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A Hybrid Neural Model Approach for Health
Assessment of Railway Transition Zones With

Multiple Data Sources
Wassamon Phusakulkajorn , Siwarak Unsiwilai , Member, IEEE, Ling Chang , Zili Li ,

and Alfredo Núñez , Senior Member, IEEE

Abstract—Transition zones in railway tracks often degrade
faster than other locations, yet traditional health assessments rely
on infrequent track geometry measurements, limiting early detec-
tion of dynamic changes. This research presents an approach for
more frequent evaluation of transition zone health by integrat-
ing data sources from multiple monitoring technologies: track
geometry, interferometric synthetic aperture radar (InSAR), and
axle box acceleration (ABA). Missing InSAR data are addressed
through spatiotemporal interpolation, and track longitudinal
levels are predicted using a hybrid neural model that includes a
hybrid convolutional neural network (CNN) with gated recurrent
unit (GRU) network and a hybrid CNN with a long short-
term memory (LSTM) network. The models fuse historical and
interpolated data from InSAR and ABA, enabling high-frequency
insights. A novel key performance index (KPI) based on predicted
longitudinal levels is proposed to quantify track condition. The
framework is validated on a transition zone at a railway bridge
between Dordrecht and Lage Zwaluwe in The Netherlands.
The results show that the hybrid model outperforms standalone
methods and offers a good balance between accuracy and
computational efficiency. The proposed approach enables earlier
detection of irregularities, supporting prescriptive maintenance
decisions.

Index Terms—Acceleration measurements, data fusion, hybrid
neural networks, interferometric synthetic aperture radar
(InSAR), railway infrastructure, track geometry.

NOMENCLATURE

ABA Axle box acceleration.
AL Alert limit.
CNN Convolutional neural network.
CoSD Combined standard deviation.
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DTW Dynamic time warping.
GRU Gated recurrent unit.
IAL Immediate action limit.
IL Intervention limit.
InSAR Interferometric synthetic aperture radar.
LSTM Long short-term memory.
MAE Mean absolute error.
RMSE Root-mean-square error.
RNN Recurrent neural network.
SAR Synthetic aperture radar.
SAWP Scale average wavelet power.
SSE Sum squared error.
TQI Track quality index.
TSS Total sum of squared error.
WPS Wavelet power spectrum.

I. INTRODUCTION

IN RAILWAYS, transition zones denote areas marked by
structural discontinuities, leading to abrupt variations in

track stiffness, damping, and track geometry. They are often
observed at critical points such as bridges, culverts, tun-
nels, transitions between ballasted and slab tracks, and road
crossings. The abrupt changes in train dynamic responses
significantly accelerate the degradation of transition zones,
resulting in substantial maintenance costs to sustain smooth
operation and safety. Hence, it is crucial to assess the structural
health condition of transition zones more frequently to detect
changes at an early stage. Correct health assessment allows
prescriptive interventions to maintain operational efficiency
and mitigate potential risks.

The health assessment of a railway transition zone includes
various aspects. Examples are track geometry inspection to
measure the track deviations from design specifications, con-
dition monitoring of rail and other track components in areas
of transition to examine wear, defects, and damage, dynamic
response analysis to identify any irregularities or excessive
forces that could affect safety and health, and embankment
stability inspection where the transition zone is situated to
prevent derailment, among others. Information on the health of
transition zones can be collected from three primary sources:
trackside measurements, onboard systems, and remote sensing
technologies. Each of these has specific limitations that can be
addressed by combining insights from the other sources.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/
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Trackside measurements provide information at specific
positions using technologies such as borehole inclinome-
ters, geophones, linear variable differential transformers,
deflectometers, strain gauges, accelerometers, and advanced
fiber-optic methods such as Rayleigh backscattering [1] and
fiber Bragg grating [2]. Measurement techniques can be
applied individually to meet specific objectives or combined
to improve monitoring effectiveness by integrating data from
different types of sensors [3], [4]. While these methods
allow detailed monitoring of specific points, they are typically
installed only in high-priority locations, offering the local
coverage of responses [5], [6], [7]. The need for a broader
perspective of track responses due to train loads necessitates
the installation of a greater number of sensors. This involves
costs from not only devices but also expenses related to labor
and power supplies. Thus, trackside measurements are limited
by their narrow spatial coverage and high resource demands.

Onboard monitoring systems collect data from moving vehi-
cles. They offer continuous monitoring that improves trackside
monitoring by covering extended track sections, including
transition zones. For instance, onboard systems such as inertial
measurement units, digital image correlation systems, and
accelerometers are used to identify track irregularities and
assess ballast conditions [8], [9], [10], [11], [12], [13], [14].
However, some challenges that onboard monitoring techniques
face include their integration with existing systems, the need
for efficient data processing and analysis due to vast amounts
of generated data, and their adaptations to make them robust
and implementable in, for instance, passenger trains.

Remote sensing technologies, including satellite-based mea-
surements, provide a broader view of railway infrastructure
and transition zones, detecting ground movements such as
subsidence, uplift, and landslides with subcentimeter precision
[15], [16]. Satellite data, such as that from the Sentinel-1 radar
mission, deliver radar images on a biweekly basis, with (tens
of) meter-level spatial resolution. They can be exploited to
detect railway irregularities [17], [18] and characterize the
deformation process resulting from subway-induced subsi-
dence in the construction and operation periods [19]. Despite
its ability to provide valuable data, some railway applications
require higher spatial resolution and accuracy that are not
currently possible to obtain from medium-resolution satellite
data.

Assessing transition zone conditions relies significantly on
measurement frequency and data density across the area.
Frequent measurements are crucial for improving forecasts,
gaining insights into long-term deterioration, and identifying
severe events. This, in turn, supports more effective mainte-
nance strategies. At the same time, high-density data collection
along transition zones is essential for detecting track irreg-
ularities. While individual measurement approaches provide
valuable insights, each has its strengths and limitations. To
leverage their complementary advantages, this work considers
integrating multiple data sources to predict track conditions at
transition zones.

Various machine learning models, including principal com-
ponent analysis [20], support vector regression [21], artificial
neural networks [21], [22], [23], deep neural networks [24],

and convolutional encoder–decoder networks [25], have been
employed to predict railway track conditions. The development
of these models reflects variations in input data sources,
prediction time horizons, and their applicability to specific
railway section types. Studies such as [20], [21], [22], [24] and
[23] rely on historical track geometry and maintenance data
for degradation prediction. Among them, the works in [22],
[24] and [25] adopt complex neural network architectures and
achieve high predictive performance, with reported R2 values
ranging from 0.85 to over 0.95. However, such performance
depends on the experiment design and local conditions. While
models in [20], [21], [23], and [25] are limited to short-term
predictions, those in [22] and [24] demonstrate capabilities
for long-term forecasting. Although most studies [20], [21],
[22], [23], [24] depend on historical track geometry mea-
surements, the study in [25] explores an alternative by using
dynamic inputs such as bogie, wheelset, and car-body accel-
erations, along with vehicle speed. This method infers track
irregularities through acceleration-based inversion, reducing
dependence on track geometry data but does not provide long-
term prediction.

Transition zone condition assessment presents additional
challenges due to the presence of both spatial and temporal
dependencies. While CNNs are effective at capturing spatial
patterns, as demonstrated in [25], RNN and its variants have
shown success in learning temporal relationships [23]. Nev-
ertheless, these models typically treat spatial and temporal
aspects separately. To overcome this, hybrid models combining
CNNs with RNN variants have been proposed, such as the
CNN-LSTM approach in [26], which enables the joint learning
of spatial–temporal dependencies. LSTM, though effective in
capturing long-term dependencies due to their gating mech-
anisms and memory cells, is computationally intensive [23],
[26]. Alternatively, GRUs, which use fewer parameters, offer
a more efficient solution while still addressing the vanishing
gradient problem [23]. Therefore, this work considers CNN-
LSTM and CNN-GRU models to capture the spatiotemporal
dependencies in track geometry changes.

To address the challenges of long-term prediction and
reduce dependence on historical track geometry data, this
article presents a data fusion framework that integrates track
geometry, InSAR, and ABA measurements to assess rail-
way transition zone conditions. Specifically, track geometry
measurements are standardized and valued for accuracy and
resolution. However, track geometry measurements may miss
areas with poor dynamic train–track interactions. ABA mea-
surements, in contrast, capture local dynamic responses, while
InSAR offers broader spatial coverage and long-term deforma-
tion trends. By leveraging these complementary data sources,
the proposed framework enables more frequent evaluations,
addressing the limitation of current practices where track
geometry is typically measured a few times per year. Our key
contributions include the following.

1) A hybrid neural model approach to assess the health
condition of transition zones that integrates three distinct
types of signals for railway infrastructure geometry and
dynamics: track geometry, InSAR, and ABA measure-
ments. The developed key performance index (KPI)
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Fig. 1. (a) Track geometry measurement system, (b) InSAR, and (c) ABA
system. SAWP of V-ABA is considered. Red points represent InSAR data
points.

enables more frequent evaluations of transition zone
health conditions and provides railway infrastructure
managers with more information to plan and execute
maintenance activities more efficiently.

2) Real-world field measurements at transition zones of
a railway bridge in The Netherlands are used to
demonstrate the applicability and performance of the
framework.

II. MEASUREMENT TECHNOLOGY

Fig. 1 illustrates an overview of three measurement tech-
nologies used in this work. The technologies include a track
geometry measurement system, InSAR, and ABA measure-
ment system.

A. Track Geometry Measurement

Track geometry measurement is a standardized measure-
ment used in various railway companies. It is often performed
using measurement cars equipped with sensors and instru-
ments. These cars move along the track and collect data on
various parameters. Typically, the track geometry measure-
ment includes the longitudinal level of both rails, alignment
of both rails, gauge, and twist. The spatial resolution of
track geometry measurements can range from centimeters
to decimetres. The frequency of track geometry measure-
ments depends on several factors, including budget and the
availability of measurement cars. The level of train traffic
and maintenance activities also affect the frequency of track
geometry measurements due to track possession. Generally,
track geometry measurements are performed regularly. In
The Netherlands, for example, the measurement campaign is
conducted once or twice per year. This results in less frequent
measurements with a high density of track geometry data.

B. InSAR Radar

InSAR is a remote sensing technique that uses SAR to
measure and monitor surface changes of the Earth over time.

SAR is an active sensing technique that emits electromagnetic
pulses (in the microwave range) toward the surface of the Earth
and records the backscattered radar signal. The radar pulses
are emitted along the satellite line-of-sight direction. Radar
signals are composed of two main components: amplitude
and phase. To derive the ground displacement that occurred
between the two acquisitions, InSAR involves comparing the
phase difference of radar signals acquired over the same area
at different times, particularly for repeat-pass SAR satellites.
A stack of radar signals over different times is used to get a
time series of ground target movement. InSAR data, namely
InSAR displacements for our study, are collected every 6–12
days, and the spatial density of InSAR data varies depending
on the studied area and processing strategy, which can be in
the range of meters. This results in frequent measurements
with less density of InSAR data over an area. However, some
areas may be monitored by multiple SAR satellites, each
providing independent observations at different time intervals
and viewing angles. Combining data from multiple SAR
sources, therefore, offers a more comprehensive assessment
of changes in the study area.

C. ABA Measurement System

ABA measurement system is an onboard measurement
technique. Its fundamental concept is to use a train as a moving
load to excite the infrastructure and to detect defects and irreg-
ularities through an analysis of time–frequency characteristics.
This analysis is derived from the dynamic response of the
train–track interaction captured by accelerometers installed on
the axle boxes. Accelerometers can be installed on the axle
boxes in three directions: vertical, longitudinal, and lateral.
These produce ABA signals that capture dynamic responses
in each corresponding direction. Fig. 1(c) shows an example
of signals obtained from the vertical ABA (V-ABA). To
analyze frequency characteristics associated with specific track
irregularities, we apply a continuous wavelet transform to
convert the time-domain ABA signals into the time–frequency
domain. SAWP is then used to extract features within the
spatial frequency range of 0.04–0.33 m−1, corresponding to
track longitudinal irregularity wavelength between 3 and 25 m.
This wavelength range has been reported to indicate changes
in track substructure conditions [12].

In comparison to other measurement techniques that use
dedicated measurement vehicles, ABA technology comes with
the advantages of lower cost and easier maintenance. The ABA
measurement system achieves high spatial resolution, typically
within the millimeter range due to a high sampling frequency.
While its technology readiness level is increasing [27], the
ABA system still needs to evaluate its robustness and general-
ization. This involves conducting extensive measurement and
validation campaigns in different locations and under different
measurement conditions. Once the technology advances and
matures, more frequent ABA measurements are anticipated.
This involves installing ABA systems on existing passenger
trains or considering these systems already in the design of
new generation trains with embedded smart sensors, offering
real-time or near-real-time monitoring of track conditions.
However, in this case study, ABA measurements are obtained
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yearly. This results in less frequent measurements with a
higher density than track geometry data.

III. PROBLEM FORMULATION

This work assumes the availability of datasets Dr
j =

{Gr
j ,Sr

j ,Ar
j} containing three different measurement technolo-

gies for a given railway track j ∈ N and rail r ∈ {inner, outer}.
The measurements include: first, a set of track geometry
measurements, Gr

j ; second, a set of displacements derived from
InSAR data Sr

j ; and finally, a set of ABA measurements Ar
j.

The measurements are collected from a transition zone at
a position x within the kilometer range from xb to xe and
during the month t within time frame tb and te. They are
mathematically expressed as follows:

Gr
j =

n
lrj (x, t) |x = xG1 , . . . , x

G
γ1

and t = tG1 , . . . , t
G
β1

o
Sr

j =
˚
dr

j (x, t) |x = xS1 , . . . , x
S
γ2

and t = tS1 , . . . , t
S
β2

	
Ar

j =
˚
ar

j (x, t) |x = xA1 , . . . , x
A
γ3

and t = tA1 , . . . , t
A
β3

	
where lrj(x, t), dr

j(x, t), and ar
j(x, t) denote, respectively, the

track longitudinal level, the displacement, and the ABA data
collected at a position x and in month t. Variables γ1–γ3
represent the number of measurements in the spatial domain
corresponding to track geometry, displacements, and ABA
signals, respectively. Similarly, β1–β3 represent the number
of measurements in the temporal domain for each respective
dataset. For all the measurements, missing data can happen
in which lrj(x, t), dr

j(x, t), and ar
j(x, t) are represented by the

not-a-number value.
The average spatial resolutions of the track geometry,

ABA measurements, and InSAR displacements are defined
as ∆xG = 1/(γ1 − 1)(xGγ1

− xG1 ),∆xS = 1/(γ2 − 1)(xSγ2
− xS1 ),

and ∆xA = 1/(γ3 − 1)(xAγ3
− xA1 ), respectively. Similarly, the

average temporal resolutions of the track geometry, ABA
measurements, and InSAR displacements are defined as ∆tG =

1/(β1 − 1)(tGβ1
− tG1 ),∆tS = 1/(β2 − 1)(tSβ2

− tS1 ), and ∆tA =

1/(β3 − 1)(tAβ3
− tA1 ), respectively. In this work, we assume that

∆tG and ∆tA are similar, but both are much less than ∆tS .
Conversely, ∆xA is significantly higher compared to ∆xG and
∆xS , with ∆xG being denser than ∆xS . Fig. 2 shows which
measurements were obtained across track positions and time.
Track geometry measurements are in blue solid lines, InSAR
measurements obtained from Sentinel-1 satellites with four
different orbital trajectories represented by dotted lines in other
colors, and the ABA measurements with red solid lines. The
spatial and temporal resolutions of the different data sources
can be estimated from such a diagram.

For track j and rail r, let Hr
j denote a 2-D spatiotemporal

function that provides the unobserved value of ABA data
âr

j(x, tA) at position x ∈ [xb, xe] and in the ABA measurement
month tA = tA1 , . . . , t

A
β3

such that

âr
j

�
x, tA

�
= Hr

j

�
x, tA

�
. (1)

Likewise, let Kr
j denote a 2-D spatiotemporal function that

provides the unobserved value of the displacements d̂ j(x, t) at
position x ∈ [xb, xe] and in month t ∈ [tb, te] such that

d̂r
j (x, t) = Kr

j (x, t) . (2)

Fig. 2. Availability of the data considered in this work across different
positions and times, obtained from track geometry measurements (blue solid
lines), InSAR measurements from four different orbital trajectories (dotted
lines in four distinct colors), and ABA measurements (red solid lines).
White spaces represent missing information, while the gray area defines the
neighboring measurements used to construct the interpolation functions.

To predict the track longitudinal level l̂rj(xG , tG) at the
observed position xG = xG1 , . . . , x

G
γ1

and in the unobserved
month tG , tG , tG1 , . . . , t

G
β1

, we exploit the interpolated values
of InSAR an ABA data to construct a hybrid neural model
M j defined for all rails r such that

l̂rj
�
xG , tG

�
=M j

�
Hr

j

�
xG , tAo

�
,Kr

j

�
xG , tG

��
=M j

�
âr

j

�
xG , tAo

�
, d̂r

j

�
xG , tG

��
(3)

where Hr
j is derived from the closest available ABA mea-

surement month tAo , o ∈ {1, . . . , β3}, occurring prior to the
measurement month tG of the predicted track geometry. Kr

j
is defined at the position xG and the same month tG of the
predicted track longitudinal level. Then, a KPI is evaluated
across unobserved months spanning the entire transition zone
utilizing the predicted track longitudinal level l̂rj(xG , tG).

This article proposes a methodology that involves the iden-
tification of (1)–(3) for an estimation of a KPI that aims
at facilitating a more frequent assessment of transition zone
health. The proposed methodology offers the capability to
evaluate transition zone health prior to the next measurement
of track geometry. With the new available InSAR data that
comes frequently, the KPI is updated to provide early warnings
to support decision-making regarding the time and locations
for maintenance interventions.

IV. METHODOLOGY

Fig. 3 illustrates the framework of this article. It involves the
development of two distinct 2-D spatiotemporal interpolation
functions to estimate values from InSAR and ABA data. Then,
a hybrid neural model is developed to predict the track longitu-
dinal levels using these interpolated values. Finally, utilizing
the predicted track longitudinal levels, the KPI is evaluated
across unobserved months spanning the entire transition zone.

A. Spatiotemporal Interpolation

The railway track is a distributed system characterized by
dynamic variations over time and locations. Temporal variation
is due to continuous usage, degradation, and maintenance,
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Fig. 3. Proposed framework.

while spatial variations arise from distinct dynamics at dif-
ferent locations, including transition zones. As performing an
interpolation within a smaller region allows for addressing
local variations over different locations and times, this work
considers the development of spatiotemporal interpolation
within smaller regions. The workflow of the spatiotemporal
interpolation involves domain discretization, surface fitting for
the displacements, and curve fitting for the ABA data within
the subdomains.

1) Domain Discretization: This work predicts track lon-
gitudinal levels by utilizing interpolated values derived from
InSAR and ABA measurements. Subsequently, the domain is
discretized to ensure that each subdomain contains displace-
ments from at least two distinct locations and ABA values
from at least one measurement. Based on these assumptions,
a distance ∆x can be defined for a spatial domain discretization
such that ∆x ≥ max{(xSi − xSi−1), i = 2, . . . , γ2}. Likewise, ∆t
for a temporal domain discretization can be defined such that
∆t ≥ max{(tAi − tAi−1), i = 2, . . . , β3}.

Given ∆x and ∆t and a spatiotemporal domain T =

{(x, t)|x ∈ [xb, xe]and t ∈ [tb, te]}, we have that the spatial
domain is uniformly discretized into M subspatial domains
and the temporal domain is uniformly discretized into N sub-
temporal domains. This results in a total of M×N subdomains.
Mathematically, a subdomain Tm,n is defined as

Tm,n = {(x, t) |x ∈ [xb + (m − 1) · ∆x, xb + m · ∆x] ,
t ∈ [tb + (n − 1) · ∆t, tb + n · ∆t]} (4)

where m = 1, . . . ,Mand n = 1, . . . ,N.
The shaded region depicted in Fig. 2 provides an example of

a subdomain where the interpolation functions are formulated
based on the available InSAR and ABA measurements within
that specific subdomain. Within this shaded region, ABA data
from the month tAo and InSAR data collected from positions
and months confined by the spatial and temporal boundaries of

the shaded area will be utilized to construct the interpolation
functions.

2) Surface Fitting for Displacements: Given a subdomain
Tm,n and the displacements dr,m,n

j (xS , tS ) collected from rail r
of track j at position xS ∈ [xb + (m − 1) · ∆x, xb + m · ∆x]
and in month tS ∈ [tb + (n − 1) · ∆t, tb + n · ∆t] that are
available within Tm,n, this article considers 2-D polynomial
interpolation to estimate values of displacements, d̂r,m,n

j (xG , tG)
at the position, xG , and in the month, tG , of the predicted
track longitudinal level within a subdomain Tm,n. The 2-D
polynomial interpolation Kr,m,n

j defined for rail r of track j
within a subdomain Tm,n is mathematically expressed as

Kr,m,n
j (x, t) =

Pr,m,n
jX

p=0

Qr,m,n
jX

q=0

cr,m,n
j,pq xptq (5)

where Pr,m,n
j and Qr,m,n

j denote the degree of the polynomial
used for interpolation in the spatial and temporal subdomain,
respectively. The coefficients cr,m,n

j,pq , p = 0, . . . , Pr,m,n
j and q =

0, . . . ,Qr,m,n
j are determined using the given data points in

each corresponding subdomain, aiming at minimizing the
sum of the squared differences between the observed and
predicted values. The degree of the polynomial defined in each
subdomain is optimized to attain the lowest sum square error.

3) Curve Fitting for the ABA Signal: Given a subdomain
Tm,n and the ABA data ar,m,n

j (xA, tA) obtained from rail r of
track j at position xA ∈ [xb + (m − 1) · ∆x, xb + m · ∆x]
and in month tA ∈ [tb + (n − 1) · ∆t, tb + n · ∆t] that are
available within Tm,n, even though ABA data exhibit temporal
variation, this article assumes a constant variation of the ABA
values between two consecutive measurement months. This
allows the formulation of 2-D spatiotemporal interpolation to
be simplified into 1-D interpolation. To estimate the values of
the ABA data âr,m,n

j (xG , tAo ) at the position xG from the closest
ABA measurement month, tAo , o ∈ {1, . . . , β3}, occurring prior
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to the measurement month tG , this article considers 1-D
polynomial interpolation Hr,m,n

j,tAo
(x) defined for rail r of track j

within a subdomain Tm,n, which is mathematically expressed
as

Hr,m,n
j,tAo

(x) =

Rr,m,n
jX
ξ=0

br,m,n
j,ξ xr (6)

where Rr,m,n
j denotes the degree of the polynomial used for

interpolation in the spatial subdomain Tm,n. The coefficients
br,m,n

j,ξ , ξ = 0, . . . ,Rr,m,n
j , are determined using the given data

points in each corresponding subdomain, aiming at minimizing
the sum of the squared differences between the observed
and predicted values of the ABA signals. The degree of the
polynomial defined in each subdomain is optimized to attain
the lowest sum square error.

B. Hybrid Neural Model Approach

Each transition zone is affected by different structural,
environmental, and operational factors, leading to unique
temporal–spatial signatures in both track geometry and
dynamic responses. These variations can limit the generaliza-
tion capability of a single-model architecture.

To address this, we propose a hybrid approach that uses
CNN-LSTM and CNN-GRU models with a selection mecha-
nism. Both models are designed to have CNN layers on top.
Then, the LSTM or GRU structure is designed to follow the
CNN layers, as seen in Fig. 3. The inputs to the CNN layers
are the interpolated values of the displacements derived from
the InSAR data and the ABA measurements. After the CNN
layers, their output is fed into the LSTM and GRU layers and
the fully connected layers.

Both CNN-LSTM and CNN-GRU models are effective
in capturing spatial and temporal dependencies. The LSTM
is particularly effective at capturing long-term dependencies,
while the GRU, with its simpler architecture and fewer param-
eters, tends to offer better training efficiency and reduced
risk of overfitting, especially when working with limited data.
Rather than assuming a universally applicable model, we
empirically evaluate the suitability of both architectures for
each transition zone. This strategy allows us to take advantage
of their complementary strengths, thereby improving adapt-
ability across diverse scenarios. Prior studies indicate that
CNN-GRU architectures exhibit greater robustness compared
to CNN-LSTM, attributed to their simpler structure and faster
convergence. This work addresses robustness and generaliza-
tion through cross validation and applying early stopping to
limit overfitting.

Given railway track j, rail r, and the interpolated val-
ues of the displacements d̂r,m,n

j (xG , tG) and the ABA signals
âr,m,n

j (xG , tA), this article considers the input vector to a
hybrid neural model as a concatenated vector denoted as
X = [d̂r,m,n

j (xG , tG), âr,m,n
j (xG , tA)]. For the f th convolutional

layer, let denote its input as Xf , its filters as Wf , the bias term
as bf , and the activation function as φ. The output zf of the
f th convolutional layer can be expressed mathematically as
follows:

zf = φ
�
Wf ∗ Xf + bf

�
(7)

where * denotes the convolution operation, which involves
sliding the filters Wf over the input Xf and computing the dot
product at each position. The result is then passed through the
activation function φ. The obtained output zf represents the
feature maps passed on to the next layers.

After the CNN layers, LSTM layers or GRU layers are
considered. For the GRU layers, the core building blocks
include hidden state (h), update gate (v), reset gate, (r),
candidate hidden state (h̃), and hidden state update rule. For
a time step t, the hidden state ht is the memory of the GRU
that captures information from previous time steps. The update
gate vt determines how much of the previous hidden state
ht−1 to retain and how much of the new candidate hidden
state h̃t to incorporate. The update gate is computed using
a sigmoid activation function (σ) as seen in (8). The reset
gate determines how much of the previous hidden state ht−1 to
forget. It is also computed using a sigmoid activation function
(σ) as seen in (9). The candidate hidden state at the time step
t represents the new information that could be added to the
memory. It is computed by applying the hyperbolic tangent
(tanh) activation function to the weighted sum of the reset-
gated previous hidden state and the current input, as seen in
(10). Then, the new hidden state ht is computed by combining
the previous hidden state ht−1 and the candidate hidden state
h̃t using (11)

vt = σ (Wv · [ht−1, zt]) (8)
rt = σ (Wr · [ht−1, zt]) (9)

h̃t = tanh (Wh · [rt � ht−1, zt]) (10)

ht = tanh
�
(1 − vt) � ht−1 + vt � h̃t

�
(11)

where zt is an input to the GRU layers obtained from the last
convolution layer of the CNN layers, Wv is the weight matrix
for the update gate, Wh is the weight matrix for the candidate
hidden state, and � represents the element-wise multiplication.

Similar to the GRU layers, the LSTM cell has three gates:
the input gate, the forget gate, and the output gate. The
forget gate determines what information from the previous
cell state should be discarded. The input gate decides what
new information to store, and the output gate controls how
much of the current cell state should be revealed as the output.
Additionally, there are a cell state update, c̃t, and the actual
cell state ct designed for LSTM. Mathematically, they are
expressed as follows:

ft = σ
�
Wf · [ht−1, zt] + bf

�
(12)

It = σ (WI · [ht−1, zt] + bI) (13)
c̃t = tanh (Wc · [ht−1, zt] + bc) (14)
ct = ft · ct−1 + It · c̃t (15)
ot = σ (Wo · [ht−1, zt] + bo) (16)
ht = ot · tanh (ct) (17)

where zt is an input to the LSTM layers obtained from the
last convolution layer of the CNN layers. ft denotes the forget
gate, It is the input gate, c̃t is the cell state, ct is the update cell
state, ot is the output gate, and ht is the hidden state update.
The weight matrices are denoted as Wf ,WI ,Wc, and Wo, and
the bias vectors are represented by bf , bI , bc, and bo.
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The final layer after the hybrid neural model consists of a
fully connected layer. The output yλα from the αth node of the
λth layer is mathematically expressed as

yλα =
X

j

ωλαε
�
φ
�
hλt,α
�
+ bλα

�
(18)

where ωλαε represents the weight of the αth and εth node for
the layer λ and λ−1, respectively; φ is an activation function;
and bλα is its bias.

Then, a selection mechanism is implemented to choose the
better-performing output from the CNN-LSTM or CNN-GRU.
The selection mechanism is guided by an empirical strategy
based on a tradeoff between two main criteria: predictive
accuracy (accounting for spatial and temporal errors) and
computational efficiency (considering time per epoch). While
additional aspects may be considered in future extensions, this
work focuses on these two factors as they most directly impact
model performance and deployment feasibility. We formulate
the model selection as follows:

i = arg min (J1, J2) (19)
Ji = α · Y1i + (1 − α) · Y2i, i ∈ {1, 2} (20)

where index i represents the model we will select, with
i = 1 representing CNN-LSTM and i = 2 representing CNN-
GRU; Ji is the cost function related to model i, J is the
minimum value between J1 and J2; Y1i is the MAE of the
predicted longitudinal level at a transition zone and represents
performance of model i that considers spatial (about 30 m from
each end of the bridge) and temporal behavior (about a year
ahead prediction); Y2i represents the complexity of the training
via the average time per epoch for model i (with the same
stopping criteria for both models); and α ∈ [0, 1] is a tuning
parameter that controls the relative importance of predictive
accuracy versus computational efficiency.

C. Evaluation of KPI

Let the proposed KPI based on InSAR and ABA data denote
as KPIInSAR+ABA. To assess the health of transition zones,
this work focuses on computing KPIInSAR+ABA for two track
segments k ∈ {Entrance,Exit}. These segments cover a distance
of 30 m each, extending from the entrance and exit sides of the
transition zones [12]. Specifically, the spatial boundaries are
defined by xb and xb+30 m for the entrance side, while for the
exit side, the spatial boundaries are defined by xe−30 m and xe.
With a single value assigned to each segment k, two values
of KPIk, j

InSAR+ABA are determined for a given track j. Their
calculation involves determining the standard deviation of the
predicted longitudinal levels, cSDr, at rail r ∈ {inner, outer}.
The proposed KPIk, j

InSAR+ABA for a given segment k of track j
is obtained as follows:

KPIk, j
InSAR+ABA =

�cSD
k, j
inner + cSD

k, j
outer

�
2

(21)

where

cSD
k, j
r =

vuutPγ1
i=1

�
l̂rj
�
xGi , tG

�
− l̄rj

�2

γ1
(22)

l̂rj(xG , tG) is the predicted track longitudinal levels at a position
xGi contained within the spatial boundaries of segment k and in
a month tG , l̄rj is the mean of the predicted track longitudinal
levels from rail r of track j, and γ1 is the number of track
geometry measurements in the spatial domain.

D. Evaluation Metrics

The CNN-LSTM and CNN-GRU models are trained to min-
imize the difference between the observed and the predicted
track longitudinal level. In regression tasks, RMSE [defined in
(24)] is typically used as a loss function for model training.
Given two sequences of the observed track longitudinal levels
Y = [y1, . . . , yi, . . . , yN] and the predicted track longitudinal
levels Ŷ = [ŷ1, . . . , ŷ j, . . . , ŷN] and N being the length of the
sequences, the evaluation metrics for model performance in
this article include the following.

1) MAE calculates the absolute differences between the
actual and predicted values generated by the model and
then averages these absolute differences. MAE gives
equal weight to all errors without considering overes-
timation or underestimation. MAE is expressed as [28]

MAE =
1
N

NX
i=1

{|yi − ŷi|} . (23)

2) RMSE is the square root of the average of the squared
differences between the actual and predicted values
generated by the model. RMSE is expressed as [26],
[28], [30]

RMSE =

vuut 1
N

NX
i=1

(yi − ŷi)2. (24)

3) R2 measures the proportion of variance explained by
the model and ranges from 0 to 1, with 1 indicating a
perfect fit. However, a negative R2 can occur when the
SSE exceeds the TSS. This indicates that the model fails
to capture the underlying patterns in the data, resulting
in predictions that deviate substantially from the actual
values. R2 is expressed as [29]

R2 = 1 −
SSE
TSS

= 1 −
PN

i=1 (yi − ŷi)2PN
i=1 (yi − ȳ)2

(25)

where ȳ denotes the mean of the observed values.
4) DTW distance is a metric derived from the DTW algo-

rithm. It measures the similarity between two temporal
sequences that may be misaligned. DTW accounts for
variations in time between the predicted and actual
sequences. The larger the DTW distance, the more
dissimilarity and temporal misalignment. In this article,
Euclidean distance is considered. Thus, the DTW dis-
tance between Y and Ŷ is expressed as follows:

DTW (yi, ŷi) = min
w

KX
k=1

q�
yik − ŷ jk

�2 (26)
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Fig. 4. Our study area of transition zones. (a) Photographs at the double-track railway bridge across a water channel from the side and top view. (b) Examples
of aerial photographs showing the variability of the area near the railway track from 2014, 2015, 2016, and the most recent year (source: BBMS, ProRail).

where w = [(i1, j1), . . . , (ik, jk), . . . , (iK , jK)] is the warp-
ing path with the length of K and k is the index along
the warping path, from 1 to K.

V. CASE STUDY

This article selects transition zones at a railway bridge
between Dordrecht and Lage Zwaluwe station as our case
study. It is a 9-m single-span bridge that crosses over a water
channel. The bridge supports two tracks of a railway line with
fixed travel directions. Track 1 is for trains traveling from
Lage Zwaluwe to Dordrecht, and Track 2 is for trains from
Dordrecht to Lage Zwaluwe. This transition zone features the
entrance and exit sides on each of the two tracks, as well
as the inner and outer rails. The entrance side marks the
beginning of the transition in which trains move from the
conventional track to the bridge. The exit side of a railway
transition zone is the segment where the trains return back
to the standard configuration of tracks. Fig. 4(a) shows the
photographs of the double-track railway bridge across a water
channel from the side and top views. In addition to ground-
level photographs, aerial photographs are used to provide
a broader perspective on the surrounding environment and
its evolution over time. They offer several advantages for
railway infrastructure management, such as supporting asset
inventory, detecting missing objects or obstructions, monitor-
ing changes in land use, and documenting the infrastructure
state before and after maintenance actions. Fig. 4(b) shows
aerial photographs from different years illustrating changes
surrounding the transition zones due to seasonal variations and
human activities. These provide valuable contextual informa-
tion, for example, nearby stable civil structures visible in the

aerial photographs are used to select reliable InSAR reference
points, since these structures remain nondeformed over time
compared to the railway track and transition zones. More-
over, broader environmental changes can indirectly influence
transition zone conditions through mechanisms such as soil
instability, surface runoff, or changes in drainage patterns.
While these changes are not included in the approach proposed
in this article, they could be embedded in future research.
This article focuses on developing a KPI for frequently
monitoring track geometry at transition zones, using ABA,
InSAR, and track geometry measurements. Each measurement
method has unique sensitivities and captures different aspects
of track conditions. As a result, relying on a single data
source can lead to gaps or misinterpretations when assessing
transition zone conditions. Therefore, integrating multisource
data is essential to overcome these limitations, provid-
ing a more comprehensive understanding of transition zone
conditions.

A. Description of the Measurements

All the measurement technologies are analyzed at the track
sections at both ends of the bridge, from 30 m before the
railway bridge on the entrance side to 30 m after the bridge
on the exit side and 30 m away from both tracks. Therefore,
the boundary area of our case study is defined to include
measurements collected at positions x within the kilometer
range from xb = edge1−0.03 km to xe = edge2+0.03 km. The
transition zone of the bridge at the entrance side of Track 1,
denoted as edge1, is marked at 24.652 km. The transition zone
of the bridge at the exit side of Track 1, denoted as edge2, is
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marked at 24.661 km. The distance from xb to xe accounts for
a total distance of 69 m, including the bridge length of 9 m.

1) Track Geometry Measurements: This article considers
only track longitudinal levels from track geometry measure-
ments conducted from a railway track j ∈ {1, 2} at rail
r ∈ {inner, outer}. The measurements used are available yearly
between November 2018 and August 2022. This accounts for
five measurements in which tG1 corresponds to November 2018,
tG2 corresponds to December 2019, tG3 corresponds to August
2020, tG4 corresponds to November 2021, and tG5 corresponds
to August 2022. The measurements are processed with a
bandpass filter within a wavelength range of 3–25 m, and
the measurements are reported in the spatial domain with
a resolution ∆xG = 0.25 m [30]. This accounts for 276
datapoints within the boundary area. Hence, a set of track
longitudinal levels collected from a rail r of track j at position
x and month t can be defined as

Gr
j =

˚
lrj (x, t) |x = xG1 , x

G
2 , . . . , x

G
276and t = tG1 , . . . , t

G
5

	
.

2) InSAR Data: We use InSAR data that SkyGeo pro-
cessed, and data were obtained from four orbital trajectories:
west-1a, west-2a, midden-1, and midden-2. In this article,
the data were collected by Sentinel-1 SAR satellites, with
multitrack images, every 6–12 days from September 2018
to August 2022. Due to the temporal variations in InSAR
data collection, this article considers representing InSAR data
on a monthly basis to ensure a uniform measurement time
across different satellites. We also perform a moving average
technique to mitigate noise inherent in InSAR data, which
can be due to temporal changes on the ground. Hence, the
measurement month tS1 aligns with September 2018. With
subsequent measurement months determined at a monthly
resolution, culminating in the final measurement month tS48,
which corresponds to August 2022. Within the boundary area,
only 67 InSAR points were available. These InSAR points are
spatially aligned by projecting their positions perpendicularly
onto tracks 1 and 2. The projection yields InSAR data points
spaced at an average interval of 1 m, i.e., ∆xS = 1 m, with
a maximum discrepancy between individual data points equal
to 5.4 m. For this article, we assume that the InSAR data
for the inner rail are the same as those of the outer rail of
the same track. Hence, a set of line-of-sight displacements
collected from track j at position x and month t can be defined
as

S j =
˚
d j (x, t) |x = xS1 , x

S
2 , . . . , x

S
67and t = tS1 , . . . , t

S
48

	
.

3) ABA Measurements: The ABA signals are collected
from four wheelsets at a rail r ∈ {inner, outer} and from a track
j ∈ {1, 2}. The measurements are available yearly between
2018 and 2019 and 2021 and 2022. This accounts for four
measurements in which tA1 corresponds to September 2018,
tA2 corresponds to June 2019, tA3 corresponds to November
2021, and tA4 corresponds to May 2022. In this article, the
measurements come from the high sampling frequency of
25.6 kHz, e.g., local dynamic responses are measured at
every millimeter approximately for a measuring speed of 100
km/h. Only the V-ABA signals corresponding to the vertical

train–track dynamic are considered in this work. A low-
pass filter at 100 Hz is applied to filter out high-frequency
contents within the V-ABA signals unrelated to transition zone
conditions.

Then, the ABA signals in the time domain are transformed
into the time–frequency domain using the Morlet wavelet.
After the WPS of the ABA signal is obtained, their cor-
responding SAWP is calculated to investigate characteristic
frequency responses at the transition zones. Only the spatial
frequency range between 0.04 and 0.33 m−1, corresponding
to track irregularities in the wavelength from 3 to 25 m, is
selected for our analysis as this is related to the condition of
the substructure layer reported in [12]. This article considers
the average SAWP from four ABA signals corresponding to
the same rail to reduce uncertainty from the measurements,
in which the SAWP is reported with a spatial resolution of 1
cm, i.e., ∆xA = 0.01 m. This accounts for 6900 data points
within the boundaries of the spatial domain. Hence, a set of the
average SAWP derived from the ABA measurements collected
from rail r of track j at position x and month t can be defined
as

Ar
j =

˚
ar

j (x, t) |x = xA1 , x
A
2 , . . . , x

A
6900and t = tA1 , . . . , t

A
4

	
.

B. Health Assessment of Railway Transition Zones

Maintaining railway tracks at transition zones depends on
their condition, which is assessed through track geometry pro-
files. Two track geometry-based indicators can be considered
for this task: an indicator for isolated defects and an indicator
for overall TQI. For an indicator for isolated defects, five track
geometry parameters defined in EN 13848-1 can be used: track
gauge, longitudinal level, cross level, alignment, and twist
[30]. According to EN 13848-5 [31], three severity levels are
established for each geometry parameter to guide maintenance
actions: IAL, IL, and AL [32]. For an indicator for overall
TQI, it is defined by EN 13848-6 [32] as the CoSD, which is
calculated by combining the weighted standard deviations of
individual geometric parameters as

CoSD =

q
wAL SD2

AL + wGSD2
G + wCSD2

C + wLL SD2
LL (27)

where, for the individual geometry parameter i, SDi is its
standard deviation, wi is its weighting factor, AL is the average
alignment of the inner and outer rails, G is the track gauge, C
is the cant, and LL is the average longitudinal level between
two rails. This CoSD is calculated considering a track segment
of the same distance.

In this work, the conventional TQI, referred to as CoSD,
and the performance index based on the average between the
standard deviation of the track longitudinal levels at the inner
rail and that at the outer rail, referred to as avgSD, are consid-
ered baseline comparisons against our proposed KPIInSAR+ABA.
Note that the avgSD can be obtained by considering the
observed value of track longitudinal levels in (21) and (22).

VI. RESULTS

A. Implementation Details

Due to limitations in the available measurement history, we
discretize the temporal domain into five fixed subdomains.
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Then, we vary the number of subdomains in the spatial domain
to assess their impact on the overall analysis. For a given
subdomain, the degrees of polynomials used in the curve fitting
for the SAWP and the surface fitting for displacements are
experimented with. The polynomials up to the fifth degree
are trials. The hybrid neural model is developed separately for
Tracks 1 and 2, in which the same network architecture is used
to predict the longitudinal levels from both the inner and outer
rails of the respective track. We experiment with the number
of hidden layers used within the CNN, GRU, and LSTM
structures. For the CNN structure, up to three convolutional
layers are considered, and four different numbers of filters are
trial: 64, 32, 16, and 8. We also experiment with different
filter sizes: 3 × 3, 5 × 5, 7 × 7, and 11 × 11. The rectifier
or ReLU activation function is used in CNN. For the GRU
and LSTM structure, up to two layers are considered, and
six different numbers of hidden units are trial: 256, 128, 64,
32, 16, and 8. This is followed by a dropout layer to prevent
overfitting. Next, a dense layer and the L2 regularization are
used to maintain generalizability. The hyperbolic tangent and
sigmoid functions are exploited as the state and gate activation
functions, respectively, in this dense layer.

For the model training, the following parameter setting is
specified: the number of data in each batch (small mini-batch
size) = 10, the maximum number of epochs = 300, and the
learning rate for parameter updates = 0.01. The dataset is
divided into training and test sets with a ratio of 60:40, in
which 90% of the training set is used to train the model and
the other 10% is used for validating the trained model. The
trained model is then tested with the holdout test set to evaluate
its performance for the regression task. The models are trained
with fivefold cross validation considering inner and outer rail
data. Furthermore, the early stopping technique is also used
to prevent overfitting during model training.

B. Results of Different Interpolation Functions

This section investigates the impact of using different inter-
polation functions on predictive performance. In this analysis,
the CNN-GRU model is used to showcase the analysis (α =

0.0) and we consider uniformly discretizing the domain into
35 subdomains. This is obtained by dividing the spatial and
temporal domains uniformly into seven and five subdomains,
respectively. The tested interpolation functions include local
linear regression, polynomial function, nearest interpolation,
biharmonic interpolation, cubic spline, Kriging, and Gaus-
sian process regression. We assess the performance in two
aspects: interpolation performance and predictive performance.
To assess the interpolation and predictive performance, the
deviations of the estimates of the missing values from the
actual values are measured using RMSE and R2.

Table I shows that the polynomial function yields the
best predictive performance, although the nearest, biharmonic,
cubic spline interpolation, Kriging, and Gaussian process
regression methods exhibit superior fitting performance. The
experiments reveal that the optimal polynomial degree varies
across different subdomains, reflecting the diverse distribution
of displacement data in each area. By tailoring the polyno-
mial degree to each subdomain, the polynomial interpolation

TABLE I
IMPACT ON THE PREDICTIVE PERFORMANCE WHEN USING DIFFERENT

INTERPOLATION FUNCTIONS. THE RESULTS OBTAINED FROM THE
HYBRID CNN-GRU OF TRACK 1 ARE SHOWN

method has reasonable consistency between the predicted and
observed values. The surface fitting of the displacements yields
the average RMSE values of 0.0027 m and R2 = 0.7731.
This subdomain-specific approach ensures that the polynomial
degree remains appropriate for the local data characteristics,
avoiding the oscillatory behavior associated with overfitting.
As a result, the polynomial interpolation achieves a balance
between capturing local variations and maintaining global
trends, both of which are critical for predictive performance.

Furthermore, Table I reveals that the success of interpolation
methods in terms of RMSE and R2 does not necessarily
guarantee its suitability for predictive tasks. These methods
might focus on minimizing local interpolation error, which
can produce smooth interpolated surfaces that lack the dis-
tinctive features necessary for capturing spatial and temporal
dependencies required by the CNN-GRU model.

While our work focuses on interpolation, it is worth men-
tioning that the DTW algorithm can also be considered as
an alternative approach to address the challenges posed by
different temporal resolutions among multiple data sources.
Preliminary tests with DTW in this study indicated comparable
performance to our interpolation method in terms of accuracy,
but it did not yield significant improvements. Nevertheless,
DTW may enhance temporal alignment in datasets with differ-
ent characteristics and is worth exploring further. Additionally,
time-series resampling strategies may also be employed to
achieve better temporal synchronization and data quality.

C. Results of Different Numbers of Subdomains

Considering the polynomial functions obtained from
Section VI-B to estimate values of displacements, this section
investigates the impact of discretizing the domain into different
numbers of subdomains. The CNN-GRU model is also used
to showcase the analysis (α = 0.0). It is observed in Table II
that employing large subdomains for interpolation fails to
capture local variations along the track. This leads to poor
predictive performance, as indicated by a high error and a large
R2 value when discretizing the domain into five subdomains.
However, performing an interpolation with subdomains that
are too small can result in overfitting, where the interpolation
passes through all the data points. This is evident in the well-fit
performance with a small error and an R2 value close to 1 when
the domain is discretized into 50 subdomains. Analyzing the
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TABLE II
IMPACT ON THE PREDICTIVE PERFORMANCE WHEN DISCRETIZING

DOMAIN INTO DIFFERENT SIZES OF SUBDOMAINS. THE RESULTS ARE
SHOWN FROM USING A POLYNOMIAL FUNCTION IN THE INTERPO-

LATION AND THE HYBRID CNN-GRU OF TRACK 1
IN THE PREDICTION

results in Table II reveals that the best predictive performance
is achieved through uniform discretization into 35 subdomains.

D. Comparative Study for Track Longitudinal Level
Prediction

Following the results of Sections VI-B and VI-C, we
discretize the domain into 35 subdomains using a polynomial
for interpolation of displacements. For the SAWP, the degrees
of polynomials used in the interpolation are also experimented
with. The results suggest the utilization of a fifth-degree
polynomial for the interpolation, in which the obtained inter-
polation performance is given with average RMSE values of
0.0012 m2/s4 and R2 = 0.9999.

To evaluate the effectiveness of the hybrid neural approach,
this article compares the results with CNN, GRU, LSTM,
CNN-LSTM, CNN-GRU, and transformer-based models for
CNN-LSTM and CNN-GRU trained with an attention mech-
anism. Each model employs the same parameter settings
for the model training and undergoes the same experiments
with different numbers of filters and sizes as described in
Section VI-A. In order to assess the impact of the attention
mechanism on accuracy, the network architectures of the
CNN-GRU-based transformer and CNN-LSTM-based trans-
former are designed to align with their respective hybrid
CNN-GRU and CNN-LSTM models. Then, we conduct exper-
iments to optimize the number of attention heads and output
sizes for the attention layer. Note that the notation 64 A (h = 8)
denotes an attention layer with an output size of 64 and eight
attention heads.

Table III compares performance obtained from different
predictive models developed using data obtained from railway
Tracks 1 and 2. The reported performance is an average
value between the inner and outer rail. Different network
architectures are designed for different railway tracks, with
those outlined in Table III exhibiting the lowest RMSE values.
Notably, the GRU and LSTM models perform better than the
CNN model. This improvement is due to their ability to handle
temporal characteristics, as demonstrated by a 38.32% reduc-
tion in DTW distance, indicating better temporal alignment
between prediction and observation. On average, their RMSE
improves from that of the CNN model by 24.15%, and their
R2 improves by 12.19%. Within the comparison between the
GRU and LSTM models, the GRU model, designed according

to the network architecture specified in Table III, exhibits
higher performance than the LSTM model for the dataset from
Tracks 1 and 2. Employing a hybrid model approach leads to
enhanced performance. This is evident in both CNN-LSTM
and CNN-GRU models. The CNN-GRU model outperforms
all the individual models for Tracks 1 and 2, improving with an
average RMSE of 32.88%, R2 of 40.40%, and DTW distance
of 47.55%. The transformer-based models outperform the
hybrid CNN-LSTM and CNN-GRU models, achieving lower
RMSE and higher R2 values on both tracks. On average, their
RMSE improves by 12.26%, and their R2 improves by 6.24%.

Notably, the CNN-GRU model yields inferior performance
to the CNN-LSTM model for Track 1, which is impaired
by 7.75% for RMSE, 1.24% for R2, and 7.05% for DTW
distance. Conversely, the CNN-GRU model yields superior
performance for Track 2, surpassing the CNN-LSTM model
with an improved RMSE of 7.96%, R2 of 7.45%, and DTW
distance of 1.53%. This suggests that neither CNN-LSTM
nor CNN-GRU consistently outperforms the other; rather,
their effectiveness depends on the specific context and data
characteristics. This observation aligns with findings reported
in the literature (see [34], [35], [36]). To address these, we
propose a unified framework that can adapt to these varia-
tions through an automated model selection mechanism, as
described in (19) and illustrated in Fig. 3. This mechanism
enables us to select between CNN-LSTM and CNN-GRU
models based on the specific objectives of each case, for
example, balancing predictive accuracy and training efficiency.
Additionally, these accuracy variations can be attributed to
the distinct spatiotemporal characteristics and operational con-
ditions unique to each transition zone. Future work could
incorporate dynamic modeling techniques using time-varying
parameters, such as state-space models, to capture changes
in system behavior over time. Additionally, online learning
algorithms that update model parameters as new data becomes
available can be particularly beneficial for adapting to evolving
conditions without requiring complete retraining [36], [37].

When comparing the computational time measured as the
average time taken to complete one epoch, Table III indicates
that, on average, the CNN-GRU and CNN-LSTM models
require 56.62% more time per epoch than the individual
models to achieve these improvements. This is due to the more
complex structure employed in their models. Compared to the
transformer-based models, while they achieve higher predic-
tion accuracy, these improvements come with an additional
computational cost. The transformer-based models require
approximately 27%–31% more time per epoch compared to
their hybrid counterparts. This highlights a tradeoff between
enhanced model performance and computational efficiency.
While the transformer-based models enhance accuracy, their
higher computational demand may limit their practicality in
resource-constrained environments.

Additionally, Table III highlights a tradeoff between accu-
racy and computational efficiency when comparing the
CNN-LSTM and CNN-GRU models. Considering the average
performance across Tracks 1 and 2, CNN-GRU achieves
slightly better accuracy, with an average RMSE reduction
of 1.62% and an average R2 values improvement of 2.78%.
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TABLE III
PERFORMANCE COMPARISON AMONG DIFFERENT PREDICTIVE MODELS. THE REPORTED PERFORMANCE IS AN AVERAGE VALUE BETWEEN THE INNER

AND OUTER RAIL AND COMPUTED ALONG THE TRACK SEGMENT OVER FIVE PREDICTED YEARS. THE HYBRID EXECUTES CNN-LSTM AND
CNN-GRU MODELS IN PARALLEL, AND THE TRAINING TIME PER EPOCH CORRESPONDS TO THE LONGER OF THE TWO MODELS

Fig. 5. Predicted track longitudinal levels obtained from different models.
The inner rail of Track 2 is shown.

However, CNN-GRU demonstrates a notable advantage in
computational efficiency, being approximately 53.72% more
efficient on average. For applications where computational
efficiency is critical, CNN-GRU thus offers a viable solution
with competitive accuracy while being significantly faster.
Conversely, for use cases where accuracy holds higher priority
and sufficient computational resources are available, CNN-
LSTM becomes a favorable choice. Future optimization efforts
could focus on reducing the number of model parameters.
This involves incorporating pruning techniques to enhance
computational efficiency further, enabling these models to
adapt more effectively to diverse application requirements.

Fig. 5 illustrates a comparison between the predicted track
longitudinal levels obtained from different models in the years
2018–2022. These are the results obtained from the inner rail
of Track 2. It can be seen that different models demonstrate
different capabilities in capturing the spatial and temporal

characteristics presented in the track longitudinal level changes
over the years. This capability can be investigated through the
spatial and temporal relationship between the predictions and
measurements. In other words, a consistent trend between the
predictions and measurements along the track positions and
across the years should be observed. The predicted values
obtained from the individual models, i.e., CNN, GRU, and
LSTM, exhibit inconsistent trends with the real measurements.
The inconsistency trend is more pronounced in 2022. This
is evident by their smaller R2 values, indicative of a less
consistent trend with the observed track longitudinal levels.
In contrast, the CNN-LSTM and CNN-GRU models exhibit
more consistent trends, as evidenced by their higher R2 values
compared to the individual models. This suggests a superior
ability to capture spatial characteristics. As time evolves, the
increased errors in the predicted values from CNN, GRU,
and LSTM models are observed. Also, the trend in their
predictions shifts, failing to accurately capture peaks. While a
slight drop in capturing peaks is observed in the CNN-GRU
model, it demonstrates an ability to adapt to the trends of the
track longitudinal changing over time. This emphasizes the
effectiveness of the CNN-LSTM and CNN-GRU models in
predicting track longitudinal levels. Regarding robustness and
generalization, the use of fivefold cross validation, early stop,
dense layer, and L2 regularization appears to be sufficient in
view of the prediction results. The model was evaluated across
five years, including a nearly two-year prediction horizon dur-
ing COVID-19 (when ABA data could not be collected with
our measurement train), demonstrating consistent performance
under varying operational conditions.

E. KPI Based on InSAR and ABA Data for the Health
Assessment of Railway Transition Zones

This section employs the results obtained from the
CNN-GRU to showcase the evaluation of the proposed
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Fig. 6. Continuous evolution of the KPI at the entrance and exit side of the
transition zones from September 2018, marked by month 1, to August 2022,
marked by month 48. (a) Track 1. (b) Track 2.

KPIInSAR+ABA (α = 0.0). Fig. 6 shows a continuous evolution
of the proposed KPIInSAR+ABA, at the entrance and exit side of
the transition zones from September 2018, marked by month
1, to August 2022, marked by month 48. There were only
five measurements of track geometry parameters within this
period. Notably, the KPIInSAR+ABA provides consistent health
conditions with the CoSD and the avgSD in the months
highlighted in the black boxes for Tracks 1 and 2. Specifically,
from June 2019, marked by month 10, the KPIInSAR+ABA is
similar to the trend of the CoSD and avgSD derived from
the track geometry measurements. The transition zone at the
exit side was more degraded than the entrance for Track 1,
whereas the entrance side was more degraded than the exit
for Track 2. Likewise, the CoSD, avgSD, and KPIInSAR+ABA
consistently revealed that Track 2 was more degraded than
Track 1, evident by their higher value.

In month 3, a contrasting trend is observed in Track 1,
as highlighted by the red boxes. The KPIInSAR+ABA analysis
for Track 1 uncovered that the entrance side of the transition
zone exhibited greater degradation compared to the exit side.
This is consistent with the information obtained from the ABA
measurements depicted in Fig. 7(a), where the average values
of SAWP on the entrance side of the transition zone surpass
those on the exit side for Track 1. The inconsistency with the
CoSD in Track 1 can be attributed to the inherent integration

of ABA measurements in predicting track longitudinal levels.
This integration enables the inclusion of local changes within
the substructure layers in the proposed KPI, a capability
that traditional track geometry measurements may lack. This
results from the consideration of the spatial frequency range of
0.04–0.33 m−1 (substructure related) in the SAWP calculation.

Furthermore, the track longitudinal levels at unobserved
months can be obtained using our hybrid model. This results
in a more frequent estimation of the KPI that can be used
to facilitate regular assessments of transition zone health,
owing to a high-frequency measurement of InSAR data. This
approach can enhance the ability to detect changes in track
irregularities early, even before obtaining the next measure-
ment of track geometry profiles, as illustrated in the green
box. In Fig. 6(a) and (b), abrupt changes of the KPIInSAR+ABA
value are observed between months 9 and 10 and 38 and 39.
This was when the track longitudinal levels were predicted
from the ABA measurements of the most recent year. As
seen in Fig. 7, the SAWP values for Tracks 1 and 2 in 2019
increased from those of 2018, resulting in more degraded
conditions of the transition zones in 2019 compared to 2018.
This pattern is followed between months 38 and 39 as the
increased SAWP values are observed in Fig. 7(c) and (f) for
Tracks 1 and 2 compared to those in 2019. Consequently,
the KPIInSAR+ABA in month 10 is higher than in month 9,
and similarly, the KPIInSAR+ABA in month 39 exceeds that of
month 38. This consistent trend is observed for both tracks.
Evaluating from the KPIInSAR+ABA values, in cases where the
severity is classified as high, this proactive information allows
for effective planning of maintenance actions.

F. Discussion

This section delves deeper into the analysis of predicted
track longitudinal levels, providing insights into the physics.
The investigation is showcased using data collected in 2020
from Track 1. While consistency is evident between the predic-
tion and observation in the time domain, depicted in Fig. 8(a),
a distinct variation in energy distribution within the frequency
domain is noticeable. As seen in Fig. 8(b) and (c), differences
are observed in the frequency content for wavelengths ranging
from 3 to 25 m when comparing observations to predictions.
This is more pronounced, particularly when the wavelength
is less than 5 m for the entrance and exit sides of the inner
and outer rails. The predicted track longitudinal levels at the
railway bridge transition zones exhibit different characteristics,
reflecting the limitation arising from the data-driven nature of
the predictive models employed in this article. This comes
from a lack of the incorporation of physical information from
the track system.

Now, to evaluate the impact of wrong predictions obtained
from our proposed methodology on the decision for maintain-
ing tracks at transition zones, we consider the indicator for
isolated defects, specifically focusing on the track longitudinal
level. As described in Section V-B, IAL stands for immediate
action limit. It refers to a threshold level of track condition
severity. When IAL is exceeded, urgent maintenance actions
are required. Maintenance activities or other countermeasures,
such as closing the line or reducing operational speed, must
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Fig. 7. Interpolated SAWP for predicting the track longitudinal levels. (a) Track 1, 2018. (b) Track 1, 2019. (c) Track 1, 2021. (d) Track 2, 2018. (e) Track
2, 2019. (f) Track 2, 2021.

Fig. 8. Comparison results between the predicted and observed track longitudinal levels in (a) time domain, and frequency domain considering (b) WPS and
(c) PSD at the transition zones from track 1.

Fig. 9. Distribution of discrepancy between the observations and predictions
along the distance over years. The results from the inner rail of Track 2 are
shown. (a) CNN-GRU. (b) CNN-LSTM.

be conducted immediately to reduce the risk of derailment and
ensure the safety of train operations. IAL is directly related
to safety in train operations compared to AL and IL, which
serve as additional indicators for ensuring good service quality

and supporting maintenance planning. Thus, we use IAL to
evaluate the influence of wrong predictions. For our case study,
the typical operational speed on the Dutch railway network is
140 km/h, so the applicable IAL is 23 mm (absolute value)
according to EN 13848-5 [31]. It can be seen from Fig. 9 that
the discrepancies between the predictions and observations are
below the IAL for both hybrid models. This suggests that even
with some prediction errors, the necessary safety measures and
maintenance activities can still be identified and implemented
without risk.

A key contribution of this work is the integration of three
complementary measurement techniques (ABA, InSAR, and
TG) into a unified KPI. Existing studies in the literature
utilize heterogeneous data sources, such as bogie accelera-
tion or maintenance logs, which are not registered for our
current test case. Consequently, direct benchmarking against
those approaches is not possible. Future research can consider
the development of a benchmark with diverse multisource
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measurements, at various transition zones, and even across dif-
ferent countries. Such a benchmark would facilitate a rigorous
comparative evaluation of techniques.

Although AI is advancing rapidly, with newer models such
as ResNet, EfficientNet, ConvNeXt, and Vision Transformers
offering improved scalability and performance, our focus is on
practical implementation with well-established spatiotemporal
models for railway condition monitoring. Nonetheless, we
acknowledge the importance of benchmarking against state-
of-the-art methods in future work, as more comprehensive
and diverse datasets become accessible. Emerging sequential
and spatiotemporal modeling techniques, such as temporal
convolutional networks, informer, spatiotemporal graph neural
networks, or techniques that combine physics information and
machine learning, offer promising alternative approaches that
are interesting for further research.

VII. CONCLUSION

This work presents a data fusion framework that can be used
to enable a more frequent evaluation of transition zone health
by integrating multiple monitoring technologies, including
track geometry, InSAR, and ABA measurements. To illustrate
its effectiveness, a case study at a railway bridge between Dor-
drecht and Lage Zwaluwe station in The Netherlands is used.
Compared to individual models, i.e., CNN, GRU, and LSTM,
hybrid CNN-LSTM and CNN-GRU exhibit a superior ability
to capture the spatial and temporal relationships between the
track longitudinal levels, InSAR, and ABA measurements.
Although the transformer-based models enhance prediction
accuracy for both tracks, these improvements come at the cost
of increased training time. This tradeoff highlights the balance
between model performance and computational efficiency.
By using a simple CNN and LSTM/GRU combination, our
approach ensures computational efficiency, making it well
suited for applications in the railway industry where compu-
tational efficiency is critical. The hybrid approach allows for
more accurate predictions of track longitudinal levels during
unobserved months, leading to a more frequent estimation
of the KPI. This is due to the high-frequency measurement
provided by InSAR data. As new measurements become avail-
able, the hybrid models facilitate the timely estimation of KPI
values. The proposed KPI proves effective in detecting changes
in track irregularities, thereby enabling regular assessments of
transition zone health.

Future research lines include evaluating the generalization
and robustness of the proposed methodology and the proposed
KPI based on InSAR and ABA data for assessing the health of
transition zones. This involves using a larger dataset containing
diverse locations under varying transition zone conditions.
This alleviates the risk of overfitting. Advanced data fusion
techniques, such as Bayesian fusion or ensemble learning,
could be explored to achieve a more sophisticated and nuanced
integration of heterogeneous data sources. Then, probabilistic
models, e.g., the fuzzy-interval method and Bayesian net-
works, can be considered as predictive models to incorporate
and quantify uncertainty in the data arising from diverse
locations and conditions. The inclusion of physical variables
and maintenance information in the predictions can also be

considered via physics-informed machine learning to better
capture the dynamic behavior of transition zones. Given that
ABA measurements depend on speed, a method to mitigate
the impact of speed variations in measurements is needed to
facilitate the broader application of the proposed framework.
Furthermore, railway systems are inherently dynamic and
subject to sudden changes, such as maintenance activities and
environmental factors. These changes may not be uniformly
reflected across all data sources, potentially impacting model
accuracy over time. Future work could explore the develop-
ment of adaptive models or feedback mechanisms capable
of capturing and responding to these dynamic shifts in data
relationships. Future work should also focus on extending
the robustness analysis through broader case studies, such
as nationwide assessments of transition zones and cross-
national comparisons to evaluate transfer learning capabilities.
Additional evaluations under perturbed conditions, e.g., noisy
inputs or missing data, along with regularization and data
augmentation techniques, are recommended to enhance model
generalization in data-limited scenarios.
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