Java/JINI/C/Fortran based HSVD/HLSVD custom plugins for the jMRUI
software system: Development, installation and usage

R. de Beer and D. van Ormondt
Applied Physics, TU Delft, NL
E-mail: r.debeer@tudelft.nl

2015-04-08 14:08

Index Terms

Java/INI/C/Fortran Makefile project, Eclipse ADT bundle, jJMRUI software system, HSVD- and HLSVD-based custom plugin

I. INTRODUCTION

We have developed two Java/JNI/C/Fortran based [1] custom plugins for the JMRUI software system, aiming at applying
the HSVD and the HLSVD [3]] algorithm. They are to be used for performing SVD-based quantification of jMRUI signal
files with the mrui file extension. The plugins were developed for the Windows and Linux operating system, using the Eclipse
Java IDE of the Eclipse ADT bundle [4].

The work was done in the context of providing additional research tools for the jJMRUI software system. The goal of the
plugins is to give insight into the SVD-based quantifications, particularly concerning the choice of the value of the hyper-
parameter Number of Components (ncom in the plugin GUI). ﬂ To that end the plugins write many standard outputs of
intermediate results to the corresponding plugin log files. Also, we have put effort into making the maximum value of Number
of Components as large as possible (depending on the size of the Hankel data matrix, concerned, of course).

This manuscript concerns a description of developing, installing and running the HSVD and HLSVD custom plugin on the
Windows/Linux platform.

GUI HSVD Plugin

Read Signal

comment [stringl string2 string3 string4 work_dir [tom/hil)svd
ndp ndphsvd |2048 ::';STI?; 1023 ncom LT 102430 nback 0 integers
min (PPM) [-12.53125 [fmax (PPM) 19.53125 |double2 double3 doubled double5
| Quit || Run HSVD |
1D mode -test_ newT2s_lor 10 background_0008 _gauss 5 noise 0.1.mrui () [B5|
File View Options
[}
o
3
2 750
£
E s
250
0
T T T T T T T T T &
7 5 s 4 3 2 1 0 1 2
Points in FID: 2048 Sampling Int. (ms): 0.2 Bandwidth (Hz): 5000

Figure 1: GUI of the HSVD plugin. Also shown is the FFT of the jJMRUI mrui signal file, that was chosen to be quantified
by the HSVD algorithm. Note the input limits for Number of Rows and Number of Components. These limits are shown, after
changing the GUI text field AND indicating that the text entry is complete by pressing the computer Enter.

'A component in H(L)SVD is a mono-exponentially damped sinusoid with a complex-valued amplitude.

II. PLUGIN DEVELOPMENT
A. Integrated Development Environment (IDE)

The plugins were developed by applying the same kind of Java/JNI/C/Fortran Makefile approach, as we have used recently
for the JMRUI MonteCarlo custom plugin, the latter being created for performing Monte Carlo studies of simulated in vivo
MRS signals [5]. This means, that we have worked with two Java/JNI/C/Fortran Makefile projects within the Eclipse Java IDE
of the Eclipse ADT bundle [4]. As a result, the GUI structure of the HSVD and HLSVD plugin is equal and also similar to
the GUI structure of the MonteCarlo plugin (see, as example, Figure [I] for the HSVD GUI).

B. Details of applied computer codes

1) SVD of the Hankel data matrix: In the plugins, the HSVD or HLSVD algorithm is carried out by Fortran code. The
main difference between the two codes is the SVD handling of Hankel data matrix. For HSVD [2] this is realized by using
the Lapack subroutine zgesvd. £ [6] and for HLSVD by using our (home-written) code lanczos.f [3].

After having carried out the SVD of the Hankel data matrix, the calculation of the component parameters (amplitude,
frequency, damping constant and phase) is the same for both plugins. This part of the calculation again is based on using
Lapack subroutines.

2) Monitoring the plugin-progress with automatic Gnuplot updates: In the HSVD and HLSVD algorithm the computational
time for a large part is determined by the SVD of the Hankel data matrix. Since in our Fortran computer code the 2D Hankel

matrix is allocated with size (nrow,ncol), where nrow < “g—p and ncol = ndp — nrow + 1 , it means that the SVD can
become a computational burden when nrow = “g—p — 1 and ndp > 2048. In that case it is convenient to perform real-time

monitoring in order to track the progress of the Fortran code. To that end we have created a progress bar based upon calling
the Gnuplot graphing utility [7] from our Fortran code. The essential part of the code is shown in Figure 2] .

Fortran based Gnuplot code Fortran based Gnuplot code
! create gnuplot command file ! create gnuplot command file
OPEN (10, ACCESS=’ SEQUENTIAL’ ,FILE='gp_bar.txt’) OPEN (10, ACCESS=' SEQUENTIAL’ ,FILE='gp_bar.txt’)
write (10, *x) ’'set size 1,1’ write (10, %) ’'set size 1,1’
write (10,*) ’set terminal wxt size 50,600 position 800,0" write (10, %) ’set terminal X11 size 60 position 800’
write (10,*) ’set title "Progress\nafter\nstart\nFortran"’ write (10,*) ’set title "Progress\nafter\nstart\nFortran"’
write (10, x) ‘unset key’ write (10, *) ‘unset key’
write (10, x) ’‘unset xtics’ write (10, *) ’‘unset xtics’
write (10, x) ’‘unset ytics’ write (10, *) ’‘unset ytics’
write (10, x) ’set border linewidth 5.0’ write (10, %) ’set border linewidth 1.5’
write (10, *) ’‘set xrange [0.999:1.001]” write (10, *) ’set xrange [0.999:1.001]"
write (10, x) ’‘set yrange [0.0:100.0]" write (10,*) ’set yrange [0.0:100.0]"
write (10, *x) ’‘plot "hsvd_bar_data.txt" using 1:2 with & write (10, *) ’'plot "hsvd _bar_data.txt" using 1:2 with &
lines linecolor rgb "blue" linewidth 5.0’ lines linecolor rgb "blue" linewidth 20.0’
write (10, x) ’‘pause 0.2’ write (10, *) ’‘pause 0.2’
write (10, x) ’reread’ write (10, x) ’reread’
CLOSE (10, STATUS='KEEP’) CLOSE (10, STATUS='KEEP’)

! plot curve with gnuplot plot curve with gnuplot
ret=SYSTEM (' START /B C:\"Program Files"\gnuplot\bin\& ret=SYSTEM (' gnuplot gp_bar.txt &’)
gnuplot gp_bar.txt’)

Java based GUI code Java based GUI code
private void quitActionPerformed (java.awt.event. private void quitActionPerformed (java.awt.event.
ActionEvent evt) { ActionEvent evt) {
try { try {
Process p = Runtime.getRuntime () .exec ("TASKKILL Process p = Runtime.getRuntime ().exec("killall
/E /IM gnuplot.exe"); gnuplot_x11");
} }
catch (Exception e) {} catch (Exception e) {}
dispose () ; dispose () ;
} }
For Windows For Linux

Figure 2: Fortran based Gnuplot code (upper part) for monitoring the plugin-progress (HSVD example) and Java based GUI
code (lower part) for killing the corresponding operating system process. Note the pause and reread command in the
Gnuplot code, creating an infinite loop. Note also, that the Gnuplot process is running in the background.

When looking at Figure 2] (HSVD example), we like to make the following remarks:
o The Gnuplot code for plotting the progress bar is written from Fortran to the disk file gp_bar.txt.
« The data-points for the Gnuplot plotting curve are supposed to be present in the disk file hsvd_bar_data.txt (also written
from Fortran, at various moments during the progress of the HSVD algorithm; the latter is not shown in Figure [2|).

2 nrow is the number of rows and ncol the number of columns of the 2D Hankel data matrix and ndp is the number of complex-valued data-points of

the MRS signal, concerned.

o After each pause of 0.2 s, the data-points of hsvd_bar_data.txt are plotted again (due to the reread command), thus
realizing an infinite Gnuplot loop.

o To prevent blocking of the Fortran code, the Gnuplot process is set to run in the background.

o This background Gnuplot process is killed via Java code, when clicking the Quit GUI button (see again Figure [I]).

3) Monitoring HSVD vs HLSVD: In the case of HSVD all singular values of the Hankel data matrix are calculated, this
in contrast to the case of HLSVD, where only the signal-related singular values are to be calculated (invoking the Lanczos
algorithm; this is where the reduction in the SVD computational time comes from [2] [3l]).

The Lapack subroutine zgesvd.f [6] offers, as far as we know, no possibility to track the calculation of the singular
values. That is to say, in the Fortran code we can only track the begin and end of the call to this library subroutine. In the
case of HLSVD, however, we are using our own home-written lanczos.f code, which has given us the possibility to track
the number of singular values, determined.

The Lanczos algorithm is suited for this tracking purpose, since the singular values are determined in an iterative way. In
fact, in the Fortran code the progress percentage is determined, each time when reaching one of some specified values of
the number of Lanczos iterations, from calculating 100.0 x nsvdfound / nsvd®*ed where nsvd®¥ed ig the number of singular
values, originally asked for (via setting ncom in the plugin GUI) and nsvd®""d is the number of singular values, actually
found by Lanczos (for that specified number of iterations).

III. PLUGIN INSTALLATION
A. Steps to be taken

Installing the plugins (HSVD example ﬂ) amounts to performing the following steps:

1) Copy the HSVDPIlugin_windows.jar and HSVDPlugin_linux.jar JAR files into the jMRUI plugins directory. Depending
on the local operating system, rename one of the two JARs to HSVDPlugin.jar.

2) Copy the libhsvd.dll, callfortran_hsvd.dll, liblapack.dll and libblas.dlI files (our own shared-library dII’s for Windows), the
the libgcc_s_dw2-1.dll, libgfortran-3.dIl and libquadmath-0.dll files (extra MinGW dII’s for Windows) and the libhsvd.so
file (our own shared-library for Linux) into the jMRUI [ib directory.

3) Copy ALL HSVD plugin related input files (see below) into a desired jJMRUI working directory (chosen via the jMRUI
Setup window). Set via the Setup window also the other directories to this same directory.

B. Input disk files
The input disk files, that should be present in the plugin working directory, are:

1) At least one jJMRUI yourname.mrui mrui signal file, that should contain the values for the number of data-points (ndp),
the time-domain sampling step and the Larmor frequency in its file header.

2) A gui_info.txt text file with (a sort of default) GUI input values.

3) A fftcheck fil text file, containing possible ndp values (at present only up to 1024), allowed by the mixed-radix FFT
used in the Lanczos algorithm.

IV. PLUGIN USAGE
A. Steps to be taken

Running the plugins (HSVD example; similar for HLSVD) amounts to:

1) Launch the plugin GUI via the jMRUI Desktop Custom menu.

2) Click the Read Signal GUI button and load the mrui signal file, to be quantified by HSVD and minimize its Graphical
Window.

3) The GUI input text fields now have contents (obtained by reading the gui_info.txt text file), which represent the text-field
values, used in the previous plugin session.

4) If the user wants to use these text-field inputs, the Run HSVD GUI button can be clicked. After that the HSVD algorithm
is carried out, the results are written to a number of output disk files (see below) and the current values of the text-field
inputs are written to gui_info.txt.

3 For HLSVD, change in the enumerate items hsvd into hlsvd and HSVD into HLSVD.

5)

6)

7)

8)

Before clicking the Run HSVD GUI button, the user can decide to change one or more input fields, of course. Note,
that then the computer Enter should be pressed to indicate, that the text entries, concerned, are complete (see again the
caption of Figure [I]).

The text entry nback indicates the number of data-points that is reconstructed backwards (using the parameters of the
HSVD components, found; usually set at 0, so nothing happens).

The text entries fmin and fmax indicate a minimum and maximum frequency (in PPM), that can be used to perform
HSVD-based filtering. More concretely, if the signal sampling step is 0.2 ms, its Larmor frequency 128.0 MHz (3T
measurement), fmin = 1.5 PPM and fmax = 4.5 PPM, then the original signal is filtered (using the parameters of the
HSVD components, found) from -19.531 to 1.5 PPM and from 4.5 to +19.531 PPM E] That is to say, the original signal
is supposed to be unchanged from fmin to fmax.

Close the plugin by clicking the Quit GUI button.

B. Output disk files

The following output disk files (HSVD example; similar for HLSVD) are written to the plugin working directory:

1y

A callfortran_hsvd_xxxx.log text file, containing the standard-output messages from the Fortran part of the plugin.

2) A gp_bar.txt, hsvd_bar_data.txt and hsvd_sinvals_data.txt text file for monitoring the HSVD Fortran progress and plotting
the HSVD determined singular values (by launching the Gnuplot program from the Fortran code).

3) A number of *.mrui files, called hsvd_<name>_xxxx.mrui, where <name> is recon, residu, signal and signal_filtered
and sinvals, respectively and xxxx a comment (GUI entry; see Figure [1|). These files are to be viewed via the jJMRUI
system.

4) A sinvals.ps file for viewing a plot of the singular values (using a suited viewer of the operating system, concerned).

5) A track.sv text file, showing the number of singular values, found after multiples-of-ten Lanczos iterations (HLSVD
only).

ndp: 2048 t;é;i:_-for check = 0.000
step (in ms) = 0.20 start iteration no. 1
larmor (in MHz) = 128.00 start iteration no. 2
..... start iteration no. 3
ndphsvd = 2048 start iteration no. 4
nrow = 1023 start iteration no. 5
ncom = 30

nback = 0 start iteration no. 750
fmin (PPM) = 0.1750000000000000D+01

fmax (PPM) = 0.4200000000000000D+01

Begin sinvals from zgesvd

Begin sinvals from lanczos

1 0.4021E+03 2 0.2584E+03 3 0.1740E+03 4 0.1011E+03 1 0.4021E+03 2 0.2584E+03 & 0.1740E+03 4 0.1011E+03
) 0.7836E+02 6 0.6494E+02 7 0.5937E+02 8 0.4283E+02 5 0.7836E+02 6 0.6494E+02 7 0.5937E+02 8 0.4283E+02
9 0.3588E+02 10 0.2604E+02 11 0.2349E+02 12 0.2065E+02 9 0.3588E+02 10 0.2604E+02 11 0.2349E+02 12 0.2065E+02
13 0.1904E+02 14 0.1823E+02 15 0.1543E+02 16 0.1342E+02 13 0.1904E+02 14 0.1823E+02 15 0.1543E+02 16 0.1342E+02
17 0.1247E+02 18 0.1225E+02 19 0.1128E+02 20 0.1062E+02 17 0.1247E+02 18 0.1225E+02 19 0.1128E+02 20 0.1062E+02
21 0.1050E+02 22 0.1008E+02 23 0.1004E+02 24 0.9905E+01 21 0.1050E+02 22 0.1008E+02 23 0.1004E+02 24 0.9905E+01
25 0.9876E+01 26 0.9839E+01 27 0.9762E+01 28 0.9697E+01 25 0.9876E+01 26 0.9839E+01 27 0.9762E+01 28 0.9697E+01
End sinvals from zgesvd End sinvals from lanczos
per_svd (via equation) = 96.000 %
per_ev (via equation) = 98.000 %
t_zgesvd - t_start = 18.753 seconds
t_zgeev - t_start = 18.765 seconds
t_zgelss - t_start = 18.773 seconds
t_finish - t_start = 18.781 seconds
per_svd = 99.851 %
per_ev = 99.915 %
per_lss = 99.957 %
ampl freq damp phas ampl freq damp phas
a.u. PPM Hz degr. a.u. PPM Hz degr.
1 0.013107236574 -18.304828825209 -7.287346475236 66.678133111564 1 0.013107234017 -18.304828813786 —7.287284798349 66.678219039122
2 0.012581926403 -9.258746069188 -81.139753376164 —8.662208358294 2 0.012582385547 -9.258745041919 -81.140605529245 -8.662350196589
3 0.015192366205 -8.807986791830 -31.600597665361 -49.749149648437 3 0.015192332293 -8.807986580506 —-31.600910650277 -49.749222395950
4 5.101255946228 1.665762879489-440.485307964390 -18.511306741197 4 5.101260284436 1.665762971539-440.485580013273 -18.511297247770
5 3.336722986105 2.005830943632 -20.672222708768 9.559904043880 5 3.336722945887 2.005830943293 -20.672222526334 9.559905388472

From HSVD log From HLSVD log

Figure 3: Log file (manually edited) as produced by the HSVD plugin. For comparison, the corresponding log file from the
HLSVD plugin is also shown.

4 The FFT bandwidth is

1000.0
(step X Larmor)

PPM.

V. RESULTS AND DISCUSSION
A. HSVD of a simulated 3T in vivo MRS signal

In this subsection we present the HSVD plugin results for a simulated 3T in vivo MRS signal. This signal was calculated
with our in-house in vivo PRESS simulation program [8] [9], based on the GAMMA C++ library [10]]. In the calculations of
the metabolite database signals, used for constructing the simulated signal, the effects of the transverse relaxation time (T5)
as well as details of the PRESS in vivo MRS measurement protocol were taken into account [11].

In Figure |3| some standard outputs from the plugin Fortran code are presented, as obtained by editing the HSVD log
file, concerned. For comparison, also the edited log file from the corresponding HLSVD plugin session is shown (see again
subsection for the names of the log files).

When looking at Figure [3] we like to make the following remarks:
1) The Hankel data matrix had size (1023,1026), being the largest size possible for ndphsvd = 2048.

2) For this size of the Hankel data matrix, the computational time of the HSVD Fortran code is completely dominated by
the SVD of Lapack subroutine zgesvd. f (as indicated by per_svd = 99.851 % in the log file).

3) The corresponding (same GUI input) HLSVD plugin session required 750 Lanczos iterations to find the number of
singular values, asked (ncom = 30).

4) The values of the singular values and the component parameters are the same (to a certain precision) for HSVD and
HLSVD (as should be expected).

Figure [4| displays two plots of the logarithm of the (1023) singular values, as produced via jJMRUT’s plotting facility and via
the Fortran launched Gnuplot. Since the graphics system of jJMRUI enables interactive zooming, this can be used to establish
(estimate) the number of signal-related singular values. In the present case, Figure [] (a) suggests a value slightly larger than 20
(for the SNR of the signal, concerned; sd_noise = 0.1). If this is true, our GUI input choice of ncom = 30 has been somewhat
too large (for the iterative Lanczos algorithm to gain sufficient computational time [3]).

HSVD sinvals

B |

o 200 400 600 800 1000 1200
(a) (b)

Figure 4: Plot of the logarithm of the singular values (of the Hankel data matrix), as determined by the Lapack subroutine
zgesvd. f. (a) The first 100 singular values, displayed with a jJMRUI session. (b) All 1023 singular values, displayed with
Fortran launched Gnuplot. Note, that the jMRUI produced plot can be zoomed interactively, which makes it easier to estimate
the number of signal-related singular values.

A way to judge the results of the HSVD quantitation is to compare the spectrum of its components-based reconstruction
with that of the signal. This is done in Figure [5]. It can be seen, that with 30 HSVD-found components the residue between
the signal and the reconstruction is surprisingly noisy. Nevertheless, this noisy residue needs NOT to mean, that individual
HSVD components, that can be attributed to belong to one of the metabolites, used to create the simulated signal, have the
correct metabolite parameter values. This is, because many different Hankel-matrix based singular-value-decompositions are
possible (for instance, when changing the size of the Hankel matrix), that all may yield similar noisy residues.

B. Computational times of HLSVD vs HSVD

As already mentioned in section [[I-B3|, the reduction in the computational time of HLSVD originates from the fact, that
HLSVD is supposed to determine only components, belonging to the signal-related singular values, whereas HSVD determines

1D mode - hsvd_recon xoo.mrui hsvd residu xoo.mrui hsvd_signal sooocmrui ()
File View Options Signals

hsvd_recon_xoooc.mrui |4
hsvd_residu_coo.mrui |
hsvd_signal oot mrui

200
230
200
150
100
50

Amplitude (-

-50
-100

T £1

2 1
Frequency (ppm)

T
-1

m]
]
s
w
o

Ref.: OED
Bandwidth (Hz): 5000

Points in FID: 2048

Sampling Int. (ms): 0.2

Figure 5: Plot of the spectrum of the HSVD reconstruction (lower), the signal (upper) and the difference between the two
(middle). The number of HSVD components ncom = 30.

the components, belonging to all singular values of the Hankel matrix. In other words, the computational time of HLSVD
(strongly) increases as a function of the number of components, asked. This important aspect is viewed in Figure [6] (for the
same MRS signal, as used in the previous subsection). It can be seen from it, that for this example the HLSVD computational
time increases to as much as 70 % of that of HSVD for 45 components.

HLSVD times
80

70 f
60 [
50 f-
40 f

30
20
10

Relative time {%)

10

Number of HLSVD components

Figure 6: Computational times of HLSVD (in %, relative to the computational times of HSVD) as a function of the number
of HLSVD components. The MRS signal, used, was the same as displayed in Figure |§| .

Table [I] shows the numerical values of the HLSVD computational times, as used for producing Figure [6], as well as the
corresponding number of Lanczos iterations, required for finding the asked number of HLSVD components. The table indicates,
that there is a direct relation between the HLSVD computational times and the number of Lanczos iterations.

Number of HLSVD components
10] 157 20] 25 30] 35 45
Computational times (%) 2 3 4 12 16 25 73
Number of Lanczos iterations 100 | 110 | 270 | 620 | 750 | 900 | 1440

Table I: Computational times of HLSVD (in %, relative to the computational times of HSVD) and number of Lanczos iterations

as a function of the number of HLSVD components.

C. H(L)SVD and the low-rank problem

In Linear Algebra the rank of a matrix is a measure of its non-degenerateness . Being based on Hankel data matrices of
the MRS signal data-points, the H(L)SVD algorithm also have to deal with this rank concept. When testing the two plugins,
we have found that low-rank problems may arise, if one wants to determine (many) more H(L)SVD components, than being
related to the signal singular values. It appears, that this low-rank problem especially can become dominant in cases of signals
with a very low noise level (if noise is clearly present, the Hankel data matrices usually have full rank).

1D mode - hsvd_sinvals_noise_0.000.mrui hsvd_sinvals_noise_0.001.mrui hsvd si... o° @ [

File View Options Signals

hsvd sinvals noise 0.000.mrui
hsvd_sinvals_noise_0.001.mrui
hsvd sinvals noise_ 0.01.mrui
hsvd_sinvals_noise 0.1.mrui

.
_
-

300 400
Time (points)

Points in Echo: 2048 Sampling Int. (ms): 0.2 Bandwidth (Hz): 5000

Figure 7: The (logarithm of the) first 500 singular values of the case study of subsection as a function of the standard
deviation of the added noise (increases from bottom to top).

To illustrate the issue of signal-related singular values, we have plotted in Figure [7] the first 500 singular values of the
Hankel data matrix (again based on the HSVD case study of subsection [V-A]) as a function of the standard deviation of
the added noise (sd_noise = 0, 0.001, 0.01 and 0.1 from bottom to top). It shows, that with increasing size of the noise
the signal-related singular values can be less clearly separated from the noise-related singular values. As a consequence, the
number of signal-related HSVD components, that can be determined, decreases.

We were able to demonstrate a low-rank problem in this case study by choosing ncom = 120 in the HSVD of the noiseless
signal (sd_noise = 0). It appeared, that the rank of the Vandermonde matrix (derived from the Hankel data matrix), being used
in the Lapack subroutine zgelss. f to calculate the parameters of the HSVD components, was only as small as 1, whereas
it should be equal to ncom to arrive at a proper HSVD solution.

In the case of HLSVD the low-rank problem may already manifest itself in an earlier stage of the calculation, namely in
the Lanczos algorithm. If one chooses a too large value of ncom, this may result into requiring many Lanczos iterations (see
again Table [)).

D. Backwards reconstruction

If the input field nback is set in the H(L)SVD plugin GUI (see again Figure[I]) to a value unequal to zero, the backwards
reconstruction functionality is being applied. In this subsection we view an example of this plugin possibility (see Figure [§]).

In order to arrive at this result, we have taken the following steps:

1) The noiseless version of the signal of subsection was truncated with the jJMRUI system by removing the first 10
data-points (ndp decreased from 2048 to 2038).

2) This truncated signal was quantified by the HSVD plugin, using a (1018,1021) Hankel data matrix and ncom = 30.

3) The signal was reconstructed, using the parameters of the 30 HSVD components and with additionally extrapolating the
reconstructed signal backwards over 10 data-points. This yields again ndp = 2048.

4) In the jMRUI-produced Figure [§] the timed domains of the original signal and the reconstructed signal are plotted one
over the other, thus giving the opportunity (after zooming) to compare the time domains at the beginning.

1D mode - hsvd recon try 2038.mrui hsvd signal try 2038.mrui test n... g° @ [
File View Options Signals

J
K

o
"
W
=
>
=
=3
E
=L

30 40
Time {points)

Points in FID: 2048 Sampling Int. {(ms): 0.2 Bandwidth (Hz): 5000

Figure 8: Backwards reconstruction over a time-domain region of 10 points, using the parameters of an HSVD quantification
of the noiseless version of the signal of subsection [V-A] . Note the deviation between the true signal and the HSVD-based
reconstructed signal at the beginning of the plot (starting at about data-point number 23; see text).

The backwards-reconstruction functionality of the H(L)SVD plugin is in fact extrapolation. We like to remark, that numerical
methods of extrapolation can lead to erroneous estimations [[13]. It has to be handled with care. For this reason we have used
the noiseless version of the test signal. With noise, we think it is dangerous to extrapolate, especially over a large time range
as 10 data-points (a few data-points may be acceptable for a good SNR).

Although we have truncated (and then reconstructed) the first 10 data-points, it is clear from Figure [§], that the true and
reconstructed signal already start deviating at around data-point 23. We think, that this is partly due to the fact, that we have
used a value of ncom = 30. When looking at the bottom plot of Figure[7], it can be seen that for the noiseless signal a higher
value of the number components should be more appropriate (but be careful with the low-rank problem).

E. Using the H(L)SVD plugin as a filter

In Figure [9] we demonstrate the filter functionality of the H(L)SVD plugin. By choosing in the plugin GUI the input values
fmin = 2.14 PPM and fmax = 3.8 PPM, the signal if filtered in the regions from -19.531 to 2.14 PPM and from 3.8 to +19.531
PPM. It should be emphasized, that the region 2.14 to 3.8 PPM is supposed to be unchanged (but be careful for the effects of
the H(L)SVD quantification of broad overlapping background signals).

1D mode - hsvd signal 2.14 3.8.mrui hsvd signal filtered 2.14 3.8.mrui 0

File View Options Signals

b
K

T
e
@
o
S
=
=1
E
I

T T T T —
] 250 z . 1
Freguency (ppm)

Ref.. OEQ
Points in FID: 2048 Sampling Int. {ms): 0.2 Bandwidth (Hz): 5000

Figure 9: Plot of the filtered signal (top) and the original signal (bottom; signal of Figure). The GUI filter input values were

set at

fmin = 2.14 PPM and fmax = 3.8 PPM.

VI. CONCLUSIONS

Summarizing, we like to make the following remarks/conclusions:

1y

2)
3)

4)

5)

6)

7)

We have developed HSVD/HLSVD-based plugins for the (TRANSACT supported) JMRUI software system, that should
be used as research tools in the field of the in vivo MRS.

The plugins were developed for the Windows and Linux operating system, using the Eclipse Java IDE.

We have put effort into making the maximum value of the number of H(L)SVD components as large as possible, given
the size of the Hankel data matrix.

The progress of the H(L)SVD algorithm is monitored by a Fortran-code produced system call to the Gnuplot graphing
utility.

Choosing an appropriate value for the number of H(L)SVD components can be facilitated by interactive plots of the
singular values. In case of HLSVD this choice for the number of components also strongly affects the computational
time of the algorithm.

In case of H(L)SVD of MRS signals with a very low level of the noise (especially simulated noiseless signals), one must
be aware of the low-rank problem.

The plugins offer the functionality of extrapolating a reconstructed H(L)SVD signal backwards (at the beginning of
the signal). This must be handled with care. Also, the functionality of H(L)SVD-based filtering of the MRS signals is
provided.

ACKNOWLEDGEMENT

This work was done in the context of FP7 - PEOPLE Marie Curie Initial Training Network Project PITN-GA-2012-316679-
TRANSACT [14].

[1]
[2]

[4]
[5]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

REFERENCES

WikipediA, the free encyclopedia, “Java Native Interface,”

http://en.wikipedia.org/wiki/Java_Native_Interface, 2014, JNI is a programming framework that allows Java code to call native applications. |I|

H. Barkhuijsen, R. de Beer and D. van Ormondt, “Improved Algorithm for Noniterative Time-Domain Model Fitting to Exponentially Damped Magnetic
Resonance Signals,” J. Magn. Res., vol. 73, pp. 553-557, 1987, Introduction of HSVD to magnetic resonance time domain signals. |I| IZL E|

R. de Beer, D. van Ormondt and W.W.F. Pijnappel, “Quantification of 1-D and 2-D magnetic resonance time domain signals,” Pure and Appl. Chem.,
vol. 64, pp. 815-823, 1992, Introduction of (the Lanczos based) HLSVD to magnetic resonance time domain signals. [T} 21 B B
developer.android.com, “Get the Android SDK,”

hitp://developer.android.com/sdk/index.html, 2014, . [T} 2]

R. de Beer and D.van Ormondt, “Monte Carlo Modeling for in vivo MRS: Generating and quantifying simulations via the Windows, Linux and Android
platform,” 2015, Report on behalf of the EU-funded TRANSACT project. |Z|

LAPACK: Linear Algebra PACKage, “zgesvd.f,”

http://www.netlib.org/lapack/explore-html/d6/d42/zgesvd_8f_source.html, 2015, ZGESVD computes the singular value decomposition (SVD) for GE
matrices. 2 [3]

Gnuplot, “gnuplot homepage,”

http://www.gnuplot.info/, 2015, Gnuplot is a portable command-line driven graphing utility for Linux, OS/2, MS Windows, OSX, VMS, and many other
platforms.

R. de Beer,lzll). van Ormondt, J.W. van der Veen and D. Graveron-Demilly, “Creating the GammaPress custom plug-in for the j/MRUI platform. Simulating
metabolite basis sets for in vivo Magnetic Resonance Spectroscopy,” in Proceedings ICT.OPEN 2011. Veldhoven, The Netherlands: NWO/STW, 14-15
November 2011, pp. 16 - 20. [f]

J.W. van der Veen, D. van Ormondt and R. de Beer, “Simulating Metabolite Basis Sets for in vivo MRS Quantification. Incorporating details of the
PRESS Pulse Sequence by means of the GAMMA C++ library,” in Proceedings ICT.OPEN 2012. WTC Rotterdam, The Netherlands: NWO/STW,
22-23 Qctober 2012, pp. 1-6.]

S.A. Smith, T.O. Levante, B.H. Meier, R.R. Ernst, “Computer Simulations in Magnetic Resonance. An Object-Oriented Programming Approach,” J.
Magn. Reson. Series A, vol. 106, pp. 75 — 105, 1994. |§]

J.W. van der Veen, J. Shen, D. van Ormondt and R. de Beer, “Quantifying In vivo 1H MRS in the human brain at 3T with simulated metabolite
basis sets. Including details of the in vivo PRESS measurement protocol and MRS-scanner setup and performing MRS line shape analysis based on
self-deconvolution,” 2013, Report on behalf of the the MRS Core Facility, NIMH, NIH, USA. |§]

WikipediA, the free encyclopedia, “Rank (linear algebra),”

http://en.wikipedia.org/wiki/Rank_(linear_algebra), 2015, In linear algebra, the rank of a matrix A is the size of the largest collection of linearly
independent columns of A (the column rank) or the size of the largest collection of linearly independent rows of A (the row rank). |Z|

——, “Extrapolation,”

http://en.wikipedia.org/wiki/Extrapolation, 2015, In mathematics, extrapolation is the process of estimating, beyond the original observation range. @
TRANSACT European Union project, “Welcome to Transact!”

hitp://www.transact-itn.eu/, 2013. [g]

10

http://en.wikipedia.org/wiki/Java_Native_Interface
http://developer.android.com/sdk/index.html
http://www.netlib.org/lapack/explore-html/d6/d42/zgesvd_8f_source.html
http://www.gnuplot.info/
http://en.wikipedia.org/wiki/Rank_(linear_algebra)
http://en.wikipedia.org/wiki/Extrapolation
http://www.transact-itn.eu/

	Introduction
	Plugin Development
	Integrated Development Environment (IDE)
	Details of applied computer codes
	SVD of the Hankel data matrix
	Monitoring the plugin-progress with automatic Gnuplot updates
	Monitoring HSVD vs HLSVD

	Plugin Installation
	Steps to be taken
	Input disk files

	Plugin Usage
	Steps to be taken
	Output disk files

	Results and Discussion
	HSVD of a simulated 3T in vivo MRS signal
	Computational times of HLSVD vs HSVD
	H(L)SVD and the low-rank problem
	Backwards reconstruction
	Using the H(L)SVD plugin as a filter

	Conclusions
	References

