
MSc Computer Science — Artificial Intelligence Technology

Reducing Carbon Emissions of Code Generation in
Large Language Models using Line-level Completions

Thijs Nulle

April 11, 2025

Thesis Title

Reducing Carbon Emissions of Code Generation in Large Language Models

with Line-level Completions

Name: Thijs Nulle

Student Number: 4942000

Degree Program: MSc Computer Science — Artificial Intelligence Technology

University: Technical University Delft

Department Name: Software Engineering Research Group

Thesis Advisor: Arie van Deursen

Daily Supervisor: Luís Miranda da Cruz

Committee Member: Jie Yang

Date of Submission: April 1, 2025

Date of Defence: April 11, 2025

Abstract

This thesis investigates reducing carbon emissions in code generation using large language mod-

els (LLMs) by comparing function-level and line-level code completions across models of different

sizes (1.5B and 9B parameters). The study utilises the BigCodeBench dataset, comprising 1,140

Python programming problems, to evaluate the energy consumption, test accuracy, and time effi-

ciency of code completions. The models, 4-bit quantised and run on a CPU, performed 30 function-

level completions and 30 line-level completions for each line, which were tested for correctness.

Results indicate that, while line-level completions require slightly more energy per token, they are

more efficient overall in terms of total energy consumption and token usage. The smaller model with

line-level completions showed significant reductions in carbon emissions, achieving an average ten-

fold reduction compared to the large model with function-level completions. With the large model,

line-level completions achieved a 4.5× reduction in carbon emissions compared to function-level

completions. Line-level completions were more token-efficient, wasting less than 1% of energy,

compared to 20% for function-level completions. From a sustainability perspective, line-level com-

pletions offer a practical strategy to reduce the environmental impact of code generation tasks while

maintaining strong performance. The study suggests that optimising completion strategies could

help balance energy consumption, test accuracy, and time efficiency. Future research could explore

a broader range of model sizes, fine-tuning models specifically for line-level completions, a per-

formance decrease in solution length, and alternative validation metrics to assess code generation

performance.

Table of Contents

Preface 1

Nomenclature 2

1 Introduction 3

2 Background 7

2.1 Machine Learning . 7

2.1.1 Concepts and Techniques . 7

2.1.2 Learning Paradigms . 8

2.1.3 Neural Networks . 9

2.1.4 Natural Language Processing . 10

2.1.5 Deep Learning . 10

2.2 Large Language Models . 10

2.2.1 Transformer Architecture . 11

2.2.2 Applications . 11

2.2.3 Limitations . 12

2.3 Code Generation . 12

2.4 Carbon Emissions . 14

2.4.1 Quantifying Energy Consumption . 14

2.4.2 Climate Change Mitigation . 15

2.5 Summary . 15

3 Related Works 17

3.1 Foundation Models for Code . 17

3.2 Code Generation Benchmarks . 17

3.3 Carbon Footprint of AI . 18

3.4 Optimising LLMs for Efficiency . 19

4 Methodology 21

4.1 Research Questions . 21

4.2 Model Overview . 22

4.3 Dataset Overview . 23

4.3.1 Structure . 23

4.3.2 Preprocessing . 26

4.3.3 Limitations . 26

4.4 Prompt Creation . 26

4.4.1 Function-level Prompts . 26

4.4.2 Line-level Prompts . 27

4.5 Experimental Design . 28

4.5.1 Experimental Setup . 28

4.5.2 Problem Processing Procedure . 29

4.5.3 Rationale for Repetition Count . 30

4.5.4 Test Setup and Verification . 32

4.5.5 Quantifying Impact of Excess Tokens . 33

4.5.6 Quantifying Impact of Incorrect Suggestions 34

4.5.7 Operational Considerations . 35

4.6 Energy Measurement . 35

4.7 Evaluation Metrics . 36

4.7.1 Energy Efficiency . 37

4.7.2 Time Efficiency . 37

4.7.3 Correctness . 37

4.8 Summary . 37

5 Results 39

5.1 Energy Consumption for Different Completion Granularities 39

5.1.1 Quantitative Impact of Excess Token Generation 41

5.1.2 Quantitative Impact of Incorrect Suggestions 42

5.2 Carbon Emission Reductions Through Model Substitution 44

5.2.1 Comparison of Energy and Time Per Token . 46

5.2.2 Carbon Emissions Reduction Overview . 47

5.3 Summary . 48

6 Discussion 50

6.1 Key Findings . 50

6.2 Supplementary Findings . 51

6.3 Threats to Validity . 52

6.4 Implications . 54

6.5 Future Research . 56

6.6 Ethical Considerations . 57

Conclusion 60

Bibliography 61

A Problem Selection 67

B Trigger Points 68

Preface

Well, here it is—the culmination of seven months of challenging but rewarding work. While I have heard

plenty of thesis stories from my friends, it does feel different when you do it yourself. Even though some

parts of the process went more smoothly than others, I can safely say that I am incredibly proud of what

I have achieved and what I put in front of you to read, understand, and hopefully make you think about

something most people have never thought about—the carbon footprint of AI.

Before the thesis, it has been a long road that has taught memore about computer science, andmyself,

than I could have hoped for when I started. I still remember my choice to study Computer Science at TU

Delft, all because I enjoyed making websites. Now I know that that is one of the things I do not want to

do in the future—funny how life gave me lemons, but I refused to make lemonade. In seven years, I have

learned everything from how a computer works at the lowest level to the protocols used to communicate

over the internet, how programming languages actually work and the algorithms that power the modern

world. With even a brief intermezzo at Forze Hydrogen Racing, I do not think I could have prepared

myself better for the next steps in life.

Somewhere along this journey, I picked up reading again—something I despised in high school and

vowed I would never do. But then it clicked after reading The Diversity of Life by E.O. Wilson, where he

portrayed his ideas with words I had never heard, sparking a newfound interest in the world around me

and making me curious to see if I could do the same. Subsequently, I followed the course Sustainable

Software Engineering, and it just worked—the balance between sustainability and how it can be applied

to software engineering. Personally, it was obvious that I wanted to pursue a thesis in this field and see

what was available for me to become more knowledgeable about.

After diving into the topic of sustainability and AI—in both the academic and professional world—it

has become clear that the current focus is very shortsighted. Every AI company is releasing as many

products as possible to capture as much market share as possible, and it seems like we are hitting a wall

with performance. The current language models are a glorified—but very good—auto-complete, and I

hypothesise a significant architectural change needs to happen for the next big breakthrough.

To overcome the plateau we hit in performance caused by the training phase, we shifted to using tech-

niques that increased the computational requirements during inference time, such as test-time compute

and chain-of-thought prompting, however, this increased the energy consumption to squeeze out the last

bit of performance. I do not think that we are at a point in time where marginal performance improve-

ments will make any tangible difference for most tasks, and what I would love to see is that companies

focus their efforts on achieving similar performance more efficiently—saving costs and reducing carbon

emissions.

With my current understanding, I believe we are somewhere along the peak of inflated expectations

in the Gartner Hype Cycle, so I wish we would focus on understanding our current technology and how

we can best utilise it, while improving its efficiency along the way, and not overdo it by integrating it

into every possible product you can imagine. Ultimately, we need to be open to innovation and make

AI more efficient and sustainable in the process, with the goal of usable products and integrations that

feel right, not rushed, like almost all current applications—I do not want another chatbot on a random

website, AI-generated content that contains zero creativity, or a fake voice where it sounds like a robot.

I do want to acknowledge some people who helped me during the thesis. Thank you Luís for provid-

ing feedback along the road, and generally helping me find the path I wanted to take during the thesis.

A big thanks to João, Francisco and Arie for helping me iron out the last details. And, of course, I want

to thank my parents, brother, family, and close friends for being there along the way; it really meant a

lot. Now let us dive in and explore the world of carbon emissions and code generation.

— Thijs Nulle, April 2025

1

Nomenclature

AI Artificial Intelligence

CPU Central Processing Unit, the main processor responsible for computation tasks in a computer

GPT Generative Pre-trained Transformer

GPU Graphics Processing Unit, used for parallel processing tasks in a computer

LLM Large Language Model

ML Machine Learning

NLP Natural Language Processing

CO2 Carbon dioxide

CO2eq Carbon dioxide equivalent emissions

°C Degrees Celsius

Data centre A facility used to house computer systems for large-scale processing

Fossil fuels Non-renewable energy sources (e.g., coal, oil, and natural gas)

Function-level completions Code completions where the model generates a function implementation

Granularity Completion level for code generation (e.g. function-level, line-level)

Hallucination When a model generates incorrect or fabricated information not based on input data

Inference The process by which a trained model generates outputs based on new inputs

Line-level completions Code completions where the model generates one line at a time

Parameters The weights and biases in a model that are learned during the training process

Prompt A text or query given to a language model to guide its response or generation process

Quantisation Reducing a model’s precision to lower memory needs with minimal performance loss

Renewable energy Energy from sources that are naturally replenished (e.g., solar, wind)

Token A unit of text, like a word or fragment, processed by a model for generation or understanding

Tokenisation The process of breaking down text into tokens that can be processed by a model

Trigger point A keyword or operator in code where generation begins, guiding model completions

2

1 Introduction

The story of climate change is often framed as a catastrophe—rising temperatures, extreme weather,

melting ice caps, and dire predictions for the future. It is true that global temperatures have increased

by about 1°C since pre-industrial levels and could climb by 1.5°C by 2050, potentially reaching 2–4°C

by 2100 [24]. We are in the midst of the sixth mass extinction, losing biodiversity at an accelerating

pace [28] and even extreme weather events are becoming more frequent and intense, directly linked to

human actions [10]. These are statements we cannot ignore, but it is equally important not to overlook a

critical truth: we are making unprecedented progress toward sustainability, enhancing the quality of life

for more people than ever before.

We have collectively reduced the child mortality rate from 50% in industrial times to 4% in 2020

[27], where vaccines have saved 150 million children over the last 50 years and in the meantime, we even

eradicated smallpox [78]. The discovery of antibiotics, such as penicillin in the 1920s [36], drastically

reduced deaths from bacterial infections, and contributed to an increase in life expectancy. This, in turn,

resulted in increased demand for food, which was counteracted by an almost tenfold increase in average

global crop yield in the same period [91]. We now have an average life expectancy 2.5× higher than in

1850, increasing from 29.3 years to a staggering 73.2 years.

However, these advancements do not paint the complete picture as carbon emissions are still a big

problem. While per capita carbon emissions peaked in 2012 and have since declined [41], total emissions

continue to rise due to growing populations and increasing energy demand in developing economies [89].

Where the USA and Europe accounted for 85% of global emissions in 1950, they only contribute 35%

now. Europe has shown it is possible to reduce carbon emissions drastically—a 45% per capita decrease

since the peak in 1979—and this will only be the precedent for the decades to come.

Currently, the energy sector emits 75% of all global emissions, with almost 30% of all emissions

stemming from electricity and heat generation [114]. Whereas electricity production was dominated by

fossil fuels such as coal, natural gas, and hydro, renewable energy sources are growing exponentially

[52]. Over the last five years, global wind energy production doubled and solar energy production in-

creased tenfold in the preceding decade [54]. We have reached a pivotal point in electricity production

as renewable energy sources have become cheaper than fossil fuels, total investments into renewable

energy are twice as large as into fossil fuels [53] and renewable energy sources have shown to claim

50× less lives than fossil fuels [90].

Yet, as we accelerate toward a cleaner future, new technologies reshape our energy landscape. One of

the most transformative—and energy-intensive—developments in recent years has been the rise of large

language models (LLMs). These computational models are designed for natural language processing, a

subfield of artificial intelligence that enables computers to analyse and generate text based on patterns

in human language [87]. Widespread adoption followed the introduction of ChatGPT in 2022 [1], with

applications including but not limited to translation, summarisation, transcription, and code generation.

This technology, however, comes at an environmental cost. These models are trained on expansive

corpora—spanning every book ever written, countless scientific papers, the entirety of Wikipedia in

multiple languages, and much more. To process this data, a lot of processing power is required, and

subsequently, a lot of energy is also required. For example, training the open-source BLOOM model

emitted approximately 25 tonnes CO2eq, where the training of GPT-3 is estimated to have emitted 500

tonnes CO2eq [70].

Castaño et al. [18] found a correlation between carbon emissions, dataset size, and model size—

which is worrying as our current solution to increase performance is to increase the size of the model and

dataset. The most famous model family is the GPT family by OpenAI, where model sizes have increased

from 1.5B parameters for GPT-2, to 175B for GPT-3, to an astounding 1.76T parameters in GPT-4—a

1200-fold increase. Subsequently, GPT-3 was trained on 300B tokens, compared to 13T tokens of GPT-

4 [15, 95]. The developments over the years have shown tremendous results and the models are better

than anyone could have expected over a decade ago, however, with ever-increasing adoption it warrants

the question of environmental sustainability.

3

However, considering training is insufficient, these models also require energy during inference—

the process of responding to a prompt. At Google, inference accounted for 60% of the total energy

consumption due to their large userbase [81], with estimates for the energy consumption of the inference

phase consuming up to 95% for ChatGPT-like services [22]. Subsequently, recent methods for increasing

performance increase inference time by utilising chain-of-thought prompting, where themodel iteratively

prompts itself to refine its answer [115]. It does improve performance, but it also substantially increases

energy consumption because of the generated intermediary tokens.

LLMs are deployed within data centres, a large collection of computers specifically aimed to perform

large numbers of computations. Data centres account for roughly 1-1.5% of all global emissions [51],

and are expected to rise by 160% by 2030 [2]. This warrants research in increasing the efficiency of

LLMs without compromising accuracy, such that we can sustain the benefits of the technologies, without

incurring future risks regarding sustainability.

As we recognise the environmental impact of LLMs, it is crucial to examine the specific areas where

these models are being applied and how their energy consumption can be reduced. One of these appli-

cations is in the software engineering field, where we can utilise LLMs to perform tasks such as code

generation, bug detection, or writing documentation. Models have increasingly gotten better and better,

from Codex that powers GitHub Copilot [21], Code LLaMa [93], StarCoder [67], DeepSeek-Coder [43],

and Claude [9]. The Stack Overflow 2024 Developer Survey showed 63% of professional developers

currently use AI in their development process, with another 14% planning to begin soon [101]—a clear

indication of how integral these models have become in modern software development.

Despite extensive research on using LLMs for software engineering, the results are mixed. Some

studies show improved code quality [92, 12], while others note an increase in code churn—code added

and changed within two weeks—since the introduction of LLMs[40]. The overall impact remains un-

clear, but more research is needed to fully understand the role of LLMs in software engineering.

And yes, these models have gotten significantly better in recent years, but their performance still

falls short. The SWE-bench benchmark tests models on real-world problems [56], but the top performer,

Claude 2, solves only 1.96% of problems. Even with a specialized framework [120] and the upgraded

Claude 3 Opus model, performance only increased to 11.6%. Despite this sixfold improvement, no

company would hire an engineer who solves just 12% of basic tasks.

However, despite the significant advancements in these models, there is limited research on optimis-

ing generation strategies specifically for code generation tasks. Different methods of token generation

have shown promise in reducing token costs and improving inference efficiency [116], but further ex-

ploration is needed to apply these strategies effectively in the context of software engineering.

To assess the performance of LLMs in code generation tasks, several different benchmarks have

been released over the years. The first major benchmark was the HumanEval benchmark in 2021 [21],

comprising 143 handwritten Python programming problems. Soon after MBPP was released [11], con-

sisting of 974 simple programming tasks. MultiPL-E was released to assess performance across multi-

ple programming languages [17], and finally, BigCodeBench contains problems with solutions spanning

multiple domains to facilitate compositional reasoning [125]. But there is one problem, they all assess

the performance of these models with the same generation technique: function-level completions.

Function-level completions involve generating code for entire functions based on input prompts,

which are then promptly evaluated for correctness. However, this approach does not fully capture the

complexity and nuances of real-world software development, where code is often written incrementally,

with multiple smaller code snippets and logic that evolve gradually. This limitation means that while

LLMs may perform well on benchmarks that focus solely on standalone functions, their ability to be

utilised in a real-world context is limited, as they may struggle to handle the iterative nature of devel-

opment. Additionally, one of the issues with function-level completions is the continual generation of

excess tokens, which harms developer productivity and incurs a waste of computational resources [45].

To address these challenges, we explore line-level completions, where models generate code incre-

mentally, reflecting the iterative workflow of developers. We compare this approach to function-level

completions, evaluating not only performance but also environmental impact and efficiency. By consid-

4

ering both technical and ecological factors, we aim to optimize code generation and, in doing so, address

the following key research questions:

RQ1: How does energy consumption compare between line-level and function-level completions?

RQ1.1: What is the quantitative impact of excess token generation on energy consumption?

RQ1.2: What is the quantitative impact of incorrect suggestions on energy consumption?

RQ2: What reduction in carbon emissions can be achieved by substituting a smaller model for a larger

model, without compromising accuracy?

RQ2.1: How do energy per token and time per token compare?

Regarding the first research question, we aim to find differences between the energy efficiency of

line-level completions and function-level completions. If a discrepancy exists, we hypothesise that it

results from a difference in excess token generation and the impact of incorrect suggestions.

Subsequently, since one of the main contributors to energy consumption in LLMs is model size, we

aim to determine if a large model can be substituted with a small model without compromising accuracy,

potentially leading to token efficiency gains. To answer this question, we need to understand the different

energy and time characteristics of various models and completion granularities.

Through our research, we have uncovered several key insights. Firstly, individual line-level com-

pletions exhibit high compilation rates—96.4% for the small model and 97.1% for the large model—and

strong test pass rates—82.7% for the small model and 90.5% for the large model. Secondly, line-level

completions do not outperform function-level completions with the large model in only 22% of problems

with the small model, and this decreases to 13.5% for the large model.

Utilising the performance characteristics of line-level completions, we can achieve a 10× reduc-

tion in carbon emissions if we substitute a large model performing function-level completions with a

small model performing line-level completions. If we only change the completion granularity from

function-level to line-level completions, this results in a 4.5× reduction in emissions. Subsequently,

carbon emission reductions stabilise after substituting more than half the lines in the reference solution.

We have found line-level completions to be more deterministic, with the average log-probability

for each token generation being closer to 0 in both the large and the small model. Subsequently, the

large model more often generated tokens until the token limit compared to the small model, in 25%

and 21% of cases, respectively. Because of this, function-level completions exhibit more inconsistent

energy characteristics, where energymeasurementsmight differ from expectations. We finally found that

incorrect function-level completions have a similar impact to incorrect line-level completions regarding

wasted energy consumption. Building on this, we compare line- and function-level completions not only

in terms of performance but also efficiency, energy consumption, and environmental impact, providing

a list of key takeaways:

• Comparative analysis: We evaluated line-level vs. function-level completions, focusing on token

efficiency, energy consumption, and generation accuracy.

• Energy reduction: Line-level completions can reduce energy consumption by 4.5×, and up to

10× with model substitution.

• Token efficiency: Line-level completions achieve a nearly 50× improvement in token efficiency

compared to function-level completions.

• Reproducibility: We developed a public repository for full experiment reproducibility1

The Background section provides an overview of key concepts, including machine learning, large

language models, code generation, and carbon emissions. Following an overview of the existing litera-

ture in the Related Works section, we cover the Methodology of this research. In this section, we detail

1https://github.com/thijsnulle/msc-experiment

5

the model and dataset selection, prompt design, experimental setup, energy measurement techniques,

and evaluation metrics. The Results section presents findings on energy consumption across different

completion granularities and carbon emission reductions through model substitution. The Discussion

examines key and secondary findings, threats to validity, broader implications, future research direc-

tions, and ethical considerations. Finally, the Conclusion summarises key insights and emphasises the

contributions to advancing sustainable AI.

6

2 Background

In this section, we discuss the progression of machine learning and artificial intelligence, from deep

learning to large language models, followed by an examination of carbon emissions and code generation.

2.1 Machine Learning

Artificial intelligence (AI) is a field of study which enables machines to exhibit forms of intelligence

using learning to achieve defined goals [94]. Machine learning (ML) is a subset of AI, and it allows

machines to perform tasks that typically require human intelligence, including learning and problem

solving [38]. In machine learning, intelligence is often represented through a model. This statistical

framework learns patternswithin data and generalises that knowledge tomake predictions on new, unseen

information—something we humans do frequently. Figure 1 contains a hierarchical representation of the

artificial intelligence topics we cover in this section.

Figure 1: Hierarchical structure of AI, highlighting Machine Learn-

ing, Deep Learning, and Generative AI.

2.1.1 Concepts and Techniques

For this section, we consider a hypothetical problem where the goal is to determine the type of fruit based

on three features: colour, shape and weight.

In machine learning, a model is a program that finds patterns within data and predicts outcomes based

on novel information [94]. The goal of the model is often to predict a label, which is a value assigned

to an example in the dataset that describes its qualities. This label categories the data points and groups

instances together, e.g. apple, pear or orange. The model examines each example in the dataset and

considers its features—colour, shape and weight—and aims to find the relationship between the features

and the label. The number of dimensions, or dimensionality, refers to the amount of different features

that are available for the model to learn; three in our case. See Figure 2 for an example of increasing

dimensionality.

For a model to learn what feature values are associated with which labels, we need to iteratively teach

it what is right and what is wrong—the training phase. The model can be taught with different learning

paradigms, which we explain later. After giving the model many examples of fruits, including their

characteristics, it might find correlations between features and labels; the colour orange is associated

with oranges, an elongated shape indicates a pear or a heavy fruit corresponds to an apple.

The next step in the model development pipeline is the inference phase. Inference is the process of

making predictions based on the patterns learned in the training phase. Essentially, it is the model in

action. For instance, given a green fruit with an elongated shape, the model uses its learned patterns to

determine that a pear is the most likely outcome.

7

Figure 2: Illustration of increasing dimensionality in fruit classifica-

tion, first based on color, then shape, and finally weight.

With the ability to get predictions for new data points, we can perform model evaluation to assess

the model performance. We split the total dataset into a training and validation set, where we utilise

the latter to cross-check the predicted labels with the ground truths. The two most rudimentary metrics

are accuracy and precision. Accuracy refers to how often a classification is correct; it measures the

proportion of fruits for which the model correctly predicted their label [74]. Precision measures the

accuracy of a single prediction; it is the proportion of fruits classified as a pear that are actual pears [85].

See Figure 3 for a visual comparison between accuracy and precision.

Figure 3: A visual comparison highlighting the difference between

Accuracy (left) and Precision (right).

2.1.2 Learning Paradigms

We can train models in different ways, based on the amount and type of information that is available.

Fundamentally, machine learning can be categorised into three main paradigms, each with distinct data

characteristics and feedback mechanisms: supervised learning, unsupervised learning and reinforcement

learning.

In supervised learning, the data consists of examples containing both the inputs and the desired output

[76]. With a known output for a set of inputs, we can utilise this information as a feedback mechanism;

if the model predicts the wrong output, use that information to tune the model for improved future pre-

dictions.

In unsupervised learning, the data consists only of a collection of inputs without an explicit output

[39]. In contrast to supervised learning, where feedback is used to correct errors, unsupervised learning

identifies similarities within the data. Referring back to our hypothetical machine learning problem, the

model would have no knowledge of what combination of colour, shape and weight corresponds to what

type of fruit. Instead, the goal shifts to clustering fruits by similar characteristics, enabling the model to

determine how many different types of fruit are within the dataset.

8

In reinforcement learning, a model learns the best future actions based on previously taken actions

[58]. The model learns by trial and error, receiving feedback as rewards or penalties, to optimise its be-

haviour and achieve a desired outcome. In contrast to supervised and unsupervised learning, reinforce-

ment learning involves actively interacting with an environment to learn how to take optimal actions.

An example of reinforcement learning would be a robot that needs to catch a ball; if it succeeds, it gets a

reward, but if it fails, it receives a penalty. Based on that feedback, it adjusts its approach and tries again

to catch the ball.

2.1.3 Neural Networks

For this section, we consider a hypothetical problem where the goal is to determine handwritten digits

from 0 to 9 within an image, where each pixel is either black or white.

A neural network is a machine learning model inspired by the structure and function of biological

neural networks in animal brains. An animal brain consists of neurons that transmit electrical information

in highly complex networks via synapses. In machine learning, this concept translates to artificial neu-

rons (neurons) connected by edges (synapses) forming a graph network. Onwards, we refer to artificial

neurons as neurons for increased clarity. See Figure 4 for an illustration of a neural network.

Figure 4: Illustration of a multi-layered neural network featuring 3

input neurons and 1 output neuron.

Similar to biological neural networks, neurons can receive input from multiple neurons and transmit

output to multiple neurons, which are typically aggregated into layers for simplicity. Signals travel from

the first layer (input layer) to the last layer (output layer), possibly passing through multiple intermediate

layers (hidden layers) [14].

For our hypothetical problem, the input layer would consist of a neuron for each pixel—100 neurons

for a 10 by 10-pixel image—and the output layer would consist of a neuron for each digit. Since each

digit can be represented as multiple different combinations of black and white pixels, the hidden layers

help model these complex relationships and aggregate pixel values in a way that leads to a more accurate

prediction. After passing through one or multiple hidden layers, the signal arrives in the output layer.

The output neuron with the highest value is the prediction the model has of which the handwritten digit

is on the image.

Training neural networks is done through empirical risk minimisation: optimising the network pa-

rameters to minimise the difference between the predicted output and the actual target values within

the training dataset [105]. Whenever a wrong result is predicted, we utilise backpropagation to modify

the model weights slightly to become closer to the expected result. Essentially, backpropagation is the

process of tuning the weights to enable the neural network to make more accurate predictions.

Training a neural network can be illustrated as tuning a guitar. The goal would be to achieve perfect

pitch—the desired prediction. Plucking a string provides the current pitch, a new prediction. To change

the pitch closer to the expected pitch, we can turn the tuning peg slightly. Similarly to neural networks’

backpropagation, iterative adjustments gradually reduce errors and improve the predictive performance

of the model.

9

2.1.4 Natural Language Processing

Natural language processing (NLP) is a subfield of artificial intelligence that enables computers to pro-

cess and generate data encoded in natural language [23]. NLP covers several tasks, including language

translation, text summarisation, and question answering [60, 61]. Natural language is highly unstructured

and variable, due to complexities such as syntax, semantics and context.

NLP models are not inherently different than other machine learning models, under the hood, they

still can only process numbers and perform mathematical operations on them. To transform text into

numerical data, we perform a process called tokenisation. In tokenisation, the text is divided into smaller

units, called tokens, which are then represented as numerical vectors. Tokenisation converts human-

readable words into words from a specialised computer dictionary [84]. For example, the word computer

could become two tokens—com and puter—which are then transformed into numbers.

2.1.5 Deep Learning

Determining which handwritten number is in an image is not overly complex, all the interdependencies

can be modelled with a relatively small model in computing terms. In contrast, determining what movie

someone might like based on their viewing history of hundreds of movies, dozens of ratings they gave,

and thousands of available films already becomes a daunting task. Add millions of other users and their

preferences to the same equation, and we arrive at the point where a small model will not suffice.

Taking the perspective of human ability, one needs a larger brain to be able to recommend a movie

based on all those premises compared to determining what handwritten digit is within an image. Conse-

quently, deep learning is an extension of neural networks consisting of multiple hidden layers and a larger

amount of nodes within the network [65]. A handwritten digit model can be as small as 1000 neurons

[80], while the first deep learning model to uproot the scientific community—AlexNet in 2012—already

had 650,000 neurons; an increase of almost three orders of magnitude [63].

The advantage of deep learning found in recent years has been their ability to model increasingly

complex relationships within data. This increased complexity can only be modelled with an increased

model size, which has been increasing exponentially for decades [109]. Where the number of parameters

of AlexNet was 60 million, the parameter count of recent models exceeds an astounding 1 trillion—five

orders of magnitude difference in just 10 years.

To be able to tune the parameters of a model of increasing size, the total dataset size needs to increase

aswell. Training data consequently has also been growing exponentially, AlexNetwas trained on roughly

1.2 million images, whereas current deep learning models are trained on datasets with trillions of data

points [108].

To grasp the scale of a model with 1 trillion parameters, consider storing each parameter in a 1 cm-

square within a notebook. This alone would require 14,000 football fields of space—larger than the

country of San Marino. If we were to lay them one after the other, we would reach to the moon and back;

thirteen times.

In essence, a deep neural network is no different compared to a neural network. However, deep

learning operates at an unprecedented scale, where model and dataset sizes have become inconceivably

large. Deep learning is the underlying technology most people associate artificial intelligence with and

it is the basis upon which we build for the remaining sections; and thesis.

2.2 Large Language Models

A large languagemodel (LLM) is a computational model designed for natural language processing (NLP)

and is a subfield of artificial intelligence which aims to provide computers with the ability to process data

encoded in natural language leveraging deep learning techniques [87]. Interfacing with an LLM involves

providing an input sequence, known as a prompt, from which the model generates a sequence of tokens

that can statistically follow the input prompt, utilising learned patterns in the training data; so-called

10

Figure 5: The Transformer model architecture, adapted from Vaswani [106].

prompting. By providing extra context within the prompt, such as a specific task like translation, the

goal of the generation can be altered.

Previous architectures—namely recurrent neural networks (RNN) and long short-term memory net-

works (LSTM)—were designed to capture dependencies within sequences by using generated outputs

as inputs for subsequent steps [48]. While these architectures allowed for capturing some long-range

dependencies, their abilities to maintain relevant information decreased with longer texts.

RNNs and LSTMs require sequential processing, where each token in a sequence is processed one

after the other, and each output generation depends on the previous token [48]. Due to their sequential

nature, these models cannot take advantage of the parallel processing capabilities of GPUs or TPUs. As a

result, training was slow and inefficient, with processing time becoming a critical bottleneck—something

we cannot mitigate.

2.2.1 Transformer Architecture

To overcome the disadvantage of sequential processing, the Transformer architecture introduces a self-

attention mechanism that allows the model to weigh the importance of each token in a sequence relative

to other tokens, regardless of their position [106]. This self-attention mechanism is integrated within an

encoder-decoder structure, where the encoder processes the input sequence and the decoder generates

the output sequence while considering contextual importance between words. This architecture not only

models dependencies between tokens in long sequences effectively but also enables parallel processing

of the input and parallel generation of the output, serving as the driving force behind the exponential

growth in model complexity. See Figure 5 for a diagram of the transformer model architecture.

2.2.2 Applications

While LLMs are still a relatively new technology, widespread adoption of language models followed

the introduction of ChatGPT in 2022 [1]. Due to the generalisation capabilities of LLMs and as they are

trained on a large, diverse dataset of textual data, they can be utilised for a wide array of tasks.

Question answering is among the overt applications of LLMs; it typically involves predicting the

subsequent sequence of tokens given an initial input text. With a large amount of training data, the

11

model can generalise across a diverse set of topics and generate appropriate answers for many questions.

As previously mentioned, the goal of a prompt can be changed by introducing more context. This

can serve as a stepping stone for various tasks, including but not limited to translation, recommender

systems, virtual assistants, text search, and transcription [57].

Subsequently, LLMs can generate code based on natural language prompts [21]. In combination

with context about the programming environment, the model can generate solutions for a diverse set of

problems. Beyond code generation, themodel can assist in debugging existing code or explain exceptions

the programmer encountered. We explain this in more detail in Section 2.3.

2.2.3 Limitations

Even though LLMs significantly improved the performance ofmachine learningmodels, and that allowed

for an increased number of tasks to be tackled with them, they still have limitations. Most notably,

due to the probabilistic nature of generating an output sequence, answers can be incorrect—the model

hallucinates. A generated text might seem convincing and correct, however, an output sequence is bound

to have mistakes at some point [46].

Generating an output sequence essentially aggregates the training dataset, thus, the data quality is

vital. Everything someone writes, albeit a scientific article or a tweet, contains inherent biases. Conse-

quently, users must remain critical of the information produced by these models, understanding that it

may reflect existing prejudices and inaccuracies present within the training data.

While taking the inherent weaknesses of inaccuracy and implicit biases for granted, an arguably more

impactful limitation is the lack of common sense reasoning. Mirzadeh et al. [75] found that LLMs exhibit

noticeable variance when responding to different instantiations of the same question. They hypothesise

that the current LLM architecture is incapable of genuine logical reasoning; instead, they replicate rea-

soning processes observed within training data.

2.3 Code Generation

Brief History Programming has evolved significantly, beginning with Alan Turing’s theoretical con-

cept of the universal computing machine, which laid the groundwork for modern computation. Early

programming involved machine code, a sequence of ones and zeros inputted via punch cards. This was

followed by assembly languages, which provided a more human-readable representation of machine

code—arguably the first form of code generation, where machine code was translated from assembly

instructions. This soon evolved into programming languages with each their unique features, another

layer on top of an already existing layer of abstraction.

These programming languages are where code generation, or automatic programming, started. Some

of the earliest forms of automatic programming include template-driven and rule-based code generation.

Template-driven generation relies on pre-defined templates with placeholders filled dynamically based

on input parameters, often used for tasks like boilerplate code generation. Rule-based generation can

transform high-level specifications into executable code. A macro can be defined as a rudimentary form

of rule-based code generation, however, more complex transformations exist beyond simple text replace-

ment [64].

Pereira and Warren [83] discuss definite clause grammars (DCGs), an extension of context-free

grammars that were used in early AI systems for code generation. DCGs were employed to generate

syntactically valid code by applying probabilistic transformations—techniques that bear a striking re-

semblance to the methods used by current LLMs. An implementation of DCGs is a stochastic grammar,

which are models trained to predict the likelihood of code token sequences.

To overcome the limitations of generating more complex patterns, models transitioned to using hid-

den Markov models (HMMs), which offered a practical approach for predicting token sequences based

on existing code. These models were trained on code tokens and could generate likely code sequences

based on an input sequence, such as an existing piece of code [47]. These, in combination with N-grams,

could generate simple code, however, their ability to capture long-range dependencies and more complex

12

patterns was still limited. While N-grams focus on local context, and HMMs model transitions between

states, they struggled to effectively handle the full scope of programming language syntax and semantics.

After a brief intermezzo with genetic programming, where the goal was to evolve small programs

throughmutation and selection to achieve a specific objective [62], Bayesian networks emerged as a pow-

erful tool for predicting likely program structures based on observed patterns [79]—essentially a more

generalised version of HMMs. Unlike HMMs, which are primarily suited for sequential data, Bayesian

networks offer greater flexibility by modelling complex relationships and conditional dependencies be-

tween variables in a more general, acyclic graph structure.

The AI field experienced periods of stagnation, known as the AI Winter, where progress slowed due

to limited resources, unrealistic expectations, and lack of practical results. Research in AI, including

early code generation models, faced setbacks, leading to reduced funding and interest. However, with

the rise of deep learning in the 2010s, AI research was revitalised, where significant advancements made

us arrive at the current state of code generation.

Code Generation with LLMs In the context of LLMs, code generation refers to using an AI model to

automatically generate source code based on a given prompt or input. The input can be a description or

specification of the expected behaviour in natural language or a partially written code snippet the model

needs to complete. In the context of code generation, a large language model (LLM) can perform a

variety of tasks, including the following:

• Code generation: The process of automatically creating code based on a natural language de-

scription or specific requirements.

• Code completion: Predicting and automatically filling in partial code snippets or functions as the

developer types.

• Code refactoring: Improving the structure, efficiency, and readability of existing code without

changing its functionality.

• Bug detection: Identifying potential errors, issues, or vulnerabilities in the code through analysis

or testing.

• Code translation: Converting code written in one programming language into another language,

while preserving its functionality.

• Writing documentation: Automatically generating documentation to explain the purpose and

usage of code.

Levels of Code Generation Code generation with LLMs can occur at various levels, including token,

line, and function-level completion. Token-level generation is the rudimentary form of code generation

and forms the basis for the subsequent code generation techniques. Essentially, it generates the next most

likely token for a given input sequence. Line-level generation performs multiple token-level generations

until a newline character: \n. In contrast, function-level completion generates tokens until the end of a
function implementation. However, since the full structure of a function cannot be accurately determined

from tokens alone, LLMs often produce excessive token generation [45]. An example illustrating the

different levels of code generation, from token-level to function-level completion, is shown in Listing 1.

13

Token-level generation:
def add(a, b):
result

Line-level generation:
def add(a, b):
result = a + b

Function-level generation:
def add(a, b):
result = a + b
return result

Listing 1: Examples of token-level, line-level, and function-level code generation, all based on the

prompt def add(a, b):\n.

Challenges inCodeGeneration One of the primary challenges in code generationwith LLMs is ensur-

ing accuracy and reliability. Despite significant advancements, LLMs still struggle to generate code that

is both syntactically correct and functionally accurate. Often, models may produce code that compiles

but fails to function as intended, especially in complex scenarios involving edge cases or intricate logic

[123]. Additionally, a significant challenge lies in context understanding, where LLMs may generate

code without fully grasping its broader context—such as the dependencies between different functions

or files. Chen et al. [20] emphasise this issue, noting that while models can generate syntactically correct

snippets, they often miss crucial contextual information, leading to incomplete or incorrect code.

In addition to the challenges of accuracy and context, security risks have become an increasingly

important concern. LLMs can inadvertently generate insecure code, introducing vulnerabilities due to

factors such as outdated or unsafe libraries, improper input validation, or other common coding pitfalls.

The risk of generating unsafe code is growing, especially when developers place trust in model sugges-

tions without adequate review. Wang et al. [110] underscore this concern, demonstrating how LLMs

may lack the understanding required to assess the security implications of the code they generate.

2.4 Carbon Emissions

Since the Industrial Revolution, humans began burning fossil fuels, and the concentration of carbon diox-

ide and other greenhouse gases significantly increased. When we burn fossil fuels, the reaction releases

gases that stay in the atmosphere and insulate the planet from losing heat to space—the greenhouse effect.

As a result, global warming of about 1.2 °C occurred since the industrial revolution, with the average

surface temperature rising 0.18 °C per decade since 1981 [68]. Subsequently, measures of atmospheric

carbon dioxide concentrations increased by almost 50% [7].

Carbon footprint is a calculated measure that allows for a comparison of the total amount of green-

house gases that are added to the atmosphere. It is typically expressed in tonnes of carbon dioxide

equivalent emissions (CO2eq), which account for all greenhouse gases emitted and subsequently con-

verts them into an equal amount of CO2 based on their heat-trapping potential over a specific time period

[19].

2.4.1 Quantifying Energy Consumption

In the context of code generation in LLMs, energy consumption is the key factor in assessing environ-

mental impact. Energy consumption is driven by the computational demands of training, fine-tuning,

and deployment of these models. To quantify energy consumption, we need to monitor the hardware

that runs the model and measure power draw over time. Modern GPUs and CPUs have built-in sensors

to determine power usage accurately.

14

With these tools, we can determine the total energy usage within a specific time frame. However, this

information alone is insufficient to estimate carbon emissions. To calculate emissions, we also need the

carbon intensity of the energy source, which represents the total CO2eq emitted per kilowatt-hour (kWh)

of electricity generated. Table 3 provides an overview of the carbon intensity for various technologies

used in electricity generation.

Technology
50th percentile

(g CO2eq/kWh)

Hydroelectric 4

Wind 12

Nuclear 16

Solar Thermal 22

Geothermal 45

Biomass 230

Natural Gas 469

Coal 1001

Table 1: Lifecycle greenhouse gas emissions by electricity source, adapted from Edenhofer [31].

Due to the different energy generation characteristics of various countries, the carbon intensity varies

significantly from country to country. Countries where most of their energy comes from hydroelectric

have lower emissions (Norway, 30g CO2eq/kWh), compared to countries that primarily use coal for

electricity generation (China, 582g CO2eq/kWh) [33].

2.4.2 Climate Change Mitigation

Climate change mitigation, also known as decarbonisation, aims to limit the greenhouse gases in the

atmosphere that contribute to global warming. Mitigation strategies include energy conservation and the

replacement of fossil fuels with alternative, cleaner energy sources, and modifying land use to enhance

carbon sequestration—such as reforestation or carbon capture methods [35].

There are two primary approaches to reducing energy consumption: energy conservation and energy

efficiency. Energy conservation is the effort made to reduce overall energy consumption, often by using

less of an energy service, such as driving less. Increasing energy efficiency is to reduce the amount of

energy required to create products or provide services, such as insulating a building to reduce heating

requirements.

2.5 Summary

The background provides an overview of machine learning (ML) and artificial intelligence (AI), tracing

the evolution from basic models to LLMs. Machine learning models, neural networks, and deep learning

form the foundation of AI.

Deep learning underpins modern LLMs, which use transformer architectures for efficient, parallel

processing of natural language tasks. LLMs excel in diverse applications, such as translation, question

answering, and notably, code generation. Despite their capabilities, LLMs face challenges, including

hallucinations, biases, and limitations in logical reasoning.

LLMs can perform various tasks, including code generation, translation, completion and refactoring.

LLMs can complete code at different granularities (e.g. token-, line-, or function-level) during code

generation.

Greenhouse gas concentrations have significantly increased, particularly carbon dioxide, since the

Industrial Revolution due to the burning of fossil fuels. That has led to global warming of approximately

1.2 °C, with a rise of 0.18 °C per decade since 1981. Carbon footprint, expressed in tonnes of carbon

dioxide equivalent (CO2eq), is a comparative measure of greenhouse gas emissions by accounting for

their heat-trapping potential.

15

In the context of LLMs, energy consumption—driven by the computational demands of training,

fine-tuning, and deployment—is a critical factor in assessing environmental impact. Measuring power

usage and determining the carbon intensity of energy sources (in g CO2eq/kWh) are essential steps in

quantifying emissions. The table outlines emissions across different electricity generation technologies,

with renewable sources like hydroelectric and wind producing significantly less CO2eq than fossil fuels

like coal.

Various climate change mitigation strategies exist, including energy conservation, efficiency im-

provements, shifting to cleaner energy sources, and enhancing carbon sequestration through land use

changes. These measures aim to reduce greenhouse gas emissions and limit global warming.

16

3 Related Works

This section reviews key research and developments in the field of large language models, with a partic-

ular focus on their environmental impact. By analysing existing literature, this section identifies trends,

highlights gaps, and positions this study within the broader academic discourse.

3.1 Foundation Models for Code

Roziere et al. [93] release Code Llama, a family of LLMs for code based on Llama 2. It includes infill-

ing capabilities, support for large input contexts and zero-shot instruction performance for program-

ming tasks. They provide the foundation and instruction-following models—both including Python

specialisations—with 7B, 13B, 34B, and 70B parameters each. Code Llama has scores of up to 67%

and 65% on HumanEval and MBPP, respectively.

Hui et al. [50] release Qwen2.5-Coder model family, based on the Qwen2 language models [119].

They support up to 128K tokens of context, covering 92 programming languages. They achieved re-

markable performance in (multi-programming) code generation, completion, and repair. Additionally,

they provide instruction-tuned models with improved performance for natural language prompts.

Guo et al. [43] provide a range of open-source code models, DeepSeek-Coder, with 1.3B, 6.7B,

and 33B parameters. They have been trained from scratch on 2 trillion tokens, pre-trained on a high-

quality code corpus, and support code generation and infilling. DeepSeek-Coder achieves state-of-the-art

performance among open-source models, but also outperforms existing closed-source models like Codex

and GPT-3.5.

01.AI [6] release Yi-Coder, a series of open-source code models with 1.5B and 9B parameters. For

both model sizes, a base model and an instruction-tuned model are available. The models are pre-trained

on 2.4 trillion high-quality tokens over 52 programming languages, they have 128K tokens of context

and outperform all similarly sized models. Additionally, the models perform better in mathematical

reasoning tasks, even compared to larger models such as DeepSeek-Coder-33B.

Li et al. [67] introduce StarCoder and StarCoderBase, 15.5B-parameter codemodels with 8K context,

infilling, and efficient inference. Trained on 1T tokens from The Stack, StarCoderBase outperforms

all open multilingual Code LLMs. StarCoder, fine-tuned on 35B Python tokens, retains strong cross-

language performance.

The models presented in this subsection provide the foundation for code generation with LLMs,

with features ranging from code infilling, repair, and completion. These models have achieved state-

of-the-art performance for multiple programming languages across varying model sizes—ranging from

1.5B to 70B parameters. Given our research aims to reduce the carbon emissions of code generation,

understanding these foundational models is crucial, as they form the baseline for evaluating efficiency

improvements.

3.2 Code Generation Benchmarks

Code generation benchmarks are critical for evaluating the functional correctness, reasoning capabilities,

and contextual understanding of large language models in programming tasks. This subsection discusses

prominent benchmarks, highlighting their unique characteristics, evaluation metrics, and contributions

to advancing research in code generation.

Chen et al. [21] release the HumanEval benchmark, an evaluation set to measure functional cor-

rectness for synthesising programs from docstrings. They provided the pass@k metric, an unbiased

estimator of the test pass accuracy, as highlighted in Equation 1. Additionally, they show that the BLEU

score may not be a reliable indicator of functional correctness. The dataset consists of 164 hand-written

programming problems, each including a function signature, docstring, reference solution, and several

unit tests.

17

pass@k := E
Problems

[
1−

(
n−c
k

)(
n
k

)]
(1)

Lu et al. [69] introduce the CodeXGLUE benchmark, specifically focused on program understanding

and code generation. It includes a collection of 10 tasks across 14 datasets and a platform for model

evaluation and comparison.

Yu et al. [122] propose the CoderEval benchmark, comprising 230 Python and Java code generation

tasks. In existing benchmarks, most problems ask for a standalone function as a solution, however, 70%

of function popular open-source repositories are non-standalone functions. They support tasks from six

levels of context-dependency, such as types, APIs, variables, and current class, file or project context.

They found current models perform better on standalone functions.

Gu et al. [42] present the CRUXEval benchmark, consisting of 800 Python problems focused on

code reasoning, understanding and execution evaluation. They propose a generic recipe for generating

the execution benchmark to allow for future benchmark variations. Additionally, they evaluate twenty

code models on the benchmark and discover discrepancies between well-performing models on differ-

ent benchmarks and their respective performance on the CRUXEval benchmark, highlighting possible

training data contamination.

Zhuo et al. [125] introduce the BigCodeBench benchmark, which focuses on problems that invoke

function calls from multiple domains. It comprises 1,140 Python problems with function calls from 139

libraries across 7 domains. Each task contains on average 5.6 unit tests with an average branch coverage

of 99%. Additionally, they provide the BigCodeBench-Instruct benchmark, where each docstring is

transformed into a natural language prompt instead. They find current models are incapable of following

complex instructions, with performance of up to 60%, compared to human performance of 97%.

Code generation benchmarks serve as essential tools for evaluating the performance of large language

models in programming tasks, providing insights into their functional correctness, reasoning capabilities,

and contextual awareness. The benchmarks discussed here—HumanEval, CodeXGLUE, CoderEval,

CRUXEval, and BigCodeBench—offer diverse challenges, from relatively simple problems and prob-

lems with increasing amounts of context-dependencies, to problems focused on code reasoning and un-

derstanding. These benchmarks are particularly relevant to our research, as they establish the standard

metrics for measuring efficiency and accuracy in code completion.

3.3 Carbon Footprint of AI

Luccioni, Viguier, and Ligozat [70] aim to quantify the carbon footprint of BLOOM, a 176B parameter

language model, across its life cycle. They estimate the final training emitted approximately 24.7 tonnes

of CO2eq, and 50.5 tonnes if accounted for all processes, from equipment manufacturing to energy con-

sumption during inference.

Castaño et al. [18] analyse the carbon footprint measurement of 1,417Huggingfacemodels, including

associated datasets. They perform a repository mining study on the Huggingface Hub API. The study

found correlations between carbon emissions and various attributes, such as model size, dataset size,

application domains and performance metrics. The results underscore the need for improvements in

energy reporting practices and promoting carbon-efficient model development.

Everman et al. [34] conduct a study on the carbon impact of various open-source LLMs, including

GPT-J 6B, GPT Neo 1.3B and 2.7B, and GPT-2. They found a lack of reliable measurement tools,

standard methodologies, and evaluation metrics. To compare carbon impact, they propose a quantitative

framework that measures and contrasts the environmental impact of different LLMs. Subsequently, they

show LLMs with high environmental impact do not necessarily provide improved performance.

Luccioni, Jernite, and Strubell [71] investigate the energy requirements of different machine learning

tasks. To provide an accurate representation of the energy requirements, they perform 1,000 inferences

for each task and collect the energy consumption of each model. They found image generation is un-

doubtedly the most energy inefficient by an order of magnitude with a median of 200g CO2eq per 1,000

18

inferences. Text generation has a median of 5g CO2eq per 1,000 inferences, and text classification is the

most efficient with a median of 0.5g CO2eq per 1,000 inferences.

Villalobos and Ho [108] analyse over 200 notable ML models to estimate training dataset sizes,

finding that vision and language datasets have historically grown at 0.1 and 0.2 orders of magnitude per

year, respectively. A shift around 2014-2015 led to significantly larger datasets and the disappearance

of smaller language datasets, even though this may be due to sample size limitations. They also present

trends for games, speech, and recommendation models.

Villalobos et al. [109] analyse trends in model size across notable ML systems, finding that language

models grew by seven orders of magnitude from 1950 to 2018, then accelerated by another five orders

in just four years up until 2022. Vision models followed a steadier trajectory, growing seven orders of

magnitude by 2022. They identify a ”parameter gap” since 2020, with many models below 20B and

above 70B parameters but few in between.

Understanding the carbon footprint of AI is essential for developing sustainable machine learning

practices, as LLMs require significant computational resources throughout their lifecycle. The covered

studies quantify the carbon emissions of multiple models during training and inference, providing deeper

insights into the environmental impact of AI technologies. If we include the trend of exponentially

increasing model sizes, these findings underscore the need for standardised carbon measurement tools

and offer a basis for this research on how to report the energy consumption, ultimately enabling more

effective strategies for reducing carbon emissions.

3.4 Optimising LLMs for Efficiency

Verdecchia, Sallou, and Cruz [107] provide a systematic review of Green AI—AI research focused

on environmental sustainability—by analysing 98 primary studies. They find most studies consider

monitoring AI model footprint, tuning hyperparameters to reduce energy consumption, or benchmarking

models. Reported Green AI energy savings go up to 115%, with savings of 50% being rather common.

Stojkovic et al. [102] present the trade-offs of making energy efficiency the primary goal of serving

LLMs under performance service-level agreements (SLAs). They show that depending on the inputs,

the model and the SLAs, there are different options for the LLM inference provider to increase effi-

ciency. Lowering GPU frequency does change the time-to-first-token, maximum throughput and power

consumption, however, these do not change linearly with changes in the frequency. Subsequently, em-

ploying parallelism does increase the efficiency, but in combination with decreasing the frequency, it

also shows diminishing returns.

Zhou et al. [124] survey existing literature on efficient LLM inference. They find the primary causes

of inefficient LLM inference; namely large model size, the quadratic-complexity attention operation, and

the auto-regressive decoding approach. Subsequently, they organise current literature in a comprehen-

sive taxonomy into data-level, model-level, and system-level optimisations. Some optimisations include

prompt pruning on a data-level, quantisation on a model-level, and batching on a system-level.

Cunningham, Archambault, and Kung [26] focus on the application of model compression, quanti-

sation and hardware acceleration techniques for the Llama models. They find pruning and knowledge

distillation methods to be effective in reducing model size, lowering training times and decreasing energy

consumption. Quantisation techniques for 4- and 8-bit representations significantly decrease memory us-

age and improve computational speed, without substantial accuracy loss.

Chien et al. [22] provide a workload model of carbon emissions of model inference. They show that

for ChatGPT-like services, inference dominates emissions, producing 25 times the emissions compared

to the training phase. Subsequently, they show that carbon-aware algorithms can both maintain user

experience and reduce emissions by 35%. When considering a future scenario in 2035, their proposed

algorithm can reduce emissions by up to 56%.

Shi et al. [99] propose Avatar, an approach to optimise code generation of an LLM in terms of model

size, inference latency and energy consumption; and thus, carbon footprint. Utilising a Satisfiability

Modulo Theory solver, they find the Pareto-optimal configuration in the complete configuration space

for training a model with knowledge distillation. With Avatar, they trained a model with decreased

19

model size (160×), energy consumption (184×), carbon footprint (157×), and inference latency (76×),

with only a negligible loss in performance of 1.67%.

Li et al. [66] investigate strategies for reducing the carbon footprint of LLM inference, focusing on

energy-efficient model execution. They explore methods such as workload-aware scheduling and dy-

namic resource allocation to optimise power consumption while maintaining generation quality. Their

findings highlight the potential of adaptive inference techniques to enhance sustainability. Their pro-

posed method achieves over 40% carbon reduction in real-world tests with Llama2 and global grid data.

To reduce carbon emissions of LLMs, one of the key aspects is to improve their efficiency. The

studies discussed in this section explore various strategies, including energy-efficient inference, model

compression, and carbon-aware scheduling. These approaches directly relate to our research, as they

provide insights into reducing computationl costs and carbon emissions of LLMs, highlighting the im-

portance of improving both model architecture and the inference processes to increase efficiency and

decrease carbon emissions.

20

4 Methodology

The objective of this experiment is to compare the energy consumption of code generation by a small

(1.5B) and large (9B) language model. We focus on function-level and line-level completions to as-

sess their impact on both energy usage and the correctness of generated code. To answer the research

questions previously posed, we consider the following key variables:

• Completion granularity: The primary variable under consideration is the completion

granularity—function-level and line-level. This is expected to influence both energy consump-

tion and accuracy of generated code.

• Model Size: The number of parameters in the model, expected to both influence energy consump-

tion and accuracy of generated code.

• Energy Consumption: A central focus of the study is understanding the energy consumption of

the models during code generation, which is directly proportional to carbon emissions.

• Test Accuracy: Determines how well the generated code solves the problem as defined in the

BigCodeBench dataset.

In this experiment, we compare the energy consumption and accuracy of code generation by testing

both models with both completion granularities. A concise overview of the experimental process can

be found in Figure 6. In this figure, orange blocks represent the inputs used in the experiment that were

not implemented by us. The blue blocks correspond to the experimental steps, which generally align

with the sections outlined here. Finally, the green blocks indicate the intermediate or final results of our

experiments, which are used to address the research questions outlined in Section 4.1.

The experiment begins with dataset preprocessing, as detailed in Section 4.3. Next, we create

function-level and line-level prompts, as outlined in Section 4.4. Using the models described in Sec-

tion 4.2 and the energy measurement tool from Section 4.6, we proceed with the problem processing

procedure detailed in Section 4.5.2. This results in function-level and line-level generations, along with

their respective energy and time metrics. These metrics are then used for syntax and test validation, as

described in Section 4.5.4, ultimately yielding accuracy metrics to assess the quality of the generated

code.

4.1 Research Questions

In the following paragraphs, we describe the research questions to explore the energy consumption of

different completion granularities—line-level and function-level completions. We will quantify energy

consumption by measuring the CPU energy consumption during code completion to understand their

respective efficiencies. We seek to determine the optimal completion granularity for minimising energy

consumption while maintaining effective code generation.

RQ1: How does energy consumption compare between line-level and function-level completions?

Given the distinct characteristics of line-level and function-level code completion, this study anticipates

several key observations. Highlighting the differences between completion granularities can guide us to

how we should utilise these new technologies, and possibly, uncover a code generation method that can

improve developer efficiency. Specifically, this research will focus on the quantitative impact of excess

token generation and the influence of inaccurate suggestions on energy consumption.

• What is the quantitative impact of excess token generation on energy consumption?

• What is the quantitative impact of incorrect suggestions on energy consumption?

During token generation, a model operates under two constraints: termination upon encountering a

stop token sequence, or until a token limit is reached. Given the inherent simplified stop token sequence

21

Figure 6: Overview of the Experiment Process

in line-level completions, we hypothesise a relative improvement in token effiency compared to function-

level completions. Conversely, assessing the impact of incorrect suggestions is more challenging as a

direct comparison between single-line suggestions and complete function implementations is infeasible.

While line-level completions may exhibit higher token efficiency, this can be offset by the increased

number of completions required compared to function-level completions.

RQ2: What reduction in carbon emissions can be achieved by substituting a smaller model for a larger

model, without compromising accuracy?

Building upon the comparitive analysis of line-level and function-level completions, we will investigate

the potential energy efficiency increase possible through decreasing the model size. Specifically, by

comparing function-level completions generated by a large model with line-level completions generated

by a smaller model, we aim to uncover gains in energy efficiency impossible with improved generation

techniques due to the computational limitations of model size. We hypothesise that, for a subset of

problems, we can utilise a small model with line-level completions instead of a largemodel with function-

level completions to attain significant energy efficiency improvements.

• How do energy per token and time per token compare?

A comprehensive understanding of per-token characteristics is essential for evaluating the energy ef-

ficiency differences between completion granularities and model sizes. These statistics may prove vital

in determining the best utilisation of different models and completion granularities to improve perfor-

mance, efficiency, and minimise energy consumption.

4.2 Model Overview

In the experiment, we utilise the base models in the Yi-Coder family of models [6], with 1.5B and 9B

parameters, respectively. The models build upon the base Yi models with an additional 2.4 trillion high-

22

quality tokens, sourced from a repository-level code corpus on Github and code-related data filtered from

CommonCrawl. This dataset contained training data for 52 major programming languages.

To lower thememory requirements and inference time of themodels, we employed quantisation tech-

niques, specifically reducing model precision to 4 bits. This approach lowers the memory requirements

and speeds up inference. Additionally, we utilised the GGUF (General GPU Universal Format) to en-

able efficient model loading and cross-platform compatibility. When we decided on the Yi-Coder family

of models, their performance for multiple benchmarks was better comparitive to others, similarly sized

models. Table 2 lists the performance for the HumanEval, MBPP, CRUXEval-O and CrossCodeEval

benchmarks.

Model HumanEval MBPP (3-shot) CRUXEval-O CrossCodeEval

Python Multilingual Python Java

Yi-Coder (1.5B) 41.5 33.6 51.6 31.5 16.2 13.9

Yi-Coder (9B) 53.7 49.6 69.4 52.3 21.6 20.0

Table 2: Performance of Yi-Coder models on the HumanEval, MBPP, CrossCodeEval, and CRUXEval-

O benchmarks.

4.3 Dataset Overview

To facilitate the experiments to measure energy consumption between line-level and function-level com-

pletions, we utilise the BigCodeBench benchmark [125]. This benchmark comprises 1,140 Python pro-

gramming problems, each containing a function description (docstring), reference solution, and test suite.

Whereas most code generation benchmarks focus solely on short and self-contained algorithmic tasks,

the problems from the BigCodeBench benchmark utilise diverse function calls and necessitate combining

multiple tools to solve them. This increased complexity ensures these problems demand compositional

reasoning, requiring models to interpret the function descriptions and combine complex instructions

[125]. In total, 139 libraries across 7 domains are used within the dataset, see Table 3 for an overview

of the domains, including example libraries and function calls.

Domain Library Function Calls

Computation (63%) numpy, pandas, sklearn numpy.array, pandas.DataFrame
General (44%) random, re, collections random.seed, re.search
Visualisation (31%) matplotlib, seaborn matplotlib.pyplot, seaborn.histplot
System (30%) os, json, csv os.path, json.loads, csv.writer
Time (10%) datetime, time datetime.datetime, time.time
Network (8%) requests, bs4, django requests.get, bs4.Tag
Cryptography (5%) hashlib, base64, rsa hashlib.md5

Table 3: Domains in the BigCodeBench benchmark, showcasing example libraries, function calls, and

the percentage of domain usage within the dataset’s problems.

Additionally, Figure 7 illustrates the distribution of the lengths of the reference solutions in the Big-

CodeBench dataset. The observed distribution aligns closely with a log-normal distribution, charac-

terised by the property that the logarithm of the solution lengths follows a normal distribution. Fitting

the data to this distribution yields parameters σ ≈ 0.496 and µ ≈ ln 8.455 ≈ 2.134.

4.3.1 Structure

Each entry comprises 9 fields, for which we explain the purpose. Firstly, the model contains a unique

identifier and the function name—conveniently task_func for each entry.

23

Figure 7: Distribution of reference solution lengths in the Big-

CodeBench dataset.

Furthermore, it contains a complete prompt and an instruction-tuned prompt for each problem. The

complete prompt is defined as a docstring comprising all necessary information, whereas the instruction-

tuned prompt is the same content formatted as a natural language prompt. As the models used were

mainly trained on code and not natural language, only the complete prompts were used.

To highlight the features of each problem in the dataset, we examine one of the problems, as shown

in Listing 2. Firstly, it contains the necessary imports for the code to execute, followed by the function

definition and docstring. The docstring can have up to six parts to accurately describe the expected

functionality of the function. These parts are in order:

• Description: concise, high-level description of the problem.

• Parameters: input parameters of the function, including types and concise description.

• Returns: return value of the function, including type and concise description.

• Requirements: libraries and functions required for execution.

• Raises: expected errors, including when they should be raised.

• Examples: list of examples, including inputs and expected outputs.

Besides the function definition and the docstring, each problem contains a reference solution. The

solution is written by a human in collaboration with an LLM, which is iteratively prompted to refactor

the implementation. To increase the correctness of the solutions, they go through a human curation

pipeline that examines the code, investigates the test results and cross-checks the implementation with

the docstring.

24

import math
import numpy as np

def task_func(L):
"""
Calculate the median of all elements
in a nested list 'L'.

Parameters:
- L (list): The nested list.

Returns:
- median (float): The median.

Requirements:
- math
- numpy

Examples:
>>> task_func([[1,2,3], [4,5,6]])
3.5
"""
def flatten(lst):
flat = []
for item in lst:

if isinstance(item, list):
flat.extend(flatten(item))

else:
flat.append(item)

return flat

flat = flatten(L)
n = len(flat)

sorted_flat = np.sort(flat)

if n % 2 == 0:
index1 = math.ceil(n / 2) - 1
index2 = index1 + 1
median = (sorted_flat[index1] + sorted_flat[index2]) / 2.0

else:
index = math.ceil(n / 2) - 1
median = sorted_flat[index]

return median

Listing 2: Example problem from the BigCodeBench benchmark, including a function description, re-

quirements, and a Python solution.

To assess the correctness of the generated implementations, each problem contains also a test suite.

For the currently highlighted problem, the test suite is in Listing 3. The inclusion of test suites for

each problem ensures that the generated solutions can be objectively validated for correctness. It

utilises the unittest library to handle test execution, which only needs a class that inherits from

unittest.TestCase and contains a set of test cases, represented as methods. To execute the tests,

the unittest.main function is called.

To increase the dataset usability and flexibility, it also contains separate fields for the code prompt—

the complete prompt without docstring, the docstring only and the required libraries.

25

import unittest
import numpy as np

class TestCases(unittest.TestCase):
def test_median_single_element(self):
result = task_func([[5]])
self.assertEqual(result, 5.0)

...

def test_median_empty_list(self):
with self.assertRaises(ValueError):

task_func([])

if __name__ == '__main__':
unittest.main(failfast=True)

Listing 3: Example of a test suite for a problem from the BigCodeBench benchmark.

4.3.2 Preprocessing

An investigation into the dataset found inconsistencies in a small subset of the problems, and to ensure

none of these influenced the final result, they were fixed. In no particular order, the following inconsis-

tencies were fixed:

• Changed 33 single-quote docstrings (''') to double-quote docstrings (""").
• Added 12 missing newlines after docstring quotes.

• Removed 9 commented code lines and import statements from reference solutions.

• Changed 6 Args: to Parameters: within docstrings.

4.3.3 Limitations

We identified several significant issues with the dataset that were not feasible to address within the scope

of this research. First, there were discrepancies between the import statements used in the reference

solutions and the list of requirements in the docstrings. Zhuo et al. [125] provides an example of how

import statements should be referenced within the docstring, including two types: from xxx import
yyy.zzz and import xxx, which are referenced as xxx.yyy.zzz and xxx, respectively. Using regular
expressions, we found 86 problems with incorrect references for import statements and 410 problems

with incorrect references for from-import statements. Additionally, 66 problems raised an exception in

the reference solution without mentioning it in the docstring.

4.4 Prompt Creation

The first step in comparing the energy consumption of LLMs between line-level and function-level code

generation is the creation of prompts as input for the models. The BigCodeBench benchmark con-

tains function-level prompts, and the reference solutions for each problem serve as a basis for line-level

prompts with some processing, as highlighted later in the section.

4.4.1 Function-level Prompts

For function-level completion, the prompt can be extracted directly from the BigCodeBench benchmark

as it contains a complete prompt field consisting of the imports, function definition, and a docstring.

26

4.4.2 Line-level Prompts

In contrast to creating the function-level promptd, creating a list of prompts for line-level completions is

more complex. To create line-level completion prompts, we cannot utilise solely the complete prompt—

we need context about what to solve in each line. To get a set of lines from which we can establish

context, we utilise the reference solution for each problem. As we know this solution is correct, it can

form the basis for the line-level completion prompts. We first split the solution into individual lines,

which we will process into prompts.

Various line types are skipped during code completion to ensure consistent output. Empty lines

are skipped as they provide no additional functionality. Function definitions are excluded because they

must adhere to a specific structure expected in the remaining reference solution. Finally, control flow

statements like else:, try:, except: and finally: are skipped as they are already complete.

The first task is to determine from what character the line generation should start. A rudimentary

approach is to remove all non-whitespace characters and only keep the indentation, however, this in-

creases the number of possible solutions exponentially. Given we know what biased information (e.g.

variable names) are used in the reference solution, it only makes sense to include some context on what

we expect—something a programmer would inherently do. For this, we utilise two strategies; select

characters until the first trigger point or until the last variable declaration.

Trigger points are reserved keywords, operators and delimiters; which serve as an indication of the

intention of the line. Listing 4 contains the list of trigger points used in the line-level prompt creation

process, which took inspiration from Izadi et al. [55], who utilised trigger points to determine when to

start providing suggestions generated by an LLM in a code editor extension.

assert raise del lambda yield return while for if else elif
global in and not or is with except . + += - -= * / % **
<< >> & | ^ = == != < > <= >= : , ({ ~ @

Listing 4: List of trigger points used for line-level prompt creation.

The only exception when using trigger points happens with the for-loop. As it contains both a trigger
point and one or more variable declarations, it is important to only start generating after the last variable

declaration, as the for keyword is situated before them. Since we utilise a reference solution, every

variable declared is used later within the solution. Because of that, we need to ensure that the model

does not need to generate the variable name, as a different variable name does not necessarily imply that

the implementation itself is wrong. See Listing 5 for an example of a reference solution, and for each

line where it would be split based on the trigger points.

27

def task_func(input_string):
result = ""
lines = input_string.split('\n')
for line in lines:
result += line

return result

def task_func(input_string):
result =
lines =
for line
result +=

return

Listing 5: Example of a reference solution and the corresponding line-level prompts.

To create a prompt for a given line, we first split the line based on the trigger points, as previously

mentioned. Then to create the context, we prepend the reference solution until the current line to the

initial prompt. Listing 6 shows an example of a solution, including which line is selected, and the prompt

for that line.

def task_func(input_string):
result = ""
lines = input_string.split('\n')
for line in lines:
result += line

return result

def task_func(input_string):
result = ""
lines = input_string.split('\n')
for line

Listing 6: Example of a reference solution and the corresponding line-breaks based on the trigger points.

During each line split, we additionally store the line and character index for the prompt, such that

we can substitute the generated solution in the reference solution when testing the generated solutions.

Thus, when aggregating all steps of transforming a reference solution into a set of prompts, we arrive at

the structure as shown in Listing 7 in YAML format.

4.5 Experimental Design

This section outlines the experimental design employed to evaluate the performance, energy consump-

tion, and correctness of code generation with different granularities, detailing the setup, procedures, and

rationale behind key methodological decisions.

4.5.1 Experimental Setup

The first step is to load the models into memory. Both models are 4-bit quantised versions of the respec-

tive base models in GGUF format, conserving memory and removing the necessity of utilising GPUs for

inference. Inference happens through the llama.cpp library [37], which enables inference with mini-

mal setup and state-of-the-art performance on a wide variety of hardware. Both models are loaded with

28

Problem:
id: string
reference:

code: string
complete_code: string
test_code: string

func_prompt:
prompt: string
line_index: int
char_index: int

line_prompts:
- prompt: string

line_index: int
char_index: int

Listing 7: Data structure of the prompts extracted from a problem in the BigCodeBench benchmark.

a context window size of 131072, 8 inference threads, a temperature of 0.25 and a token limit of 512

tokens.

Subsequently, the problems are loaded, which were processed as described in Section 4.4. Follow-

ing that, the problems are shuffled randomly with the random seed 20891019142112125. Finally, the
EnergiBridge runner is instantiated and the experiment is ready to commence.

As energy consumption is highly affected by the hardware temperature, we run a CPU-intensive task

before processing the problems. We calculate the Fibonacci sequence for five minutes. Afterwards, we

process each problem in a stack-based order, determined by the shuffling during the experiment setup.

In the following part, we explain all the steps of processing one problem.

The experiment hardware is a MacBook Pro M1 (14-inch, 2021) with a 10-core CPU and a 16-core

GPU, 16GB of RAM and support for 8 threads. Subsequently, we use a batch size of 512 for data

processing.

4.5.2 Problem Processing Procedure

In the next part, we explain what the procedure entails for processing one problem of the BigCodeBench

dataset. Each problem contains a function-level prompt and multiple line-level prompts, for which we

will generate solutions. To account for the variance of the energy measurements, we repeat the procedure

multiple times (N = 30, which we elaborate on later).
Initially, we need to determine the current progress of the problem. All generation results are stored

in a .jsonl file per granularity and model size, and this allows us to determine the progress by counting

the number of lines within the file. For all four granularity–model size combinations, we prioritise

processing the methods with the fewest results. Consequently, if for each combination the number of

lines is equal to N , we can conclude the problem is finished and start the next problem. Additionally,

using the file structure to track progress allows us to resume the experiment from where it left off if any

issues arise.

When generating tokens with llama.cpp, it parses, evaluates and caches the prompt. Thus, we

evaluate the function-level prompt and reference solution before generatingwith bothmodels to eliminate

the increased energy usage of the first generation with either model.

For each repetition, we shuffle the four combinations to reduce the bias of external conditions be-

tween executions. The code generation differs between function-level prompts and line-level prompts,

so we cover these separately. But the general process of measuring the energy consumption is starting the

EnergiBridge runner, performing code generation and then stopping the EnergiBridge runner to collect

the energy and time measurements. For a more in-depth explanation of the energy measurement process,

see Section 4.6.

29

For each function-level prompt, we only have one code block to generate, however, knowing when to

stop generating is not trivial. Language models generate tokens for a set amount of tokens or until a stop

token sequence. In a line-level prompt, the stop token is the \n character, indicating the end of a line.

However, there is no definite stop token sequence that indicates the end of a function implementation. A

rudimentary approach would consider \n\n, however, an empty line in a generated solution would also
trigger this stopping condition—something we do not want.

To determine appropriate stop token sequences, we generated 100 solutions from randomly sam-

pled function-level prompts in the dataset, with both the small and large models. Based on a manual

inspection of the excessive token generation within these solutions, we arrived at the following stop to-

ken sequences: \n\ndef, \n\nif, \n\nprint and \n\n#. This covers function definitions, comments,
print-statements and the main guard. Additionally, we use the default stop token sequence of the models:

<|endoftext|>.
In contrast to the single function-level prompt, we have multiple line-level prompts per problem—

one for each line. The process is similar to the function-level generation, with some slight differences.

Firstly, the stop token in line-level generation is \n, alongside the <|endoftext|> token. Secondly,

we combine the energy measurement of all line-level generations, because energy measurements with

EnergiBridge become more reliable with increased sample time, and line-level completions can take

insufficient time if only a small number of tokens is generated.

For each code generation—function-level and line-level—we store the generated text, including the

individual tokens and their corresponding log probabilities. Additionally, we store the finish reason,

which is either stop if the generation was terminated by the stop token sequence, or finish if the maximum

number of tokens was generated.

GenerationResult:
outputs:
- text: string

tokens: list[string]
logprobs: list[float]
finish_reason: string

metrics:
- energy: float

energy_per_token: float
time: float
time_per_token: float

Listing 8: Data structure of the generation result.

We store the gathered information in the data format as shown in Listing 8. This generation result

will be appended to the end of the results file of the current combination of prompt type and model size.

4.5.3 Rationale for Repetition Count

Due to the probabilistic nature of token generation with LLMs, we need to repeat the experiment multiple

times to ensure we capture the variability in possible answers. Subsequently, as energy usage fluctuates

over time based on external factors, we similarly need to repeat energy measurements and aggregate the

results. In the following paragraphs, we first highlight the minimum repetitions for token generation,

followed by the explanation for repeated energy measurements.

The best-case scenario would be that we could generate an infinite amount of line- and function-

level completions, however, due to the limitations of reality this is deemed infeasible. Conversely, the

best-case scenario would be a deterministic output, such that it always generates the correct answer—

something also impossible for now. However, to determine howmuch variability exists within line-level

generations, we composed a small experiment with a subset of the problems. The goal of the experiment

30

was to see how many unique line-level generations were generated for different prompts.

Figure 8: Distribution of the number of unique line-level generations per line.

From the dataset, we sampled eight problems comprising roughly 200 prompts. For each line, we

utilised the prompts as described previously and performed 100 line-level completions. Then for each

list of completions, we determine how many of them are unique. In Figure 8, one can see the distribution

of the number of unique line-level completions, aggregated on a per-line basis.

Upon investigating the distribution, we can see a steep peak at the beginning—indicating the model

does not deviate, or only slightly, in most line-level completions from a small set of unique completions.

The distribution seems to follow a power-law distribution, as described in Equation 2. Utilising the

scipy library, we compute the constants a and b such that they best fit the data. We arrive at a = 0.64784
and b = −1.8842.

f(x) = a · xb (2)

Multiple different options can be correct for a given line, however, we want to capture as much

variability between completions without generating too many suggestions. To ensure we capture the

most variability of unique solutions, we aim to find the number of unique generations most lines end up

with. In our case, we deem 95% to be enough to get a statistically sound sample of the unique lines that

could be generated.

To arrive at 95% of the unique solutions, we first need to calculate the area of the complete curve and

of a partial curve, as shown in Equation 3. Since we know the minimum and maximum possible unique

generations—1 and 100—we can utilise these values as xmin and xmax.

Atotal =

∫ xmax

xmin

a · xbdx

Apartial =

∫ x′

xmin

a · xbdx
(3)

As we want 95% of the variability, we need to set the Atotal to 0.95 · Apartial, and solve for x′, as
highlighted in Equation 4. Solving the equations gives x′ = 21.55986 . . . ≈ 22. Thus, the minimum
number of generations per line needs to be at least 22 to get the expected variability.

Atotal = 0.95 ·Apartial∫ 100

1
a · xbdx = 0.95

∫ x′

1
a · xbdx

(4)

The second part involves the needed repetitions for reliable energy measurements. No exact or cor-

rect number of repetitions exists for energy measurement, as it depends on the objective of the research,

31

available resources and environmental constraints. However, other researchers suggest 30 repetitions,

as this is often enough for the data to be normally distributed [49, 72]. To ensure we capture the most

variability and allow for a big enough sample size such that the data can be normally distributed, we opt

for a repetition count of N = 30.

4.5.4 Test Setup and Verification

In the following paragraphs, we explain the setup to verify if the function-level and line-level generations

are correct. We first verified syntax, then compiled and tested each solution to quickly discard incorrect

ones. Subsequently, we describe how we test the solutions to arrive at an expected pass rate measure.

Let P = {P0, P1, . . . , PM−1} be a set of M problems, where M = 1, 140 (the size of the Big-

CodeBench dataset). Each problem Pi ∈ P has an associated test suite Ti. For each problem Pi, we

have a set of N = 30 function-level generations, denoted by GF
i = {GF

i0, G
F
i1, . . . , G

F
iN−1}. Further-

more, for each problem Pi and each line j within that problem, we have a set of N = 30 line-level

generations, denoted by GL
ij = {GL

ij0, G
L
ij1, . . . , G

L
ijN−1}.

The first step is to verify syntactical correctness for the function- and line-level generations utilising

the ast module. For function-level generations, we select the function implementation, discard excess

tokens and generate the abstract syntax tree. For line-level generations, we substitute the generated line

in the reference solution and verify the correct syntax. The function- and line-level generations that did

not generate a correct abstract syntax tree, we add to GF
fail ⊆ GF and GL

fail ⊆ GL; the sets of incorrect
generations for each generation type.

New solutions are created by replacing the function implementation in the reference solution, where

SF
i is a function-level solution for problem Pi. With function-level generations, it is trivial to determine

the pass rate for a specific problem. For a given solution SF
i , we only need to assess whether it passes

the associated test suite Ti, as highlighted in Equation 5.

passF (S
F
i) =

{
1 SF

i passes Ti

0 otherwise
(5)

To arrive at a pass rate for a specific problem, we calculate it with the equation shown in Equation 6.

PassRateF (Pi) =
1

N

N∑
n=1

passF (S
F
in) (6)

However, for line-level generations, calculating a pass rate for an individual line is significantly

harder. With function-level generations, we know exactly the amount of solutions we need to test—

30 per problem. Conversely, with line-level generations we have 30 generations per line, and as these

generations are independent of one another, the total number of unique solutions scales exponentially in

the length of the reference solution.

For line-level solutions, we can substitute anywhere from 1 line to every line in the reference solution,

arriving at SL
i = {SL

i0, S
L
i1, . . . , S

L
ij}, with

SL
ij =


1 if line j is substituted with a

generation from GL
ij \GL

fail

0 otherwise

The average length of a reference solution is 10 lines long, giving an upper limit of 3010 possible

solutions—an impossibly large number of solutions to check. Instead, we calculate an expected pass rate

with a Monte Carlo simulation (MCS). MCS relies on repeated random sampling to obtain a numerical

result [77]. We determine for a subset of the solutions if they pass the test suite and with those results

calculate the expected test pass rate.

32

During MCS, S
L(k)
i denotes a solution with 1 ≤ |L(k)| ≤ |Si| lines substituted, where L(k) ⊆

{1, 2, . . . , |Si|} is the substituted lines in the currentMCS iteration k. To determine if a line-level solution
is correct, we utilise Equation 7.

passL(S
L(k)
i) =

{
1 S

L(k)
i passes Ti

0 otherwise
(7)

Utilising the pass function, we can calculate the expected pass rate for each line with the MCS, as

described in Equation 8. We performK iterations where we sample a random number of lines to substi-

tute with a generated line to create a new solution, which we verify against a test suite for correctness.

We opt for a sufficiently large valueK = 10000.

E[PassRateL(Pi)] =
1

K

K∑
k=1

passL(S
L(k)
i) (8)

Furthermore, we can utilise the expected pass rate for a given line to calculate the expected pass rate

of a certain fraction 0 ≤ ϕ ≤ 1 of lines, as highlighted in Equation 9. Lϕ ⊆ {1, 2, . . . , |Si|} is the set of
randomly chosen lines to substitute in iteration k for problem Pi, with |Lϕ| = dϕ · |Si|e.

E[PassRateΦ(Pi, ϕ)] =
1

|Lϕ|
∑
j∈Lϕ

E[PassRateL(Pi)] (9)

With the expected pass rate for a problem and a certain fraction of lines substituted, we can aggregate

this for all problems in the dataset to get an expected pass rate per fraction, as shown in Equation 10.

E[PassRateΦ(ϕ)] =
1

M

M∑
i=1

E[PassRateΦ(Pi, ϕ)] (10)

After performing the substitution of line-level generations in the reference solution, and running it

against a test suite, we store it in .jsonl files per problem. The data structure is shown in Listing 9.

MonteCarloSimulationResult:
selected_lines: list[int]
result:
- code: string

compilation_passed: boolean
tests_passed: boolean
error: optional[string]
time: float

Listing 9: Data structure of the Monte Carlo simulation result.

4.5.5 Quantifying Impact of Excess Tokens

During token generation, albeit line-level or function-level completions, not all tokens are necessary

for the correct functionality of the code, and thus is it important to determine the efficiency of token

generation. In the next paragraphs, we highlight three types of excess tokens that can be generated,

including examples.

Firstly, the most obvious type of excess token generation is subsequent tokens following the function

implementation. As the goal is to solve a given problem based on a function description, any tokens

that are generated after the implementation can be considered excess tokens. Secondly, we regard all

33

def add_numbers(a, b):
Add both numbers
result = a + b
print('Result is', result)
return result

if __name__ == '__main__':
assert add_numbers(1, 2) == 3

Listing 10: Example of excess tokens, including comments, print statements, and post-implementation

code.

comments as unnecessary tokens as they do not provide any additional benefit during our experiments

and they do not impact functionality. Finally, we regard print- and log-statements as excess tokens as

none of the problems depend on print-statements for a correct implementation.

Listing 10 is an example of the types of excess token generation, where the lines with excess tokens

are highlighted. From top to bottom, the highlighted lines are: comment, print-statement, and post-

implementation code. For each line- and function-level generation, we utilise Equation 11 to determine

the proportion of excess tokens.

ρe =
τc + τp + τa

τ
(11)

Where:

• ρe: Proportion of excess tokens

• τc: Tokens from comments

• τp: Tokens from print-statements

• τa: Tokens after function implementation

• τ : Total number of tokens

For the function in Listing 10, we can calculate the proportion of excess tokens. Let us assume

the comment contains 5 tokens, the print-statement contains 10 tokens and 15 tokens after the function

implementation. If the total number of generated tokens is 60, we arrive at a proportion of excess tokens

of (5 + 10 + 15)/60 = 0.5.

4.5.6 Quantifying Impact of Incorrect Suggestions

Besides excess tokens during generation, we need to consider the possibility that the generated solutions

are incorrect and the impact that has on energy consumption. To facilitate a fair comparison, we only

compare function-level completions with line-level completions where each line in the reference solu-

tion is substituted. To determine the impact of incorrect suggestions on energy consumption, we utilise

Equation 12.

Ewasted =

{
0 S passes T

τ · ε otherwise
(12)

Where:

• Ewasted: Wasted energy

• S: Generated solution

• T : Test suite

34

• τ : Total number of tokens in S

• ε: Energy per token

If a generated solution S passes the test suite T , no energy is wasted. Otherwise, the wasted energy
is proportional to the total number of tokens τ in S, multiplied by the energy cost per token ε.

4.5.7 Operational Considerations

In practice, we encountered two notable challenges during the testing process:

• Memory Constraints: Due to the large amount of executed test cases in combination with the

interpreted nature of Python, eventually the memory usage of the process exceeds the available

system memory. To combat this, we periodically check the memory usage, and if it exceeds the

threshold of 99%, we restart the process.

• Time Constraints: Some implementations of reference solutions or unit tests are inefficient. Unit

tests should execute quickly, aiming for 0.01 seconds with a maximum of 1 second in isolation

[86]. Thus, we considered only the problems where unit test execution time did not exceed 1

second.

To determine which problems to skip, we executed each reference solution against its test suite mul-

tiple times, recorded the times it took to execute, and averaged them. In Figure 9, one can see the

cumulative time it took to execute the tests for each problem, sorted by execution time. In total, execut-

ing all test suites took on average 480 seconds, with all the test suites that exceeded 1 second accounting

for 445 seconds. Essentially, 9.3% of problems took 92.7% of the total execution time.

Figure 9: Percentage of test cases versus cumulative execution time, with the boundary highlighted for

the selected problems.

Upon inspection of each skipped problem, we found common themes among the implementations or

test suites that contributed towards the long execution time. The most prominent reasons were extensive

plotting, file operations and delays (e.g. time.sleep). In Table 4, one can see what contributed most
often towards a slower execution time. See Appendix A, Table 9 for the reasons each problem was

skipped.

4.6 Energy Measurement

Energy measurement plays a crucial role in evaluating the efficiency of our experimental methods, en-

abling us to quantify the energy consumption during execution. To facilitate energy measurements, we

utilized the EnergiBridge library [30], a Rust-based tool compatible with Linux, Mac OS, and Windows,

35

Reason Amount

plotting 46

file operations 18

delays 14

train ML model 11

large input size 10

network operations 7

image manipulation 5

math operations 5

cryptography 3

compilation 1

Table 4: Breakdown of factors contributing to test suite slowness, ranked by frequency of occurrence.

from pyEnergiBridge.api import EnergiBridgeRunner

runner = EnergiBridgeRunner()
runner.start()
Measures energy for the code here
energy, time = runner.stop()

Listing 11: Example code of how to use the PyEnergiBridge wrapper.

and supports Intel, AMD, and Apple ARM CPU architectures. EnergiBridge collects CPU and GPU

power usage in intervals for a specified time frame and returns, either a summary of energy consump-

tion, or prints the results to a CSV file. We utilised an interval of 100 milliseconds.

Given that our experiments were implemented in Python, we used PyEnergiBridge [25], a Python

wrapper for EnergiBridge. PyEnergiBridge provides an interface to initiate energy measurement pro-

cesses, manage their execution, and retrieve results upon completion. This integration ensured seamless

compatibility between our Python-based experiments and the measurement capabilities of EnergiBridge.

See Listing 11 for an example of the PyEnergiBridge wrapper usage.

While the setup described above provides a solid foundation for the methodology, potential issues in

energy measurements must be considered and mitigated before the experiment begins. Given the unreli-

able nature of energy measurements, we aimed for consistent settings throughout the experiment. These

mitigations included closing all applications, terminating unnecessary background processes, disabling

WiFi, and reducing screen brightness to its minimum. Additionally, as previously mentioned, we per-

formed a five-minute CPU-intensive task before starting the experiment to decrease the variability of the

measurements.

One issue with our approach is the tail energy consumption associated with energymeasurements, for

which the mitigation is a pause between measurements. The recommended wait time is approximately

oneminute. However, due to the large number ofmeasurements and their significantly shorter duration—

one second versus one minute—we decided not to include a pause between executions.

4.7 Evaluation Metrics

In this subsection, we provide a clear description of the evaluation metrics used to assess the models’

performance in terms of energy consumption and code correctness.

36

4.7.1 Energy Efficiency

Energy efficiency is a critical measure of performance, particularly for large-scale models. To evaluate

energy consumption, we utilise the EnergiBridge tool, which measures both the total energy used during

the code generation process as well as the energy consumed per token generated. These metrics are

defined as:

• Total Energy: The total energy consumed during the generation, measured in Joules (J).

• Energy per Token: The average energy consumed per generated token, measured in Joules (J).

4.7.2 Time Efficiency

In addition to energy, the time required for code generation is important for assessing efficiency. We

measure the time taken to generate the function-level and line-level completions with the following key

metrics:

• Total Time: The total time taken during the generation, measured in seconds (s).

• Time per Token: The average time taken per generated token, measured in seconds (s).

4.7.3 Correctness

Correctness is evaluated by testing the generated code against predefined test suites for each problem. For

both function-level and line-level generations, correctness is assessed through the test pass rate, which is

the percentage of generated solutions that pass the corresponding test suite. For an in-depth explanation

of how the test pass rate for function-level and line-level completions is determined, see Section 4.5.4.

4.8 Summary

The methodology of this experiment is designed to compare the energy consumption of code generation

using two LLMs from the Yi-Coder family with two different model sizes (1.5B and 9B), focusing on

function-level and line-level code completions. Key variables include prompt type, model size, energy

consumption, and test accuracy. The experiment uses the BigCodeBench dataset, comprising 1,140

Python programming problems. Code completion is evaluated using test suites, ensuring the correctness

of the generated code.

For prompt creation, function-level prompts are derived directly from the BigCodeBench dataset,

while line-level prompts require splitting the reference solution into individual lines, using trigger points

and context to guide generation.

The models used are 4-bit quantised versions of the base models, loaded in GGUF format. This

reduces memory usage and removes the need for GPUs. Inference is performed using the llama.cpp
library. The models are set with a context window size of 131072, 8 inference threads, a temperature of

0.25, and a token limit of 512. The problems are processed after being shuffled randomly, with a CPU-

intensive task (calculating the Fibonacci sequence) run beforehand to normalise hardware temperature.

The experiment runs on a MacBook Pro M1 with a 10-core CPU, 16-core GPU, and 16GB of RAM, and

processes data in batches of 512.

Each problem consists of a function-level and multiple line-level prompts, for which solutions are

generated. The energy consumption and time are measured using EnergiBridge, and the Python wrap-

per PyEnergiBridge. For function-level prompts, one solution is generated, whereas line-level prompts

generate one solution per line. The generation is repeated 30 times to account for variability. Tokens are

parsed, evaluated, and cached during generation to eliminate energy bias from the first generation. The

energy consumption is measured for each generation.

Repetition is necessary due to the probabilistic nature of token generation, which leads to variability

in answers. To ensure reliable energy measurements, the experiment is repeated 30 times, which is

standard practice to attain a normal distribution of energy data. Additionally, variability in line-level

37

generations was studied by sampling 8 problems and performing 100 line-level completions per problem.

From this, the number of unique line-level generations needed to achieve 95% of the possible variations

was calculated to be 22 repetitions per line minimum.

To verify the correctness of the generated code, initial syntax checks are followed by compiling

the solutions and running them against the test suite. Function-level generations are directly evaluated

against the test suite, while line-level generations require a Monte Carlo simulation (MCS) to handle the

large number of possible solutions generated by different combinations of line substitutions. The MCS

iterates 10,000 times to estimate the expected pass rate for line-level generations.

Challenges include memory and time constraints. Memory usage is monitored, and processes are

restarted if they exceed 99% of usage. Time constraints are addressed by only considering problems

where test execution times do not exceed 1 second, as longer tests would consume disproportionate

resources.

To evaluate model performance, we utilise energy consumption, time, and correctness as evaluation

metrics. Key energy metrics include total energy and energy per token. Time efficiency is measured

by total time and time per token. Correctness is assessed by testing generated code against predefined

test suites, with pass rates calculated for both function-level and line-level generations, the latter using a

Monte Carlo simulation.

38

5 Results

This section presents the results from the experiment designed to compare the energy consumption of

code generation using Yi-Coder models. Utilising the BigCodeBench dataset we created prompts to

perform line-level and function-level generations. Key variables considered include prompt type, model

size, energy consumption, and test accuracy. The experiment, conducted over 17 days, resulted in 3.8

kg CO2eq emissions, equivalent to running an LED light bulb for 500 hours [16].

We begin by summarising the characteristics of the collected data before addressing each research

question individually. As summarised in Table 5, the small and large models differ notably in their

compilation and test pass rates.

Model Size Total Solutions Compilation (Passed/Failed) Tests (Passed/Failed)

Small — 1.5B 26596 25636 (96.4%) / 960 (3.6%) 21190 (82.7%) / 4446 (17.3%)

Large — 9B 26344 25587 (97.1%) / 757 (2.9%) 23145 (90.5%) / 2442 (9.5%)

Table 5: Performance statistics of line-level code generation for small (1.5B) and large (9B) models,

including compilation and test pass/fail rates.

To assess the difference in quality between the line-level completions of the small and large models,

each generation was compiled and tested individually. Table 5 presents the statistics for the compilation

and test results. The small model exhibited a 3.6% compilation failure rate, slightly higher than the 2.9%

of the large model. Among the successfully compiled generations, the small model had a 17.3% test case

failure rate, considerably higher than the 9.5% failure rate observed for the large model. This suggests

that the larger model produces higher-quality line-level solutions, outperforming the smaller model in

compilation and test pass rates.

After analysing the compilation and test pass rates, we observed a difference in the log-probabilities

of token generation across model sizes and completion granularities. For the small model, the aver-

age log-probability was −0.2 for line-level completions and −0.32 for function-level completions. For
the large model, line-level completions had an average log-probability of −0.14, while function-level
completions showed a value of −0.24. A value closer to 0 indicates a higher likelihood.

Additionally, the distribution of unique generations per line follows a similar distribution as high-

lighted in Section 4.5 as expected. Figure 10 shows the distributions, which both follow a power-law

distribution.

Figure 10: Distribution of unique generations per line for the small (1.5B) and large (9B) models.

5.1 Energy Consumption for Different Completion Granularities

In this subsection, we address the first research question, focused on the difference in energy consumption

between line-level and function-level completions. Line-level completions generate tokens until a \n

39

token, and function-level completions generate tokens until the end of a function implementation—a less

precisely defined boundary. The different granularities might exhibit different characteristics regarding

the total generated tokens, thus influencing energy consumption.

Research Question 1: How does energy consumption com-

pare between line-level and function-level completions?

Table 6 contains an overview of the experiment statistics for each model size–granularity combina-

tion. For both model sizes, function-level completions generated significantly more tokens. The small

model generated 42% more tokens, compared to a 51% increase with the large model. The total energy

consumption is higher, but not as drastic, with an increase of 14% for both model sizes, respectively.

Similarly, the total generation time is similar for both granularities, with an increase of 6% for the small

model and 4% for the large model. When energy consumption is converted to CO2eq emissions, the

small model produced 478g and 417g CO2eq, for function-level and line-level completions, respec-

tively. The large model generated 1593g for function-level completions and 1393g CO2eq for line-level

completions.

Model Size Granularity Tokens Energy (MJ) Time (s)
Carbon Emissions

(g CO2eq)

Small — 1.5B Function-level 5391274 6.410575 244299 478

Small — 1.5B Line-level 3798085 5.592815 230859 417

Large — 9B Function-level 5808864 21.370993 518476 1593

Large — 9B Line-level 3848681 18.679031 499250 1393

Table 6: Results of experiments with energy, time, and carbon emissions statistics. Carbon emissions

are calculated using the carbon intensity of the Netherlands in 2023 [32].

Figure 11: Distribution of total energy per generation for line-level and function-level completions across

both model sizes.

To delve deeper into the energy consumption characteristics of the experiments, Figure 11 shows the

distribution of the energy consumption per generation. Note that the line-level generations for one prob-

lem are grouped per iteration. For both model sizes, each granularity follows a similar distribution. The

function-level distribution is roughly normal with a skew toward lower values. Secondary peaks appear

at higher values, accompanied by a long tail, suggesting asymmetry and a possible bimodal distribution.

The line-level distribution appears roughly normal, with a skew toward lower values and a pronounced

long tail on the higher end, suggesting asymmetry for larger values.

Additionally, not all function-level completions terminated due to generating a stop token sequence.

For the small model, 21% of the completions generated tokens until the token limit, compared to 25%

with the large model. This might explain the secondary peaks in Figure 11 within the upper quartiles.

40

Subsequently, we can consider a cumulative distribution function of the normalised energy consump-

tion per generation, as shown in Figure 12. This highlights the difference between function-level and

line-level completions, where in line-level generations the average energy consumption is significantly

less than the peak energy consumption. Roughly 80% of generations consumed less than 20% of the

maximum with line-level completions, compared to 10% of the maximum with function-level comple-

tions. Similarly, 95% of line-level completions consumed less than 40% of the maximum, compared to

only 40% of function-level completions.

Figure 12: Cumulative distribution function of normalised energy consumption per generation, for line-

level and function-level completions.

5.1.1 Quantitative Impact of Excess Token Generation

In the following paragraphs, we consider the impact of excess token generation on energy consumption.

Excess token generation can be defined concisely as any tokens generated that do not influence the

functionality of the code; e.g. tokens generated after the function implementation, comments and print-

statements. For an in-depth explanation of excess token generation, see Section 4.5.

Research Question 1.1: What is the quantitative impact of ex-

cess token generation on energy consumption?

The excess token generation calculation results, as shown in Figure 13, show a large difference be-

tween the token efficiency of function-level and line-level completions. For function-level completions

with the large model, the lower quartile exhibited a maximum excess token percentage of 12%, 17% for

the median and 24% for the upper quartile. In comparison, the function-level generations with the small

model had higher token efficiency. The lower quartile range started at 9%, the median at 13% with an

upper quartile at 18%.

Comparatively, both models exhibit significantly higher token efficiencies when utilising the line-

level granularity. For the large model, the lower quartile ranged from 0.3% to a median of 0.6%, with an

upper quartile at 1.2%. Similarly, the small model exhibited high token efficiency with a lower quartile

ranging from 0.3% to a median of 0.5%, and an upper quartile range of 0.9%.

To assess the statistical significance, we utilise either a T-test or a U-test. For a T-test, the data needs

to be normally distributed, whereas the U-test is a nonparametric statistical test. We utilised the Shapiro–

Wilk test [98] to test for normality. See Table 7 for an overview of the P-values associated with each

model size and granularity. A P-value greater than α = 0.05 indicates the data is most likely normally

41

Figure 13: Proportion of excess tokens generated for different model sizes and granularities.

Model Size Granularity P-value

Small — 1.5B Function-level 3× 10−33

Small — 1.5B Line-level 2× 10−28

Large — 9B Function-level 5× 10−40

Large — 9B Line-level 9× 10−40

Table 7: Shapiro-Wilk test p-values for normality assessment of model size and granularity combinations

in excess token calculation.

distributed, and as none of the values exceed that α, we cannot utilise the T-test to determine statistical
significance.

After determining all energy consumption distributions were not normally distributed, we opted for

the Mann–Whitney U test to assess if the differences between the distributions were statistically sig-

nificant. The Mann–Whitney U test is a nonparametric statistical test that checks if, for two randomly

selected values X and Y from two populations, the chance of X being greater than Y is the same as

the chance of Y being greater than X [73]. It returns a P-value, where if that is smaller than 0.05, the

difference is statistically significant.

To assess the statistical significance between the results, we calculate the P-value for each unique

combination where either model size or granularity differs. The most significant differences exist with

the comparison between line-level and function-level completions. For the small model, the P-value is

1× 10−256, and the large model exhibits a P-value of 2× 10−263.

For the difference between model sizes with the same granularity, the results are also statistically

significant. The P-value for function-level completions is 3× 10−27 and for line-level completions, it is

0.012. This indicates all differences are statistically significant, however, the largest differences exist in
the differences between granularities.

5.1.2 Quantitative Impact of Incorrect Suggestions

In the following paragraphs, we show the impact of incorrect suggestions of different model sizes and

granularities, regarding wasted resources during token generation. For an in-depth explanation of the

methodology, see Section 4.5.

Research Question 1.2: What is the quantitative impact of in-

correct suggestions on energy consumption?

Figure 14 shows the distribution of wasted energy consumption of incorrect solutions per problem.

For function-level completions, this is an aggregation of the energy consumption per solution, whereas

42

for line-level completions the solutions are taken from the Monte Carlo Simulation where each line is

substituted in the reference solution.

Figure 14: Wasted energy consumption due to incorrect suggestions for different model sizes and gran-

ularities.

For both model sizes, the function-level completions exhibit lower wasted energy due to an increased

test pass accuracy. For the function-level completionswith the largemodel, the lower quartile range starts

at 480J with a median of 700J. For line-level completions, however, the lower quartile range sits at 340J

with a median of 530J. Conversely, for the small model, the function-level completions have a lower

quartile range of 130J with a median of 200J. Subsequently, the line-level completions exhibit a lower

quartile range at 100J and a median of 160J.

Model Size Granularity P-value

Small — 1.5B Function-level 4× 10−4

Small — 1.5B Line-level 4× 10−13

Large — 9B Function-level 1× 10−25

Large — 9B Line-level 6× 10−28

Table 8: Shapiro-Wilk test p-values for normality assessment of model size and granularity combinations

in wasted energy consumption due to incorrect suggestions.

Similarly, as with the excess token calculations, it is vital to determine the statistical significance

between the observations. Table 8 shows the P-values for the Shapiro–Wilk normality tests. All P-

values do not exceed the threshold of α = 0.05, and thus, are all not normally distributed.
We employ the Mann–Whitney U test to assess if the differences between results are statistically

significant. As the proportion of wasted energy consumption for incorrect suggestions is directly linked

to test pass accuracy, we opt to only compare the different granularities with the same model. Comparing

the line- and function-level completions with the small model had a P-value of 4 × 10−20, whereas the

large model had a P-value of 9× 10−23. Both sets of observations are statistically significant.

To summarise the findings for the first research question, function-level completions consume more

energy than line-level completions. The lower bound of function-level completions is comparable to

line-level completions, but function-level completions contain a secondary peak of higher energy con-

sumption due to continued token generation until the token limit. Line-level completions exhibit sig-

nificantly higher token efficiency—approximately 30× higher. Furthermore, we found no substantial

difference in the impact of incorrect suggestions between function-level and line-level completions.

43

5.2 Carbon Emission Reductions Through Model Substitution

In this subsection, we address the second research question, focused on carbon emission reduction if we

substitute a large model performing function-level completions with a small model performing line-level

completions. Comparing both models involves calculating a test pass accuracy for the different granu-

larities, including for different fractions of line-level completions substituted in the reference solution.

Research Question 2: What reduction in carbon emissions can

be achieved by substituting a smallermodel for a largermodel,

without compromising accuracy?

Before we delve deeper into the carbon emission reductions, we highlight the test pass accuracy of

the different models and granularities. Figure 15 compares function-level completions with line-level

completions substituted in each line of the reference solution. Upon manual investigation, we identified

a discrepancy in test pass accuracy of shorter and longer solutions.

We calculated the Spearman correlation coefficient ρ between the number of lines substituted and

the test results. The Spearman correlation coefficient measures the strength of a monotonic relationship

based on ranks, not values [100]. For the small model, ρ = −0.76 and for the large model, ρ = −0.74.
For both model sizes, the correlation coefficients indicate there is a strong, but not perfect, inverse rela-

tionship between the number of substituted lines and the test pass accuracy.

Due to the discrepancy between short and long solutions, we opted to divide the reference solutions

into two groups: those with a length less than 10 and those with a length greater than or equal to 10.

Based on the distribution of reference solution lengths discussed in Section 4.3, this threshold provides

an approximately even split.

Figure 15: Comparison of test pass accuracy between function-level completions and multiple line-level

completions, where each line in the reference solution is substituted.

For the problem with a short reference solution, the test pass accuracy is higher for the function-level

completions for both model sizes. For the small model, the median of the function-level completions is

46%, compared to 35% with line-level completions. For the large model, the median of the function-

level completions is 70%, whereas the median of the line-level completions is 54%. When considering

the long solutions, for the small model, the median of the function-level completions is 20%, and 5% for

line-level completions. For the large model, the median is 26% for function-level completions and 12%

for line-level completions.

Figure 16 shows the test pass accuracy for each fraction of line-level completions. Overall, a down-

ward trend in test pass accuracy is observed as the fraction of substituted lines increases, which aligns

with our expectations. Both splits—one with a reference solution length of less than 10 and the other

with more than 10—show that the large model consistently outperforms the small model.

44

Figure 16: Test pass accuracy for different fractions of line-level completions for both model sizes, split

by solutions with a maximum length of 10.

To facilitate a comparison between line-level completions and function-level completions, we needed

to assess from which fraction of lines substituted within the reference solution line-level completions

outperform function-level completions. Figure 17 shows at which fraction both models with line-level

completions outperform the large model with function-level completion. A fraction of 1 indicates all

lines can be substituted, and it still outperforms the function-level solutions. Conversely, a fraction of 0

indicates the line-level solutions never outperform the function-level solutions. Ideally, we want to be

able to substitute each line with a line-level completion and still outperform the large model, thus values

closer to 1 are better.

Figure 17: Distribution of increased accuracy of line-level completions compared to function-level com-

pletions, for both model sizes.

For the large model, in approximately 40% of problems, all lines can be substituted with line-level

completions and the performance is increased. Subsequently, only 15% of the line-level completions

never outperform the function-level completions. Following the small model, it performs worse but is

not far behind. In around 30% of problems, the small model outperforms the large model with function-

level completions if all lines are substituted and in only 22% of cases, it never outperforms the large

model with function-level completions.

45

5.2.1 Comparison of Energy and Time Per Token

To allow for a deeper comparison between different granularities, we delve into the characteristics of

individual token generation in the following paragraphs.

Research Question 2.1: How do energy per token and time

per token compare?

Firstly, it is important to consider the energy per token distribution, indicating howmuch energy each

token takes to generate for different granularities and model sizes. Upon inspection of the distributions

in Figure 18, one can see that the same granularity exhibits the same pattern, albeit with the small or large

model. Similarly, as with the energy per function-level completion, the distribution has a peak beside

the mean, which is an indication of non-normality during generation. This is most likely explained

by the inconsistency of generating until the end of the function definition and continuing to generate

until the token limit. The energy per token for line-level completions is similar to that of function-

level completions, however, the mean is shifted towards higher energy consumption with extended tails

towards the extremes.

Figure 18: Energy per token violin plot for all model sizes and granularities.

When considering the time per token instead, as illustrated in Figure 19, the distributions exhibit

the same patterns as with the energy per token distributions. For function-level completions, one peak

exists at a lower value, and one smaller peak exists at a higher time per token. Subsequently, for line-

level completions, it follows the same distributions as with energy per token; a normal distribution with

extended tails towards the extreme values.

Figure 19: Time per token violin plot for all model sizes and granularities.

46

5.2.2 Carbon Emissions Reduction Overview

Now that we have uncovered when line-level completions outperform function-level completions, we

can consider the carbon emissions reductions possible by switching from function-level completions to

line-level completions. As the small model can still often outperform the large model, as shown in Figure

17, we can consider the carbon reductions at the first fraction of line-level completions where the small

model outperforms the large model.

Figure 20: Carbon emissions reduction when the small model with line-level completions outperforms

the large model with function-level completions.

Figure 20 shows the reduction in carbon emissions when the small model with line-level completions

outperforms the large model with function-level completions. The figure contains a kernel density esti-

mate plot; a method for visualising the distribution of observations in a dataset, analogous to a histogram.

Outliers were removed if they exceeded the interquartile range bymore than 50%. The distribution shows

a primary peak at a reduction of 9×, with a long tail extending to approximately 70×.

By considering both the line-level and function-level completions of the small and large models, we

can compare the carbon emission reductions across different completion granularities. Figure 21 shows

the carbon emission reductions where line-level completions outperform function-level completions for

a given problem. For the small model, the carbon emissions are reduced by a factor of 9× in the lower

quartile, 16× at the median, and 31× in the upper quartile. For the large model, the reductions are 2.5×
in the lower quartile, 4.5× at the median, and 9× in the upper quartile.

In Figure 22, one can see the potential decrease in carbon emissions per fraction of lines completed,

disregarding if the small model with line-level completions outperforms the large model with function-

level completions. When considering the fraction [0.6, . . . , 1.0], we can see the interquartile ranges do
not deviate much. Lower quartile ranges start at a 4× decrease up to a 6× times decrease, with almost

half of all problems expected a reduction of around 10×.

In summary, switching from function-level to line-level completions has the potential to achieve

significant reductions in carbon emissions, particularly when we can utilise the small model with line-

level completions as a substitution for the large model with function-level completions. Carbon emission

reductions range from 4.5× without model substitution to as much as 9× with model substitution.

47

Figure 21: Comparison of carbon emission reduction when line-level completions outperform function-

level completions, between the small and large models.

Figure 22: Potential carbon emissions reduction across different fractions of line-level completions.

5.3 Summary

This section presents results regarding an energy consumption comparison in LLM code generation. The

study, conducted over 17 days with the BigCodeBench dataset, examined line-level and function-level

completions across small (1.5B) and large (9B) models. The results revealed several key findings. The

larger model outperformed the smaller model in terms of both compilation success and test pass rates.

However, when comparing energy consumption between the two granularities, function-level com-

pletions were found to generate more tokens and consume more energy than line-level completions.

Specifically, there was an increase of 14% in energy consumption for both sizes when performing

function-level generation. Despite this, the small model exhibited better token efficiency, generating

fewer excess tokens.

Statistical analysis confirmed that the differences in energy consumption and efficiency between the

granularities were significant, further supporting the observed trends. One interesting finding was that

incorrect suggestions resulted in higher energy waste for line-level completions. Conversely, function-

level generations demonstrated more efficient energy usage in that regard.

While function-level generation typically consumed more energy, line-level generation proved to

be more efficient regarding token usage and energy consumption, highlighting its potential as a more

48

sustainable approach in code generation tasks.

Furthermore, we explored the potential for carbon emission reductions by substituting a larger model

performing function-level completions with a smaller model executing line-level completions, while

keeping accuracy as close to the reference solution as possible. We analyse test pass accuracy, energy

consumption, and time per token to highlight the trade-offs involved and assess the reduction in carbon

emissions at different fractions of line-level completions substituted.

The comparison between function-level and line-level completions shows an observable trend where

the test pass accuracy drops as the fraction of line-level completions increases, especially for solutions

with more than 10 lines. However, in many cases, substituting line-level completions with the small

model still yields good performance.

For both model sizes and granularities, the line-level completions follow a similar trend when in-

creasing the fraction of lines substituted in the reference solution. There is a gradual decrease in test pass

accuracy for short solutions, whereas the longer solutions have a steeper decline for test pass accuracy.

In general, the large model performs better across both solution lengths, however, there are specific cases

where line-level completions from the small model perform as well as function-level completions from

the large model.

The energy per token distribution shows a shift towards higher energy consumption for line-level

completions compared to function-level completions. However, these variations are relatively minor

compared to the potential savings in the number of tokens processed. Similar to energy consumption,

the time per token for line-level completions is slightly higher than for function-level completions, with

extended tails in the distribution.

The key insight from the carbon emissions analysis comes when comparing the performance of the

small model with line-level completions to the large model with function-level completions. When the

small model with line-level completions outperforms the large model with function-level completions,

the reductions in carbon emissions are striking. The lower quartile sees a 9-fold reduction, while the

median is a 16-fold reduction, and the upper quartile experiences up to a 32-fold reduction in carbon

emissions.

49

6 Discussion

The findings of this study provide valuable insights into the carbon emissions of code generation in

LLMs, contributing to a deeper understanding of how different completion granularities impact energy

consumption. The results indicate that line-level completions can significantly reduce carbon emissions,

despite not compromising accuracy. This section will interpret the significance of these findings, com-

pare them with existing literature, and discuss potential implications. Additionally, the limitations of the

study will be acknowledged, and recommendations for future research will be proposed.

6.1 Key Findings

In the following paragraphs, we present the key insights uncovered through our research. We examine

the quality of line-level completions, including a comparison with function-level completions. Addi-

tionally, we highlight the sustainability benefits of line-level completions, including the stabilisation

of carbon emission reductions. Finally, we cover the discrepancy in token efficiencies across different

granularities.

Line-level Completion Performance Upon first investigating the results, we found that individual

line-level completions have high compilation and test pass rates. When considering each line-level com-

pletions individually and substituting it in the reference solution, we found a compilation rate of 96.4%

for the small model and 97.1% for the large model, respectively. This possibly indicates diminishing

returns when increasing model size, as almost all line-level completions compile already.

Subsequently, the test pass rate does exhibit a larger difference between the small and the large

model. The individual line-level completions of the small model have a test pass rate of 82.7%, and the

large model has a test pass rate of 90.5%. This indicates the correctness of line-level completions does

increase significantly with model size, but warrants more thorough research with different model sizes

to determine the relation between model size and test pass rate. Following the scaling laws outlined by

Kaplan et al. [59], which demonstrate an exponential relationship between model size and training time,

it is likely that compilation and test pass rates for line-level completions exhibit a similar trend.

Comparison Completion Granularities Building on the high test pass rate of individual line-level

completions, we can compare them with function-level completions to assess whether and when line-

level completions can serve as a substitute or complement. To assess this possibility, we looked at

different fractions of lines substituted within the reference solution and compared the test pass rate with

that of the large model with function-level completions.

For the small model, we found that in only 22% of problems, it never outperformed the large model

for any fraction. However, in 30.5% of problems it outperformed the large model when substituting

every line in the reference solution. When comparing line-level and function-level completions using

the large model, we found that line-level completions never outperformed at any fraction in only 13.5%

of problems. However, when substituting every line, they outperformed function-level completions in

42.5% of problems.

Chen et al. [21] demonstrate that the test pass rate declines asmore individual components are chained

within a prompt, a trend that can similarly apply to chainingmultiple line-level completions. Despite this,

our results show that line-level completions often outperform function-level completions, highlighting

their potential as a viable alternative.

Sustainability Benefits of Line-level Completions The results demonstrate that in cases where line-

level completions outperform function-level completions, there is a notable reduction in carbon emis-

sions without compromising test pass rates. This trend is evident for both the small and large models,

with substantial differences in emission reductions across quartiles. The small model exhibits a median

carbon emission 10× reduction, while the large model has a 4.5× reduction. These findings highlight

50

the efficiency gains of line-level completions, reinforcing their potential for more sustainable code gen-

eration.

Carbon Emission Reduction Stabilisation If we consider all problems instead, a notable finding is

the relative stabilisation of carbon emission reduction for fractions ϕ > 0.5. This indicates relatively mi-
nor differences in emission reductions with large fractions of line substitutions, suggesting that beyond

a certain point, the impact of additional line-level completions on emission reduction becomes less sig-

nificant. Consequently, to achieve significant reductions, function-level completions do not have to be

entirely replaced by line-level completions. Instead, partial responsibility should be returned to the de-

veloper, with only a subset of lines completed in the final solution which still would achieve a significant

reduction in carbon emissions.

Token Efficiency Zooming out to compare line-level and function-level completions more broadly,

we observe key differences in token efficiency between the two granularities. Within this research, we

looked at two instances that affect token efficiency; the proportion of excess tokens and the impact of

incorrect suggestions. Whereas the impact of incorrect suggestions is relatively similar for both granu-

larities, the difference between the proportion of excess tokens is remarkable—on average 20% of tokens

is wasted with function-level completions, compared to less than 1% with line-level completions.

6.2 Supplementary Findings

In this section, we present findings that, while not central to our primary research objectives, provide

valuable insights and merit discussion. We show the increase in determinism of line-level completions

and the varying frequency of reaching the token limit with differentmodel sizes. Additionally, we explore

the energy characteristics of both completion granularities, including the wasted energy consumption

associated with incorrect suggestions.

More Deterministic Line-level Completions Upon investigating the log-probabilities during token

generation across different model sizes and granularities, we observed a notable difference. The log-

probabilities for the large model are closer to 0, indicating the model is more confident the generated

token is correct. For function-level completions, the largemodel has an average log-probability of−0.24,
compared to −0.32 for the small model. For line-level completions, the large model shows an average
log-probability of −0.14, while the small model has an average of −0.2. This highlights that for both
model sizes, with line-level completions the model is, on average, more confident about its completions.

Token Generation until Token Limit Frequency We observed a discrepancy in the percentage of

function-level completions reaching the token limit between the small and large models. For the small

model, 21% of completions reached until the token limit, compared to 25% for the large model. While

the absolute difference may seem small, it represents a 20% relative increase from the small model to the

large model. This warrants further investigation to see if larger model generally generate tokens more

often until the token limit.

Function-level Completion Energy Characteristics In Figure 11, we compare the energy consump-

tion of function-level and line-level completions. Line-level completions show a skewed normal distri-

bution, while function-level completions exhibit a bimodal distribution. The larger second peak in the

bimodal distribution reflects the influence of generating tokens up to the token limit, as opposed to the

simplified stop token used in line-level completions. Based on the energy consumption distributions,

we conclude that the median energy consumption is lower for function-level completions. However, the

secondary peaks introduce measurement inconsistencies, which may not be ideal for certain use cases.

51

Wasted Energy Consumption of Incorrect Suggestions While the impact of excess token generation

is significantly larger for function-level completions, the wasted total energy consumption from incor-

rect suggestions is similar between line-level and function-level completions, as shown in Figure 14.

The median wasted energy is lower for line-level completions, but this comes with higher variance. Ad-

ditionally, wasted energy is significantly lower for the small model compared to the large model, which

is expected due to the differences in energy per token, as shown in Figure 18.

Negative Correlation Solution Length and Test Accuracy We calculated the Spearman correlation

coefficient, denoted as ρ, to assess the relationship between the number of lines substituted and the test
pass accuracy. For the small model, ρ = −0.76, and for the large model, ρ = −0.74. These values indi-
cate a strong negative correlation between the length of the reference solution and the test pass accuracy,

suggesting that as more lines are substituted, test accuracy tends to decrease. This inverse relationship

is consistent with the probabilistic nature of token generation in language models, where increasing the

number of tokens introduces greater variability and uncertainty, in turn affecting performance.

6.3 Threats to Validity

This subsection addresses the potential threats to the validity of the study’s findings, highlighting factors

that may influence the generalisability and accuracy of the results. First, we will address two threats to

validity related to token generation, followed by potential mistakes during the experiment.

Challenges in Line-level Generation A key challenge in line-level generation is establishing the con-

text for each prompt. Currently, we use the lines from the reference solution that precede the target line

for generating line-level completions. However, ideally, we would incorporate previous completions

into the context. To determine a test pass rate per fraction of lines substituted and to establish trends

between different fractions, we require solutions where each line is either substituted or left unchanged.

As we can substitute each previous line within the context with a line-level completion, the number of

possible contexts scales exponentially in the length of the reference solution. Consequently, line-level

completions could not be reused, as they were bound to a specific context rather than the reference so-

lution. Finally, incorrect previous completions could invalidate all subsequent generations, leading to

wasted energy and time.

Challenges in Function-level Generation For function-level generations, there is a risk that the token

limit is reached before the function implementation is fully generated. Before starting the experiment, we

set an appropriate token limit based on reference solution lengths. However, during the investigation of

the results, we found that in function-level completions, the proportion of excess tokens was significantly

higher than expected, and, thus, this might have impacted some of the generated solutions. A manual

inspection of randomly sampled solutions did not reveal any cases where the token limit was exceeded

before completing the function implementation. However, this does not rule out the possibility that such

cases exist within any function-level completion. To prevent this issue in future experiments, increasing

the token limit would ensure full function generation, however, due to time constraints, this was not

feasible for our experiment.

Dataset Inconsistencies During an inspection of the BigCodeBench dataset, we found a set of incon-

sistencies regarding the docstrings of several problems, as highlighted in Section 4.3. In all likelihood,

the inconsistencies found do not have a significant impact on the results of the experiment as they did not

change the intention of the docstring. However, the omission of the expected exceptions to be raised dur-

ing execution might have influenced the results. However, we found these inconsistencies with regular

expressions and thus could be mitigated beforehand.

Conversely, function implementations lack a consistent structure, making it difficult to automatically

verify their correspondence with their respective docstrings. Additionally, each problem includes a test

52

suite, which may either be overly lenient or excessively strict—incorrectly marking correct solutions

as incorrect or vice versa. To mitigate the possibility of discrepancies between docstrings, reference

solutions, and test suites, we randomly sampled a set of problems and manually checked them according

to the review process described within the paper. While we did not identify any issues, we cannot rule

out the presence of inconsistencies in the full dataset.

Monte Carlo Simulation for Test Pass Rate To calculate the test pass rate for different fractions of

line substitutions using line-level completions, we employ a Monte Carlo Simulation, which relies on

random sampling. Since MCS relies on random sampling, its results may deviate from the true test pass

rate that would be obtained by evaluating all possible solution combinations. We were aware of MCS’s

probabilistic nature but chose to use it, as evaluating all possible line-level completions was infeasible.

To mitigate associated risks with random sampling and to reduce result variability, we set the number of

iterations toK = 10, 000.

Study Limitations and Scope Considerations Beyond methodological validity concerns, our study

also has inherent limitations due to its chosen scope. Firstly, we could utilise different programming

languages besides Python to facilitate more robust results and to determine the generalisability across

other languages. Additionally, we relied solely on the CPU for token generation, but larger models

typically require GPUs due to high inference times, and thus, more verification is needed that these

results still are correct when performing the token generation in a way that more closely resembles a cloud

environment—the setting in which most users interact with LLMs. Similarly, our use of the quantised

models might unexpectedly influence the results.

Inconsistent Energy Measurement Setup To ensure accurate energy measurements, we addressed

potential sources of inconsistency, as detailed in Section 4.6. However, due to the inherent variability of

energy measurements, some threats to the validity still exist. The experiment spanned 17 days, leading to

temperature fluctuations and other factors that could affect energy consumption. Additionally, it was not

feasible to incorporate the recommended one-minute pause between measurements, as the generations

typically took much less time, and we needed to perform a large number of them.

Potential Implementation Bugs Finally, during the programming of the experiment and result anal-

ysis, we cannot ensure the absence of implementation bugs or mistakes made. Despite thorough testing

of the core components and the modular development of the experiment pipeline, the complexity of the

system and the interdependence of various modules increases the risk of errors being introduced unin-

tentionally. While significant efforts were made to ensure the correctness of the implementation, it is

impossible to rule out the presence of such issues entirely. Therefore, there remains a possibility that

unnoticed bugs could have impacted the validity of the findings.

Trigger Point Distribution We generated prompts from reference solutions using a set of trigger

points, as described in Section 4.4. The set aligns roughly with Python keywords and operators, but

the distribution is skewed. The top six statements account for 89.5 percent of all generation starts, while

six keywords are not used within any reference solution (>>, <<, ~, assert, global, yield). These
keywords and operators are valid Python constructs, but we cannot accurately assess whether the model

generates correct code with them, potentially affecting result robustness. See Appendix B for the fre-

quency of trigger points within the prompts.

Validation Metrics We used test pass accuracy to compare the performance of different models,

though this metric may be limiting due to its binary nature. Wang and Zhu [111] propose a new ap-

proach for validating generated code through metamorphic prompt testing, a technique that detects code

flaws by generatingmultiple prompt variations and using cross-validation to ensure semantic consistency

53

across the generated code. This approach could be particularly beneficial for improving code genera-

tion performance in longer solutions, where maintaining coherence throughout is essential. This might

explain the discrepancy in performance between short and long solutions, highlighting a potential threat

to validity, as traditional test pass accuracy may not fully capture errors in longer solutions that require

stricter semantic consistency.

6.4 Implications

This section examines the broader impact of the study findings from the perspectives of four key groups:

researchers, software engineers, academic institutions, and AI coding tool companies. By considering

each group individually, we highlight the potential significance of this study in shaping future research,

industry practices, education, and tool development.

Researchers For researchers within the field of AI, specifically LLMs, this research has multiple im-

plications, with the most important implication following directly from the reduction in carbon emissions

when utilising line-level completions over function-level completions. Since line-level completions are

essentially a different method of code generation, it highlights the possibility more efficient methods

exist for generating code. Whereas function-level completions might be the simplest and most effective

method to compare the performance of different models, the software engineering landscape is more

varied and less constrained than the sandbox setting of benchmarks may make it seem.

Subsequently, we have shown that line-level completions exhibit different results for metrics such as

inference time, energy consumption, and accuracy. The metric used might differ per problem, and thus,

we should focus on the generation method most suitable for the issue at hand. More research is needed

to determine how different generation processes influence which metrics, and how we can optimise for

any specific metric more effectively.

We also found that accuracy drops and the number of generated tokens are negatively correlated.

However, line-level completions are a form of incremental code generation, where we do not generate

all tokens at once, but rather in small steps. Splitting a larger generation into multiple steps reduces

the complexity of individual prompts, and thus, decreases the negative correlation. This method of in-

cremental generation might be extrapolated to different domains besides code generation, such as text

summarisation, named entity recognition or multilingual translation. Utilising incremental token gener-

ation can therefore possibly increase correctness when generating a sufficiently large number of tokens.

Finally, we showed that line-level completions exhibit superior token efficiency compared to

function-level completions. Regarding code generation, researchers should investigate the level of ver-

bosity of different models and generation methods to increase token efficiency and reduce excess token

generation. Similarly to incremental token generation, it can generalise to other domains; the goal should

be correctness, but also low verbosity and high token efficiency.

Software Engineers Second is the group of software engineers that utilise code generation tools. The

Stack Overflow 2024 Developer Survey showed 63% of professional developers currently use AI in

their development process, with another 14% planning to begin soon [101]. Even though this is not a

completely accurate representation of the software engineering field, the possible implications of this

research can impact a large group of developers.

Our results show the generation quality depends on the model size, which subsequently increases

the inference time for each generation. When developers utilise function-level completions within their

workflow, the slower inference time can negatively influence productivity. Line-level completions are

inherently less complex prompts, possibly allowing for a switch to a smaller model. They also lower the

total number of tokens that need to be generated, decrease inference time, and allow for a more seamless

integration within developer workflows.

Subsequently, the task of writing code and reviewing code is different. These two tasks necessi-

tate different approaches to be solved, and, thus, a programmer needs to switch mental contexts when

54

switching tasks. Since the introduction of LLMs, programmers review more code, as they need to ver-

ify the correctness of the suggestions. Subsequently, code churn—code added and changed within two

weeks—has doubled in two years [40], an indication this constant switching is challenging. With line-

level completions, this task becomes less daunting as a single line suggestion is more easily verified than

a complete code block.

Conversely, research on code quality in GitHub Copilot-generated code suggests an overall improve-

ment [92, 12], contradicting the concerns raised by increased code churn. However, their research fo-

cused on readability, reliability, maintainability, and conciseness—not correctness. While these factors

contribute to software quality, they do not necessarily ensure functional correctness. Additionally, much

of the focus was on efficiency and coding speed, however, trends in open-source repositories suggest

that increased speed does not always translate into long-term benefits.

The downwards trend in code quality can be explained in a multitude of ways, one of which aligns

with current biases in language models—the anchoring effect. The anchoring effect is a psychological

phenomenon in which the decision of an individual is influenced by a reference point or anchor [104].

Just as an unreasonably priced item can make another seem like a bargain, the first solution generated

by an LLM can serve as a mental anchor, making it difficult—if not impossible—for developers to

consider alternative approaches. When a solution is presented on a silver platter, your first instinct is not

to disregard it, but rather refine the solution. This can lead to situations only suboptimal solutions are

considered—the best solution is simply not the most likely one.

Utilising line-level completions instead of function-level completions might have the secondary ben-

efit of programmers better understanding the code they write. These small increases in understanding

individually might not account for much, however, over time this morphs into a more thorough under-

standing of the complete system, possibly increasing the longevity of complex software projects.

Academic Institutions Finally, our research implicates academic institutions in one primary way: how

students interact with AI. Takerngsaksiri et al. [103] show that AI code completion improved students’

productivity, however, the over-reliance on it may lead to a surface-level understanding of programming

concepts, diminishing problem-solving skills and restricting creativity. Imagine never taking the training

wheels off your bicycle; technically, it is like riding a bicycle, but you do not want to rely on them always

being there.

With line-level completions, the solution does not appear completely, you need to stop and think

about what you want to do next, and incrementally arrive at a correct solution—you are in the driving

seat. Copying code may provide an efficiency gain in the short term, but being able to write the code

yourself increases your future efficiency instead. Line-level completions might prove the perfect balance

to improving student productivity while ensuring they do not teach themselves learned helplessness—

where repeated reliance on automated suggestions leads to a perceived inability to solve problems inde-

pendently [96].

If students rely too heavily on AI-generated code and lose the ability to write code independently, we

may experience a case of shifting baseline syndrome. This phenomenon refers to the gradual acceptance

of lower standards as the new norm due to a lack of awareness of previous, higher-quality benchmarks

[82]. While the previous case of learned helplessness already highlights a concerning issue, this scenario

would be even more detrimental—students might not only accept AI-assisted coding as the norm but

also lose the fundamental ability to code without it altogether.

Universities also have a substantial impact on the future of the professional software world. If uni-

versities utilise line-level completions, albeit in combination with function-level completions, students

are more informed about the potential impact different code generation methods have. Over time, this

knowledge will end up within the professional world, slowly changing the perspective of larger compa-

nies and the ways we utilise code generation tools.

AI Coding Tool Companies Companies that develop AI coding tools must investigate the usage of

line-level completions. As their primary costs during inference are energy consumption, utilising line-

55

level completions might reduce their overall costs, with reducing carbon emissions as collateral. The

integration process is relatively simple as only the stop token sequence needs to be changed, indicating

a relatively minor change while providing significant potential upsides.

Subsequently, little research has been conducted on the energy consumption of code generation in

large language models, and thus, not many people are aware of the energy consumption of AI tools.

Our research highlights the significant difference in energy consumption between different generation

methods, and thus, the companies must give insights to their users towards energy consumption.

6.5 Future Research

While this study provides insights into reducing carbon emissions in code generation, further research is

needed to refine and expand upon these findings. Exploring broadermodel configurations, alternative ap-

proaches, and additional evaluation methods could offer deeper understanding and improved efficiency.

The following subsections outline key directions for future research opportunities.

Increased Model Sizes Following as a direct extension of this research, there are multiple future re-

search opportunities. Firstly, we can consider different model sizes compared to the 1.5B and 9B models

used, and subsequently, larger families of models. For example, one can consider the DeepSeek Coder

model family (1.3B, 5.7B, 6.7B, and 33B parameters) [43], or the Qwen2.5-Coder model family (0.5B,

3B, 14B, and 32B parameters) [50]. DeepSeek Coder would facilitate a comparison between similar

model sizes, 5.7B and 6.7B, whereas Qwen2.5-Coder has a wider range of model sizes to determine the

robustness of line-level completions across larger model size differences.

Instruction-tunedDataset Future research could explore using line-level completionswith instruction

prompts, specifically designed for instruction-tuned models. These prompts convey the same informa-

tion as complete prompts but in natural language. On the BigCodeBench leaderboard, the performance of

models for the instruct prompts is lower compared to the complete prompts. For instance, the instruction-

tuned YiCoder-9B-Chat model scores 17.6 on complete prompts but only 11.5 on instruction prompts

[13]. Since most users interact with LLMs via natural language, it is crucial to determine whether this

discrepancy affects real-world performance.

Excess Token Discrepancy The discrepancy between excess token generation in line-level and

function-level generation suggests a key area for improvement. An LLM designed to minimise excess

tokens is crucial, but training one from scratch may be too costly. Fine-tuning offers a more efficient

alternative, requiring fewer computational resources [118]. Current models struggle to determine when

a function block ends, whereas detecting the end of single statements—spanning one or multiple lines—

may be easier. Fine-tuning does require a large dataset, however, it should be trivial to automatically

generate examples by scraping open-source repositories, extracting code, and transforming it into various

prompts.

Similarly, reinforcement learning could be used to encourage the model to generate shorter code

blocks, improving token efficiency by avoiding unnecessary generation up to the token limit. Guo et al.

[44] apply reinforcement learning in their DeepSeek R1 model to develop a chain-of-thought process. A

similar approach could be used to guide the model toward generating shorter snippets—not by explicitly

instructing it but by rewarding higher token efficiencies, thereby steering it in the right direction.

Impact of Token Generation Length on Accuracy Test pass accuracies per fraction of lines substi-

tuted in the reference solution revealed a discrepancy between short (< 10 lines) and long (≥ 10 lines)
solutions in test pass accuracy. Due to the probabilistic nature of code generation, accuracy decreases for

longer solutions, however, instead of simply accepting this drop, we should explore restructuring long

solutions into multiple shorter ones. For instance, we could explore the performance difference between

a single function and the same function split into smaller, separate functions.

56

Solving coding problems resembles general problem-solving, where the sequential, left-to-right na-

ture of token generation can lead to failures due to the compounding effects of early decisions. Yao

et al. [121] introduce Tree of Thoughts, a framework that enables language models to explore multiple

reasoning paths, allowing for more deliberate decision-making—an approach that can be adapted for

programming tasks. Additionally, integrating execution-based verification allows generated code to be

executed and refined iteratively, improving accuracy through feedback incorporation.

6.6 Ethical Considerations

Alongside the findings of this research and their implications, we also address several ethical consid-

erations, blending both objective analysis and personal perspectives. In the following paragraphs, we

explore various ethical angles, drawing on not just the results but also on personal experiences, usage

of LLMs, and current knowledge of the technology. We begin by considering the transparency of the

AI sector regarding carbon emissions, followed by the discussions on efficiency and performance. Sub-

sequently, we cover the current availability of models and how they impact the democratisation of AI.

Finally, we cover the biases existent within current LLMs for code generation.

Future Environmental Impact To acknowledge the pressing issue at hand: the future environmental

impact of AI. Where the capabilities have become increasingly more impressive in recent years, model

sizes have also increased exponentially to sizes never before thought possible. From our work and others

[34, 124], one can find an energy consumption increase in model size, due to the increased number of

computations within the network. Sevilla et al. [97] found that the required compute for AI models

increased, on average, 1.4× each year, however, since 2010, it increased roughly 4× each year—an

exorbitant difference. Interestingly, this happens in all domains of AI, not only the domains where

LLMs shine.

Currently, the energy consumption of all data centres is estimated to be around 1-1.5% of global en-

ergy consumption [51]—which in itself accounts for over 40% of all emissions [3]. Where AI is expected

to increase the data centre power demand by 160% by 2030 [2], it is vital to focus on carbon neutrality

and mitigation of climate change risks in the near future. Despite positive goals for big tech companies

regarding reducing carbon emissions and positive reports, the emissions reported by big tech companies

for their carbon emissions for data centres can be roughly 7.5× higher than they report themselves as

they do not account for location-based emissions [4]. This worrying number warrants an increase in the

transparency of carbon emissions surrounding AI.

Transparency The transparency regarding the environmental impact of AI is lacking. Castaño et al.

[18] investigated the carbon emissions associated with different models on HuggingFace, and they found

surprising results regarding transparency. Within a time frame of 1.5 years, on average, only 0.9% of

released models report their carbon emissions. They subsequently found a carbon emissions increase

concerning model size and dataset size.

In the current AI landscape, the most widely used models are those developed by large technology

companies. These models are exceptionally large in scale and trained on extensive datasets, suggesting

that their carbon emissions are substantial. However, there is insufficient reporting on this matter. While

all individuals and organisations need to consider the environmental impact of the AI models they train

and deploy, the cumulative effect of models trained by individuals is negligible compared to the massive

user base of AI services operated by major technology companies. Therefore, the primary focus should

be on these companies reporting their carbon emissions to provide a clearer understanding of the true

environmental impact of AI.

Efficiency Given the current lack of transparency regarding the carbon emissions of most AI models

developed by major technology companies, a secondary focus should be on improving the efficiency of

these models. Our research demonstrates that a fivefold reduction in emissions is achievable through

57

alternative completion granularities. In contrast, a tenfold reduction is possible by substituting a large

model with a smaller one, albeit with amarginal decline in performance. While the assumption that lower

performance is acceptable may be flawed, the primary short-term focus remains on maximising perfor-

mance. However, if we eventually get diminishing returns, it may become necessary to shift priorities

toward efficiency and sustainability.

As competition in AI development intensifies, big tech companies must develop the most advanced

models for their consumers. However, if all models eventually converge in performance, this competitive

perspective may shift. Since efficiency is directly tied to energy consumption—determined by various

factors—we may, in the future, see models with slightly lower performance that remain adequate for

practical use while significantly reducing energy consumption and, consequently, operational costs.

One important consideration is Jevons’ paradox, which suggests that increasing the efficiency of re-

source use often leads to greater overall consumption rather than a reduction [8]. This presents a potential

risk, as improvements in AImodel efficiency could inadvertently drive increased usage, ultimately result-

ing in higher carbon emissions over time. If AI continues to be integrated into everyday life, mitigating

its overall environmental impact may become increasingly challenging, if not unavoidable.

We should also consider whether language models are appropriate for all the currently researched

tasks. Luccioni, Jernite, and Strubell [71] demonstrate that there is a significant discrepancy in efficiency

between different machine learning tasks when performed by specialised models. For instance, text

classification is an order of magnitude more efficient than text generation, yet, it remains an area of

active research [112, 113]. A similar trend is observed with extractive question answering [88]. This

suggests a potential mismatch between the tasks we are deploying these models for and the need to

optimise energy efficiency and performance.

Availability A notable characteristic of the current generation of AI models is their limited availabil-

ity to the public due to the substantial GPU resources required for deployment. However, the recently

released DeepSeek R1 model challenges this norm by being significantly more cost-effective to train

and run inference on. Notably, on the Aider LLM leaderboard, a benchmark designed to evaluate code

editing performance [5], DeepSeek R1 outperformed the newly released GPT-4.5 while maintaining a

dramatically lower cost—33× cheaper ($5.42 compared to $183.18). This shift emphasises the poten-

tial for more efficient models to achieve state-of-the-art performance at a fraction of the computational

expense.

A significant reduction in the cost of training and inference enhances the accessibility and democrati-

sation of AI models, allowing entities beyond big tech companies to shape the future of AI. The decreas-

ing cost of state-of-the-art models, combined with the adoption of alternative generation methods to

improve efficiency and reduce energy consumption, could play a crucial role in the widespread adoption

of future AI technologies.

Dataset Bias A significant challenge in current AI models is the presence of bias within the datasets

on which they are trained. For LLMs used in natural language processing, these biases may include

racial, historical, or labelling biases. While such biases may not directly translate to code generation,

other forms of bias still exist.

One critical aspect of software development is that code is written for specific versions of a program-

ming language, which continuously evolve—Java code from 2000, for instance, differs significantly from

code written in 2020. This presents a challenge for AI models, as they must accurately recognise and

differentiate between programming language versions and, based on the provided code, determine which

version is being used.

Since most programming languages have multiple versions, LLMs must not only understand the

language itself but also comprehend each of its iterations. This presents a challenge, as certain concepts

may become obsolete in newer versions, best practices for using language constructs evolve, and overall

coding preferences shift over time. To ensure that an LLM can effectively assist with all language

58

versions, its training dataset must include a representative set of examples from each version, allowing

it to recognise and adapt to these differences accurately.

Similarly, the largest models are trained on vast amounts of data sourced from the web, which in-

cludes a significant amount of low-quality code. Many example projects are unfinished, contain poor

coding practices, are incorrect, or use language constructs in objectively suboptimal ways. Despite this,

these examples are still included in the training data. Since the model does not inherently understand the

code it generates, we are reliant on the ability of the model to distinguish between high and low-quality

code, which can lead to unpredictable or subpar results.

As previously mentioned, the anchoring effect—a psychological phenomenon in which an initial

reference point influences subsequent decisions—can impact the chosen solutions by developers working

with LLMs. When the initial code generation is accepted without critical evaluation, it can limit the range

of solutions a developer considers, reinforcing the biases already present in the training data. This process

speeds up model collapse, where the performance of a model degrades if it is trained on synthetic data,

often its outputs [117, 29]. Over time, this feedback loop can reduce the ability to produce diverse and

unbiased results, further exacerbating the problem of model degradation.

59

Conclusion

This study has examined the difference between line-level and function-level completions based on their

energy and performance characteristics, highlighting several key findings. We found that line-level

completions consistently achieve high compilation and test pass rates, with the small model achieving

a test pass rate of 82.7%, and the large model 90.5%. Notably, line-level completions often outperform

function-level completions with the large model, where the small model is not better in only 22% of

problems, and the large model in only 13.5%. It suggests that line-level completions can be a viable

alternative to function-level completions in many situations.

Regarding sustainability, our research shows that utilising line-level completions over function-level

completions can significantly reduce carbon emissions, with a 10× reduction with the small model and a

4.5× reduction with the large model. However, reductions stabilise after half of the code is substituted in

the reference solution. Additionally, we observed that line-level completions exhibit greater token effi-

ciency, with excess tokens being reduced by over 99% compared to function-level completions. Despite

some trade-offs, such as higher variance in energy per token, the overall results suggest that line-level

completions can offer clear advantages in terms of both performance and energy efficiency.

We observed several possible threats to the validity of our research, including context-building chal-

lenges in line-level generations, token limits in function-level completions, and dataset inconsistencies.

Function completions may be truncated, and errors in function implementations or test suites could affect

correctness, though manual verification and Monte Carlo Simulation help mitigate uncertainty. Scope

limitations include only using Python, CPU-based inference, and quantised models. Energy measure-

ments can be variable due to the long experiment duration, and consequently, the changing environmental

factors. Despite rigorous testing, implementation bugs remain a potential risk.

These findings have implications for several stakeholders. For researchers, the increased token ef-

ficiency of line-level completions—and thus reduced environmental impact—offer new insights into

sustainable AI development. For software engineers, adopting line-level completions can improve pro-

ductivity due to the decreased inference time and lesser overhead of mental context switching. In aca-

demic institutions, line-level completions may provide students to be more engaged, and consequently

improve their problem-solving skills instead of the student becoming dependent on the tool. Finally,

for AI coding tool companies, the integration of line-level completions can reduce energy consumption,

offering both environmental and economic benefits.

Ultimately, line-level code completions show the potential to mitigate the environmental impact of

code generation in LLMs. Shifting from function-level to line-level completions resulted in a carbon

emission reduction of 4.5×, whereas if we include model substitution, the reduction increases to 10×.

With code generation seemingly only growing more prevalent within the software industry, we must

question if our technologies are utilised to the fullest extent, and highlight the consequences our usage

of the technology has. As Yuval Noah Harari said, “Humans were always far better at inventing tools

than using them wisely.” This statement is more relevant than ever as we embrace new and exciting

technologies, ensuring we remain mindful of their far-reaching consequences as we shape the future.

60

References

[1] Nov. 2022. URL: https://openai.com/index/chatgpt.

[2] May 2024. URL: https://www.goldmansachs.com/insights/articles/AI-Mayoised-
to-drive-160-increase-in-power-demand.

[3] en. Sept. 2024. URL: https://world-nuclear.org/information-library/energy-
and-the-environment/carbon-dioxide-emissions-from-electricity.

[4] Sept. 2024. URL: https://www.theguardian.com/technology/2024/sep/15/data-
center-gas-emissions-tech.

[5] en-US. Dec. 2024. URL: https://aider.chat/2024/12/21/polyglot.html.

[6] 01.AI. Meet Yi-Coder: A Small but Mighty LLM for Code. Sept. 2024. URL: https://01-
ai.github.io/blog.html?post=en/2024-09-05-A-Small-but-Mighty-LLM-for-
Code.md.

[7] AGGI. Annual Greenhouse Gas Index (AGGI) - NOAA Global Monitoring Laboratory. URL:

https://gml.noaa.gov/aggi/.

[8] Blake Alcott. “Jevons’ paradox”. In: Ecological economics 54.1 (2005), pp. 9–21.

[9] Anthropic. Claude 3.7 Sonnet and Claude Code. en. URL: https://www.anthropic.com/
news/claude-3-7-sonnet.

[10] Paola Arias et al. “Climate Change 2021: the physical science basis. Contribution of Working

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change;

technical summary”. In: (2021).

[11] Jacob Austin et al. “Program synthesis with large language models”. In: arXiv preprint

arXiv:2108.07732 (2021).

[12] Jared Bauer. Does github copilot improve code quality? here’s what the Data says. Feb. 2025.

URL: https://github.blog/news-insights/research/does-github-copilot-
improve-code-quality-heres-what-the-data-says/.

[13] BigCodeBench Leaderboard - a Hugging Face Space by bigcode. URL: https : / /
huggingface.co/spaces/bigcode/bigcodebench-leaderboard.

[14] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning.

Vol. 4. 4. Springer, 2006.

[15] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural information

processing systems 33 (2020), pp. 1877–1901.

[16] Clever Carbon. Find out the carbon footprint of common items: Clever carbon. URL: https:
//clevercarbon.io/carbon-footprint-of-common-items.

[17] Federico Cassano et al. “Multipl-e: A scalable and extensible approach to benchmarking neural

code generation”. In: arXiv preprint arXiv:2208.08227 (2022).

[18] Joel Castaño et al. “Exploring the Carbon Footprint of Hugging Face’sMLModels: ARepository

Mining Study”. In: 2023 ACM/IEEE International Symposium on Empirical Software Engineer-

ing and Measurement (ESEM). IEEE. 2023, pp. 1–12.

[19] Intergovernmental Panel On Climate Change. “Climate change 2007: The physical science ba-

sis”. In: Agenda 6.07 (2007), p. 333.

[20] Liguo Chen et al. “A survey on evaluating large language models in code generation tasks”. In:

arXiv preprint arXiv:2408.16498 (2024).

[21] Mark Chen et al. “Evaluating large language models trained on code”. In: arXiv preprint

arXiv:2107.03374 (2021).

61

[22] Andrew A Chien et al. “Reducing the Carbon Impact of Generative AI Inference (today and in

2035)”. In: Proceedings of the 2nd workshop on sustainable computer systems. 2023, pp. 1–7.

[23] KR1442 Chowdhary and KR Chowdhary. “Natural language processing”. In: Fundamentals of

artificial intelligence (2020), pp. 603–649.

[24] Matthew Collins et al. “Long-term climate change: projections, commitments and irreversibil-

ity”. In: (2013).

[25] Luís Cruz. PyEnergiBridge. https://github.com/luiscruz/pyEnergiBridge. 2025.

[26] Sophia R Cunningham, Dominique Archambault, and Austin Kung. “Efficient training and in-

ference: Techniques for large language models using llama”. In: Authorea Preprints (2024).

[27] Saloni Dattani et al. “Child and Infant Mortality”. In: Our World in Data (2023). https://our-

worldindata.org/child-mortality.

[28] Sandra Myrna Díaz et al. “The global assessment report on biodiversity and ecosystem services:

Summary for policy makers”. In: (2019).

[29] Elvis Dohmatob et al. “Strong model collapse”. In: arXiv preprint arXiv:2410.04840 (2024).

[30] Thomas Durieux. EnergiBridge. https://github.com/tdurieux/EnergiBridge. 2025.

[31] Ottmar Edenhofer. Renewable energy sources and climate change mitigation: Special report of

the intergovernmental panel on climate change. Cambridge University Press, 2011.

[32] Ember. Carbon intensity of the power sector in the Netherlands from 2000 to 2023. July 2024.

URL: https://www.statista.com/statistics/1290441/carbon-intensity-power-
sector-netherlands/.

[33] Ember and Energy Institute. Carbon intensity of electricity generation – Ember and Energy In-

stitute. Dataset. With major processing by Our World in Data. ”Yearly Electricity Data” and

”Statistical Review ofWorld Energy” [original data]. 2024. URL: https://ourworldindata.
org/grapher/carbon-intensity-electricity (visited on 01/07/2025).

[34] Brad Everman et al. “Evaluating the carbon impact of large language models at the inference

stage”. In: 2023 IEEE international performance, computing, and communications conference

(IPCCC). IEEE. 2023, pp. 150–157.

[35] Samer Fawzy et al. “Strategies for mitigation of climate change: a review”. In: Environmental

Chemistry Letters 18 (2020), pp. 2069–2094.

[36] Alexander Fleming. “On the antibacterial action of cultures of a penicillium, with special refer-

ence to their use in the isolation of B. influenzae”. In: British journal of experimental pathology

10.3 (1929), p. 226.

[37] Georgi Gerganov. Ggerganov/llama.cpp: LLM Inference in C/C++. URL: https://github.
com/ggerganov/llama.cpp.

[38] John S Gero and Fay Sudweeks. Artificial Intelligence in Design’96. Springer Science & Busi-

ness Media, 2012, pp. 151–170.

[39] Zoubin Ghahramani. “Unsupervised learning”. In: Summer school on machine learning.

Springer, 2003, pp. 72–112.

[40] GitClear. AI Copilot Code Quality — Evaluating 2024’s Increased Defect Rate via Code Quality

Metrics. Feb. 2025.

[41] Global Carbon Budget (2024); Population based on various sources (2024). Per capita CO2

emissions – GCB [dataset]. Major processing by Our World in Data. Original data from ”Global

Carbon Budget” (Global Carbon Project) and ”Population” (Various sources). Retrieved March

11, 2025. 2024. URL: https://ourworldindata.org/grapher/co-emissions-per-
capita.

62

[42] Alex Gu et al. “Cruxeval: A benchmark for code reasoning, understanding and execution”. In:

arXiv preprint arXiv:2401.03065 (2024).

[43] Daya Guo et al. “DeepSeek-Coder: When the Large Language Model Meets Programming–The

Rise of Code Intelligence”. In: arXiv preprint arXiv:2401.14196 (2024).

[44] DayaGuo et al. “Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-

ing”. In: arXiv preprint arXiv:2501.12948 (2025).

[45] Lianghong Guo et al. “When to stop? towards efficient code generation in llms with excess token

prevention”. In: Proceedings of the 33rd ACM SIGSOFT International Symposium on Software

Testing and Analysis. 2024, pp. 1073–1085.

[46] Muhammad Usman Hadi et al. “A survey on large language models: Applications, challenges,

limitations, and practical usage”. In: Authorea Preprints (2023).

[47] Abram Hindle et al. “On the naturalness of software”. In: Communications of the ACM 59.5

(2016), pp. 122–131.

[48] S Hochreiter. “Long Short-term Memory”. In: Neural Computation MIT-Press (1997).

[49] Robert V Hogg and Elliot A Tanis. Probability and statistical inference. Vol. 13. Prentice Hall

Upper Saddle River, NJ, 2001.

[50] Binyuan Hui et al. “Qwen2. 5-Coder Technical Report”. In: arXiv preprint arXiv:2409.12186

(2024).

[51] IEA. TrackingData Centres andData Transmission Networks. 2024. URL: https://www.iea.
org/energy-system/buildings/data-centres-and-data-transmission-networks.

[52] IEA | Energy Mix World. en-GB. URL: https://www.iea.org/world/energy-mix#how-
is-energy-used-globally.

[53] International Energy Agency (IEA).World Energy Investment 2024. Licence: CC BY 4.0. 2024.

URL: https://www.iea.org/reports/world-energy-investment-2024.

[54] IRENA. Installed capacity for different renewable technologies [dataset]. Processed by Our

World in Data. Original data from ”Renewable Capacity Statistics”. Retrieved March 11, 2025.

2024. URL: https://ourworldindata.org/grapher/installed-global-renewable-
energy-capacity-by-technology.

[55] Maliheh Izadi et al. “Languagemodels for code completion: A practical evaluation”. In:Proceed-

ings of the IEEE/ACM 46th International Conference on Software Engineering. 2024, pp. 1–13.

[56] Carlos E Jimenez et al. “Swe-bench: Can language models resolve real-world github issues?” In:

arXiv preprint arXiv:2310.06770 (2023).

[57] Jean Kaddour et al. “Challenges and applications of large language models”. In: arXiv preprint

arXiv:2307.10169 (2023).

[58] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. “Reinforcement learning: A

survey”. In: Journal of artificial intelligence research 4 (1996), pp. 237–285.

[59] Jared Kaplan et al. “Scaling laws for neural language models”. In: arXiv preprint

arXiv:2001.08361 (2020).

[60] Diksha Khurana et al. “Natural language processing: state of the art, current trends and chal-

lenges”. In: Multimedia tools and applications 82.3 (2023), pp. 3713–3744.

[61] Mikhail V Koroteev. “BERT: a review of applications in natural language processing and under-

standing”. In: arXiv preprint arXiv:2103.11943 (2021).

[62] John R Koza. “Genetic programming: On the programming of computers by means of natural

selection (complex adaptive systems)”. In: A Bradford Book 1 (1993), p. 18.

63

[63] AlexKrizhevsky, Ilya Sutskever, andGeoffrey EHinton. “Imagenet classificationwith deep con-

volutional neural networks”. In: Advances in neural information processing systems 25 (2012).

[64] Czarnecki Krzysztof and Ulrich W Eisenecker. Generative Programming: Methods, Tools and

Applications. Addison-Wesley, 2000.

[65] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553

(2015), pp. 436–444.

[66] Baolin Li et al. “Toward sustainable genai using generation directives for carbon-friendly large

language model inference”. In: arXiv preprint arXiv:2403.12900 (2024).

[67] Raymond Li et al. “Starcoder: may the source be with you!” In: arXiv preprint arXiv:2305.06161

(2023).

[68] Rebecca Lindsey and Luann Dahlman. Climate change: Global temperature. Jan. 2024. URL:

https://www.climate.gov/news-features/understanding-climate/climate-
change-global-temperature.

[69] Shuai Lu et al. “Codexglue: A machine learning benchmark dataset for code understanding and

generation”. In: arXiv preprint arXiv:2102.04664 (2021).

[70] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. “Estimating the carbon

footprint of bloom, a 176b parameter language model”. In: Journal of Machine Learning Re-

search 24.253 (2023), pp. 1–15.

[71] Sasha Luccioni, Yacine Jernite, and Emma Strubell. “Power hungry processing: Watts driving

the cost of AI deployment?” In: The 2024 ACM Conference on Fairness, Accountability, and

Transparency. 2024, pp. 85–99.

[72] Javier Mancebo, Felix Garcia, and Coral Calero. “A process for analysing the energy efficiency

of software”. In: Information and Software Technology 134 (2021), p. 106560.

[73] Henry B Mann and Donald R Whitney. “On a test of whether one of two random variables is

stochastically larger than the other”. In: The annals of mathematical statistics (1947), pp. 50–60.

[74] Charles E Metz. “Basic principles of ROC analysis”. In: Seminars in nuclear medicine. Vol. 8.

4. Elsevier. 1978, pp. 283–298.

[75] ImanMirzadeh et al.GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning

in Large Language Models. 2024. URL: https://arxiv.org/abs/2410.05229.

[76] Mehryar Mohri. Foundations of machine learning. 2018.

[77] Christopher Z Mooney. Monte carlo simulation. 116. Sage, 1997.

[78] Zack SMoore, Jane F Seward, and JMichael Lane. “Smallpox”. In: The Lancet 367.9508 (2006),

pp. 425–435.

[79] Kevin Patrick Murphy. Dynamic bayesian networks: representation, inference and learning.

University of California, Berkeley, 2002.

[80] Michael Nielsen. “Using neural nets to recognize handwritten digits”. In: Neural Networks and

Deep Learning (2015), pp. 1–75.

[81] David Patterson et al. “The carbon footprint of machine learning training will plateau, then

shrink”. In: Computer 55.7 (2022), pp. 18–28.

[82] Daniel Pauly et al. “Anecdotes and the shifting baseline syndrome of fisheries”. In: Trends in

ecology and evolution 10.10 (1995), p. 430.

[83] Fernando CN Pereira and David HD Warren. “Definite clause grammars for language analy-

sis—a survey of the formalism and a comparison with augmented transition networks”. In: Arti-

ficial intelligence 13.3 (1980), pp. 231–278.

64

[84] Aleksandar Petrov et al. “Language model tokenizers introduce unfairness between languages”.

In: Advances in Neural Information Processing Systems 36 (2024).

[85] David MW Powers. “Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness and correlation”. In: arXiv preprint arXiv:2010.16061 (2020).

[86] Jake Prickett. How long should it take to run unit tests? Mar. 2020. URL: https://medium.
com/@jakeprickett/how-long-should-it-take-to-run-unit-tests-5decd79679c5.

[87] Alec Radford et al. “Better language models and their implications”. In:OpenAI blog 1.2 (2019).

[88] Zafaryab Rasool et al. “Evaluating LLMs on document-based QA: Exact answer selection and

numerical extraction using CogTale dataset”. In:Natural Language Processing Journal 8 (2024),

p. 100083.

[89] Hannah Ritchie. “CO2 emissions dataset: our sources and methods”. In: Our World in Data

(2022). https://ourworldindata.org/co2-dataset-sources.

[90] Hannah Ritchie. “What are the safest and cleanest sources of energy?” In: Our World in Data

(2020). https://ourworldindata.org/safest-sources-of-energy.

[91] Hannah Ritchie, Pablo Rosado, and Max Roser. “Crop Yields”. In: Our World in Data (2022).

https://ourworldindata.org/crop-yields.

[92] Mario Rodriguez. Research: Quantifying github copilot’s impact on code quality. Oct. 2023.

URL: https://github.blog/news-insights/research/research-quantifying-
github-copilots-impact-on-code-quality/.

[93] Baptiste Roziere et al. “Code llama: Open foundation models for code”. In: arXiv preprint

arXiv:2308.12950 (2023).

[94] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

[95] Maximilian Schreiner. “GPT-4 architecture, datasets, costs and more leaked”. en-US. In: THE

DECODER (July 2023). URL: https : / / the - decoder . com / gpt - 4 - architecture -
datasets-costs-and-more-leaked/.

[96] Martin EP Seligman. “Learned helplessness”. In: Annual review of medicine 23.1 (1972),

pp. 407–412.

[97] Jaime Sevilla et al. “Compute Trends Across Three Eras of Machine Learning”. In: 2022 In-

ternational Joint Conference on Neural Networks (IJCNN). 2022, pp. 1–8. DOI: 10 . 1109 /
IJCNN55064.2022.9891914.

[98] Samuel Sanford Shapiro and Martin B Wilk. “An analysis of variance test for normality (com-

plete samples)”. In: Biometrika 52.3-4 (1965), pp. 591–611.

[99] Jieke Shi et al. “Greening large language models of code”. In: Proceedings of the 46th Interna-

tional Conference on Software Engineering: Software Engineering in Society. 2024, pp. 142–

153.

[100] Charles Spearman. “The proof and measurement of association between two things.” In: (1961).

[101] Stack Exchange. Stack Overflow Developer Survey 2024. 2024. URL: https : / / survey .
stackoverflow.co/2024/.

[102] Jovan Stojkovic et al. “Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront of

LLM Inference”. In: arXiv preprint arXiv:2403.20306 (2024).

[103] Wannita Takerngsaksiri et al. “Students’ Perspectives on AI Code Completion: Benefits and

Challenges”. In: 2024 IEEE 48th Annual Computers, Software, and Applications Conference

(COMPSAC). IEEE. 2024, pp. 1606–1611.

[104] Amos Tversky and Daniel Kahneman. “Judgment under Uncertainty: Heuristics and Biases: Bi-

ases in judgments reveal some heuristics of thinking under uncertainty.” In: science 185.4157

(1974), pp. 1124–1131.

65

[105] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media,

2013.

[106] A Vaswani. “Attention is all you need”. In: Advances in Neural Information Processing Systems

(2017).

[107] Roberto Verdecchia, June Sallou, and Luís Cruz. “A systematic review of Green AI”. In: Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13.4 (2023), e1507.

[108] Pablo Villalobos and Anson Ho. Trends in Training Dataset Sizes. 2022. URL: https : / /
epochai.org/blog/trends-in-training-dataset-sizes.

[109] Pablo Villalobos et al. “Machine learning model sizes and the parameter gap”. In: arXiv preprint

arXiv:2207.02852 (2022).

[110] JiexinWang et al. “Is Your AI-Generated Code Really Secure? Evaluating Large LanguageMod-

els on Secure Code Generation with CodeSecEval”. In: arXiv e-prints (2024), arXiv–2407.

[111] XiaoyinWang andDakai Zhu. “Validating LLM-Generated ProgramswithMetamorphic Prompt

Testing”. In: arXiv preprint arXiv:2406.06864 (2024).

[112] Zhiqiang Wang, Yiran Pang, and Yanbin Lin. “Smart Expert System: Large Language Models

as Text Classifiers”. In: arXiv e-prints (2024), arXiv–2405.

[113] Zhiqiang Wang et al. “Adaptable and Reliable Text Classification using Large Language Mod-

els”. In: arXiv preprint arXiv:2405.10523 (2024).

[114] Climate Watch. Historical GHG Emissions. 2021. URL: https://www.climatewatchdata.
org/ghg-emissions.

[115] Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language models”. In:

Advances in neural information processing systems 35 (2022), pp. 24824–24837.

[116] Sean Welleck et al. “From decoding to meta-generation: Inference-time algorithms for large

language models”. In: arXiv preprint arXiv:2406.16838 (2024).

[117] Robert Wu and Vardan Papyan. “Linguistic collapse: Neural collapse in (large) language mod-

els”. In: Advances in Neural Information Processing Systems 37 (2024), pp. 137432–137473.

[118] Yuchen Xia et al. “Understanding the performance and estimating the cost of llm fine-tuning”.

In: 2024 IEEE International Symposium on Workload Characterization (IISWC). IEEE. 2024,

pp. 210–223.

[119] An Yang et al. “Qwen2 technical report”. In: arXiv preprint arXiv:2407.10671 (2024).

[120] John Yang et al. “SWE-agent: Agent-Computer Interfaces Enable Automated Software Engi-

neering”. In: The Thirty-eighth Annual Conference on Neural Information Processing Systems.

2024. URL: https://arxiv.org/abs/2405.15793.

[121] Shunyu Yao et al. “Tree of thoughts: Deliberate problem solving with large language models”.

In: Advances in neural information processing systems 36 (2023), pp. 11809–11822.

[122] HaoYu et al. “Codereval: A benchmark of pragmatic code generation with generative pre-trained

models”. In: Proceedings of the 46th IEEE/ACM International Conference on Software Engi-

neering. 2024, pp. 1–12.

[123] Jiasheng Zheng et al. “Beyond Correctness: Benchmarking Multi-dimensional Code Generation

for Large Language Models”. In: arXiv preprint arXiv:2407.11470 (2024).

[124] Zixuan Zhou et al. “A survey on efficient inference for large languagemodels”. In: arXiv preprint

arXiv:2404.14294 (2024).

[125] Terry Yue Zhuo et al. “Bigcodebench: Benchmarking code generation with diverse function calls

and complex instructions”. In: arXiv preprint arXiv:2406.15877 (2024).

66

A Problem Selection

ID Reasons

0 large input size
17 delays
20 plotting
31 plotting
35 plotting
37 train ML model
43 plotting
46 plotting
57 plotting, file operations
70 plotting, file operations
71 plotting, file operations
76 network operations
78 file operations
82 file operations
85 plotting
99 plotting
102 plotting
105 plotting
147 network operations
156 plotting
180 image manipulation
181 delays
187 plotting
195 delays, network operations
224 plotting, math operations
227 file operations
237 plotting, file operations
241 plotting
242 image manipulation
278 math operations
289 train ML model
314 network operations
324 delays
337 plotting
346 delays
347 large input size
348 delays
363 multi-processing
372 file operations
377 delays
396 plotting
417 train ML model
418 train ML model
419 train ML model
421 delays, network operations
424 image manipulation
425 image manipulation
428 plotting
437 file operations
443 train ML model
444 plotting
449 plotting
451 train ML model

ID Reasons

456 plotting
459 delays
460 plotting, file operations
461 delays
486 plotting
489 large input size
502 plotting
527 plotting, file operations
534 cryptography
547 cryptography
579 plotting, file operations
580 large input size
582 plotting
583 cryptography
596 plotting
604 compilation
608 plotting
609 large input size
610 plotting
614 plotting
618 plotting
622 plotting
639 plotting
640 plotting
655 math operations
719 file operations
774 train ML model
791 large input size
819 delays
821 delays
823 delays
845 math operations
857 delays, file operations
868 large input size
878 train ML model
908 plotting, file operations
917 train ML model
953 plotting, file operations
979 train ML model
980 plotting
983 plotting
995 plotting, file operations
1003 network operations
1016 image manipulation
1032 plotting, large input size
1033 plotting, large input size
1034 plotting
1040 delays, network operations
1058 plotting, large input size
1064 plotting
1069 plotting
1104 delays, file operations
1105 delays, file operations

Table 9: Breakdown of reasons contributing to test suite slowness per problem.

67

B Trigger Points

Trigger Point Count

= 3796
. 1840
return 1237
if 880
raise 461
for 452
, 291
with 196
: 182
except 138
(124
+= 54
elif 28
while 10
else 9
+ 9
not 5
or 5
and 3
lambda 2
* 2
< 2
@ 2
> 1
del 1
- 1
in 1
-= 1
assert 0
global 0

yield 0

is 0
/ 0
% 0
** 0
<< 0
>> 0
& 0
| 0
^ 0
== 0
!= 0
<= 0
>= 0
{ 0
� 0

Table 10: Frequency of trigger points from which token generation starts in line-level completions.

Underlined trigger points are keywords or operators that are not used in any reference solution.

68

