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Io’s tidally driven global volcanism indicates
widespread partial melting in its mantle. How
this melt participates in the interior dynamics and,
in particular, the role it plays in tidal dissipation, is
poorly understood. We model Io’s tidal deformation
by treating its mantle as a two-phase (solid and melt)
system. By combining poro-viscous and poro-elastic
compaction theories in a Maxwell framework with
a consistent model of tidal and self-gravitation, we
produce the first self-consistent evaluation of Io’s tidal
heating rate due to shearing, compaction and Darcy
flow. We find that Darcy dissipation can potentially
exceed shear heating, but only for large (0.05–0.2)
melt fractions, and if the grain size is large or melt
viscosity ultra-low. Since grain sizes larger than 1 cm
are unlikely, this suggests that Darcy dissipation
is secondary to shear dissipation. Compaction
dissipation is maximized when the asthenosphere is
highly resistive to isotropic stresses, but contributes
at most 1% of Io’s observed heating rate. This work
represents a crucial step toward a self-consistent
quantitative theory for the dynamics of Io’s partially
molten interior.

1. Introduction
Io, the innermost Galilean moon of Jupiter, is the most
volcanically active body in our solar system [1], with
a thermal output of approximately 100 TW [2], roughly
105 times that of Earth’s similarly sized moon [3]. Io’s
volcanism is powered by tides, which transfer orbital
energy to the interior via Jupiter’s gravitational field

2025 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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[4]. These tides are the result of viscoelastic deformation in its interior, dissipating heat that
drives melting. The buoyant melt segregates from the residual solid, accumulating at the near-
surface before either refreezing or erupting [5]. As melt segregates, the residual solid compacts
[6]. A physically consistent description of Io’s internal dynamics must therefore combine tidal
deformation, melt segregation, compaction and viscous dissipation into a single theory describing
the two-phase dynamics of partially molten rock. Here we take a first step towards this theory.

Io’s volcanism has been observed for decades with passing spacecraft [7–10] and ground-
based telescopes [11–16]. The texture and internal location of the erupted magma’s reservoir
has remained elusive. The detection of an anomalous, induced magnetic field around Io [17]
suggested the presence of an electrically conductive subsurface layer, consistent with an internal
magma ocean. However, this interpretation has been disfavoured by subsequent reanalysis of
the induced magnetic-field data [18], observations of Io’s aurora [19] and, most conclusively,
by the gravitational signature of Io’s tidal deformation measured by the Juno spacecraft [20].
A significant fraction of Io’s mantle is therefore partially molten, a state in which the rock
comprises two phases: a porous skeleton of solid grains interpenetrated by liquid melt.

In partially molten material (e.g. silicate rock), melt segregates by porous flow, driven
by pressure gradients and body forces. This is described by a modified Darcy’s law. The
long-term, creeping deformation of the residual solid is viscous, including its compaction in
response to melt segregation. This is described by a modified Stokes force-balance equation.
The coupling of the Darcy and Stokes equations is referred to as poro-viscous compaction
theory [6,21]. An associated rheological model supplies viscosities for deviatoric (shear) and
isotropic (compaction) viscous deformation. This theory has long been applied to partially molten
regions of Earth’s mantle [22,23], and also to terrestrial ice [24–26]. Distinct from the terrestrial
case, however, the energy that melts Io’s interior is that dissipated as heat by tides [4]. Recent
work considers the coupled melting, melt segregation and viscous compaction of Io’s mantle
[27–30], but no work has self-consistently coupled tidal deformation and heat generation with
melting [31].

Friction associated with Io’s repeated tidal distortion releases heat as Jupiter’s gravity field
periodically deforms the body into a triaxial figure. Tidal heating has classically been modelled
by treating Io’s mantle with viscoelastic dissipation theory [32], which partially stems back to the
classic work of Love [33]. A key prediction of such modelling is that tidal heat input is spatially
variable, with different heat distributions possible depending on internal structure [34]. Melting
must also therefore be spatially variable. Melt lubricates grain boundaries, lowering the shear
viscosity of the mantle [35]. This means that regions of high melt fraction have lower viscosity
and are more susceptible to tidal heating [36]. There is thus an inherent coupling between melt
and tidal heat generation. Furthermore, tidally induced deformation of Io’s mantle drives melt
segregation through (de)compaction. This segregation alters Io’s tidal response and drives heating
through Darcy flow and viscous compaction. Ref. [37] models the latter process, but treats Io’s
mantle as a single-phase (solid) material. Hence, [37]’s approach cannot self-consistently take
into account melt segregation. A better approach to closing (and understanding) Io’s heat budget,
is therefore to combine poro-viscous and viscoelastic theories.

The first poro-viscoelastic model of tidal deformation was published in [38] to quantify heating
in the porous core of Saturn’s icy moon, Enceladus. That work reduced the problem to a kinematic
one, whereby the two-phase core was forced by imposed displacements at its surface. Later, [39]
improved upon this by imposing appropriate boundary conditions, forcing the core with the tidal
potential, and coupling fluid displacements to the gravity field. Most recently, [40] provided a
more comprehensive derivation of poro-viscoelastic gravitational dynamics, including detailed
consideration of the problem in several limiting cases, noting inconsistencies in both [38,39], and
considering radial porosity variations. There are, however, two main deficiencies in all of these
works. Firstly, viscous compaction is neglected, despite the fact that it is relevant at the same time
scales as viscous shear. Secondly, rheological properties are assumed to be laterally uniform (also
a common assumption in one-phase tidal deformation models). For the reasons outlined above,
a theory of Io that can plausibly address the ensemble of observations must include both of these
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effects. Toward this end, here we incorporate viscous compaction while leaving laterally varying
properties for future work.

We model the tidal deformation of Io by treating its interior as a poro-viscoelastic continuum
and solving the deformation equations of a self-gravitating body [32], described by the two-phase
theory developed in [39,40]. We extend the theory by (i) modifying the isotropic component
of the rheological model to self-consistently account for isotropic viscous deformation and (ii)
formulating the constitutive laws in a physically and mathematically consistent manner based
on the original work of Love [33]. We treat Io’s asthenosphere as a two-phase, Maxwell material
with impermeable boundaries above and below, exploring how tidal forcing circulates melt in
the asthenosphere and dissipates heat due to solid deformation (deviatoric and isotropic) as well
as porous flow. We find that dissipation due to (de)compaction can be at most 1–10% of Io’s
observed heating rate, but the upper end of this range requires an effective grain size greater than
or approximately equal to 10 cm. We also find that dissipation from porous flow can generate
substantial heating only for a highly permeable asthenosphere, and this state may be possible if,
again, the mantle’s effective grain size is greater than or approximately equal to 10 cm.

The manuscript is organized as follows. In §2, we describe the theory of poro-viscoelasticity
in a compacting, self-gravitating body and our approach to the problem. The relevant internal
structures and material parameters of Io are outlined in §3, and corresponding tidal deformation
and heating results are given in §4. We summarize the potential next steps for this work in §5,
before concluding in §6.

2. Theory
Here, we recap the theory of two-phase mechanics of a self-gravitating, poro-viscoelastic
planetary body. The theory builds on the recent developments by [38–40]; the latter two papers are
hereafter referred to as RN22 and K23, respectively. We largely formulate the problem following
K23, but base the rheological formalism on the original arguments of Love [33] and incorporate
a compaction viscosity [6]. We show that Love’s original formulation of the problem provides
an intuitive, natural extension to poro-viscoelasticity that avoids a mathematical ambiguity often
present in the literature.

In §2a, we present the governing equations of poro-viscoelastic gravitational dynamics,
followed by their linearization and Fourier transform in §2b. Calculation of dissipation from
shear, compaction and Darcy deformation is described in §2c.

(a) Governing equations
In the following, we denote quantities relevant to individual phases with the subscripts l (liquid)
and s (solid). When multiple phases are present within a layer, each individual phase requires its
own set of conservation laws. For mass conservation these are

∂(φρl)
∂t

+ ∇ · (φρlvl) = Γ (2.1a)

and
∂((1 − φ)ρs)

∂t
+ ∇ · ((1 − φ)ρsvs) = −Γ , (2.1b)

where φ is the melt fraction, the volume fraction of liquid present within the two-phase material
and Γ is the melting rate. We assume that the background melting time scale, which is in part
controlled by the rate of mantle upwelling/downwelling, is much greater than the time scale of
tidal deformation [41], and henceforth take Γ = 0. For phase j = {l, s}, vj is the velocity and ρj is the
density. Summing the above two equations gives the conservation of mass for the phase aggregate
in terms of the phase-averaged density, ρ = (1 − φ)ρs + φρl.
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Neglecting inertial terms, the force balance equations for the solid and liquid phases are [39]

∇ · (φσ l) − φρl∇Φ − φ
ηl

k
q + pl∇φ = 0 (2.2a)

and
∇ · ((1 − φ)σ s) − (1 − φ)ρs∇Φ + φ

ηl

k
q − pl∇φ = 0, (2.2b)

where σ l and σ s are the liquid and solid stress tensors, respectively, Φ is the sum of all
gravitational potentials, k is the permeability of the solid skeleton, ηl is the dynamic viscosity
of the melt and q ≡ φ(vl − vs) is the segregation flux. The second term in each equation represents
the forces per unit volume of self- and external-gravitation, and the sum of the last two terms is
known as the interphase force, F ≡ (φηl/k)q − pl∇φ, the equal-and-opposite force per unit volume
imposed by the melt on the solid phase [21]. The first term, the divergence of the solid and liquid
stresses, balances the gravitation and interphase forces. Summing equations (2.2a) and (2.2b)
cancels the interphase force and yields the force balance for the bulk mixture,

∇ · σ − ρ∇Φ = 0, (2.3)

where the total stress is given by the volume-averaged sum of the solid and liquid stress tensors,

σ = (1 − φ)σ s + φσ l. (2.4)

For shorthand, we sometimes denote the mean total stress as σ ≡ tr(σ )/3 = −p, where p is the total
pressure. The permeable solid skeleton is assumed to be isotropically tortuous such that stresses
in the fluid are also isotropic,

σ l = −pl1, (2.5)

where pl ≡ −tr(σ l)/3 is the pore pressure and 1 is the identity matrix. The pore pressure is
experienced by both the fluid and the solid grains as they are immersed in melt.

Inserting equation (2.5) into equation (2.2a) converts the melt’s force balance into a modified
form of Darcy’s law,

q = −Mφ(∇pl + ρl∇Φ), (2.6)

where we have introduced the fluid’s mobility, the ratio of permeability to liquid viscosity,

Mφ ≡ k(φ)
ηl

. (2.7)

For a given pressure and gravitational forcing, a higher mobility results in a higher segregation
flux. Mobility thus quantifies the liquid viscous resistance to melt circulation. We assume that
ηl = 1 Pa s, giving mobility and permeability a 1:1 correspondence throughout the manuscript.
The mobility is a function of porosity due to the inherent dependence of permeability on the
pore-fraction of the mantle, which we examine further in §4c.

The strain of the material is defined as

εj ≡ 1
2

[
∇uj + (∇uj)

T
]

, (2.8)

where uj is the displacement of the solid (j = s) or liquid (j = l) relative to the pre-stressed,
undeformed state. The deformation (strain) of the material must now be linked to the stress it is
subjected to via a constitutive law, which describes the stress response of the two-phase material
to viscous and elastic strains.

In the poro-viscous limit, the resistance to viscous (de)compaction is governed by the
compaction viscosity, ζ . This viscosity depends on both the melt fraction and shear viscosity of
the two-phase aggregate (see §4c). In the poroelastic limit, the resistance to elastic compaction
is governed by the compaction modulus, κd, which is sometimes known as the drained bulk
modulus and also depends on melt fraction. The compaction modulus is distinct from the bulk
modulus of the solid grains, κs, because a two-phase material with incompressible solid grains
can nonetheless compact elastically—by expelling or imbibing melt. The ratio of the compaction
and bulk moduli is quantified by Biot’s coefficient, α, a constant that describes the compliance of
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the solid skeleton relative to the solid grains under isotropic stresses. Biot’s coefficient is defined
as

α ≡ 1 − κd

κs
, (2.9)

which is relevant for only elastic compaction. When α = 0, the solid skeleton is as incompressible
as the solid grains themselves, meaning that the skeleton is strong and effective at elastically
resisting isotropic stresses. If α = 1, the solid grains are incompressible and, relative to this, the
skeleton is weak against isotropic stresses. As described next, we incorporate both viscous and
elastic compaction behaviour in our constitutive law.

Forming a mechanically consistent constitutive law in the context of a two-phase material is
less clear than for a single-phase material. It is therefore important to carefully formulate the
problem, which we do following the original arguments presented in Chapter VII of [33]. The
key argument made by Love [33] is that, upon displacement, a material element carries with
it (i.e. advects) its initial hydrostatic stress. This motivates defining a constitutive law using
material derivatives of the stress. For a two-phase material, extra caution is required; the solid
and liquid phases that occupy a volume element in the deformed state may originate from
different positions, thus carrying with them different hydrostatic pressures (even if the liquid and
solid densities are equal). In electronic supplementary material, S1, we apply Love’s argument
to both poro-viscous and poroelastic rheological laws to derive an appropriate poro-viscoelastic
constitutive law that captures advection of both the solid and liquid hydrostatic pressure fields.
Our constitutive law for a compacting poro-viscoelastic Maxwell material is [37,39,40,42]

(1 − φ)
[

Dsσ s

Dt
+ 1

3
κd

ζ

∫
t

Dstr(σ s)
Dt

dt1
]

+
[

(α − φ)
Dlpl

Dt
+ (1 − φ)

κd

ζ

∫
t

Dlpl

Dt
dt

]
1

+ (1 − φ)
μ

η

[
σ s − 1

3
tr(σ s)1

]
= λdtr(ε̇s)1 + 2με̇s, (2.10)

where t is time, μ is the elastic shear modulus, λd = κd − 2μ/3 and η, ζ are the shear and
compaction viscosities, respectively, which control the anelastic delay in the response of the two-
phase material to shear and isotropic stresses. The Lagrangian derivatives for material phase
j = {s, l} are defined as

Dj

Dt
≡ ∂

∂t
+ vj · ∇, (2.11)

and their appearance in equation (2.10) is a result of applying Love’s argument. Equation (2.10)
reduces to the constitutive law used in RN22 and K23 when ζ → ∞ (no viscous compaction)
and when advective terms in the Lagrangian derivatives are neglected. The constitutive law in
eqn. (6) of [37] is recovered when there is no melt (α = φ = 0) and advective terms are neglected.
The benefit and mathematical consistency of formulating the constitutive law with Lagrangian
derivatives will become clear in the next section when the equations are linearized.

The law relating the strain of the fluid to the liquid stress tensor can be derived using the
following equations of state [43,44]:

dρl

ρl
= dpl

κl
(2.12a)

and
dρs

ρs
= 1

κs

[
1

1 − φ
dpd + dpl

]
, (2.12b)

where pd ≡ −σ − pl is the differential between the total pressure and the pore pressure, and κl
is the bulk modulus of the liquid. Summing the liquid and solid continuity equations (2.1) and
using the above equations of state equations (2.12) yields the storage equation,

φ

[
1
κl

− 1
κs

]
Dlpl

Dt
+ 1

κl
q · ∇pl − 1

κs

Dsσ

Dt
+ ∇ · q + ∇ · vs = 0, (2.13)

which we give in terms of the mean total stress σ . If we neglect all advective terms and assume
that the two-phase material behaves elastically under isotropic stresses (ζ → ∞), then taking the
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trace of equation (2.10) gives σ̇ = κdtr(ε̇s) + αṗl, and ∇ · vs = tr(ε̇s), so equation (2.13) reduces to

S
∂pl

∂t
+ αtr(ε̇s) = −∇ · q (elastic isotropic deformation, ζ → ∞), (2.14)

where S is the storativity,

S ≡ φ

κl
+ (α − φ)

1
κs

, (2.15)

the inverse of which is referred to as Biot’s modulus [40,45]. Equation (2.14) states that the
compression of the liquid and solid on the left-hand side is balanced by changes in the relative
volume flux of liquid entering or leaving the reference volume. We can see that if the melt becomes
increasingly immobile, q → 0, then the right-hand side goes to zero and the pore pressure is
dependent only on compaction of the solid skeleton. Integrating this expression with respect
to time, assuming porosity is constant, and rearranging yields eqn. (3) in K23 and eqn. (17) in
RN22 when written in terms of the variation of fluid content, φ∇ · (ul − us). We note that while
K23 does consider radial porosity variation throughout their manuscript, these variations are
neglected in their storage equation. Following traditional poroelasticity, both RN22 and K23 do
not include advective terms in their storage equations. However, we proceed without neglecting
the advective terms in equation (2.13); they originate from the material derivatives within the
continuity equations, and therefore are essential in accounting for self-gravity and advection of
hydrostatic stresses [33].

As we are interested in the more general storage equation that includes viscous compaction
(finite ζ ) and advection of hydrostatic stress, we cannot easily time-integrate equation (2.13)
because of the integral terms present in equation (2.10). We can only further simplify the storage
equation in the Fourier domain (§2b).

Finally, Poisson’s equation for the gravitational potential Φ depends on the density of the
mixture,

∇2Φ = 4πGρ, (2.16)

where G is the universal gravitational constant. This equation must be solved everywhere.
The equations presented here all reduce to the standard solid-body deformation equations

when φ = 0 and α = 0 [32,46]. Moderate simplification of the problem can be made by assuming
incompressibility. If the solid is incompressible (κs → ∞), then α → 1 and S → φ/κl. If only the
liquid is incompressible (κl → ∞), then S → (α − φ)/κs. Assuming both phases are incompressible,
the storage equation (2.13) expresses mass conservation due to only segregation, ∇ · (φvl) =
−∇ · (1 − φ)vs. Even if both phases are incompressible, the compaction modulus of the two-phase
aggregate can remain finite, meaning that the skeleton can still undergo volume changes due to
expulsion/imbibition of melt.

(b) Linearization and fourier transform
In this section we linearize the dynamics that govern equations (2.1a), (2.1b), (2.3), (2.6), (2.10),
(2.13) and (2.16). We denote the base state with subscript 0 and the perturbed (deformed)
state with subscript 1. The base state is assumed to be at rest, in hydrostatic equilibrium, and
spherically symmetric such that it is only dependent on the radial coordinate r = |r|. As the base
state has v0 = 0, we omit the 1 subscript for vj and uj, though they remain first-order quantities.
The perturbed quantities can vary in three-dimensional space and so are functions of the position
vector. That is, for any unknown fj of material phase j = {s, l},

fj(r, t) = fj,0(r) + fj,1(r, t). (2.17)

The initial position of the material within the volume element at position r is less clear in the
multi-phase problem than in the single-phase one. The subtlety to recognize is that the initial
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position of the material within that element can only be recovered through the displacement of the
corresponding material phase j. The phase-dependent initial position rj,0 is thus recovered through

r = rj,0 + uj. (2.18)

This approach is a natural extension of the argument made by Love [33] to the two-phase problem,
and is crucial in ensuring mechanical consistency in the problem.

In the following, we take particular care in linearizing the constitutive laws (equations (2.10)
and (2.13)) as we form these in a different manner to previous works. When needed, the linearized
equations are converted into the Fourier domain by assuming time-periodic solutions of the form

fj,1 = f̃j,1 eiωt, (2.19)

where f̃j is the complex Fourier-transformed variable of material phase j, the forcing frequency is
ω, and i is the imaginary number.

Expanding the density field in the form of equation (2.17) gives

ρj(r, t) = ρj,0(r) + ρj,1(r, t). (2.20)

Inserting this into the conservation of mass equations (2.1), neglecting second-order terms in
perturbed quantities, and integrating with respect to time gives the density perturbations,

φρl,1 = −ul · ∇(φρl,0) − φρl,0∇ · ul (2.21a)

and
(1 − φ)ρs,1 = −us · ∇[(1 − φ)ρs,0] − (1 − φ)ρs,0∇ · us, (2.21b)

where we have assumed that porosity is constant (discussed in electronic supplementary material,
S2). The density perturbations thus consist of two parts: a perturbation due to advection of
the base state, and a perturbation due to compression or expansion of the solid or liquid. The
advection term is critical to account for alteration of the gravitational potential due to mass
redistribution.

Expanding the gravitational potential in the form of equation (2.17) gives

Φ(r, t) = Φ0(r) + Φ1(r, t), (2.22)

where Φ0 is the pre-stressed gravitational potential of the body. At rest and in the absence of tidal
forcing, Poisson’s equation (2.16) for the base state gravitational potential integrates to

∇Φ0(r) = g(r)er, (2.23)

where er is the radial basis vector and g(r) = G
∫

V ρ dV/r2, where V is the spherical volume
of radius r. Poisson’s equation for the gravitational perturbation is found by inserting
equations (2.22) and (2.21) into equation (2.16):

∇2Φ1 = −4πG[ur
s∂rρ0 + ρ0∇ · us + ur

rel∂r(φρl,0) + φρl,0∇ · urel], (2.24)

where urel ≡ ul − us is the relative/segregation displacement, superscript r indicates a radial
vector component and ∂r is the partial derivative with respect to radius. This expression is
equivalent to eqn. (21) in K23, and eqn. (33) in RN22 under the assumption of uniform layer
density and melt fraction.

The solid Cauchy stress tensor and pore pressure are decomposed identically to
equation (2.17):

σ s(r, t) = σ s,0(r) + σ s,1(r, t) (2.25a)

and
pl(r, t) = pl,0(r) + pl,1(r, t), (2.25b)

which consists of only the hydrostatic base state and a perturbation due to deformation. The
decomposition in equation (2.25) is identical to the decomposition of Φ and ρj, which we
emphasize is a different approach to most tidal deformation texts where an advective term is
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forced into the decomposition [46]. Below, we show that the approach used here reproduces the
classic tidal deformation equations because material advection is naturally accounted for in our
constitutive laws (equations (2.10) and (2.13)).

At rest (pl = pl,0, σ s = σ s,0, σ = σ 0) and using equations (2.5) and (2.23), the liquid, solid and
bulk momentum equations (2.2) and (2.3) reduce to hydrostatic balance,

−∇pl,0 = ρl,0ger, (2.26a)

−∇ps,0 = ρs,0ger (2.26b)

and ∇ · σ 0 = −∇p0 = ρ0ger, (2.26c)

where in equation (2.26b) we have assumed that porosity is a constant.
Inserting equation (2.25) into the solid constitutive law (equation (2.10)), neglecting second-

order terms in perturbed quantities, and assuming hydrostatic balance in the base state by
inserting equation (2.26) gives

σ̇ 1 + αṗl,11 + [(ρ0 − αρl,0)vr
s − (α − φ)vr

relρl,0]g1 + μ

η

[
σ 1 − 1

3
tr(σ 1)1

]

+ κd

ζ

[
1
3

tr(σ 1) + pl,1 + (ρ0 − φρl,0)ur
sg − (1 − φ)ur

relρl,0g
]

1 = λdtr(ε̇s)1 + 2με̇s, (2.27)

which is written in terms of the total stress perturbation and solid and relative velocities and
displacements. Here, overdots represent partial time derivatives, ∂/∂t. This equation is more
compact in the frequency domain; taking the Fourier transform of equation (2.27) and rearranging
gives

σ̃ 1 =
[
κ̃d − 2

3
μ̃

]
tr(ε̃s)1 + 2μ̃ε̃s − α̃p̃l,11 − [(ρ0 − α̃ρl,0)ũr

s − (α̃ − φ)ũr
relρl,0]g1, (2.28)

where the complex shear modulus, drained compaction modulus and Biot’s coefficient are

μ̃ ≡ iωμ

iω + μ/η
, (2.29a)

κ̃d ≡ iωκd

iω + κd/ζ
(2.29b)

and α̃ ≡ 1 − κ̃d

κs
, (2.29c)

respectively. The mean total stress perturbation is given by the trace of equation (2.28),

tr(σ̃ 1)/3 = σ̃1 = κ̃dtr(ε̃s) − α̃p̃l,1 − [(ρ0 − α̃ρl,0)ũr
s − (α̃ − φ)ũr

relρl,0]g. (2.30a)

Next, we linearize the storage equation in equation (2.13) and insert equations (2.26a) and (2.26c):[
φ

κl
− φ

κs

]
[ṗl,1 − vr

l ρl,0g] = φ

κs
vr

relρl,0g + 1
κs

[σ̇1 + ρ0v
r
sg] − φtr(ε̇rel) − tr(ε̇s), (2.31)

where σ̇1 is obtained by taking one third the trace of equation (2.27) (see electronic supplementary
material, S3). Assuming Fourier solutions of the form in equation (2.19) for equation (2.31),
inserting equation (2.30a) and rearranging gives

p̃l,1 = ũr
l ρl,0g − S̃−1[α̃tr(ε̃s) + φtr(ε̃rel)], (2.32)

where the complex storativity is

S̃ ≡ φ

κl
+ (α̃ − φ)

1
κs

. (2.33)

For later convenience and easier comparison to existing work, we write the pore pressure
perturbation as

p̃l,1 = ũr
l ρl,0g + p̃δ

l,1, (2.34a)
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where the non-advective portion of the liquid stress is defined as

p̃δ
l,1 ≡ −S̃−1[α̃tr(ε̃s) + φtr(ε̃rel)]. (2.34b)

Equation (2.34b) is equivalent to eqn. (6) in K23 if compaction is ignored (ζ → ∞). We
can then insert equation (2.34a) into the linearized frequency-domain solid constitutive law,
equation (2.28), which simplifies to

σ̃ 1 = −[ρ0ũr
s + φũr

relρl,0]g1 + σ̃ δ
1, (2.35a)

where we have defined the non-advective stress perturbation,

σ̃ δ
1 ≡

[
κ̃d − 2

3
μ̃

]
tr(ε̃s)1 + 2μ̃ε̃s − α̃p̃δ

l,11. (2.35b)

Equation (2.35a) is the frequency-domain poro-viscoelastic constitutive law that includes
advection of the hydrostatic base state pressure field, and is equivalent to eqn. (41) in K23. As
expected from the correspondence principle, equations (2.35a) and (2.35b) are analogous to the
poroelastic problem in the time domain. If there is no melt, φ = 0, κd = κs, and therefore α = 0,
equation (2.35) reduces to the elastic constitutive law in eqn. (6), Chapter VII of [33].

Now that we have a frequency-domain constitutive law for the liquid and solid
(equations (2.34a), (2.34), (2.35)), we can proceed to linearize and Fourier transform the
momentum equations.

The linearized frequency-domain liquid momentum equation is obtained by substituting
equations (2.5), (2.20), (2.21), (2.22), (2.24), (2.25), (2.26a) and (2.34a) into the Fourier transform of
Darcy’s law in equation (2.6). Neglecting second-order terms in perturbed quantities, this gives

iωφũrel = −Mφ[ρl,0∂r(gũr
l )er + ∇p̃δ

l,1 + ρl,0∇Φ̃1 − ρl,0g(∇ · ũl)er], (2.36)

which is a form of Darcy’s law that accounts for compression and self-gravity of the circulating
melt. Equation (2.36) is identical to eqn. (49) in K23 when ignoring inertial terms, radial variations
in porosity, and setting ur

l = ur
rel + ur

s and ∇ · ũl = tr(ε̃s + ε̃rel). As noted in K23, this differs from the
Fourier transform of eqn. (29b) in RN22 because advection of the base state pressure and density
fields was neglected. We show in electronic supplementary material S7 that this leads to slightly
incorrect energy dissipation rates.

Following the same procedure for the Fourier transform of the momentum equation of the
bulk mixture (equation 2.3) gives

∇ · σ̃ δ
1 = ρ0∂r(gũr

s)er + φρl,0∂r(gũr
rel)er + ρ0∇Φ̃1 − [ρ0∇ · ũs + φρl,0∇ · ũrel]ger. (2.37)

This equation is identical to eqn. (48) in K23 if inertial terms are neglected. Moreover, our
equation (2.37) differs from the Fourier transform of RN22 eqn. (29a) because advection of the
base state pressure and density fields was neglected. In their case, eqn. (29a) in RN22 does not
reduce to the classic, solid-body, linearized momentum equation if φ = ρl = 0 (eqn. 1.58 in [46]).
This is because of the assumption of uniform layer density in RN22.

Despite having formulated the solid and liquid constitutive laws to explicitly include material
advection—a different approach to most tidal deformation studies—we have arrived at the same
set of linearized momentum equations. We argue that this approach, which is simply an extension
of the classic elastic approach by Love [33] to the viscoelastic and poro-viscoelastic problems, is
more physically intuitive and mathematically consistent than that outlined in, for example, [46].
This consistency is the inclusion of material advection in our constitutive laws, which avoids the
need to make an ad hoc assumption about why stresses should be linearized differently to other
problem variables, as is commonly done.

The governing equations have now been linearized and converted to the frequency domain
(equation (2.24), (2.34), (2.35), (2.36) and (2.37)). To solve these coupled equations, the unknown
quantities are expanded in spherical harmonics, converted to a set of ordinary differential
equations in radius and then numerically integrated. Details regarding this are well documented
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in the literature; we provide further information in the electronic supplementary material,
S4 and S5.

(c) Dissipation
After the tidal response of Io is computed, we determine the tidal dissipation rate throughout the
body. The dissipation rate is inherently related to the time delay in the response of the body to
the forcing potential, and is thus dependent on the imaginary parts of the complex rheological
parameters, μ̃, κ̃d, S̃, as well as Mφ .

The forcing period-averaged dissipation rate per unit volume is [38]

Ėv = 1
P

∫
P

σ 1 : ε̇s − φpltr(ε̇rel)︸ ︷︷ ︸
solid

+ q · q
Mφ︸︷︷︸

liquid

dt, (2.38)

where Io’s 42 hr forcing period is P = 2π/ω. The first two terms on the right-hand represent
dissipation due to shear and compaction of the solid skeleton itself. The last term accounts for
viscous heating in the melt, otherwise known as Darcy dissipation. We refer to heating from
isotropic deformation as compaction dissipation, rather than the commonly used bulk dissipation
[37]. This choice avoids the notion that heating from isotropic deformation is a phase- or spatially
averaged quantity, such as the bulk density. Similar to K23, we can split this dissipation rate
into contributions from shearing Ėv

S, compaction Ėv
C, and (viscous) Darcy flow due to fluid–solid

segregation Ėv
D:

Ėv
S = −ΩIm(μ̃)

[
|ε̃rr|2 + |ε̃θθ |2 + |ε̃ϕϕ |2 + 2|ε̃rθ |2 + 2|ε̃rϕ |2 + 2|ε̃θϕ |2 − 1

3
|tr(εs)|2

]
, (2.39a)

Ėv
C = −Ω

2
Im(κ̃d)

[
|tr(ε̃s)|2 +

∣∣∣∣ p̃l

κs

∣∣∣∣2
]

(2.39b)

and Ėv
D = φ2Ω2

2
1

Mφ
|ũrel|2, (2.39c)

where Ω = |ω| is Io’s rotation frequency. In contrast to K23, we have combined fluid and solid
effects in our expression for compaction dissipation (equation (2.39a)). While equation (2.39b)
contains contributions from both solid deformation and melt, the resulting dissipation only occurs
in the solid. Compaction dissipation therefore represents the heating associated with solid-grain
rearrangement as pore space is opened/closed. The total time-averaged dissipation rate is the
sum of equations (2.39) over the total volume of the body:

Ė =
∫

V
(Ėv

S + Ėv
C + Ėv

D) dV. (2.40)

The strain, displacement and pressure magnitudes in equation (2.39) depend on the type,
frequency and magnitude of the tidal forcing. We force Io with the time-varying gravitational
potential arising from small orbital eccentricity, e, limited to the diurnal (orbital) frequency [47].
We neglect the much smaller forcing due to obliquity and adjacent moons [48,49]. Specific details
are given in electronic supplementary material, S6.

The total dissipation rate can also be determined using the phase delay of the gravitational
response of the body, given by the imaginary component of the tidal Love number k2. This can
be recovered with the response gravitational potential computed at the surface (see electronic
supplementary material, eqn. (S6.2)). For a synchronously rotating body in an eccentric orbit with
eccentricity e � 1, the total dissipation rate is [32]

Ė = −21
2

Im(k2)
Ω5R5

G
e2. (2.41)
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Table 1. Parameters describing Io’s internal structure and corresponding material properties. The compaction modulus κd is
controlled byα through equations (2.9) or (4.8).

quantity symbol units crust asthenosphere lower mantle core

layer thickness �r km 20 50–400 700–1050 700
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solid density ρs kg m−3 3000 3300 3300 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

liquid density ρl kg m−3 — 3300 — 7640
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shear modulus μ GPa 60 60∗ 60 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

solid bulk modulus κs GPa 200 200 200 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

liquid bulk modulus κl GPa — 1–200 — 200
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

shear viscosity η Pa s 1025 1012–1021 ∗ 1021 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

liquid viscosity ηl Pa s — 1 — 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Biot’s coefficient α — — 0.01–1∗ — —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

compaction modulus κd GPa — 2–200∗ — —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

permeability k m2 — 10−10–10−3 ∗ — —
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∗Asterisks indicate parameters that can vary with melt fraction.

A crucial check to the numerical solution of the tidal deformation problem is that equations (2.40)
and (2.41) give identical results.

Now that the mathematical problem has been posed, we must next define the internal and
rheological structure of Io.

3. Internal structure and boundary conditions
Io’s internal structure has been constrained through determination of its gravity field, moment
of inertia, topography and tidal deformation by the Galileo and Juno spacecraft [20,50,51]. Its
inferred moment of inertia is consistent with a differentiated body with metallic iron core [51].
The tidal perturbation of its gravity field is consistent with an interior where the melt fraction is
below the disaggregation limit (i.e. φ < 0.3), meaning no shallow magma ocean is present [20,52].
Mountains with relief of 20 km indicate that the lithosphere is strong, despite Io’s abundant
surface volcanism [53,54]. To respect these constraints while retaining simplicity, we adopt a four-
layer internal structure. This structure, listed in table 1, comprises a molten core, solid lower
mantle, partially molten asthenosphere and a solid, stiff lithosphere. We assume that the origin
of the asthenosphere’s melt is localized tidal heating, thus we consider only a ‘shallow’ mantle
model of dissipation, neglecting contributions from the deep mantle [32]. We vary the thickness
H and melt fraction φ of the asthenosphere, as well as the mobility of the melt–solid aggregate
(equation (2.7)) and compressibility of the melt. The solid and melt densities are taken to be equal
(ρs = ρl), ensuring that the base state of the asthenosphere is at rest, simplifying our analysis.

We know from observation and modelling that melt must pass from asthenosphere into the
lithosphere where it is erupted onto the surface [5,55]. However, over the time scale of diurnal
tides, flow in or out of the asthenosphere is probably small. We therefore take the top and bottom
boundaries of the asthenosphere to be impenetrable such that q · er = 0. Melt is thus confined to
the asthenosphere in our model. For other possible boundary conditions, see RN22 and K23.

4. Results
In §2, we presented the two-phase theory of gravito-poroviscoelastic dynamics. In this section,
we apply the theory to Io, assuming an internal structure as given in §3. To begin, in §4a we gain
intuition for the primary controls and broad patterns of Io’s two-phase tidal response. For this,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 O

ct
ob

er
 2

02
5 



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20250607

..........................................................

Figure 1. Qualitative tidal deformation solutions of a 300 km thick asthenosphere at perijove (t = 0) for deformation due to
(a) shear, (b) compaction and (c) melt segregation. The arrows in (a) and (c) indicate the solid and segregation displacements,
respectively (us and urel), tangent to the surface in which they are plotted. The tidal axis (red arrow) points towards Jupiter.
The inner and outer sphere are the base and surface of the asthenosphere, respectively, and the colours represent the period-
averaged volumetric heating rate within each surface plotted. Panels (d), (e) and (f) show the total heating rate for shear,
compaction, and Darcy flow, respectively, as a function of each mechanism’s primary control parameter. Red stars correspond
to the solution shown in the top row. Io’s observed heating rate (red line) is from [2].

we use a simplified reference case with incompressible solid and liquid phases. In §4b, we relax
the incompressibility assumption and determine the sensitivity of the tidal heating solutions to
other two-phase control parameters. We then allow the poro-viscoelastic parameters to co-vary
as functions of φ in §4c. We treat the melt fraction as an input parameter, and assume that it
is constant and uniform. Calculations with different values of φ enable a more realistic insight
into how Io’s heat generation might be influenced by its melt fraction. In §4d, we present the
spatial patterns of heating associated with each heating mechanism, and how these compare to
the distribution of Io’s volcanoes. The code to reproduce all figures is available at [56].

(a) Primary controls on tidal deformation and heating
A set of reference, two-phase tidal deformation solutions within an H = 300 km thick
asthenosphere are shown in figure 1. Here, we assume that each phase is incompressible, κl → ∞,
κs → ∞, while the two-phase aggregate remains compactible, κd = 200 GPa, so that α → 1.

In figure 1a, we see the tidal deformation solutions associated with shear, which is the largest
part of Io’s tidal deformation. The total heating rate varies with shear viscosity (bottom panel),
with a peak close to where the shear Maxwell time τS = η/μ of the asthenosphere approaches the
forcing period, typical of many tidal heating studies [32]. The top panel shows the asthenosphere’s
displacement field with a shear viscosity of η = 1014 Pa s, which reproduces Io’s total heating rate
(star, bottom panel). This shear viscosity is much lower than that of Earth’s mantle, which we
discuss further in §5. We see a clear angular separation between the tidal axis (red arrow), and the
region of highest tide (area of convergence at the surface). The volumetric tidal heating rate peaks
at the base of the asthenosphere, and has a dissipation pattern with maxima at mid-latitudes and
zero at the poles, consistent with the ‘shallow mantle’ model of [32].

Heating due to compaction is shown in figure 1b. Like shear deformation, the total
compaction-heating rate peaks at a specific value of ζ . This peak occurs when the compaction
Maxwell time τC = ζ/κd approaches the forcing period. When ζ is high, compaction is dominantly
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elastic, and when ζ is low, compaction is viscous. The peak heating rate occurs between these two
limits. However, for any ζ , heating from compaction is substantially below Io’s observed heating
rate. This is a consequence of assuming a fairly incompactible asthenosphere (κd = 200 GPa) and
incompressible solid and liquid phases, as will be shown in §4b(ii). The time-averaged heating
pattern, consistent with [37], is focused towards the equator, peaks either side of the tidal axis and
is non-zero at the poles. For this reference case, heating is focused in the shallow asthenosphere,
unlike the distribution of shear heating.

Finally, in figure 1c, we see the liquid displacement and heating rates due to Darcy flow
(solid–melt segregation). The Darcy displacement at t = 0 for Mφ = 10−5 m2 Pa−1 s−1 is shown in
the top row. We see that the melt primarily segregates laterally, flowing (relative to the solid)
from one side of the tidal axis to the other. In this reference model, the lateral volumetric
heating pattern is similar to that from shear deformation, but is much more uniform over
the depth of the asthenosphere. The total Darcy heating rate, shown in the bottom panel, is
controlled by the mobility of the melt, Mφ . Similarly to shear and compaction, there is a critical
mobility at which the Darcy heating rate peaks, with decreasing dissipation to either side of this
value. The critical mobility results from a competition between the forces that oppose elastic
compaction: viscous stresses in the melt, and elastic resistance of the solid skeleton. When all
phases are incompressible, compaction can only be accommodated through melt segregation.
This is shown by the storage equation (2.13), which reduces to ∇ · q = −∇ · vs when κl → ∞ and
κs → ∞. When the mobility is small, viscous resistance in the melt is high, preventing melt from
segregating quickly, and consequently the compaction rate is low. In this regime, |q| ∝ Mφ and
Darcy dissipation increases with mobility (equation (2.39c)). As the mobility further increases, the
melt’s viscous stresses, which resist segregation and compaction, decrease. When the mobility
is sufficiently large, compaction is no longer limited by viscous resistance to melt segregation,
but instead by elastic resistance of the skeleton to isotropic stresses, controlled by the elastic
compaction modulus κd. The critical mobility occurs when this elastic resistance prevents any
further compaction of the solid. At this point, mass conservation forces the segregation flux to
become constant (enforced by an increase in pore pressure gradient), while the heat producing
viscous resistance to segregation decreases with 1/Mφ (equation (2.39c)). Consequently, Darcy
dissipation decreases with Mφ past this point.

(b) Influence of compressibility on tidal heating rates
In this section, we allow the solid and liquid phases to be compressible, while still imposing a
constant melt fraction. We investigate the sensitivity of our tidal heating calculations to the bulk
modulus of the liquid κl, as well as the compressibility of the two-phase aggregate (relative to
the solid grains), by varying Biot’s modulus α. We refer to a ‘strong’ asthenosphere as one with
small α, and a ‘weak’ asthenosphere when α is large. Strong or weak in this context reflects the
elastic resistance of the asthenosphere to compaction (isotropic) stresses, relative to a purely solid
asthenosphere. The bulk modulus of the solid grains is held constant at κs = 200 GPa.

We first determine the tidal dissipation sensitivity to compressible effects for shear heating in
the poro-viscoelastic limit (§4b(i)). We then consider compaction heating while enforcing elastic
shear (§4b(ii)). Finally, we investigate Darcy heating in the poroelastic limit (§4b(iii)).

(i) Shear heating

Here we consider the classic case of heating in the solid skeleton due to shear deformation,
but for a partially molten medium. The results are shown in figure 2. We assume finite shear
viscosity in the solid, η, infinite compaction viscosity, ζ → ∞ and fix the mobility to Mφ = 5 ×
10−7 m2 Pa−1 s−1. The liquid bulk modulus has minimal effect on shear heating, so we arbitrarily
take κl = 1 GPa. We also show solutions for a one-phase (solid-only) model (φ = α = 0).

The heating curves in figure 2a are minimally altered from the incompressible-phases case
shown in figure 1a. Io-like heating rates are obtained on either side of the critical viscosity, for η ∼
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Figure 2. (a) Global- and time-averaged shear dissipation rate in the solid, ĖS , as a function of shear viscosity, η, for two
different Biot’s coefficientα. The black dotted line indicates the heating rate for a model with an entirely solid asthenosphere.
(b) Normalized volumetric heating rate depth profiles for α = 0.99 and κl = 1 GPa, which correspond to the open circles in
panel (a). Normalization is taken relative to the mean heating rate. In both panels, the solid is taken to be elastic in shear
(η → ∞), ζ is taken to be independent of porosity (which is held atφ = 0.1), the asthenosphere thickness is H = 300 km,
and mobility isMφ = 5 × 10−7 m2 Pa−1 s−1.

1014 Pa s and 1010 Pa s. When the shear viscosity is ultra-low and sub-critical (η ∼ 109 Pa s), melt
enhances the shear-heating rate significantly when the asthenosphere is weaker to compaction
(α = 0.99). This enhanced heating rate is accompanied by a sharp increase in heating at the base
of the asthenosphere, shown in figure 2b. However, for (more realistic) viscosities that exceed the
critical value, melt plays a minor role in altering the shear heating rates.

(ii) Compaction heating

In the previous section, we suppressed compaction dissipation by taking ζ → ∞. Here, we relax
this limit, and explore how compressibility of the melt and compactibility of the asthenosphere
alters compaction heating. We force the solid to behave elastically under shear by taking η → ∞,
and fix the mobility to Mφ = 10−7 m2 Pa−1 s−1.

The total compaction dissipation rate is shown in figure 3a. The critical compaction viscosity
at which compaction dissipation is maximized is sensitive to α but insensitive to κl. Smaller α

(stronger matrix) pushes the critical compaction viscosity to larger ζ . The maximum possible
compaction heating rate for this interior structure is approximately 1 TW (approx. 1% of Io’s
observed heating), occurring when ζ ∼ 1015–1016 Pa s and α = 0.01, which is broadly in agreement
with [37] as discussed further in §5. Significantly smaller heating rates are obtained when
the solid matrix is weak (compressible compared to the solid grains (α = 0.99)). Although not
shown, compaction heating rates that are 10% of Io’s can be reached, but only when Mφ �
10−3 m2 Pa−1 s−1. Below this value, compaction heating is insensitive to mobility.

Biot’s coefficient controls the critical compaction viscosity because it alters the compaction
Maxwell time of the asthenosphere. Maximum compaction dissipation occurs when the tidal
forcing period is similar to the compaction Maxwell time, i.e. when ωτC ∼ 0.1–1. The critical
compaction viscosity is therefore ζcrit ∼ κd/ω = (1 − α)κs/ω. Hence, when α � 1, the critical
compaction viscosity is dictated by the compressibility of only the solid grains. As the solid
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Figure 3. (a) Global- and time-averaged compaction dissipation rate in the solid, ĖC , as a function of compaction viscosity,
ζ , for different liquid bulk moduli, κl , and Biot’s coefficient α. (b) Normalized- and spherically averaged volumetric heating
rate depth profiles for α = 0.01 and κl = 1 GPa, which correspond to the open circles in panel (a). Normalization is taken
relative to the mean heating rate. In both panels, the solid skeleton is taken to be elastic in shear (η → ∞), ζ is taken to
be independent of melt fraction (which is held atφ = 0.1), the asthenosphere thickness is H = 50 km, and mobility isMφ =
5 × 10−7 m2 Pa−1 s−1.

grains become more incompressible, α → 1, so the critical compaction viscosity required to reach
maximum heating decreases, which is the behaviour shown in figure 3a.

Figure 3 shows that the total compaction dissipation rate is dominantly controlled by
compressibility of the solid skeleton relative to the solid grains. When the skeleton is strong
against compaction (small α), higher heating rates can be achieved than when the skeleton
is comparatively weak (large α). The compaction heating rate is partly controlled by Im(κ̃d)
equation (2.39b), as this dictates the viscous delay in response to compaction stresses. Im(κ̃d)
increases as the solid skeleton becomes increasingly strong (α → 0):

Im(κ̃d) = ωζ

1 + ω2ζ 2

(1−α)2κ2
s

. (4.1)

The maximum value of Im(κd) occurs when α = 0. This means that the viscous response
to compaction is highest when the solid skeleton’s elastic resistance to compaction is
at its maximum, relative to the solid grains (κd = κs). Thus, somewhat counterintuitively,
compaction dissipation is enhanced when the solid skeleton and solid grains have comparable
compressibilities, rather than simply when the skeleton is easily compactible.

Figure 3a also shows that the total compaction heating rate generally increases as the melt
becomes more compressible, provided that either α is large or the solid skeleton behaves viscously
(ζ < ζcrit). This trend is controlled by how much the solid skeleton can (de)compact. If the
melt is highly compressible, the solid skeleton can compact more before pore pressures become
high enough to prevent further deformation. Compaction heating thus generally increases with
more compressible melt. However, if the skeleton is both strong and behaves elastically under
isotropic stresses (ζ > ζcrit), then the amount of compaction is no longer controlled by the pore
pressure, and is instead controlled by the elastic resistance of the skeleton. In this case the melt’s
compressibility no longer controls the heating rate, which is why all dashed lines in figure 3a
converge when the asthenosphere behaves elastically (large compaction viscosity).
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Figure 4. (a) Global- and time-averaged Darcy dissipation rate, ĖD, as a function of mobility, Mφ , for different liquid bulk
moduli, κl , and Biot’s coefficientα. The colours represent the bulk modulus (compressibility) of the melt, with warmer colours
denoting a more incompressible melt. Note that the lower κl curves do not extend to the smallest mobilities due to numerical
instability. (b)Normalized- and spherically averaged volumetric heating rate depthprofiles,which correspond to theopen circles
in panel (a) for κl → ∞. Normalization is taken relative to the mean heating rate. In both panels, the solid is taken to be
elastic,Mφ is taken to be independent of melt fraction (which is held atφ = 0.1), the asthenosphere is H = 50 km thick, and
compaction dissipation is ignored.

In summary, compaction dissipation is maximized when (i) the skeleton is effective at resisting
elastic compaction, α � 1, and (ii) when ζ is close to its critical value so that ωτC ∼ 1.

(iii) Darcy heating

The total Darcy dissipation rate ĖD is given by integrating equation (2.39c) over the volume
of the asthenosphere. The result is shown in figure 4a as a function of the melt mobility
Mφ (equation (2.7)) for a moderately incompressible (α = 0.01, dashed lines) and compressible
(α = 0.99, solid lines) poroelastic asthenosphere (η → ∞, ζ → ∞).

We see that the critical mobility is sensitive to both κl and α. Maximum heating occurs at
higher mobilities as the melt becomes more compressible and the skeleton becomes weaker to
compaction. At mobilities less than critical, the Darcy dissipation rate is only weakly sensitive
to α and melt compressibility, varying by a factor of approximately 2–3 between all cases
shown. In contrast, α and κl strongly control the heating rate at mobilities greater than critical.
The highest possible heating rate occurs for κl = 1 GPa when the mobility is approximately
3 × 10−3 m2 Pa−1 s−1, which can match Io’s heat output. For a melt with ηl = 1 Pa s, this gives
a permeability of k = 3 × 10−3 m2. Such a high mobility (permeability) can only be attained if the
effective grain size is larger than 10 cm (figure 5). This is discussed further in §5a.

As recognized in §4a for incompressible phases, the critical mobility occurs when elastic
compaction becomes limited by elastic resistance of the skeleton, rather than the melt’s viscous
resistance to segregation. When this happens, the segregation flux becomes constant because
Darcy flow is also limited by elastic resistance of the skeleton, rather than viscous resistance of
the melt. When α is small, the skeleton has a greater resistance to elastic compaction, so melt
segregation is limited at lower mobilities (i.e. at higher viscous resistance to Darcy flow). The
critical mobility, as well as the maximum Darcy heating rate, therefore decreases with α. Liquid
compressibility also affects the critical mobility. If the melt is compressible, then the segregation
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Figure 5. (a) Asthenosphere permeability as a function of melt fraction φ and grain size a, calculated using equation (4.2)
with K0 = 50. For the liquid viscosity of ηl = 1 Pa s used in the manuscript, the colour scale can equivalently be interpreted
in terms of mobility log10(Mφ ). (b) Compaction and shear viscosity (ζ and η, black), and the corresponding non-dimensional
Maxwell times (ωη/μ andωζ/κd , blue), as a function ofmelt fraction, calculatedwith equations (4.3) and (4.4). (c) Drained
bulk modulus (black) and Biot’s coefficient (blue) as a function of melt fraction, calculated with equations (4.7) and (4.8). The
power-law exponent used to calculate κd in panels (b) and (c) is set to b= 0.5 (solid lines), 1 (long dashes), and 1.5 (short
dashes).

flux can increase with mobility past the point at which compaction of the skeleton is limited by
elasticity. The segregation flux is eventually limited when the melt can compress no further. Thus,
for compressible melt, there is a decoupling between the mobility at which elastic compaction is
halted, and the mobility at which melt segregation is limited. The critical mobility and maximum
Darcy heating rate therefore generally increase as the melt becomes more compressible. This
behaviour is the primary control on the Darcy heating rates shown in figure 4a.

In figure 4b, spherically averaged depth profiles of the volumetric Darcy dissipation rate are
shown for a selection of mobilities and α = 0.99. When the mobility is high (green line), Darcy
dissipation is relatively uniform with radius across the asthenosphere. With decreasing mobility
(green → blue lines), boundary layers emerge at the top and bottom of the asthenosphere. These
boundary layers lead to numerical instability at small mobilities, as noted by RN22 and K23. The
boundary-layer thickness scales with the compaction length of the asthenosphere, an emergent
property of partially molten media [6,21].

(c) Total heating rate as a function of melt fraction
In the previous sections, rheological parameters were imposed independent of the melt fraction φ.
In reality, the permeability of the interconnected pores, compaction/shear viscosity and drained
bulk modulus all depend on φ. In this section we account for these dependencies, allowing us to
gain a more physically consistent insight into how melt fraction controls Io’s heating rate.

We assume that permeability scales with porosity as [6,57,58]

k(φ) = a2φ3

K0(1 − φ)2 , (4.2)

where a is the radius of the solid grains and K0 ≈ 50 is an empirically determined constant [59].
Figure 5a shows the permeability for different melt fractions and grain sizes using K0 = 50. The
highest permeability of k = 10−5 m2 occurs for the largest grain size of 10 cm at melt fractions of
φ ∼ 0.3. For Earth-like mantle melt fractions of φ ∼ 0.01 and grain sizes of 1 mm, permeability is
substantially smaller at k ∼ 10−12 m2.

The compaction viscosity of Earth’s mantle has never been directly measured [23]. Only [60]
has experimentally inferred ζ from compaction rate experiments on peridotite samples. Yet its role
is essential in a compacting poro-viscoelastic material. Assuming that compaction is associated
with viscous deformation of grains during the closure/expansion of pores in partially molten

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 O

ct
ob

er
 2

02
5 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20250607

..........................................................

rock, it can be shown that the compaction viscosity should vary as [61,62]

ζ (φ) ≈ η

φ
, (4.3)

provided that the porosity is small. The compaction viscosity is therefore a property of the
solid–liquid aggregate, rather than the solid grains. Also following [37,63], we modify the shear
viscosity as a function of melt fraction through

η(φ) = ηl
1 + Θ�

[1 − F(Θ , ξ , γ )]5(1−φ∗)/2
, (4.4)

where the additional auxiliary functions are

Θ = 1 − φ

1 − φ∗
(4.5)

and

F(Θ , ξ , γ ) = (1 − ξ )erf
( √

π

2(1 − ξ )
Θ(1 + Θγ )

)
. (4.6)

The other rheological parameters are determined experimentally in [63], with � = 25.7, φ∗ = 0.431,
ξ = 1.17 × 10−9 and γ = 5, which we take from table 3 in [37] (noting the typo in their φ∗, see
[64]). The function in equation (4.4) accounts for the decrease of the shear viscosity due to grain-
boundary lubrication by the melt. Hence, η is a property of the two-phase aggregate, and not a
property of the solid grains.

Unlike [37], we keep μ constant. There is no experimental determination of how the elastic
shear modulus should vary with melt fraction, but it is expected to be generally insensitive to
φ except near the disaggregation limit [6]. Near disaggregation, it is questionable whether the
rheological and two-phase model used here is valid. The bulk modulus of the solid grains κs is a
property of the grains, not the two-phase aggregate, and so is independent of melt fraction.

Figure 5b plots equations (4.3) and (4.4) for ζ and η as a function of melt fraction. The shear
viscosity stays roughly constant until φ ∼ 0.05, above which it decreases to about η ∼ 1015 Pa s at
the disaggregation limit. The compaction viscosity decreases steadily as melt fraction increases,
again until φ ∼ 0.05, at which point it rapidly decreases to ζ ≈ 3η at the disaggregation limit.
We also plot the Maxwell times for shear and compaction as a function of φ. For shear, ωτS ∼ 1
very close to the disaggregation melt fraction. For compaction, ωτC ∼ 1 again when close to
disaggregation, but only for b � 0.5. Significant compaction dissipation is therefore favoured for
small b.

Finally, the compaction modulus of the solid skeleton is also controlled by melt fraction [65].
The relationship between drained compaction modulus and melt fraction can be expressed in
terms of another unknown rheological constant, the porosity bulk modulus (see eqn. 4.159 in [66]),
which determines the skeleton’s resistance to grain rearrangement. For simplicity, we instead
adopt a power law relationship between κd and φ. As the melt fraction approaches zero, we expect
that κd → κs, because the solid skeleton adopts the properties of the grains themselves. We also
expect κd to go to zero as φ → φcrit, as there is then no coherent solid skeleton to resist isotropic
stresses. This behaviour can be approximated by

κd(φ) =

⎧⎪⎪⎨
⎪⎪⎩

κs if φ < φ0,

κs

(
φ0
φ

)b
if φ0 ≤ φ < φcrit,

0 if φ ≥ φcrit,

(4.7)
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where b > 0 is an unknown constant, and φ0 is a small (but non-zero) melt fraction below which
the skeleton behaves like a coherent solid, κd = κs. Correspondingly, Biot’s coefficient becomes

α(φ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if φ < φ0,

1 −
(

φ0
φ

)b
if φ0 ≤ φ < φcrit,

1 if φ ≥ φcrit.

(4.8)

We adopt φ0 = 10−3, and explore a range of b values. Both κd and α are shown as a function of
melt fraction in figure 5c for b = {0.5, 1.0, 1.5}. Increasing melt fraction causes α to approach unity
and κd to decrease. The increase in α and drop in κd is more rapid as b becomes larger. For b � 1,
we always have α � 1, even close to φcrit. Thus, small b gives the asthenosphere a strong elastic
resistance against compaction across the full range of relevant melt fractions, 0 < φ < φcrit.

The shear viscosity formulation in equation (4.4) is chosen to enable direct comparison with
results from [37]. This formulation was developed to capture the increase in effective shear
viscosity as interactions between suspended crystals begin to dominate the magma’s rheology
[63]. Alternative formulations are derived in terrestrial mantle deformation studies, where the
microphysical mechanism that enables irreversible deformation gives rise to its own shear
viscosity law. For instance, at sufficiently large grain sizes and/or high stress, dislocation creep
is the dominant deformation mechanism [67]. However, at Io’s high melt fraction, diffusion-
accommodated grain-boundary sliding may instead be dominant [68]. Future work could explore
the consequences of these different deformation mechanisms.

(i) Heating rates

In the following, we modify k, ζ , η, α and therefore κd, as functions of melt fraction using
equations (4.2), (4.3), (4.4), (4.8) and (4.7), respectively. We take μ, κs and κl to all be independent
of melt fraction.

Figure 6 shows the different contributions of Darcy, compaction, and shear dissipation to the
total heating rate of our Io model. Darcy dissipation is substantially greater than shear dissipation
across the middle range of melt fractions (φ ∼ 0.05–0.15), provided that the grain size is a greater
than or approximately equal to 10 cm. For grain sizes that are less than 1 cm, it is at least two
orders of magnitude less than the shear-heating rate at any melt fraction. The critical mobility is
never encountered for any melt fraction. In all cases, the total dissipated power increases as the
asthenosphere thickness is increased from H = 50 km (left) to 300 km (right), largely due to the
increase in heat-producing volume.

Two-phase dynamics generally decreases both shear and compaction heating rates, as
compared to the single-phase results. For shear heating, this decrease is minor. For compaction
dissipation, figure 6 shows that this decrease is also minor, but this result is highly sensitive to
the exponent b. As discussed with figure 3, there are two requirements to maximizing compaction
dissipation: (i) the non-dimensional compaction Maxwell time of the asthenosphere must satisfy
ωτC ∼ 0.1–1 (i.e. ζ must be close to its critical value), and (ii) the solid matrix must be (relatively)
elastically strong against compaction stresses, meaning α is small. The latter requirement can
easily be satisfied in the one-phase model because α = 0. To what degree these two requirements
are met in the two-phase model depends on how sensitively α depends on melt fraction. Here,
this sensitivity depends on the unknown exponent b through equation (4.8).

The relationship between Biot’s coefficient and compaction dissipation as a function of b and
φ is shown in figure 7. In panel (a) we see that the range of permitted α values (constrained
by φ0 < φ < 0.3) becomes increasingly small as b decreases. Hence, smaller b promotes an
asthenosphere that can more effectively resist elastic compaction. Panel (b) shows that the
maximum possible compaction dissipation rate is only reached as b → 0, for any melt fraction.
When b = 1, compaction dissipation peaks at small and large melt fractions, but is much weaker
at intermediate melt fractions. When b � 0.5, compaction dissipation generally increases with
melt fraction. Panel (c) shows how the compaction Maxwell time ωτC varies with b, Biot’s
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Figure 6. Tidal dissipation rate as a function of melt fraction for an asthenosphere thickness of H = 50 km (left) and 300 km
(right). Solid lines are solutions computed for the two-phase problem, while dashed lines are solutions that neglect two-phase
dynamics. The different colours represent dissipation from shear (blue), compaction (green), and Darcy (red) deformation.
Compaction dissipation without melt (green dashed lines) is calculated for a single phase model where α = 0 and φ = 0,
though ζ remains a function of φ, as in [37]. As labelled on the right, the different thickness of red line correspond to grain
sizes of a= 1 cm (thin), 10 cm (medium), and 20 cm (thick). The black lines are the total dissipation for no melt (dashed) and
largest grain size (solid). Curves do not extend across all melt fractions due to numerical instabilities encountered at small melt
fractions/mobilities.

coefficient and melt fraction. We see that, as b decreases, ωτC approaches unity at smaller α

(stronger asthenosphere). Only for the largest melt fraction of φ = 0.3 and smallest b = 0.01, does
the asthenosphere reach ωτC = 0.1 and simultaneously have α � 1. Thus, the two conditions
to maximize compaction dissipation are more easily met for small b and high melt fraction.
Physically, this means that for our self-consistent treatment of melt, the significance of compaction
dissipation becomes a question of how quickly the solid skeleton becomes compactible (relative
to the solid grains) after the onset of melting. When b = 1, α is very sensitive to melt fraction so the
skeleton becomes rapidly compactible with increasing φ. In contrast, for b = 0.01, α is insensitive
to φ, so the matrix remains highly uncompactible across the full range of possible melt fractions.
This explains the main difference between our two-phase results and the single-phase results of
[37], where they implicitly assume α = 0. We discuss this point further in §5.

(d) Distribution of heating
A key observable property of Io is the distribution of volcanic activity at its surface. If the spatial
dependence of tidal heat generation in its interior reflects the distribution of volcanic activity—a
significant assumption—then volcanic activity provides a possible path to distinguishing between
different tidal-heating modes. Hence, there is a history of comparing Io’s volcanic distribution
to patterns of tidal heat fluxes predicted by various models of tidal deformation and internal
structures [35,69–71]. Imaging of Io by the Galileo and Juno spacecraft have now provided near-
full coverage of the global distribution of hotspots. However, there is still active debate about the
exact interpretation of this data. Ref. [72] finds that there is a greater concentration of hotspots
towards the poles. Refs. [73] and [74] find that while there are, on average, the same areal density
of volcanic hotspots across Io, those at lower latitudes have a greater thermal power emission.
They argue that this is consistent with models considering solid-only heating in a shallow
asthenopshere. Ref. [75] used a spherical harmonic decomposition of the hotspot distribution
from 11 Juno flybys, finding that the activity is not strongly correlated to any of the solid-only or
magma-ocean tidal heating models (e.g. [70]). Below, we compare the heating patterns predicted
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Figure 7. Effect of different b exponents on (a) Biot’s coefficient and (b) compaction dissipation rate as a function of melt
fraction, and (c) compaction Maxwell time ωτC as a function of Biot’s coefficient α. Also plotted in panel (c) are contours
of melt fraction, and circles indicate where these intersect the Maxwell time curves for a given b. Panel (c) should thus be
interpreted as representing the trajectory of α andωτC across the full range of melt fractions, for a given b. In this figure we
have forced k = 10−6 m2 to aid numerical stability. The compaction dissipation rate is insensitive to k unless themobility of the
asthenosphere is greater than or approximately equal to 10−3 m2 Pa−1 s−1.

by the three deformation modes explored here, shear, compaction and Darcy deformation, shown
in figure 8 for an H = 300 km thick asthenosphere.

All three heating patterns shown in figure 8 focus heating to low latitudes. Shear-generated
heat flux is shown in panel (a), which shows a classic ‘shallow’ asthenosphere heating pattern
[32], where heating is maximized at low latitudes, at the sub- and anti-Jovian longitudes (ϕ = 0◦
and 180◦, respectively), and approximately ±25◦ above and below the equator. Our inclusion of
two-phase flow does little to change this classic result. Compaction dissipation (panel (b)) has a
heat flux of ∼ 0.2 W m−2, with maxima occurring either side of the sub- and anti-Jovian points,
similar to that found by [37] (their figure 7). Regions of effectively zero heat flux occur north and
south of these points. Darcy dissipation, shown in panel (c) for a high-mobility asthenosphere of
Mφ = 10−5 m2 Pa−1 s−1, has dissipation maximized along the equator. The heat-flux magnitude
is similar to that of compaction, and peaks at the sub- and anti-Jovian points. There is no
longitudinal offset in peak heating, with minimum but non-zero heating at the poles. Overall,
however, the broadest scales of heating are similar between compaction and Darcy dissipation.

Overall, our calculations suggest that all heating modes, if located in the asthenosphere, focus
heating to low latitudes. Shear deformation causes the highest heating rates if Io’s mantle’s
effective grain size cannot exceed 10 cm. Darcy dissipation heat fluxes can approach that due
to shear deformation if the melt’s mobility can approach Mφ ∼ 10−3 m2 Pa−1 s−1. If tidal heating
is directly correlated with the locations of surface volcanism on Io, then the inclusion of two-
phase dynamics and physically consistent compaction dissipation does not change the general
anticipation that shallow mantle tidal heating is focused towards low latitudes.

5. Discussion
We have shown with our two-phase mantle deformation model that melt segregation and viscous
compaction of the two-phase assemblage can generate additional sources of heating in Io’s
interior. The exact proportion of Io’s heating that is controlled by these mechanisms, relative
to shear deformation, depends on the rheological properties of the asthenosphere. In §5a,b we
discuss how these properties limit the upper bounds of Darcy and compaction dissipation. We
identify the limitations and future avenues of this work in §5c.
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Figure 8. Surface heat flux patterns due to (a) shear, (b) compaction, and (c) Darcy deformation. These patterns are
calculated with optimum parameters to maximize heating from each deformation mechanism. Darcy dissipation is calculated
for a high mobility of 10−5 m2 Pa−1 s−1, corresponding to a grain size of a∼ 10 cm and melt fraction of φ ∼ 0.3 using
equation (4.2). Compaction dissipation is calculated for optimum viscoelastic parameters at highmelt fraction such thatα � 1
and ζ ∼ 3.6 × 1015 Pa s, and shear dissipation uses a low shear viscosity of η = 2 × 1014 Pa s.

(a) Magnitude of Darcy dissipation
The magnitude of Darcy dissipation is primarily controlled by the asthenosphere’s mobility
Mφ , the ratio of permeability k to melt viscosity ηl (equation (2.7)). As shown in figure 4, Io-
like heating rates can be achieved for a high mobility of Mφ ∼ 10−3 m2 Pa−1 s−1. If the melt
viscosity is ηl = 1 Pa s, then this requires a permeability of k = 10−3 m2. Our results in §4c set
the permeability using the classic Kozeny–Carman relationship (equation (4.2)), and figure 5a
shows that k ∼ 10−3 m2 can only be achieved at grain sizes of a > 10 cm. If the Kozeny–Carman
relationship is still valid at such large grain sizes, then the question becomes, what is the grain
size in Io’s mantle? Grain sizes in Earth’s deep mantle are poorly known [76]. In the shallow
mantle, observations and modelling suggest millimetre- to centimeter-sized grains [77,78]. Fluid
alteration can potential yield grains sizes greater than 10 cm [76], though Io’s interior is thought
to be volatile depleted [79]. Modelling of Earth’s Moon’s tidal response suggests grain sizes of
around 1 cm [80]. We therefore conclude that grain sizes in Io’s mantle are unlikely to exceed
approximately 10 cm.

Alternatively, we could interpret a high mobility as reflecting a large effective permeability (i.e.
averaged over some large area or volume). This could arise from, for example, channelization

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 O

ct
ob

er
 2

02
5 



23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20250607

..........................................................

of magma within Io’s asthenosphere. Magmatic channelization in Earth’s asthenosphere is
evidenced by tabular dunite zones found in ophiolites [81]. These channels are suspected to
form via a reactive flow instability, where pressure-driven undersaturation in the magma forces
a melting reaction, dissolving pyroxene and precipitating olivine from the melt onto the solid
residuum [82,83]. The permeability of such channels would be orders of magnitude higher than
the surrounding mantle, potentially large enough for turbulent dissipation. However, without
observation of such structures on Io, this idea is only speculative.

If effective grain sizes of approximately 10 cm are possible, Darcy dissipation can exceed or
match the shear-heating rate in the solid when the melt fraction is 0.05 < φ < 0.2, depending on the
asthenosphere thickness and melt viscosity (figure 6). This conclusion hinges on the assumption
that the asthenosphere behaves as a poro-viscoelastic Maxwell material, which we have used
here. We know that in general, Maxwell viscoelastic models do not accurately predict attenuation
rates that are measured from laboratory experiments across a range of frequencies [84,85]. The
Andrade rheological model has been proposed as an alternative that better predicts attenuation
in solid, cold, high-viscosity rock and ice [86]. However, while there are measurements of the
attenuation behaviour of partially molten rock across seismic frequencies at small melt fractions
(φ ∼ 0.01, [87]), there are, to our knowledge, no such measurements close to tidal frequencies and
at large (φ ∼ 0.1) melt fractions. Moreover, Andrade model parameters have only been measured
for shear deformation, while here we also consider isotropic deformation. It may be the case
that an Andrade-type rheology is applicable to a partially molten asthenosphere, but it is not
clear what the model’s parameters should be when a high melt fraction, two-phase flow and
compaction are included. This is not to say that an Andrade rheology is inappropriate to our
case here, but merely that caution should be exercized when extending the model to additional
deformation modes. We find, though, that two-phase flow dynamics has only a small effect on
shear deformation of the solid skeleton. This small effect potentially indicates that, even with the
caveats above, an Andrade model could still be an acceptable rheological description of shear
deformation in a partially molten solid at high melt fraction.

It is also possible that Io’s magma may be less viscous than the 1 Pa s assumed here. There
is a general lack of evidence for chemically evolved, high-viscosity magmas on Io [8], with lava
flow run-out distances and eruption temperatures consistent with low-viscosity, ultramafic melt
[88,89]. Experimental determination of Earth-like upper-mantle basalt melts yield viscosities as
low as approximately 0.1 Pa s [90]. Laboratory measurements of peridotite melt have determined
that viscosities of even 0.01 Pa s are possible, though this requires slightly greater pressures than
in the asthenosphere that we assume here [91]. Low viscosity melt enhances the liquid’s mobility,
generally increasing the Darcy dissipation rate. If the melt approached ηl ∼ 0.01 Pa s in Io’s hot
asthenosphere, then Darcy dissipation could approach shear dissipation at a more moderate grain
size of 1 cm. Note, though, that measurements of sulphur and chlorine isotopic anomalies in
Io’s tenuous atmosphere indicate a volatile-depleted interior [79]. Volatiles generally decrease
the viscosity of magma, so these isotopic measurements could indicate that ultra-low magma
viscosities are unlikely at the present day, depending on the magma’s silica content.

Darcy (and compaction) heating, while smaller in magnitude than the global shear-
heating rate, can still potentially be relevant in driving aspects of Io’s internal dynamics at heating
rates of 1011–1012 W. This heating can be focused at different depths depending on the heating
mechanism (figures 1–4), and hence the radial location of buoyancy sources may differ between
Darcy, compaction and shear heating, potentially resulting in different mantle dynamics [41].

(b) Magnitude of compaction dissipation
Ref. [37] was the first to present tidal heating estimates for Io that included compaction
dissipation. In their work, the asthenosphere was technically treated as a single-phase solid
system. The viscoelastic parameters (η, ζ , κs, μ) all depended on melt fraction, but melt
segregation (i.e. two-phase flow dynamics) was neglected. In particular, their κs → κl as φ → φcrit.
In our two-phase approach, we have necessarily introduced the compaction modulus, κd, which
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measures the (inverse) compressibility of the solid skeleton when the melt has been drained,
rather than the grains themselves. This distinction is important; a two-phase aggregate with
incompressible solid and liquid phases (κs, κl → ∞) can itself be compressible at the macroscale
(finite κd, α → 1), because the skeleton can rearrange grains while expelling/drawing in melt from
its surroundings. This also means that κd can be less than κl.

We have shown that compaction dissipates heat most efficiently when κd ∼ κs, such that α � 1,
and ζ is close to the critical value (figures 3 and 7). To our knowledge, only ζ has been inferred
for Earth-like mantle material [23,60]. Biot’s coefficient is indeed a function of melt fraction [65],
as assumed in equation (4.8), but it is not clear whether α in Io’s mantle should approach unity at
the critical melt fraction (b = 1), or some small value (b = 0.01). If the former is true, meaning that
the solid skeleton is easily (de)compacted when the melt fraction is high, then the possibility of
significant compaction dissipation is precluded, as small enough α can never be achieved close to
the critical compaction viscosity (figure 7c). How α actually depends on melt fraction is complex,
and can be influenced by several factors including the pore geometry [65]. Given the role of Biot’s
coefficient in controlling compaction heating, the distinction between the single-phase approach
of [37] and our two-phase approach can be critical.

If Io’s melt is highly incompressible (κl > 100 GPa), then high Darcy and compaction
dissipation may be incompatible. We see this by comparing figures 3 and 4 for α = 0.01
(dashed lines) and κl = 200 GPa (pink). When the mobility is high, Mφ = 10−3 m2 Pa−1 s−1, Darcy
dissipation never exceeds 1 GW, while compaction can reach almost 1 TW at the critical viscosity.
At these high mobilities, Darcy dissipation requires a weak asthenosphere to produce high
heating rates, whereas compaction dissipation always requires a strong asthenosphere.

(c) Model limitations and future avenues
As shown in figure 8, tidal deformation naturally produces a spatially varying heat distribution.
Hence, we expect melt generation to also vary in space, and consequently, melt fraction-
dependent parameters such as permeability, shear and compaction viscosity, will too. However,
the present formalism assumes that rheological parameters are laterally uniform and depend only
on radius, as is typical in tidal deformation studies [46]. Sophisticated models of tidal deformation
that take into account lateral variation in rheological parameters are emerging [92–94], though
these do not yet take into account two-phase flow. While this is likely to change the exact spatial
distribution of tidal heat generation, it is unlikely to change the overall picture of the importance
of Darcy and compaction dissipation, relative to shear heating, in our results.

As with any tidal heating model, our results are generally sensitive to the rheological model
assumed. We explore Io’s two-phase tidal deformation under a compacting poro-viscoelastic
Maxwell model, but, as discussed above, there may be better choices for a partially molten layer
forced at tidal frequencies, such as the Andrade or Sunberg Cooper models [84,95]. We caution at
choosing a more sophisticated rheology, however, because there is a lack of laboratory attenuation
experiments that consider isotropic strain of the material. There is clearly a need to fill this gap if
we are to understand the intricacies of Io’s tidal heat generation.

Finally, a common assumption that is also made in this work is that the mantle melt fraction is
constant in radius and does not vary over a deformation cycle. Neither of these points is likely to
be true. Models of radial melt segregation that include a density contrast between solid and melt
[28–30] all predict the formation of a compaction boundary layer, where the buoyant melt pools
at the base of the lithosphere until it is extracted to the surface. This creates a highly non-uniform
radial variation in melt fraction across the asthenosphere. Ref. [40] showed that additional Darcy
dissipation may arise from these radial porosity gradients (see their eqn. (16)). However, as we
have mentioned, their treatment of base-state porosity gradients is incomplete as φ is assumed
constant in their (and our) storage equation (2.14). It is thus unclear whether radial porosity
gradients will enhance or suppress Darcy and/or compaction dissipation. Given how extreme
these gradients may become in a compacting boundary layer, this will be a topic of future work.
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6. Conclusions
In this manuscript, we have combined viscoelastic tidal and poro-viscous compaction theories
to develop a tidal deformation model that captures the two-phase dynamics of partially-
molten planetary interiors. We derive the model, building upon the work of [39,40], using
mathematically consistent constitutive laws that are inspired by the original work of A. E. Love
[33]. The model can predict tidal heating from deformation due to shear, melt segregation/Darcy
flow, and (de)compaction. We apply the model to the Jovian moon, Io, where we consider
Io’s asthenosphere to be partially molten with impermeable top and bottom boundaries. We
investigate whether compaction and Darcy dissipation within the asthenosphere can contribute
substantially to Io’s total heat budget.

We find that Darcy dissipation is maximized when the asthenosphere is highly permeable,
and the melt is low viscosity. To obtain Darcy heating rates that are comparable to shear heating
requires a high enough permeability, which can only be achieved when the asthenosphere’s grain
size is at least 10 cm, the melt’s viscosity is 1 Pa s, and the asthenosphere’s melt fraction is between
5–20%. It is questionable whether such large grain sizes can be reached. If the melt is highly
incompressible, then high Darcy dissipation additionally requires the asthenosphere to be weak
to isotropic stresses. Compaction dissipation—heating due to the rearrangement of solid grains—
is maximized when the asthenosphere is elastically resistant to isotropic stresses, when compared
to the solid grains themselves. This means that high Darcy dissipation and high compaction
dissipation may be incompatible, depending on the compressibility of the melt. While the heating
patterns generated by Darcy and compaction dissipation are consistent with some interpretations
of Io’s distribution of volcanic hotspots, we find that compaction and Darcy dissipation are
unlikely to account for more than approximately 1% of Io’s observed total heat output if we
assume realistic melt fractions, permeabilities and liquid viscosities. They may, however, still play
a role in Io’s convective dynamics. Future work on the evolution of grain size in tidally heated
worlds would help further establish the role of Darcy dissipation in these types of planetary body.

These conclusions are reached by assuming that Io’s asthenosphere behaves as a compacting
poro-viscoelastic Maxwell material. While it is tempting to apply the more experimentally
driven Andrade rheology to our model, the lack of laboratory measurements for partially
molten rock under isotropic stresses make this approach unsatisfactory at present. We highlight
the need for future experiments to measure the attenuation behaviour and poro-viscoelastic
parameters of partially molten rock at (or near) tidal frequencies, with both shear and isotropic
stresses.

By including viscous compaction of Io’s two-phase asthenosphere, this study makes a first
step at capturing the poro-viscoelastic dynamics of a partially molten tidally heated planetary
body. This work thus moves us closer to self-consistently modelling the feedback associated with
melt in Io’s interior, and the inevitable viscous compaction of the mantle as a result. While we
find it unlikely that Darcy dissipation can be a major contributor in Io’s overall heat budget,
melt segregation may still play a role in modulating eruption timing [15]. A future mission to Io
would provide an invaluable means towards revealing the details of Io’s melt distribution and
dynamics [96].
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