
Cooperative Visual Object Learning

Master Thesis

Jovana Radojević

D
el
ft
U
ni
ve
rs
ity
of
Te
ch
no
lo
gy

Cooperative Visual Object Learning

Master Thesis

Jovana Radojević
Student No: 4510542

Supervision: Prof. Dr. Jens Kober, Delft University of Technology
Dr. Lydia Fischer, Honda Research Institute EU

September 18, 2017

Correspondence:
radojevic.r.jovana@gmail.com

radojevic.r.jovana@gmail.com

“The important thing is not to stop questioning.
“Curiosity has its own reason for existing.”

Albert Einstein

Acknowledgments

I wish to express my sincere thanks to Honda Research Institute in Germany (HRI-EU) for providing
me the resources necessary for my thesis. The Institute has supported my research not only by giving
me access to their state of the art hardware, but also through intellectual and moral support provided
by its members. I would especially like to thank Dr. Lydia Fischer for sharing her expertise, dedicating
her time and leading me in the right direction throughout this venture.

Furthermore, I am deeply grateful to my academic supervisor Prof. Dr. Jens Kober, from Delft Uni-
versity of Technology (TU Delft), who has made the collaboration between the HRI-EU and TU Delft
possible. The ideas, advice and valuable guidance that I have received from Dr. Kober have shaped
my thesis and inspired me to further explore this scientific field.

Finally, I must express profound gratitude to my parents, my brother and to my partner for giving
me unfailing support and continuous encouragement during the years of my study and through the
process of working on this thesis. This accomplishment would not be possible without them.

Abstract

A lot of attention has recently been focused on possible benefits of the cooperation between machines
and humans. Taking the best from machines and humans and joining them together can produce
results which exceed each collaborating partner performing separately. A common belief is that the
key for good cooperation is an excellent communication. Some important aspects of communication
are self-evaluation processes. When applied to humans these processes improve the communication
quality between humans. Therefore, we believe that employing self-evaluation processes at machines
advances the human-machine communication, and cooperation quality. Accordingly, this thesis is
exploring communication strategies between machines and humans. More precisely, it examines pos-
sibilities for the communication improvement through an exploration of self-evaluation processes of
classifiers.

Firstly, we introduce a baseline framework, an interactive visual category learning architecture,
called Tubby at Honda Research Institute in Germany. For simplicity we consider in a first step the
classification of objects rather than the more difficult task of learning multiple categories per object.
We then introduce theoretical foundations used in the thesis. The background on classification, neural
networks, outlier detection and assessment of classifiers is explained in depth. We outline the critical
importance of self-evaluation in classification. Therefore, we propose two self-evaluation measures
which are incorporated within a testing and a training strategy. The first measure captures a confidence
in predictions during classification and it is used within the proposed testing strategy. The second
measure denotes the quality of each training sample with respect to the generalization performance
of classification and it is used within the proposed training strategy. The quality of the training sample
essentially represents how different the current training sample is from all of the previously acquired
training samples of the object. The confidence and the quality measure are communicated through
a graph to the user of the system. Depending on whether the system is in the testing or training
phase the value of the corresponding measure is provided to the user. Two ways of deriving each
of the two measures are presented. Essentially, we offer two testing and two training strategies.
Furthermore, we consider each proposed strategy separately and a combination of those. We then
evaluate all of the considered cases against a baseline strategy. The evaluations are performed in
different dimensionalities of the feature space for different numbers of training and testing objects. We
present an offline simulation of the interaction between Tubby and the user. Results of the simulation
provide additional insights into the working mechanisms of the proposed strategies and measures.

The proposed strategies improve the baseline performance. The absolute improvement of the
average classification accuracy varies between 1% and 25%, depending on the dimensionality of the
feature space and number of training and testing objects. The best results are achieved when a
combination of the proposed training and testing strategy is used. The biggest improvement is observed
when a lot of objects are in the learning process (≈ 100), and the dimensionality of the feature space
is high (≥ 10D). In the actual application setting this is the most realistic case - a large number of
objects and a high dimensionality of the feature space.

Contents

1 Introduction 1

2 System Architecture 3
2.1 Description of the Architecture. 3
2.2 Discussion on Important Aspects . 5
2.3 Research/Technical Target . 6

3 Fundamentals 9
3.1 Classification . 9

3.1.1 Online Learning. 10
3.2 Neural Networks for Vision . 10

3.2.1 Neural Networks . 11
3.2.2 Deep Neural Networks . 12
3.2.3 Convolutional Neural Networks . 15

3.3 𝑘 Nearest Neighbour . 18
3.4 Outlier Detection . 19

3.4.1 Indices for Ordering . 20
3.5 Assessment of Classifiers . 22

3.5.1 Confusion Matrix . 22
3.5.2 Receiver Operating Characteristic . 24
3.5.3 Simple Metrics . 25

4 Proposed Methods 27
4.1 Self-evaluation . 27
4.2 Testing . 28

4.2.1 Testing Strategy 1 . 30
4.2.2 Testing Strategy 2 . 33

4.3 Training . 36
4.3.1 Training Strategy 1. 38
4.3.2 Training Strategy 2. 40

5 Results and Discussion 45
5.1 Experiments Description . 45
5.2 Results . 48

5.2.1 Baseline Performance . 48
5.2.2 Resulting Performance. 50

5.3 Discussion. 54
5.3.1 Discussion on the Evaluations . 54
5.3.2 Interactive System Simulation . 57

6 Conclusion 65
6.1 Future Research . 66

Bibliography 67

Appendix 71

List of Figures 89

List of Tables 91

1
Introduction

Over the past decades there has been an interest in possibilities of making machines intelligent like
humans. Intelligent machines like robots can replace humans in many areas of work. Robots can
be utilized in carrying out laborious, repetitive and time-consuming tasks efficiently. For example,
robots can be used in manufacturing industry and increase workplace safety. Workers can be moved to
supervisory roles where they no longer have to perform dangerous applications in hazardous settings.
Recently, endeavors of making machines intelligent were focused on the development of machine
learning algorithms. Machine learning (ML) is a subfield of computer science that gives machines the
ability to learn directly from data. ML allows to find hidden insights into complicated structures. The
inspiration for a creation of such algorithms came from the specific way human brains learn and process
data. One of the examples of how the human brain works is recognizing objects. Humans learn objects
based on the understanding that each object has a set of common relevant features [12]. We have
the ability to perceive an object’s physical properties and apply semantic attributes to it. Regardless of
an object’s position, illumination or even partial occlusion, humans can effectively identify and classify
an object. Inspired by this amazing ability of the human visual system, researchers were interested
in possibilities of building machines which use ML algorithms and which are able to distinguish objects
efficiently like humans do. Exploration of ML algorithms which are able to cope with object recognition
can potentially improve driver assistance systems, robot assistance systems, etc.

Another area of interest is to make machines able to collaborate with humans. A collaboration
between machines and humans is a purposeful coupling in which both partners cooperate in order to
achieve shared or overlapping objectives through the fulfillment of joint tasks. Machines and humans
present complementary parts for the development of common tasks. On the one hand, machines
complete those subtasks which require extreme precision or accuracy better than humans. On the
other hand, humans perform those subtasks which cannot be executed by machines because of their
complexity. For instance, humans are able to perform specialized tasks which require intelligence and
a high level of abstraction. This synergy between humans and machines enables the development of
more flexible and complex tasks which cannot be performed individually by a human or a machine.
Structured methods of collaboration employ a good communication, a process in which a flow of in-
formation is processed between the machine and the human through a common system, e.g. voice,
symbols, signs, images. In order to achieve a good communication the most informative data must be
shared between the collaborative partners, the machine and the human.

Self-evaluation, as the process of judging on our own actions, attitudes, or performances, can
improve the communication and increase chances of a success in a human-human collaboration. In
communication with people an evaluation of the received information from the collaborative partner
is performed. It is noted to the other collaborating partner if something communicated is not clear
or understood. More information is required if the originally provided information is not enough for a
decision. Information about the evaluated confidence in our decision is given to the other party. There-
fore, the collaborating partner can adapt its own actions accordingly to the feedback obtained from
us, and by doing so increase the chances of a successful collaboration. Likewise, in human-machine
interaction self-evaluation of machines can enrich the information flow and advance the communication
between the machine and the human. Thereby, the collaboration quality increases, and the successful

1

2 1. Introduction

fulfillment of shared objectives is a more likely outcome.
By self-evaluation of classifiers, a process of evaluation of the quality of decisions or performances

of the classifier is considered. A subcategory of these processes is the evaluation of the quality of
predictions and the quality of data obtained before the prediction. Finally, having this type of evalua-
tion in machines which collaborate with humans can increase the likelihood of the successful objective
achievement, and prepare the human party for an adaptation in collaboration with the machine, de-
pending on the self-evaluation outcome.

This thesis is exploring communication strategies between the machine and the human. It in-
vestigates possibilities for the communication improvement through exploration of self-evaluation of
classifiers. The targeted application is object recognition. Firstly, a baseline visual learning architecture
is introduced in Chapter 2. A discussion on important aspects of the architecture, which are tackled in
the thesis is provided, along with a research target. Chapter 3 introduces theoretical foundations on
classification, neural networks, outlier detection and assessment of classifiers, which are necessary for
a good understanding of the project. This is followed by Chapter 4 which outlines the critical impor-
tance of self-evaluation and proposes new self-evaluation methods. Chapter 5 presents the evaluation
of the proposed methods, experiment details and a discussion on the results. The thesis concludes
with Chapter 6, which summarizes the project, the most important findings, and provides directions
for the future research.

2
System Architecture

A discussion of a visual category learning architecture which serves as a main motivation for the project
development is presented in this chapter. The description of the architecture along with a discussion
on important aspects thereof. The chapter concludes with the research target of the master thesis.

2.1. Description of the Architecture
An amazing capability of the human visual system is the ability to learn an enormous number of visual
categories which are incrementally acquired during life. Object categorization is one of the primary
tasks of the visual system. Sensory processing of visual stimuli, along with prior visual experience,
leads to judgments of categories of objects around us. Each object is assigned to a set of labels. The
object is described with its features, e. g., color, shape. Humans are capable of assigning labels to
an object which is not previously seen, accordingly to the features which the object has, based on
their previous experience. Inspired by these human abilities Kirstein et al. [29] have developed an
interactive visual category learning architecture at Honda Research Institute Europe (HRI-EU) which is
capable of real-time incrementally learning several visual categories based on hand-held objects. The
system is called Tubby at HRI-EU and it will be referred as Tubby in the following text.

Tubby’s aim is to learn object categories in a similar way humans do. It builds up its knowledge
about categories over time. The objects are presented by the human teacher in front of the system,
like shown in Figure 2.1. Tubby is then able to either recognize categories of the object or to learn its
features. When the new object is introduced to Tubby, it updates its classification model of categories
to learn the new object.

Figure 2.1: Tubby: The user is presenting the object to the system. The presented object is rotated in front of the stereo
camera. The loudspeaker and the screen serve for communication with the user. 1

1Source: HRI-EU

3

4 2. System Architecture

In order that the system learns categories the human teacher rotates an object in hand in front
of the stereo camera and tells the system a set of corresponding visual categorization labels, e. g.,
“red, white ball”. Based on extracted color and texture features the system tries to learn the ob-
jects. The phase during which the system is learning objects is called training. In the next step the
user can present a previously seen or a new object. The system identifies the new visual input and
tells the user the detected object’s categories or responds with “unknown object”. This phase during
which the system tries to recognize the object is called testing. The user confirms or corrects the labels.

Tubby is composed of a combination of hardware and software components. The software is ex-
plained in the following paragraphs, whereas the hardware components are a stereo camera, a micro-
phone, a speaker and two laptops which serve as a main computational unit.
Figure 2.2 shows the functional blocks, and the interaction setting between the human user and the
system.

Figure 2.2: Functional block diagram of Tubby system. The human shows an object to the system. Block 1 extracts the
segment of an image with the presented object. Block 2 extracts features of the object. Block 3 uses features to learn the

object. In the testing phase this block predicts the labels of the object. Block 4 organizes the interaction timing and translates
predicted labels into text. Block 5 translates those labels into speech. The user confirms or corrects the labels by providing
speech labels. Block 6 translates the speech labels into text. Block 4 then delivers these labels to block 3. If the user corrects

the labels, block 3 changes its internal classification model.

Block number 1 of Figure 2.2 is in charge of an image acquisition and the preprocessing of images.
This block collects images from the stereo camera. Based on the distance information the block extracts
the part of the input image with the object presented by the user. The closest object to the camera is
selected and a region around it is cropped, creating a segment of the image which is used in further
processing, like shown in Figure 2.3.

Figure 2.3: Block 1 performs image processing. The left image is the input of the stereo camera. The middle image shows the
distance information. Based on this image the segment with the closest object to the stereo camera is selected [29] which is

shown on the right image.

2.2. Discussion on Important Aspects 5

Additional processing of the extracted part of the image is performed. For details we refer to [29].
Block number 2 of Figure 2.2 extracts characteristics of the presented object. Specifically, it extracts
color, shape and texture features of the object which are used in block number 3 for learning. Block 3 is
the processing unit of the system which learns the objects. This block works in collaboration with block
number 4, which controls the system-user interaction. When the object is presented to the system for
recognition, block 3 predicts a set of categories, and block 4 determines when the labels are reported
to the user. This predicted set of category labels is in text form. Block number 5 is transferring written
labels from text form into speech and reports them to the user. Then the user confirms or corrects
the label. Recognition of the user’s speech is performed by block 6. If the user confirms the labels,
the next object can be presented. However, if the user corrects the labels, block 3 changes its internal
classification model in order to learn the presented categories properly.

Important aspects of the communication strategy implemented on the Tubby platform are outlined
in the following section.

2.2. Discussion on Important Aspects
An important aspect of the Tubby platform is the interaction between the user and the system. Tubby is
build to be used in cooperative online scenarios. The key component of good cooperation between any
two partners is good communication. By providing more information to the partner during cooperation
the probability of the successful fulfillment of the shared goal is increased.

The currently implemented interaction strategy on the Tubby platform is based mainly on the ex-
change of speech information: the predicted labels which the system gives to the user, and the user’s
response. This communication strategy is very simple and rather limited. The user does not know
anything about the platform’s internal states, which leads to higher expectations and higher disap-
pointment in case of failure. Possibly the user could perceive the system as annoying and irritating and
therefore turn it off. On the other hand the system’s performance is limited by the human behaviour.
The speed and quality of information extracted is heavily dependant on the user’s behaviour, e. g., how
the user rotates an object, which is again linked to the understanding of the system’s needs.

When communicating with people, humans (usually) provide feedback on the partner’s actions.
They say if they do not understand a question or a command. Humans ask for additional information
if the originally provided information is not enough for a decision, or the probability of a mistake is
high. They have the ability to provide information about the confidence of decisions if the chances of
success are below expectations. Humans note when they already know something which the partner
is teaching them. They note as well when something which they did not know was shown to them,
and whether it is useful to know that.

We believe that the implementation of a communication strategy which mimics the human’s natural
behaviour on the platform would increase the understanding between the user and the system. Sce-
narios of special interest are listed here. It is stated how the improved system should act in the ideal
case.

1. Tubby has an internal confusion about some specific objects, which is the reason why the predic-
tions are wrong for these objects sometimes. They are difficult to recognize, and the probability
of a wrong prediction is high. The system is sometimes able to distinguish properly between
these objects but only if special views of these objects are shown to the system. The user nei-
ther knows that there is the confusion nor whether the confusion can be solved.

Ideal scenario: The system evaluates whether some objects are difficult for the distinction, and
which objects exactly. It evaluates as well which views of those objects are suitable for the
recognition. This information is delivered to the user.

2. Tubby is in the process of learning a new object or category. Views of this object are shown to
the camera. Tubby has already seen these views before. Therefore, this is redundant information
provided to the system. On the other hand, some other views of that object are not shown to

6 2. System Architecture

the system at all. Those views represent useful information. The user does not know this.

Ideal scenario: The system evaluates whether some views are already seen and suggests that
to the user.

In order to investigate whether the listed improvements are possible and to evaluate the usefulness
for the system, the following setting is used. Instead of categorization judgments we use the simpler
task of object recognition. The main difference is that only one label is assigned to each object, as
opposed to categorization where a set of labels is assigned to each object. The categorization process
is a difficult problem by itself and by choosing object recognition instead the focus can be put on the
communication improvement. Another change introduced to the original system is a change of the
process of learning objects. Section 3.3 describes in detail the newly introduced process. This process
is chosen since it highlights the important aspects of why internal confusion happens and enables deep
insight into the prediction making. This setting simplifies the evaluation of the advancements in com-
munication.

Additionally, in a recent experiment [14] it is shown that there exists a better process of generating
features than the feature extraction process which is implemented on the platform. A more detailed
description will follow up in the next chapter.

Figure 2.4 highlights in red the functional blocks (presented in Figure 2.2) which will be advanced.
The above mentioned better feature extraction is targeted improvement in block 2. All internal evalu-
ations are performed in block 3. Of special interest is the information exchange between blocks 3 and
4. Since block 3 is the main block for learning of objects and block 4 organizes interaction with the
user, the information shared between these blocks is crucial for a high quality communication strategy.
The additional block number 7 delivers the outcome of the self-evaluation process. This block suggests
that delivering a feedback to the user about the outcome of the self-evaluation processes can be both
speech and visual.

Figure 2.4: Functional block diagram of the Tubby system with blocks intended for improvement marked in red.

The following section extracts the research target according to the discussion above.

2.3. Research/Technical Target
The main goal of this master thesis is the development and investigation of new communication strate-
gies which enrich the information flow between the Tubby and the user by the deployment of self-
evaluation processes. The following improvements are targeted:

2.3. Research/Technical Target 7

• Improvement of the control loop between the user and the system.
The aim is to develop methods which provide an understandable feedback of the system. The
human should have an insight into the learning process, and into the self-evaluation of classifica-
tion performance. At the same time, the system should be able to optimize the response of the
human, that the overall performance of the system is increased.

∘ Testing strategies
Investigation of new testing strategies which evaluate the confidence of predictions. The
aim here as well is to show that adequate communication with the user can increase the
performance and lead to better and more informative predictions.

∘ Training strategies
Investigation of new training strategies which evaluate the quality of the received training
information. The aim is to show that communication with the user can increase the perfor-
mance and lead to a representation of higher quality of an object.

• Exchange of the existing feature extraction process with deep neural networks visual feature
generation.

In order to fulfill the mentioned targets, the next chapter introduces fundamental theory on the
topics of classification and image recognition, online learning, neural networks, and the assessment of
classifiers.

3
Fundamentals

This chapter presents a theoretical background necessary for the understanding of the project. We
provide an introduction to the following topics: Section 3.1 introduces Classification, Section 3.1.1
presents Online Learning, Section 3.2 explains Convolutional Neural Networks, Section 3.3 presents
𝑘-Nearest Neighbour classifier, Section 3.4 introduces Outlier detection and Section 3.5 explains As-
sessment of Classifiers. The role of each topic in the thesis project is outlined. Chapter 4 utilizes
the theory presented in this chapter to propose new measures for self evaluation of classifiers, while
implementation and experiment details are given in Section 5.1.

3.1. Classification
This section explains classification from the general and mathematical point of view. Classification is an
important part of the thesis foundations. The first reason is that a single label classification is a special
case of the classification which finds an application in object recognition. The setting which we use for
the improvement of the communication between the user and Tubby system is the interactive object
learning scenario. Therefore, the object recognition is an important component. The second reason is
that online learning is a subfield of classification. The scenario described in Chapter 2 and discussed
in the thesis is an online cooperative learning of objects. Images of the objects arrive in sequential
order (as a function of time) during the interaction of the system and the user. Therefore, the data
generation process is online and the whole process is suitable for online learning. General introduction
to classification is provided next.

All organisms assign objects and events in the environment to separate classes or categories. Is
the plant edible or poisonous? Is the person friend or foe? Was the sound made by a predator or
by the wind? This allows them to respond differently, for example, to nutrients and poisons, and to
predators and prey. Any species that lacked this ability would quickly become extinct [43].

Classification is the process in which ideas and objects are recognized, differentiated, and under-
stood. In this particular case we define the classification as a process of assigning an object to a class
which can be defined by a property that all its members share. A classification task usually involves
separating data into the training and testing set. Each object in the training set contains one or more
labels and several properties. The goal of the classifier is to produce a model which predicts one or
more labels of the test data [43].

A single label classification is the special case of classification where each instance (e. g., object) is
assigned to only one class (e. g., apple), and it is associated with only one label. Each instance x ∈ ℝ
is assigned to a single label 𝑙 ∈ 𝐿, 𝑖 ∈ {1, ..., ℎ} from a set of disjoint labels 𝐿 = {𝑙 , … , 𝑙 }.

Application of Classification
Object recognition is a technology in the field of computer vision for finding and identifying objects from
a sensor data, e. g., an image or video sequence. Humans have the ability to perceive an object’s phys-
ical properties (e. g., shape, colour and texture) and apply semantic attributes to it (e. g., identifying the

9

10 3. Fundamentals

object as an apple). Regardless of an object’s position or illumination, humans can effectively identify
and classify an object. Objects can even be recognized when they are partially occluded. Recognition
of objects is still a challenge for computer vision systems.

3.1.1. Online Learning
Online machine learning is a method of ML in which data are available in a sequential order and is used
to update the best predictor for future data at each step. This ML method is opposed to batch learning
techniques which generate the best predictor by learning on the entire training data set at once. Online
learning gained more attention [20, 40] especially in the context of big data and learning from data
streams. Online machine learning is a common technique used in areas of ML where it is computation-
ally infeasible to train over the entire dataset. It is also used in situations where it is necessary for the
algorithm to dynamically adapt to new patterns in the data, or when the data itself is generated as a
function of time (e. g., presentation of objects, stock price prediction). Online learning has numerous
advantages over offline methods like memory requirements are much lower because samples do not
need to be stored, a huge amount of available data can be exploited by online methods and the training
is usually much faster. Offline methods are not applicable if the data generation process is online or
the underlying distribution changes over time [43]. However, batch techniques can exploit a global
view of the data to generate more robust classifiers. Online algorithms, on the other hand, attempt to
incorporate every single instance into the model, becoming more prone to over-fitting. Moreover, the
Stability-Plasticity dilemma, introduced at the end of this section, explains the paradigm which affects
the online learning systems.

In online systems the data is observed in a sequential manner. Streams of data are 𝑛-dimensional
points x ∈ ℝ . After each observation, the algorithm predicts one or more labels 𝑙 ∈ 𝐿 from a set of ℎ
disjoint labels 𝐿 = {𝑙 , 𝑙 , … , 𝑙 }. Once the algorithm has made a prediction, it receives feedback indi-
cating the correct label. Then, the online algorithm may modify its prediction mechanism, presumably
improving the chances of making an accurate prediction on subsequent rounds [43].

Stability-Plasticity Dilemma
The stability-plasticity dilemma [36] is a paradigm for artificial and biological online systems. The idea
is that online learning requires plasticity for the integration of new knowledge, but also stability in order
to prevent the forgetting of previous knowledge. Too much plasticity will result in previously encoded
data being constantly forgotten, whereas too much stability will prevent the efficient encoding of new
data into the system.

This dilemma occurs when classifiers are trained with a limited and changing training ensemble,
causing the catastrophic forgetting effect. The problem of catastrophic forgetting has emerged as one
of the main problems facing online learning systems. It happens when an online system, any biological
or artificial memory, has to learn new inputs from the environment but without being disrupted by
them. Catastrophic forgetting is defined as a complete forgetting of previously learned information by
an online learning system exposed to new information [34]. Different types of online learning systems
are affected with this effect, e. g., standard back-propagation neural networks, unsupervised neural
networks, self-organizing maps [45].

3.2. Neural Networks for Vision
A general framework of neural networks is explained here. We put a particular focus on the convolu-
tional neural networks. They are a special structure of neural networks and are primarily made to deal
with visual tasks, and suitable for applications which deal with images, like the Tubby system for visual
cooperation.

Neural Networks (NNs) and deep learning currently provide the best solutions to many problems
in image recognition [50], speech recognition [42], and natural language processing [24]. A NN is

3.2. Neural Networks for Vision 11

an information processing paradigm that is inspired by the way biological nervous systems, such as
the brain, process information. The key element of this paradigm is the structure of the information
processing system. It is composed of a large number of highly interconnected processing elements
(neurons) working together to solve specific problems. NNs, like people, learn by example. NNs with
their amazing ability to derive meaning from complicated or imprecise data, can be used to extract
patterns and detect trends that are too complex to be noticed by either humans or other computer
techniques [43].

Section 3.2.1 gives a brief introduction into neural network structures, basic principles and explains
why they are so powerful. Section 3.2.2 presents deep neural networks and Section 3.2.3 provides an
overview of convolutional neural networks. Feature extraction which is an important part of the thesis
is explained in Subsection 3.2.3.

3.2.1. Neural Networks
Core building blocks of neural networks are processing elements and connections between them. The
processing elements are called neurons (as shown in Figure 3.1), and the connections between the
neurons are known as links which have a weight parameter (real numbers expressing the importance
of the respective inputs to the output) associated with it. Each neuron receives stimulus from the
neighboring neurons connected to it, processes the information, and produces an output. There are
different ways in which information can be processed by a neuron, and different ways of connecting
the neurons to one another which create specific neural network structures [43].

Figure 3.1: Neuron with connections [37]. In this particular case the neuron (circle) has 3 input connections (, ,) and 1
output connection (, ,). In general the input is defined as x (, … ,) where is the number of inputs, and

x ∈ ℝ . Each link from the input to the neuron is associated with a weight.

Neurons are arranged in a series of layers. The first layers are made of input neurons, and are
designed to receive various forms of information from the outside world that the network will attempt
to learn about, recognize, or otherwise process. The first layers are followed by one or more hidden
layers of neurons which are processing the information. Hidden layers of neurons are followed by
layers of neurons which signal how the network responds to the learned information, and are known
as output neurons. Figure 3.2 illustrates how a neural network with one hidden layer looks like.

In NNs, the activation function of a neuron defines the output of that neuron given an input or set
of inputs. Common activation functions in use are:

• Step Function: The output is a value 𝑦 , if the input sum of the weighted inputs is above a defined
threshold, and 𝑦 otherwise. The neuron is firing only in the first case. These step activation
functions are useful when the network should classify an input pattern into one of two groups.

𝑦(x) = { 𝑦 , ∑ 𝑤 𝑥 ≥ 𝑡
𝑦 , otherwise (3.1)

where x is the input to the network, 𝑛 is the number of inputs, 𝑡 is a defined threshold and 𝑤
are weights of the connections.

• Linear combination: The weighted sum input of the neuron plus a linearly dependant bias be-
comes the system output.

𝑦(x) =∑𝑤 𝑥 + 𝑏 (3.2)

12 3. Fundamentals

where 𝑏 is a bias.

• Sigmoid Function: The output is defined as

𝑦(x) = 1
1 + 𝑒 ∑ (3.3)

Sigmoid functions are prized because their derivatives are easy to calculate, which is helpful for
calculating the weight updates in certain training algorithms.

• Rectifier:

𝑦(x) = max (0,∑𝑤 𝑥 + 𝑏) (3.4)

The rectifier is the most popular activation function for deep neural networks [33], which are
going to be explained in the next subsection. A unit employing the rectifier is called a rectified
linear unit (ReLU). Rectified linear units find applications in computer vision [15]. A smooth
approximation to the rectifier is the analytic function:

𝑦(x) = ln (1 + 𝑒∑) (3.5)

Parametric Rectified Linear Unit (PReLU) generalizes the traditional rectified unit:

𝑦(x) = max (∑𝑤 𝑥 + 𝑏, 𝑎(∑𝑤 𝑥 + 𝑏)) (3.6)

This modified rectified linear unit used in neural networks outperformed the best algorithms for
image classification [18].

Figure 3.2: Neural network with 3 input neurons, 1 hidden layer with 5 neurons and 2 output neurons. 1

More complicated structures of neural networks along with their power, advantages and disadvan-
tages are presented next.

3.2.2. Deep Neural Networks
One of the most striking facts about neural networks is that they can compute any function [21]. No
matter what the function 𝑓(x) ∈ ℝ , there is guaranteed to be a network so that for every possi-
ble input x ∈ ℝ the value 𝑦(x) which is the output of the network satisfies the following condition:
|𝑓(x) − 𝑦(x)| < 𝜀, where 𝜀 > 0. This result holds even if the network is restricted to have just a single
hidden layer, where smaller 𝜀 requires bigger number of neurons. However, there are three conditions
which the activation function 𝑦(x) must fulfill. lim → 𝑦(x) and lim → 𝑦(x) have to exist and be
limited. Moreover, these two limits have to be different. If these conditions are satisfied we can state
that NNs have universality [43].

1Source: http://docs.opencv.org/2.4/_images/mlp.png

http://docs.opencv.org/2.4/_images/mlp.png

3.2. Neural Networks for Vision 13

Deep Neural Networks (DNNs) are distinguished from single hidden layer NNs by their depth, the
number of hidden layers through which data passes in a multi-step process of pattern recognition (ex-
ample of a DNN is shown in Figure 3.3). In DNNs, each layer of neurons trains on a distinct set of
features based on the previous layer’s output. Further it is advanced into the neural network, the more
complex the features neurons can recognize, since they aggregate and recombine features from the
previous layer. DNNs have a hierarchical structure which makes them particularly well adapted to learn
the hierarchies of knowledge that are useful in solving real-world problems. When attacking problems
such as image recognition, it helps to use a system that understands not just individual pixels, but also
increasingly more complex concepts: from edges to simple geometric shapes, all the way up through
complex, multi-object scenes. To conclude, DNNs are capable of discovering latent structures within
unlabeled, unstructured data, which is the vast majority of data in the world [8].

Figure 3.3: Example of Deep Neural Network architecture with 3 hidden layers of neurons [37]. The input layer consists of 8
neurons, each hidden layer contains 9 neurons and the output layer has 4 neurons.

However, even though the power of DNNs is great they are extremely computationally expensive.
The more complicated the problem is, the higher the number of parameters which should be set by
the network. This computation is requiring time and memory resources.

Once a NN has been structured for a particular application, the NN has to be trained. A training of
NNs is a process of determining the weights values. To start this process the initial weights are chosen
randomly. Then, the training, or learning, begins.

There are two approaches to training: supervised and unsupervised. Supervised training involves
a mechanism of providing the NN with the desired output either by manually “grading” the network’s
performance or by providing the desired outputs with the inputs. The NN then processes the inputs and
compares its resulting outputs against the desired outputs. Errors are then propagated back through
the system, causing the system to adjust the weights which control the NN. In unsupervised training,
the network is provided with inputs but not with desired outputs. The system itself must then decide
what features it will use to group the input data.
The set of data which enables the training is the training set, as explained in Section 3.1. During the
training of a NN the same set of data is processed many times as the connection weights are refined.
If a network can not solve the problem, parameters of the NN have to reviewed, e. g., the number of
layers, the number of neurons per layer, the connections between the layers, the activation functions
and the initial weights.

There are many algorithms used to implement the adaptive feedback required to adjust the weights
during training. The most common technique is backward-error propagation, known as backpropaga-
tion. The Stochastic Gradient Descent is a popular algorithm for training a wide range of models in
machine learning, including (linear) support vector machines, logistic regression and graphical models.
When combined with the backpropagation algorithm, it represents the standard algorithm for the train-
ing of artificial neural networks. Basics of stochastic gradient descent algorithm with backpropagation
are presented next.

14 3. Fundamentals

Stochastic Gradient Descent
Stochastic gradient descent is an efficient method for learning a linear, discriminative model by mini-
mizing a convex loss function [4]. It was revived in the context of large-scale learning [5] and performs
well for sparse and high-dimensional data. Firstly a simple supervised learning setup is considered.
Each example 𝑧 is a pair (x, 𝑦) composed of an arbitrary input x ∈ ℝ and a scalar output 𝑦. A loss
function 𝑙(�̂�, 𝑦) is considered and it measures the cost of predicting �̂� when the actual answer is 𝑦.
Then, a family 𝐹 of functions 𝑓 (x) parameterized by a weight vector w ∈ ℝ is chosen. We seek the
function 𝑓 ∈ 𝐹 that minimizes the loss 𝑄(𝑧,w) = 𝑙(𝑓 (x), 𝑦) averaged on the examples [43].

𝐸(𝑓) = ∫ 𝑙(𝑓(x), 𝑦)𝑑𝑃(𝑧) (3.7)

where 𝑑𝑃(𝑧) represents the distribution of examples which is often unknown.

𝐸 (𝑓) = 1
𝑛 ∑𝑙(𝑓(𝑥 , 𝑦)) (3.8)

The empirical risk 𝐸 (𝑓) measures the training set performance. The expected risk 𝐸(𝑓) measures the
generalization performance, the expected performance on future examples. The statistical learning
theory justifies minimizing the empirical risk instead of the expected risk (in case of unknown 𝑑𝑃(𝑧))
when the chosen family 𝐹 is sufficiently restrictive [51] .

It has been proposed that minimization of empirical risk 𝐸 (𝑓) is computed by gradient descent.
Since this was too complicated a simplification was proposed. Instead of computing a gradient of 𝐸 (𝑓)
exactly, at each iteration estimates of this gradient are made on the basis of a single randomly picked
example 𝑧 . Each iteration updates the weights 𝑤:

w = w − 𝛾 ∇ 𝑄(𝑧 ,w) (3.9)

where 𝛾 is an adequately chosen learning rate.
However, we need an efficient way for calculation of ∇ 𝑄(𝑧 ,w) in Equation (3.9). In a general
feed-forward network, each neuron computes a weighted sum of its inputs of the form:

𝑎 =∑𝑤 𝑦 (3.10)

where 𝑦 is the activation of a neuron, or input, that sends a connection to a neuron 𝑗 , and 𝑤 is the
weight associated with that connection. In Section 3.2.1 𝑦 was denoted as 𝑥 since the meaning of
this variable was considered only as an input to the neuron. In this section we considering it as an
output of the previous neuron, so for generality we use 𝑦 notation. It is defined that

𝑦 = 𝑓(𝑎) (3.11)

the output of a neuron is in general the value of a nonlinear activation function of its weighted inputs.
For each pattern in the training set, we suppose that we have supplied the corresponding input vector
to the network and calculated the activations of all of the hidden and output neurons in the network
with Equations (3.10) and (3.11). This process is known as forward propagation because it can be
regarded as a forward flow of information through the network.

We consider the evaluation of the derivative of 𝑄(𝑧 ,w) (for simplicity 𝑄 will be used instead of
𝑄(𝑧 ,w) in the following text) with respect to a weight 𝑤 . Note that 𝑄 depends on the weight 𝑤
only via the summed input 𝑎 to neuron 𝑗. Therefore we can write [2]:

𝜕𝑄
𝜕𝑤 = 𝜕𝑄

𝜕𝑎
𝜕𝑎
𝜕𝑤 (3.12)

A new notation is defined:

𝛿 ∶= 𝜕𝑄
𝜕𝑎 (3.13)

3.2. Neural Networks for Vision 15

where 𝛿’s are often referred to as errors. From Equation (3.10) we can derive:

𝜕𝑎
𝜕𝑤 = 𝑦 . (3.14)

We can obtain:
𝜕𝑄
𝜕𝑤 = 𝛿 ⋅ 𝑦 . (3.15)

To evaluate the 𝛿 ’s for hidden neurons, we make use of the chain rule for partial derivatives:

𝛿 ≡ 𝜕𝑄
𝜕𝑎 =∑ 𝜕𝑄

𝜕𝑎
𝜕𝑎
𝜕𝑎 (3.16)

where the sum runs over all neurons 𝑘 to which neuron 𝑗 sends connections. Finally, from previous
equations a backpropagation formula is obtained [2]:

𝛿 = 𝑓 (𝑎)∑𝑤 𝛿 (3.17)

which tells that the value of 𝛿 for a particular hidden neuron can be obtained by propagating the 𝛿’s
backwards from neurons higher up in the network [43].
In this section we explained the general framework of DNNs. In the next subsection a special type of
deep neural networks suitable for image applications is explained.

3.2.3. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are biologically inspired variants of NNs. From Hubel and
Wiesel’s early work [23] on the animal’s visual cortex , we know the visual cortex contains a complex
arrangement of cells. These cells are sensitive to small subregions of the visual field, called a receptive
field. The subregions are tiled to cover the entire visual field. These cells act as local filters over the
input space and are well suited to exploit the strong spatially local correlation present in natural im-
ages. Additionally, two basic cell types have been identified: Simple cells respond maximally to specific
edge-like patterns within their receptive field. Complex cells have larger receptive fields and are locally
invariant to the exact position of the pattern. Inspired by this discovery CNNs were developed and pro-
posed as a structure to deal with images as inputs [43]. The example of the CNN is shown in Figure 3.4.

Figure 3.4: Example of Convolutional Neural Network. 2

CNN architectures make the explicit assumption that the inputs are images, which allows encoding
of certain properties into the architecture. These properties then make the forward function more
efficient to implement and vastly reduce the amount of parameters in the network [26]. CNNs are,
like ordinary NNs, made up of neurons that have learnable weights and biases. Unlike the regular
one dimensional layers of NN the layers of a CNN have neurons arranged in three dimensions: width,
height and depth. A simple CNN is a sequence of layers. There are three main types of layers to build
CNN architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer. Each of the layers
is explained.

2Source: deeplearning.net/tutorial/_images/mylenet.png

deeplearning.net/tutorial/_images/mylenet.png

16 3. Fundamentals

Convolutional Layer
The Convolutional Layer (CL) is a core building block of a CNN that does most of the computational
heavy lifting. The CL’s parameters consist of a set of learnable filters. Filters are 2-dimensional (width
and height of CL) arrangements of neurons. Every layer is made of multiple filters, and every filter is
extracting a specific feature from an input. A CL is then 3-dimensional arrangement of neurons where
2-dimensional filters are arranged along a third dimension (which creates the depth of a CL). Every
filter is connected to the small local receptive field, but it is connected to the full depth of the input, as
shown in Figure 3.5. By a depth of the input is meant to 3 color channels of picture (1 picture has 3
color channels which are 2-dimensional). During the forward pass, each filter slides across the width
and height of the input and a computation of the dot products between the entries of the filter and
the input at any position is performed. As the filter slides over the width and height of the input, it
produces a 2-dimensional activation map that gives the responses of that filter at every spatial position.
Intuitively, the network learns filters that are active when they see some type of visual feature such as
an edge of some orientation or a blotch of some color on the first layer [26].

Figure 3.5: Representation how a single filter in CL works. It is shown how a single neuron (green point) in CL is connected
(green connections) to a local receptive field (blue field) of the input.

When dealing with highly dimensional inputs such as images, it is impractical to connect neurons
to all neurons in the previous layer. Each neuron is connected only to a local region of the input. The
extent of the connectivity along the depth axis is always equal to the depth of the input. The connec-
tions are local in space (along width and height), but always full along the entire depth of the input [26].

Four hyperparameters control the size of the output volume:

• Depth of CL: The number K of filters we would like to use, each extracting a different feature
of the input. For example, if the first CL takes as input the raw image, then different neurons
along the depth dimension (different filters) may be activated in the presence of various oriented
edges, or blobs of color.

• Spatial extent: The size of the receptive field F connected to a single neuron of a filter. This
2-dimensional field of the input which is locally connected. It is of 𝐹 × 𝐹 size.

• Stride: The sliding step size S. When the stride is 1 then receptive fields move (connected to the
neurons of filters) move one pixel at a time. When the stride is 2 (or uncommonly 3 or more
which is rare in practice) then the filters jump 2 pixels at a time. This will produce smaller output
spatially.

• Zero-padding: Sometimes it will be convenient to pad the input with zeros around the border.
The nice feature of zero padding (of size P) is that allows a control of the spatial size of the
output volumes (most commonly to exactly preserve the spatial size of the input volume so the
input and output width and height are the same).

Assuming an input of size 𝑊 × 𝐻 × 𝐷 , where 𝑊 is width, 𝐻 height and 𝐷 depth of the input.
In case of the image as an input 𝑊 ×𝐻 are the dimensions of the image, and 𝐷 is 3 according to 3
color channels. Nevertheless, the other dimensions of input are possible as well. The CL will produce
an output of size 𝑊 ×𝐻 × 𝐷 where:

3.2. Neural Networks for Vision 17

• 𝑊 = + 1

• 𝐻 = + 1

• 𝐷 = 𝐾

Inspired by the complex cells found at animals which are locally invariant to the exact position
of the pattern a reasonable assumption is made: If one feature is useful to compute at some spatial
position (𝑥 , 𝑦), then it should also be useful to compute at a different position (𝑥 , 𝑦). The neurons in
each filter are constrained to use the same weights and bias. Nevertheless, sometimes the parameter
sharing assumption does not make sense. This is especially the case when the input images have some
specific centered structure where completely different features should be learned on one side of the
image than another. A practical example is when the input are faces that have been centered in the
image. In that case it is typical to relax the parameter sharing scheme [43].

Pooling Layer
It is common to periodically insert a Pooling Layer in-between successive CLs in a CNN architecture.
As in the case of CL, pooling layer is made of filters (2-dimensional arrangements of neurons) stacked
along third axis. Its function is to progressively reduce the spatial size of the representation to reduce
the amount of parameters and computation in the network, and hence to also control overfitting. The
pooling layer operates independently on every filter (depth slice) of the input (1 color channel in the
case of images as inputs) and resizes it spatially, using the max operation. Max-pooling can be seen
as a way for the network to ask whether a given feature is found anywhere in a region of the image
[37].

Figure 3.6: Representation how a single filter of size × with a stride of length 2 in MAX-pooling layer works [26].

The most common form is a pooling layer with filters of size 2 × 2 applied with a stride of 2 which
downsamples every depth slice in the input by 2 along both width and height, discarding 75% of the
activations (an example is shown in Figure 3.6). In this case, every max operation takes maximum
over 4 numbers. The depth dimension remains unchanged [43].

In addition to max pooling, the pooling units can also perform other functions, such as average
pooling or even 𝐿 - norm pooling. Average pooling was often used historically but has recently fallen
out of favor compared to the max pooling operation, which has been shown to work better in practice
[26].

Fully-Connected Layer
Neurons in a Fully-Connected Layer have full connections to all activations in the previous layer, as
in regular NNs, and as it is shown in Figure 3.3. It is worth noting that the only difference between
fully-connected and CLs is that the neurons in the CL are connected only to a local region of the input,
and that many of the neurons in a CL share parameters.

Feature Extraction
Figure 2.4 shows that block 2 of Tubby system performs the feature extraction. The process which
is going to be presented in this section is known as a deep neural networks visual feature generation
process. Recently, it is shown in an experiment [14] that this process improves the performances of the

18 3. Fundamentals

system, compared with the feature extraction process already existing on Tubby [29]. The old feature
generation process is replaced by the deep neural networks visual feature generation explained here.
A process of data transformation in CNNs, which are used for classification of images, can be divided
into two major phases: feature extraction and classification. Unlike many other learning algorithms,
CNNs combine both in the learning process. Figure 3.7 shows which part of the network performs the
feature extraction and which the classification.

Figure 3.7: Schematic diagram of a CNN. The network comprises five different layers. Both feature extraction and classification
are learned during training [19].

The activations which are the output of CLs can be interpreted as visual features (characteristics
of an image). CNN models have been used as feature extractors by removing the output layer (which
outputs class scores). In particular, a pre-trained CNN can be used as a generic feature extractor for
other datasets [44]. Finally, the activations which are interpreted as visual features are given in a form
of 𝑛-dimensional vector x ∈ ℝ which is called a feature vector. Feature vectors lie in 𝑛-dimensional
feature space.

Application of CNNs
CNNs can be used for image [6], video [27] and speech analysis [35]. Potentially, they are suitable
for other purposes when inputs are highly dimensional data. They can classify images, cluster them
by similarity, and perform object recognition within scenes. CNNs can identify faces, individuals, street
signs, eggplants, platypuses and many other aspects of visual data [8].
In summary, DNNs can deal with complicated multi-dimensional real-word problems. Downside of the
full-connected DNN architectures is an enormous number of parameters. Convolutional neural net-
works resolve this problem. They are the most suitable solution for dealing with high-dimensional
inputs as images, which is the case of interest for the thesis.

3.3. 𝑘 Nearest Neighbour
This section explains 𝑘-Nearest Neighbors (𝑘NN) classifier. Section 2.2 states that some changes are
introduced to the original Tubby system. These changes are introduced in order to determine the set-
ting which is going to be considered further. This new setting is considered due to easier assessment
of the communication improvements. Section 2.2 states that a new process of learning objects is used,
instead of the one already existing on Tubby system. The new process is 𝑘NN classification and it is
explained next.

𝑘NN is a simple algorithm that stores all available cases and classifies new cases based on a sim-
ilarity measure (e. g., distance functions). 𝑘NN is a non parametric lazy learning algorithm and it has
been used in statistical estimation and pattern recognition already in the beginning of 1970’s [39]. A
technique is said to be non parametric when it does not make any assumptions on the underlying data
distribution. 𝑘NN is usually used in batch settings where all training data is available at once, but with
small adaptations it can be used in an online setting as well.

𝑘NN assumes that the data is in a feature space. More explicitly, the data points are in a metric
space. The data can be scalars or multidimensional vectors. In this thesis the data is obtained from
the feature extraction process (Subsection 3.2.3). The data are 𝑛-dimensional vectors. Each of the

3.4. Outlier Detection 19

training data consists of a set of vectors 𝒳 = {x ∈ ℝ , 𝑖 = 1, .., 𝑚} and a class label associated with
each vector 𝐿 = {𝑙 , … , 𝑙 }.

𝑘NN for Classification
A test instance x ∈ ℝ is classified by a majority vote of its neighbors. Nearest neighbours, 𝑘 of them,
are ordered by the distance and defined 𝒳 = { x ∈ ℝ , 𝑖 = 1,… , 𝑘} and their corresponding set of
labels is 𝐿 = {𝑙 , ..., 𝑙 }. The test instance x is assigned to the class most common among its 𝑘 nearest
neighbors measured by a distance function. If 𝑘 = 1, then the case is simply assigned to the class
𝑙 of its nearest neighbor. Equation (3.18) denotes the distance functions between the test instance
x = (𝑥 ,… , 𝑥) and a neighbour x = (𝑥 ,… , 𝑥) in the 𝑛-dimensional space.

Euclidean √∑ (𝑥 − 𝑥)
Manhattan ∑ |𝑥 − 𝑥 |
Minkowski (∑ (|𝑥 − 𝑥 |))

(3.18)

where 𝑞 is the order of the Minkowski distance.
It should also be noted that all three distance measures are only valid for continuous variables. In

the instance of categorical variables the Hamming distance [3] must be used.
In the batch setting, choosing the optimal value for 𝑘 is best done by first inspecting the data. In
general, a large 𝑘 value is more precise as it reduces the overall noise but there is no guarantee.
Cross-validation is another way to retrospectively determine a good 𝑘 value by using an independent
dataset to validate the 𝑘 value. Historically, the optimal 𝑘 for most datasets has been from 𝑘 = 3 to
𝑘 = 10 [11]. That generally produces better results than 𝑘 = 1.

Although classification remains the primary application of 𝑘NN, it can be used for density estimation
as well [11]. 𝑘NN is a versatile algorithm and is used in a big number of fields. Its applications vary
from image [1] and text [48] classification, computational geometry [7] to graphs [38]. Some unusual
applications cover content retrieval [9], gene expression [10], protein-protein interaction [30] and 3D
structure prediction [28].

Section 3.1.1 presents the idea of online learning and Stability-Plasticity dilemma which affects the
online learning systems. The 𝑘NN algorithm presented here is used in the online setting on Tubby
system. An advantage of this algorithm in an online setting is that it is less sensitive to the effects of
the dilemma than a lot of other online algorithms. The reason is that it preserves all training data.

3.4. Outlier Detection
In order to understand self-evaluation techniques which we propose in the next chapter an outlier
detection is explained in this section.

Data analysis tries to extract simple representations of highly dimensional data which best depicts
the complicated underlying structure. An outlier is a class sample which is distant from the other class
samples, like shown in Figure 3.8. Most of the real world data contains outliers which are a consequence
of different processes like measurement errors or miss-labeled samples. Therefore it is necessary to
remove outliers from the data to avoid representation results which yield wrong conclusions. In the
statistics literature, a stress is put on the problem of outlier detection in univariate data. In unvariate
data objects are ordered using one-dimensional measure. In the case of multivariate data, ordering of
the data is not that trivial, and more complicated models have to be applied.

From the ML field some heuristic methods originate, for instance, neural network models [25] or
models which are inspired by the support vector classifiers [46]. They avoid very difficult computations
of density estimation usually required in multivariate data, and directly fit a decision boundary around
the data, but are often not simple to implement and optimize. The outputs of two-class classifiers
can also be used for outlier detection [52], hence focusing on the outliers from the perspective of the
classification problem.

20 3. Fundamentals

Figure 3.8: Outlier of the blue class (marked in red).

Notice that the methods mentioned above provide an ordering of samples in a data set, according
to their typicality. Very untypical samples are candidates to be labeled as outliers. On the other hand,
it is of similar importance to detect the prototypical samples in a data set. The prototypical samples
are often useful to gain a better understanding of the data. Furthermore, simple indices are proposed
based on nearest neighbors that allow an ordering of the data from outliers to prototypes [17]. This
ordering provides a possibility for setting a threshold based on which is determined whether a data
point is an outlier or not.

3.4.1. Indices for Ordering
A set of 𝑚 data points from the 𝑛-dimensional Euclidean space, {x , ...,x } ⊂ ℝ , with the Euclidean
norm, ‖x‖ = √x x and the Euclidean metric is considered. Other metrics can be easily incorporated in
this framework. For a test data point x ∈ ℝ , let {x (𝑥), ...,x (𝑥)} ∈ {x , ...,x } ⊂ ℝ be its 𝑘 nearest
neighbors among the given data points, ordered by their distance to the test point. Three indices for
each point x ∈ ℝ dependant on these neighbors are defined. The ordering process uses these indices.
The perception of the data is influenced by the choice of 𝑘: if 𝑘 is chosen too small the focus is too
local, if 𝑘 is too large it is too global [17].

• Kappa 𝜅(x)

A 𝑘NN density estimator assesses the density at a particular point by calculating the volume of
the smallest ball centered at that point which contains its 𝑘 nearest neighbors. Unfortunately, the
estimate is not always very accurate if the number of data points is small or the dimensionality is
high. However, outlier detection does not require the actual density. In order to decide whether
a data point is an outlier or not, an approximate estimate is a sufficient indicator. The first index
therefore represents the 𝑘 nearest neighbor density estimator: 𝜅(x) given in Equation (3.19) is
the radius of the smallest ball centered at x containing its 𝑘 nearest neighbors, i.e. the distance
between x and its 𝑘-th nearest neighbor [17].

𝜅(x) = ‖x− x (𝑥)‖ (3.19)

In dense regions 𝜅 is small and in sparse regions 𝜅 is large, making it a good candidate for an
outlier.

• Gamma 𝛾(x)

The index 𝜅, however, considers the distance to the 𝑘-th nearest neighbor, but it ignores the
distances to the closer neighbors. This suggests a refined index that takes the distances to all 𝑘
nearest neighbors into account: 𝛾(x) given in Equation (3.20) is the average distance to the 𝑘
nearest neighbors of x [17].

𝛾(x) = 1
𝑘 ∑‖x− x (𝑥)‖ (3.20)

3.4. Outlier Detection 21

This index enables distinction of the two exemplary situations depicted in Figure 3.9, where the
value of 𝜅 is the same in both situations, because the 𝑘-th (𝑘 = 5) nearest neighbor of 𝑎 has both
times the same distance to 𝑎, although the neighborhood on the right is denser. By exploiting all
distances, 𝛾(𝑎) can distinguish these situations.

Figure 3.9: Distinction of the dense and sparse region based on and value [17]. The value of is the same in both
situations presented on the image, because the -th () nearest neighbor of has both times the same distance to ,
although the neighborhood on the right is denser. () is smaller for the case on the right and therefore able to distinguish

these situations.

• Delta 𝛿(x)

Looking at the Figure 3.10, two situations that 𝛾 cannot distinguish (and 𝜅 as well) can be
observed, because the distances from 𝑎 to its neighbors {𝑏, 𝑐, 𝑑, 𝑒, 𝑓} are the same in both settings.
The directions of neighbors 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 show the crucial difference: on the left, neighbors point
approximately into the same direction. On the right, neighbors 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 are spread out in
all directions. This information is captured by the Equation (3.21). Delta value 𝛿(x) depicts the
length of the mean of the vectors pointing from x to its 𝑘 nearest neighbors [17].

𝛿(x) = ‖1𝑘 ∑(x− x (𝑥))‖ (3.21)

𝛿(x) is large if the neighbors are located in the same direction. This happens especially for
outliers. Value of 𝛿(x) enables distinction of points in regularly filled sparse regions (all neighbors
in different directions) from points which are outliers (all neighbors in the same direction).

Figure 3.10: Distinction of the sparse and outlier region based on value [17]. The distances from to its neighbors
{ , , , , } are the same in both settings. The directions of neighbors , , , and show the difference: on the left,

neighbors point approximately into the same direction. On the right, neighbors , , , and are spread out in all directions.
This information is captured by ().

Please note that 𝛿(x) is bounded by 𝛾(x) which itself is bounded by 𝜅(x), ∀x ∈ ℝ (as depicted in
Equation (3.22)).

𝜅(x) ≥ 𝛾(x) ≥ 𝛿(x) (3.22)

22 3. Fundamentals

This means that if 𝛿(x) is large (implying that x is probably an outlier) also 𝛾(x) is large. On the
contrary, if 𝛿(x) is small, then 𝛾(x) does not need to be small. Therefore, in contrast to 𝛿(x), a point
from a sparser region can be misjudged to be an outlier by 𝛾(x). The analog discussion holds for 𝛾(x)
and 𝜅(x).

Based on these indices which we derive for every data point x we can infer general regions of data
𝒳 = x ∈ ℝ , 𝑖 = 1,… ,𝑚. The concept of regions is explained next.

Concept of regions
The two-dimensional data (x ∈ ℝ) is presented on the left image of Figure 3.11. For every data point
x shown in the image it is possible to determine in which region lies, the dense region of the data, the
sparse region of the data or it is an outlier, using indices explained in Subsection 3.4.1. This is possible
since the indices allow ordering of the data from prototypes (dense regions) to outliers. Based on these
findings specific regions in the space can be inferred: dense, sparse and outlier region. Depending on
the position, the data point x ∈ ℝ can be in one of these regions. The right image of Figure 3.11
shows regions of the two-dimensional space belonging to the data presented on the left.

Figure 3.11: Image on the left represents 2D data. Image on the right captures the regions in the space, with orange denoted
the outlier region, green the sparse region and with white denoting the dense region.

Note that this example refers to the two-dimensional space, since it is the most intuitive way to
demonstrate the regions. However, these conclusions are equally applicable in the case of 𝑛 dimen-
sional space.

The subsequent section introduces the assessment of classifiers field.

3.5. Assessment of Classifiers
Section 2.2 lists the possible improvements of the Tubby system which are targeted for the thesis. The
essential goal of the improvements is the assessment of classifiers. Therefore, this section explains
the fundamentals on this topic.

There are two main approaches found in the literature to assess the performance of classifiers: the
Confusion Matrix and the Receiver Operating Characteristic curve. Sections 3.5.1 and 3.5.2 give an
overview of these methods, respectively, while Section 3.5.3 presents some simpler measures [43].

3.5.1. Confusion Matrix
A confusion matrix is a table that is used to describe the performance of a classifier on a set of test
data for which the true values are known [49]. Each column of the matrix represents a predicted class
while each row represents an actual class.
The classifier result can be a real value (continuous output), and in this case the classifier boundary
between classes must be determined by a threshold value (for instance, to determine whether a person
has hypertension based on a blood pressure measure). Or it can be a discrete class label, indicating
one of the classes.
We consider a two-class prediction problem (binary classification), in which the outputs are labeled
either as positive 𝑝 or negative 𝑛. There are four possible outcomes from a binary classifier. If the

3.5. Assessment of Classifiers 23

outcome from a prediction is 𝑝 and the actual value is also 𝑝, then it is called a true positive (𝑇𝑃).
However, if the actual value is 𝑛 then it is said to be a false positive (𝐹𝑃). Conversely, a true negative
(𝑇𝑁) has occurred when both the prediction output and the actual value are 𝑛, and a false negative 𝐹𝑁
is when the prediction output is 𝑛 while the actual value is 𝑝. These four possible outputs constitute a
confusion matrix shown in Table 3.1.

Data Class Classified as 𝑝 Classified as 𝑛
𝑝 TP FN
𝑛 FP TN

Table 3.1: Confusion matrix for binary classification [47].

Extension to multi-class problems is simple and straightforward. If a classification system has
been trained to distinguish between cars, airplanes and ships a confusion matrix will summarize the
classification results. Assuming a sample of 27 vehicles: 8 cars, 6 airplanes, and 13 ships, the resulting
confusion matrix is shown in the Table 3.2. In this confusion matrix, of the 8 actual cars, the system
predicted that 3 are airplanes, and of 6 airplanes, it predicted that one is a ship and 2 are cars. It can
be seen from the matrix that the system has trouble distinguishing between cars and airplanes, but
can make the distinction between ships and other types of vehicles pretty well. All correct predictions
are located in the diagonal of the table, so it is easy to visually inspect the table for errors, as they will
be represented by values outside the diagonal [43].

Actual\Predicted Cars Airplanes Ships

Cars 5 3 0
Airplanes 2 3 1
Ships 0 2 11

Table 3.2: Confusion Matrix Example. In this confusion matrix, of the 8 actual cars, the system predicted that 3 are airplanes,
and of 6 airplanes, it predicted that one is a ship and 2 are cars. It can be seen from the matrix that the system has trouble
distinguishing between cars and airplanes, but can make the distinction between ships and other types of vehicles pretty well.
All correct predictions are located in the diagonal of the table, so it is easy to visually inspect the table for errors, as they will

be represented by values outside the diagonal.

Given a distribution of real positive instances and real negative instances as given in Figure 3.12
we can derive a new analysis for the assessment of classification.

Figure 3.12: A distribution of positive and negative examples and a threshold are shown. The x-axis represents predicted
probabilities, and the y-axis represents a count of observations. All of the examples right of the threshold are classified as

positive and all of the examples left of the threshold are classified as negative.3

The following terms are defined as a measure for assessing the quality of a classifier. A schematic
view of these measures is given in Table 3.3:

• Sensitivity: Probability that an instance will be classified as 𝑝 when the instance is positive (true
positive rate).

• Specificity: Probability that an instance will be classified as 𝑛 when the instance is negative (true
negative rate).

3Source: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

24 3. Fundamentals

• Positive Likelihood Ratio - Precision: Ratio between the probability of a 𝑝 classification result
given the positive instance and the probability of the 𝑛 classification given the negative instance.

• Negative Likelihood Ratio: Ratio between the probability of a 𝑛 classification result given the
positive instance and the probability of the 𝑝 classification result given the negative instance.

• Positive Predictive Value: Probability that the instance is positive when the classification is 𝑝.

• Negative Predictive Value: Probability that the instance is negative when the classification is 𝑛.

Sensitivity Specificity

Positive
Likelihood
Ratio

Negative
Likelihood
Ratio

Positive
Predictive
Value

Negative
Predictive
Value

Table 3.3: Measures for assessing the quality of classification.

3.5.2. Receiver Operating Characteristic
A receiver operating characteristic (ROC) curve [13] is a commonly used way to visualize the perfor-
mance of a binary classifier, and an example of it can be seen in Figure 3.13. It is a plot of the True
Positive Rate (on the 𝑦-axis) versus the False Positive Rate (on the 𝑥-axis). To generate the entire ROC
curve, the True Positive Rate versus the False Positive Rate should be plotted for all possible classifi-
cation thresholds [13]. The ROC illustrates the performance of a binary classifier as its discrimination
threshold is varied.

A classifier that is good at separating the classes has a ROC curve that is close to the upper left
corner of the plot [13]. Conversely, a classifier that is bad at separating the classes will have a ROC
that is close to the black diagonal line shown in Figure 3.13. That line essentially represents a random
guessing. Classifiers appearing on the left-hand side of the ROC graph, near the 𝑥 axis, can be seen
as conservative: they make positive classifications only with strong evidence so they make few false
positive errors, but they often have low true positive rates as well. Classifiers on the upper right-hand
side of the ROC graph can be seen as liberal: they make positive classifications with weak evidence so
they classify nearly all positives correctly, but they often have high false positive rates [43].

Figure 3.13: ROC graph example. 4

3.5. Assessment of Classifiers 25

The benefit of using a ROC curve to evaluate a classifier instead of a simpler metric is that the ROC
curve visualizes all possible classification thresholds, whereas the simpler metric only gives a value for
a single threshold.

Area under the curve (AUC)
The ROC is used for the quantification of the performance of a classifier. The area under the curve
(AUC) [13] is the surface under the blue curve shown in Figure 3.13. The AUC is representing the
probability that a classifier will rank a randomly chosen positive observation higher than a randomly
chosen negative observation, and accordingly it is a useful metric even for datasets with highly unbal-
anced classes.

The ROC approach can be extended to classification problems with three or more classes using the
one versus all approach. In the case of three classes, three ROCs will be created. In the first curve,
the first class would be chosen as the positive class, and the other two classes grouped together as
the negative class. In the second curve, the second class would be chosen as the positive class, and
the other two classes grouped together as the negative class, etc.

A ROC curve can be used for setting the classification threshold. The threshold is set according to a
goal which can be the minimization of the False Positive Rate or maximization of the True Positive Rate.
What is preferred among these two cases depends on the given situation. As an example assume a
classifier which is supposed to be used to predict whether a given credit card transaction might be
fraudulent and thus should be reviewed by the credit card holder. For this purpose the threshold might
be set to be very low. This results in a lot of false positives (i.e. false detection of the fraud), but it
might be considered acceptable because it would maximize the true positive rate and thus minimize
the number of cases in which a real instance of the fraud is not detected.

3.5.3. Simple Metrics
Binary Classification
Measures which are most often used for the assessment of binary classification are presented in Table
3.4. Variables used in the Formula field of the table are the values of a confusion matrix introduced in
Subsection 3.5.1. It should be mentioned that there are other metrics used in the literature [16, 22, 41]
but they are omitted here since they can be derived from the basic measures.

Measure Formula Evaluation focus

Accuracy Overall effectiveness of classifier.

Precision Class agreement of the data labels with the positive
labels given in the classifier.

Sensitivity Effectivness of a classifier to identify positive labels.

Specificity How effectively a classifier identifies negative labels.

Balanced Accuracy 5 (+) Classifier’s ability to avoid false classification.

Table 3.4: Simple measures for assessing the quality of binary classification [47].

4Source: https://www.medcalc.org/manual/roc-curves.php

https://www.medcalc.org/manual/roc-curves.php

26 3. Fundamentals

Multi-class Classification
In the case of a multi-class classification it is more difficult to establish a single measure for the quality
of the classifier. The classification can be very accurate for a certain class, but very bad for other
classes, so introducing one versus all approach (which was already mentioned in Subsection 3.5.2)
would give different results for different classes. We need a unified measure(s) for the whole classifi-
cation process which presents the ability of a classifier to distinguish among multiple classes.
There are two proposed ways for assessing the performance of the multi-class classifier. For an individ-
ual class 𝐶 , the well known measures already mentioned are TP , FN , TN , FP , Accuracy , Precision ,
Sensitivity . Quality of the overall classification can be assessed as an average of the same measures
calculated for 𝑙 , … , 𝑙 (where ℎ is the total number of classes) and this approach is referred as macro-
averaging [47]. The other way for assessing the quality is micro-averaging and it represents the sum
of counts to obtain cumulative TP, FN, TN, FP and then calculating a performance measures [47]. It
should be noted that well-developed multi-class ROC analysis does not exist yet [32].

Measure Formula Evaluation focus

Average
Accuracy

∑
The average per-class effectiveness of classifier.

Error
Rate

∑
The average per-class classification error.

Precision ∑
∑ ()

Agreement of the data class labels with those of a classifiers if
calculated from sums of per-image decisions.

Sensitivity ∑
∑ ()

Effectiveness of a classifier to identify class labels if calculated
from sums of per-image decisions.

Precision
∑ An average per-class agreement of the data class labels with

those of a classifiers.

Sensitivity
∑ An average per-class effectiveness of a classifier to identify

class labels.

Table 3.5: Simple measures for assessing the quality of multi-class classification based on a generalization of the measures in
Table 3.4 [47]. The M index stands for macro-averaging. The index stands for micro-averaging.

The chapter is concluded with the presented measures. The theoretical fundamentals are presented
in order to set the background for methods which are presented next. Chapter 4 proposes methods
for the communication improvement of the Tubby platform.

5 It captures a single point on the ROC curve.

4
Proposed Methods

This chapter presents the main ideas for the improvement of the control loop between the user and the
Tubby system. The chapter starts with two key questions that have to be answered in order to improve
the communication strategy. The questions are outlined in Section 4.1. The following Sections 4.2
and 4.3 propose two measures which answer the questions. Furthermore, these two sections propose
testing and training strategies, which use the proposed measures.

4.1. Self-evaluation
The literature dealing with the assessment of classifiers focuses mainly on statistical assessment of the
overall performance of the classification. The measures presented in Section 3.5 evaluate the efficiency
of classifiers after the prediction. On the other hand, it can be useful to know the confidence of the
prediction, before the prediction is made, in online and interactive scenarios. Of special interest is the
case when the probability of a mistake is large. The user can utilize the confidence of the prediction in
multiple ways. Some examples are:

• The user avoids the use of the classifier in a specific situation if it is not safe

• The user lowers down expectations and disappointment in case of a wrong prediction

• The user provides additional information to the classifier if that can improve the performance

• The user changes the way he/she operates with the classifier

• The user is aware about the limitations of the classifier

The classifier can benefit from knowing the confidence of the prediction in the case where the user
provides more information to the classifier, and where a change in the user’s behaviour can lead to
better predictions.

The exchange of valuable information, like the confidence of the prediction, between the classifier
and the user improves the control loop and increases the understanding of the classifier’s behaviour.
However, determining in advance how large the probability of a mistake is can be a difficult task. In this
project we aim for a self-assessment measure which answers the following question: ”How confident
am I (the classifier) at making this prediction?”. Note that it is stated this prediction meaning that we
focus on a classification in an online scenario, described in Chapter 2.

On the other hand, as explained, classification is a process consisting of a training and testing
phase. During the training phase we want to know the quality of the training data which the classifier
is receiving, with respect to its generalization performance. Hence, the other direction in which the
classification process can benefit from self-evaluation is answering the question ”How beneficial is the
information I (the classifier) am getting?”. In an online scenario a human teacher can affect the quality
of training information which will be delivered to the system. The target here is to find an adequate
measure of the quality of the received information.

27

28 4. Proposed Methods

4.2. Testing
The previous section outlines that the target is to find a measure which answers the question: ”How
confident am I (the classifier) at making this prediction?”. In order to provide an answer to this question
a deeper analysis is necessary. The following paragraphs explain challenges in predictions, and what
are the factors which affect the probability of an error. Our assumption is that objects are presented
by multiple instances, i.e. multiple views.

Multiple views of one object translate to multiple feature vectors 𝒳 = {x ∈ ℝ , 𝑖 = 1,… , 𝑝}. Each
feature vector x ∈ ℝ corresponds to one image of 𝑝 images of each object. The indices given in Sub-
section 3.4.1 provide a way to distinguish regions of the feature space of one object: dense, sparse
and outlier region.

Figure 4.1 shows possible relations of two classes of feature vectors belonging to two different
objects (Class 𝒳 and Class 𝒳) in the feature space. The image on the left shows two classes
(objects) which do not share any part of the feature space. Therefore, they are well separated. The
image in the middle shows classes which share a part of the feature space. However, both classes have
instances in regions which are not shared by the other class. Therefore, they are partially overlapping.
The image on the right shows two classes which share the same feature space and they do not have
instances outside of the shared region. Therefore, they are totally overlapping. The range of the
overlap between classes can vary from none to total overlap.

Figure 4.1: Possible relations of two classes in the two-dimensional feature space. The image on the left shows two classes
(objects) which do not share any part of the feature space. Therefore, they are well separated. The image in the middle shows
classes which share a part of the feature space. However, both classes have instances in regions which are not shared by the
other class. Therefore, they are partially overlapping. The image on the right shows two classes which share the same feature

space and they do not have instances outside of the shared region. Therefore, they are totally overlapping.

Using the indices 𝜅 (3.19), 𝛾 (3.20) and 𝛿 (3.21) we determine in which relation the two classes are.
We take all feature vectors of the blue class (circles) and measure where feature vectors belonging to
the other classes are, red class in this case. On the image on the left, all of the feature vectors in the
blue class are outliers with respect to the red class. Therefore, they are separated. However, on the
image in the middle, some of the blue class feature vectors are in the sparse and dense region of the
red class. Accordingly, they are partially overlapping. Similarly, on the image on the right the overlap of
the classes in the feature space is total. Note, however, that there exist cases where one class is totally
overlapping with the other class while the other class has non-overlapping regions in the feature space.

Taking into account the previously described relations of classes, it can be inferred that the position
of a test instance x ∈ ℝ in the 𝑛 dimensional feature space and the relationship of neighboring classes,
𝒳 , 𝑖 ∈ 1,… , 𝑠, determines the probability of an error of the prediction. Namely, lets consider the case
where the test instance x is one of the instances of the red class (triangles) presented in Figure 4.1. On
the image on the right, the possibility of an error during prediction is large. However, in the case of the
left image wherever the testing instance is in the red class the probability of an erroneous prediction
is very small.

4.2. Testing 29

In Section 2.3 we state that the goal of the thesis is to find methods which enable the system
to provide information about its internal states and communicate that to the user. The main idea
stated here is that the system can provide online information about its confidence of the prediction
which allows the user to know how large the probability of an error is. The baseline assumption is
the following: If users get a feedback of the system’s confidence of the prediction they would try to
rotate the object such that the confidence is maximized. We propose a graph of the confidence of
the prediction running on an online system (like Tubby) while users present an object, as presented in
Figure 4.2.

Figure 4.2: Online confidence graph during the testing phase. The user is rotating the yellow duck in front of the system. The
system is providing the confidence of the prediction. The red dots capture a single measurement value. The confidence is low

when some views of the ducks are seen, but higher when different, more recognizable, views are provided.

Furthermore, Figure 4.3 shows possible positions of a single testing instance x (green square) in
the feature space of two classes. On the first image the classes are separated. We develop a measure
which gives a high value in the case that the testing instance is in the region of only one class, like
shown on the first image. However, if there is a partial overlap of the classes, like shown on images
2 and 3, two situations are possible. If the testing instance is in the overlapping region, like shown
in image 2, the probability of an error of the prediction is large. Therefore, the confidence should be
low. If the testing instance is in the region which is covered by only one class, like in image 3, the
confidence should be high. The 4-th image shows total overlapping classes and the confidence should
always be low.

Figure 4.3: Possible positions of a single testing instance (green square) in the feature space of two classes. Image 1 shows
separated classes and the testing instance in the feature space of one class. The confidence of the prediction is high. Image 2
shows partially overlapping classes and the test instance in the overlapping region. The confidence of the prediction is low.

Image 3 shows the same partially overlapping classes. The test instance is in the region of the feature space of only one class.
The confidence of the prediction is high. Image 4 shows totally overlapping classes. Wherever the testing instance is, the

confidence is low.

The following Subsections 4.2.1 and 4.2.2 provide two measures which capture the probability of
the correct prediction for an object in testing. These subsections propose two testing strategies which
use the measures.

30 4. Proposed Methods

4.2.1. Testing Strategy 1
The conclusion drawn from the previous discussion is that we want two essential information. The first
information is what classes are neighbours to each test sample x, i.e. to which classes neighbours of
each test sample belong. The other information is in what region, outlier, dense, or sparse (concept
of regions explained in Subsection 3.4.1) of those classes each test sample lies.

We derive a measure of the confidence of the prediction, while an object is in the online process of
testing. We consider having a single test sample x, as well as a set of test samples 𝒳 = {x ∈ ℝ , 𝑖 =
1,… , 𝑞} where we assume that they belong to the same class. Namely, for every incoming test sample
(view of an object) the corresponding feature vector x is determined. Based on the feature vector,
a set of 𝑘 neighboring feature vectors 𝒳 = {x ∈ ℝ , 𝑖 = 1,… , 𝑘} of each test sample x and indices
𝜅 (3.19), 𝛾 (3.20) and 𝛿 (3.21) for each test sample x are determined. Indices 𝜅, 𝛾, 𝛿 are used for
determining whether the test sample x is in the dense, sparse or outlier region of the feature space of
the classifier. We determine the region using an index measure, which is given in Equation (4.1).

index = 𝜅 ⋅ 1𝛾 ⋅
1
𝛿 (4.1)

Equation (4.2) shows how we use index value to determine the region of the feature space.

region = {
index < 𝑡 , outlier
𝑡 ≤ index < 𝑡 , sparse
otherwise, dense

(4.2)

The idea is that the testing samples which are in the outlier region have approximately the same values
of 𝜅, 𝛾, and 𝛿. Furthermore, due to this reasoning ratio ≈ 1. For samples in the outlier region 𝛿
value is large (when compared with samples which are in the sparse and dense region). For samples
which are in the dense region ratio ≥ 1 (this holds because of Equation (3.22)). For these samples
𝛿 is always small, since the characteristic of the dense region is that neighbours are spread around
any sample in all directions. Therefore, index (4.2) should have higher value for samples in the dense
region than for the outlier region. Samples which belong to the sparse region usually have values of 𝛿
which is between very large and very small. Accordingly, index has a value between the outlier samples
and the dense samples values. The process of the region determination is shown in Algorithm 1.

Eventually, we determine the region for each test sample x of the testing class 𝒳. Final prediction
for 𝒳 is made as an aggregation of all regions for separate testing samples. Next it is explained how.
A stream of testing samples x of the testing object 𝒳 is shown to the classifier over time. If the
majority of the testing samples is within an outlier region of all remaining classes which the classifier
learned, like shown on the left image in Figure 4.4, the probability is high that the testing class is new,
i.e. that the classifier did not learn it before, and it is predicted as a new class (object). We determine
the confidence (𝑐) as the percentage of the testing samples which are in the outlier region of all other
classes (blue (circles) and red (triangles) in the case shown). For example, if the classifier obtained 𝑞
testing samples in total, and 𝑝 of them are in the outlier region of all other classes, the confidence is
𝑐 = .

In the previous explanation we say majority of the testing class, but actually the testing class can
be predicted as new if an arbitrary chosen percentage 𝑡 of the testing class lies in the outlier region
of all known classes. Higher values of 𝑡 are more strict, which means that a classifier can make
more mistakes in not recognizing a new object. On the other hand, smaller values of 𝑡 can cause a
classifier to recognize known objects as new objects. In the following explanations we use majority of
the testing class to demonstrate the point. However, in these cases as well, the majority can be any
arbitrary chosen percentage.

4.2. Testing 31

Figure 4.4: Possible positions of the testing class in the feature space which already contains two classes. Image on the left
shows the testing class in the outlier region of both classes. The confidence of the prediction that the object is not known is
high. Image in the middle shows the testing class totally overlapping with the red class (triangles). The confidence of the

prediction, that the testing class is the red class, is high. Image on the right shows a part of the testing class overlapping with
the blue class (circles) and another part of the testing class overlapping with the red class (triangles). The confidence of the

prediction is low. The probability of a mistake is large.

If the majority of the testing samples is in the dense region of only one class, like shown in the
middle image of Figure 4.4, the probability is high that the testing class is equal to the class in which
dense region are the testing samples (red class). In the case shown in the middle image the testing
class is predicted as the red class. We determine the confidence as the percentage of the testing
samples which are inside the dense region. Similarly, if the classifier obtained 𝑞 testing samples in
total, 𝑐 = , where 𝑝 is the number of the testing samples in the dense region of the class.
However, if some of the testing samples are in the dense region of one class, and other testing samples
are in the dense region of the other class, like shown on the right image of Figure 4.4, and their number
is approximately equal, the probability of an error of the prediction is high. The testing class can be
both red and blue class. The confidence of the prediction is equal to the difference of the percentages
of the testing samples being in the dense region of these classes. If the prediction has to be made,
the class with bigger percentage of the testing samples is predicted. Again, if the classifier obtains 𝑞
testing samples, and 𝑝 of them are in the dense region of the blue class, and 𝑝 of them are in the
region of the red class, the confidence is given in Equation (4.3).

𝑐 = max(𝑝 , 𝑝) − min(𝑝 , 𝑝)
𝑞 (4.3)

Figure 4.5: Possible positions of the test class feature vectors in the feature space which already contains two classes. Image
on the left shows two classes in the memory totally overlapping, and the testing class totally overlapping with them. The

confidence in prediction is low. The testing class can be both red (triangles) and blue (circles). Image in the middle shows two
classes in the memory partially overlapping and samples of the testing class in the overlapping region and in the region which
is covered only by the blue class. The confidence is not high. However, the probability is higher that the testing class is blue
than red. Image on the right shows part of the testing class in the region covered by the blue class, and part of the testing

class in the outlier region. The confidence is low. The testing class can be blue or a new never seen class.

32 4. Proposed Methods

Likewise, if all of the testing samples are in the overlapping region of two or more classes, like
shown on the left image of Figure 4.5, meaning that neighbors of the test samples are in the dense or
sparse regions of both or more classes, the probability of an error is high. Firstly, neighboring classes
of all testing samples are determined (blue and red class on the left image). Next we determine a set of
classes which are among 𝑘 neighbours for every test sample. For example, if the test sample x has two
blue class neighbours and three red class neighbours the corresponding set is {blue class, red class}.
Further, for the whole testing class we determine the majority class, based on the sets which are
determined before. The confidence is determined as the percentage of the testing samples which
has majority class in their set of neighbouring classes. If the prediction has to be made, the majority
neighbouring class is predicted. Let us assume the classifier obtained 𝑞 testing samples in total, and
𝑝 of them have red class among their 𝑘 neighbours, and 𝑝 of them have blue class among their 𝑘
neighbours. Note that a single test sample can have both blue and red neighbours, if 𝑘 ≥ 2. This
means that 𝑝 + 𝑝 ≥ 𝑞 and 𝑝 ≤ 𝑞, 𝑝 ≤ 𝑞. Equation (4.4) denotes the confidence value in this case.

𝑐 = max(𝑝 , 𝑝)
𝑞 (4.4)

Another problematic situation is when some of the testing samples are in the overlapping region
of the two or more classes, but some testing samples are in the region of only one class, like shown
on the image in the middle in Figure 4.5. The confidence and the prediction are determined on the
same principle as the previous situation. Finally, there is a case when some of the testing samples
are in the outlier region of all classes, but some testing samples are in the dense or sparse region of
one or more classes, like shown in the right image of Figure 4.5. An outlier region of all classes is in
this case considered as the additional class. For every testing sample in this region we consider that 𝑘
neighbours of the sample are from the additional outlier class. Further the principal from the previous
cases can be applied. Algorithm 3 shows the confidence computation (when Algorithm 1 is used for
the region computation).

What is not noted in the previous description is when the prediction is made. If it is clear that the
confidence is above a specified threshold 𝑡 during a short period of time the prediction is made. How-
ever, if the confidence of the prediction is not high enough the algorithm requires more information
(more views of a testing object). Additional views are required until the confidence does not reach
a desired value 𝑡 or the number of views 𝑚𝑎𝑥 which can be seen by the classifier does not reach
a limitation. The number of views which can be seen by the classifier is limited in order to regulate
the testing time. In a real online scenario the prediction has to be made after some time even if the
confidence is not high enough. Lower values of 𝑡 mean that the classifier will make predictions even if
it is not sure in those, which can cause more errors in predictions. On the other hand, higher values
of 𝑡 will cause the classifier to require more testing views of a testing object more often. However, a
number of wrong predictions will be reduced.
Algorithm 4 presents the working mechanism of Testing strategy 1.

Note that for some testing samples this method can wrongly identify the region (dense, sparse or
outlier) of the feature space in which the test sample x lies. Some samples which are in the sparse
region can be wrongly identified in the dense region. The reason is that 𝛿 value for these samples can
be very small if 𝑘 neighbours are spread in all directions (when compared to 𝛿 values of other points
in the sparse region). Moreover, can be large as well (in comparison to other in the sparse region)
if the difference between the 𝑘-th neighbour distance and the average distance of the test sample x
is large. In this case, index (4.1) has a large value and the sample is identified in the dense region.
Nonetheless, we consider that the number of these mistakes is insufficient to downgrade the outcome
of the method. On the other hand, the advantage of this approach is that we do not need to change
the thresholds (𝑡 and 𝑡 in Equation (4.2)) when the feature space is changed. The thresholds are
set only once. This characteristics makes the method easy to use and once the thresholds are set the
accuracy of the method is stable. For example, if the dimensionality of the feature space is changed
the method should stay effective as in the primary used feature space.

4.2. Testing 33

Algorithm 1 Determine region of the feature space (1): dense, sparse or outlier.
Require:
Test feature vector x ∈ ℝ
Training feature vectors of all seen objects X = {𝒳 , 𝑖 = 1,… , ℎ}
procedure Region 1

Compute 𝜅 (3.19), 𝛾 (3.20), 𝛿 (3.21) for x
index = 𝜅 ⋅ ⋅
Determine the location of x in the feature space
if index < 𝑡 then

return x is in outlier region of X
else

if index < 𝑡 then
return x is in sparse region of X

else
return x is in dense region of X

end if
end if

end procedure

4.2.2. Testing Strategy 2
Testing strategy 2 is very similar to the Testing strategy 1. It represents the same concept. However,
the way of computing in which regions of other classes the testing feature vectors lie is different. In
the previous case we use index which is captured in Equation (4.1). The disadvantages of the previous
method are pointed out. Therefore, in the Testing strategy 2 we define index differently, given in
Equation (4.5), and additionally use 𝛾 value for the determination of the feature space region of a test
sample.

index = 𝛿 ⋅ 1𝛾 (4.5)

The determination of the region using 𝛾 (3.20) and index (4.5) is given in Equation (4.6).

region = {
𝛾 > 𝑡 , index > 𝑡 , outlier
𝛾 > 𝑡 , index ≤ 𝑡 , sparse
otherwise, dense

(4.6)

The idea behind this is that samples which are in the outlier region have 𝛾 and index (4.5) larger
than samples which are in the sparse or dense region. The reasoning is, again, outliers have distant
neighbours and approximately the same 𝛿 and 𝛾 values (for an outlier which is infinitely far away from
its class 𝛿 and 𝛾 are equal). For a sample in the sparse region 𝛾 is still large since 𝑘 neighbours are more
distant than in the dense region. However, 𝛿 value of samples in the sparse region are smaller than
for the outliers because neighbours are spread in all directions and therefore index (4.5) is smaller. On
the other hand, 𝛾 has to be small for samples in the dense region since neighbours are close. With this
method we avoid the problem mentioned in the previous strategy, wrong classification of the samples
in the sparse to the dense region. However, the disadvantage of this method is that it is dependant
on the feature space, and the threshold 𝑡 in Equation (4.6) has to be changed for every change of a
characteristics of the feature space, e. g., the dimensionality.

Note that besides index definition, the thresholds defined in Equation (4.5) are different than in
Equation (4.2). Algorithm 2 captures the working mechanism of the region determination defined in
Testing strategy 2. Algorithm 3 uses Algorithm 1 and Algorithm 2 for the computation of the regions in
the feature space. Algorithm 4 shows Testing strategy 1 when Algorithm 1 is used and Testing strategy
2 when Algorithm 2 is used. Figure 4.6 shows the flowchart of the testing strategies.

34 4. Proposed Methods

Figure 4.6: Flowchart of the testing strategies.

Algorithm 2 Determine region of the feature space (2): dense, sparse or outlier.
Require:
Test feature vector x ∈ ℝ
Training feature vectors of all seen objects X = {𝒳 , 𝑖 = 1,… , ℎ}
procedure Region 2

Compute 𝜅 (3.19), 𝛾 (3.20), 𝛿 (3.21) for x
Determine the location of x in the feature space
index = 𝛿 ⋅
if 𝛾 > 𝑡 and index > 𝑡 then

return x is in outlier region of X
else

if 𝛾 > 𝑡 and index ≤ 𝑡 then
return x is in sparse region of X

else
return x is in dense region of X

end if
end if

end procedure

4.2. Testing 35

Algorithm 3 Compute confidence 𝑐
Require:
Testing feature vectors 𝒳 = {x ∈ ℝ , 𝑖 = 1,… , 𝑞}
Training feature vectors of all seen objects X = {𝒳 , 𝑖 = 1,… , ℎ}
Labels of all seen objects 𝐿 = {𝑙 , 𝑖 = 1,… , ℎ}
procedure Confidence

outlier = 0
for x ∈ 𝒳 do

Determine region of the feature space (Algorithm 1 or 2) for x
if x is in outlier region of X then outlier++
end if

end for
Compute percent of the testing class in the outlier region
𝑝outlier = outlier

if 𝑝outlier > 𝑡 then
𝑐 = 𝑝outlier
Test label prediction 𝑙test
𝑙test = 𝑙 # new object

else
If only one class is known
if |X| == 1 then

𝑐 = 1 − 𝑝outlier
𝑙test = 𝐿

else
for x ∈ 𝒳 do

Determine the 𝑘 neighbours of x with their labels according to Euclidean distance
end for
Determine number 𝑐𝑛 of different labels among all neighbours of all testing samples in 𝒳
Find the class 𝑙 which is among 𝑘 neighbours of a majority of all testing samples in 𝒳
if there is no majority neighbour class then

𝑐 = 0
𝑙 = 𝑙 #first label among all classes which are neighbours to the maximal number
of testing samples

end if
Determine the percentage 𝑝max of all testing class which have 𝑙 neighbours belonging to
the class 𝑙
if 𝑝outlier > 𝑝max then

𝑐 = max

𝑙test = 𝑙
else if 𝑝outlier > 0 then

𝑐 = max

𝑙test = 𝑙
else

𝑐 = max

𝑙test = 𝑙
end if

end if
end if

end procedure

36 4. Proposed Methods

Algorithm 4 Testing strategy
Require:
Maximum number of views of an object which can be seen 𝑚𝑎𝑥
Minimum number of views of an object which have to be seen 𝑚𝑖𝑛
Test feature vectors (stream) x ∈ ℝ , 𝑖 = 1,… , 𝑣, 𝑣 ≤ 𝑚𝑎𝑥
Training feature vectors of all seen objects X = {𝒳 , 𝑖 = 1,… , ℎ}
Labels of all objects seen 𝐿 = {𝑙 , 𝑖 = 1,… , ℎ}
procedure Test

𝑞 = 1 # index of test view
𝒳 = {}
while 𝑐 < 𝑡 or 𝑞 < 𝑚𝑖𝑛 do

Require (additional) test view x , 𝒳 = 𝒳 ∪ x
Compute 𝑐 (Algorithm 3) for 𝒳
if 𝑞 ≥ 𝑚𝑎𝑥 then

Break
end if
𝑞 + +

end while
Predict test label 𝑙test (Algorithm 3)

end procedure

4.3. Training
Another measure which the second question in Section 4.1 addresses is the answer to: ”How beneficial
information am I (the classifier) getting?”. Firstly, we provide an explanation what the beneficial infor-
mation is, with respect to generalization of the classification performance. An example is given with
the aim to demonstrate the difference between the beneficial and not beneficial information. Imagine
you would have to see only three views of a new never seen object based on which you will have to
recognize the object in the future. Figure 4.7 and 4.8 capture two extremes of views which could be
seen:

⟹

Figure 4.7: Three very similar views of the yellow duck → non-beneficial information. If the duck is seen from the back only, it
would be unrecognizable from the side or the front.

⟹

Figure 4.8: Three different views of the yellow duck → beneficial information. If these views of the duck are seen, the
recognition of the duck in the future should be possible from the side, the front, or the back.

It can be concluded that a preferred scenario is shown in Figure 4.8. If the duck is seen from the
back only, like shown in Figure 4.7, it would be unrecognizable from the side or the front. However,
the images given in Figure 4.8 provide more information which increase the chance of recognizing the
duck in the future.

Looking at the relation of the views presented in Figure 4.7 and 4.8 it is reasonable to assume that
the views shown in Figure 4.8 are further away from each other than the views shown in Figure 4.7

4.3. Training 37

in the feature space. We assume that these views cover a larger part of the feature space than views
shown in Figure 4.7, and this is the reason why it is possible to recognize the yellow duck easier. The
conclusion is that the set of views given in Figure 4.8 is more beneficial for the system than the set
of views given in Figure 4.7. Our assumption is that a beneficial training sample is a training sample
which expands the feature space covered by the remaining training feature vectors of the object.
Figure 4.9 illustrates how these findings generalize to other objects and more views.

Figure 4.9: The feature space of similar and different views of one object. The left image shows all feature vectors of one
object in the feature space. The middle image extracts a set of different views of the object. The image on the right extracts

a set of similar views of the object.

The image on the left of Figure 4.9 shows all views of one object in the two-dimensional feature
space. The middle image represents a set of 𝑤 different views of the same object. The right image
shows a set of 𝑤 similar views of the same object. It can be noticed that the views shown on the right
image are significantly closer to each other in the feature space than the views shown on the middle
image. It can be noticed as well that the views in the middle image cover a larger part of the feature
space (than the views on the right) even though the number 𝑤 of views is the same.

Enabling users to know how beneficial information are providing to the system can increase the
overall communication and performance of the system. The main idea stated here is that if the system
provides online information about the quality of the received information that makes the user aware
of the system’s states, and affects the user’s behaviour. The baseline assumption is the following: If
users get a feedback (a score) of how beneficial the training information is, they would try to rotate the
object such that the value (the score) is maximized. We propose a graph which shows how beneficial
the received information is, running on an online system (like Tubby) while the user is presenting an
object, as shown in Figure 4.10.

Figure 4.10: Online score measurement during training. The user is rotating an object in front of the system. The system is
providing a score of how beneficial the currently shown view is. Red dots capture a single score value. The beneficiality of the
view is low when some part of the ducks are shown to the system, which are similar to what is already acquired, but higher

when different views are provided.

Figure 4.11 shows feature vectors of acquired training views of an object and a new training view
of that object. The figure denotes possible positions of the new training view in the feature space. We

38 4. Proposed Methods

develop a measure (a score) which has a low value if the new training view of the object provided to
the system is in the dense region of the already acquired training views, like shown on the left image
of Figure 4.11. The score has a high value for the case shown on the right image, where the new
training view of the object is in the outlier region of the acquired training views. Finally, the score has
a medium value for the case shown in the middle image.

Figure 4.11: Possible positions of a new training view in the feature space of already acquired training views of the same
object. The left image shows the training view which is in the dense region of the already acquired training views. The

beneficiality score is low in this case. The middle image shows the new training sample in the sparse region. The score has a
medium value. The new view of an object in the outlier region of the already acquired training views. The new training view

expands the covered feature space of that object. The beneficiality score is high.

The following Subsections 4.3.1 and 4.3.2 provide two measures which capture the beneficiality of
a new training view of an object shown to the system. Furthermore, these subsections propose two
training strategies which use the measures.

4.3.1. Training Strategy 1
The conclusion from the previous discussion is that, ideally, the training samples cover the whole fea-
ture space of an object. However, in an online scenario the system does not know how big the feature
space of any object is, or how many training samples will be shown to the system. The best which the
system can do is to try to steer the user to show views of an object which cover the whole feature space
of that object in the shortest possible time. The system can do this by giving a score to the user. The
score denotes the beneficiality of the shown training view. A low score is given when the user shows
similar views of an object and a high score is given when the user shows totally different views of that
object, with respect to the views which are already shown to the system (of the same object). In this
way the user is stimulated to show the system all different views possible. The system gets training
views in regions of the feature space of an object which are overlapping with other classes, but also in
regions which are not overlapping. It is meaningful to have the training samples in both overlapping
and non overlapping regions. Overlapping regions are important because we want to know when the
probability of an error during the prediction is high. On the other hand, non overlapping regions are
important because these are the regions where the confidence value grows during testing (as explained
in the previous section).

Training strategy uses the same underlying mechanism as the testing strategies. Namely, let us
consider an online training scenario where a stream of training samples is shown to the system. We
consider a single training sample x , as well as a set of training samples 𝒳 = {x ∈ ℝ , 𝑖 = 1,… , 𝑝}
where we assume that they belong to the same class. The set of training samples 𝒳 represents a
set of previously acquired training samples of the training object. For the current training sample x
shown to the system it is determined in which of the three regions (dense, sparse or outlier) of the
feature space of the acquired training samples lies. The values of 𝛾 (3.20) and 𝛿 (3.20), for the current
sample, are computed and directly used. Equation 4.7 shows the determination of the regions.

region = {
𝛾 > 𝑡 , 𝛿 > 𝑡 , outlier
𝛾 > 𝑡 , 𝛿 ≤ 𝑡 , sparse
otherwise, dense

(4.7)

4.3. Training 39

The idea behind this approach is very simple. Outliers have distant neighbours in approximately the
same direction. Therefore they have large values of 𝛾 and 𝛿 (when compared with samples in the
sparse or dense region). Samples in the sparse region have distant neighbours but spread in all direc-
tions which makes their 𝛾 values large but 𝛿 values small. Finally, samples in the dense region have
close neighbours in all directions. Therefore values of 𝛾 and 𝛿 are small. This approach of determining
regions of the feature space is expected to be the most precise and to make the least number of errors
(when compared to the previously mentioned approaches given in Equation (4.2) and (4.6)). However,
the accuracy of this region determination is very dependant on the choice of thresholds 𝑡 and 𝑡 .

As stated already in the previous section the beneficial training sample expands the covered part
of the feature space of the existing training samples, like shown on the right image in Figure 4.11.
Looking back to the Section 3.4 which describes outlier detection it can be noticed that every outlier
expands the covered feature space of the existing class. Therefore, a high score (meaning that the
sample is beneficial) is given to training samples which are belonging to the outlier region of the training
class 𝒳 . On the contrary, if the incoming training sample is detected to be in the dense region of the
class, like shown on the left image in Figure 4.11, it is not considered to be beneficial and a low score
is given. Equation (4.8) and Algorithm 5 show how scores are computed. The threshold 𝑡 limits the
distance to the closest neighbour. When a view of an object is shown, the system checks whether a
very similar view of that object was shown before. The threshold 𝑡 determines which training sample
is considered to be very similar and discarded therefore.

score = {

x in outlier region, 𝛾 ⋅ ⋅ 𝑐
x in sparse region with close neighbour, 𝛾 ⋅ ⋅ 𝑐 + 𝑐
x in sparse region, 𝛾 ⋅ ⋅ 𝑐 + 𝑐
x in dense region, 𝛾 ⋅ ⋅ 𝑐

(4.8)

where 𝑐 , 𝑐 , 𝑐 , 𝑐 , 𝑐 and 𝑐 are constants, and 𝑡 is a threshold. Algorithm 10 shows the working
mechanism of the training strategy. The threshold 𝑡 in Algorithm 10 determines which training sample
will be accepted into the training data. Setting this value high will make the classifier more selective,
and it will accept only very different views of an object. Setting this value low will make the classifier
less selective and it will accept views of an object which are similar to the views which are acquired
already.

Initialization
The main disadvantage of the previously described method is that every time when the feature space
is changed in some way (the feature extraction process or the number of dimensions of the feature
vectors) the thresholds, 𝑡 , 𝑡 from Equation (4.7), have to be set manually. Looking long term this
is not the best solution. Ideally, the thresholds are set automatically. These thresholds determine
whether the incoming training sample is considered to be in the region where neighbors are close, or
far away. When they are close the training sample is considered to be in the dense region, whereas
when they are far away it is considered to be an outlier. Close neighbors and the dense region of the
feature space represent similar views of an object. Opposite of that, the outliers and the outlier region
represent completely different views of the object, with respect to the views of the object which are
already acquired. Essentially, we need information of the distance in the feature space of similar views
of an object, in order to derive the values for the thresholds.
Therefore, we propose an improvement to the previously described method. We firstly assume that
the feature space change will not happen often. Every time when this happens the system has to
be initialized. The initialization is a presentation of the first object to the system. During initialization
the system does not provide a score for the training views. The system is taking all views, and the
user should try to show as much views as longer as possible. Based on the acquired views which are
mapped into the feature space the thresholds are determined. The idea here is that a distribution of
the acquired views of the initial object provides the information what similar or different view in the
current feature space means. We assume that the most distant training samples of the initial object are
represented by very different views, while the closest training samples are represented by very similar
views. Therefore, the thresholds are derived as their distance in the feature space. The disadvantage
of this approach is that its accuracy depends on the object chosen for the initialization. For example,

40 4. Proposed Methods

if a single color ball is used for the initialization, getting an idea of how far away are different views of
any object in the feature space can be difficult. All views of an object like a single color ball look similar.
It is expected that the most distant feature vectors still represent views which are in some way similar,
rather than different. Therefore this method can identify thresholds which do not generalize well.
Algorithm 7 shows the initialization.

Selectivity
Assuming that we can set the adequate thresholds, maintaining their value constant for a long period
of time is not sustainable tactic either. When many different views of an object are acquired the system
will provide only bad scores for any shown view because the view will be in some way similar to the
views of the object which are acquired already. Setting more selective thresholds at the beginning,
and than changing them in a way that selectivity is reduced when some views are acquired solves this
problem. The system is more selective at the beginning trying to get as much totally different views
of an object as possible, and to cover the largest possible part of the feature space of that object. It
becomes less selective with acquired views and over time.
Therefore, we propose a further improvement of the Training strategy 1 which introduces the thresholds
which become less selective with a number of acquired training samples. Algorithm 8 shows the
procedure.

Algorithm 5 Compute score 1
Require:
New training feature vector x
𝜅 (3.19), 𝛾 (3.20), 𝛿 (3.21) for x
procedure Score 1

if 𝛾 > 𝑡 and 𝛿 > 𝑡 then
return x is in outlier region of 𝒳
Beneficial view
score = ⋅ 𝑐 # 𝑐 ∈ ℝ, 𝑖 = 1,… , 6 are constants

else
if 𝛾 > 𝑡 and 𝛿 ≤ 𝑡 then

return x is in sparse region of 𝒳
Can be beneficial view
Determine distance 𝑑 to the closest neighbour x according to Euclidean distance
if 𝑑 < 𝑡 then

score = 𝑑 ⋅ ⋅ 𝑐 + 𝑐
else

score = 𝛾 ⋅ ⋅ 𝑐 + 𝑐
end if

else
return x is in dense region of 𝒳
Not beneficial view
Determine distance 𝑑 to the closest neighbour x according to Euclidean distance
score = 𝛾 ⋅ ⋅ 𝑐

end if
end if

end procedure

4.3.2. Training Strategy 2
The second training strategy depicts the same concept as the Training strategy 1, with a slight change
in the measures which are used for the score derivation. Namely, for the determination in which region
of the feature space the training sample x is, instead of 𝛿 value, index = (defined in Equation (4.5))
is used. This is the same region determination method as explained in Testing strategy 2 (Equation

4.3. Training 41

(4.6)).

region = {
𝛾 > 𝑡 , index (4.5) > 𝑡 , outlier
𝛾 > 𝑡 , index (4.5) ≤ 𝑡 , sparse
otherwise, dense

(4.9)

The thresholds 𝑡 and 𝑡 in Equation 4.7 (Training strategy 1) are set based on one randomly se-
lected object from the database. In an online case this object is selected by the user of the system.
These values depend to some degree on the chosen object. If the chosen object has a distribution
of samples in the feature space which does not represent well the average representation of any ob-
ject selected values for the thresholds can cause non optimal results of the strategy. Moreover, these
values have to be adapted any time the feature space or some of its characteristics is changed (e. g.,
dimensionality). Therefore, in the Training strategy 1 there are two variables which are dependant on
the object chosen for the initialization and which affect the accuracy of the strategy. On the contrary,
𝑡 in Equation (4.9) is not selected based on the choice of a random object, and its value does not
depend on it. It is chosen by the system’s designer and should be valid in the feature space of any
dimensionality. Accordingly, Equation (4.9) has only one variable which is dependant on the object
chosen for the initialization and affects the accuracy of the region determination. When compared to
other approaches for the region determination mentioned earlier (Equation (4.2) and Equation (4.7))
this approach makes less errors than the approach mentioned in Equation (4.2) (Testing strategy 1)
and it is less dependant on the object chosen for the initialization than the approach given in Equation
(4.7) (Training strategy 1).

Algorithm 9 shows the process of updating the thresholds for the second training strategy. Algorithm
10 shows the working mechanism of Training strategy 2, when Algorithm 6 is used for the score
computation, and Algorithm 9 for the thresholds update. Figure 4.12 shows the flowchart of the
training strategies.

Figure 4.12: Flowchart of the training strategies.

42 4. Proposed Methods

Algorithm 6 Compute score 2
Require:
New training feature vector x
𝜅 (3.19), 𝛾 (3.20), 𝛿 (3.21) for x
procedure Score 2

index = (4.5)
if 𝛾 > 𝑡 and index > 𝑡 then

return x is in outlier region of 𝒳
Beneficial view
score = 𝛾 ⋅ ⋅ 𝑐 # 𝑐 ∈ ℝ, 𝑖 = 1,… , 6 are constants

else
if 𝛾 > 𝑡 and index ≤ 𝑡 then

return x is in sparse region of 𝒳
Can be beneficial view
Determine distance 𝑑 to the closest neighbour x according to Euclidean distance
if 𝑑 < 𝑡 then

score = 𝑑 ⋅ ⋅ 𝑐 + 𝑐
else

score = 𝛾 ⋅ ⋅ 𝑐 + 𝑐
end if

else
return x is in dense region of 𝒳
Not beneficial view
score = 𝛾 ⋅ ⋅ 𝑐

end if
end if

end procedure

Algorithm 7 Initialization
Require:
Initial feature vectors 𝒳 = {x ∈ ℝ , 𝑖 = 1,… , 𝑝}
procedure Init

for x ∈ 𝒳 do
Determine 𝛾 (3.20), and 𝛿 (3.21)

end for
Create 𝛾 array: Order 𝛾 values for all feature vectors x in 𝒳 from the largest to the smallest
Create 𝛿 array: Order 𝛿 values for all feature vectors x in 𝒳 from the largest to the smallest
Compute 𝛾 # average 𝛾 value in the 𝛾 array
Compute 𝛿 # average 𝛿 value in the 𝛿 array
𝑡 = 𝛾 value which is smaller than 𝑝 % of the members of 𝛾 array
𝑡 = 𝛿 value which is smaller than 𝑝 % of the members of 𝛿 array
𝑡 = 𝛾 value which is smaller than 𝑝 % of the members of 𝛾 array
return 𝑡 , 𝑡 , 𝑡 , 𝛾 , 𝛿

end procedure

4.3. Training 43

Algorithm 8 Update thresholds 𝑡 , 𝑡 and 𝑡 (1)
Require:
𝛾 , 𝛿 (Algorithm 7)
Number of already acquired training views of an object 𝑝
procedure Thresholds 1

𝑡 = 𝑐 + 𝑐 ⋅ 𝑝 + 𝑐 ⋅ 𝛾 + 𝑐 ⋅ 𝑝 ⋅ 𝛾 # 𝑐 ∈ ℝ, 𝑖 = 1,… , 6 are constants
𝑡 = 𝑐 ⋅ 𝑝 ⋅ 𝛿
𝑡 = 𝑐 ⋅ 𝑡
return 𝑡 , 𝑡 , 𝑡

end procedure

Algorithm 9 Update thresholds 𝑡 , 𝑡 and 𝑡 (2)
Require:
𝛾 (Algorithm 7)
Number of already acquired training views of an object 𝑝
procedure Thresholds 2

𝑡 = 𝑐 + 𝑐 ⋅ 𝑝 + 𝑐 ⋅ 𝛾 + 𝑐 ⋅ 𝑝 ⋅ 𝛾 # 𝑐 ∈ ℝ, 𝑖 = 1,… , 6 are constants
𝑡 = 𝑐 ⋅ 𝑡
𝑡 = 𝑐 ⋅ 𝑡
return 𝑡 , 𝑡 , 𝑡

end procedure

Algorithm 10 Training strategy
Require:
Maximum number of training views per object 𝑚𝑎𝑥
Training feature vectors (stream) x ∈ ℝ , 𝑖 = 1,… , 𝑣, 𝑣 ≤ 𝑚𝑎𝑥
Training feature vectors (of the same object) 𝒳 = {x ∈ ℝ , 𝑖 = 1,… , 𝑝}
procedure Training

Initialization (Algorithm 7)
j=1 # index of training view
while 𝑗 < 𝑚𝑎𝑥 do

Determine feature vector x of the training view 𝑗
Compute 𝜅 (3.19), 𝛾 (3.20), 𝛿 (3.21) for x
Compute score (Algorithm 5 or 6)
if score > 𝑡 then

Beneficial view, update the memory 𝒳 , include the view x
𝒳 = 𝒳 ∪ x
Update thresholds (Algorithm 8 or Algorithm 9)
𝑗 + +

end if
end while

end procedure

Summary
This chapter presents the fundamental problem of self-evaluation and extracts two crucial questions
which tackle the classification. We propose two testing and two training strategies as the answers to
these questions. In the next chapter the strategies are evaluated.

5
Results and Discussion

The previous chapters provide the description of the Tubby platform, the theoretical foundation for the
understanding of the project, and the proposed methods for improving the platform. This chapter pro-
vides the experiment description, results of the baseline performance and evaluations of the proposed
methods and a discussion thereon.

5.1. Experiments Description
Details of the execution of the experiments are presented here. The targeted application for the pro-
posed communication strategies is the online interactive scenario, as described in Chapter 2. However,
the experiments are conducted in an offline setting, because the communication strategies can be
assessed more accurate. The offline setting enables higher control over different parameters and their
effect on the performance. Once it is shown that the strategies improve the offline performance, the
strategies can be implemented and evaluated on the online platform. Following are details of the
experiments: number of repetitions, the used database of images, testing and training data split, per-
formance measure, the used feature space and the used number of objects in the training and testing
phase.

Repetition
Every experiment is repeated 100 times where every repetition is called a run. The average results of
the 100 runs are reported as the final measure.

Dataset
The data set which is used for the experiments described in this chapter is the HRI-EU database of
images of 126 objects. Every object in the database has 1200 images of different views. Images of
every object were taken consecutively such that views taken by two consecutive images are always
shifted only for a small angle of an arbitrary axes, as depicted in Figure 5.1, which shows 20 consecutive
views of the yellow duck. Figure 5.2 shows one image of every object in the database.

Figure 5.1: 20 consecutive views of the object yellow duck.

45

46 5. Results and Discussion

Figure 5.2: One view of every object of the 126 objects in the database used for the experiment.

5.1. Experiments Description 47

Training - Testing data
For every execution of the evaluation experiment, data used for the training and testing phase are
different. In every run a uniform-random number 𝑔 ∼ 𝑢(1, 1200) , 𝑔 ∈ ℕ is chosen for every object,
which represents an image index. The overall image indexes of one object can be seen as a circle,
like shown in Figure 5.3. The first and the last index of images are neighbours on the top. Index 𝑔
is chosen, and following 200 views of the circle are taken as the testing data, whereas the remaining
1000 views are taken as the training data. The split of data is done for every object separately.

Figure 5.3: Training-testing data split.

Depending on the strategy, the number of testing views per object which are actually used in the
experiment varies. All actually used testing views are obtained from the testing data described above.
The minimal number of views per object used for the testing phase is set to be 10, whereas the maximal
number is set to be 100. The strategies decide on a case to case basis how many views is used for the
prediction of an object. The limitation in the number of testing views per object which the system can
get is set to mimic the real online behaviour of the user engaged with the system. If the confidence of
the prediction is low the system might require new views forever, which is not the optimal behaviour.
Therefore, the limitation after which the system has to make the prediction is set.
In the training the system gets a specified number of views of each object which is used for this phase.
Every experiment is run for 17 different values for the number of training samples of each object. The
performance measure depends significantly on the number of training samples which the system gets.
The chosen numbers are: 1, 5, 10, 15, 20, 30, 40, 50, 70, 80, 100, 120, 130, 150, 160, 180, 200. The
variance of the performance measure is considerably small when the number of the training samples
is larger than 200, which is the reason why higher values are not considered. The specified number of
training views is taken from the training data for every object. In the proposed training strategies, the
system takes a specified number of training views of each object which obtain a score larger than a
threshold 𝑡. The baseline training strategy, and how a subset of specified number of views is chosen
from the training data are explained in Subsection 5.2.1.
Therefore, the training and testing data actually used in the experiments are different.

Performance measure
The main performance measure used for the comparison in the experiments is the accuracy given in
Equation 5.1.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ ∑ 𝑇𝑃

∑ 𝑦
(5.1)

ℎ denotes the total number of classes (objects) used for the testing, 𝑇𝑃 denotes the correctly predicted
view of a certain class, 𝑦 denotes the number of testing views of a certain class 𝑖.
The baseline performance is described in Section 5.2.1. The baseline strategy does not have the
possibility of recognizing new objects as new. The testing strategies proposed in Section 4.2 have this
possibility. If the object is predicted as new and never seen in the training and this is correct, it is
excluded from the performance calculations. It is not considered as the correct prediction since the
system does not know what the object is. But, it is not considered as the wrong prediction since the
system knows that the object was not seen before. However, if the object is predicted as new and
this is not correct, it is considered as the wrong prediction. If the object is new but predicted as some

48 5. Results and Discussion

of the training objects, this is considered equally wrong. One might argue that this treatment of the
predictions related with new objects is unfair. The reward is not given to the performance in the case
of the correctly predicted new object, but the penalty is given for the wrong prediction of a new object.
However, even though the performance does not get a direct reward when the system recognizes a new
object, the indirect reward is obtained by taking the sample out of computations (the number ∑ 𝑦
in Equation (5.1) becomes smaller and therefore the accuracy increases). Furthermore, by computing
the performance of the proposed strategies in this way we achieve the lowest possible value. If proven
that this value still outperforms the baseline all other ways of computing the performance will only
improve the difference between the proposed strategies and the baseline strategy.

Feature extraction
As described in Section 3.2, features of each image in the data set are extracted using the convolutional
neural network AlexNet [31] which is trained on the ImageNet database1. Each feature vector x is the
activation of the last neuron layer and it is 1000-dimensional vector (x ∈ ℝ).

Dimensionality of the feature space
The experiments are performed in four different dimensionalities of the feature space. All experiments
are done in 2D (x ∈ ℝ), 10D (x ∈ ℝ), 100D (x ∈ ℝ) and 1000D (x ∈ ℝ). For every run of 2D
experiments 2 neuron outputs are taken randomly from the extracted feature vectors. The performance
changes its value significantly depending on the chosen neurons. Moreover, it is not possible to extract
a special set of neurons which represents good features for every object. Hence, for the sake of
obtaining generality in the results and to reduce a dependency on the choice of neurons, a random
selection is applied. As for 2D, 10 neuron outputs and 100 neuron outputs are selected randomly from
the feature vectors in every run. In the case of 1000D the whole feature vector is used.

Number of training and testing objects
The performance is significantly dependant on the number of training and testing objects and whether
all testing objects are used for training. Four representative cases are chosen for the experiments:

Setting 1 All 126 objects are in the testing, and all 126 objects are in the training.

Setting 2 All 126 objects are in the testing, and random 100 objects are in the training. In every run
(out of 100) different sets of random 100 objects is selected, so that the effect of the objects
chosen on the results is reduced to minimum.

Setting 3 Random 15 objects from the database are in the testing, and 10 out of those 15 objects
are used for the training. In every run (out of 100) different sets of random 15 objects for the
testing and 10 object out of those 15 objects for the training are selected, so that the effect of
the objects chosen on the results is reduced to minimum.

Setting 4 Random 10 objects from the database are in the testing, and same 10 objects are used for
the training. In every run (out of 100) different sets of random 10 objects is selected, so that the
effect of the objects chosen on the results is reduced to minimum.

5.2. Results
The results of the experiments described above are presented in this section. The baseline performance
is described in the following subsection.

5.2.1. Baseline Performance
The baseline performance is derived from the offline simulation of the online Tubby performance (Chap-
ter 2). The modified system (change from category learning to object recognition and the classification
process) is our baseline. In this changed setting Tubby takes views of a presented object and predicts
what that the object is, based on a 𝑘NN classifier. In the offline setting this behaviour is simulated in
a way that the system takes a certain number of consecutive views of the object. Consecutive views,
as shown in Figure 5.1, are taken to correspond to the user’s rotation of the object in front of Tubby.

1http://www.image-net.org/

http://www.image-net.org/

5.2. Results 49

In the best case, the user would rotate the object, and therefore increase the probability of a correct
prediction. Whereas the worst case scenario is if the user holds the object static and thereby reduces
the chances of a correct prediction.
In the baseline training the system gets a specified number of consecutive views of each object which
is used for this phase. In the baseline testing phase a specified number of consecutive views of each
testing object are taken. The prediction for every testing object is based on a majority vote for every
view (image) of that testing object. Every view vote is the prediction of the 𝑘NN algorithm for that view.

In the previous section it is noted that the dimensionality of the operating feature space is chosen
to be: 2D, 10D, 100D and 1000D. Figure 5.4 shows the comparison between the baseline performance
of the system when all objects are used both for the training and testing phase. It is visible that the
difference between performance in 100D and 1000D is not proportional to the difference between 2D
and 100D performance. The performance value is not linearly dependant on the number of dimensions
chosen.

Figure 5.4: Baseline performance averaged across 100 runs for 2D, 10D, 100D, and 1000D. All 126 objects were used for the
training and testing.

The following subsection presents results obtained in the described experiments with the base-
line and the improved system. Chapter 4 proposes two training and two testing strategies. Every
experiment is consisted of two phases, the training and testing phase. In order to assess the pro-
posed methods the experimental settings are denoted in Table 5.1. Firstly the baseline performance
is measured with the baseline training and baseline testing strategy. Afterwards experiments with the
baseline training strategy and the proposed testing strategies are conducted, which are followed by
the experiments with the proposed training strategies and the baseline testing strategies. Finally, a
combination of the proposed training and testing strategies is executed.

50 5. Results and Discussion

Experimental settings Training Testing

Baseline Baseline training Baseline testing
Testing strategy 1 Baseline training Testing strategy 1
Testing strategy 2 Baseline training Testing strategy 2
Training strategy 1 Training strategy 1 Baseline testing
Training strategy 2 Training strategy 2 Baseline testing
Test 1 Training 1 Training strategy 1 Testing strategy 1
Test 1 Training 2 Training strategy 1 Testing strategy 2
Test 2 Training 1 Training strategy 2 Testing strategy 1
Test 2 Training 2 Training strategy 2 Testing strategy 2

Table 5.1: Experimental settings. The training column denotes which strategy is used for the training phase during the
measure of the performance whereas the testing column denotes which testing strategy is used for the testing phase.

5.2.2. Resulting Performance
This subsection presents the most informative visualizations. All evaluations are included in the Ap-
pendix, along with tables containing the exact performance values. In the following figures it is shown
how the performance varies depending on the used training and testing strategies. The description of
the experiments is given in the previous section.

Figure 5.5: Setting 1 - 1000D. Performance of the proposed strategies compared with the baseline performance in 1000D
feature space. All 126 objects are used in the testing, and all objects are used in the training.

5.2. Results 51

Figure 5.6: Setting 3 - 100D. Performance of the proposed strategies compared with the baseline performance in 100D feature
space. Random 15 objects are used in the testing, 10 out of those 15 objects are used in the training.

Figure 5.7: Setting 4 - 100D. Performance of the proposed strategies compared with the baseline performance in 100D feature
space. Random 10 objects are used in the testing, and the same 10 objects are used in the training.

52 5. Results and Discussion

Figure 5.8: Setting 2 - 10D. Performance of the proposed strategies compared with the baseline performance in 10D feature
space. All 126 objects are used in the testing, and random 100 out of 126 objects are used in the training.

Figure 5.9: Setting 3 - 10D. Performance of the proposed strategies compared with the baseline performance in 10D feature
space. Random 15 objects are used in the testing, 10 out of those 15 objects are used in the training.

5.2. Results 53

Figure 5.10: Setting 1 -2D. Performance of the proposed strategies compared with the baseline performance in 2D feature
space. All 126 objects are used in the training, and all objects are used in the testing.

Figure 5.11: 2D - Setting 4. Performance of the proposed strategies compared with the baseline performance in 2D feature
space. Random 10 objects are used in the testing phase, and the same 10 objects are used in the training phase.

54 5. Results and Discussion

5.3. Discussion
The discussion on the experiments from the previous section is divided into two parts. Firstly, Sub-
section 5.3.1 extracts important findings on the obtained results. Secondly, Subsection 5.3.2 presents
an offline simulation of the interactive system which learns objects (like the Tubby system). This sub-
section provides additional insights into the working mechanisms of the proposed strategies and the
overall system.

5.3.1. Discussion on the Evaluations
Table 5.1 lists the strategies which are evaluated. A discussion on the results for the testing, training
and a combination of strategies is given in this section.

Testing strategies
The proposed testing strategies have an important characteristic. In the case of a low confidence
of the prediction the system requires more views of a testing object to be shown. One might argue
that this strategy has better performance, than the baseline, just because more views are provided
to the system. Note, however, that the proposed testing strategies do not simply use more views
of any object. The views are required when that is necessary. Moreover, the target of the thesis is
the improvement of the communication and information exchange between the user and the system.
Therefore, the proposed strategies are evaluated from the performance point of view, but their benefit
is in the improved communication as well.

The observations related with the testing strategies are the following:

• Testing strategy 1 and Testing strategy 2 have approximately equal performance in all cases,
and none of them is significantly better. Since Testing strategy 1 uses only one measure for the
region determination (index (4.1)) this strategy is preferred for applications over Testing strategy
2 (which uses two measures for the region determination).

• The performance of Testing strategy 2 is lower than the performance of Testing strategy 1 when
one training sample per object is shown to the system (as clearly visible in Figure 5.7). However,
the proposed strategies are not supposed to work properly when the number of training samples
per object is one. The confidence of the prediction is 0, in this case. Therefore, we do not
consider this finding significant for the overall evaluation of Testing strategy 2. Nevertheless, the
performance of Testing strategy 2 is lower than the performance of Testing strategy 1 and the
baseline performance in two-dimensional feature space for a small number of training samples
per object (< 25) and a small number of objects in the learning process (≤ 15, Setting 3 and 4).
Figure 5.11 clearly shows this finding. Accordingly, we conclude that, overall, Testing strategy 1
performs slightly better.

• The largest absolute difference between the testing strategies’ performance and the baseline
is observed when the feature space is 10-dimensional and a lot of objects are in the learning
process (like shown in Figure 5.8). This finding can be due to the fact that a lot of information
is lost when 10 dimensions are extracted out of 1000 dimensional feature vector. Accordingly, it
is reasonable to assume that the overlap of classes in the feature space is larger in 10D than in
1000D. Additionally, the large number of objects makes the overlap even more severe. Therefore,
the baseline system makes a lot of mistakes. This means that the probability of making an error is
high in many cases. Confusing situations trigger the need for more information. In these cases,
the more shown views to the system make the largest difference in the performance. Regarding
the two-dimensional feature space and a lot of objects in the learning process, the absolute
difference of the performance of the testing strategies and the baseline is large as well, but
smaller than in the 10-dimensional feature space. However, the relative improvement achieved
by the implementation of the strategies has the largest value in 2D when a lot of objects are in
the learning process.

• A large number of objects in the learning process in general yields a larger difference between
the baseline and the testing strategies’ performance. When variations in the same feature space
are considered the conclusion is that more objects in the learning process causes the larger

5.3. Discussion 55

improvement of the baseline. However, when the feature space is two-dimensional the larger
number of objects causes just a moderate improvement in the difference between the testing
strategies and the baseline, while at higher dimensions the improvement is larger. Figures 5.8 and
5.9 are both 10-dimensional evaluations, but the number of objects is different, and the difference
in the improvement clearly shows that the larger number of objects brings larger improvement.
When the system knows only a small number of objects the baseline strategy does not make so
many errors. The number of errors increases when the number of objects is increased. Figure
5.16 illustrates what is happening in the feature space when more objects are shown to the
system. More uncertain and confusing situations are present, as more overlapping regions of
different classes are present. The testing strategies are designed to boost the performance in
these situations.

• The testing strategies improve the baseline performance more when the testing and the training
set of objects are the same, then when they are not. The baseline system cannot recognize new
objects as new, so every prediction for any object which is not in the training set is by default
wrong. The proposed strategies can predict a new object as new. However, the evaluation results
do not show that the improvement of the baseline is better when the testing and training sets
are different. Nevertheless, note that we exclude correct predictions of new objects from the
performance calculations. On the other hand, we include wrong predictions of known objects as
new objects which might be an explanation why the improvement is better in the case when the
testing and training objects are the same.

Training strategies
• Training strategy 1 and Training strategy 2 have similar performance in most of the cases. It
seems, however, that overall Training strategy 1 performs slightly better.

• The improvement of the baseline caused by the proposed training strategies is larger at higher
dimensions (≥ 100D). The difference in the improvement can be seen when Figures 5.10 and
5.5 are compared. In general, the higher the dimensionality of the operating feature space, the
higher the difference between the performance of the training strategies and the baseline.

• The number of objects which is used in the training and testing has a significant impact. It
turns out that in the highly dimensional feature space (≥ 100D) the more objects in the learning
process, the better the improvement of the baseline. Our explanation of this phenomena is
that the overlap among different classes (objects) in the feature space of the system is much
larger when there are approximately 100 objects in the learning process, than when there are
only 10 objects. The larger overlap among object leads to a higher need for the high quality
representation of objects. In the case of a small number of objects the baseline system performs
well already. In the case of a larger number of objects, the effect of the fine extraction of the
training data makes a difference in the situations which are confusing for the system. However,
this finding does not hold for the low dimensional feature space (≤ 10D). On contrary, in the
lower dimensions the improvement is lower when the number of objects is large. The most
extreme case is shown in Figure 5.10 where the performance of the training strategies is below
the baseline performance.

• The training strategies do not show a consistent dependency on whether the testing object set
contain objects which are not in the training object set. However, at higher dimensions (≥ 100D)
the training strategies in general improve the baseline more when the training and testing object
set are the same. This might be justified with the fact that relative improvement is approximately
the same. But, the baseline performance is worse for the case where the training and testing
object set are not the same. Therefore, the absolute improvement is less in this case than in
the case where the training and testing object set are the same. On the other hand, in two-
dimensional feature space it seems that the training strategies bring the larger improvement
when the testing and the training set are not the same. In the case of 10-dimensional feature
space it turns out that the equality of the testing and training set does not have an impact on the
performance improvement.

56 5. Results and Discussion

Combinations of the testing and training strategies
• All combinations of the testing and training strategies have similar performance in most of the
cases. In general all performances of the combinations are better or equal to the training or the
testing strategies’ performance. The ordering of the performances of the combinations is not
static for all cases. None of the combinations performs superior in all cases.

• The combinations with Testing strategy 2 have the performance which is lower than the baseline
when a small number of objects is in the learning process (≤ 15, Setting 3 and 4) and for a small
number of training views per object (≤ 15). This finding was established for Testing strategy 2
performance as well, for a slightly higher number of views per object (≤ 30). We conclude that
due to the Testing strategy 2 performance the combinations with this testing strategy behave the
same way. Figures 5.7 and 5.9 show this.

• The combination of Testing strategy 2 and Training strategy 2 in some cases outperforms all other
strategies, like shown in Figure 5.8. Interesting is that there are cases when for a small number of
training views per object (< 15), this combination has the performance which is under the base-
line, but for the larger number of training views (> 20) it outperforms all other combinations and
strategies (Figure 5.11). However sometimes this combination significantly underperforms all the
other combinations, including the Training strategy 2 (Figure 5.7). Variations in the performance
of this combination are large.

• The combinations of Testing strategy 1 with both of the training strategies provide the best results
on average, among all the combination performances. These combination performances differ
very little. However, the combination of Testing strategy 1 with Training strategy 1 seems to
provide the best results overall.

• In higher dimensions of the operating feature space (≥ 100D) when a lot of objects is the learning
process and in smaller dimensions of the operating feature space (≤ 10D) for any number of
objects in the learning process, the combinations’ improvement of the baseline is approximately
equal to the sum of the corresponding testing and training strategies’ improvements, as Figure 5.9
shows. For example, if the testing strategy improves the baseline for 3%, and the training strategy
for 10%, the combination of these strategies improves the baseline for 13%. In some cases the
combinations’ improvement is even larger than the sum of the corresponding improvements of the
testing and training strategy separately, which can be seen in Figure 5.8. Figure 5.10 shows the
extreme case. The combinations’ performance is better than the testing strategies’ performance
even if the performance of the training strategies is slightly under the baseline performance.
However, this is not always the case. In general, the improvement achieved by any combination
is better or equal to the improvements achieved by the corresponding testing or training strategy
separately. In high dimensions of the operating feature space (≥ 100D) when a small number of
training objects (≤ 15, Setting 3 and 4) is in the learning process the combinations’ improvement
is not equal to the sum of corresponding improvements. Figure 5.6 shows that, in this case, the
combinations do not perform better than the training strategies separately. It is worth of noting
that the testing strategies’ performance is not significantly better than the baseline in this case.

Table 5.2 summarizes the effects of the important factors on the performance of the proposed
strategies. The dimensionality column denotes how the performance varies if the dimensionality of
the feature space is increased (e. g., from 2D to 100D). The number of objects column denotes how
performance varies if the number of learning objects is increased (e. g., from 10 to 100). This column is
split into 3 cases, corresponding to two-dimensional, 10-dimensional and a highly dimensional (≥ 100D)
feature space, respectively. The equal sets column denotes how performance varies when compared
the case where the training and testing object set are the not the same, and when they are the same.

5.3. Discussion 57

Strategies Dimensionality ↑ Number of objects ↑ Equal sets 𝑛𝑜 → 𝑦𝑒𝑠
2D 10D ≥100D 2D 10D ≥100D

Testing strategies ↓ ↑∼ ↑ ↑ ↑∼ ↑ ↑
Training strategies ↑ ↓ ↓ ↑ ↓ ∼ ↑
Combinations ∼ ∼ ↑ ↑∼ ∼ ↑ ↑

Table 5.2: Summary of the effects of the important factors on the performance value. The dimensionality column denotes how
performance varies if the dimensionality of the feature space is increased. The number of objects column denotes how

performance varies if the number of learning objects is increased. The equal sets column denotes how performance varies
when compared the case where the training and testing set are the not the same, and when they are the same. Arrow turned

up ↑ means that the difference between the performance of the corresponding strategy with respect to the baseline
performance increases when the variable in the column is changed in the noted direction. Likewise, the arrow turned down ↓
symbolizes decrease in the difference of the corresponding strategy and the baseline performance. The sign ∼ means that a
dependency of the corresponding strategy on the change of the variable in the column is not visible, or the evaluations in this

work are not enough for a clear conclusion about the dependency.

Finally, we conclude that overall, the combinations of the proposed strategies perform the best. The
combinations outperform or are equal to the performance of the testing and training strategies. Testing
strategy 1 in combination with Training strategy 1 provides an optimal solution for all dimensionalities
of the feature space and any number of objects in the learning process.

5.3.2. Interactive System Simulation
The previous sections describe the conducted offline experiments and the evaluation of the proposed
methods. However, these experiments do not capture completely the interaction which exists between
the user and the Tubby platform in an online scenario. Namely, in the online scenario the testing and
training phase are switching alternately. The presented object to the system is firstly in the testing
phase, and the system predicts a label. If necessary or wanted by the user the system can switch to
a training phase. The switch is necessary if the object was never seen by the system before, or the
prediction is wrong. After the training of the presented object, another object is presented and the
order of the testing and training phase is repeated.

This section presents a simulation which captures the described online behaviour more closely. A
block diagram of the simulation of the system-user interaction during the presentation of one object
is shown in Figure 5.12. The user firstly presents an object for the recognition to the system, which is
block 1 of the diagram. The system uses the proposed testing strategy and assesses the confidence
of the prediction. If the confidence is high enough the system predicts a label, which is depicted as
block 2 of the diagram. If the prediction is correct, there is no necessity for further information (more
views). The red circle represents the end of the interaction related with that object. This means that
the presented object is already known (the system learned it before), and that the training data (views
of the object) given to the system are beneficial enough that recognition is done fast and correct. An-
other object can be shown to the system, and the interaction starts from block 1 again. The prediction
at block 2 can be wrong as well, or a new object (not known) can be predicted. This means that
either the system does not have any information about the object (not known object) or the informa-
tion (shown views) are not good enough for the correct prediction. The training phase is necessary in
both situations, and this is depicted by block 3 of the diagram. In the case that the confidence of the
prediction is low at block 1, the system requires more information (more views to be shown) which is
represented by the block 4 of the block diagram. When the confidence is high enough or the limitation
in the number of views is reached the system makes a prediction (block 5 of the block diagram). Again,
the prediction at block 5 can be correct or wrong. In case of a correct prediction it can be concluded
that the system has some small internal confusion which is the reason why more views were required,
but the confusion was resolved by the system. Note that a case of a very low confidence at block 4
and a correct prediction at block 5 is possible. According to the low confidence value the system is
still uncertain. The reason for the correct prediction can be that a specified set of views of the testing
object is shown to the system. In some other case it might happen that the prediction is wrong if
the other set of views of the same object is shown to the system. If the confidence is high enough,
the training phase is optional, captured by block 6, depending on the user. If the confidence is low,

58 5. Results and Discussion

the training phase is mandatory. On the other hand, if the prediction is wrong at block 5 this means
that there might be a significant overlap of the feature spaces of the testing object and one or more
known objects. If a new object is predicted here it means that there is some internal confusion among
known objects and the samples of the testing object. Therefore, it is beneficial to provide more train-
ing data to the system. The training phase is denoted with block 7 in the diagram. Training phases
depicted with blocks 3, 6 and 7 are terminated when the user stops presenting the object, which is sim-
ulated with a specified number of the beneficial training views which the system takes in the simulation.

Figure 5.12: Functional block diagram of the simulation of the interaction between the user and the system. An object is
presented to the system. It is firstly in the testing phase, and the confidence of the prediction is measured in block 1. If the
confidence is high enough the prediction is made by block 2. The system can predict a correct known object, a wrong object or
a new object. In the case of a wrong or a new object prediction, a training is necessary, performed by block 3. If block 1

estimates a low confidence, additional views are required by block 4. The prediction is made in block 5 when the confidence is
high enough or the limitation in views is reached. Again in the case of a wrong or a new object prediction the training is

necessary, performed by block 7. If the prediction is correct, the training done in block 6 is optional, depending on the user.

Testing strategy 1 and Training strategy 1 are implemented for the demonstration in 1000-dimensional
operating feature space (x ∈ ℝ). Objects for the interaction are selected randomly from a pool of
20 different objects chosen from the database. The pool of 20 objects is chosen randomly from the
database. We do not use all 126 objects from the database because it is more difficult to visualize and
to make conclusions for a larger set of objects.

Online graphs
Figure 5.13 shows the online graph which the system displays to the user. The alternation between
the testing (blue) and training phases (red) is captured by different colors. In the testing phase the
confidence of predictions is shown to the user, while in the training phase the beneficiality of each
training view is shown.

5.3. Discussion 59

Figure 5.13: The graph shown to the user in the interactive learning scenario. Objects are presented to the system, which
firstly performs testing, and provides the testing confidence to the user (blue) and then depending on the situation the object
triggers a training phase (red). In the training phase the beneficiality graph is shown to the user. The green box 1 highlights an
interaction during learning of one object. The green box 2 extracts a situation where two objects are in the interaction with the

system.

Box 1 highlights the interaction of the system and the user during the learning process of one
object. Figure 5.14 an example of the same information which box 1 provides. As explained already,
the system is firstly in the testing phase, which is followed by a training phase. The blue square in
Figure 5.14 represents the beginning of the testing phase and the blue circle represents the end of this
phase. Likewise, the red square and the red circle represent the beginning and the end of the training
phase, respectively.

Figure 5.14: An example of one object during testing and triggered training phase. The lue square represents the beginning of
the testing phase. The blue dot represents the end of the testing phase where a prediction is made. The testing confidence is
shown during the testing phase. The red square is the beginning of the training phase, and the red dot is the end of the

training phase. The training score is shown during the training phase.

Note this is just an example how a confidence and a training score graph might look like, and it is
not a general rule. The confidence graph during testing varies in a specific way. It has a high value
at the beginning. When only 1 or 2 views of the testing object are provided to the system (note that
in the real-time scenario they are probably similar views), the confidence is usually very high. These
testing samples usually have only one class among their neighbours, or they are in the outlier region.
However, the confidence value drops significantly after a couple of more acquired views. When addi-
tional views are acquired by the system, some significant change in the feature space covered by the
testing class happens. It might turned out that another class is a neighbour to some of the testing
samples. The confidence value then starts to grow again as even more views are acquired. Now,
the most recent samples are obtained in the direction which increases the system’s confidence. For
example, we may have two partially overlapping classes in the memory. Our testing samples are firstly
in the region of only object 1 and then in the region of object 2 or in the overlapping region, and then

60 5. Results and Discussion

again in the region of the first object. This situation would develop the confidence graph of the previ-
ously described shape. Finally, from this point on, the confidence value is mainly dropping. This can
be justified with more testing samples in the overlapping region, which are just making the decision
harder for the system.
In general, a shape of the confidence graph can be: constant value, mainly increasing, mainly de-
creasing and a value which is varying a lot. The constant value is usually associated with new objects,
where all samples of the testing object are in the outlier region. We assume that the other shapes are
associated with the partial overlap among the testing object and known objects.

The desired shape of the testing confidence graph is given in Figure 5.15. Unlike the previous
case, the confidence here is very low at the beginning, then varies a bit, and from a specific point on,
primarily increases, making the probability of the correct prediction higher. In this case the decision is
wrong with high probability if it is made at the beginning. However, if it is made after the acquisition
of the additional views, it is correct with high probability.

Figure 5.15: Confidence graph of one object during testing.

The training score graph in Figure 5.14 provides some meaningful insights, as well. The figure
shows just an example of the graph, but, in general, the score graph has a shape shown in the figure.
Firstly, it can be concluded that all the “spiky” values are the scores corresponding to the most valuable
views, of the training object, for the system. Note that some of the scores given in the training phase
in Figure 5.13 are higher than 1.0. These values correspond to the views which are of special value
for the system. This can serve as a special reward, and as a warning, as well. If extremely high value
is scored (e. g., 20), something must be either wrong or changed in the training setting. Because,
it means that the training sample which scored the high value is extremely far away from the other
training samples in the class. A reasonable assumption is that a significant change in the lightening of
the room, during the training phase, could cause this. Additionally, in Figure 5.14 can be noticed that
the score mean shifts slightly towards higher values over time. The thresholds which which are applied
are changed during time as more views are acquired.

Figure 5.13 shows that the system has longer testing phases on the right side of the graph. More
uncertain situations are present over time, as more objects are shown to the system. This finding is
illustrated in Figure 5.16, which shows a two-dimensional feature space. The image on the right shows
the memory of the system when 8 objects are shown to the system (indicated by the different colors).
There are overlapping regions, classes which are relatively close in the feature space and more than
two classes partially overlapping. The image on the left contains 2 out of 8 classes presented on the
right. There are no overlapping regions, or relatively close classes. If a testing object is shown to the
system, with only 2 objects previously seen, there is a smaller probability that the confidence of the
prediction is low than if the system learned more objects. This is the reason why longer testing phases
are visible at the right side of Figure 5.13 graph, then on the left side.

5.3. Discussion 61

Figure 5.16: 2D feature space of the memory of the system. 2 objects are shown to the system on the image on the left. 8
objects are shown to the system on the image on the right. Each class is denoted with a different symbol, and it is

corresponding to a different object shown to the system.

Figure 5.17 shows zoomed in view of the block 2 marked in green in Figure 5.13. This is the situation
where the system is not sure at the beginning what the object is, so more views are required (testing
phase 1). When more views are obtained the confidence increases and a correct prediction is made
with high probability. Therefore, it is decided depending on the user that more training data is not
necessary. The user can decide that the training is necessary in this case as well. Immediately after
the end of the testing phase 1, another object is shown to the system. The testing phase of another
object starts, followed by the training phase of that object (if needed).

Figure 5.17: The testing phase of the first object and the testing and training phase of the second object. The first object does
not need a training phase. The blue squares represent the beginning of the testing phase, whereas the blue circles represent
the end of the corresponding phase. The red squares represent the beginning of the training phase, whereas the red circles
represent the end of the phase. The testing confidence is shown during the testing phases, and the training score is shown

during the training phase.

Figure 5.18 shows howmany views per object the testing strategy requires in the interactive scenario
to reach the confidence of 0.6 for each object, in this exemplary single run of the experiment. A
minimum number of views per object is 10, and a maximum number of views is 100, even if the
confidence is under 0.6. The thresholds and limits are adapted to the current experiments. For a
new setting or data they might be set differently. Note that this is just one example, and that with
some other order of objects or other objects in the learning process the graph would look differently.
However, some general conclusions can be drawn.

62 5. Results and Discussion

Figure 5.18: An example of how many views per object in the learning process the testing strategies require to reach the
confidence level 0.6.

The testing strategy requires only a minimum number of views per object, for most of the objects.
This is especially true at the beginning of the interaction when the system knows a small number of
objects. In that specific situation, the minimum number of views is enough for the system to make a
prediction. The requirement for additional views is more frequent at the right end of the graph, when
the system learns more objects. Note as well, if the system knows a small number of objects and
requires a maximum number of views of the current testing object this usually means that there is a
significant confusion.
In the previous discussion we presented the important findings related with the online graphs and the
behaviour of the confidence measure. An analysis of the behaviour of predicted labels is provided next.
More meaningful insights into the learning process can be obtained from this analysis.

Predictions
Figure 5.19 shows an example of a change of the predicted label during the testing phase. In this
case, the object is new for the system, and the system does not know the true label of the object (82
in this case). The label 0 indicates that the system predicts an object which is not known. As it can
be seen the predicted label changes between 0 (new) and 106 (known). If the system was shown less
than 30 views of the object it would make a wrong prediction. Since the system is alternating between
a new and already known object this (most probably) means that some views of the testing object
are in the outlier region of all known classes and some testing views are in the region of the object
with label 106. Moreover, Figure 5.19 shows that the changes in the predicted label correspond to the
sharp changes in the confidence. After approximately 35 testing views the system does not change
the predicted label, and the confidence mainly increases. The object is correctly classified as new.

In general, in 1000-dimensional feature space with approximately 20 objects from the database
in the interactive learning process, the predicted label of a testing object rarely alternates between
more than two values. However, with an increase of objects in the learning process or a reduction
of dimensions the overlap of objects in the feature space is expected to increase, and therefore the
number of alternating values of a predicted label is expected to raise.

Figure 5.20 shows the case when the predicted label alternates between 4 values. When the system
knows many objects and a new object is shown, there is a high probability that the new object will
be partially overlapping in the feature space with some of the known objects. The more objects the
system knows the probability is higher. In the case shown in the Figure 5.20 the system correctly
predicts that the object is new. However, based on the change of the predicted label it is clear that the
system has some internal overlap between the object 4 and objects 82, 88 and 99.

5.3. Discussion 63

Figure 5.19: Upper graph: Change of the predicted label during the testing phase of one object. True label is 82, and the
object is new for the system. The label value 0 denotes the prediction of a new object. Lower graph: Confidence of the

prediction during the testing phase of that object.

Figure 5.20: Maximal observed change of the predicted label during the testing phase of one object. True label is 4, and the
object is new for the system. The predicted label alternates between 4 values. There are 20 objects in the learning process.

The user might benefit from getting the information about the change of the predicted label. For
example, if the objects 82, 88 and 99 (Figure 5.20) are yellow color (or have some other common
feature), but the object 4 has both yellow and a red side, in the future the user can show the red side
to the system in order to increase the chance of the fast recognition. The baseline strategy would, for
the case in Figure 5.20, predict a label 99, 88 or 82, depending on the number of the testing views
which would be shown to the system.

64 5. Results and Discussion

Figure 5.21 presents the accuracy of the predictions. Correct predictions are marked as green
circles. If a testing object is never seen, by the system, and predicted as new it is marked as a blue
square. Wrong predictions are divided into three groups. If a known object is wrongly predicted as new
it is marked with a yellow triangle. New objects which are recognized as known objects are marked as
orange stars. Finally, if a known object is simply wrongly recognized among known objects it is marked
as a red diamond.
Since the objects are taken randomly from a predefined pool of objects, it can be seen that at the
beginning new objects are shown to the system more frequently than later. It is visible that the system
recognizes mostly well new objects. However, it can be noted that the system makes mistakes in
predicting a known object as new more often at the beginning. When only a couple of objects are
shown to the system (like on the left image in Figure 5.16) there is a high probability that a small
number of testing views of a known object is in the outlier region of all classes, and therefore predicted
wrongly as a new object. On the other hand, confusions among known objects are more frequent
when more objects are shown to the system. Figure 5.16 shows an example of the system’s memory
where more critical overlapping regions are present on the right image, than at the beginning when
only a few objects are seen. When the already seen testing object is shown to the system, there is
a higher probability that the testing samples are in the regions of one or more classes. Finally, at the
beginning, it rarely happens that a new object is recognized as known object (mainly if the overlap of
the testing object and the predicted known object is total in the feature space). However, when the
system knows more objects the probability that a new object is recognized as a known object is higher.
When a lot of objects is in the memory, it can be assumed that there must be some overlap of the
testing object with some of the known objects. The more objects shown to the system, the smaller
is the possible difference between the testing object and all known objects. The testing samples are
closer to the regions of some objects than when fewer objects are shown to the system. Sometimes,
this leads to the prediction of a new object as a known object.

Figure 5.21: Success of the prediction for 46 objects shown to the system. The green circles represent correct predictions. The
blue squares represent correct predictions of new objects. The yellow triangles represent erroneous predictions that a known
object is predicted as a new object. The orange stars represent erroneous predictions that a new object is predicted as a

known object, and the red diamonds that a known object is wrongly predicted as another known object.

To sum up, this subsection provides the discussion on the simulation of the interactive object learning
system. We provided the insights into the working mechanism of the proposed testing and training
strategy and the overall learning process. Some general conclusions are drawn, and some situation
specific explanations are given. The next chapter concludes the thesis.

6
Conclusion

A collaboration between humans and machines enables the completion of complex tasks which cannot
be performed individually by a human or a machine. In order to achieve effective collaboration a good
communication is necessary. The main goal of this master thesis is the development and investigation
of new communication strategies, which enrich the flow of information between the machine, Tubby
platform, and the human, the user of the platform (Chapter 2). The crucial idea is the improvement of
the communication between the user and the system by the implementation of new testing and train-
ing strategies. New strategies aim for the improvement through self-evaluation of classifiers. Firstly, a
summary of the results obtained in the thesis is given. In Section 6.1 further research directions are
pointed out.

At the beginning of the thesis we state a general motivation (Chapter 1) and a specific problem
which is aimed to be solved (Chapter 2). We then introduce the theoretical background on the topics
related with the problem (Chapter 3). Finally, as a result of the thesis we develop two measures
of self-evaluation of classifiers (Chapter 4). The first developed measure captures the confidence of
predictions. We propose the testing strategy which uses this measure. If the probability of making
an error during the prediction is low, the confidence value is high. If the probability of making an
error during the prediction is high, the confidence value is low. The second developed measure is
a score which denotes how beneficial is the view of an object shown to the system. We propose a
training strategy which uses this measure. The beneficiality of a training sample (view of an object) is
essentially the similarity of the current training sample to the previously acquired training samples of
the same object. If the current view of an object is different than all the previously shown views of the
object the beneficiality value is high. On the contrary, if the current view is very similar to some of the
acquired views the beneficiality value is low. Two ways of derivation are provided for each measure.
Therefore, two testing and two training strategies are proposed. The aim of the testing strategies is
to focus on cases when the confidence of predictions is low. In these situations the system requires
more information (views of an object) to be shown. The aim of the training strategies is to focus on
the extraction of the most beneficial information (views of an object) from the user, with respect to
generalization performance of the classifier. All strategies use an online graph as a communication
with the user. The proposed testing strategies show the confidence as graph, whereas the proposed
training strategies show the score of beneficiality on a graph. The proposed strategies are evaluated
against a baseline performance (Chapter 5). The evaluation is done across a number of dimensions of
the feature space and for a different number of testing and training objects. The main findings are:

• The proposed strategies outperform the baseline performance, both separately the testing and
training strategies and when combined. The baseline is outperformed from 1% to 25%.

• The combinations of the proposed testing and training strategies perform better or equal to the
testing or training strategies separately. The performance of the Testing strategy 1 in combination
with the Training strategy 1 is the best, compared to all other strategies.

• Three main factors which affect the performance of the proposed strategies are extracted:

65

66 6. Conclusion

∘ Dimensionality of the operating feature space.
The proposed training strategies improve the baseline more in the high dimensional space
(≥100D). The proposed testing strategies improve the baseline more in the low dimensional
space (≤10D). The improvement of the combinations of the proposed strategies with respect
to the baseline performance does not show a visible dependency on the dimensionality.

∘ Number of objects in the learning process.
The proposed testing strategies improve the baseline more when a number of objects in the
learning process is large (≥100, Setting 1 and 2). The training strategies improvement is
dependent on the dimensionality of the feature space as well. If the dimensionality is lower
or equal to 10, the training strategies improve the baseline less when the number of objects
is increased. However, in the highly dimensional space (≥100D) the training strategies
improve the baseline more for a larger number of objects. Regarding the combinations
of the strategies, in two-dimensional feature space the improvement of the baseline does
not show a dependency on the number of objects. In higher dimensions, however, the
combinations improve the baseline more when the number of objects is higher.

∘ Whether all testing objects are in the training object set, or not.
The testing strategies improve the baseline more when the testing and training set are equal,
in all dimensions. The training strategies’ performance depends on the dimensionality of the
feature space. In two-dimensional feature space the improvement of the baseline is larger
when the object sets are different, i.e. the testing object set contains objects which are not
used for training. In 10-dimensional feature space the improvement of the training strategies
does not show a dependency on the equality of the object sets. In higher dimensions,
however, the improvement is better when the object sets are equal. The improvement of
the baseline caused by the implementation of the combinations of the proposed strategies
is in general better when the training and testing object set are the same.

• The best improvement of the baseline is achieved when the dimensionality of the feature space
is higher or equal to 10 and for a large number of objects in the learning process (≥100, Setting
1 and 2), which is the most realistic case when real applications are considered.

6.1. Future Research
The previous discussion provides directions for the future research.

The first direction is towards a practical implementation of the strategies which Chapter 4 proposes.
The proposed testing and training strategies should be deployed on Tubby platform and their effect
on the communication quality and the prediction performance should be assessed. In this regard the
following questions are important. Are the proposed methods fast enough for the real-time compu-
tation? Do the conclusions from the offline evaluation hold in the online case? Are the assumptions
about users’ behaviour during testing and training of an object correct? Is the proposed way of com-
munication with the system useful and intuitive for the user?

Another direction for the future research is an incorporation of the proposed methods to work with
more powerful classifiers. 𝑘NN is effective, yet very simple algorithm. It is expected that further im-
provement in the classification accuracy can be achieved with advanced classification algorithms.

In Chapter 2 we state that Tubby was developed with the aim to learn visual categories. Due to
complexity of the categorization task we used the simpler task of object recognition. Our focus was on
the communication improvement. Since the communication improvement basis is set, the proposed
strategies should be adapted to work with categorization task. Finally, the adapted strategies should
be investigated and deployed on Tubby.

Bibliography

[1] G. Amato and F. Falchi. knn based image classification relying on local feature similarity. In
Proceedings of the Third International Conference on SImilarity Search and APplications, SISAP
’10, pages 101–108, New York, NY, USA, 2010. ACM.

[2] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[3] A. Bookstein, V. A. Kulyukin, and T. Raita. Generalized hamming distance. Information Retrieval,
5(4):353–375, Oct 2002.

[4] L. Bottou. On-line learning in neural networks. chapter On-line Learning and Stochastic Approxi-
mations, pages 9–42. Cambridge University Press, New York, NY, USA, 1998.

[5] L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In Y. Lechevallier and
G. Saporta, editors, Proceedings of the 19th International Conference on Computational Statistics
(COMPSTAT’2010), pages 177–187, Paris, France, Aug. 2010. Springer.

[6] M. Browne, S. S. Ghidary, and N. M. Mayer. Convolutional Neural Networks for Image Processing
with Applications in Mobile Robotics, pages 327–349. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008.

[7] R. Cardenes, M. Sanchez, and J. Ruiz-Alzola. Computational geometry computation and knn
segmentation in itk. 06 2006.

[8] Deeplearning4j Development Team. Deeplearning4j: Open-source distributed deep learning for
the JVM, Apache Software Foundation License 2.0.

[9] T. Dharani and I. L. Aroquiaraj. Content based image retrieval system using feature classification
with modified KNN algorithm. CoRR, abs/1307.4717, 2013.

[10] M. Dhawan, S. Selvaraja, and Z. Duan. Application of committee knn classifiers for gene expression
profile classification. IJBRA, 6(4):344–352, 2010.

[11] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Ed). Wiley, 2001.

[12] J. Enns. The Thinking Eye, the Seeing Brain: Explorations in Visual Cognition. W.W. Norton, 2004.

[13] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, 2006.

[14] L. Fischer, S. Hasler, S. Schrom, and H. Wersing. Improving online learning of visual categories
by deep features. submitted, NIPS Workshop: Future of Interactive Learning Machines, 2016.

[15] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In G. J. Gordon
and D. B. Dunson, editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (AISTATS-11), volume 15, pages 315–323. Journal of Machine Learning
Research - Workshop and Conference Proceedings, 2011.

[16] C. Goutte and É. Gaussier. A probabilistic interpretation of precision, recall and F-score, with impli-
cation for evaluation. In D. E. Losada and J. M. Fernández-Luna, editors, Advances in Information
Retrieval, 27th European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain,
March 21-23, 2005, Proceedings, volume 3408 of Lecture Notes in Computer Science, pages 345–
359. Springer, 2005.

[17] S. Harmeling, G. Dornhege, D. Tax, F. Meinecke, and K.-R. Müller. From outliers to prototypes:
Ordering data. Neurocomputing, 69(13-15):1608–1618, Aug. 2006.

67

68 Bibliography

[18] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 1026–1034. IEEE Computer Society,
2015.

[19] L. Hertel, E. Barth, T. Käster, and T. Martinetz. Deep convolutional neural networks as generic
feature extractors. In 2015 International Joint Conference on Neural Networks, IJCNN 2015,
Killarney, Ireland, July 12-17, 2015, pages 1–4, 2015.

[20] S. C. H. Hoi, J. Wang, and P. Zhao. LIBOL: a library for online learning algorithms. Journal of
Machine Learning Research, 15(1):495–499, 2014.

[21] K. Hornik, M. B. Stinchcombe, and H. White. Multilayer feedforward networks are universal ap-
proximators. Neural Networks, 2(5):359–366, 1989.

[22] J. Huang and C. X. Ling. Constructing new and better evaluation measures for machine learning.
In M. M. Veloso, editor, IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 859–864, 2007.

[23] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex.
Journal of Physiology (London), 195:215–243, 1968.

[24] A. Jaech, L. Heck, and M. Ostendorf. Domain adaptation of recurrent neural networks for natural
language understanding. CoRR, abs/1604.00117, 2016.

[25] N. Japkowicz. Concept Learning in the Absence of Counter-Examples: An Autoassociation-Based
Approach to Classification. PhD thesis, The State University of New Jersey, 1999.

[26] A. Karpathy. Stanford University CS231n: Convolutional Neural Networks for Visual Recognition.
2015.

[27] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li. Large-scale video clas-
sification with convolutional neural networks. In 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages 1725–1732. IEEE
Computer Society, 2014.

[28] S. Kim, J. Sim, and J. Lee. Fuzzy k-nearest neighbor method for protein secondary structure
prediction and its parallel implementation. In D. Huang, K. Li, and G. W. Irwin, editors, Compu-
tational Intelligence and Bioinformatics, International Conference on Intelligent Computing, ICIC
2006, Kunming, China, August 16-19, 2006. Proceedings, Part III, volume 4115 of Lecture Notes
in Computer Science, pages 444–453. Springer, 2006.

[29] S. Kirstein, A. Denecke, S. Hasler, H. Wersing, H.-M. Gross, and E. Körner. A vision architecture for
unconstrained and incremental learning of multiple categories. Memetic Computing, 1(4):291–
304, 2009.

[30] A. Kolchinsky, A. Abi-Haidar, J. Kaur, A. A. Hamed, and L. M. Rocha. Classification of protein-protein
interaction full-text documents using text and citation network features. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 7(3):400–411, July 2010.

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[32] N. Lachiche and P. A. Flach. Improving accuracy and cost of two-class and multi-class probabilistic
classifiers using ROC curves. In T. Fawcett and N. Mishra, editors, Machine Learning, Proceedings
of the Twentieth International Conference (ICML 2003), August 21-24, 2003, Washington, DC,
USA, pages 416–423. AAAI Press, 2003.

[33] Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 5 2015.

Bibliography 69

[34] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequen-
tial learning problem. volume 24 of Psychology of Learning and Motivation, pages 109 – 165.
Academic Press, 1989.

[35] M. McLaren, Y. Lei, N. Scheffer, and L. Ferrer. Application of convolutional neural networks to
speaker recognition in noisy conditions. In H. Li, H. M. Meng, B. Ma, E. Chng, and L. Xie, ed-
itors, INTERSPEECH 2014, 15th Annual Conference of the International Speech Communication
Association, Singapore, September 14-18, 2014, pages 686–690. ISCA, 2014.

[36] M. Mermillod, A. Bugaiska, and P. Bonin. The stability-plasticity dilemma: investigating the contin-
uum from catastrophic forgetting to age-limited learning effects. Frontiers in Psychology, 4:504–
510, 2013.

[37] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[38] Y. Park, H. Hwang, and S. goo Lee. A novel algorithm for scalable k-nearest neighbour graph
construction. Journal of Information Science, 42(2):274–288, 2016.

[39] E. Patrick and F. Fischer. A generalized k-nearest neighbor rule. Information and Control, 16(2):128
– 152, 1970.

[40] R. Polikar and C. Alippi. Guest editorial learning in nonstationary and evolving environments. IEEE
Trans. Neural Netw. Learning Syst., 25(1):9–11, 2014.

[41] D. M. W. Powers. Evaluation: From precision, recall and f-measure to roc., informedness, marked-
ness & correlation. Journal of Machine Learning Technologies, 2(1):37–63, 2011.

[42] Y. Qian, M. Bi, T. Tan, and K. Yu. Very deep convolutional neural networks for noise robust speech
recognition. IEEE/ACM Trans. Audio, Speech & Language Processing, 24(12):2263–2276, 2016.

[43] J. Radojevic. Cooperative visual category learning. Technical report, Delft University of Technology,
Honda Research Institute - EU, March, 2017.

[44] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-shelf: An astounding
baseline for recognition. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Workshops 2014, Columbus, OH, USA, June 23-28, 2014, pages 512–519. IEEE Computer Society,
2014.

[45] F. M. Richardson and M. S. Thomas. Critical periods and catastrophic interference effects in the
development of self-organizing feature maps. Developmental Science, 11(3):371–389, 2008.

[46] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution. Neural Comput., 13(7):1443–1471, July 2001.

[47] M. Sokolova and G. Lapalme. A systematic analysis of performance measures for classification
tasks. Inf. Process. Manage., 45(4):427–437, 2009.

[48] P. Soucy and G. W. Mineau. Beyond tfidf weighting for text categorization in the vector space
model. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJ-
CAI’05, pages 1130–1135, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

[49] S. V. Stehman. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote
Sensing of Environment, 62(1):77–89, 1997.

[50] D. Tomè, F. Monti, L. Baroffio, L. Bondi, M. Tagliasacchi, and S. Tubaro. Deep convolutional neural
networks for pedestrian detection. Sig. Proc.: Image Comm., 47:482–489, 2016.

[51] V. N. Vapnik and A. Y. Chervonenkis. On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities. Springer International Publishing, Cham, 2015.

[52] J. Weston, O. Chapelle, and I. Guyon. Data cleaning algorithms with applications to micro-array
experiments. Technical report, Biowulf, 2001.

Appendix
Setting 1 - 1000D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.0993 0.2456 0.2439 0.0906 0.0983 0.2431 0.2433 0.2063 0.1262
5 0.3000 0.3310 0.3484 0.3668 0.3651 0.4308 0.4391 0.4217 0.3729
10 0.3463 0.3792 0.4117 0.4674 0.4583 0.5314 0.5333 0.5125 0.4967
15 0.3777 0.4304 0.4274 0.5187 0.5167 0.5815 0.5871 0.5683 0.5606
20 0.4030 0.4705 0.4619 0.5567 0.5474 0.6262 0.6300 0.6164 0.6060
30 0.4388 0.4985 0.5321 0.6089 0.6025 0.6845 0.6863 0.6683 0.6633
40 0.4671 0.5418 0.5489 0.6504 0.6370 0.7173 0.7133 0.7094 0.6973
50 0.4933 0.5690 0.5836 0.6705 0.6673 0.7437 0.7507 0.7373 0.7321
70 0.5262 0.5993 0.6008 0.7133 0.7010 0.7783 0.7779 0.7738 0.7652
80 0.5359 0.6310 0.6211 0.7256 0.7061 0.7842 0.7783 0.7919 0.7740
100 0.5642 0.6465 0.6563 0.7475 0.7289 0.8031 0.7908 0.8041 0.7829
120 0.5889 0.6783 0.6621 0.7697 0.7304 0.8222 0.8010 0.8189 0.7798
130 0.5943 0.6728 0.6921 0.7789 0.7367 0.8270 0.7971 0.8169 0.7898
150 0.6096 0.6861 0.6971 0.7801 0.7428 0.8401 0.8014 0.8328 0.7965
160 0.6222 0.6806 0.7040 0.7944 0.7550 0.8371 0.8026 0.8411 0.7966
180 0.6226 0.7024 0.7067 0.7915 0.7600 0.8472 0.7981 0.8456 0.7991
200 0.6307 0.7163 0.7133 0.8013 0.7594 0.8488 0.8092 0.8464 0.8048

Table 6.1: Classification accuracy of the proposed strategies in 1000-dimensional feature space for the case where all 126
objects are used for the testing and for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 = Test 2

Training 1. Comb 4 = Test 2 Training 2.

Figure 6.1: Classification accuracy of the proposed strategies in 1000-dimensional feature space for the case where all 126
objects are used for the testing and for the training.

71

72 Appendix

Setting 2 - 1000D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1097 0.2185 0.1876 0.0930 0.1090 0.2071 0.2050 0.1768 0.0994
5 0.2955 0.2911 0.2698 0.3454 0.3457 0.3679 0.3756 0.3527 0.3017
10 0.3267 0.3359 0.3307 0.4308 0.4243 0.4408 0.4454 0.4354 0.4115
15 0.3543 0.3636 0.3586 0.4772 0.4718 0.4811 0.4956 0.4822 0.4617
20 0.3779 0.3921 0.4006 0.5012 0.4963 0.5240 0.5211 0.5145 0.4918
30 0.4053 0.4222 0.4228 0.5397 0.5430 0.5483 0.5658 0.5595 0.5389
40 0.4346 0.4411 0.4564 0.5674 0.5708 0.5818 0.5951 0.5835 0.5621
50 0.4527 0.4612 0.4633 0.5919 0.5951 0.6074 0.6106 0.5951 0.5908
70 0.4839 0.5099 0.5068 0.6117 0.6168 0.6252 0.6352 0.6363 0.6120
80 0.4869 0.5121 0.5192 0.6271 0.6199 0.6381 0.6361 0.6395 0.6160
100 0.5138 0.5289 0.5274 0.6430 0.6318 0.6542 0.6464 0.6568 0.6234
120 0.5315 0.5471 0.5263 0.6594 0.6317 0.6619 0.6479 0.6677 0.6383
130 0.5324 0.5520 0.5360 0.6573 0.6327 0.6627 0.6510 0.6616 0.6338
150 0.5446 0.5648 0.5647 0.6633 0.6373 0.6699 0.6520 0.6748 0.6427
160 0.5479 0.5693 0.5727 0.6695 0.6412 0.6785 0.6542 0.6738 0.6423
180 0.5542 0.5839 0.5729 0.6637 0.6447 0.6747 0.6560 0.6831 0.6510
200 0.5632 0.5781 0.5855 0.6752 0.6500 0.6829 0.6605 0.6882 0.6533

Table 6.2: Classification accuracy of the proposed strategies in 1000-dimensional feature space for the case where all 126
objects are used for the testing and random 100 for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2.

Comb 3 = Test 2 Training 1. Comb 4 = Test 2 Training 2.

Figure 6.2: Classification accuracy of the proposed strategies in 1000-dimensional feature space for the case where all 126
objects are used for the testing and random 100 for the training.

Appendix 73

Setting 3 - 1000D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1256 0.3752 0.3285 0.110 0.133 0.3633 0.3833 0.1631 0.0082
5 0.4238 0.4328 0.4308 0.475 0.494 0.5200 0.5113 0.4980 0.2539
10 0.4548 0.4568 0.4631 0.541 0.533 0.5687 0.5560 0.5387 0.4291
15 0.4658 0.4843 0.4798 0.560 0.580 0.5693 0.5787 0.5718 0.4838
20 0.4858 0.4928 0.5010 0.577 0.592 0.6020 0.5873 0.5890 0.5410
30 0.5212 0.5243 0.5204 0.601 0.615 0.6020 0.6107 0.6092 0.5589
40 0.5236 0.5275 0.5304 0.605 0.632 0.6173 0.6213 0.6190 0.5965
50 0.5378 0.5452 0.5482 0.619 0.642 0.6287 0.6233 0.6231 0.5976
70 0.5588 0.5603 0.5594 0.623 0.637 0.6293 0.6320 0.6397 0.6163
80 0.5582 0.5625 0.5641 0.624 0.642 0.6373 0.6327 0.6272 0.6146
100 0.5616 0.5753 0.5745 0.646 0.649 0.6453 0.6340 0.6385 0.6239
120 0.5734 0.5808 0.5853 0.640 0.649 0.6413 0.6327 0.6427 0.6231
130 0.5806 0.5831 0.5942 0.635 0.643 0.6393 0.6367 0.6447 0.6274
150 0.5842 0.5932 0.5861 0.639 0.645 0.6473 0.6360 0.6451 0.6315
160 0.5890 0.5921 0.5923 0.632 0.650 0.6367 0.6347 0.6425 0.6232
180 0.5920 0.5916 0.5960 0.632 0.655 0.6433 0.6333 0.6451 0.6340
200 0.5942 0.5952 0.5983 0.633 0.646 0.6487 0.6340 0.6424 0.6336

Table 6.3: Classification accuracy of the proposed strategies in 1000-dimensional feature space for the case where random 15
objects are used for the testing and 10 out of those 15 for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training

2. Comb 3 = Test 2 Training 1. Comb 4 = Test 2 Training 2.

Figure 6.3: Classification accuracy of the proposed strategies in 1000-dimensional feature space for the case where random 15
objects are used for the testing and 10 out of those 15 for the training.

74 Appendix

Setting 4 - 1000D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1838 0.5580 0.4714 0.156 0.186 0.574 0.574 0.171 0.019
5 0.6374 0.6414 0.6370 0.750 0.715 0.767 0.765 0.699 0.385
10 0.6784 0.6958 0.7008 0.848 0.824 0.831 0.844 0.787 0.607
15 0.7100 0.7294 0.7298 0.874 0.855 0.875 0.861 0.828 0.719
20 0.7400 0.7552 0.7484 0.901 0.890 0.900 0.889 0.845 0.761
30 0.7702 0.7888 0.7892 0.905 0.906 0.921 0.920 0.913 0.825
40 0.7804 0.8012 0.8142 0.935 0.913 0.929 0.923 0.918 0.858
50 0.8088 0.8046 0.8224 0.938 0.920 0.920 0.951 0.934 0.859
70 0.8328 0.8350 0.8372 0.948 0.931 0.945 0.955 0.940 0.895
80 0.8410 0.8592 0.8450 0.957 0.946 0.949 0.958 0.943 0.894
100 0.8370 0.8740 0.8686 0.948 0.955 0.953 0.960 0.945 0.911
120 0.8660 0.8694 0.8792 0.950 0.945 0.962 0.952 0.951 0.906
130 0.8708 0.8810 0.8750 0.951 0.964 0.967 0.952 0.960 0.921
150 0.8760 0.8864 0.8820 0.954 0.946 0.970 0.948 0.963 0.900
160 0.8866 0.8948 0.8924 0.949 0.954 0.955 0.946 0.957 0.906
180 0.8836 0.8926 0.8972 0.962 0.954 0.971 0.944 0.956 0.907
200 0.8890 0.8962 0.9002 0.961 0.951 0.963 0.945 0.966 0.920

Table 6.4: Classification accuracy of the proposed strategies in 1000-dimensional feature space for the case where same 10
objects are used for the testing and training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 = Test 2

Training 1. Comb 4 = Test 2 Training 2.

Figure 6.4: Classification accuracy of the proposed strategies in 1000-dimensional feature space for the case where same 10
objects are used for the testing and training.

Appendix 75

Setting 1 - 100D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.0854 0.2162 0.2136 0.0798 0.0922 0.2125 0.2093 0.1826 0.1138
5 0.2477 0.3028 0.3175 0.3290 0.3150 0.4021 0.3983 0.3814 0.3399
10 0.2949 0.3603 0.3606 0.4102 0.4027 0.4784 0.4924 0.4898 0.4629
15 0.3244 0.4005 0.4125 0.4570 0.4509 0.5392 0.5394 0.5421 0.5281
20 0.3488 0.4398 0.4441 0.4944 0.4915 0.5836 0.5865 0.5830 0.5670
30 0.3819 0.4734 0.4833 0.5474 0.5449 0.6340 0.6436 0.6371 0.6331
40 0.4130 0.5199 0.5140 0.5790 0.5729 0.6733 0.6827 0.6749 0.6702
50 0.4377 0.5466 0.5391 0.6122 0.5984 0.7035 0.7175 0.7000 0.6998
70 0.4579 0.5769 0.5763 0.6525 0.6429 0.7429 0.7421 0.7423 0.7324
80 0.4838 0.6062 0.5870 0.6679 0.6553 0.7484 0.7488 0.7467 0.7477
100 0.5022 0.6293 0.6252 0.6929 0.6737 0.7693 0.7646 0.7711 0.7574
120 0.5230 0.6483 0.6425 0.7129 0.6955 0.7872 0.7721 0.7884 0.7691
130 0.5203 0.6470 0.6397 0.7202 0.6957 0.7916 0.7682 0.7933 0.7698
150 0.5392 0.6583 0.6688 0.7369 0.7020 0.8057 0.7720 0.7994 0.7776
160 0.5559 0.6824 0.6883 0.7410 0.7052 0.8046 0.7806 0.8071 0.7764
180 0.5537 0.6860 0.6816 0.7433 0.7151 0.8189 0.7750 0.8129 0.7849
200 0.5702 0.7021 0.6960 0.7556 0.7212 0.8163 0.7910 0.8179 0.7810

Table 6.5: Classification accuracy of the proposed strategies in 100-dimensional feature space for the case where all 126
objects are used for the testing and for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 = Test 2

Training 1. Comb 4 = Test 2 Training 2.

Figure 6.5: Classification accuracy of the proposed strategies in 100-dimensional feature space for the case where all 126
objects are used for the testing and for the training.

76 Appendix

Setting 2 - 100D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1071 0.1809 0.1917 0.0894 0.0992 0.1787 0.1819 0.1580 0.0974
5 0.2642 0.2587 0.2610 0.3028 0.3031 0.3351 0.3334 0.3250 0.2939
10 0.3079 0.2988 0.3048 0.3889 0.3835 0.4042 0.4059 0.4036 0.3810
15 0.3312 0.3486 0.3469 0.4266 0.4227 0.4541 0.4522 0.4420 0.4353
20 0.3553 0.3628 0.3713 0.4564 0.4483 0.4800 0.4919 0.4805 0.4702
30 0.3838 0.4160 0.3882 0.4941 0.4906 0.5217 0.5325 0.5254 0.5186
40 0.4093 0.4232 0.4257 0.5260 0.5201 0.5529 0.5581 0.5436 0.5490
50 0.4242 0.4421 0.4509 0.5443 0.5387 0.5650 0.5805 0.5715 0.5722
70 0.4523 0.4785 0.4685 0.5770 0.5650 0.6028 0.6035 0.5996 0.5957
80 0.4689 0.4907 0.4966 0.5905 0.5713 0.6106 0.6129 0.6054 0.6054
100 0.4876 0.5152 0.5059 0.6049 0.5868 0.6213 0.6240 0.6191 0.6184
120 0.4994 0.5123 0.5144 0.6181 0.5916 0.6360 0.6263 0.6325 0.6287
130 0.5045 0.5294 0.5183 0.6207 0.5989 0.6410 0.6271 0.6316 0.6291
150 0.5152 0.5464 0.5410 0.6226 0.6055 0.6501 0.6291 0.6444 0.6315
160 0.5219 0.5335 0.5579 0.6274 0.6070 0.6547 0.6283 0.6457 0.6342
180 0.5309 0.5467 0.5483 0.6353 0.6089 0.6534 0.6355 0.6537 0.6439
200 0.5452 0.5556 0.5583 0.6438 0.6145 0.6617 0.6408 0.6628 0.6408

Table 6.6: Classification accuracy of the proposed strategies in 100-dimensional feature space for the case where all 126
objects are used for the testing and random 100 for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2.

Comb 3 = Test 2 Training 1. Comb 4 = Test 2 Training 2.

Figure 6.6: Classification accuracy of the proposed strategies in 100-dimensional feature space for the case where all 126
objects are used for the testing and random 100 for the training.

Appendix 77

Setting 3 - 100D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1210 0.3561 0.3096 0.100 0.128 0.3473 0.3487 0.1201 0.0159
5 0.3946 0.4043 0.4051 0.452 0.458 0.4887 0.4920 0.4410 0.2722
10 0.4292 0.4361 0.4369 0.526 0.541 0.5260 0.5373 0.5045 0.4405
15 0.4396 0.4573 0.4562 0.563 0.555 0.5567 0.5613 0.5288 0.4822
20 0.4590 0.4719 0.4766 0.555 0.565 0.5747 0.5827 0.5657 0.5249
30 0.4838 0.4952 0.5012 0.596 0.586 0.6047 0.5953 0.5794 0.5769
40 0.5014 0.5092 0.5124 0.606 0.594 0.6153 0.6193 0.5968 0.5853
50 0.5116 0.5271 0.5248 0.616 0.616 0.6180 0.6173 0.5986 0.5982
70 0.5358 0.5467 0.5450 0.610 0.602 0.6293 0.6200 0.6126 0.6040
80 0.5372 0.5507 0.5488 0.618 0.614 0.6260 0.6267 0.6203 0.6100
100 0.5464 0.5548 0.5634 0.620 0.617 0.6307 0.6287 0.6197 0.6056
120 0.5556 0.5641 0.5712 0.626 0.615 0.6380 0.6167 0.6360 0.6177
130 0.5630 0.5732 0.5697 0.620 0.615 0.6267 0.6273 0.6270 0.6188
150 0.5644 0.5759 0.5767 0.621 0.612 0.6313 0.6227 0.6384 0.6178
160 0.5692 0.5791 0.5759 0.620 0.610 0.6393 0.6173 0.6295 0.6111
180 0.5700 0.5772 0.5888 0.630 0.608 0.6387 0.6213 0.6326 0.6209
200 0.5832 0.5859 0.5827 0.639 0.622 0.6353 0.6280 0.6305 0.6228

Table 6.7: Classification accuracy of the proposed strategies in 100-dimensional feature space for the case where random 15
objects are used for the testing and 10 out of those 15 for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training

2. Comb 3 = Test 2 Training 1. Comb 4 = Test 2 Training 2.

Figure 6.7: Classification accuracy of the proposed strategies in 100-dimensional feature space for the case where random 15
objects are used for the testing and 10 out of those 15 for the training.

78 Appendix

Setting 4 - 100D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1808 0.5284 0.4294 0.155 0.180 0.511 0.533 0.139 0.025
5 0.5890 0.6160 0.6064 0.688 0.708 0.735 0.748 0.636 0.412
10 0.6508 0.6510 0.6622 0.794 0.768 0.764 0.817 0.766 0.640
15 0.6760 0.6972 0.6942 0.805 0.820 0.813 0.857 0.784 0.730
20 0.6968 0.7132 0.7160 0.840 0.851 0.865 0.863 0.821 0.779
30 0.7304 0.7532 0.7532 0.884 0.879 0.890 0.885 0.873 0.842
40 0.7442 0.7736 0.7754 0.891 0.897 0.889 0.941 0.908 0.853
50 0.7690 0.7884 0.7842 0.901 0.904 0.905 0.928 0.897 0.879
70 0.8020 0.8216 0.8196 0.910 0.918 0.935 0.928 0.920 0.881
80 0.8050 0.8212 0.8300 0.937 0.916 0.921 0.928 0.924 0.897
100 0.8190 0.8578 0.8488 0.940 0.908 0.935 0.924 0.922 0.900
120 0.8380 0.8662 0.8552 0.938 0.933 0.947 0.935 0.937 0.902
130 0.8360 0.8536 0.8550 0.920 0.922 0.933 0.930 0.945 0.895
150 0.8464 0.8612 0.8646 0.943 0.930 0.946 0.935 0.933 0.919
160 0.8510 0.8712 0.8642 0.948 0.931 0.943 0.932 0.949 0.919
180 0.8594 0.8736 0.8770 0.948 0.916 0.944 0.936 0.946 0.905
200 0.8640 0.8806 0.8866 0.944 0.923 0.946 0.929 0.943 0.928

Table 6.8: Classification accuracy of the proposed strategies in 100-dimensional feature space for the case where same 10
objects are used for the testing and training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 = Test 2

Training 1. Comb 4 = Test 2 Training 2.

Figure 6.8: Classification accuracy of the proposed strategies in 100-dimensional feature space for the case where same 10
objects are used for the testing and training.

Appendix 79

Setting 1 - 10D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.0457 0.0817 0.0776 0.0433 0.0456 0.0808 0.0817 0.0616 0.0412
5 0.0965 0.1387 0.1352 0.1052 0.1065 0.1607 0.1686 0.1528 0.1508
10 0.1134 0.1657 0.1640 0.1313 0.1287 0.2197 0.2217 0.2129 0.2290
15 0.1239 0.1895 0.1889 0.1436 0.1378 0.2642 0.2646 0.2573 0.2756
20 0.1294 0.2075 0.2029 0.1557 0.1417 0.2946 0.2995 0.2908 0.3080
30 0.1413 0.2434 0.2468 0.1603 0.1472 0.3450 0.3365 0.3402 0.3592
40 0.1513 0.2679 0.2804 0.1713 0.1558 0.3778 0.3780 0.3647 0.4017
50 0.1608 0.2957 0.2990 0.1717 0.1629 0.4079 0.3938 0.3895 0.4338
70 0.1714 0.3488 0.3421 0.1780 0.1717 0.4473 0.4504 0.4310 0.4725
80 0.1768 0.3504 0.3510 0.1898 0.1769 0.4587 0.4586 0.4550 0.4842
100 0.1899 0.3648 0.3753 0.1939 0.1873 0.4706 0.4897 0.4767 0.5133
120 0.1887 0.3943 0.3917 0.2087 0.2003 0.5003 0.5036 0.5009 0.5319
130 0.1923 0.4120 0.3872 0.2140 0.1994 0.5029 0.5006 0.5013 0.5387
150 0.1968 0.4163 0.4155 0.2182 0.2139 0.5185 0.5233 0.5190 0.5485
160 0.1972 0.4202 0.4150 0.2371 0.2192 0.5272 0.5283 0.5244 0.5539
180 0.2013 0.4398 0.4320 0.2373 0.2213 0.5425 0.5345 0.5325 0.5655
200 0.2023 0.4444 0.4350 0.2429 0.2283 0.5467 0.5400 0.5454 0.5798

Table 6.9: Classification accuracy of the proposed strategies in 10-dimensional feature space for the case where all 126 objects
are used for the testing and for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 = Test 2

Training 1. Comb 4 = Test 2 Training 2.

Figure 6.9: Classification accuracy of the proposed strategies in 10-dimensional feature space for the case where all 126
objects are used for the testing and for the training.

80 Appendix

Setting 2 - 10D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.0525 0.0742 0.0574 0.0461 0.0537 0.0763 0.0725 0.0553 0.0392
5 0.0977 0.1096 0.1135 0.1138 0.1071 0.1452 0.1344 0.1393 0.1393
10 0.1137 0.1416 0.1395 0.1414 0.1322 0.1846 0.1851 0.1939 0.1976
15 0.1229 0.1673 0.1530 0.1553 0.1438 0.2223 0.2108 0.2182 0.2384
20 0.1309 0.1822 0.1825 0.1570 0.1517 0.2498 0.2444 0.2510 0.2616
30 0.1432 0.2059 0.2048 0.1688 0.1574 0.2888 0.2782 0.2910 0.3079
40 0.1505 0.2360 0.2267 0.1747 0.1686 0.3028 0.3065 0.3087 0.3295
50 0.1563 0.2644 0.2483 0.1766 0.1734 0.3281 0.3323 0.3301 0.3587
70 0.1721 0.2783 0.2847 0.1889 0.1846 0.3563 0.3598 0.3615 0.3870
80 0.1729 0.2926 0.2901 0.1950 0.1809 0.3667 0.3752 0.3685 0.4022
100 0.1793 0.3053 0.3026 0.2036 0.1938 0.3746 0.3867 0.3867 0.4147
120 0.1882 0.3337 0.3142 0.2070 0.2007 0.3906 0.4020 0.4043 0.4289
130 0.1862 0.3452 0.3402 0.2064 0.2112 0.4074 0.4132 0.4147 0.4413
150 0.1941 0.3490 0.3439 0.2213 0.2120 0.4140 0.4173 0.4232 0.4447
160 0.1976 0.3433 0.3565 0.2306 0.2232 0.4124 0.4217 0.4291 0.4442
180 0.2006 0.3613 0.3620 0.2288 0.2282 0.4210 0.4255 0.4385 0.4552
200 0.2015 0.3686 0.3730 0.2398 0.2378 0.4306 0.4409 0.4387 0.4642

Table 6.10: Classification accuracy of the proposed strategies in 10-dimensional feature space for the case where all 126
objects are used for the testing and random 100 for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2.

Comb 3 = Test 2 Training 1. Comb 4 = Test 2 Training 2.

Figure 6.10: Classification accuracy of the proposed strategies in 10-dimensional feature space for the case where all 126
objects are used for the testing and random 100 for the training.

Appendix 81

Setting 3 - 10D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1124 0.2260 0.1226 0.0960 0.1050 0.2267 0.2167 0.0269 0.0173
5 0.2598 0.2775 0.2593 0.2932 0.2980 0.3133 0.3093 0.2664 0.1468
10 0.2858 0.2963 0.2796 0.3438 0.3396 0.3480 0.3427 0.3378 0.2950
15 0.3004 0.3155 0.3080 0.3582 0.3684 0.3780 0.3747 0.3755 0.3347
20 0.3152 0.3280 0.3299 0.3772 0.3704 0.3900 0.3940 0.3996 0.3716
30 0.3244 0.3483 0.3480 0.3946 0.3862 0.4233 0.4167 0.4310 0.4043
40 0.3422 0.3608 0.3607 0.4026 0.4020 0.4293 0.4240 0.4207 0.4193
50 0.3340 0.3760 0.3711 0.4202 0.4152 0.4353 0.4327 0.4360 0.4367
70 0.3658 0.3880 0.3857 0.4248 0.4160 0.4560 0.4487 0.4433 0.4432
80 0.3726 0.3989 0.4005 0.4194 0.4216 0.4473 0.4567 0.4513 0.4430
100 0.3720 0.3989 0.4087 0.4340 0.4326 0.4600 0.4533 0.4593 0.4525
120 0.3848 0.4112 0.4169 0.4302 0.4388 0.4593 0.4680 0.4700 0.4697
130 0.3904 0.4167 0.4148 0.4442 0.4376 0.4633 0.4580 0.4653 0.4727
150 0.4008 0.4231 0.4166 0.4490 0.4352 0.4807 0.4693 0.4727 0.4860
160 0.4028 0.4264 0.4251 0.4510 0.4450 0.4627 0.4720 0.4693 0.4982
180 0.3956 0.4281 0.4355 0.4502 0.4448 0.4740 0.4633 0.4780 0.5035
200 0.4144 0.4403 0.4409 0.4566 0.4540 0.4713 0.4680 0.4720 0.4894

Table 6.11: Classification accuracy of the proposed strategies in 10-dimensional feature space for the case where random 15
objects are used for the testing and 10 out of those 15 for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training

2. Comb 3 = Test 2 Training 1. Comb 4 = Test 2 Training 2.

Figure 6.11: Classification accuracy of the proposed strategies in 10-dimensional feature space for the case where random 15
objects are used for the testing and 10 out of those 15 for the training.

82 Appendix

Setting 4 - 10D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1614 0.3318 0.1828 0.1440 0.1576 0.341 0.330 0.027 0.025
5 0.3888 0.3974 0.3806 0.4562 0.4478 0.500 0.461 0.310 0.187
10 0.4254 0.4386 0.4214 0.5108 0.5146 0.522 0.523 0.448 0.380
15 0.4464 0.4580 0.4616 0.5502 0.5382 0.553 0.560 0.532 0.482
20 0.4702 0.4852 0.5006 0.5796 0.5640 0.594 0.618 0.550 0.548
30 0.4942 0.5182 0.5224 0.5980 0.5926 0.626 0.637 0.624 0.626
40 0.5112 0.5374 0.5356 0.6052 0.6090 0.617 0.642 0.656 0.632
50 0.5230 0.5544 0.5474 0.6386 0.6236 0.671 0.654 0.656 0.646
70 0.5368 0.5810 0.5794 0.6364 0.6398 0.687 0.676 0.673 0.662
80 0.5494 0.5798 0.5936 0.6428 0.6526 0.667 0.685 0.663 0.666
100 0.5838 0.6132 0.6000 0.6544 0.6618 0.658 0.697 0.670 0.698
120 0.5866 0.6152 0.6144 0.6558 0.6692 0.701 0.720 0.716 0.711
130 0.6020 0.6468 0.6216 0.6806 0.6644 0.672 0.728 0.709 0.730
150 0.6004 0.6356 0.6284 0.6818 0.6714 0.697 0.714 0.707 0.701
160 0.6116 0.6386 0.6302 0.6844 0.6754 0.712 0.718 0.700 0.712
180 0.6096 0.6444 0.6414 0.6924 0.6806 0.725 0.729 0.707 0.708
200 0.6128 0.6454 0.6518 0.7042 0.6994 0.713 0.724 0.715 0.734

Table 6.12: Classification accuracy of the proposed strategies in 10-dimensional feature space for the case where same 10
objects are used for the testing and training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 = Test 2

Training 1. Comb 4 = Test 2 Training 2.

Figure 6.12: Classification accuracy of the proposed strategies in 10-dimensional feature space for the case where same 10
objects are used for the testing and training.

Appendix 83

Setting 1 - 2D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.0214 0.0227 0.0173 0.0180 0.0186 0.0233 0.0210 0.0082 0.0050
5 0.0253 0.0307 0.0257 0.0218 0.0206 0.0393 0.0384 0.0316 0.0275
10 0.0272 0.0390 0.0312 0.0232 0.0237 0.0478 0.0460 0.0448 0.0418
15 0.0280 0.0416 0.0371 0.0248 0.0252 0.0564 0.0529 0.0493 0.0499
20 0.0283 0.0452 0.0426 0.0271 0.0243 0.0584 0.0556 0.0561 0.0495
30 0.0275 0.0452 0.0471 0.0248 0.0240 0.0624 0.0607 0.0608 0.0614
40 0.0294 0.0537 0.0487 0.0240 0.0240 0.0640 0.0671 0.0629 0.0649
50 0.0304 0.0521 0.0533 0.0258 0.0266 0.0680 0.0649 0.0674 0.0650
70 0.0309 0.0565 0.0552 0.0284 0.0270 0.0753 0.0712 0.0702 0.0675
80 0.0302 0.0593 0.0576 0.0303 0.0256 0.0718 0.0694 0.0699 0.0698
100 0.0298 0.0610 0.0584 0.0256 0.0265 0.0688 0.0716 0.0688 0.0707
120 0.0301 0.0639 0.0634 0.0268 0.0269 0.0726 0.0762 0.0752 0.0755
130 0.0312 0.0581 0.0649 0.0277 0.0240 0.0758 0.0743 0.0764 0.0716
150 0.0317 0.0651 0.0625 0.0283 0.0265 0.0710 0.0733 0.0745 0.0740
160 0.0318 0.0683 0.0657 0.0272 0.0237 0.0743 0.0760 0.0750 0.0791
180 0.0315 0.0626 0.0617 0.0279 0.0260 0.0784 0.0765 0.0743 0.0748
200 0.0317 0.0652 0.0701 0.0270 0.0248 0.0736 0.0743 0.0769 0.0743

Table 6.13: Classification accuracy of the proposed strategies in 2-dimensional feature space for the case where all 126 objects
are used for the testing and for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 = Test 2

Training 1. Comb 4 = Test 2 Training 2.

Figure 6.13: Classification accuracy of the proposed strategies in 2-dimensional feature space for the case where all 126
objects are used for the testing and for the training.

84 Appendix

Setting 2 - 2D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.0147 0.0223 0.0125 0.0206 0.0198 0.0219 0.0207 0.0094 0.0059
5 0.0154 0.0304 0.0242 0.0255 0.0282 0.0370 0.0360 0.0303 0.0296
10 0.0156 0.0359 0.0316 0.0296 0.0288 0.0478 0.0460 0.0412 0.0421
15 0.0170 0.0355 0.0356 0.0300 0.0303 0.0526 0.0507 0.0463 0.0485
20 0.0165 0.0417 0.0363 0.0301 0.0272 0.0538 0.0545 0.0521 0.0514
30 0.0168 0.0456 0.0443 0.0311 0.0278 0.0610 0.0586 0.0593 0.0570
40 0.0163 0.0475 0.0462 0.0308 0.0296 0.0625 0.0602 0.0619 0.0612
50 0.0169 0.0521 0.0495 0.0265 0.0295 0.0663 0.0663 0.0639 0.0631
70 0.0184 0.0530 0.0492 0.0323 0.0285 0.0667 0.0706 0.0662 0.0634
80 0.0164 0.0555 0.0529 0.0308 0.0298 0.0671 0.0668 0.0695 0.0627
100 0.0166 0.0603 0.0558 0.0293 0.0308 0.0729 0.0724 0.0699 0.0681
120 0.0165 0.0589 0.0575 0.0350 0.0273 0.0710 0.0687 0.0710 0.0703
130 0.0165 0.0590 0.0561 0.0318 0.0296 0.0759 0.0738 0.0738 0.0686
150 0.0174 0.0665 0.0619 0.0316 0.0287 0.0671 0.0690 0.0701 0.0676
160 0.0168 0.0632 0.0586 0.0315 0.0313 0.0727 0.0723 0.0729 0.0712
180 0.0169 0.0614 0.0574 0.0313 0.0300 0.0720 0.0755 0.0759 0.0737
200 0.0169 0.0635 0.0619 0.0337 0.0306 0.0737 0.0763 0.0705 0.0728

Table 6.14: Classification accuracy of the proposed strategies in 2-dimensional feature space for the case where all 126 objects
are used for the testing and random 100 for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 =

Test 2 Training 1. Comb 4 = Test 2 Training 2.

Figure 6.14: Classification accuracy of the proposed strategies in 2-dimensional feature space for the case where all 126
objects are used for the testing and random 100 for the training.

Appendix 85

Setting 3 - 2D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.0916 0.1191 0.0483 0.0960 0.0896 0.1213 0.1160 0.0354 0.0298
5 0.1324 0.1348 0.0788 0.2932 0.1406 0.1360 0.1380 0.0854 0.0902
10 0.1336 0.1469 0.1042 0.3438 0.1558 0.1573 0.1440 0.1269 0.1315
15 0.1378 0.1501 0.1290 0.3582 0.1562 0.1580 0.1607 0.1598 0.1522
20 0.1464 0.1501 0.1389 0.3772 0.1590 0.1493 0.1713 0.1567 0.1755
30 0.1492 0.1640 0.1657 0.3946 0.1732 0.1500 0.1707 0.1681 0.1769
40 0.1488 0.1625 0.1628 0.4026 0.1658 0.1720 0.1800 0.1855 0.2013
50 0.1526 0.1647 0.1684 0.4202 0.1690 0.1873 0.1900 0.2000 0.2020
70 0.1582 0.1764 0.1712 0.4248 0.1746 0.1840 0.1880 0.1854 0.2100
80 0.1578 0.1763 0.1793 0.4194 0.1714 0.1920 0.1867 0.2021 0.2073
100 0.1662 0.1731 0.1764 0.4340 0.1724 0.1960 0.1840 0.2034 0.2100
120 0.1544 0.1843 0.1847 0.4302 0.1718 0.1967 0.1853 0.2073 0.2200
130 0.1576 0.1895 0.1872 0.4442 0.1728 0.1833 0.1907 0.2050 0.2047
150 0.1722 0.1917 0.1879 0.4490 0.1790 0.1787 0.1940 0.1933 0.1980
160 0.1706 0.1816 0.1848 0.4510 0.1820 0.1940 0.1840 0.1894 0.2053
180 0.1632 0.1923 0.1903 0.4502 0.1796 0.1807 0.1873 0.2040 0.2047
200 0.1656 0.1969 0.1879 0.4566 0.1734 0.1767 0.1960 0.1773 0.2007

Table 6.15: Classification accuracy of the proposed strategies in 2-dimensional feature space for the case where random 15
objects are used for the testing and 10 out of those 15 for the training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training

2. Comb 3 = Test 2 Training 1. Comb 4 = Test 2 Training 2.

Figure 6.15: Classification accuracy of the proposed strategies in 2-dimensional feature space for the case where random 15
objects are used for the testing and 10 out of those 15 for the training.

86 Appendix

Setting 4 - 2D

Nb Baseline Test 1 Test 2 Training 1 Training 2 Comb 1 Comb 2 Comb 3 Comb 4

1 0.1338 0.1792 0.0722 0.1254 0.1352 0.181 0.189 0.047 0.045
5 0.1980 0.2086 0.1236 0.2174 0.2158 0.241 0.210 0.128 0.134
10 0.1968 0.2202 0.1684 0.2280 0.2260 0.254 0.253 0.178 0.192
15 0.2140 0.2238 0.1856 0.2418 0.2376 0.260 0.269 0.197 0.245
20 0.2166 0.2302 0.2028 0.2408 0.2448 0.239 0.261 0.237 0.265
30 0.2244 0.2520 0.2312 0.2564 0.2526 0.267 0.266 0.258 0.248
40 0.2216 0.2446 0.2480 0.2540 0.2482 0.280 0.272 0.256 0.296
50 0.2252 0.2516 0.2598 0.2518 0.2560 0.258 0.273 0.254 0.300
70 0.2244 0.2614 0.2628 0.2480 0.2600 0.279 0.289 0.256 0.291
80 0.2410 0.2692 0.2694 0.2594 0.2548 0.287 0.298 0.252 0.294
100 0.2316 0.2790 0.2712 0.2672 0.2666 0.271 0.294 0.298 0.297
120 0.2444 0.2878 0.2776 0.2624 0.2630 0.296 0.283 0.291 0.310
130 0.2414 0.2872 0.2760 0.2718 0.2528 0.274 0.292 0.284 0.294
150 0.2484 0.2780 0.2824 0.2680 0.2600 0.285 0.287 0.293 0.301
160 0.2460 0.2924 0.2802 0.2710 0.2658 0.286 0.307 0.283 0.312
180 0.2490 0.2830 0.2908 0.2768 0.2686 0.290 0.294 0.279 0.328
200 0.2426 0.2862 0.2910 0.2678 0.2690 0.264 0.269 0.274 0.323

Table 6.16: Classification accuracy of the proposed strategies in 2-dimensional feature space for the case where same 10
objects are used for the testing and training. Comb 1 = Test 1 Training 1. Comb 2 = Test 1 Training 2. Comb 3 = Test 2

Training 1. Comb 4 = Test 2 Training 2.

Figure 6.16: Classification accuracy of the proposed strategies in 2-dimensional feature space for the case where same 10
objects are used for the testing and training.

Glossary

𝑘NN k-Nearest Neighbors. 18–20, 48, 49, 66

AUC Area Under the Receiver Operating Characteristic curve. 25

CL Convolutional Layer. 16–18

CNN Convolutional Neural Network. 15–18

DNN Deep Neural Network. 13, 15, 18

HRI-EU Honda Research Institute Europe. 3, 45

ML Machine Learning. 1, 10, 19

NN Neural Network. 10–13, 15, 17

ROC Receiver Operating Characteristic. 24–26

87

List of Figures

2.1 Tubby: The presented object is rotated in front of the stereo camera. 3
2.2 Functional block diagram of the Tubby system. 4
2.3 Block 1 performs image processing. 4
2.4 Functional block diagram of the Tubby system with marked improvements. 6

3.1 Neuron with connections. 11
3.2 Neural network with one hidden layer. 12
3.3 Example of Deep Neural Network architecture. 13
3.4 Example of Convolutional Neural Network. 15
3.5 Representation how a single filter in convolutional layer works. 16
3.6 Representation how a single filter in MAX-pooling layer works. 17
3.7 Schematic diagram of a convolutional neural network. 18
3.8 Outlier of the blue class (marked in red). 20
3.9 Distinction of the dense and sparse region based on 𝛾 value. 21
3.10 Distinction of the sparse and outlier region based on 𝛿 value. 21
3.11 2D data regions . 22
3.12 A distribution of positive and negative examples and a threshold. 23
3.13 Receiver Operating Characteristic Example . 24

4.1 Possible relations of two classes in the two-dimensional feature space. 28
4.2 Online confidence graph during the testing phase. 29
4.3 Possible positions of a testing instance in the feature space of two classes. 29
4.4 Possible positions of the testing class in the feature space. 31
4.5 Possible positions of the test class feature vectors in the feature space. 31
4.6 Flowchart of the testing strategies. 34
4.7 Three very similar views of the yellow duck. 36
4.8 Three different views of the yellow duck. 36
4.9 The feature space of similar and different views of one object. 37
4.10 Online score during training. 37
4.11 Possible positions of a new training view in the feature space. 38
4.12 Flowchart of the training strategies. 41

5.1 20 consecutive views of the object yellow duck. 45
5.2 One view of every object of the 126 objects in the database used for the experiment. . 46
5.3 Training-testing data split. 47
5.4 Baseline performance averaged across 100 runs for 2D, 10D, 100D, and 1000D. 49
5.5 Setting 1 - 1000D. Testing and training strategies in 1000D feature space. 50
5.6 Setting 3 - 100D. Testing and training strategies in 100D feature space. 51
5.7 Setting 4 - 100D. Testing and training strategies in 100D feature space. 51
5.8 Setting 2 - 10D. Testing and training strategies in 10D feature space. 52
5.9 Setting 3 - 10D. Testing and training strategies in 10D feature space. 52
5.10 Setting 1 - 2D. Testing and training strategies in 2D feature space. 53
5.11 2D - Setting 4. Testing and training strategies in 2D feature space. 53
5.12 Functional block diagram of the simulation of the interaction. 58
5.13 The graph shown to the user in the interactive learning scenario. 59
5.14 An example of one object during testing and training phase. 59
5.15 Confidence graph of one object during testing. 60
5.16 2D feature space of the memory of the system. 61

89

90 List of Figures

5.17 The testing phase of the first object object and the testing and training phase of the
second object. 61

5.18 How many views per object the testing strategies require. 62
5.19 Change of the predicted label and confidence of the prediction. 63
5.20 Maximal observed change of the predicted label during the testing phase object. 63
5.21 The accuracy of the prediction for 46 objects shown to the system. 64

6.1 Setting 1 - 1000D. Classification accuracy of the proposed strategies. 71
6.2 Setting 2 - 1000D. Classification accuracy of the proposed strategies. 72
6.3 Setting 3 - 1000D. Classification accuracy of the proposed strategies. 73
6.4 Setting 4 - 1000D. Classification accuracy of the proposed strategies. 74
6.5 Setting 1 - 100D. Classification accuracy of the proposed strategies. 75
6.6 Setting 2 - 100D. Classification accuracy of the proposed strategies. 76
6.7 Setting 3 - 100D. Classification accuracy of the proposed strategies. 77
6.8 Setting 4 - 100D. Classification accuracy of the proposed strategies. 78
6.9 Setting 1 - 10D. Classification accuracy of the proposed strategies. 79
6.10 Setting 2 - 10D. Classification accuracy of the proposed strategies. 80
6.11 Setting 3 - 10D. Classification accuracy of the proposed strategies. 81
6.12 Setting 4 - 10D. Classification accuracy of the proposed strategies. 82
6.13 Setting 1 - 2D. Classification accuracy of the proposed strategies. 83
6.14 Setting 2 - 2D. Classification accuracy of the proposed strategies. 84
6.15 Setting 3 - 2D. Classification accuracy of the proposed strategies. 85
6.16 Setting 4 - 2D. Classification accuracy of the proposed strategies. 86

List of Tables

3.1 Confusion matrix for binary classification. 23
3.2 Confusion Matrix Example. 23
3.3 Measures for assessing the quality of classification. 24
3.4 Simple measures for assessing the quality of binary classification. 25
3.5 Simple measures for assessing the quality of multi-class classification. 26

5.1 Experimental settings. 50
5.2 Summary of the important effects. 57

6.1 Setting 1 - 1000D. Classification accuracy of the proposed strategies. 71
6.2 Setting 2 - 1000D. Classification accuracy of the proposed strategies. 72
6.3 Setting 3 - 1000D. Classification accuracy of the proposed strategies. 73
6.4 Setting 4 - 1000D. Classification accuracy of the proposed strategies. 74
6.5 Setting 1 - 100D. Classification accuracy of the proposed strategies. 75
6.6 Setting 2 - 100D. Classification accuracy of the proposed strategies. 76
6.7 Setting 3 - 100D. Classification accuracy of the proposed strategies. 77
6.8 Setting 4 - 100D. Classification accuracy of the proposed strategies. 78
6.9 Setting 1 - 10D. Classification accuracy of the proposed strategies. 79
6.10 Setting 2 - 10D. Classification accuracy of the proposed strategies. 80
6.11 Setting 3 - 10D. Classification accuracy of the proposed strategies. 81
6.12 Setting 4 - 10D. Classification accuracy of the proposed strategies. 82
6.13 Setting 1 - 2D. Classification accuracy of the proposed strategies. 83
6.14 Setting 2 - 2D. Classification accuracy of the proposed strategies. 84
6.15 Setting 3 - 2D. Classification accuracy of the proposed strategies. 85
6.16 Setting 4 - 2D. Classification accuracy of the proposed strategies. 86

91

List of Algorithms

1 Determine region of the feature space (1): dense, sparse or outlier. 33
2 Determine region of the feature space (2): dense, sparse or outlier. 34
3 Compute confidence 𝑐 . 35
4 Testing strategy . 36
5 Compute score 1 . 40
6 Compute score 2 . 42
7 Initialization . 42
8 Update thresholds 𝑡 , 𝑡 and 𝑡 (1) . 43
9 Update thresholds 𝑡 , 𝑡 and 𝑡 (2) . 43
10 Training strategy . 43

93

	Introduction
	System Architecture
	Description of the Architecture
	Discussion on Important Aspects
	Research/Technical Target

	Fundamentals
	Classification
	Online Learning

	Neural Networks for Vision
	Neural Networks
	Deep Neural Networks
	Convolutional Neural Networks

	k Nearest Neighbour
	Outlier Detection
	Indices for Ordering

	Assessment of Classifiers
	Confusion Matrix
	 Receiver Operating Characteristic
	Simple Metrics

	Proposed Methods
	Self-evaluation
	Testing
	Testing Strategy 1
	Testing Strategy 2

	Training
	Training Strategy 1
	Training Strategy 2

	Results and Discussion
	Experiments Description
	Results
	Baseline Performance
	Resulting Performance

	Discussion
	Discussion on the Evaluations
	Interactive System Simulation

	Conclusion
	Future Research

	Bibliography
	Appendix
	List of Figures
	List of Tables

