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We determine the phase diagram of the O�n� loop model on the honeycomb lattice, in particular, in the
range n . 2, by means of a transfer-matrix method. We find that, contrary to the prevailing expectation,
there is a line of critical points in the range between n � 2 and `. This phase transition, which belongs
to the three-state Potts universality class, is unphysical in terms of the O�n� spin model, but falls inside
the physical region of the n-component corner-cubic model. It can also be interpreted in terms of the
ordering of a system of soft particles with hexagonal symmetry.

PACS numbers: 64.60.Fr, 05.50.+q, 64.60.Cn, 75.10.Hk
The O�n� model can be defined in terms of vector spins
�s � �s1, s2, . . . , sn� on a lattice [1]. This definition in-
cludes the Ising, the XY , and the Heisenberg models for
n � 1, 2, and 3, respectively. The isotropic nature of the
model imposes the rotationally invariant form w��s ? �t� on
the Boltzmann weight of an interacting pair ��s, �t� of neigh-
bor spins. On the basis of universality, one expects that the
nature of a phase transition does not depend on the micro-
scopic lattice structure or the choice of the function w.
Thus one may choose w��s ? �t� � 1 1 x �s ? �t, and place
the spins on the honeycomb lattice, while still maintaining
the expectation that the results characterize O�n� univer-
sality classes in two dimensions. The resulting partition
integral of the O�n� spin model is

Zspin �
Z Y

k

d �sk

Y
�ij�

�1 1 x �si ? �sj� , (1)

where the indices i, j, and k represent lattice sites, the
second product is over all nearest-neighbor pairs, and the
spins are normalized such that �si ? �si � n. Thus the Boltz-
mann weight w is positive in the region jxj , 1�n. For the
honeycomb lattice this special choice enables a mapping
on the O�n� loop model [2], with a partition sum

Zloop �
X

all G

xNb nNl , (2)

where the graph G covers Nb bonds of the lattice, and
consists of Nl closed, nonintersecting loops.

Another equivalence of the honeycomb O�n� model ap-
plies to the n-component corner-cubic model on the trian-
gular lattice [2]. The components of each spin can here
independently take discrete values 61. The spins are thus
pointing towards the corners of an n-dimensional hyper-
cube. The interactions between neighboring spins are cho-
sen such that at most one component can be different.
Within the freedom left by this restriction, each nearest-
neighbor pair receives a Boltzmann weight of 1 if the spins
are equal, and a weight of x if they are different. Thus the
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partition sum is
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�d �si ? �sj ,n 1 xd �si ? �sj ,n22� ,

(3)

where the vector spins �s are labeled with their lattice site.
The product on k runs over all sites, and �ij� denotes all
nearest-neighbor pairs of the triangular lattice. Interfaces
separating unequal spins define the loop gas on the dual,
i.e., the honeycomb lattice, as described by (2).

These three models are described by only two parame-
ters: x and n. In the language of the O�n� loop model, n
is the loop weight, and x is the weight of a vertex visited
by a loop. In both spin models, n is the spin dimensional-
ity, and x a temperaturelike parameter. Its correspondence
with the O�n� spin temperature follows from the interpre-
tation of w as the Boltzmann factor.

The absence of loop intersections in the loop model fa-
cilitates its analysis, in part via mappings on other models
such as the kagomé 6-vertex (ice-rule) model and the Cou-
lomb gas. Indeed, progress has been made involving exact
[2–7] and numerical [8,9] analyses of this loop model.

The following picture emerges from the works cited
above. At high temperatures (small x) the O�n� spin sys-
tem is paramagnetic: spin-spin correlations decay expo-
nentially with distance. The loop model configuration is
sparse. At lower temperatures the largest loop size in-
creases, in parallel with the spin-spin correlation length.
Both lengths diverge at the O�n� critical point, while the
average loop size remains finite [10]. The location of this
critical point and a number of critical exponents are ex-
actly known for the honeycomb O�n� model [3,11,12] in
the range 22 # n # 2. The specific-heat singularity is
thus known to become progressively weaker with increas-
ing n, until the specific-heat exponent reaches a � 2` at
n � 2: the essential singularity at the Kosterlitz-Thouless
transition [13] of the XY model. Thus, the critical point
at n � 2 can naturally be interpreted as the boundary case
between the range n , 2 with an ordering transition, and
© 2000 The American Physical Society
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the range n . 2 without such a transition. Indeed, this
was the prevailing expectation, expressed, e.g., in [7], and
in line with [2].

However, in this paper we show that a phase transition
does occur for n . 2. The physical nature of this transition
hinges on the tendency of the loops to take the form of
elementary hexagons for large n. In the limit of large n
and constant fugacity x6n of such loops, the model reduces
to the hard-hexagon model, as noted by Domany et al. [2].
Baxter’s exact solution [4] shows that the latter model
undergoes a phase transition which breaks the symmetry
between the three sublattices, and belongs to the three-state
Potts universality class.

Before showing that this hard-hexagon-like transition
extends to finite values of n, we derive a rigorous bound on
the locus of this transition. The mapping on the kagomé
lattice 6-vertex model leads to vertex weights [3,7]

�v1, v2, v3, v4, v5, v6� � �1, 1, y, y, cz, cz21� , (4)

where vi is the weight of the ith type of vertex as defined
in [7] and

y � c � 2x cosh3l, z � e2l,

n � 2 cosh6l . (5)

We take n . 2, x . 0, and l . 0 so that y, c . 0, and
consider the zeros of the partition sum in the complex z
plane. The analysis can be carried out by using the Asano
construction of small polynomials. The first step is to map
the 6-vertex model onto an Ising problem for which the
Asano construction can be performed [14]. To the four
edges incident at a vertex one associates Ising spins with
respective fugacities zi , i � 1, . . . , 4. The 6-vertex model
partition function is then obtained by contracting small
polynomials Mc�z1, z2, z3, z4� associated with each of the
vertices. From the explicit expression of Mc deduced in
[14], one finds Mc�z1, z2, z3, z4� fi 0 in the regime

jzij
2 ,

p
1 1 a2 2 a , (6)

where a � �y 1 1��c. Now the contraction of the poly-
nomials involves the replacement of ziz

0
i ! z, where zi

and z0i are the fugacities of the same Ising spin coming
from two small polynomials. It then follows from a lemma
due to Ruelle [15] that the 6-vertex model partition sum is
free of zeros in the regime jzj ,

p
1 1 a2 2 a. It is now a

simple matter to specialize to the loop model (5), and
deduce that (2) is free of zeroes in the regime jxj ,

�sinh2l 2 1��2 cosh3l, or, explicitly,

jxj ,
1

p
n 1 2

�F1 2 F2 2 1	 , (7)

where F6 � ��n 6
p

n2 2 4��16	1�3. The analyticity
of the free energy now follows as a consequence of the
Penrose-Lebowitz Lemma [16]. We remark that a similar
result in [7] contains a misprint [17].

Our numerical analysis is based on the calculation of
Zloop for L 3 ` honeycomb lattices on a cylinder, with
L � 3, 6, . . . , and 15, by a transfer-matrix method [5,18].
The axis of the cylinder is parallel to one of the lattice edge
directions. The transfer matrix T acts in the vector space
whose basis vectors are assigned to “connectivities,” i.e.,
the ways in which the loop segments on the dangling bonds
at the end of the cylinder are interconnected. Its largest
eigenvalue L0,L determines the free energy fL density by

fL �
2

L
p

3
ln�L0,L� . (8)

The prefactor accounts for the area occupied by one row
of elementary hexagons as appended due to the action of
T, using the small diameter of the elementary faces as the
length unit. Further eigenvalues Li,L of T are associated
with correlation lengths ji,L describing the exponential de-
cay of various types of correlations in the length direction
of the cylinder:

j21
i,L � �2�

p
3 � ln�L0,L�Li,L� . (9)

Here we consider three types of correlations (i � 1, 2,
and 3) and their associated eigenvalues Li,L of T (the
eigenvalues are not necessarily sorted in magnitude). It is
helpful that the associated eigenstates classify according to
the symmetries of the lattice, i.e., rotations and inversions
about the axis of the cylinder.

(1) The O�n� spin-spin correlation function. In the loop
model it is represented by a modified partition sum, such
that the two correlated sites are connected by a single loop
segment. The pertinent eigenvalue L1,L resides in the “odd
sector” of T which has an unpaired loop segment running
in the length direction of the cylinder [9]. The correlation
length j1 is usually denoted jh, the magnetic correlation
length.

(2) The energy-energy correlation function. The asso-
ciated eigenvalue is denoted L2,L, and j2 may be denoted
jt because it pertains to correlations between temperature-
like fluctuations. The corresponding eigenvector resides in
the even sector [9] (no unpaired loop segment) of T and
is invariant under lattice symmetries. The largest eigen-
value with these properties is L0,L; the second largest one
is L2,L.

(3) The color-color correlation function. The associated
eigenvalue is named L3,L, and its eigenvector can be char-
acterized with the help of the operator R that rotates the lat-
tice by one unit about the axis of the cylinder. Because RL

is the unit operator, the eigenvalues of R are exp�2pik�L�,
k � 1, 2, . . . , L. To explore the possibility of a symmetry
breaking between three differently “colored” sublattices of
the honeycomb model, we have computed common eigen-
vectors �V3 of T and R with the appropriate symmetry, be-
having as R ? �V3 � exp�2pi�3� �V3. Thus L is a multiple
of 3. The largest eigenvalue obtained is called L3,L, and
the associated correlation length j3 or jc. It applies to the
color-color, or Potts magnetic correlation function.

The numerical results for the eigenvalues of T reflect
the divergences of the correlation lengths at the critical
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point, whose location can thus be found by means of phe-
nomenological renormalization [19]. Moreover, the theory
of conformal invariance provides information on the uni-
versality class. At criticality the free energy displays the
following finite-size dependence [20–22]:

fL 
 f` 1
pc
6L2 , (10)

where c is the conformal anomaly [23], while the correla-
tion lengths satisfy [24]

Lj21
i,L 
 2pXi (11)

which yields estimates of the scaling dimension Xi of the
observable with correlation length ji,L.

As already reported in [8], the transfer-matrix results for
the magnetic correlation length jh,L indicate that there are
no divergences when n ¿ 2. Ferromagnetic critical points
are therefore absent. However, the magnetic correlation
length is insensitive to an ordering of the loops in a hard-
hexagon-like fashion, because the loop sizes remain finite.
The latter type of transition thus remains possible.

A finite-size analysis of jt revealed its presence for
several values of n. Plots of the scaled gap Xt,L �
L��2pjt,L� as a function of x revealed minima approach-
ing the three-state Potts temperature dimension Xt � 4�5.
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FIG. 1. Phase diagram of the O�n� model on the honeycomb
lattice as a function of n and the relative weight x21 of an empty
vertex. Along the horizontal axis, we use a 1 2 8��n 1 10�
scale. The vertical scale shows the scaled weight W �n� � 1�
��n 1 10�1�6x	. The model is exactly solvable on the curve
shown for n # 2. Its outer branches (broken lines) describe the
critical line [3] separating the disordered O�n� phase at large
jW�n�j from the low-temperature phase at small jW �n�j. The
vertical line at n � 2 shows the critical state of the XY model.
The line W �n� � 0 represents the fully packed loop model
where empty vertices are forbidden. This line is critical for
n # 2; its universal properties can be interpreted as a combina-
tion of low-temperature O�n� and solid-on-solid critical behavior
[9]. An exact solution [26] shows that the line is no longer criti-
cal for n . 2. The data points (�) show our results for the
phase transition at n . 2. The curve connecting these points
serves only as a guide to the eye. It also connects to the critical
hard-hexagon model (3) and the multicritical point n � 2, W �
0. The forbidden regime of (7) lies outside the scale shown.
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The estimated critical points agree well with an analysis
of the intersections of Xc,L � L��2pjc,L� versus x curves
for subsequent values of L. These intersections tend
towards the expected value Xc � 2�15 for the three-state
Potts universality class. Furthermore, our estimates of c
are close to 4�5 as expected for this classification.

The results for the critical points are shown in Fig. 1.
The horizontal scale is chosen such as to include the whole
range up to n � `. The vertical scale displays W�n� �
�n 1 10�21�6x21. The n-dependent factor keeps the ver-
tical coordinate finite for n ! `. In this limit the hard-
hexagon critical point [4] occurs at x6n � �11 1 5

p
5��2.

For large n the critical points estimates converge well with
increasing system size L, and the corresponding values of
Xt , Xc, and c (see Table I) agree well with the three-state
Potts universality class. For smaller n, the extrapolations
become less accurate, as expected near the XY -type critical
state at n � 2 [8,9]. Nevertheless the results suggest that
the critical line connects to the point n � 2, x21 � 0. This
agrees with the conclusion of Kondev and Henley [25],
based on Baxter’s exact solution of a three-coloring prob-
lem [26], that hard-hexagon-like order exists on the line
x21 � 0 for n . 2. Furthermore we note that the criti-
cal line indeed avoids the regime excluded by (7), which
reads jW �n�j . Bn, n . 10

p
2, with Bn decreasing mono-

tonically from B10
p

2 � `, to B` � 2. The newly found
phase transition is physical (x $ 0) from the point of view
of the loop and the corner-cubic models, but it lies far in-
side the unphysical region (jxj . 1�n) of the O�n� spin
model (1) where negative weights occur. This discards its

TABLE I. Numerical results for critical points xc and scaling
dimensions Xt , and Xc, and the conformal anomaly c for sev-
eral values of n. The results for xc and Xt are extrapolated from
the minima of the scaled gaps Xt,L; those for Xc and c are ex-
trapolated at the estimated critical points. Estimated numerical
uncertainties in the last decimal place are shown in parenthe-
ses. With the exception of the smallest values of n, the results
agree well with three-state Potts universality: c � Xt � 4�5
and Xc � 2�15.

n xc Xt Xc c

4 3.63 (2) 0.76 (5) 0.1 (1) 1.5 (3)
5 2.63 (1) 0.79 (3) 0.10 (4) 1.1 (3)
6 2.17 (1) 0.82 (3) 0.16 (3) 0.9 (2)
7 1.91 (1) 0.83 (3) 0.16 (3) 0.8 (2)
8 1.74 (1) 0.82 (2) 0.14 (2) 0.8 (1)

10 1.52 (1) 0.80 (1) 0.14 (1) 0.80 (5)
15 1.248 (1) 0.79 (1) 0.13 (1) 0.80 (3)
20 1.117 (1) 0.79 (1) 0.133 (3) 0.78 (2)
30 0.9821 (2) 0.79 (1) 0.134 (5) 0.79 (2)
40 0.9075 (1) 0.80 (1) 0.130 (4) 0.79 (1)
50 0.8581 (1) 0.80 (1) 0.134 (2) 0.79 (1)
75 0.7811 (1) 0.80 (1) 0.132 (2) 0.79 (1)

100 0.7342 (1) 0.80 (1) 0.132 (2) 0.79 (1)
200 0.63933 (2) 0.800 (3) 0.134 (1) 0.79 (1)
400 0.56193 (1) 0.802 (2) 0.134 (1) 0.79 (1)
800 0.49650 (1) 0.801 (1) 0.134 (1) 0.79 (1)
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interpretation in terms of spin ordering. It is unrelated to
the ordering phenomena in the O�3� spin model reported
by Patrascioiu and Seiler [27] which are of a ferromagnetic
nature, i.e., do not break the sublattice symmetry.

As noted in [9], the loops cover an even number of
edges, so that the sign of x is redundant and the phase
diagram is symmetric with respect to the line x21 � 0.
Since line x21 � 0 is a locus of higher symmetry, the
possibility of a different universal behavior arises. Indeed,
at n � 2, x21 � 0 we find different exponents, namely,
Xt � 1.46 (1) (see [9]) and Xc � 0.65 (2), close to exact
results which are 3�2 and 2�3, respectively [25].

In the limit n ! `, n�x6 constant, the loops occupy ele-
mentary hexagons, and behave as hard particles. However,
for finite n larger loops are possible. If more space than
one elementary face is available, a loop may grow to oc-
cupy that space. In this sense the finite-n model behaves as
a system of soft particles with hexagonal symmetry. While
large-n ordering phenomena may also occur on other lat-
tices, their universality naturally depends on the lattice type
and the vertex weights [28].
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