is preceded by the explanation about the
transformation to the frequency domain. Many feature extraction functions are based on implementations
from the libraries Librosa [92]. and pyAudioAnalysis [93]. When this is the case the library will be named
in brackets after the feature name. In the remaining paragraphs the different feature types are discussed.
Commonly used elements are the frame’s time signal s, it’s frequency bins S and the frame size K .

Time

Energy

Energy entropy

Zero crossing rate (pyAudioAnalysis)

LPC features (Scikits: Talkbox)

Frequency

Frequency bin features (Librosa)

Spectral centroid (Librosa)

Spectral spread (Librosa)

Spectral entropy

MFCC (pyAudioAnalysis)

Harmonic line

Chroma features (Librosa)

Table 3.1: Overview of feature types, separated according to the domain the are extracted from.

3.2.1. Time domain features
Energy: Energy is a intensity measure in the time domain. The amount of energy in a frame weakly correlates
to the perceived loudness of the sound [94]. Loudness also takes the receiver’s sensitivity into account.
The human ear is for example more sensitive to certain frequencies. The energy is calculated by taking the
element-wise square of the time frame and normalising for the frame size, i.e.

∑
i

s2
i

K
. (3.1)

Energy entropy: Entropy in the signal analysis sense is measure the likeliness to white noise as opposite
to signal patterns. It originated from thermodynamics where it also is a measure of disorganisation. White
noise is regarded as a system in equilibrium because of the constant output. This noise type therefore has the
highest entropy, while other (periodic) parts of the signal have a lower entropy [95]. The calculation is done
by first getting the power signal s2. Afterwards the histogram is taken to get the probability density function
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estimate, with a bin amount of 256. The entropy is then calculated by using

−∑
k

h(s2
k ) log2 h(s2

k ), (3.2)

where h(s2) is the histogram of the squared time signal, which is normalised so its sum equals 1.
Zero crossing rate: The zero crossing rate measures the amount of sign changes between measuring

points in a frame. It is normalised by the length of the frame, thus it is a value between zero and one.
LPC features: LPC parameters are used for speech recognition and to compress signals [96]. They are

calculated by using an innovation filter, which decomposes a signal in LPC and white noise [60]. The amount
of coefficients is equal to the order of the filter.

3.2.2. Frequency domain features

Figure 3.4: Example sine signal and its frequency histogram.
left: sine signal, right: magnitude of frequencies calculated by FFT with a frame size of 200. The first peak is the sine frequency, but the

second peak is an alias (duplicate). Only frequencies until the nyquist frequency can be measured.

An audio signal can be converted to the frequency domain by the FFT. It models the audio signal as a sum
of unit sine functions with a certain frequency. The transform results in a histogram of the frequencies in the
signal (example of signal and histogram can be seen in figure 3.4). Only frequencies up to half the sampling
frequency (Nyquist frequency) can be detected. The 2048 element frames used in this thesis will result thus
in a 1024 histogram which ranges from 0 Hz to the Nyquist frequency. With a sampling rate of 48 kHz, as
found in many of the used datasets, the resolution for each bin is 23.4 Hz. Increasing the frame size, and thus
increasing the time duration of a frame, will thus result in a higher frequency resolution and a lower time
resolution. If the sample rate is increased while the frame size is kept equal, the frequency resolution will
decrease while the time resolution will increase [71]]. Before a frame is converted to the frequencies it is first
multiplied by a windowing function, in this case the Hamming window. This type of windowing function is
generally used [72], [75]. Windowing reduces the leakage of the transform, which occurs if the base function
does not end or begins its period at the start of the frame.

Frequency bin features: Frequency bin feature simply uses the frequency histogram created by the Fourier
transform. Due to the histogram size, 1024 in this case, only frequencies below a threshold of 3000H z are kept.
Road vehicles operate below this threshold (see section 2.2.2). The Doppler effect and diffraction (section
2.2.1) can shift frequencies, so this can effect frequency vector features or other spectral based features.

Spectral centroid: The spectral centroid is the mean frequency based on the Fourier histogram. It can be
calculated by multiplying the centre frequencies fk with the power in the corresponding bins Sk , i.e.∑

k fk Sk∑
k Sk

. (3.3)

Spectral spread: Spectral spread is like the standard deviation of the frequency histogram. It is defined as
the difference between a bin and the centroid weighted by the power amount in the bin, which results in

p

√(∑
k Sk ( fk −Centr oi d)p∑

k Sk

)
(3.4)

with p = 2 is the order.
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Spectral entropy: Spectral entropy is similar to the earlier mentioned energy entropy, but now it is calculated
based on the frequency content. Replacing the energy histogram h(s2) from equation 3.2 with the frequency
variant yields

−∑
k

S2
k log2 S2

k . (3.5)

MFCC:

Figure 3.5: Pipeline showing the extraction of MFCC features. Source: [97]

MFCC are features developed for the purpose of speech recognition. They can be extracted from the
frequency histogram of a frame. First Mel filters are used to convert the frequencies to the non linear Mel
scale which is inspired by the human ear [96]. Subsequently the logarithm of the mel scale is taken and the
discrete cosine transform is used to convert the Mel scale to the cepstral coefficients, i.e.

MFCC = dct (l og 10(dot (X ,mel B ank))). (3.6)

A more detailed explanation of the calculation procedure can be found in [96]. The MFCC extraction pipeline
can be seen in 3.5.

Figure 3.6: The mel-frequency bins of the MFCC filter bank. They are used to convert the frequencies of the signal to the mel-spectrum.
This is done by taking a histogram using these unequal bins.

Harmonic line: Harmonic line features target the frequencies emitted by a vehicle’s engine. Each engine
has a fundamental frequency associated with the cycle rate, which manifests itself acoustically in the form of
harmonic peaks. The harmonic peak frequencies fp relate to the fundamental frequency fe with

fe = k fp (3.7)

, where k is an integer. Harmonic line Association is used to find the frequency. First the dominant peak of the
frequency histogram is found. Because it is unknown which k corresponds to the dominant peak, multiple
guesses are tried (with k varying between 2 and 11). For each of those guesses the fp is calculated and then
line is constructed for k ∈ [1,11]. The line with the maximum total spectral energy found in the points is
chosen. Only the first two points are saved as features.
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Chroma features:
Chroma features aim to capture the musical tones found in the frame. A histogram is made on the tones
without taking octaves into account. Thus the same note from different octaves are counted the same. For
the calculation the implementation of librosa is used.

3.3. Classifier algorithms
In this thesis four types of classifiers are used: SVMs, GMM classifiers, MLPs and Random forest classifiers.
The first three types are already being used for acoustic classification and the Random Forest is used for as a
baseline because it requires little tuning to give good results. Additionally the state of this kind of classifiers is
understandable by humans. All of the implementations come from the Scikit-learn library (version 19.1) [98].
Implementation details were taken from the online documentation.

3.3.1. SVM
SVMs are suited for two-class problems. They aim to estimate the boundary in the feature space, called a
hyperplane, separating both classes best [66]. The feature space often spans multiple dimensions, thus the
hyperplane must be multi-dimensional as well. The hyperplane is defined by the support vectors, which are
samples lying close to this boundary. The original method creates a straight hyperplane (as seen in figure
3.7). This is a efficient method, but if the data is not separable by a straight plane curved hyperplanes have to
be used. SVMs require no prior information about the problem other than training data [66].

Figure 3.7: Example of a straight hyperplane created by a linear SVM. The circles and squares belong to positive and negative class
respectively. The four shapes made orange are support vectors, which define the boundary hyperplanes H−1and H+1. The separating

hyperplane H0 is in middle the boundary hyperplanes. The space between the boundaries and thus the classes is the margin, indicated
by the double sided arrow. Source: [66]

One of the key strengths of the original SVM is the simplicity of its decision function

fSV M−l i near [x] = w · x +b, (3.8)

which contains only a single dot product. w is a vector of weights and b is a scalar bias Both are obtained
during the training phase. x is the feature vector, which is to be classified. A label y will be given to the feature
according to the sign of the decision function, i.e. y = sg n

(
fSV M [x]

)
, therefore a SVM is suitable for binary

problems.
For some problems straight hyperplanes are not able to separate the classes adequately. In that case

curved hyperplanes have to be used instead. To support these, the linear decision function 3.8) has to be
modified by using the kernel trick. This means that the features are mapped to a higher dimensional space
than the feature space where the classes are linearly separable by using a functionφ(x). The decision function
then becomes

fSV M−ker nel [x] = w ·φ(x)+b. (3.9)
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Instead of directly defining the mappingφ(x), the kernel trick defines the quadratic form K (xi , x j ) =φ(xi )φ(x j ).
Commonly used kernels include the polynomial kernel (Kpol y [xi , x j ] = γ(xi ·x j +r )d ) with degree d , positive

multiplier γ and bias coefficient r and the RBF kernel (KRBF (xi , x j ) = exp−γ∣∣xi−x j
∣∣2

) kernels [66], [91]. If the
kernel is chosen as the dot product (Kl i near [xi , x j ] = xi · x j ), the linear classifier case is obtained.

During the training phase the optimal hyperplane is estimated. Optimal in this case case means that the
distance between both classes, called the margin (see figure 3.7), is maximised while the amount of training
errors is minimised. Increasing the margin will improve the generalisation characteristics of the classifier.
[66]. Training errors are incorrect classifications made on the samples of the training set. A training set
containing outliers, which is often the case in real world data, can be difficult to separate with an absolute
margin as the above definition does. This means that estimating a hyperplane separating all samples correctly
is not possible or only with a very complex model, which does not generalise well. Instead of an absolute
margin a soft margin could be used, which discounts outliers. This means in mathematical terms that samples
close to or on the wrong side of the boundary can be discounted by a ξi . The size of the discount ξi can vary for
each sample individually. If the discounts can be chosen freely this would lead to trivial solutions, thus they
must be penalized during training. The training has now become a optimization problem where the margin
has to be maximized and the sum of the discounts has to be minimised. If positive labels are defined as y ≥ 1
and negative ones as y ≤−1, the margin size is defined as 2

||w || . This means that to maximise the margin the
length of the weight vector ||w || must be minimized. Combining both objectives in a single problem yield the
following minimisation problem

min

(
1

2
w T w +C

N∑
i=1

ξi

)
(3.10)

subject to the constraints of the training samples

yi (w Tφ(x i )+b) ≥ 1−ξi . (3.11)

Here C is the regularization parameter or training parameter, which penalises the sum of sample discounts.
A high C will permit fewer training errors thus the model will fit the training set better, but at the same time
it may reduce the classifiers’ generalisation ability. If C = ∞, the SVM has a hard margin again [66]. Using
Lagrangian multipliers λi to include the constraints (equation 3.11) in the minimisation problem (equation
3.10) the problem can be written as a single equation. In this thesis a deconvolution method [99] is used to
solve this problem, provided in the sklearn [98] SVC class, which is rooted in the liblinear [100] and libsvm
[101] libraries for the linear and kernel SVMs respectively. When N is the sample amount in the training class
and M is the amount of support vectors, the used algorithm has a computational complexity of O (N ∗M) or
O (M 3), whichever is larger (which depends on C ) [102], [103]. The computation of kernel functions accounts
in practice often for more than half the total computing time [103].

It has been shown that the optimal solution is obtained when λi 6= 0 for all samples on the boundary or
on the wrong side [91]. These are called the support vectors (the orange features in 3.7). Using the solution
the decision function can be rewritten as only dependent on the support vectors, i.e

fSV M [x] =
M∑

j=1
(λ j y j K [x j , x])+b. (3.12)

The weights w are substituted by a summation of the multiplication of the Lagrange multiplierλi , label yi and
kernel K [x j , x] for each support vector (M is the amount of support vectors). This makes the classification
only dependent on the support vectors, instead of all training samples. Retraining the SVM with only the
support vectors using the regular method yields only approximate results. It is possible to get an exact result
with incremental SVM training methods as is done in for example [104].

SVMs can also be extended for a multi class system. A possible option is to use the one-versus-all configuration.
For each class a classifier is trained, where the negative class contains all other classes. All classifiers score
the sample using the decision function (equation 3.12) or calculating the probability. The probability can
be calculated by for example fitting a sigmoid function [105]. The highest positive score wins, which means
that it is most belonging to that class. Other options include one-versus-one configurations or multi class
extensions of the SVM method itself. These and other methods can be found in [106].
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3.3.2. GMM classifier
A GMM classifier uses probability density functions to estimate the probability that a feature belongs to a
certain class. Each class has a separate probability density function. During classification the class with the
highest posterior probability wins and the corresponding label y is selected as classification. The probability
density function is formed by a linear combination of Gaussian distributions. The complexity of the model
can be adjusted by setting the amount of Gaussians to be used for each class. Including more Gaussians
means that more parameters have to be estimated during the training phase, which requires more training
data. Knowledge about the relative occurrence of a certain class can be incorporated into the classifier, by
setting the prior probability p(ycl ass ) for each class.

Figure 3.8: Explanation of Bayes rule and its element. Source: [107]

The classification is based on the posterior probability, where the class with highest score wins, i.e. y =
argmax

cl ass
p(ycl ass |x). These posterior probabilities are calculated using Bayes’ rule which, formulated in terms

of features x and labels y is

p(ycl ass |x) = p(ycl ass )p(x |ycl ass )
cl asses∑

i=0
p(yi )p(x |yi )

. (3.13)

An explanation of Bayes rule can be found in figure 3.8. The prior probability (before the classification) p(y)
can be set beforehand or can be derived from the training set, thus utilising prior knowledge. If it is so that
each class occurs equally often, the decision function (equation 3.13) can be simplified by selecting the class
with the maximum likelihood p(x |ycl ass ), instead of calculating the posterior probability p(yc l ass|x).

The likelihoods p(x |ycl ass ) are estimated by a model consisting of a linear combination of Gaussian distributions.
A Gaussian distribution

N (x ;µ,Σ) = 1

(2π)
||x ||

2
p||Σ||

exp

(
−1

2
(x −µ)TΣ−1(x −µ)

)
(3.14)

is dependent on the mean µ and covariance matrix Σ. The mean determines the centre of the Gaussian
and the covariance matrix determines its shape. For a feature space with D dimensions, µ consists of D
parameters, Σ of maximal (D ∗D −D)/2+D and the mixing weights αi give D −1 (because

∑
i=0

αi = 1). When

G Gaussian distributions are combined the likelihood p(x |ycl ass ) model becomes

p(x i |ycl ass ) =
G∑

i=0
αi Ni (x ;µi ,Σi ) (3.15)

with G( 1
2 D ∗D + 3

2 D +1)−1 parameters It is possible to reduce the amount of parameters in the covariance
matrix, but this will limit the amount of possible shapes of the Gaussians. Possible reductions include making
the shapes of all Gaussians similar and using a spherical shape, i.e. Σspher e = I .

The goal during training is to find the combination of parametersΘ, which maximises

p(X |Θ) = ∏
i=0

p(x i |Θ). (3.16)

for the features set of a class X . One of the possibilities for obtaining the parameters of the mixtures is the
Expectation-Maximisation (EM) algorithm [66], which is an efficient way to solve the problem [36]. If enough
Gaussians components are used in the mixture model, the density tends to converge to the true density [36].
Generally speaking a GMM classifier requires more samples than a SVM [36].
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Instead of a single feature, a group of features can also be evaluated simultaneously by using a similar
formulation to the training phase (equation 3.16) and multiplying feature 1 to V . i.e.

p(ycl ass |x0..xV ) =
F∏

i=0
(p(ycl ass |x i )). (3.17)

This means that it can also work on feature vectors of multiple frames simultaneously. Averaging is then not
needed any more.

3.3.3. MLP
MLPs are, as the name implies, networks of linked neurons. The network is forward fully connected, which
means that each neuron is connected to all neurons from the previous layer. A neuron can be seen as a
function where inputs are weighted. If the outcome of the function exceeds a threshold, the neuron will
activate and produce a signal. An example of a neural network structure can be seen in figure 3.9. The first
layer is the input layer where the feature vector elements are put in. The final layer of the network is the output
layer, which contains for each class the scores that a feature belongs it. In between these layers are hidden
layers, which connect the neurons between the input and output layer. A key characteristic is the presence of
hidden layers. In this thesis the implementation from scikit-learn [98] is used, which is CPU based.

The amount and size of the hidden layers are a parameter of the classifier. More neurons in a network
requires a complexer model and more parameters to be trained. The type activation function of the neurons
can be varied. Possible function are: identity f (x) = x , logistic f (x) = 1

1+exp(−x) , tanh f (x) = t anh(x), rectified
linear unit function f (x) = max(0, x). Different solvers for the weight optimisation are used, namely adam
[108] and Limited memory - Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). According to the scikit-learn documentation
adam performs better on large datasets, while L-BFGS performs better on smaller datasets. The stochastic
gradient descent is not used, because adam is an improved version of it. For the adam solver the initial
learning rate can be set, which controls the step size of updating the weights. The (L2) regularization parameter
α is used to penalize large weights and combat overfitting. A lower value will result in a less complex decision
boundary and vice versa.

Figure 3.9: Example of a forward neural network. It contains two hidden layers and one output neuron. Source: [109]

3.3.4. Random forest classifier
A random forest classifier consists of an amount of decision trees, which work together to classify new samples.
Adding more trees will improve the results, while the overfitting effect is limited due to the averaging over all
of the trees [110]. A tree starts at the root and branches out to leaves. At each split a the samples are split into
two ways.s

Each of the trees will estimate the probability that a sample belongs to a certain class. The probabilities
are averaged over all of the trees and sample is given the label of the class with the highest probability. The
used scikit-learn [98] implementation diverges here from the original method in [110], where each tree votes
for a class and the class with the most votes wins.

During the training phase each tree is created on separate randomly selected subset of the training data.
The training of the individual decision trees can be found in [111]. These subsets are sampled with replacement
thus samples can be used for the creation of multiple tress. Additionally only a random selection of the feature
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elements is used of the subset. This random feature selection is different for each tree. The tree will be the
optimal classifier for that subset of features, not the whole training set. Therefore each tree is a randomization
of the optimal tree. Due to this randomness, adding more trees will increase the bias, but reduces variance.
Generally the variance decrease compensates for the bias increase, thus it is advantageous to add more trees
to the forest [110].

Because each tree is trained on a subset of the training set, the remaining part can be used to evaluate the
tree classifier. The forest classifier can then be evaluated by evaluating each sample only on those tree that
weren’t trained on it. The importance of each feature element can be estimated by randomizing the values
of one element and then repeating the forest evaluation. The metric for importance is the gini importance,
which is the percentage increase in misclassification rate between the general classification and the randomized
set. Afterwards this value is peak normalised.

3.4. Performance evaluation
Different methods for feature extraction and classification can be used in the classification pipeline. Furthermore
for the training on the classifier, different datasets can be used. For the performance evaluation these pipeline
configurations need to be compared in a structured way. All of the configurations are evaluated by measuring
the classifiers ability to classify unseen samples. This performance is captured by a performance metric,
which are explained in section 3.4.1. The structure of these evaluation experiments is elaborated in sections
3.4.2 3.4.3 explaining the feature selection and the classifier optimisation respectively.

3.4.1. Performance metrics
For the evaluation of a machine learning algorithm, the choice for a performance metric is important [112]. A
performance metric quantifies the correctness of the classification by comparing the classifications with the
ground truth. For a binary classification problem, with a positive and negative class to choose from, there are
four possible outcomes at each sample. It can be classified as positive or negative, and this classification can
be correct or incorrect. All these possible outcomes are summarised in the confusion matrix, shown in table
3.2. The true positives are in the top left cell and the false positives or type 1 errors in the top right corner.
On the bottom left the false negatives are found or type II errors and finally in the bottom right corner are the
true negatives.

Classified

Positives (CP) Negatives (CN)

Actual
Positives (AP) True Positives (TP) False Negatives (FN)

Negatives (AN) False Positives (FP) True Negatives (TN)

Table 3.2: Confusion matrix of a binary classification problem. It contains all possible outcomes of the classification of a sample.

The well interpretable metric is accuracy. It is defined as the amount of correct classifications divided by
the total amount of samples. In terms of the confusion matrix it can be written as

accur ac y = T P +T N

T P +T N +F P +F N
. (3.18)

A disadvantage of this metric is that if there are significantly more samples from one of the classes it can
be unreliable. When there are for example more positive than negative samples, a classifier which classifies
everything as positive will score well on accuracy. The amount of false negatives and true negatives will be
zero (F N = 0, T N = 0), while the true positives and false positives become the actual positives and negatives
respectively (T P = AP, F P = AN ). Equation 3.18 will then become

accur ac y = AP

AP + AN
. (3.19)

It can be seen that for large fraction of positive samples (AP > AN ), the accuracy of this particular classifier is
high, while its predictive ability remains limited. This effect is seen for both positive and negative imbalances.

Two other metrics, precision and recall are invariant to the unbalanced classes when used in combination
[113]. Precision is the fraction of correct positive classifications to the total number of positive classifications.
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It is useful when the positive class is more important than the negative class. The metric can be calculated by

pr eci si on = T P

T P +F P
. (3.20)

Recall or sometimes called sensitivity is the True Positive Rate (TPR), which is the correct positive classifications
divided by all the actual positive samples. It is defined as

T PR = r ecal l = T P

T P +F N
. (3.21)

Precision and recall can be combined in a f-score. This is a category of metrics, which define a weighted
combination of both. One of those, the f1-score puts equal weight on precision as on recall. It is the harmonic
mean of both metrics, which can be written as

f 1-scor e = 2 · pr eci si on · r ecal l

pr eci si on + r ecal l
. (3.22)

The f-score changes depending on the choice for the positive class [113].
If the negative class is important to consider, the specificity or True Negative Rate (TNR) can be used as

performance metric. It is similar to the recall, but for the negative class and is defined as

T N R = T N

T N +F P
. (3.23)

The False Negative Rate (FPR) is the opposite of this metric, with a relation x −1. It can thus be written as

F PR = F P

T N +F P
. (3.24)

Another metric is a Receiver Operating Characteristic curve (ROC curve), which combines the TPR and FPR
metrics. It is a plot showing the relation between the two at different thresholds of the decision function. This
means that at first everything is classified negative, thus both the TPR and FPR are zero, because there are
no postive classifications. Subsequently the threshold is increased gradually, until eventually everything is
classified positive. A higher threshold often mean that a larger portion of the actual positives are classified
(higher TPR), but also that more negatives are classified as positive (higher FPR). An ideal classifier will go
through the top left corner, where the TPR is 1 and FPR is zero. The area under this curve could also be
used as an performance metric, if the metric needs to be a single number. In the ROC curve a reference line
is shown for comparison, which shows a classifier guessing randomly. For this reference the assumption is
made that there are an infinite amount of samples, which results in the straight line. The line corresponds
with an Area Under Curve (AUC) of 0.5. An example ROC curve can be ssen in figure 3.10.

Figure 3.10: An example ROC curve. At different values of the decision function threshold the true and false positive rates are
determined. An ideal classifier goes through the top left corner. The reference line represents a random guessing classifier. A

compressed metric based on this curve is the AUC

Unlike the previous scores the Matthews correlation coefficient (MCC) is a balanced measure, because
every part of the confusion matrix is used. Therefore it is well suited for datasets with unbalanced classes
[114]. It is defined as

MCC = T P ∗T N −F P ∗F N

((T P +F P )∗ (F N +T N )∗ (F P +T N )∗ (T P +F N ))1/2
(3.25)
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. The score ranges from -1 to 1. Scoring a 1 means that the classifier perfectly predicted the class and -1 means
that everything is predicted wrongly. In the latter case reversing the prediction yields a perfect classifier again.
A score of zero means that the predictions are done randomly. MCC is thus a measure for the predictability,
regardless of class size [114].

3.4.2. Random forest feature selection
Selecting the best features for the machine learning problem is an important step. Minimizing the amount
of features generally reduces the amount of parameters of classifiers which need to be trained. The random
forest classifier already has a metric to evaluate the importance of each feature element (see 3.4.2). This
property can be used to evaluate the features and select the best ones [115]. An added benefit is that the
random forest classifier is relatively quick to train and doesn’t overfit.

The same feature space is used for experiments on all datasets, but the feature importances are determined
separately for each of the datasets. For each dataset first a classifier optimization, between random forest
configurations, is performed. These random forest configurations differ in the amount of tree the classifiers
contain. The detailed optimization procedure can be found in the next section (3.4.3). The best performing
random forest classifier is used to measure the importances of the feature elements. These importances are
peak normalised to the highest importance on a dataset.

After the normalised importances are estimated for each dataset, they are used to select a common feature
space. The selection is made by setting a threshold on the importances of each dataset. This threshold is the
same for each dataset and is chosen by hand. Many of the used features in this thesis have multiple elements.
If one of these elements is selected all of the elements are included in the selected feature space. The selected
feature space is the used for the remaining experiments.

3.4.3. Classifier configuration optimisation
Each classifier type has meta-parameters which must be chosen before the training phase. To select the best
configuration of these meta-parameters, multiple configurations need to be evaluated. This evaluation is
performed on a specific dataset with a fixed class division and feature space. Here the MCC metric (more
details about the MCC in section 3.4.1) is used to make the performance based choice, but the f1 score and
the confusion matrix are calculated as well. Different configuration settings are selected for each classifier
type, randomly. Randomly sampling of the meta-parameters yields a better exploration of the configuration
space than a grid search with the same amount of evaluations [116]. For discrete variables each option is
sampled with an equal chance. Continuous integer distributions are converted in a discrete distribution
with a minimum and maximum value. The other continuous variables are samples from an exponential
distribution with a set scale. The Probability Density Function (PDF) of this distribution is given by pd f =
λ∗exp(−λx), where the scale parameter is scale = 1

λ

The evaluation of a classifier is done in two phases: the optimisation phase (80%) and the test phase (20%).
Each of the phases uses a separated part of the training set. The division of samples is made in a stratified
manner, thus although randomly selected the class balance of the dataset is preserved. In the optimisation
phase k-fold cross-correlation is used to select the best classifier, because it produces more statistical valid
results. It means that the optimisation part in divided into k = 4 parts and k repetitions of the training and
scoring are done. Again the division keeps the class balance intact by using stratified selection. In each
repetition one of the parts is selected as validation set, while the other parts are used to train the classifier.
Each of the classifier configurations, which model’s parameters are estimated with the use of the training
parts, are scored on the validation set. These scores are averaged over the repetitions. The mean (MCC)
scores are then used to select the best classifier. Afterwards the best configuration is retrained on the whole
optimisation set and evaluated on the test part. The dataset division procedure is summarised in figure 3.11.
This is necessary because by using the validation set for the selection of the meta-parameters these scores
contain a bias. Comparing the validation score and the test score gives the generalisation loss, which gives
some indication about the variance in the problem and the generalisation ability of the classifier.

In the cross-dataset evaluations the classifier is trained on one dataset and evaluated on another. The
training datasets are AudioSet and RoadCube and the evaluation datasets are the idle and driving DriveSound
sets in this thesis. The best classifier of each type is selected on the training dataset by using the classifier
optimisation procedure described above. The trained classifiers are then evaluated on the held out test set
of the evaluation dataset. The dataset division for the cross-dataset evaluation can be seen in figure 3.12.
These held out set is the same as the held out test set used for the intra dataset classifier optimisation, thus
the obtained test scores can be compared directly. In this way no information from the evaluation datasets is
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Figure 3.11: Division of dataset into parts for the intra or single dataset experiments. A test part (20%) is held out. The remaining
optimisation set is used for the cross-validation with k = 4 folds. Each of the fold is once the validation set. The classifier is trained on

the other folds and evaluated on the validation fold. The best classifier has the highest average validation score. The best classifier
configuration is retrained on the whole optimisation set and evaluated on the test set.

used in the classifier.

Figure 3.12: Division of dataset of the cross dataset evaluation. The best classifier is obtained through cross-validation on the
optimisation set of the optimisation dataset. A test set of 20% is held out for both dataset, but the one in the optimisation dataset is not
usedd (black block). The optimisation set is used for the cross-validation with k = 4 folds. Each of the fold is once the validation set. The
classifier is trained on the other folds and evaluated on the validation fold. The best classifier has the highest average validation score.
The best classifier configuration is retrained on the whole optimisation set and evaluated on the test set of the evaluation dataset (blue

block).





4
Datasets

Training datasets are crucial for the performance of a classification pipeline. For vehicle detection two suitable
datasets exist: AudioSet [117], a large general purpose audio dataset, and RoadCube [118] (name is given by
this author), a a specialised dataset for vehicles. Both of these datasets will be used in this thesis. Another
large general purpose audio dataset containing road vehicles, FreeSound [119], was not fully ready at the
moment of writing, thus could not be used. UrbanSound [120], an acoustic dataset containing city sounds
lacked usable vehicle classes. For the evaluation a new dataset is recorded, which aims to mirror reality as
much as possible. It is called DriveSound and was recorded on the roads of Delft, The Netherlands. The data
is split in idle and driving scenarios.

Dataset author properties sample length
total vehicle

samples
comments

Audioset Google
large, general
purpose

10 sec 78717
created using
Youtube videos

RoadCube Tu Delft students

specific,
captured
outdoors,
multiple
microphones

4 sec 383

DriveSound author of this thesis

captured from
a car, both idle
and driving
scenario’s

1 sec 1201 evaluation set

Table 4.1: Overview of datasets

In table 4.1 a summary is given of the two existing datasets and the newly captured one. The biggest
differences are found in the amount of samples in each dataset. AudioSet has an enormous amount of
samples and probably contains more variation for this reason. RoadCubecontains fewer sound fragments,
but they are all known to be vehicles captured on the road. The same is true for DriveSound, but on a slighter
larger scale. In each dataset the same class division is made for the experiments, namely the binary class
division between the motorised vehicles and environment groups. As the different datasets have differently
defined classes, which classes are part of which problem group can differ per dataset. The division of the
samples can be seen in table 4.2. In both AudioSet and RoadCube more vehicles than other sounds are
present. The opposite is true for the DriveSound datasets. The DriveSound-idle dataset for example has
more than three times as much environment samples than vehicles. The sample length also differs between
the datasets. Longer samples could means that the feature is averaged over more frames. This could smooth
some in-stationary effects.

In the subsequent sections (4.1-4.3) the characteristics of the existing datasets is examined first, after
which the collection and properties of the new dataset are discussed.
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AudioSet RoadCube DriveSound-idle DriveSound-driving

Motorized 52795 233 149 122

Environment 25922 150 548 382

Table 4.2: The amount of samples in each class for the motorised vehicles versus environment class division. The samples are separated
by dataset.

4.1. AudioSet
Audioset is a large, general purpose datasets with a many different sound classes. It was made by the sound
understanding group in the machine perception research organization of Google [117]. All audio data originates
from youtube.com videos and is manually annotated. As youtube.com videos are uploaded by users, it is
assumed that the recordings were made with a large variation of microphones and under various conditions.
Due to the datasets size and variety, it is expected that signals contain more noise on average, which might
be useful for training purposes. The variety also ensures that there is little data bias, which a classifier
could mistake for a pattern. The negative class is also adjacent to the vehicle classes, which could make the
classification more precise. The downside is that due to the variety it is difficult to say which information
generalises well. Additionally the boundary of the vehicle classes are less clear, especially the boundary
between the car and car passing by class is unknown. Each of the samples is captured at 48 kHz. The average
frequencies in the dataset can be seen in figure 4.1.

Figure 4.1: Probability density function of the average frequencies found in AudioSet.

The dataset contains at the moment of writing 2,084,320 audio fragments of 10 seconds divided over 527
classes. In the original dataset samples have multiple labels, but for this research only samples holding a
single vehicle label were selected. This means that a sample containing speech and car sounds is included
in the car class, but a sample containing both the car and motor vehicle (road) labels were excluded. Each
sample is the extracted dataset belongs to a single class and all reported sample amounts are of this extracted
set. It also means that the "outside, urban or man-made" class contains no distinguishable motorized road
vehicles.

The relevant classes and samples contained in them are summarised in table 4.3. Two classes, the car and
the "outside, urban or man-made classes, are much larger than the others. The specific divisions in problem
groups as specified earlier can be seen in table 4.4. In the motorised vehicles versus environment division,
more motorized vehicles (67.1%) than environment (32.9%) are present.

4.1.1. Preparation
Audioset was only available in VGG features from the original website, which are based on MFCC features. To
get the original sound files the youtube.com video name was retrieved for each relevant sample. Each sample
containing multiple labels from the classes selected here was excluded. Subsequently the audio of each of
these videos was downloaded. Some of the youtube.com videos were not available any more, due to a variety
of reasons like copyright issues, thus could not be downloaded. The sample amounts reported in this chapter
are the samples which actually could be downloaded. Some of the sounds were in stereo (2 channel audio)
or multi channel format. These samples were converted to mono (single channel) format before the feature
extraction.
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Class Sample amount

Bus 4210

Car 28271

Car passing by 1852

Emergency vehicle 4191

Motorcycle 5361

Motor vehicle (road) 1135

Outside, urban or man-made 25922

Truck 7774

Table 4.3: Samples per class in AudioSet. The reported sample amounts only contains the samples which hold a single label from this
list. Samples holding multiple of these class labels were excluded.

Group Classes Total samples

Motorized
Bus, Car, Car passing by, Emergency vehicle, Motorcycle, Motor vehicle

(road), Truck
52795

Environment Outside, urban or man-made 25922

Table 4.4: Class division into groups for the AudioSet including the total samples number found in each group.

4.2. RoadCube
RoadCube is a dataset specifically captured for road vehicle classification. It was captured alongside the road
using eight microphones mounted in the shape of a cube. During recording the microphone cube was placed
at 0.25m from the road. Fragments containing vehicles passing by were separated from the vehicle-less
audio. The audio was captured from 8 different locations, with speed limits of 30 and 50km/h [118]. The
dataset consist of different vehicle classes, namely bike, scooter, truck, van and car and captures were made
on different road surfaces. Additionally there is a "no sound" class which consist of roadside noise, but is
relatively quiet. This could mean that classifiers trained on this dataset will classify any sound as a vehicle.
During the collection of this dataset and the DriveSound the same microphones were used although in a
different spatial configuration. There could thus be some microphones specific bias in both datasets. Each
sample is 4s long and is captured with a sampling frequency of 44.1 kHz. A sample always has a single label.
The average frequencies found in the dataset can be seen in figure 4.2.

Figure 4.2: Probability density function of the average frequencies found in RoadCube.

In table 4.5 a summary of the classes in this dataset can be seen. The specific divisions in problem groups
as specified earlier can be seen in table 4.6. There are much more cars in this dataset than other vehicles. This
could be a realistic representation of the balance in vehicle types found on the roads (in the Netherlands at
least). The motorised vehicles (60.8%) versus environment (39.2%) division is more balanced than AudioSet.
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Class Sample amount

Bike 77

Car 151

Scooter 31

Truck 21

Van 30

No Sound 73

Table 4.5: Samples per class in RoadCube.

Group Classes Total samples

Motorized Car, Scooter, Truck, Van 233

Environment Bike, No Sound 150

Table 4.6: The classes of the RoadCube grouped by the motorized vs environment division along with the total samples in each group.

4.3. DriveSound datasets
A new dataset, DriveSound was captured for the evaluation of the existing datasets. It aims to capture the
real world situation as realistically as possible. The captured data was therefore not filtered or cleaned after
collection. The balance in the vehicle classes is representative for the real balance as encountered on the
road. Recordings were made during which the listener vehicle was idle and when it is driving. They are split
into two datasets with the idle scenarios in one and the driving scenarios in the other set. These datasets are
discussed in the upcoming sections. Details on the collection of the dataset can be found in section 4.3.3.

The recordings were captured with a sampling frequency of 48 kHz. Each fragment in the dataset has
a duration of one second. The average frequency content in a samples can be seen in figure 4.3. Eight
microphones were mounted on the listener vehicle, but only six functioned correctly, thus each moment
in the dataset is captured in six sound fragments. The distance between the microphones is not taken into
account, thus the moment of capture is assumed to be equal.

Figure 4.3: Probability density function of the average frequencies found in RoadCube. left: idle set, right: driving set

4.3.1. Idle dataset
To construct this dataset the data from the five idle scenarios were used. The environment class is the largest
class of them all. By far most of the vehicles present in the dataset are cars, followed by vans. Many different
vehicle classes are present. The motorized class (21.4 %) is much smaller than the environment (78.6 %) class.

4.3.2. Driving dataset
The driving dataset is smaller than the idle dataset, because only three scenarios were used. Still the environment
class is much larger than other classes and the car class is the biggest vehicle class. Again the motorised (24.2
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Class Idle set Driving set

Bus 1 2

Car 110 99

Motorcycle 3 -

Environment 548 382

Excavator - 1

Mini-truck - 3

Pick-up 1 -

Scooter 5 1

Touring car 1 -

Tricycle 1 -

Truck 6 1

Van 21 15

Table 4.7: The amount of samples per class in the DriveSound datasets.

Group Classes Total samples

Motorized Bus, Car, Motorcycle, Pick-up, Scooter, Touring car, Tricycle, Truck, Van 149

Environment Environment 548

Table 4.8: The classes of the DriveSound-idle dataset grouped by the motorized vs environment division along with the total samples in
each group.

%) class is smaller than the environment (75.8 %).

Group Classes Total samples

Motorized Bus, Car, Motorcycle, Excavator, Mini-truck, Scooter, Truck, Van 122

Environment Environment 382

Table 4.9: The classes of the DriveSound-driving dataset grouped by the motorized vs environment division along with the total
samples in each group

4.3.3. Collection
The recordings were done on eight different locations (excluding a pilot recording) in the remainder of this
report the location including the circumstances will be called a scenario. In five of the eight scenarios the
listener vehicle was idle in a parking spot adjacent to the road. In the other scenarios the listener vehicle was
being driven along the road. The speed limits on the roads of the different scenarios varied between 30, 50
and 70 km/h. All of the scenarios were captured on the same day on which the weather was sunny and dry. A
list of the scenarios including their characteristics can be found in table 4.10.

The listener vehicle was a prius hybrid car. It has a petrol engine, which acts as a generator. This generator
will occasionally be turned on, even when the vehicle is idle. It will cause an engine sound at unpredictable
moments, which must not be classified as a vehicle. Eight microphones are mounted on the roof of the vehicle
(see figure 4.4). In this configuration the sounds captured by the microphones may contain a relatively high
portion of wind noise.

For the experiments in this thesis the vehicles were annotated when they were the closest to the listener
vehicle. This was done because of the targeted motions are constant motions and these are the most audible
when the target vehicle is closest. Other variants of annotation aiming to capture other types of information
are also possible. The annotation was done by using lidar system and two front facing camera’s to establish
the ground truth. Each time a vehicle passed by the time, vehicle type and vehicle location was noted down.
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Figure 4.4: Recording one of the idle scenarios of the DriveSound. Eight microphones (white circles) are mounted on the roof of the
vehicle along with a Velodyne lidar scanner, used to determine the ground truths.

Figure 4.5: DriveSound scenario locations. There are five idle scenarios, which are denoted by the blue dots. The other three scenarios
are with a moving listener vehicle. The driven route is presented with green arrows. The numbers correspond to the scenarios in table

4.10. The map is taken from maps.google.com

It is estimated by the author that the timing error is in the order of 0.1 second.

maps.google.com
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Scenario listener motion duration (mm:ss) speed limit vehicles annotated

1 gas station idle 06:05 70 km/h 105

2 behind station idle 02:21 30 km/h 26

3 hague college idle 05:51 50 km/h 13

4 near jumbo idle 04:33 50 km/h 72

5 science centre idle 04:41 50 km/h 64

6 past station driving 03:05 50 km/h 50

7 to 3me driving 03:30 30 km/h 46

8 subsidiary road driving 01:19 70 km/h 30

Table 4.10: DriveSound datasets - Summary of the captured scenarios

Each of the scenarios is a recording, but for the classification pipeline small samples are required. The
split into vehicles and no vehicles is done with the help of the annotations. A sample of 1s second is extracted
around the annotated time. This sample belongs to the class which was annotated. Multiple class samples
can overlap. After each of the vehicles is extracted, the environments samples are extracted. The parts of the
signal which are not included in a class are divided into the environment samples of 1s. Between the vehicle
class and a negative class is a margin of 2s to get a contrast. A schematic of this division can be found in figure
4.6.

Figure 4.6: Recordings are divided into vehicle (positive) and environment (negative) samples of 1s. The time of the vehicle classes is
annotated (big arrow). Vehicle and no-vehicle classes are separated by a margin of 2s. Vehicle samples can overlap with other vehicle

samples.





5
Experiments

A classification pipeline can have different components, namely the dataset, the feature space and the classification
algorithm. The usefulness of these components needs to be evaluated. First a feature selection is done using
the random forest classifier (see section 5.1). Subsequently the performance of the classification pipeline will
be measured by performing a classifier optimisations, both on each dataset as cross dataset. An overview
of the performed classifier optimisation experiments can be found in table 5.1. First the the intra or single
dataset optimisations are performed (diagonal of the table). These trained classifiers are then used to classify
samples from the from the DriveSound datasets. More information about the datasets can be found in
chapter 4: Datasets.

Evaluation set

AudioSet RoadCube prius-idle prius-driving

Optimisation set

AudioSet 1-intra 5 6

RoadCube 2-intra 7 8

DriveSound-idle 3-intra 9

DriveSound-driving 4-intra

Table 5.1: Overview of the performed classifier optimisations. In each case the feature space is set by the feature selection and the class
division is motorized versus environment.

The commonalities shared between all of the experiments are the class division, the performance metric,
the feature extraction method and the classifier types. The motorized vehicles versus environment class
division is used, which is a binary classification problem. The motorized vehicles class contains one or
more simultaneous vehicles, which are close by. The environment class on the other hand only contains
background noise. The former class consists of samples with one or more sound emissions of vehicles, while
the environment class only contains background noise. Specifics on the composition of each class for each
dataset can be found in chapter 4: Datasets. The same performance metric is used for all experiments, namely
the MCC. It is chosen because it is well suited for unbalanced class divisions. More information on this metric
can be found in section 3.4.1: Performance metrics. Each dataset consists of samples in the wav file format.
These need to be transformed to features to be usable for classification. A sample is divided in frames of 2048
samples, regardless of the length of the signal. The feature are extracted for each frame and averaged over the
whole signal afterwards. All types mentioned in table 3.1 were extracted. In the feature selection phase the
feature types were included or excluded in the features space for the experiments afterwarsd

In this thesis four types of classifiers are used: SVM with kernels RBF, linear and polynomial, GMM
classifier, MLP and Random forest classier. Each of them has meta-parameters which must be chosen beforehand
and cannot be trained. Determining the optimal meta-parameters is the main aim of the classifier optimisation.
In this thesis the possible classifier configurations are randomly samples from meta-parameter distributions.
These distributions for each parameter for each type of classifier are shown in table 5.2. Three types of
distributions exist: choice, integer and exponential. Both choice and integer distributions are discrete and
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offer only a limited number of options. Each of the options has an equal chance of being sampled. The
exponential distribution is continuous, thus an almost infinite amount of values can be sampled. The scale
argument sets the order of magnitude, which is sampled most.

Classifier parameter distribution type range/options

kernel type choice Linear, RBF, polynomial

C - training parameter exponential scale=100

γ - multiplier exponential scale=.1

r - bias coefficient exponential scale=.1

SVM

d - polynomial degree integer 2-11

component amount integer 1-20
GMM

covariance matrix shape choice
diagonal, symmetric, tied,

full

hidden layer amount integer 1-20

nodes per hidden layer integer 5-200

activation function choice tanh, relu

α - regularization penalty exponential scale=.0001

solver choice L-BFGS, adam

MLP

initial learning rate exponential scale=.001

Random forest estimator amount integer 2-200

Table 5.2: Overview of meta-parameters distributions. A classifier configuration is randomly sampled from the distributions
corresponding to the classifier type. There discrete (choice, integer) and continuous (exponential) parameter distributions. In the case

of the discrete distribution each of the

This chapter continues with sections presenting the results of the experiments. In section 5.1 the feature
selection results are shown. Here the subset of feature types is chosen, that will be used in the classifier
optimisation experiments afterwards. The included and excluded features are summarized in table 5.6. After
the feature selection the intra or single dataset classifier optimisation results are shown in section 5.2. The
classifiers trained on AudioSet and RoadCube are then used on the DriveSounds in section 5.3.

5.1. Feature selection
The first step in the optimisation of the classifier pipeline, is to to select the most useful features. In this step
feature types are included and excluded, based on the importance measure from the random forest classifier.
For a detailed description about the feature selection procedure see section 3.4.2. Frequency vector features,
or frequency magnitudes, are excluded even before the selection, because they have too many elements.
Another reason is their feature length which varies with the sample rate of the sound signal. Due to RoadCube
having a different sample rate than the other datasets, this would be a problem for the classifiers. The features
used in the selection, called abstract features because they represent a property of the signal, can be found
in table 5.3. Each of the feature elements is given a general index in this experiment, which makes it easier
to plot the results. Additional information about the different feature types can be found in 3.2. Afterwards
the feature selection procedure is repeated with only the frequency vector features to get more insight in the
important frequencies for vehicle classification.

5.1.1. Abstract feature selection
To select the most important features, the elements with a performance above the threshold of 0.75 are
examined. This threshold means that these elements are within a 25% importance of the most important
feature on that dataset. These most important feature elements are shown in 5.4. There it can be seen that
MFCC elements are not only present in all of the most important feature elements, but one element has an
importance within 90% of the maximum value. Furthermore the LPC features seem to be important, but only
on the DriveSound sets. Both AudioSet and RoadCube are dependent on few features elements. AudioSet
has fewer element with a high importance and peaks than RoadCube. AudioSet only has a single feature
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Feature name feature length feature indices (0-based)

Energy 1 0

Energy entropy 1 1

LPC feature 8 2-9

Zero crossing rate 1 10

Chroma 12 11-22

Harmonic line 1 23

MFCC 13 24-36

Spectral centroid and spread 2 37-38

Spectral entropy 1 39

Spectral rollOff 1 40

Table 5.3: Overview of all abstract features extracted. The general index listed here is used for other graphs and tables in this section.

element above the threshold (MFCC (4)), with Energy entropy and MFCC (1) somewhat below it. RoadCube
is dependent on relatively simple features. The most important element is the MFCC element which indicates
power in the signal, followed by the spectral spread. The spectral centroid and the first LPC element are just
below the threshold.

Both the DriveSound datasets have more varied values for the relatively unimportant elements. The
MFCC (4) element has a large importance in the idle set, but is unimportant in the driving set. Multiple
LPC elements are important in both the idle and driving case. The prime example is LPC (3) which has a large
importance in both sets In DriveSound-driving more elements, especially of the LPC kind, are important. It
is the only dataset, where the spectral spread is has an importance above the threshold. This probably is due
to the lack of elements which are much more important than others. Finally in the driving set of DriveSound
more features elements have a high importance. This includes elements of the Chroma type, which are only
important here.

Dataset name feature element element index importance

AudioSet MFCC(4) 27 1.0

RoadCube
MFCC(1) 24 1.0

Spectral centroid and spread(2) 38 0.99

DriveSound-idle
LPC feature(3) 4 .86

MFCC(4) 27 1.0

DriveSound-driving

LPC feature(3) 4 .84

LPC feature(4) 5 1.0

LPC feature(7) 8 .81

Chroma(8) 18 .93

MFCC(6) 29 .90

MFCC(11) 34 .77

Table 5.4: Summary of the most important feature elements as determined by the random forest classifier. Feature elements above the
threshold of 0.75 are listed. The features are sorted per dataset on their feature index. After each feature name the 1-based feature type

index is presented. The element index column is the general index used in for the experiment (for example in table 5.3). The
importances are peak normalised per dataset, thus values range from 0 to 1.

The test scores of the best classifier for each dataset are shown in table 5.5. Abstract features score higher
on each dataset except for the RoadCube set. In the last case the scores are close and very high, which makes
it more likely that this difference is part of the possible variance. It can furthermore be seen that the scores
on RoadCube are very high, on AudioSet scores are lower and on the DriveSound datasets the lowest scores
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are attained.

Dataset Abstract features Frequency feature

AudioSet .40 .32

RoadCube .97 1.0

DriveSound-idle .24 .20

DriveSound-driving .27 .20

Table 5.5: Overview of the test scores obtained by the best random forest classifier on the different datasets both for the abstract
features and the frequency vector features.

In the graphs in figure 5.1, the importances of all abstract features can be seen for each dataset. Each
feature element is numbered to make the graphs more readable. The conversion from these indices to the
feature names is found in table 5.3. Both Audioset and RoadCube only have a small amount of features with
a high importance. RoadCube has many feature elements which have a importance close to zero, including
the Chroma features, the Harmonic line, the MFCC features, apart from the first element, and the spectral
entropy. The other datasets have a much higher minimum importance, which means that there exist much
less dominant feature elements. The DriveSound-idle dataset depends only on a few features, while the
DriveSound-driving feature importances are much closer together.

Figure 5.1: The relative importances of the abstract feature elements, captured per dataset. They are peak normalised per dataset. The
lines connecting the dots are just a visual aid, the elements’ importances have no (linear) relationship. The dotted line is the threshold

of 0.75. The indices of the feature elements correspond to the names in table 5.3.
left-top: AudioSet, right-top: RoadCube, left-bottom: DriveSound-idle, right-bottom: DriveSound-driving

5.1.2. Frequency feature selection
To get more insight in the important frequencies for each dataset, feature selection is performed separately
on the frequency bin features. The results of the frequency vector feature selection can be seen in figure 5.2.
It can be seen that the classifications in AudioSet depend on low frequencies, while RoadCube depends a lot
on frequencies around 1600 Hz. In the latter case it can also be seen that frequencies closely together can
have high differences. The relatively low amount of samples can cause this, because the FFT is a histogram.
With few samples an many histogram bins, this can mean that some bins are not present in the dataset. Both
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of the DriveSound sets also show a dominant frequency around 1600 Hz, but the driving set contains more
variation in the importances.

Figure 5.2: The relative importances of the frequency vector feature elements, captured per dataset. They are peak normalised per
dataset. The lines connecting the dots are a linear interpolation of the results.

left-top: AudioSet, right-top: RoadCube, left-bottom: DriveSound-idle, right-bottom: DriveSound-driving

5.1.3. Conclusion
Abstract features quantify a property of the sound signal. Compared to the frequency histogram and especially
the raw signal, their information density is high. The cost is the additional processing required to extract
these features. For the datasets in this thesis this is worth the effort, because the random forest classifiers
score higher with them and the features have more than three times less elements.

Combining the results form the abstract and frequency bin feature selection a few conclusions can be
drawn. As mentioned before the LPC features are important for all the datasets, except for AudioSet. Additionally
important frequencies in AudioSet are very different from the other sets. There are probably many samples
containing engine noises or these are most important, because engines emit frequencies in the range of the
low hundreds Hz (see section 2.2.2: Acoustic vehicle signatures). The frequencies show that lower frequencies
have a higher importance, which indicates that there is relatively much engine noise present in the dataset.
Another explanation is that the engine noise is the only discernible difference between the classes. If engine
noise is the only usable property in the dataset, the low scores on the DriveSound would indicate that engine
noise alone is not enough for vehicle detection. The selection also indicates that the classification on the
RoadCube is a relative simple power based problem. The most important MFCC element on RoadCube,
the first element, is namely a measure of the power of the signal. Additionally on RoadCube relatively simple
features are important, while many sophisticated features have a relative importance close to zero. RoadCube
has a low amount of noise in the negative and the high power contrast between the classes, which is probably
the reason why simple features are preferred. The more sophisticated features could be eclipsed by the
simpler frequency statistics (centroid, spread, roll-off). It is also shown in the frequency importance, where a
single frequency is important.

In the idle set of DriveSound peak importances of both abstract and frequency feature elements are
present. The most important abstract feature in the idle set, MFCC(4) is not The LPC features, which are time
domain based, keep their importance. It is thus likely that frequency domain based features are susceptible
to the motion of the vehicle, while time features are robust. The results from the other feature selection
procedure with the frequency bin features, show importance peaks in the idle set near: 400 Hz, 1600 Hz, 2100
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Hz and 2800 Hz. Th 1600 Hz and 2100 Hz peaks are not present in the driving set any more. In the driving sets
multiple frequencies in the range from 1100 Hz to 1500 Hz are more important, which could indicate that the
earlier peak of 1600 Hz has shifted due to the listener vehicle’s motion.

Included Excluded

LPC features, Chroma features, MFCC, Spectral
centroid, Spectral spread

Energy, Energy entropy, Zero crossing rate,
Frequency bin features, Spectral entropy,

Harmonic line

Table 5.6: A list of the features included and excluded in the feature space for the classifier optimisation. When a single feature element
was selected, the whole (multi-element) type list selected. The amount of elements of all included feature types is 35.

MFCC elements are one the most important in all datasets, although different elements are important
for different datasets and are therefore included in the feature space. LPC features have a relatively high
importance in all of the dedicated vehicle detection datasets (below threshold on RoadCube). This means
that some part of the vehicle’s acoustic signature is captured and can be used, thus it is included. More
than one element of this type has a high importance, thus all of them are included. Chroma features are
only important on the driving set of DriveSound. For the driving scenario’s Chroma features might thus be
important, thus they are included. The spectral centroid and spread have an importance near or over the
theshold on the RoadCube and are therefore included. A overview of the included and excluded feature types
is given in table 5.6. In the upcoming sections this optimised feature space is used for the experiments.

5.2. Intra experiments
After the feature space optimisation in the previous section (see table 5.6 for the included features), the
performance of the classifier types should be evaluated. As a first step the classifier optimisation is performed
for each of the datasets separately. These experiments can be found on the diagonal of the classifier optimisation
index table (5.1). They act as a performance baseline, because it is unlikely that captured information from
another dataset will be better suited for classification, than information about the current dataset. The
amount of configurations evaluated are 300, 80, 200, 100 for the SVM, GMM, MLP and random forest classifiers,
respectively. More information about the procedure for the classifier optimisation can be found in section
3.4.3: Classifier configuration optimisation.

5.2.1. Dataset comparison

The test scores of the best classifiers can be seen in table 5.7 along with the classifier type that attained it.
It can be seen that there are large differences between the datasets. On RoadCube the classifiers are able
to achieve a near perfect score, while the classifiers are only moderately able to correctly classify the test
samples from the other datasets. This is due to a lack of generalisation, because the training scores of the best
classifiers are high. It must be noted that the validation score of the best classifier on DriveSound-idle was
much lower that the test score, namely 0.27 (see table 5.8).

AudioSet RoadCube DriveSound-idle DriveSound-driving

test score (MCC) .41 .90 .43 .38

classifier type SVM-RBF MLP GMM GMM

Table 5.7: Test scores for each single dataset experiment along with the type of classifier that attained it. The classifier with the best
validation score was selected to do the test. It was retrained on the whole optimisation part of the dataset. The test score for the

DriveSound-idle is 0.15 higher than the mean validation score of 0.27. It could thus be an anomaly. The best classifier configuration can
be found in Appendix 7
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Classifier type validation score test score generalisation loss

SVM .40 .41 .00

GMM .30 .31 .00

MLP .40 .41 -.01
AudioSet

Random forest .37 .38 -.01

SVM .96 .97 -.01

GMM .96 .89 .07

MLP .97 .90 .07
RoadCube

Random forest .96 .95 .01

SVM .25 .22 .03

GMM .27 .43 -.15

MLP .25 .22 .03
DriveSound-idle

Random forest .23 .19 .03

SVM .34 .56 -.21

GMM .40 .38 .03

MLP .36 .36 -.00
DriveSound-driving

Random forest .33 .48 -.15

Table 5.8: Mean validation score, test score and generalisation loss (MCC) for the average best performing classifier on the validation set
separated by classifier type and dataset. This best classifier’s is retrained and used on the test set. The difference between the validation

and test score is the generalisation loss.

Figure 5.3: Mean validation score (MCC score) of each classifier configuration for each dataset with the motorized versus environment
class division separated by classifier type. The mean score is taken over the k = 4 folds of the cross-validation.

Boxes represent 50 % of the data. The yellow line is the median value. The length of the whiskers is 1.5 times the length of the box
lengths, but can be shorter if the minimum/maximum of the values is closer. Points are outliers.

left-top: AudioSet, right-top: RoadCube, left-bottom: DriveSound-idle, right-bottom: DriveSound-driving
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5.2.2. Classifier types
In table 5.8 the scores of the best classifiers of each type are presented. It can be seen there that the MLP is
often the best classier or in any case its test scores are near the best. The best SVMs score near the best scores
on the best scores and it even one of the best types on AudioSet. On the opposite side, the GMM classifier
also performs well, but not on AudioSet. The random forest classifier is performing worse than the other types
on every dataset, although the GMM performs worse on AudioSet. The generalisation of a classifier differs
between the types of classifiers. It is relatively low and consistent for the SVM and random forest classifiers,
but the GMM and MLP perform more irregularly. The negative GMM loss on DriveSound-idle set and the one
of the SVM on the driving set both seem anomalies. The first has a standard deviation on the cross-validation
folds of 0.15, which explains the surge in performance. The SVM only has a standard deviation of 0.03, thus
that surge must be just lucky. If not only the best classifiers, but also other configurations are considered (seen
in figure 5.3), it can be seen that the random forest classifier performs the most consistent. On the other hand
are many SVM configurations, which perform relatively poor. This is due to the linear kernels variants, which
have scores near 0.

The training time can be a factor to consider, when training classifiers, especially on large datasets. The
average training time per fold of the cross-validation can be seen in figure 5.4. The MLP classifier takes by far
the longest to train. A positive note is that on the AudioSet the training time is about a factor of 200 bigger
than on RoadCube, while 2000 times as many samples are used. Only the SVMs come close when they are
trained on AudioSet. Their training times appears to increase exponentially with the size of the dataset.

Figure 5.4: Mean training time in seconds for each classifier configuration for each dataset with the motorized versus environment class
division separated by classifier type. The mean is taken over the k = 4 folds of the cross-validation.

Boxes represent 50 % of the data. The yellow line is the median value. The length of the whiskers is 1.5 times the length of the box
lengths, but can be shorter if the minimum/maximum of the values is closer. Points are outliers.

left-top: AudioSet, right-top: RoadCube, left-bottom: DriveSound-idle, right-bottom: DriveSound-driving

5.2.3. Conclusion
The test scores (table 5.7) of the best classifiers give an indication of the difficulty of the classification task
for each dataset. According to the test scores, AudioSet is a difficult to classify, while RoadCube is much
easier. The DriveSound datasets are expected to be more difficult for a classifier than RoadCube, because it
was captured in a less controlled environment, but less or equally difficult than AudioSet. This is true for the
driving dataset, but not for the idle set, which performs worse. It can mean that environment noise has a
large influence on the idle dataset, but not on the driving set. When the listener vehicle is driving, it is less



5.3. Cross-dataset experiments 57

susceptible to a single external noise source, but more ego-noise is produced.

5.3. Cross-dataset experiments
In this section the results for the cross-dataset experiments are presented. Classifiers are optimised first on
the training dataset and are afterwards evaluated on the test part of evaluation dataset (DriveSound: idle and
driving). The procedural details can be found in section 3.4.2: Random forest feature selection. These best
classifiers are reused from the earlier single dataset experiments.

The results for the cross-dataset evaluation on DriveSound-idle can be seen in table 5.9. All of the classifiers
trained on AudioSet perform poorly, especially the GMM. The GMM classifier trained on the RoadCube on
the other hand is the best performing classifier. It has few false negatives, while keeping the false positives
limited. It performs better than the classifier trained on the evaluation dataset, DriveSound-idle. On the idle
set, the cross dataset classifiers focus more on the motorized classes and limiting the false negatives, while
the idle set itself focusses more on the environment classes. Both the GMM and the MLP classifiers perform
well, when they are trained on the RoadCube, while the SVM and the random forest classifier have a reduced
performance. On the DriveSound-idle this is the other way around. It could be that less noisy data is favoured
by these kinds of classifiers.

Classifier type test score (MCC) confusion matrix

SVM .19
28 2

81 29

GMM .06
13 17

40 70

MLP .18
28 2

83 27

AudioSet

Random forest .15
30 0

99 11

SVM .15
26 4

78 32

GMM .34
24 6

43 67

MLP .31
23 7

43 67

RoadCube

Random forest .26
19 11

36 74

SVM .28
13 17

17 93

GMM .23
14 16

24 86

MLP .14
7 23

13 97

DriveSound-idle

Random forest .29
6 24

3 107

Table 5.9: The results of the cross-dataset experiment on DriveSound-idle. The confusion matrix shown here has the convention [TP,
FN; FP, TN]. For more information see table 3.2
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Table 5.10 shows the experimental results for the evaluation on the DriveSound-driving. It can be seen
that all classifiers from both AudioSet and RoadCube are performing less or equally well than a random
guess. The DriveSound-idle classifiers are simply guessing that almost everything is not a vehicle. The best
DriveSound-driving classifier on the other hand is able to score well on its own test set. The classifier types
from AudioSet and RoadCube are all performing below the random guessing score. Comparing them does
not make that much sense. The SVM and in lesser extend the random forest classifier are performing well on
the driving dataset. They are able to cause few false positives, while the SVM is able to classify more than half
of the vehicles correctly. Again the DriveSound classifier is focussed on classifying the positives well.

5.3.1. Conclusion
The RoadCube dataset has shown its potential for the classification of vehicles, when the listener is stationary.
The classifiers trained on this dataset perform much better than those trained on AudioSet and even those
from DriveSound-idle. This indicates that a specific, less noisy dataset is useful for this purpose. When the
listener is moving it changes the story however. Then none of the classifiers trained on other datasets is able to
discern between the a vehicle or no vehicle. Especially the DriveSound-idle simply guessed almost everything
to be negative. The bad performance could be explained with the feature importances found in the feature
selection (figure 5.1). The other datasets are dependent on a few features, while the DriveSound-driving set
dependent on multiple. Both the frequency shifts caused by the motion and the added noise are possible
causes for the reduced performance.

The SVM classifier is performing well on the DriveSound datasets. Especially on the driving dataset it
outperforms the others. This is another indication that this type of classifier handles noisy datasets relatively
well. The GMM and the MLP classifier are working relatively well on the RoadCube when it is evaluated on
the idle set. In this dataset more vehicles are present than environment samples, which cause the classifier to
have a preference to classify a vehicle.
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Classifier type test score (MCC) confusion matrix

SVM -.20
17 7

68 9

GMM -.13
7 17

34 43

MLP -.10
18 6

65 12

AudioSet

Random forest -.18
20 4

73 4

SVM -.05
14 10

49 28

GMM -.09
11 13

43 34

MLP -.11
9 15

39 38

RoadCube

Random forest .00
11 13

35 42

SVM .05
3 21

7 70

GMM -.13
0 24

5 72

MLP -.07
0 24

2 75

DriveSound-idle

Random forest -.05
0 24

1 76

SVM .56
13 11

4 73

GMM .39
11 13

8 69

MLP .36
7 17

3 74

DriveSound-driving

Random forest .48
9 15

2 75

Table 5.10: The results of the cross-dataset experiment on DriveSound-driving. The confusion matrix shown here has the convention
[TP, FN; FP, TN]. For more information see table 3.2





6
Conclusion

In this thesis the classification of acoustic signatures of motorized road vehicles was investigated. Two datasets,
AudioSet and RoadCube, are evaluated along with commonly used acoustic feature and classifier algorithms.
First the most important features were selected based on the random forest classifiers importance measure.
Afterwards the different classifier configurations were evaluated, first on each dataset separately and afterwards
on the evaluation dataset DriveSound.

6.1. Discussion
The set-up of the classifier optimisation can influence the results and almost always there are improvements
possible. In this case the feature selection did not take into account that feature elements can influence
the importance from other elements. The random forest feature selection does not take this into account. A
better, but more computationally intensive method can be found in [121], where many feature type combinations
are tried iteratively.

The validation scores on the DriveSound datasets were mediocre at best. It must be noted that the
samples in the dataset are obtained from the real world under difficult classification conditions. Other reasons
for the low scores can be the relatively short fragment lengths of 1s with respect to the other datasets. Increasing
the length would have limited the real-time application of the classification pipeline and is thus not preferred.
The short frames and the feature extraction methods could make classification extra difficult. The extracted
frames of 2048 correspond to about 0.04 second, which might be too small. Furthermore the feature extraction
averages over the whole frame, possibly smoothing interesting features. The placement of the microphones
on the car might have influenced the measurements as well. They were placed placed on top of the car, where
they might be more susceptible to aerodynamic noise. The hybrid vehicle is not producing a constant vehicle
engine noise, because the engine will only be used on occasion. With the relatively small evaluation dataset
DriveSound this might be a significant influence.

As the evaluation dataset is captured in medium sized city, the results are not necessarily generalizable
to other environments, such as rural areas or city centres with high skyscrapers. Different road surfaces and
external noise sources can alter the sounds in both classes. Additionally in areas with a high building density,
reverberation might become a problem. It however expected that these effects are manageable. RoadCube
for example already contains multiple pavement types.

6.2. Conclusion
Acoustic vehicle detection can be used in ADAS and autonomous vehicles. This thesis shows that is possible
to detect vehicles, but not yet with the performance required to base a single modality warning system on. A
system were sensor modalities are fused could be a solution.

Two existing datasets were examined, AudioSet a general purpose dataset and RoadCube a specialised
small scale vehicle detection dataset. Out of the two existing datasets RoadCube is the most useful, while
AudioSet is not suitable for the classification of vehicles in this form. This indicates that specialised smaller
dataset is to be preferred above a general purpose dataset. It must be noted however that the features and
classifiers were not able to utilise AudioSet fully. This can be seen in the lower validation and test scores in
the AudioSet intra experiment (section 5.2.1), while the training scores are high. A possible reason is that
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AudioSet contains too much noise or misclassified samples to be classified correctly. The usefulness of the
RoadCube diminishes when the listener vehicle is moving. A possible explanation is the lack of noise in the
negative class. Classifiers will then be trained on the existence of a sound instead of the type of sound. The
only examined dataset capable of detecting vehicles is DriveSound-driving. are suited for the detection of
vehicles while moving. For the application this dataset should thus be extended or a new dataset dedicated
for vehicle detection with a moving listener should be captured. Another possibility is to investigate a filtering
or frequency shift preprocessing step, which make the RoadCube usable for this kind of signal.

Additionally to the datasets also different feature types were used. The test scores in the feature selection
indicate that abstract or more complex features perform better than using the raw frequency histogram (see
section 5.1). This supports their raison d’être. Furthermore MFCC features were important in any of the
datasets Frequency domain based features including the MFCCs were found to be the most important in
three out of four datasets. In the other dataset, DriveSound-idle the LPC features were found to be the most
important.

Four types of classifiers were evaluated, namely SVM, GMM, MLP and random forest. The MLP performs
the best on the intra sets, but it takes relatively long to train. If AudioSet is not included the GMM classifier
would perform best overal (see section 5.2.2). The SVM with a RBF kernel performs most robustly. Linear
kernels score very low most of the time. The random forest classifiers most of the times perform less well
than other types.

The cross-dataset evaluation (section 5.3) shows that AudioSet and RoadCube are not able to classify
samples on the DriveSound-driving set. Even DriveSound-idle set does not generalise to the driving case.
From the feature selection (section 5.1) it seems that the frequency based features are less viable on the
driving set. The are most probably affected by the Doppler effect (section 2.2.1) caused by the motion of
the listener vehicle. Furthermore the LPC features could be robust to the driving.

6.3. Future work
The research done in this thesis can be extended in multiple ways. First of all the experiments can be repeated
with additional datasets, features and classifier. An interesting dataset to try would be FreeSound, because
it can be considered a compromise between the many samples of AudioSet and the specific purpose of
RoadCube. The DriveSound could also be used for more specific scenarios, for example a single speed limit.
It can be insightful to compare the differences between the scenario’s and evaluate them in terms of allowed
speed and the distance between microphones and the road. For this purpose the dataset could be extended.
Other feature types, like wavelets could be evaluated, but it altering the feature extraction pipeline could give
more interesting results. For example hidden markov models, which contain multiple states, could be used to
capture not only the average property, but also the change over the signal. A recurrent neural network could
be used instead of the multi-frame feature vector. Another interesting approach is to use bag-of-instances
clustering to target the components of the vehicle sound. Instead if hand crafted features, a deep learning
approach can be taken as well. Features could then be learned by using a deep neural network directly on
the sound signal or frequency histogram. These classifiers generally need many more samples, thus it would
favour larger datasets. Additionally the problem could be extended to the multi class case, where vehicle types
are discerned from each other or the amount of vehicles is predicted. RoadCubeprobably performs well for
this type of problem. It will not suffer from the drawback that the classification depends on the power of the
sound. It can be assumed that the emissions of all vehicles have a similar power, regardless of class. Then the
lower noise present in the dataset can be helpful to clearly distinguish between vehicle classes. This dataset
has disadvantages as well for the multiclass system. There are not many different vehicles and a low amount
of samples per vehicles limited.

Currently vehicles are detected when they pass the listener vehicle. A next step would be to detect vehicles
before this moment. Approaching vehicles could than be detected when there is still time to react. A possible
way to investigate this is by using a sliding window, which continuously outputs the confidence that a vehicle
is nearby Another way to extend the functionality is by combining the recognition of vehicles with localisation
methods like beamforming, which is able to steer the microphone array in a certain direction. This is currently
used for robot audition 2.3.3 and has the potential to improve performance of the recognition by reducing
noise and add more functionality, like determining the location and speed of the target vehicle. A more
advanced localisation method, geometric source separation could also be used to isolate vehicle sound candidates,
which can subsequently be classified, but these advanced techniques probably require more microphones.
The DriveSound datasets are already suitable for localisation methods, because they were captured with
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multiple microphones.
Many factors exist which can affect the performance of the vehicle detection. These properties of acoustic

vehicle detection must be further investigated to understand the problem better and potentially improve the
solution. The first is to investigate the detection range and its influence on the detection accuracy. RoadCube
was detected on a short range, which could be one of the reasons why it is easier, but it is helpful to know
at what distance vehicles could be detected. Further research is also needed to determine the acoustic
detection range under divers noise conditions. In the datasets only cars were detected with a constant speed.
Accelerating and cornering vehicles have a different acoustic signature. Additionally the influence of the
relative speed on the vehicle signature could be investigated. Finally a possible improvement could be reached
when individual components of a vehicle’s sound emission are targeted. This might give also more insight in
the commonalities and differences between vehicle types. It would be helpful to investigate the detection
of occluded vehicles (sound property: diffraction). If this is feasible it would be a major benefit of acoustic
detection of road vehicles. Finally the optimal placement of the microphones on the vehicle can be researched.
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7
Best classifiers per experiment

7.1. (1) - AudioSet intra

Best classifier MLP

test score (MCC) .41

activation function rectified linear unit

α 8.54e-04

hidden layers 1

neurons per layer 142

solver adam

initial learning rate .00020

Table 7.1: Test score of the classifier configuration attaining the highest MCC score on the intra AudioSetexperiment with motorized
vehicles versus environment division.

7.2. (2) - RoadCube intra

Best classifier MLP

test score (MCC) .90

activation function rectified linear unit

α 5.70e-05

hidden layers 18

neurons per layer 123

solver L-BFGS

initial learning rate 7.78e-05

Table 7.2: Test score of the classifier configuration attaining the highest MCC score on the intra RoadCube experiment with motorized
vehicles versus environment division.

7.3. (3) - DriveSound-idle intra
7.4. (4) - DriveSound-driving intra
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Best classifier GMM

test score (MCC) .27

components 4

covariance type tied

Table 7.3: Test score of the classifier configuration attaining the highest MCC score on the intra DriveSound-idle experiment with
motorized vehicles versus environment division.

Best classifier GMM

test score (MCC) .40

components 2

covariance type tied

Table 7.4: Test score of the classifier configuration attaining the highest MCC score on the intra DriveSound-driving experiment with
motorized vehicles versus environment division.
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