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Summary

With the increasing demand for public transport systems worldwide and also a lot of these systems
running at their maximum capacity, there is a strong need for finding ways for these systems to operate
in a more efficient way. In recent transportation research there is an increasing attention for operational
conditions and the impact of passenger­vehicles interaction on the timetables of urban rail networks.
Passenger­vehicle interaction can have a strong impact on the operational conditions of an urban rail
line as a large part of the dwell time of a vehicle can be explained by the number of boarding and
alighting passengers.

Figure 1: Schematic overview of the
correlation analysis

A lot of urban rail networks have connections to national or even
international rail services. These services often run at a lower
frequency than the urban rail networks. When a national train
arrival occurs at a transfer station to the urban rail network, this
can cause a sudden peak in demand for the next arriving urban
rail vehicle. As passengers can have a strong impact on the dwell
time of a vehicle, it is likely that a temporary peak in demand can
cause the next urban rail vehicle to have a longer dwell time, pos­
sibly causing delays and an uneven headway. These expected
correlations are depicted in Figure 1. When there is known up­
front what the impact of such a peak in passenger demand is,
there are possibilities to reduce the impact of these peaks in de­
mand using real time rescheduling measures.

The goals of this research are to quantify the impact of transfer
passengers on reliability of an urban railway network in the case
of a difference in service frequency and to find what reschedul­
ing measures are recommended to reduce time impact of these
peaks in demand. The main research question of this research
is:

”What impact do transfer passenger flows from lower frequency railway transportation mode
have on disturbances in high frequency urban railway networks andwhich control and reschedul­
ing methods are recommended to minimise these disturbances?”.

To answer this question first correlation analysis is performed with data from a case study. This case
study concerns the metro network of Rotterdam. In this metro network there are several transfer sta­
tions with connections to the national railway network of TheNetherlands. Based on several parameters
one transfer station, Rotterdam Blaak, is selected as case study transfer station on which this study
focuses. This station is serviced by metro lines A, B and C in the network, which thus also the lines
under review in this study. The correlation analysis is performed with the four steps presented in Figure
1. For each step a separate analysis is performed to quantify each step and determine the impact of
each step on the next step, which is done as follows:

• Passenger demand ­ Number of transfer passengers: using smart card data and the check­in
location of passengers there can be determined whether a passenger arriving at the researched
transfer station is a transfer passenger or a originating passengers. The share of transfer pas­
sengers in the demand per minute is calculated using this data to determine to what extent peaks
in passenger demand are caused by transfer passengers.

• Passenger demand ­ Metro dwell time That passenger numbers impact the dwell time of a
vehicle has already been established in literature. However, to what extent can differ strongly
for each situation. Therefore for this specific case study parameters are obtained describing the
impact of passenger demand on the dwell time
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• Metro dwell time ­ Delays Downstream With variations in dwell time in mind the dwell time at
the researched transfer station is correlated to delays downstream to determine to what extend
variations in dwell times at the transfer station can cause delays in the network.

• Metro dwell time ­ Headway deviation These same variations in dwell time are also correlated
to headway deviations downstream to determine to what extend these variations in dwell time
can cause headway deviations and possibly bunching in the network.

With the parameters obtained using this correlation analysis a modelling study will be carried out. This
is done using an existing simulation framework. This framework simulates (part of) a metro network and
hereby takes into account passenger vehicle interactions by taking into account passenger numbers
at each station and calculating the dwell time accordingly with these passenger numbers. This yields
a much more representative picture of delay development on the line. With this accurate representa­
tion of reality this model is then also used to iteratively come up with a rescheduled timetable which
reschedules the timetable for the benefit of the passenger. This way the simulation framework can be
used to come up with rescheduling strategies to correct for the impact of transfer passenger flows.

The passenger­vehicle interactions calculated by the model are updated with the parameters obtained
from the correlation analysis. The framework is adapted to work with metro lines A, B and C of the
metro network of Rotterdam. Passenger arrival data from Rotterdam Blaak is used to simulate train
arrivals to the network and the framework is update to handle these passenger numbers accordingly.
Data from the data set provided by the RET is then used to validate the model.

With a correct representation of the metro line and the arrival of transfer passengers to the network
several scenario’s are then simulated to come up with: timetable improvements in the base scenario
and estimate the impact of the following situations: an increased number of transfer passengers, a total
increase of passenger numbers and a change in train frequency.

There are clear quantifiable correlations between the number of transfer passengers and passenger
demand for the next metro, with 94% of the peaks in passenger demand being explained by arriving
transfer passengers during the morning peak. There is also a clear correlation between passenger
demand and the dwell time of a metro, with about 45% of the dwell time being explained by the number
of boarding and alighting passengers during the morning peak. The correlation between passenger
demand and delay is less clear. As the dwell time is strongly influenced by the number of boarding
and alighting passengers, passenger demand and therefore also a higher demand due to transfer
passengers, can cause a longer dwell time, but this doesn’t necessarily cause a delay for the metro.
If a metro is already delayed it can contribute to an increasing delay. The average delay of metros
affected by transfer passengers also lies 17 seconds higher than for other metros. The same also
holds for headway; a flow of transfer passengers can contribute to an increasing deviation in headway,
but doesn’t necessarily cause large headway deviations.

With the set of increasing/decreasing running time between two stations, increasing the dwell time or
dispatching a metro earlier or later for departure, an improved schedule can be obtained. The rec­
ommended rescheduling actions strongly depend on the situation at the transfer station as well as the
surrounding stations. For each situation a recommended solution can be obtained through the TRM.
Next to the base scenario also a scenario is ran in which the arrival distribution of transfer passengers
from historical data is increased with 20% to test what the impact would be on the rescheduling deci­
sions made by the TRM. From this scenario can be concluded that compared to the base scenario a
similar pattern in rescheduling decisions can be found as compared to the same data from the base set,
but that the decisions are somewhat intensified. For example a metro that is already scheduled earlier
in the base scenario will now get scheduled even earlier. Also in this case the rescheduling decisions
remain strongly dependant on the situation. Also a scenario is ran in which the overall passenger num­
bers are increased. From this scenario can be concluded that without optimizing the timetable dwell
times and delays will increase with raising passenger numbers. Through the TRM also an optimized
timetable for this scenario can be obtained, however the possible improvements do not increase the
same as the dwell times and delays in the network. From the different runs with the base scenario
could already be concluded that different distributions of arriving transfer passengers can lead to very
different optimal timetables. This is also the case for running the optimization with an altered train
frequency.
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In this study is found that transfer passenger flows from a lower frequency railway transportation mode
can significantly impact the demand and dwell time of the next arriving urban rail vehicle. However
no strong indications were found that such a peak in demand alone can cause disturbances in the
urban rail network. A peak in demand caused by transfer passengers flows can however contribute to
the development of delays over the network. A combination of three different rescheduling methods
is used to obtain the optimized schedule for several transfer passenger arrival distributions. Though
there are some indications that generally urban rail vehicles that deal with a peak in transfer passen­
gers tend to get rescheduled earlier than other urban rail vehicles, each distribution resulted in different
rescheduling decisions and improvement possibilities. Through the usage of the SBTM­MN framework
recommended rescheduling decisions can be obtained for each situation.

Overall the scientific contributions of this study can be summed up as follows:

• The analysis and quantification of the impact of peaks in passenger demand caused by transfer
passengers in case of a difference in service frequency on the reliability of the high frequency
system. This research quantified the relation between peaks in (transfer)passenger demand and
delays and headway deviations in a high frequency metro system.

• Develop adaptations to a simulation­based framework to simulate the impact of peaks in pas­
senger demand and simulate their impact on dwell time and delay development over the line in
combination with simulating for according passenger numbers and dwell times on other parts of
the simulated networks as well.

• Develop insights in the usage of rescheduling measures in the context of peak demand at transfer
stations in a high frequency metro network.

• Explore several possible scenarios in the case study to estimate the impact of increasing numbers
of transfer passengers, an increasing number of passengers on the entire line and a change in
frequency on the train side.

And the societal contributions of this study can be summed up as follows:

• Providing a clear insight for the operators in the impact of transfer passenger flows and to what
extent they are able to cause disturbances in their networks.

• How to reschedule the timetable for the benefit of the passenger, reducing the overall travel time
of passengers while looking out for operational schedule adherence.

• Providing some insight in possible development of dwell times and delays for future growth sce­
nario’s.





1
Introduction

With increasing urbanisation and cities throughout world becoming more crowded, the need for efficient
public transport systems continues to rise. These systems are under increasing pressure to work in
an attractive and efficient manner. However, using current infrastructure, these high­frequency trans­
portation systems are frequently operating at near­maximum capacity, particularly during rush hour.
This is the case, for example, with Rotterdam’s metro system (Velzen, 2019). On the other hand, ex­
panding the infrastructure of urban rail networks in densely populated areas is very costly and has a
significant impact on the urban area and living space. Examining ways to make better use of existing
infrastructure would be a far more cost­effective strategy.

1.1. Problem statement
There are many ways to increase the efficiency of urban rail or metro systems. This can be done on
a strategical (long term), tactical (medium term) and operational (short term) level. Examples of mea­
sures to increase efficiency or capacity in metro systems in the short to medium term include: reducing
dwell time, homogenize train speeds or adapting shorter block sections to reduce buffer times be­
tween consecutive trains (Dicembre & Ricci, 2011). When considering timetables for metro networks,
the technical requirements of the systems and the optimal alignments in transportation planning are
frequently considered. However, usually relatively little attention is paid to understanding operational
conditions, such as the time required for passengers boarding and alighting at stations (Harris & Ander­
son, 2007). This despite research by Harris and Anderson (2007) concluding that these boarding and
alighting rates are very important in determining the line capacity and reliability, and play an important
part in causing (small) disturbances and delays. Traditional models assume that these (small) delays
can be caught up using buffer times. The model developed by Pardini­Susacasa (2020), that includes
passenger interactions with the vehicle, concludes that delays cannot be caught up or can even worsen
during the remainder of the journey when these passenger interactions are included. Therefore solving
seemingly unimportant delays and disruptions can in the end still have a large impact on the network
as a whole.

One of the causes of small delays can be a strong fluctuation in passenger demand per vehicle. Pas­
senger demand can not only fluctuate throughout the day, but also between specific vehicles. Peaks
in passenger demand can have a strong impact on the dwell time of a vehicle, as the number of board­
ing and alighting passenger explains most of the dwell time of a train (Suazo­Vecino, Dragicevic, &
Muñoz, 2017). When the demand in general is higher for a longer period of time, for example during
rush hour, this can be accounted for in the timetable. However, this is harder for temporary and more
unpredictable peaks in demand. One of the causes for a peak in demand can be the arrival of a large
batch of transfer passengers from another line or even another mode. Usually metro lines have such a
high frequency that passengers do not necessarily account for the timetable but rather arrive at a stop
at random (Ingvardson, Nielsen, Raveau, & Nielsen, 2018). This would normally lead to relatively even
arrival patterns. However, in higher frequency metro networks with transfer stations to lower frequency
(intercity) rail networks this arrival flow can vary strongly in a short period of time when a lot of transfer
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passengers arrive at the same time from (intercity) trains (Sun, Jin, Lee, Axhausen, & Erath, 2014). An
intercity or national rail network often runs at a lower frequency and with higher capacity vehicles than
the metro network, causing peaks in demand with transferring passengers when a large train arrives
at one of the transfer station of the metro network. These peaks in demand can have an impact on the
dwell time and crowding level of the next metro vehicle as passenger demand is suddenly higher than
it would have been without transfer passengers. When the dwell time of an metro vehicle is influenced
by this transfer process, this is not accounted for in the timetable. As the dwell time and crowding level
of vehicles can be strongly influenced this way, this can cause (small) disturbances in the network.
Research by Pardini­Susacasa (2020) pointed out these passenger interactions can cause delays that
then easily propagate throughout the network creating an increased amount of delays.

By better understanding how these flows of transfer passengers can impact the schedule of the metro
network, measures can be taken to mitigate or even prevent disturbances and delays caused by these
transfer passenger flows. The impact of disturbances can for example be mitigated using real­time
rescheduling methods. These methods are used to reschedule the timetable up until the last sec­
ond and real time to cope with disturbances that happen in the network. For example, if a train gets
(slightly) delayed due to passenger holding the door, it will fall (slightly) behind schedule. Real­time
rescheduling methods are then used to adjust the timetable with this delay factored in. This is then
used to decide what the best strategy for this train and other trains around this train to recover from this
delay. Examples of real­time rescheduling methods include; increasing or decreasing driving speed,
short turning a train, skipping a stop or increasing or decreasing the dwell time (Altazin, Dauzère­Pérès,
Ramond, & Tréfond, 2020). These real­time rescheduling methods can be applied with different opti­
mization objectives inmind, for example; minimizing passenger waiting time, adherence to the timetable
(Hassannayebi, Zegordi, Yaghini, & Amin­Naseri, 2017), transfer synchronization control (Gavriilidou
& Cats, 2019), reducing delays or increase stability to increase capacity (Lüthi, 2009). Advice is then
given to the traffic controller and train driver in what way the driving strategy should be adjusted. Al­
though several successful experiments have been carried out with real­time rescheduling methods, the
number of practical applications remains limited (Altazin et al., 2020).

1.2. Research setup
By describing the purpose of this research and constructing themajor research question and its relevant
sub­questions, the problem statement addressed in the previous section will be made more concrete
in this section. This is done by first describing the goal of this research, followed by the formulation of
the main research question and supporting sub­questions.

1.2.1. Research goal
This study contributes to existing research by studying the impact of transfer passenger flows from a
lower frequency rail mode on the development of delays and headway deviations in an high frequency
metro network. The goal of this research can be seen twofold. The first goal is to quantify this effect.
With this quantification the aim is to identify circumstances under which these transfer passenger flows
can cause disturbances. Secondly, with this knowledge, there can be looked at how these disturbances
can be predicted and what measures can be taken to minimise these disturbances. This is done using
real time rescheduling methods.

1.2.2. Research questions
This research aims to combine three separate research fields that are closely related but are rarely
combined in one research; dwell time and vehicle bunching, the behaviour of (transfer) passengers
and real time traffic control strategies. The main goal of this research is to gain understanding into
the interaction between passenger demand on metro lines due to arrivals of transfer passengers at a
specific moment and the possibility that these passengers cause delays and headway deviations in this
metro network. With a better understanding of this interaction effect a methodology can be developed
for mitigating disturbances and delays caused by these transfer passengers. Based on these insights in
train dependent passenger demand, further developments can be made on the rescheduling strategies
developed by Pardini­Susacasa (2020). The main research question of this research is defined as
follows:
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What impact do transfer passenger flows from lower frequency railway transportation mode
have on disturbances in high frequency metro networks and which control and rescheduling
methods are recommended to minimise these disturbances?

To answer this main research question, several sub­questions need to be answered first. They are
formulated as follows:

1. Using smart card data, what correlations between transfer passengers from lower frequency rail
mode and disturbances in an higher frequency metro network can be found and how can this be
quantified?

2. What control and rescheduling strategies to minimise disturbances are currently used in railway
networks and what KPI’s are used to asses their performance?

3. Which control and reschedulingmethods can best be applied tominimize disturbances and delays
caused by transfer passenger flows?

4. What is the impact of a change in frequency on the train side on the impact of transfer passenger
flows?

The first sub­question aims to identify what correlation can be found between transfer passengers from
a lower frequency railway and disturbances in an high frequency metro network. More specifically a
quantification is sought for the impact of transfer passenger flows in terms of for example passenger
volume and vehicle occupation on the dwell time and thereby the schedule of the metro network. This
analysis is made based on available smart card data, from which transfer passengers can be identified
based on their check­in location.

The second sub­question aims to identify which rescheduling methods are currently already in use and
to what extent and under what circumstances these rescheduling methods are used. This is necessary
to identify which rescheduling measures would be most appropriate in case of an expected distur­
bance caused by transferring passengers at certain stations, or that it is necessary to develop new
rescheduling strategies. Also, to asses the performance rescheduling methods, the Key Performance
Indicators (KPI’s) that can measure the performance of the current situation and the proposed scenario
are identified.

With the results of the first and the second sub­question there can be identified what control and
rescheduling measures would be suitable in which situations. These rescheduling measures are used
in a simulation and optimization framework by Pardini­Susacasa (2020) to identify what combination of
rescheduling measures would benefit the passenger the most.

The last sub­question aims to determine to what extent the results of this research are still applicable
should the frequency of the lower frequency line change, or to what extent it is applicable in other
systems with different frequency combinations.

These sub­questions each cover the different parts of the research in order to be able to answer the
main research question. To answer these sub­questions and eventually answer the main research
question.

1.3. Research scope
This research focuses on finding real time rescheduling strategies by better understanding the dynamic
interaction between transfer passengers from a lower frequency transport mode to a higher frequency
transport mode. The main goal of better understanding this relation is to find a quantification for the
amount of transfer passengers and vehicle sizes on both the intercity and metro networks, and the
influence this has on metro vehicle dwell time. The research on this correlation focuses only on the
transfer from (lower frequency) train to (higher frequency) metro. The correlation the other way around
is not considered. Also specifically the correlation between train andmetro is considered, transfers from
and to other transportation modes are not considered. It is also assumed that the metro line generally
utilizes smaller vehicles than the train line.

In this research a case study is used. The results of this study are therefore mainly applicable to the
researched case study. There is discussed to what extend results are applicable to other transport
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networks, but as each transportation network in the world has its very own unique characteristics ap­
plication of the results to other case studies should be done with careful considerations.

This research is performed during a worldwide pandemic which drastically changed the behaviour of
people in public transport (Tirachini & Cats, 2020). However, data from a period before this pandemic
are used. Therefore its conclusions are relevant to ’normal’ travel circumstance. To what extend the
results will be applicable in the future will depend on how travel behaviour will develop in a post­Covid­
19 situation. The results of this change in behaviour will not be taken into account in this study.

1.4. Relevance
In this section the relevance of this research to as well society as to scientific knowledge is be dis­
cussed. This is done with the outcome of this thesis in mind: a quantified correlation between transfer
passengers and the dwell time of metro vehicles and recommended rescheduling measures for this
effect.

1.4.1. Societal relevance
Because metro systems all over the world are becoming more and more crowded it is essential to con­
tinuously search for ways to improve efficiency of these systems as expansion of railway infrastructure
is often very expensive, especially in an urban environment. With finding recommended rescheduling
strategies, the aim of these strategies is to shorten the travel time for passengers and to reduce the
number and duration of delays in the network. Reducing the duration and the frequency of delays
in the network results in two improvements: improved service reliability and the more efficient use of
resources in the network.

Service reliability is perceived as key quality indicator for public transportation (van Oort, 2014). When
being able to improve the reliability of the network, overall passenger satisfaction will increase and
there is a greater possibility of attracting additional passengers, also from other modes. As attracting
more passengers to an urban public transport network as opposed to people travelling to the urban
area with a car is often a more desirable situation, this research can contribute to societal benefits this
way.

Secondly when improving the overall reliability of the network, the network can also be used more effi­
ciently. Having fewer delays or when being better able to predict delays, the schedule can be tightened
and this can eventually result in a higher line capacity without having to expand the infrastructure.

1.4.2. Scientific relevance
There are several scientific research topics this study will touch upon. In this section is discussed briefly
what the contribution of this research to each field will be mentioned. A more in depth analysis of the
relevant study fields and available academic knowledge is discussed in section 2.

The first topic this research will touch upon is the modelling of transfer passengers. There are some
studies that already looked at transfer passengers in the context of different service frequencies, how­
ever what has not been researched yet is this correlation in the context the effect on delays and headway
deviations of the metro line. This also yields the second topic this research will touch upon: dwell time.
A lot of research has already been done into dwell time. There are many researches into the important
factors that can explain the variability in dwell time. The main contribution of this research in this field
lies in correlating peaks in passenger demand to dwell time variance, and dwell time variance to delays
further down the line.

The next field this research touches upon is rescheduling methods. Using an existing model of delay
propagation of the selected case study by Pardini­Susacasa (2020) at RoyalHaskoningDHV this re­
search will contribute to finding rescheduling strategies in the context of predicted peaks in passenger
demand.
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1.5. Report outline
The outline for the remainder of this thesis is presented in Figure 1.1. An explanation of the figures used
can be found at the bottom of this Figure. In chapter 2 a literature review is presented to get a clear view
of the existing knowledge and gain insight in the previous work this thesis builds on. In chapter 3 the
method for analysing the input data is described, as well as the method for obtaining the parameters
that are used as input for the framework described in chapter 4. This will be applied in a case study
and with this case study experiments will be performed, as presented in chapter 5. In this chapter also
the obtained results are analyzed. In the final chapter 6 the conclusions and recommendations are
presented.

Figure 1.1: Thesis outline





2
Literature Review

This research touches upon several relevant research fields. Considering the main research question
and looking at a transfer from a passenger perspective, relevant existing literature can be categorized
into five different categories. Considering a transfer from lower frequency rail mode to higher frequency
rail mode, a passenger will start the transfer process by alighting the heavy rail vehicle walking towards
the platform of the metro line. This yields the first two research topics: analysis of transfer passenger
flows and impact of difference in service frequency. Arriving at the platform of the metro line there
are multiple passengers arriving there at the same time trying to board the next metro vehicle with leads
to the next research topic: passenger demand and vehicle dwell time. This vehicle dwell time is an
important variable for the reliability of a metro line, yielding the next topic: vehicle bunching. Last this
study aims to study mitigation actions for possible disturbances, resulting in the last topic: real time
rescheduling methods. This research aims to combine knowledge these different research topics.
For each topic relevant literature is studied and used as input for this research.

2.1. Transfer passenger modelling
With the increasing availability of smart card data, it becomes easier to analyse the travel behaviour of
passengers throughout a public transport system. This also includes the choices people make when
it comes to transfers. One of the first researches investigating transfer journeys using smart card
data was performed by Hofmann and O’Mahony (2005). In this research an algorithm was developed
for identifying transfer journeys from a pool of single journeys, creating a rule based framework for
assigning transfer journeys. Since then a lot of research has been done in this area and additional
frameworks have been developed.

A main distinction can be made between models that use smart card data as input to model individ­
ual behaviour or models that use this data to model a macroscopic flow of passengers. For example
Kusakabe, Iryo, and Asakura (2010) use smart card data to predict which train a passenger is going
to board. Their method relies on GPS tracking of passengers or the weighing of trains assuming their
punctuality. Another recent application of smart card data to determine which train passengers took was
developed by Zhu, Koutsopoulos, and Wilson (2017). In this research smart card data was combined
with automatic vehicle location data to assign passengers to individual trains and this way calculate in­
dicators such as train loads and number of passengers that were denied boarding. However, this model
is only applicable for single lines and cannot be used to determine the routes for transfer passengers.
A framework in which there is accounted for passenger train assignment with possible transfers in the
network is presented by Hörcher, Graham, and Anderson (2017). In this paper an methodology using a
framework with probabilities is used to calculate passenger assignment characteristics using real time
vehicle data and passenger smart card data.

Besides train assignment models to describe the behaviour of transfer passengers in the network,
also a lot of research has been done into describing the behaviour of transfer passengers at transit
stations themselves. These pedestrian traffic assignment models are used to describe local travel ac­
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tivities, way finding and movements of passengers. These models can be categorised in macroscopic,
mesoscopic and microscopic. Macroscopic models consider pedestrians as a continuum, mesoscopic
models consider individual pedestrians but describe their movements in terms of macroscopic relation­
ships and microscopic models consider individual pedestrian movements (Hänseler, van den Heuvel,
Cats, Daamen, & Hoogendoorn, 2020).

These two research fields, train assignment modelling and pedestrian traffic assignment modelling
have been combined by Hänseler et al. (2020). A transit model is presented in which pedestrian move­
ments in stations and vehicle specific train ridership distributions are modelled based on automated fare
collection data and train tracking data. This research shows that it is only very recent that pedestrian
behaviour and vehicle ridership have been combined into one study and emphasises that research into
passenger and vehicle interactions is a promising research area. Suggested usage for their model in­
clude crowding estimation, transit optimization and disruption management, and can therefore provide
useful input for this research.

Another important factor in capturing the behaviour of (transfer) passengers are the different walking
speeds of passengers. A lot of factors can be of influence on the walking speed: demographic charac­
teristics such as age, gender or physical condition are of importance. Additionally, also environmental
aspects such as platform design, presence of stairs and crowding are important determinants of the
walking speed of a passenger (Bosina & Weidmann, 2017). For this research the most relevant aspect
is that an estimation of the distribution of walking speeds needs to be made in order to be able to de­
termine arrival of transfer passengers at the platform based on their smart card data. Leurent and Xie
(2017) developed a stochastic model to capture two major factors of in­station walking times; individual
speed and walking distance. With such a model passenger smart card data can be linked to individual
passengers and an estimation can be made on which passengers arrive at the platform at a certain
time and thereby construct a passenger arrival distribution and a crowding estimation at the platform.

What has not been researched yet are the previously mentioned factors in combination with the impact
of transferring passengers on stations, especially in the case of a difference in service frequency. As­
suming the availability of smart card data, an extensive analysis of behaviour of transfer passengers
can be performed and can be used to analyse passenger behaviour on the system, with routing choices
and passenger volumes being the most important factors. These factors are important variables to re­
search the impact of transfer passengers on the dwell time of metro vehicles, which is next step in the
transfer passenger journey.

2.2. Difference in service frequencies
An important factor in this research is the difference in service frequency between the metro line and
the intercity rail line. However, not a lot of literature is available on this topic. One of the researches
that has been performed in this area is by Guo, Bai, Hu, Zhuang, and Feng (2020). In this research
a mathematical optimization method was developed to minimize the waiting time of passengers at the
connecting station. Their optimization can provide useful input for this research considering the way
the timetable was optimized to minimise the passenger waiting time. However, as the interest of this
research lies more in the propagation of delays throughout the network and also consider passengers
downstream of the transfer station it fundamentally differs from the research by Guo et al. (2020).

Sun et al. (2014) researched a demand­driven timetable for metro services. They conclude that cur­
rent peak/off­peak based schedules may fail to meet the dynamic and temporal nature of passenger
demand. Using smart card data, they propose three optimization models to design demand driven
timetables, with different goals: optimal design, optimal operation and optimal peak/off­peak. Their
method is not specifically tailored to accommodate for transfer passenger arrivals, however as does
accommodate for the variance in passenger demand their optimization methods are an interesting input
for this research.

2.3. Dwell time
Dwell time in rail systems has been researched for many years. The dwell time of a (rail)vehicle includes
the time it takes to open the doors, exchange the passengers at the station and again close the door.
Already 1992 in research by Lin and Wilson (1992) a dwell time model was developed which could
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predict the dwell time of a light rail vehicle based on the number of passengers boarding and alighting
and the level of crowding on board.

Especially in high frequency rail systems, where train arrivals can occur up to every 2 or 3 minutes, the
dwell time of the vehicle becomes an important determinant for the capacity of the line (Harris, 2006).
In general railway operators use a fixed time in the schedule for vehicles to dwell at a station. However,
a fixed time is in reality often not the case. Especially in high frequency systems, a small deviation in
dwell time of several seconds can already significantly affect the operation of the line (Luangboriboon,
Seriani, & Fujiyama, 2020). Pardini­Susacasa (2020) also concluded that a lot of rescheduling models,
used for disruption management and to be explained further in section 2.4, are too theoretical because
they do not account for passenger interactions with the vehicle. This interaction can be seen twofold:
the time it takes for passengers to alight and board during the dwell time of the vehicle is not accounted
for in these models, but also the increased passenger demand at a station in case of a delayed vehicle,
even further increasing the dwell time and thereby the delay. Therefore it’s important to understand
what factors are of influence on the dwell time. Christoforou, Chandakas, and Kaparias (2020) did an
extensive analysis of factors that determine the dwell time of an urban light rail line in France. There
was found that, besides the expected indicators, the number of passengers that alights and boards the
vehicle and passenger volume on board the vehicle, the dwell time is significantly longer at stations
close to points of interest and at stations offering a lot of connections. This last factor indicates that
there is indeed a correlation between transfer passengers and the dwell time of a vehicle.

In Cats, West, and Eliasson (2016) a formula to calculate the dwell time of a metro vehicle is pre­
sented. It consists of the following components: passenger boarding flow, on­board flow and alighting
flow. This describes the passenger exchange part of the dwell time. Additionally the following factors
are of influence on the dwell time: technical features of the rolling stock, timetable, signaling, passen­
ger distribution over the platform, number of passengers carrying luggage and driver behaviour (Cornet
et al., 2019). All the components that make up the dwell time of a vehicle are depicted in Figure 2.1
Looking at the passenger exchange part of the dwell time, Puong, (2000) concludes that the number of
passengers boarding and alighting linearly increases the dwell time. However, the onboard crowding
level attributes to this dwell time on a nonlinear way. This was further researched by Luangboriboon
et al. (2020), who conclude that with increasing on board passenger density the boarding and alighting
rate also increases, until the onboard passenger density reaches 2.5­3 passengers per square meter.
After this point, there is no clear direction of this rate increasing or decreasing, indicating that addi­
tional crowding doesn’t necessarily lead to different boarding or alighting rates. The main important
determinant in the process is thus the volume of passengers boarding and alighting. The arrival of
transfer passenger flows can strongly influence this variable. Therefore these dwell time functions are
very relevant in researching the correlation between transfer passenger flows and the dwell time of a
vehicle.

Figure 2.1: Illustration of dwell time components (Pardini­Susacasa, 2020) (Cornet et al., 2019)

By being able to more accurately predict the demand for metro services from passengers and especially
transfer passengers and by being able to quantify the relation between these transfer passengers and
the dwell time of a vehicle, these dwell time can be predicted more accurately in advance and real time,
enabling options to apply real time rescheduling measures, prevent vehicle bunching and reduce the
number of disturbances and delays.
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2.4. Vehicle bunching
Guo et al. (2020) already researched how the timetable of a metro line can be optimized for passenger
demand from intercity railways using a mathematical optimization model. It was found that passenger
waiting time at the transfer station can be significantly reduced when taking as objective minimizing
passenger waiting time at connecting stations. It is also pointed out that there is indeed a significant
impact of these transfer passenger flows on the timetable of the metro line. However, in this paper the
impact this has is not quantified as such and the possibility of delay propagation throughout the rest
of the network is not considered, therefore also other possibilities to take into account this effect and
minimize its impact will be explored.

Railway timetables are constructed in such a way that when operated exactly as planned, no conflicts
arise. However, disturbances and even disruptions are always inevitable, causing deviations from the
timetables, delays and vehicle bunching. Pardini­Susacasa (2020) investigated the effect of passen­
ger demand, as being one of the important factors in passenger boarding and alighting rates, on the
development of disturbances and delays throughout the network. There is concluded that passenger
interaction with vehicles can have a significant impact on the development of disturbances throughout
the network by causing vehicle bunching. This bunching effect is illustrated in Figure 2.2. It occurs
when a vehicle, in the Figure vehicle B, gets delayed and has to pick up more passengers at the next
station, leading to a longer dwell time. This vehicle then gets even further delayed. The vehicle be­
hind, vehicle C in Figure 2.2, is relatively empty due to the delayed vehicle being close by. This vehicle
then has shorter dwell times due to fewer passengers having arrived in the meantime, causing these
vehicles to eventually drive in close proximity, ’bunching together’, creating an uneven headway. This
effect has been researched quite often in literature, especially for bus systems. However, practical
applications and live experiments for as well bus systems (Berrebi, Óg Crudden, & Watkins, 2018) as
rail systems (Altazin et al., 2020) remain limited.

Figure 2.2: Illustration of bunching in a rail bounded line (Pardini­Susacasa, 2020)

This vehicle bunching problem, has already been researched for a long time, especially for bus lines
(Fonzone, Schmöcker, & Liu, 2015). However, also other public transport modes have to deal with
this problem. The bunching problem occurs when a disruption of a vehicle causes a delay and starts
the negative feedback loop for accumulating passengers for the delayed vehicle, getting even more
delayed and closer to the vehicle behind, which is relatively empty. Bunching is not necessarily always
caused by a external delay, even an event as simple as a small peak or even dip in passenger demand
can start the bunching effect (Fonzone et al., 2015).

2.5. Rescheduling measures
To minimise the impact of such disturbances, minimise delays and to prevent vehicle bunching, last
minute rescheduling measures are used. There are a lot of measures that can be taken to reschedule
a train. Several rescheduling measures that are often used and researched in literature are: increase
the dwell time of a vehicle at a stop, increase or decrease vehicle speed between stations, dispatching
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a vehicle early, skipping a stop, change route, taking over another vehicle and short turning (Gkiotsalitis
& Cats, 2021) .

In the past years real time rescheduling methods received a lot of attention in operations research.
Fabian and Sánchez­Martínez (2017) found that to prevent bunching in railway lines, holding strategies
aiming to even out head ways between vehicles are more effective than aiming for schedule adherence.
However, achieving more even headways and thereby an increased service reliability not only requires
the implementation of control strategies to achieve this. Currently most public transport operators
contractually bound to on­time performance, with usually several ’measurement stops’ along the route.
With regularity based operations, these criteria disrupt the operations as the optimal regularity might
not be the same as being on­time (Cats, 2014). Its therefore important in this research to identify the
current policies and KPI’s in place in the case study that will be researched. In the long term cultural
shift towards regularity based operations is needed to enable public transport operators to adapt their
agreements with authorities and update their business model (Cats, 2014).

Cacchiani et al. (2014) categorised several papers in this field into the following different categories:
microscopic or macroscopic, disturbances and disruptions and focus on the trains or on the passengers.
In this research there will be focused on disturbances in microscopic simulations, as its expected that
transfer passenger flows will not cause disruptions but rather (small) disturbances. In order to be able
to take into account passenger interactions with the vehicles, a microscopic approach is needed. As
Pardini­Susacasa (2020) found that it is beneficial to optimize from a passenger objective, this also will
be the case in this research.

Although rescheduling methods have been researched fairly frequently in recent years, the number
of applications in real life still remains limited (Berrebi et al., 2018), (Cacchiani et al., 2014). Most
metro dispatchers presently take rescheduling decisions manually based on experience and profes­
sional judgment, due to the lack of computational optimization models (Yin, Tang, Yang, Gao, & Ran,
2016). Though the number of applications remains limited, there are recent examples of successful
implementations of real time rescheduling methods, for example in Paris (Altazin et al., 2020). With
increasing computational power, the use of real­time rescheduling models therefore also has much
more chance of succeeding in the future.

Another closely related field is the development of a framework to evaluate an metro timetable as a
whole. Jiang, Hsu, Zhang, and Zou (2016) developed a modeling and solution approach to evaluate a
public transport timetable based on big passenger data. Currently this method is only to evaluate the
timetable statically, however the suggestion is also made to further develop this method for usage with
the evaluation of actual operations, making it also an interesting application for real time rescheduling.

2.6. Scientific gap
In this section literature on research topics relevant to the journey of a passenger from a lower frequency
heavy rail transportation mode to an metro higher frequency transportation mode has been presented.
For each topic interesting findings relevant to this research were presented and several scientific gaps
were identified.

The first gap that is identified is the impact of transfer passenger flows, in case of a difference in service
frequency, on the development of delays and headway deviations in the higher frequency line. There
are a lot of studies that concern travel time reliability and also studies that look at the behaviour of
transfer passengers, however research into transfer passenger flows in the context of metro delays and
headway deviations has not, to the best of the authors knowledge, been carried out yet. This research
aims to fill this first scientific gap by analysing data of an high frequency metro line and connecting
lower frequency heavy rail line and finding and quantifying the impact of transfer passengers between
the two modes. The method for this analysis is further explained in 3.

With this improved knowledge this study aims to fill a second scientific gap: testing for rescheduling
strategies with predicted influence of transfer passenger flows. This research combines knowledge
on this field and model characteristics of a station on an high frequency metro line as well as a lower
frequency heavy rail line which can be used to find recommended real time rescheduling strategies to
minimise the impact of delays and headway diviations caused in the network by transfer passenger
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flows. For this an existing model is expanded, which is explained in 4.

In this study the aim is to make an unique combination of the three research topics discussed in this
section. To the best of the authors knowledge, there has not been any research in which knowledge
on transfer passengers flows, dwell time and rescheduling methods have been combined. It is useful
to combine this knowledge because from a the view of a transfer passenger journey and the factors
found in literature, logically it’s very likely that transfer passenger flows are of influence on peaks in
demand for metro vehicles, which then influences the dwell time of a vehicle, leading to unexpected
delays, headway deviations and possibly vehicle bunching.

With the possible rescheduling strategies found in this study the aim is eventually to increase the service
reliability and thereby also the efficiency of the system. With service reliability being one of the most
important level­of­service determinants for both public transport users as well as for attracting car users,
the are significant societal benefits (Cats, 2014).



3
Transfer Passenger Impact Analysis

The main research question of this research is defined as follows: What impact do transfer passenger
flows from lower frequency railway transportation mode have on disturbances in high frequency metro
networks and which control and rescheduling methods are recommended to minimise these distur­
bances? To find the answer to the main research question, first the four identified sub questions need
to be answered. The research setup and the characteristics of the system researched are discussed in
section 3.1. The first sub question is defined as follows: Using smart card data, what correlations be­
tween transfer passengers from a lower frequency rail mode and disturbances in an higher frequency
rail network can be found and how can this be quantified? In the remainder of this chapter focuses on
capturing the correlation between the arrival of transfer passengers from an intercity railway (hereafter
referred to as rail) network to a metro network and the the impact this has on the development of delays
and headway deviations in the metro network. This is done to quantify this correlation and determine
to what extent passenger demand and disturbances to the metro network can be predicted based on
rail arrivals to the transfer station. To determine what correlations are present and how they can be
quantified, a data set from a case study is needed. The correlation of main interest is the number of
transferring passengers from rail to metro and the demand, and thereby dwell time, for the next arriving
metro vehicle(s). To research this correlation, smart card data is analysed from a station that accom­
modates a rail ­ metro transfer. In this station the rail connection should provide a lower frequency
and higher capacity per vehicle than the metro, and a metro connection which should provide a higher
frequency and lower capacity per vehicle than the rail connection. To obtain such smart card data for
analysis, a case study with the specified characteristics is needed. In this study the metro network of
Rotterdam is used. This case study is further explained in 5.1.

In this chapter, the method for obtaining and analysing the data used to research this correlation is ex­
plained. All the data described in this section is obtained in cooperation with a metro network operator,
RET, and the national railway network operator NS. In section 3.2 the input data that is used and how
it is processed is discussed. In section 3.3 is explained how the correlation analysis is performed, and
what correlations were researched.

3.1. Problem Specification
In section 2.6 several scientific gaps that this research aims to fill are discussed. Based on these
scientific gaps a problem specification is given in this section. The first gap that is identified is the
impact of transfer passenger flows, in case of a difference in service frequency, on the reliability of the
higher frequency line. The expectation is that passengers arriving from a lower frequency train service
arrive in relatively large quantities, creating a higher demand for the next arriving metro vehicle, causing
a longer dwell time and possibly delays. However, to what extent are these transfer passenger flows a
contributing factor to an increase in dwell time and delay development? To quantify this a correlation
analysis is performed, with as input passenger smart card data and vehicle data, and a quantified
correlation between the arrival of transfer passengers and delays in the network as output. In this
research there is focused on a system in which the high frequency system is a metro network which

13
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runs with a frequency of 18 metros per hour per direction on alternating lines and is connected to a train
network which runs at a frequency of 8 trains per hour per direction on alternating lines, resulting in a
2.25 times higher frequency for the metro network than for the train network. For the analysis of transfer
passenger flows the analysis performed in one single station with a transfer possibility between the two
modes. There is only focused on the train to metro transfer, the other way around is not considered.

To assess the propagation of delays and vehicle bunching in the network, surrounding stations in the
network need to be considered as well. Because the busiest section of the line is serviced by multiple
lines, which then separate into different directions at certain stations, a decision is made to focus on
the part of the network where the different lines are running on the same infrastructure. The stations
that are covered on this part of the line will be considered, other stations disregarded. This is done
because in this part of the network the chance of bunching vehicles is the highest and the impact of
small delays is expected to be the largest.

For the next scientific gap, the testing of rescheduling methods with a modelling of transfer passenger
flows using the obtained parameters from the correlation analysis is performed. For this purpose a sim­
ulation model that takes into account passenger­vehicle interactions developed by Pardini­Susacasa
(2020) is used. This object oriented model simulates the metro network using data from the case study
metro network and historical passenger and vehicle realisation data. The goal of this model is to test a
set of rescheduling measures to see which combination would yield the most benefit for the passenger
when taking into account possible disturbances caused by transfer passenger flows.

In this model the parameters obtained from the correlation analysis are used as input to obtain dwell
time functions for each station simulated in the network, which are then used together with historical
passenger numbers representative for the morning peak to yield a correct representation of dwell times
at all stations. On the outcomes of this simulated real world model a rescheduling model is then applied
which reschedules the timetable for the benefit of the passenger. This is done over several iterations,
which results in an improved timetable in which the overall travel time of passengers is reduced. An
overview of the input and expected output of the correlation analysis and the rescheduling model is
presented in Figure 3.1. In this model the same selection of stations as for the correlation analysis
is used for the testing of rescheduling measures, however the simulation is performed for the entire
network. Metros will thus not be rescheduled outside the selected corridor, but will run their entire route
in the simulation. This way conclusions drawn on the focus part of this study also take into account the
remainder of the trip of a metro.

Figure 3.1: Input and Expected output of the correlation analyses and Rescheduling model

In this research the focus of determining the dwell time and delay development lies in the passenger
demand component. Therefore no other disruptions and disturbances are considered in this simula­
tion. This also includes peaks in demand on other stations than the transfer station: for the studied
transfer station a detailed historical arrival pattern is used to determine passengers arriving at the sta­
tion, for other stations simulated in the network an average number of arriving passengers per minute
is taken for the entire morning peak, resulting in an even arrival pattern of passengers at other stations,
but representative for the number of passengers for the respective station. Several experiments are
performed with this simulation model are performed to obtain recommended rescheduling methods to
deal with the peaks in passenger demand at the transfer station.
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There are many more factors that could contribute to the dwell time of a vehicle or to delay development
in the network. In Figure 3.2 an causal diagram is shown of what components can influence the dwell
time and development of delays in the network. The items inside the green line markedmodel boundary
are included in the considerations made in this study, the items outside the green box also can also
impact the dwell time and delay development, but are not considered in this study.

Figure 3.2: Input and Expected output of the correlation analyses and Rescheduling model

The modelling study thus makes use of historical data and optimizes the timetable in retrospect. Con­
clusions drawn from this model will point out what measures are best applicable in specific scenario’s,
but with the important assumption that the behaviour of passengers is already known upfront. There­
fore the model is not usable real­time. In the remainder of this Chapter the data used as input is further
explained as well as the method used to obtain the correlation parameters. In the next Chatper the
setup of the simulation study is further elaborated on.

3.2. Input data
To obtain insight in the expected correlation between transfer passenger flows and delays or headway
deviations to the next arriving metro vehicle(s), data is needed to quantify this. The input data that is
used to study this and how it’s processed is discussed in this section. For each data type is discussed
what parameters are obtained and how they are processed.

3.2.1. Passenger data
The first step is to discover the share of transfer passengers from the national rail network to the metro
in the total of boarding passengers at the station. Specifically what is important is to identify peaks
in demand that are caused by these transfer passengers from rail to metro. For this smart card data
(automatic fare collection data) is used from a system that requires a tap­in upon entering the station and
a tap­out at the destination station in both systems. Additionally when switching from public transport
carrier, i.e. switching from rail to metro or vice versa, a tap­in and tap­out are required. The total amount
of tap­ins in the station is needed and which of these tap­ins came from the national railway. These
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Table 3.1: Parameters obtained from the passenger data set

Parameter Definition
𝐷𝑎𝑡𝑒𝑡𝑎𝑝−𝑖𝑛 Date of the tap­in
𝑇𝑡𝑎𝑝−𝑖𝑛 Tap­in time for each tap­in HH:MM:SS
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑡𝑎𝑝−𝑖𝑛 Location of the tap­in at the station, train platform or general entrance
𝑃𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛 Passenger originating at the transfer station, 0 or 1.
𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 Passenger transferring from rail to metro at the transfer station, 0 or 1
𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 Sum of 𝑃𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙

tap­ins are anonymous timestamps of when a person tapped in at the station and contain the following
information: date of tap­in (𝐷𝑎𝑡𝑒𝑡𝑎𝑝−𝑖𝑛), time of tap­in (𝑇𝑡𝑎𝑝−𝑖𝑛) and tap­in location (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑡𝑎𝑝−𝑖𝑛) in
the station. Using the location of the tap­in at the station there can be derived if a metro passenger was
originating at the station (𝑃𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛) or that the passenger transferred from national rail (𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟), as
transfer passengers have to tap in on the train platform itself. The total number of passengers boarding
the metros (𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙) is thus made up of the sum of 𝑃𝑎𝑥𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟. The expectation is that
these possible effects have the strongest presence during peak hours. It is therefore important that the
obtained data contains sufficient peak hours for a valid analysis.

This data is processed in such a way that per minute the total number of tap­ins can be determined
and which of these tap­ins came from the national railway. The parameters in this passenger data set
and their definition can be found in Table 3.1.

3.2.2. Vehicle data
To be able to link data on transfer passengers to specific metro vehicles, vehicle data is needed. For
this automatic vehicle location (AVL) data is used for the same period of time as the tap­in data. This
data set includes the date of the departure (𝐷𝑎𝑡𝑒𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒), the scheduled and realised arrival times
(𝑆𝑇𝐴, 𝐴𝑇𝐴) and departure times (𝑆𝑇𝐷, 𝐴𝑇𝐷) of all metros at the researched transfer station and at all
other stations on the line operated. With this information the dwell time 𝑇𝑑𝑤𝑒𝑙𝑙 of each metro vehicle can
be calculated, as well as the arrival delay (𝑇𝑎𝑑𝑒𝑙𝑎𝑦), departure delay (𝑇𝑑𝑑𝑒𝑙𝑎𝑦) and deviation from the
planned headway (𝛿ℎ𝑒𝑎𝑑𝑤𝑎𝑦) of each metro vehicle at each station on the researched line. Additionally
this data set includes the passenger load of each vehicle between every station (𝑃𝑎𝑥𝐿𝑜𝑎𝑑) and the
number of passengers that boarded (𝑃𝑎𝑥𝑏) and alighted (𝑃𝑎𝑥𝑎) each vehicle. With this information
also the total number of passengers exchanged at a station can be easily calculated (𝑃𝑎𝑥𝑏𝑎). These
passenger load and exchange parameters are determined by metro operator, and they can therefore
differ from the 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 from the previous section. The reason for this is that they are based on not
only the tap­in data but a combination of tap­in data, tap­out data, AVL­data and metro occupation
information (RET, 2020). However, in these passenger loads per vehicles no distinction can be made
in whether the passengers that boarded a certain metro were transfer passengers. To do this the tap­in
data is thus used. However, this tap­in data is only used to indicate metro vehicles that were possibly
affected by transfer passenger flows and not to determine the passenger loads and exchange numbers,
as the estimation of the metro operator is based on more parameters than only tap­in data and can
thus be considered to be more accurate. A complete overview of all data that is obtained in the vehicle
data set can be found in 3.2.

Next to vehicle data from the metro network also vehicle data from the rail network is obtained. In this
data set the focus is on the arrivals of trains to the studied transfer station. This data set includes the
date of the arrival (𝐷𝑎𝑡𝑒𝑎𝑟𝑟𝑖𝑣𝑎𝑙), the scheduled and realised arrival times of each train at the transfer
station (𝑆𝑇𝐴, 𝐴𝑇𝐴), and the arrival delay (𝑇𝑎𝑑𝑒𝑙𝑎𝑦) of each train. An overview of the parameters in this
data set is given in Table 3.3.

3.2.3. Station characteristics
To estimate which tap­in corresponds to a vehicle that a passenger actually took, assumptions have
to be made on the distribution of the walking times from a heavy rail train to the platform of the metro
line. A distribution is determined based on the physical characteristics of the station together with the
general walking characteristics of passengers as found by Bosina and Weidmann (2017). The average
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Table 3.2: Data obtained from the metro vehicle data set (RET)

Parameter Definition
𝐷𝑎𝑡𝑒𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 Date of the departure
𝑆𝑇𝐷 Scheduled departure time
𝐴𝑇𝐷 Actual departure time
𝑆𝑇𝐴 Scheduled arrival time
𝐴𝑇𝐴 Actual arrival time
𝑇𝑑𝑤𝑒𝑙𝑙 Dwell time of the vehicle
𝑇𝑎𝑑𝑒𝑙𝑎𝑦 Arrival delay of the vehicle, |STA­ATA|, in seconds
𝑇𝑑𝑑𝑒𝑙𝑎𝑦 Departure delay of the vehicle, |STD­ATD|, in seconds
𝛿ℎ𝑒𝑎𝑑𝑤𝑎𝑦 Deviation from the planned headway at departure
𝑃𝑎𝑥𝐿𝑜𝑎𝑑 Number of passengers on board when the vehicle departs
𝑃𝑎𝑥𝑏 Number of passengers boarding the vehicle
𝑃𝑎𝑥𝑎 Number of passengers alighting the vehicle
𝑃𝑎𝑥𝑏𝑎 Total of passengers boarding and alighting the vehicle

Table 3.3: Parameters obtained from the rail vehicle data set (NS)

Parameter Definition
𝐷𝑎𝑡𝑒𝑎𝑟𝑟𝑖𝑣𝑎𝑙 Date of the departure
𝑆𝑇𝐴 Scheduled arrival time
𝐴𝑇𝐴 Actual arrival time
𝑇𝑎𝑑𝑒𝑙𝑎𝑦 Arrival delay of the vehicle, |STA­ATA|, in seconds

walking speeds that are used in this research can be found in Table 3.4. The average walking distance
is obtained by measuring the distance from tap­in location at the train platform to the metro platform.

Table 3.4: Reference walking speeds from (Bosina & Weidmann, 2017)

Facility Walking Speed (m/s)
Regular (Netherlands) 1.43
Stairs 0.76

3.3. Correlation analysis

Figure 3.3: Schematic overview of the
correlation analysis

With this input data the analysis of correlations is performed. To
find and quantify correlations between transfer passenger flows
and metro vehicles several correlation analysis are performed.
The goal is to find out what the impact of transfer passengers on
the reliability of metro vehicles is. To do this, several steps are
taken: first the correlation between peaks in passenger demand
and the arrival of transfer passengers is analysed, in order to
determine if peaks in passenger demand are indeed caused by
the arrival of transfer passengers, and to what extent. Then is
looked at to what extend this impacts the dwell time of the next
arriving metro vehicle, and finally the impact of a varying dwell
time on the headway and delays of metro vehicles is researched.
For each expected correlation is tested if and to what extend this
correlation is present. A schematic overview of the correlation
analysis can be found in Figure 3.3. Each correlation is expected
to have a positive correlation, i.e. an increase arriving transfer
passengers will lead to an increase in total passenger demand.
This is indicated with a ’+’ sign. For all correlations researched
in this section the statistical processing software SPSS is used.
Excel was used for pre­processing the data in the correct format.
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3.3.1. Passenger demand ­ Number of transfer passengers
To determine to what extend the variance in the total passenger demand for the next arriving metro
vehicle is explained by the number of transfer passengers, a linear regression analysis is performed.
The goal of this analysis is to obtain a predicting parameter to predict the total passenger demand for
the next metro(s) based on the number of transfer passengers. This is done using formula (3.1), in
which the total number of passengers (𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙) is predicted using the number of transfer passengers
(𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟), the correlation coefficient (𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙1 ), the corresponding constant (𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙0 ) and error
term 𝜖. The regression parameter 𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙1 is estimated using formula (3.2), in which every data point in
𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 and 𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is compared to its corresponding mean 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙) and 𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 and divided
by the number of cases 𝑛. The regression constant (3.3) is obtained using the obtained 𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙1 and
the means of 𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 and 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙). The 𝑅2 is calculated to determine to what extend the variance
in 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 is explained by 𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟. This is done using formula using formula (3.4), in which the
explained variance ( ̂𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙𝑖 − 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙)2 is divided by the unexplained variance ∑𝑛𝑖=1(𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙𝑖 −
𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙)2.

𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 = 𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙0 + 𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙1 𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝜖 (3.1)

𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙1 =
∑𝑛𝑖=1(𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙)(𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 − 𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟)/𝑛

∑𝑛𝑖=1(𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 − 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙)2/𝑛
(3.2)

𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙0 = 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 − 𝛽𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙1 𝑃𝑎𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 (3.3)

𝑅2𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙 =
∑𝑛𝑖=1( ̂𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙𝑖 − 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙)2

∑𝑛𝑖=1(𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙𝑖 − 𝑃𝑎𝑥𝑡𝑜𝑡𝑎𝑙)2
(3.4)

3.3.2. Passenger demand ­ Metro dwell time
When is determined to what extend peaks in passenger demand are caused by transfer passengers,
the next step in the process is to look at what impact this has on the dwell time of the next arriving
metro vehicle. As is already often determined in literature and explained in section 2.3, there is a
correlation between the number of boarding and alighting passengers, passenger load and dwell time.
However, the exact correlation between the number of boarding and alighting passengers and dwell
time depends on a lot of different factors such as the number of doors in the vehicle, the station layout
and demographics of the passengers. Therefore the correlation between passenger demand and the
dwell time of the metro vehicle is also researched for this case study. This is done once again using
a regression analysis, using the same formulas as in section 3.3.1. With formula (3.5) the goal is to
predict the dwell time (𝑇𝑑𝑤𝑒𝑙𝑙) of an metro vehicle based on the number of boarding (𝑃𝑎𝑥𝑏) and alighting
passengers (𝑃𝑎𝑥𝑎) and in the passenger load (𝑃𝑎𝑥𝑙). The formulas used to calculate the correlation
coefficients are presented in (3.6), (3.7) and the 𝑅2 is calculated in formula (3.8).

𝑇𝐷𝑤𝑒𝑙𝑙 = 𝛽𝑑𝑤𝑒𝑙𝑙𝑐 + 𝛽𝑏𝑎𝑑𝑤𝑒𝑙𝑙𝑃𝑎𝑥𝑏𝑎 + 𝜖 (3.5)

𝛽𝑑𝑤𝑒𝑙𝑙1 =
∑𝑛𝑖=1(𝑇𝑑𝑤𝑒𝑙𝑙 − 𝑇𝑑𝑤𝑒𝑙𝑙)(𝑃𝑎𝑥𝑏𝑎 − 𝑃𝑎𝑥𝑏𝑎)/𝑛

∑𝑛𝑖=1(𝑇𝑑𝑤𝑒𝑙𝑙 − 𝑃𝑎𝑥𝑏𝑎)2/𝑛
(3.6)

𝛽𝑑𝑤𝑒𝑙𝑙0 = 𝑇𝑑𝑤𝑒𝑙𝑙 − 𝛽𝑑𝑤𝑒𝑙𝑙1 𝑃𝑎𝑥𝑏𝑎 (3.7)

𝑅2𝑑𝑤𝑒𝑙𝑙 =
∑𝑛𝑖=1( ̂𝑇𝑑𝑤𝑒𝑙𝑙𝑖 − 𝑇𝑑𝑤𝑒𝑙𝑙)2

∑𝑛𝑖=1(𝑇𝑑𝑤𝑒𝑙𝑙𝑖 − 𝑇𝑑𝑤𝑒𝑙𝑙)2
(3.8)
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This regression analysis in (3.5) is in the first place done for all cases, but also several subsets of the
data are explored. This is done because when considering all cases in this regression analysis there
is a high chance of picking up a lot of ’noise’ in determining the correlation. For example metros that
arrive early to a station can have a longer dwell time to sync with the schedule again, or late at night
a passenger holding the door for another passenger causing also causing the metro to have a longer
dwell time. These metros are then registered with a longer dwell time which was not caused by the
number of passengers boarding and alighting. By exploring subsets of the data there is aimed to obtain
a more pure effect of passenger demand on the dwell time of a metro.

The first subset that is explored is, that as the expectation is that the impact of transfer passengers
is more strongly visible during morning peak hours, an analysis with only the morning peak hours in­
cluded. This includes metro vehicles that departed from Rotterdam Blaak between 6.00am ­ 10.00am.
The second subset that is explored is one with metros that are specifically affected by transfer pas­
senger flows. The goal of exploring this subset is to find out whether the impact of passenger demand
on the dwell time differs in case of metros affected by transfer passenger flows as opposed to other
metros. This is done for different threshold values that classify a train as ’affected by transfer passen­
gers’, ranging from 20 transfer passengers to up to more than 60. This classification is done based on
tap­in data, which can differ from the actual number of passengers boarding a metro. However, the
expectation is that, as most passengers will board the next arriving metro, that it is a good indicator.
The third subset that is explored is one which only includes metro vehicles that were already delayed
upon arrival in Rotterdam Blaak. This to exclude metro vehicles that arrived early and therefore had a
longer dwell time at the station. For all subsets parameters are obtained and compared to see which
yields the best results and the highest explanation 𝑅2.
Next to the regression analysis it is tested whether the dwell time of metro vehicles ’affected by transfer
passengers’ significantly differs from other departures of metro vehicles during the day, and to what
extend. This is also done for different threshold values of the number of transfer passengers and is
done through a Student’s T­test. In this Student’s T­test the null hypotheses (𝐻0) is that there is no
significant difference between the dwell time of an metro vehicle affected by transfer passengers and
other metro vehicles stopping at the transfer station. The alternative hypotheses (𝐻1) is that there is
a significant difference. The Student’s T­test is performed assuming in­dependant samples, because
the arrivals marked as ’effected by transfer passengers’ are different arriving metros then the other
metros, i.e. the same arrival is not measured twice. The formula for the Student’s T­test is presented
in figure (3.9), in which the test value 𝑡 is calculated by dividing the averages of the dwell time groups
compared, in this case denoted with 𝑇𝑑𝑤𝑒𝑙𝑙1 for the first group and 𝑇𝑑𝑤𝑒𝑙𝑙2 for the second group, by the
standard deviation of the difference 𝑠𝑇𝑑𝑤𝑒𝑙𝑙1−𝑇𝑑𝑤𝑒𝑙𝑙2 . This standard devation of the difference is calculated
in formula (3.10) using the estimators of the variance for both groups 𝑠𝑑𝑤𝑒𝑙𝑙1 and 𝑠𝑑𝑤𝑒𝑙𝑙2.

𝑡 = 𝑇𝑑𝑤𝑒𝑙𝑙1 − 𝑇𝑑𝑤𝑒𝑙𝑙2
𝑠𝑇𝑑𝑤𝑒𝑙𝑙1−𝑇𝑑𝑤𝑒𝑙𝑙2

(3.9)

𝑠𝑇𝑑𝑤𝑒𝑙𝑙1−𝑇𝑑𝑤𝑒𝑙𝑙2 = √
𝑠2𝑑𝑤𝑒𝑙𝑙1
𝑛𝑑𝑤𝑒𝑙𝑙1

+ 𝑠2𝑑𝑤𝑒𝑙𝑙2
𝑛𝑑𝑤𝑒𝑙𝑙2

(3.10)

3.3.3. Metro dwell time ­ Delays downstream
The third step in determining the correlation between transfer passenger flows and the reliability of
metro vehicles is to analyse the correlation between the dwell time of metro vehicles at the transfer
station and delays of that same metro vehicle downstream, either at the next station or further down
the line. The expectation is that vehicles which experience a longer dwell time at the transfer station
will eventually be more vulnerable to having delays further down the line. To see if this effect is also
present in the data, firstly the average delay of the metro line is plotted to see if there is an increase in
delay visible after the case station in which passengers transfer. Thereafter once again a regression
analysis is performed, in which the correlation between the dwell time and delay of the metro vehicle
is tested for several stations along the line. The goal is to predict the delay at station i (𝑇𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑑𝑒𝑙𝑎𝑦 ) that
will occur based on the dwell time (𝑇𝑑𝑤𝑒𝑙𝑙) of the vehicle at the transfer station. Several stations from
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the main transfer station until the final station of the line are used for this analysis, to also determine to
what extand delays propagate through the network. Once again this is done with the same formulas
as in the previous sections. The formula used for the prediction is presented in (3.11). The estimation
of the parameters of this formula is done in formulas (3.12), (3.13) and the correlation coefficient is
calculated in (3.18).

𝑇𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝐷𝑒𝑙𝑎𝑦 = 𝛽𝑑𝑒𝑙𝑎𝑦0 + 𝛽𝑑𝑒𝑙𝑎𝑦1 𝑇𝑑𝑤𝑒𝑙𝑙 + 𝜖 (3.11)

𝛽𝑑𝑒𝑙𝑎𝑦1 =
∑𝑛𝑖=1(𝑇

𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖
𝑑𝑒𝑙𝑎𝑦 − 𝑇𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑑𝑒𝑙𝑎𝑦 )(𝑇𝑑𝑤𝑒𝑙𝑙 − 𝑇𝑑𝑤𝑒𝑙𝑙)/𝑛
∑𝑛𝑖=1(𝑇

𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖
𝑑𝑒𝑙𝑎𝑦 − 𝑇𝑑𝑤𝑒𝑙𝑙)2/𝑛

(3.12)

𝛽𝑑𝑒𝑙𝑎𝑦0 = 𝑇𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑑𝑒𝑙𝑎𝑦 − 𝛽𝑑𝑒𝑙𝑎𝑦1 𝑇𝑑𝑤𝑒𝑙𝑙 (3.13)

𝑅2𝑑𝑒𝑙𝑎𝑦 =
∑𝑛𝑖=1(

̂𝑇𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑑𝑒𝑙𝑎𝑦𝑖 − 𝑇𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑑𝑒𝑙𝑎𝑦 )2

∑𝑛𝑖=1(𝑇
𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖
𝑑𝑒𝑙𝑎𝑦𝑖 − 𝑇𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑑𝑒𝑙𝑎𝑦 )2

(3.14)

An variant on this analyse that is also explored, is not to correlate the dwell time of the metro to the
delay, but rather compare the delay of a metro vehicle at the transfer station to the delay downstream.
In this case instead of 𝑇𝑑𝑤𝑒𝑙𝑙 the delay at the transfer station 𝑇𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑑𝑒𝑙𝑎𝑦 is used as predictor. This
analysis is done to determine to what extent vehicle already delayed at the transfer station is more
likely to suffer from an (increased) delay further down the line.

Additional to only having the dwell time at the transfer station as predicting variable for the delays
downstream, there is also looked at how the dwell time relates to other factors that can contribute to a
possible delay of the vehicle. The factors that are also considered and added to the correlation analysis
are:

• Driving time between stations

• Passenger volume boarding and alighting at the station on which the delay analysis is performed

• Crowding in the vehicle

3.3.4. Metro dwell time ­ Metro headway
Finally the last step of this correlation analysis is to test to what extent transfer passenger flows impact
the headway of the metro line. The goal of this analysis is to determine to what extent the dwell time
of a metro headway can be used to predict deviations in headway further down the line. Deviation
from headway is measured in deviation from the planned headway and not necessarily towards an
even headway. For headway deviation there is also first looked at several stations on the line and the
average headway deviation a metro has. The next step is to once again perform a regression analysis
between the dwell time (𝑇𝑑𝑤𝑒𝑙𝑙) and the deviation a metro has from the scheduled headway (𝛿ℎ𝑤). The
same regression analysis as in the previous sections is used. The formula for this regression analysis
is given in (3.15). The formulas for the parameter estimation are presented in (3.16) and (3.17). To
what extent the deviation in headway can be predicted by the dwell time is determined by calculating
the 𝑅2ℎ𝑤 in (3.18). This is done for several ’measure points’, in the form of stations further down the line,
as well as an averaged headway deviation for the remainder of the journey, from the transfer station to
the end of the line, correlated to the dwell time this vehicle has at the station connecting to the national
railway network.

𝛿ℎ𝑤 = 𝛽ℎ𝑤0 + 𝛽ℎ𝑤1 𝑇𝑑𝑤𝑒𝑙𝑙 + 𝜖 (3.15)
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𝛽ℎ𝑤1 =
∑𝑛𝑖=1(𝛿ℎ𝑤 − 𝛿ℎ𝑤)(𝑇𝑑𝑤𝑒𝑙𝑙 − 𝑇𝑑𝑤𝑒𝑙𝑙)/𝑛

∑𝑛𝑖=1(𝛿ℎ𝑤 − 𝑇𝑑𝑤𝑒𝑙𝑙)2/𝑛
(3.16)

𝛽ℎ𝑤0 = 𝛿ℎ𝑤 − 𝛽ℎ𝑤1 𝑇𝑑𝑤𝑒𝑙𝑙 (3.17)

𝑅2ℎ𝑤 =
∑𝑛𝑖=1( ̂𝛿ℎ𝑤𝑖 − 𝛿ℎ𝑤)2

∑𝑛𝑖=1(𝛿ℎ𝑤𝑖 − 𝛿ℎ𝑤)2
(3.18)

3.4. Station Specific Parameters
The correlation analyses described in the previous sections only concern the correlations at the re­
searched transfer station. To accurately model the stations around the researched transfer station and
to get an accurate picture of delay development over the line, for each station station specific parame­
ters are needed. For each station the dwell time of a specific metro vehicle should be calculated based
on the number of boarding and alighting passengers and the passenger load on board of a vehicle.
For these calculations thus the following parameters are needed: the estimated passenger demand at
a station and dwell time parameters for each station.

3.4.1. Estimated Passenger Demand
As described in section 3.2 for the researched transfer station detailed check­in information is avail­
able and a very detailed passenger arrival distribution can be constructed. This is also necessary to
accurately mimic train arrivals to the station. For the researched transfer station a detailed arrival dis­
tribution with number of arriving passengers per minute is made based on the check­in data for this
station. However, for the other stations in the network this detailed check­in information is not available
for this research. Therefore the average number of arriving passengers during morning­peak is calcu­
lated based on the number of boarding passengers at each station obtained from the vehicle data. To
obtain the average number of passengers arriving at a station per minute, the number of boarding pas­
sengers in the busiest section of the morning rush hour, in the Netherlands considered to be between
7.30am and 8.30am (NS, 2017), is used.

The next step is then to determine the destination of these passengers. This is done based on the
destination split as obtained by Pardini­Susacasa (2020). However, as this destination split is based
on data from 2018, this destination split will be update with 2019 data based on the number of alighting
passengers per station. This is done by calculating the share of alighting passengers for each station
and in this way determine the split of passengers based on the split of alighting passengers combined
with the historical destination split to obtain an updated destination split per station.

3.4.2. Dwell times
With the passenger numbers per station in place the next step is to obtain correct dwell time parameters
for each station. For this an approach adapted from Pardini­Susacasa (2020) is used. The dwell time
of a vehicle is dependant on multiple factors, as described in section 2.3. From this section can be
concluded that the factors that are important in estimating the dwell time of a vehicle are: minimum
dwell time of a vehicle based on technical factors (opening and closing of the doors and the minimal
passenger exchange time), additional time for each additional boarding or alighting passenger and
the speed of this passenger exchange based on the crowding level of the vehicle. From the dataset
all these variables can be obtained. For each station the following parameters will be obtained using
a regression analysis: A dwell time constant (the minimal dwell time of a vehicle), a factor for each
boarding and alighting passenger and a factor for the load of a metro vehicle. The formula to calculate
the dwell time based on these parameters is presented in formula 3.19.

𝑇𝐷𝑤𝑒𝑙𝑙 = 𝛽𝑑𝑤𝑒𝑙𝑙𝑐 + 𝛽𝑑𝑤𝑒𝑙𝑙𝑏 𝑃𝑎𝑥𝑏 + 𝛽𝑑𝑤𝑒𝑙𝑙𝑎 𝑃𝑎𝑥𝑎 + 𝛽𝑑𝑤𝑒𝑙𝑙𝑙 𝑃𝑎𝑥𝑙 + 𝜖 (3.19)

With the quantification’s obtained with this correlation analysis, the next step of this research is to
update an existing simulation framework with these parameters to get an accurate simulation of these
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effects, enabling to test rescheduling measures for different scenarios in the context of peak demands
caused by transfer passengers.



4
Model Development and Rescheduling

Methods

To answer the remaining research questions, an existing simulation optimization framework is used
in which parts of a metro network are modelled with a module which accounts for passenger vehi­
cle interactions during operation. This framework is updated with the quantified correlation between
transfer passengers from rail and the reliability of the metro network from chapter 3. With this updated
framework rescheduling measures can be tested to cope with these transfer passenger flows. The sim­
ulation optimization framework that is used is developed by Pardini­Susacasa (2020). To understand
how the framework developed by Pardini­Susacasa (2020) can be adapted for usage in this research,
the basis of the framework developed in her research is explained first in section 4.1. In section 4.2 is
explained what adaptations to this existing framework are made for usage in this research. In section
4.3 KPI’s for the model are defined and in this section is explained how the verification of the model
is performed. Finally in section 4.4 the scenarios that are planned to be ran with the model are ex­
plained an there is concluded how this framework will be used in this research. The explanation of this
framework used is a brief recap of the framework. More information and underlying assumptions can
be found in Pardini­Susacasa (2020).

4.1. SimulationBased TrafficManagement forMetroNetworks (SBTM­
MN) framework

The findings from the previous chapter, chapter 3, are used to update the Simulation­Based Traffic
Management for Metro Networks (SBTM­MN) developed by Pardini­Susacasa (2020). To understand
how this is done and what results can be obtained by adapting this framework, first the basics of this
framework are explained. The SBTM­MN framework is depicted in Figure 4.1 and is used to simulate
a metro network with the goal to reduce the impact of disturbances in the network while accounting
for the dynamic impact of passenger demand on the operation of metros. The framework consists of
a Transport Simulation Model (TSM), Train Rescheduling Model (TRM), and a Transport Simulation
Model of the Real World (TSM­RW). The SBTM­MN uses metro lines D and E of the metronetwork of
Rotterdam as a case study for its simulation.

A simulation iteration is started with the TSM­RW which simulates the metro network for a given time
horizon with Real­World data. The TSM­RW then feeds information such as train and station occupation
and realised train events to the TSM. The TSM predicts passenger demand and distribution over the
network and simulates train movements for a given time horizon. This is then used as input for the
TRM. The TRM interacts iteratively with the TSM to reschedule the timetable for the benefit of the
passengers. The TRM computes a rescheduled timetable for the given input of passenger demand
and aims to minimize passenger journey times. It comes up with a tentative solution that is evaluated
throughout a run in the simulation and is considered to be a linear programming problem (Pardini­
Susacasa, 2020). This process is performed iteratively until the timetable no longer improves or starts

23
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Figure 4.1: SBTM­MN Framework (Pardini­Susacasa, 2020)

to deteriorate. The best performing solution is then selected. In the next sections there is further
elaborated on the functioning of each model element.

4.1.1. Transport Simulation Model of the Real World (TSM­RW)
The first part of the framework is the Transport Simulation Model of the Real World (TSM­RW). The
TSM­RW simulates real world operations such as train movements, passenger rides and disturbances
based on the actual conditions in the network. The TSM­RW triggers the SBTM­MN on different points
in time and feeds the SBTM­MN with data from the simulation, such as realised events and occupation
of train and stations.

Where the TSM works with obtained arrival rates which can be altered for different scenario runs, the
TSM­RW works with actual historical smart card data. The TSM­RW thus aims to mimic the actual situ­
ation in the network as realistically as possible, whereas the TSM is used to test for different scenarios.

4.1.2. Transport Simulation Model (TSM)
The TSM consists of a train module and a passenger module. The train module is simulated in Open­
Track, a railway simulation tool developed by Hürlimann (2002) and is able to simulate different types
of railway networks and run tests under different circumstances and with different parameters, enabling
the testing of different scenarios and rescheduling measures. An example of the OpenTrack environ­
ment is depicted in Figure 4.2. The passenger module is used to model the interaction of passengers
with the vehicle, which is not accounted for in OpenTrack. This passenger module estimates passen­
ger demand based on station specific arrival rates and a destination split derived from historical data
as well as real­time data from the modelled real world, which is provided by the TSM­RW explained
in section 4.1.1. The station specific arrival rates are obtained through boarding passenger numbers
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for each station, and the destination split is based on historical chipcard data combined with alighting
passenger numbers. The passenger module computes boarding and alighting rates for passengers at
each stop, as well as the train load after departure, and keeps track of passenger movements. Each
time a train arrival occurs in OpenTrack the passenger module is notified. The passenger module then
calculates the dwell time based on the obtained passenger numbers and calculates the departure time
of the train, and notifies the train module when a metro can depart again based on the calculated dwell
time. This process is repeated until the section of the timetable that has to be optimized is simulated
in the TSM. Once this process is completed the results are exported to the TRM.

Figure 4.2: OpenTrack environment

4.1.3. Train Rescheduling Model (TRM)
There are several measures that can be taken to reschedule the timetable. The rescheduling measures
that are incorporated in the SBTM­MN are the following:

• Increasing the dwell time of a train at the station

• Increasing or decreasing the speed of a train in a segment between two stations

• Dispatching a vehicle earlier or later than scheduled

Mathematical formulation
Timetable rescheduling in for railway networks is typically a multi­objective problem (Binder, Maknoon,
& Bierlaire, 2016). The objective function of the TRM aims to minimize the waiting time for all pas­
sengers (𝑊𝑡), the in vehicle time of all passengers (𝐼𝑣𝑡) , the deviation from the departure times of all
metros at all stations (𝑌𝑠,𝑚) and the deviation of arrival time of metro vehicles at the terminal (𝑋𝑚). The
weights that can be adjusted are to minimize for: passenger waiting time (𝛽𝑤), minimize passenger
in­vehicle time (𝛽𝑖), the total deviation from the timetable (𝛽𝑎) and to delays at the terminal station (𝛽𝑡).
All these factors are weighted accordingly to stress the importance of specific terms. These weights
can be changed to tweak the objective, as they weight the different objectives in the objective function.
In Table 4.1 all the parameters, variables and sets used in the TRM are summarized.

The mathematical formulation of the TRM is defined as follows:

Objective function (Pardini­Susacasa, 2020):

𝑚𝑖𝑛 𝛽𝑤 ∗ 𝑊𝑡 + 𝛽𝑖 ∗ 𝐼𝑣𝑡 + 𝛽𝑎 ∗ ∑
𝑚∈𝑀

∑
𝑠∈𝑆𝑚

𝑌𝑠,𝑚 + 𝛽𝑡 ∗ ∑
𝑚∈𝑀

𝑋𝑚 (4.1)

Subject to (Pardini­Susacasa, 2020):

𝑡𝑑𝑒𝑝𝑠,𝑚 − 𝑡𝑎𝑟𝑟𝑠,𝑚 ≥ 𝑒𝑚𝑖𝑛𝑠 ∀𝑠 ∈ 𝑆𝑚 , 𝑚 ∈ 𝑀 (4.2)
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𝑡𝑎𝑟𝑟𝑠+1,𝑚 − 𝑡𝑑𝑒𝑝𝑠,𝑚 ≥ 𝑞𝑚𝑖𝑛𝑠,𝑠+1 ∀𝑠 ∈ 𝑆𝑚 , 𝑚 ∈ 𝑀 (4.3)

𝑡𝑑𝑒𝑝𝑠,𝑚+1 − 𝑡𝑎𝑟𝑟𝑠,𝑚 ≥ ℎ𝑜𝑢𝑡𝑠 ∀𝑚 ∈ 𝑀−,𝑠 , 𝑠 ∈ 𝑆 (4.4)

𝑡𝑑𝑒𝑝𝑠,𝑚+1 − 𝑡𝑎𝑟𝑟𝑠,𝑚 ≥ ℎ𝑖𝑛𝑠 ∀𝑚 ∈ 𝑀+,𝑠 , 𝑠 ∈ 𝑆 (4.5)

𝑡𝑑𝑒𝑝𝑠,𝑛 − 𝑡𝑎𝑟𝑟𝑠,𝑚 ≥ 𝑐𝑚𝑖𝑛𝑚,𝑛,𝑠 ∀𝑚, 𝑛, 𝑠 ∈ 𝑉 (4.6)

𝑡𝑎𝑟𝑟𝑙,𝑚 − 𝑡𝑎𝑟𝑟𝑠𝑚 ≤ 𝑥𝑚 ∀𝑚 ∈ 𝑀 (4.7)

𝑡𝑎𝑟𝑟𝑠𝑚 − 𝑡𝑎𝑟𝑟𝑙,𝑚 ≤ 𝑥𝑚 ∀𝑚 ∈ 𝑀 (4.8)

𝑡𝑑𝑒𝑝𝑠𝑠,𝑚 − 𝑡𝑑𝑒𝑝𝑠,𝑚 ≤ 𝑌𝑠,𝑚 ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆𝑚 (4.9)

𝑡𝑑𝑒𝑝𝑠,𝑚 − 𝑡𝑑𝑒𝑝𝑠𝑠,𝑚 ≤ 𝑌𝑠,𝑚 ∀𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆𝑚 (4.10)

𝑡𝑑𝑒𝑝𝑠,𝑚 − 𝑡𝑑𝑒𝑝𝑜𝑠,𝑚 ≤ 𝑢 ∀𝑆 ∈ 𝑆,𝑚 ∈ 𝑀 (4.11)

𝑡𝑑𝑒𝑝𝑜𝑠,𝑚 − 𝑡𝑑𝑒𝑝𝑠,𝑚 ≤ 𝑢 ∀𝑆 ∈ 𝑆,𝑚 ∈ 𝑀 (4.12)

In which Formula 4.1 is the objective function. This objective function minimizes the weighted waiting
time for all passengers (𝑊𝑡), In­vehicle time for all passengers (𝐼𝑣𝑡), Deviation from departure time at
all stations (𝑌𝑠,𝑚) and Deviation from schedule at the terminal station (𝑋𝑚). The corresponding weights
are represented by their corresponding 𝛽.
The waiting and in­vehicle time is calculated using passenger data from the TSM. The waiting time can
be calculated as the average number of passengers over time waiting at a station, multiplied by the
time elapsed between arrivals. The waiting time is calculated using Formula 4.13 (Pardini­Susacasa,
2020).

𝑊𝑡 =∑
𝑠∈𝑆
((𝑡𝑎𝑟𝑟𝑠,0 − 𝑡0) ∗

(𝑤𝑠,0 + 𝑤̂𝑠)
2 ) +∑

𝑠∈𝑆
∑
𝑚∈𝑀𝑠

((𝑡𝑎𝑟𝑟𝑠,𝑚 − 𝑡𝑎𝑟𝑟𝑠,𝑚−1 ∗
(𝑤𝑠,𝑚 + 𝑟𝑠,𝑚−1)

2 ) (4.13)

Also the In Vehicle Time is calculated using data from the TRM. Using the capacity of a metro vehicle,
with the load for each metro there can be determined whether a passenger is standing or not. Assuming
that a passenger perceives in­vehcile time more negative when standing, the in­vehicle time can be
calculated using Formula 4.14 (Pardini­Susacasa, 2020).

𝐼𝑣𝑡 = ∑
𝑚∈𝑀

∑𝑠 ∈ 𝑆𝑚(𝑙𝑠𝑖𝑡𝑠,𝑚 ∗ 𝛾𝑠𝑖𝑡 + 𝑙𝑠𝑡𝑎𝑛𝑑𝑠,𝑚 ∗ 𝛾𝑠𝑡𝑎𝑛𝑑) ∗ (𝑡𝑎𝑟𝑟𝑠+1,𝑚 − 𝑡𝑎𝑟𝑟𝑠,𝑚 ) (4.14)

The objective function is subject to the following constraints: constraint 4.2 ensures that the time spent
by train at a station should be greater than or equal to the minimum dwell time. Constraint 4.3 ensures
that the travel time between two stations cannot be smaller than the minimum driving time, while con­
straints 4.4 and 4.5 ensure that the headway between two trains cannot be smaller than the minimum
safety headway. Constraint 4.6 is used for the minimum connection time between two consecutive
train services, service can only depart if inbound train has arrived. Constraints 4.7, 4.8, 4.9 and 4.10
are used for the linearization of schedule adherence term in objective function. Finally constraints 4.11
and 4.12 ensure a limitation of the step size between the current and previous iteration.

From the results of the research performed by Pardini­Susacasa (2020) can be concluded that there
is a significant difference in the development of delays when considering the modelled passenger­train
interactions. Therefore this model is very well suited to analyse the effect of transfer passenger flows,
as this is a passenger­train interaction effect, while not neglecting other passenger train effects on other
parts of the line as well. However, to be able to research the effect of transfer passenger flows, some
required adaptations need to be performed, which are explained in section 4.2. However, to get a clear
insight into what possibilities there are to adapt and extent the framework, first the assumptions and
limitations of the model are discussed in the next section.
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Table 4.1: Variables, sets and parameters of the TRM (Pardini­Susacasa, 2020)

Parameter Explanation
Indices and Sets
𝑆 Set of stations in the network
𝑠 Current station in set stations s ∈ S
𝑀 Set of vehicles, with 𝑀+ for inbound trains and 𝑀− for outbound trains
𝑚 Single metro in set of metros m ∈ M
𝑆𝑚 Set of stations to be served by metro m
𝑀𝑠 Set of metros that serve station s
𝑉 Set of trains pairs m,n that have a connection at station s
Decision Variables
𝑡𝑎𝑟𝑟𝑠,𝑚 Time of arrival of vehicle m at station s
𝑡𝑑𝑒𝑝𝑠,𝑚 Time of departure of vehicle m from station s
𝑋𝑚 Extra variable to linearize absolute deviations from scheduled arrivals
at terminal stations
Parameters obtained from the simulation
𝑙𝑠,𝑚 Passenger occupation in vehicle m at the moment of departure from station s
𝑟𝑠,𝑚 Passengers left behind by vehiclem at station s
𝑤𝑠,𝑚 Passengers waiting at station s when vehicle m arrives
𝑤𝑠 Passengers waiting at a station s at the time in which the optimization is triggered
𝑡0 Time in which the optimization is triggered

𝑒𝑚𝑖𝑛𝑠
Minimal dwell time at station s. This is the maximumbetween the originally scheduled
dwell time and the time needed for passenger exchange in the last iteration.

𝑡𝑑𝑒𝑝𝑜𝑠,𝑚 Realised departure time of trainm from station s in the last simulation
𝑡𝑎𝑟𝑟𝑠𝑚 Originally scheduled time of arrival of trainm at its destination station
𝑡𝑑𝑒𝑝𝑠𝑠,𝑚 Originally scheduled time of departure of trainm from station s
General Parameters
𝛾𝑠𝑖𝑡 Crowding multiplier for sitting passengers
𝛾𝑠𝑡𝑎𝑛𝑑 Crowding multiplier for standing passengers
𝛽𝑤 Cost coefficientmultiplier for waiting time
𝛽𝑖 Cost coefficientmultiplier for in vehicle time
𝛽𝑜 Cost coefficientmultiplier for schedule deviation at the terminal station
𝑞𝑚𝑖𝑛𝑠,ℎ Minimal running time for the stretch between two consecutive stations s and h
ℎ𝑜𝑢𝑡𝑠 Required headway between two consecutive outbound trains at station s
ℎ𝑖𝑛𝑠 Required headway between two consecutive inbound trains at station s
𝑢 Allowed margin of difference between iterations
𝑘𝑚 Sitting capacity of train m
𝑐𝑚𝑖𝑛𝑚,𝑛,𝑠 Minimal connection time between trainsm and n at station s

4.1.4. Assumptions and Limitations
There are several assumptions and limitations in the presented SBTM­MN framework that should be
considered when using it for simulations. For each assumption or limitation there is also explained
what impact this can have on the results obtained from this model.

• It is assumed that an arriving passenger at the platform boards the next possible metro vehicle
towards its destination. Passenger numbers of lines that are not considered in this research are
added as boarding and alighting passengers at their corresponding transfer station. No conclu­
sions can thus be drawn on the impact for transfer passengers on parts of the metro network that
are not modelled.

• Only passengers that are already at the platform once the metro arrives are considered to be
able to board said metro. Passengers arriving while the metro is still at the platform are assumed
not to be able to board that metro, but will rather board the next metro. This is an important
consideration when working with peak loads in the system and can deviate from reality when it is
the case that a lot of newly arriving passengers are aiming to board a metro that is already at the
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platform.

• No maximum vehicle capacity included in the model. A careful consideration is made to what
extent this results in problems when interpreting the results of the model. The most important
consideration is when applied to the case study: how often does it occur that the maximum
vehicle capacity is exceeded in practice? From the data set there can be concluded that this is
the case for 0.01% of the cases, which means it thus doesn’t form a big problem. However, there
are also other considerations to be taken into account: when determining the type of experiments
to be carried out there should be taken into account that when working with peak demands there
should be looked out for exceeding the maximum capacity of the vehicle. Would this occur too
often, this might affect the reliability of the results of the experiments carried out. What impact
this consideration has on the case study of this research, is explained in section 5.1.

• The TSM uses single arrival rates to estimate passenger demands. These arrival rates are only
applicable to a certain time of day, as arrival rates of passengers change over the course of the
day. Therefore the TSM can only be ran for a very specific time frame.

4.2. Framework adaptations and extensions
In this section the adaptations extensions that aremade on the existing framework are discussed. There
are several adaptations to the framework considered, not all of the extensions that are discussed in this
section are eventually implemented. For each consideration an explanation is given why an extension
is made or not. For the parts that are extended there is explained for each part what is added and how
this is done.

4.2.1. On TSM­RW
As explained currently passenger arrivals are simulated using passenger chipcard data. This already
yields a pretty accurate picture of passenger arrivals throughout the day and peak demand is already
accounted for in the model. The TSM­RW is for this research updated with chipcard data from the
relevant stations for this research.

4.2.2. On TSM
The passenger module is updated with parameters found from the correlation analysis in chapter 3.
This is accounted for in general in the TSW­RW because of the usage of smart card data, but is not
accounted for in the TSMwhich uses a single average of arriving passengers per minute for the morning
peak. Additionally the case study used in the research by Pardini­Susacasa (2020) considers lines D
and E of the metro network of Rotterdam which, apart from Rotterdam Centraal, doesn’t contain major
intermediate transfer stations to the national train network. Therefore in this research there is looked at
lines A, B and C which do contain intermediate transfer stations to the national train network. The TSM
thus is also adapted to correctly work with these lines, and all the station specific parameters for the
stations one line A, B andC are added to the TSM. Further explanation on the case study can be found in
section 5.1. The aim of this research is to contribute to the framework with the ability to link passengers
to these train arrivals and reschedule for the impact of a train arrival and the transfer passenger flow
this will create. For this goal impact parameters of transfer passenger flows were obtained in chapter 3.
With these parameters the flow of arriving passengers can be modelled more accurately and can also
be coupled to train arrivals in the network. Looking at the framework, specifically the demand profiles
and estimated demand parameters that provide the input to the passenger module of the TSM are
updated. Additionally for the researched transfer station a detailed arrival rate per minute is obtained
to be able to model the flow of arriving transfer passengers with high accuracy.

Also adaptations to the train module of the TSM are made: these are adaptations to the simulation
model in OpenTrack to ensure that the part of the network that is studied in this research correctly works
with the passenger module. The part of the network that was already modelled with the passenger
module is the part of metro line E from Slinge to Rotterdam Centraal (Pardini­Susacasa, 2020). In this
research there is made use of a different metro line, explained in section 5.1. No adaptations are made
to the train model and the way trains are simulated in the network for this research.
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4.2.3. On TRM
As the TSM, the TRM is also adapted to work with the metro lines that this study uses. Because the
focus of this study lies in the busiest sections of the lines, further explained in section 5.1, the TRM
is adapted in such a way that not the entire line is rescheduled, but that rescheduling measures are
only applicable to the section of the line where all metro lines are running over the same infrastructure,
the outer branches of the metro network are excluded. This is done to limit the ’noise’ generated by
the model and allows for a more detailed study on the section of the line where the transfer station of
interest lies in. There are additional possibilities on top of the existing rescheduling measures in the
model, that are not yet incorporated in the model, as explained in section 2.4. There are currently 4
rescheduling measures incorporated in the TRM as explained in section 4.1.3. In this research the
same rescheduling measures are also applied. However, there are more rescheduling measures that
could be applicable. Rescheduling measures that are not incorporated in the framework include: Stop
skipping, changing the route of the vehicle, overtaking another vehicle, rolling stock reservation and
short turning. For this study no additional rescheduling measures are added to the model, for some
rescheduling measures a consideration is given below.

Changing route and Overtaking
Another rescheduling measure that is possible is to change the route of a metro or let a metro take
over another metro. However, considering the metro network of the case study, changing the route of
vehicle is possible to a very limited extent and overtaking another vehicle is also very difficult and not
very relevant considering the metro infrastructure. Therefore this will not be implemented as a possible
rescheduling measure in the model.

Rolling stock reservation
Another rescheduling measure that could be used is rolling stock reservation. With this measure a part
of the metro vehicle would be closed to passengers up until a certain stop, for example the stop in
which the peak demand would occur. The idea is that passengers can easily enter the empty vehicle at
the station where a peak demand occurs, such that the peak in demand doesn’t cause additional dwell
time. To check whether this measure would be feasible for implementation two checks are performed
based on case study data: (1) is it possible to reserve one metro part up until the transfer station with
peak demand without exceeding the capacity provided by only vehicle earlier on the line? (2) What
is the difference in contribution to the dwell time of boarding and alighting passengers and how does
this relate to crowding? Currently this rescheduling measure is mainly used in metro networks that are
dealing with a very high level of crowding and a lot of cases of denied boarding, in which this measure
is applied to balance the number of waiting passengers between stations. Since the metro network of
the case study is not dealing with a lot of cases of denied boarding and the benefit of mainly having
passengers boarding in one empty part of the vehicle would need further research, there is chosen not
to implement this measure for this research.

Short turning
When short turning a metro the route is ended earlier than a final stop, to have the vehicle turning
around at an earlier station and prevent knock­on delays as a connecting service a vehicle would
perform also gets delayed if a vehicle suffers from a too large delay. This rescheduling measure is
especially interesting of a network is dealing with a lot of knock­on delays. However, there should be
possibilities to make this turn­around and end a route early. As there is no evidence in the data that the
metro network of the case study deals with a lot of knock­on delays and the options for short turning a
metro on the metro network of the case study are very limited, therefore short turning a metro is also
not considered as a rescheduling measure.

Stop skipping
Last implementing stop skipping as a rescheduling measure is considered. In case of a vehicle being
delayed, a scheduled can be skipped to catch up on the delay. This does come at a price, however
as it has relatively large implications on passengers at both the stop and in­vehicle. Currently it is not
a common rescheduling measure in the network of the case study. Also as the stop­skipping problem
brings a great deal of additional complexity to the model (Gkiotsalitis & Cats, 2021), there is chosen to
not add this rescheduling measure to the model for this study.

Concluded can be that none of these rescheduling measures are considered relevant enough to be
added to the simulation framework for this study, however they could provide input for future research,
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which is further elaborated on in section 6.4.

4.3. Validation and KPI’s
The validation of the models used in this study can be seen twofold: first the outcomes of the TSM
and the TSM­RW are validated against historical data to ensure a correct representation of metro
vehicle behaviour in themodel, especially on the line segment of interest around the researched transfer
station. Second the timetable resulting from the TRM should be validated in terms of performance and
improvement compared to the existing timetable.

Tomeasure the performance of the different models and to check their validity they need to be compared
to historical data and to each other. To make this comparison, Key Performance Indicators (KPI’s) are
needed to asses the performance of the different models. These KPI’s are also selected based on the
available data from the case study to be able to make the comparison with the real world scenarios.
The KPI’s are defined as follows: As the passenger vehicle interaction is one of the main contributing
factors of the SBTM­MN framework and play an important role in the definition of the transfer passenger
problem, it is very important that the passenger numbers are correctly represented in the model.
Therefore the realised passenger numbers will be validated against the passenger numbers generated
by the model. For this the number of boarding passengers per vehicle will be used.

With the correct passenger numbers in place in the model the next step is to have a correct represen­
tation of the dwell times of the metro vehicles corresponding to the passenger numbers. The dwell
time from the actual data is determined by taking the time between the actual arrival time and actual
departure time at the station. The dwell times per station generated by the model are compared to the
dwell times from the actual data.

The next validation step is to see whether with the correct passenger numbers and the correct dwell
times in place, if delays propagate through the model in the same way as in the actual situation.
Therefore the generated delays per station by the model are compared to the actual delays in the
system per station. This way conclusions on delay propagation in the different test scenarios can be
validated.

These KPI’s will be used to validate the model in terms of correct representation of the network. How­
ever, there are also additional important KPI’s to assess the performance of a public transport network.
Not only is schedule adherence (delays) important, especially in high frequency systems it’s also very
common to look at regularity or deviation headways (van Oort, 2019). This is measured as the sched­
uled headway minus the actual headway divided by the scheduled headway.

More recently there are also more passenger oriented KPI’s for public transport networks coming up.
Rather than measuring the punctuality of a train, the delay of individual passengers is calculated based
on chip card data (Cacchiani et al., 2014). Also in the SBTM­MN the optimization can be performed
with this passenger objective rather than the vehicle perspective, with as KPI’s passenger waiting
time and passenger in vehicle time. Therefore these KPI’s are also in this research used to assess
the performance of schedules created with the SBTM­MN framework, with also vehicle delay in mind.

4.4. Scenarios and Outcomes
With the updated model and clear view of the rescheduling strategies to be used, the model can be
set up for usage and running experiments. The focus of the experiments will lie in rescheduling for the
implemented effect of peaks in demand due to transfer passenger flows. A combination of historic train
arrivals and theoretical train arrivals is used to test different scenarios. The goal is to predict peaks in
passenger demand based on train arrivals, and to take the appropriate action to deal with these peaks
in passenger demand. Several scenarios are considered, their setup is as follows:

1. Base scenario: In the first scenario is explored how the timetable as is can be improved. This
is done for various passenger arrival distributions at the transfer station, simulating day to day
delays and disturbances in the network. These runs are then compared to see what the impact
of different transfer passenger arrival rates is on the optimal rescheduled timetable. Also the
distribution of the passengers numbers over these different train arrivals will be varied, however
the total number of passengers will be kept in the samemagnitude for this scenario. The outcomes
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of this scenario is used to conclude what rescheduling measures can be used under current
circumstances to improve the timetable.

2. Increasing the number of transfer passengers: The second scenario is also used to test to
what extent other rescheduling decisions are taken by the TRM when the distribution of transfer
passengers at the transfer station change. In this scenario the number of passengers arriving
at the transfer station is raised by 20 %. This percentage is chosen as average growth scenario
from the next scenario, in which overall passenger growth is tested.

3. Increasing passenger numbers: In the third scenario the overall passenger numbers in the
system are increased. This scenario is used to discover to what extent increasing passenger
numbers over the coming years will have an increasing impact on the daily operation of the metro.
Passenger numbers for rail are expected to increase in the coming years (Puylaert, 2019), cre­
ating an even higher (peak) demand for the metro, more transfer passengers and a higher occu­
pancy in the metro. The question is; to what extent can this lead to problems and to what extent
should measures be taken to prevent possible negative consequences in the future? Several
growth scenario’s are considered. For example, Prorail estimates growth percentages of 30 to
40 percent in the coming years (Prorail, 2019). However, as these growth percentages are highly
subject to change, especially with the change of travel behaviour during the Covid­19 pandemic,
several different growth scenarios are considered in this scenario: 10%, 20% and 30%. With
these different percentages a picture can be created on how the network will develop over time
given the different growth scenarios.

4. Higher frequency of Train Services: The fourth scenario is used to test what the impact is
of a higher frequency on the train side. The assumption is that there has to be a difference in
frequency in the case study in order to perform the described research, but what happens is this
frequency is bound to change? In the case study there are plans to change the frequency of the
train service from every 15 minutes to every 10 minutes, which are also the frequencies that are
tested in this scenario.

As can be concluded from the objective function described in section 4.1.3, the TRM can optimize for
different objectives. Because of the limited time and resources available for this Thesis a choice has to
be made which objectives are applied for this Thesis. A balance has to be found between optimizing
the timetable for the benefit of the passenger while looking out for the adherence to the schedule. In
the research by Pardini­Susacasa (2020) many possible combinations of objective weights are already
tested. From her research can be concluded that the first weight two sets 𝑊1 and 𝑊2 presented in
Table 4.2 yield the best performing solutions in terms of percentages total weighted improvement when
optimizing for the passenger objective while still looking out for delay development in the network.
Weight set 𝑊1 focuses on lowering the impact on passengers without worsening train delays. Weight
set𝑊2 does roughly the same, but in this case the weight of in­vehicle time is raised to better account
for actual travel time of passengers, as the in­vehicle time component is the largest component in the
travel time journey. This is thus a trade­off between actual travel time and perceived travel time, as
waiting time is perceived longer by passengers than in­vehicle time (dell’Olio, Ibeas, & Cecin, 2011).
Because the interest of this research also lies in improving the service reliability of metro networks, also
the performance of𝑊3 is tested in which there is only optimized for schedule adherence. Using the base
scenario there is tested which of these three objective combinations yields the highest improvement,
this set objectives will then be used to run the other scenarios.

Table 4.2: Objective Weights Used

Waiting Time
𝛽𝑤

In­Vehicle Time
𝛽𝑖

Train delays at
all stations 𝛽𝑎

Train delays at
terminal 𝛽𝑡

𝑊1 1 2/3 1/3 0
𝑊2 2/3 1 1/3 0
𝑊3 0 0 1 0

The number of combinations used to obtained results for this study are a limitation for this study. As
not all combinations are explored, there is a possibility that there are better combinations of weights
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possible to obtain a more suitable timetable. However with the current set of weight sets chosen the
Timetable will be rescheduled for the benefit of the passenger using 𝑊1 and 𝑊2, yielding a balanced
solution. The comparison with𝑊3 is made to see what happens when only optimizing for the timetable
objective, and a consideration can be made on how desirable this would be.

With a clear view of the modelling study and the planned experiments, the case study will be introduced
in the next Chapter. The described correlation analyses from the previous Chapter as well as the
modelling study described in this Chapter will be applied to the case study. The results of this study
will also be presented in the next Chapter.



5
Case Study and Results

In this section the developed method in chapters 3 and 4 will be applied to the case study. A more
detailed explanation of the case study will be given in section 5.1. Several experiments and scenarios
were already established in 4.4. In section 5.2 is explained how these experiments are applied to the
case study. The results of the correlation analysis explained in Chapter 3 are presented in section 5.3.
The results of the model validation of the adapted SBTM­MN framework explained in Chapter 4 are
presented in section 5.4. Finally the results of this model are presented in section 5.5.

5.1. Case study overview
The metro network of Rotterdam, depicted in Figure 5.1, consists of 5 lines in total. Three lines mainly
in the east­west direction, and two lines mainly in the north­south direction. There are several transfer
stations in the network, some offer only a metro­metro transfer, others also offer connections to national
train services, trams or busses. The metro network of Rotterdam contains four major transfer stations
to the national rail services.

Figure 5.1: Metro network of Rotterdam

InRotterdam Alexander, Rotterdam Blaak and SchiedamCentrum it is expected that the flow of transfer
passengers is substantial enough to have an impact on the reliability of the metro line. These stations
have direct connections to intercity trains on various routes in the national railway network. Rotterdam
Centraal also being a major transfer station in the metro network is in this case disregarded, because
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train arrivals are frequent in such a way that it is expected that no clear correlation to a train arrival and
demand for a metro line can be determined.

Since the aim is to find the pure effect of transfer passengers on a single transfer station, the focus
lies in quantifying the correlation in one selected station in the network, Rotterdam Blaak. This station
is selected based on several criteria; Rotterdam Blaak has the highest passenger number of the three
considered transfer stations in which the effect is expected to be present, as presented in Table 5.1.
Of the three considered transfer stations stations, Rotterdam Blaak is also the closest to the city center
and it is therefore expected that passenger loads are highest in this section of the lines. Additionally
the effect is expected to be present strongly in this station based on experiences from the RET.

Table 5.1: Passenger numbers for Blaak, Alexander and Schiedam in November 2019 (RET)

Station Total number of passengers in November 2019
Rotterdam Blaak 802632
Rotterdam Alexander 411571
Schiedam Centrum 696562

With the transfer station of interest selected, the study area around Rotterdam Blaak has to be deter­
mined. If the studied area around Rotterdam Blaak is picked to large, there might be a risk that the
performed correlation analyses might contain too much noise and the rescheduling model reschedule
for too much other effects present in the network. However, if the study area is chosen too small, pos­
sible rescheduling measures might not be as effective and possible correlations downstream cannot
be found. As a balanced choice the study area around Rotterdam Blaak is chosen to be the part where
lines A, B and C are running on the same infrastructure. These stations are also considered to be the
busiest stations on the line in terms of passenger numbers. The studied area therefore focuses on the
section of lines A, B and C between Schiedam Centrum and Capelsebrug. This section of the line is
depicted in Figure 5.2.

Figure 5.2: Study area of this research

As mentioned Rotterdam Blaak is served by metro lines A, B and C, as presented in Table 5.2. During
peak hours a total of 18 metros per direction arrives at Rotterdam Blaak, resulting in an average head­
way of 313 minutes. In practice the scheduled headway lies between two and four minutes during peak
hours.

Table 5.2: Metrolines serving Rotterdam Blaak

Line Peak Frequency Off­peak Frequency
A 6x per hour 4x per hour
B 6x per hour 4x per hour
C 6x per hour 4x per hour

The station is also served by Sprinter and Intercity lines operated by NS. The lines and their frequency
are presented in Table 5.3. During peak hours a total of 8 trains per hour per direction arrives at Rot­
terdam Blaak, resulting in an average headway of 7.5 minutes. In practice this headway lies between
5 and 10 minutes during rush hour.
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Table 5.3: Train lines serving Rotterdam Blaak

Line Peak Frequency Off­peak Frequency
Intercity (IC):
Amsterdam/Lelystad ­
Dordrecht/Vlissingen

4x per hour 2x per hour

Sprinter (SPR):
Den Haag Centraal ­
Dordrecht

4x per hour 2x per hour

Figure 5.3: Boarding Passenger Pattern at Rotterdam Blaak

Because the expectation is that the impact of transfer passengers on the reliability of the metro network
is the highest when the passenger volumes in as well transfer passengers as the number of passengers
already in the system, there is looked at the demand throughout the day. The passenger demand for
Blaak is the highest in the morning peak, as can be seen in Figure 5.3. Therefore in performing the
correlation analysis, the focus is mostly on the morning peak hours from 6am to 10am.

As explained in chapter 3 several data sets are used to perform the correlation analysis described in
this chapter. This data is obtained in cooperation with RET and NS. In the selection of the data needed
several considerations were taken into account. Because of the strong change in travel behaviour
during the current Covid­19 crisis, data from before the Covid­19 pandemic is used. This is considered
to be more representative for regular operation conditions and expected operating conditions in the
future. Also a representative time of the year has to be taken into account. In this case data from
November 2019 is used. In this time of the year there are no major holidays in the Netherlands and
there are usually relatively few people on holidays as compared to other months of the year. For the
data­set this means that its expected that the usage of public transport is high during the period of
measuring, resulting in that the at conditions in which the maximum demand on the system is present.

5.2. Case study exploration
The methods described in chapters 3 and 4 will be applied for the case study of Rotterdam, with specifi­
cally station Rotterdam Blaak as the transfer station of main interest in the case study. The correlations
described in section 3.3 are researched for the case study. The results of this correlation analysis are
used as input for the next phase of the application in this case study; coupling the correlations to the
SBTM­MN. With this updated model experiments are performed to test rescheduling methods for this
case study.

To check whether the chosen study area is suitable for this research, several time­distance diagrams
of lines A, B and C of the metro network are constructed to see if there are more metros bunching
on this part of the line. This is done for the direction east, as during the morning peak most transfer
passengers arriving at Rotterdam Blaak will travel towards the city center. One of these diagrams
is presented in the figure in 5.4. In this figures the light grey colored paths represent the planned
timetable. The blue colored lines represent a metro running ’on schedule’, in this case measured
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in deviation from scheduled headway of less than 70%. The red dots represent a metro that has a
deviation from the scheduled headway compared to to the following vehicle of more than 70% and is
therefore considered to be delayed and the vehicle and is the vehicle that is considered to be bunched.
More time­distance diagrams can be found in Appendix B. From this example figure can already be
concluded that indeed the part between Capelsebrug and Schiedam Centrum is dealing with the most
cases of vehicle bunching. Also several cases are visible in which bunching of two metro vehicles
starts after a stop in Rotterdam Blaak, possibly caused by longer dwell times at Rotterdam Blaak.
When looking at the total of the Figures in Appendix B concluded can be that

Figure 5.4: Time Distance Diagrams of Metro lines A, B and C direction east from the morning peak of Thursday November
28th, 2019h

5.2.1. Scenario applicability
Four scenarios for experiments to be applied to the case study were explained in section 4.4. Several
final case study relevant considerations have to be made before setting up the model for the case
study. The first (base) scenario is tested with different arrival at the transfer station Rotterdam Blaak
to test the difference in rescheduling measures suggested by the TRM for different arrival rates. From
the data set of the case study several days of sample data have to be selected to run these different
scenarios with. Four weekdays are selected from the data set, which include the day with the highest
number of passengers and three days with an average number of transfer passengers. The day with
the highest number of transfer passengers in the data set is Tuesday November 19th, 2019. The
other days selected are Monday November 4th, 2019, Thursday November 7th, 2019 and Thursday
November 14th, 2019.

5.3. Results transfer impact analysis
To determine to what extent transfer passenger flows at station Rotterdam Blaak are correlated to dis­
turbances in the metro network, several correlation analysis are performed. How this analysis is per­
formed, is explained in section 3.3. A total of four correlation analyses are performed according to the
expected correlations presented in figure 3.3. For each correlation analysis the results are presented
in this section.

5.3.1. Passenger demand ­ Number of transfer passengers
In figure 5.5 the passenger demand per minute, based on check­in data of station Rotterdam Blaak, is
plotted in blue. In green the share of transfer passengers in this total demand is plotted. This is done
for the period of one morning peak from 6am to 10am. In this figure can be seen that almost all high
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peaks in passenger demand are caused by the arrival of a train at the station. This is supported by
the results of the correlation analysis performed over all business days in the data set. These results
are presented in Table 5.4. The goodness of fit is estimated through the adjusted 𝑅2. Here can be
concluded that during the day the variance in overall passenger demand can be explained for 64% by
transfer passengers, and during the morning peak this increases to 94%. The estimated parameters
for 𝛽1 is a logical result, lying around 1 meaning that for every passenger that transfers from the train,
demand for the next metro also raises with 1, indicating a largely 1:1 relation. 𝛽0 in this case would then
represent the base number of check­ins per minute. When thus having a good insight in the arrival of
trains to the station peaks in passenger demand can easily be predicted.

Figure 5.5: Total passenger demand ­ Number of transfer passengers at Rotterdam Blaak, with train arrivals

Table 5.4: Results regression analysis Total Passenger demand ­ Number of transfer passengers

Cases Selected Parameter Value Parameter Value Parameter Value
Entire Day 𝑅2𝑑𝑎𝑦 0.638 𝛽0𝑑𝑎𝑦 6.790 𝛽1𝑑𝑎𝑦 0.976
Morning Peak (am) 𝑅2𝑎𝑚 0.935 𝛽0𝑎𝑚 4.479 𝛽1𝑎𝑚 1.019

Now that is known that the peaks in passenger demand at Rotterdam Blaak are strongly correlated to
the arrival of trains to the network, a next question arises; is this the case for each train or do the trains
also differ in impact? To see if this is the case, train arrival times are also plotted against the arrival of
transfer passengers at Rotterdam Blaak in figure 5.5. Here can be concluded that the highest peaks
are mainly caused by the IC in the direction of Rotterdam, depicted in orange. The IC in the direction
of Dordrecht, depicted in blue, often coincides with the arrival of the IC in the direction of Rotterdam,
making it somewhat harder to tell which train has which impact. However, as can be seen a couple of
times in the figure the IC in the direction of Dordrecht also sometimes falls behind the peak, indicating
that the IC in the direction of Rotterdam is mainly responsible for the peak in passenger demand. After
that the highest peaks are caused by the SPR in the direction of Rotterdam, depicted in green. Trains in
the direction of Dordrecht thus play a much less significant role in peaks in passenger demand than the
trains in the direction of Rotterdam. This is logical as it is likely that passengers having a destination
in Rotterdam already left the train at Rotterdam Centraal, whereas the for passengers coming from
Dordrecht the most direct connection would be via Rotterdam Blaak. Also there is a difference in
number of transferring passengers between an Inter City and a Sprinter train.

There can be concluded that there is indeed a strong correlation between peaks in passenger demand
and the arrival of trains at trains at Rotterdam Blaak. The impact differs per train arrival and mainly
depends on the direction of the train and secondly the type of train. There is now a clear picture of the
passenger demand pattern at Rotterdam during the morning peak, which will be used as input for the
simulation framework used in this study. With this correlation in mind the next step is analyzed: does
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this increased passenger demand also influence the dwell time of the next arriving metro vehicle?

5.3.2. Passenger demand ­ Metro dwell time
The next regression analysis that is performed is between passenger demand and the dwell time of the
metro. The expectation is that an increase in passenger demand will also lead to an increase in dwell
time, as a higher volume of passengers will also take a longer time to board. A visualisation of this
analysis can be found in Figure 5.6a. The result of this analysis is that 0.253 of the variance in dwell
time can be explained by the number of boarding passengers. However, as this analysis included all
cases there are also plenty of cases in which other factors could have had a strong influence of the dwell
time of the vehicle, for example if the service was early and increased dwell time up to the scheduled
departure time or a passenger holding the door for somebody late at night. To filter out some of this
noise, the analysis is also performed for services that were already delayed. This is depicted in Figure
5.6b. In this case the 𝑅2 increases to 0.488.

(a) All cases (b) Delayed vehicles

Figure 5.6: Passenger demand ­ Metro dwell time.

The interest of this research lies specifically in the impact of these passenger numbers in crowding
conditions. As the expectation is that the number of passengers boarding and alighting the vehicle has
a stronger impact on the reliability in already crowded conditions, this analysis is also performed with
data from morning peak hours only. This analysis is depicted in Figure 5.7. In this analysis also the
metros for which over 50 passengers from the national rail network have checked in since the previous
metro arrival are marked as affected by transfer passengers. Here there can be seen that these metros
are mainly on the high end in terms of dwell time and passenger numbers. In this case the 𝑅2 found is
0.450.

In Table 5.5 the obtained parameters from the second correlation analysis are presented. The 𝛽0
parameters in this correlation represent the base dwell time of a metro vehicle, which is slightly higher
when looking at the average over all day compared to only the morning peak and delayed cases. This
is logical since these trains are more likely to also dwell for schedule adherence as most of these trains
are on time. The 𝛽1 parameter represents the contribution of each additional passenger to the dwell
time of a metro vehicle. For both the all day and morning peak cases this is quite similar, however the
contribution seems to be higher in case of a delayed train. A possible explanation could be crowding
levels in an already delayed train contributing to a longer dwell time.

Concluded can be that the effect of the number of boarding passengers has a substantial effect on the
dwell time of metro vehicles, which becomes especially visible if there is aimed to filter out as much
other effects as possible, which is the case for metros during the morning peak or in case of delayed
metros. This completes the second link in the question if transfer passenger flows can cause delays
in the metro network; peaks in passenger demand can indeed cause metro vehicles to have a larger
dwell time. In the next correlation analysis there is researched if this increase in dwell time is substantial
enough to impact the metro timetable and cause delays.
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Figure 5.7: Dwell time ­ Number of boarding passengers at Rotterdam Blaak, with metros affected by transfer passengers
highlighted

Table 5.5: Results regression analysis Passenger demand ­ Dwell Time

Cases Selected Parameter Value Parameter Value Parameter Value
Entire Day 𝑅2𝑑𝑎𝑦 0.253 𝛽0𝑑𝑎𝑦 27.534 𝛽1𝑑𝑎𝑦 0.097
Delayed metros only 𝑅2𝑑𝑒𝑙𝑎𝑦𝑒𝑑 0.488 𝛽0𝑑𝑒𝑙𝑎𝑦𝑒𝑑 25.615 𝛽1𝑑𝑒𝑙𝑎𝑦𝑒𝑑 0.141
Morning peak only (am) 𝑅2𝑎𝑚 0.450 𝛽0𝑎𝑚 26.597 𝛽1𝑎𝑚 0.102

5.3.3. Metro dwell time Blaak ­ Delay
To analyze the correlation between the dwell time at station Rotterdam Blaak, there first needs to be
a clear picture of the development of delays in general across the studied part of the line. Therefore
the average delay on the line is plotted in Figure 5.8a for the entire day as well as in Figure 5.8b for
the morning peak only in the east direction. This figure indicates where usually metros suffer from
an increase in delay or have a chance to catch up on some delay. For example there can be seen
that usually around Kralingse Zoom there is some extra time from the previous station to catch up on
delays, but that to the next station Voorschoterlaan delay usually increases for as well the average,
10th­percentile and 90th­percentile. An interesting observation from these graphs is that, for trains that
are already delayed at the start of this section of the line, the 90th­percentile trains, there is no chance
of catching up these delays and they only increase.

To determine what role the dwell time and thereby the passenger demand at Rotterdam Blaak plays in
the development of delays on the line, a regression analysis between the dwell time and the departure
delay at the next station, Beurs, is performed. The results of this analysis can be found in Figure 5.9
and Table 5.6. For the overall data set the explained variance with 0.075 is low. However, considering
the subset of metros that is affected by transfer passengers, the explained variance is already higher
with 0.174. This indicates that there are many contributing factors that can delay a metro, but that the
dwell time at Blaak is a contributing factor in the delay development over the line, and that there is
indeed a clear indication that metros affected by transfer passengers suffer from a longer dwell time
and thereby also a higher delay.
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(a) All cases (b) Morning peak

Figure 5.8: Delay distribution over the line between Capelsebrug and Schiedam Centrum

Figure 5.9: Dwell time ­ Delay

Table 5.6: Results regression analysis Dwell Time Blaak ­ Beurs Departure Delay

Cases selected Parameter Value Parameter Value Parameter Value
All Cases 𝑅2𝑎𝑙𝑙 0.075 𝛽0𝑎𝑙𝑙 ­2.201 𝛽1𝑎𝑙𝑙 1.825
Affected by transfer passengers 𝑅2𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 0.174 𝛽0𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 ­25.475 𝛽1𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 2.380

When looking at the average departure delay at the next stop, Beurs, of metro vehicles during the
morning peak, there can be found that this average departure delay of metro vehicles affected by
transfer passengers significantly differs from the other metro vehicles during the morning peak. The
outcomes of this test can be found in Table 5.7. From the results of this test can be concluded that there
is indeed an impact on the delay when a metro has to pick up a substantial load of transfer passengers.
However, as the explained variance from the regression analysis remains limited, to what extent it has
an impact can differ strongly. The dwell time at the transfer station, Rotterdam Blaak, can thus be a
contributing factor in the development of delays over the line, but there is no clear indication that a large
increase in delay is systematically caused by longer dwell times at Blaak.

Table 5.7: Average Departure Delays at Beurs for metro’s that are or aren’t affected by transfer passengers

Affected by transfer passengers Average Departure Delay Beurs (s) Standard Error
No 55.31 1.17
Yes 72.41 3.18
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5.3.4. Metro dwell time Blaak ­ Metro Headway
The last regression analysis that is performed is correlating the dwell time at Blaak to headway devi­
ations along the line. Also in the case of headway deviation there is first looked at how the headway
deviation develops over the course of the line, depicted in Figure 5.10. From this figure can be con­
cluded that the average headway deviation is very steady throughout the course of the line, only in the
case of the 90­th percentile the the headway deviation increases over the course of the line. When
correlating the dwell time at Blaak at the headway deviation at the next station however a very low 𝑅2
of 0.02 is found, concluding that no useful parameters can be obtained for this correlation. The same
analysis was also done for other stations on the line, but no clear correlation was found. Conclud­
ing that the dwell time at Blaak only is a significant enough contributor to cause headway deviations,
however it can still be a contributing factor in causing headway deviations.

Figure 5.10: Development of Headway Deviation over the line

5.3.5. Obtained Parameters
The parameters obtained from the correlation analysis are used to update the SBTM­MN framework to
make it suitable for usage in this study. For each station in the part of the network studied a regression
analysis was performed to determine the parameters to calculate the dwell time of a vehicle based
on the number of boarding passengers, number of alighting passengers and passenger load. This is
done for each station separately to capture station specific effects in the model. The results of these
regression analyses are presented in Table 5.8. Note that there is no separate constant estimated for
each station. The constant was systematically over­estimated and therefore yielded too large dwell
times, therefore a fixed minimum dwell time of 20s was assumed.

Table 5.8: Station specific parameters

Station Boarding Alighting Load
CPB 0,086 0,203 0,04
KLZ 0,118 0,131 0,041
VSL 0,196 0,148 0,019
GDW 0,193 0,315 0,017
OPL 0,213 0,157 0,02
BLK 0,118 0,103 0,039
BRS 0,131 0,06 0,064
EDP 0,11 0,117 0,012
DZT 0,113 0,067 0,04
CHV 0,09 0,059 0,033
DHV 0,148 0,099 0,033
MCP 0,21 0,181 0,042
SDM 0,069 0,093 0,046
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5.4. Validation of the adapted SBTM­MN framework
To determine if the adapted model used in this research yields accurate results can be used to make
predictions, it is validated on several aspects by comparing the model results with the actual values of
parameters from the dataset. This is done by using the KPI’s defined in section 4.3. For the readability
of several Figures in this section, acronyms are used to indicate station names. Their corresponding
full name can be found in C

Passenger Numbers
To ensure that the passenger numbers generated by the model are in the samemagnitude as the actual
boarding passenger numbers in the system, the number of boarding passengers is compared to the
actual data. This is with passenger numbers between 7.30am and 9am, the same time for which the
TSM is ran. The total number of passengers boarding a metro in the system is according to actual
data on average on which two box plots of several days of data and several runs of the model are
generated, presented in figures 5.11a and 5.11b. The average number of boarding passengers on this
part of the line as obtained from the data is 29,47 and the average generated by the model is 24,5. As
can be concluded from these figures is that the passenger numbers follow a very similar distribution
and similar averages and medians indicating that the correct passenger numbers are generated by the
model. However there can be noted that the variation in the actual data is larger then in the generated
data. This can be explained by the fact that the model generates the arrivals rather deterministic: a
single arrival rate is used for the morning peak which causes the averages to be on point but will prevent
outliers from occurring.

(a) RET Data (b) Generated by the model

Figure 5.11: Number of boarding passengers per station

Dwell times
With themodel generating a similar pattern of passengers over the line as can be seen in the actual data
the next step is to ensure that the dwell times of the metro vehicles are similar over the line as generated
by the model. As briefly mentioned in section 5.3.5 the estimated station specific minimum dwell times
were found to be too high in running the model validation. Upon this action was undertaken to limit the
minimum dwell time to 20 seconds. The actual dwell times and the dwell times that are generated by the
model are depicted in figures 5.12a and 5.12b. The overall average dwell time obtained from RET data
for this section of the line is 30,92s, the average dwell time generated by the model is 30,93s, indicating
a very accurate representation of the dwell time in General. From the figures can also be concluded
once again that there is a very similar distribution of dwell times as generated by the model compared
to the actual data, with a more limited number of outliers to be found in the generated data. The dwell
time at Marconiplein however seems to be higher in the actual data set than in the generated data set.
This could be explained by the fact that the dwell time at Marconiplein is relatively high compared to the
passenger numbers in the actual data set and is therefore not picked up by the model. Other factors
than passenger numbers may increase the dwell time. Because the dwell times at the other stations
yield a very accurate picture and Marconiplein is near the end of the studied line, no action is taken to
change the behaviour here.
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(a) RET Data (b) Generated by the model

Figure 5.12: Dwell times per station, in seconds

Delay
With the correct dwell times in place, the next validation step is to see how delays in the model develop
over the line. The results for this validation are presented in figures 5.13a and 5.13b. The overall
average delay as obtained from the RET data for this section of the line is 58,82s and the average
delay generated by the model is 54,20s Here a somewhat different distribution can be seen when
comparing the model data to the actual data. The average delays generated by the model follow a quite
similar pattern compared to the actual data, but the distribution of the delays is larger for the stations
Gerdesiaweg through Capelsebrug compared to actual data. It should be noted that these plots are
non­directional and therefore present the the distribution of delays for the station in both directions.

(a) RET Data (b) Generated by the model

Figure 5.13: Arrival delays per station for both directions, in seconds

To get a better picture of what is happening in the model, also the delay distribution for the directions
are plotted separately. In figures 5.14a and 5.14b the delay development over the line for the eastern
direction are plotted. For readability, the station order in the plots is changed into the driving direction
from left to right. Similar to the behaviour seen in section 5.3.3, from the actual data can also be
concluded that the distribution of the delay increases as the metros move along the line. This similar
behaviour is also simulated by the model, however it seems the effect is somewhat stronger than can
be observed in the data. A possible explanation for this is that during the entire simulation period
there is worked with a single arrival rate for the busiest section of the morning peak. This could lead
to an over­estimation of the number of arriving passengers towards the end of the simulation period,
preventing metro vehicles to catch up on their delay. However, as the overall average delay and the
average delay per station are in the correct order of magnitude, the model can be interpreted correctly
with the notion of the distribution of the delay in place.
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(a) RET Data (b) Generated by the model

Figure 5.14: Arrival delays per station in eastern direction only, in seconds

(a) RET Data (b) Generated by the model

Figure 5.15: Arrival delays per station in western direction only, in seconds

5.5. Results of simulations with SBTM­MN framework
In this section the results obtained from the simulation framework presented in Chapter 4 are presented.
The model is ran for the different scenarios described in section 4.4. These simulations include a mix
of model runs with the SBTM­MN framework. These scenarios include:

1. Base Scenario (Section 5.5.1)

2. Increased Number of Transfer Passengers (Section 5.5.2)

3. Increased Passenger Numbers (Section 5.5.3)

4. Altered Train Frequency (Section 5.5.4)

For each of these scenarios their results are presented and discussed in their respective subsections.

5.5.1. Base Scenario
In this section the results of the optimizations with the TRM for the base scenario are presented. The
optimization is ran for the studied section as defined in section 5.1. The optimization is ran with the
weights defined in Section 4.4 and also several different arrival patterns at Rotterdam Blaak from dif­
ferent days in the data set; 4, 7, 14 and 19 November 2019. The best performing solution is presented
in Table 5.9, which is obtained using weight set𝑊2 and arrival data from November 4th. The results of
other iterations can be found in Appendix D. Because of the limited time and resources for this Thesis
and to make fair comparisons between scenarios, the remaining scenarios will all be ran with weight
set𝑊2, as this yields the best result in this scenario.

From Table 5.9 can be concluded that the optimization yields the best solution after two iterations
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Table 5.9: Results of the TRM in the base scenario, with arrival data from Blaak of November 4th, 2019, weight set𝑊2

Estimated by TRM Realised through TSM

Iter. Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Improve­
ment

Base 482.37 2576.29 1.39 12.52 2902.05
1 433.93 2490.71 1.34 11.09 2783.70 462.07 2519.86 1.39 11.98 2831.89 2.4%
2 435.56 2379.20 1.29 9.176 2672.63 473.23 2510.35 1.52 12.38 2829.97 2.5%
3 442.58 2417.39 1.32 9.99 2715.78 513.37 2607.38 1.82 15.40 2954.76 ­1.8%
4 467.64 2504.44 1.72 13.21 2820.60 554.65 2698.30 2.07 16.91 3073.71 ­4.7%

before starting to deteriorate, resulting in a 2,5% total cost reduction compared to the reference run
scenario. The corresponding time­distance diagram can be found in Figure 5.16. In this figure the
original timetable (in grey) is plotted against the optimized timetable (in green). Additionally train arrivals
at Rotterdam Blaak that resulted in 50 transfer passengers or more are plotted in the Figure in orange.
When plotting the headway distribution at the stations for the original realised run, the rescheduled
timetable and the realised rescheduled timetable in Figure 5.17, there can be concluded that in the
rescheduled timetable the model tries to steer towards less even headways. However, what does the
rescheduling model do with the trains in Blaak that have to deal with peaks in passenger demand?

Figure 5.16: Time distance diagram of the best performing solution with reducing in­vehicle time as main objective

Figure 5.17: Headways for the different stations in the Base run and the optimized timetable and realised optimized timetable

To perform a more in depth analysis on the actions that the rescheduling model performs on trains that
deal with peak demands three analyses are performed: first the rescheduling actions that are taken on
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trains that are identified as trains that deal with a peak in passenger demand at Blaak are compared
to the actions taken to other trains that don’t have to deal with a peak in passenger demand. Second
these actions are then compared to the next simulation run in which the peaks in passenger demand
were shifted to different metros. Third the results of this optimized timetable are compared to the results
of an optimized timetable with an increased arrival rate at Rotterdam Blaak, which is discussed in the
next Section. The results of the first analysis are presented in Figure 5.18.

Figure 5.18: Rescheduling actions taken per metro, in deviation from original timetable seconds

In this Figure a negative number represents a metro that is rescheduled earlier than its original time, a
positive number means the metro is rescheduled later than its original time. Also it is made up of several
bars: these different bars represent the deviation for different stations, with the uppermost bar for each
metro representing station Schiedam Centrum (the end of the line), and the lowest bar representing
the first station of the line, Capelsebrug. The metros highlighted with a black rectangle are the metros
that are the first to arrive at Rotterdam Blaak after a train arrival with at least 50 transfer passengers,
which is considered to be a peak in transfer passengers. From this Figure can be concluded that it
the rescheduling model mainly tries to make metros that deal with transfer passengers arrive early, as
opposed to other metros which tend to get delayed in the rescheduled timetable. On average the TRM
schedules the first metro after a peak in transfer passengers 4 seconds earlier as opposed to the other
metros, which are on average scheduled 36 seconds later. However, this rule of thumb is definitely not
applicable to all metros, there are also metros that don’t deal with peak demands scheduled earlier,
and metros that deal with peak demands scheduled later. It can also be noted that the metro route
that mainly has to deal with these transfer passengers is metroline C between De Terp and De Akkers,
which could also be the cause for the difference in rescheduling measures.

To see if this is the case, this analysis is performed on more iterations which used a different arrival
distribution at Rotterdam Blaak. All other variables are kept the same. The results of this analysis can
be found in Figure 5.19. From this Figure can be concluded that largely the same rescheduling pattern
is applied by the TRM, however there are indeed some differences. Some other metro services than
in the previous iteration are now dealing with the peak in demand caused by transfer passengers in
Rotterdam Blaak. In general this iteration there are more metros that are scheduled later than their
original time as opposed to the previous iteration, however a comparison based on Figures 5.18 and
Figures 5.19 doesn’t yield conclusive answers.

Therefore the average rescheduling action per metro is depicted in Table 5.10. The average reschedul­
ing action is in this case the average change over the timetable that is made, as summed over all the
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stations on the line. Metros that were the first to arrive after a peak in passenger demand, defined as
50 or more passengers per minute, are made bold. Also in this case on average a metro dealing with
a peak in transfer passenger demand is rescheduled earlier than other metros, however in this case it
is 6 seconds later than its original timetable, opposed to an average of 33 seconds later for all other
metros. From this Table can be concluded that though all other variables are kept the same there are
quite some difference to be found in the rescheduling decisions made by the TRM, indicating that a
different distribution of peaks in passenger demand at Rotterdam Blaak can have a substantial impact
on what the optimal schedule is for the metro. There is however no general rescheduling action that
should be applied if a metro is dealing with a peak in demand, the best rescheduling measure to be
taken is also dependant on other factors in the system.

Figure 5.19: Rescheduling actions taken per metro, in deviation from original timetable seconds

Figure 5.20: Realised Rescheduling actions taken per metro, in deviation from the original timetable

These results plotted in Figures 5.18 and 5.19 are however theoretical results, because these are the
actions that the TRM proposes. However, as can be concluded from Table 5.9, there is quite some
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Table 5.10: Rescheduling decisions for different iterations, with metros dealing with peak demand in bold

Blaak Arrival Data From: November 4th,
2019

November 7th,
2019

November 14th,
2019

November 19th,
2019

M008­083 08.28.15 TRP AKS ­36,7 ­23,9 ­24,1 ­21,6
M007­068 08.18.45 NSL HHH 60,0 9,0 9,0 33,8
M008­087 08.18.15 TRP AKS ­0,8 11,4 12,0 16,3
M006­053 08.18.00 BNH VDW ­14,3 ­37,1 ­37,1 ­23,6
M007­070 08.08.45 NSL SDP 81,1 41,5 42,4 56,3
M006­051 08.08.00 BNH VDW ­10,8 42,3 52,2 16,2
M008­090 08.08.00 TRP AKS ­36,0 9,1 9,7 54,8
M007­065 07.58.45 NSL HHH 74,6 54,5 44,2 50,2
M006­057 07.58.00 BNH VDW 68,3 62,5 65,5 ­0,6
M008­085 07.58.00 TRP AKS ­31,8 ­2,5 ­3,2 76,3
M007­071 07.48.45 NSL SDP 146,3 115,1 116,2 127,4
M006­056 07.48.00 BNH VDW 59,5 64,3 63,8 4,5
M008­084 07.48.00 TRP AKS ­41,2 ­7,2 ­8,3 66,3
M007­069 07.38.45 NSL HHH 44,3 71,9 73,2 83,3
M006­059 07.38.00 BNH VDW 26,9 ­2,5 ­21,2 ­24,8
M008­088 07.38.00 TRP AKS ­42,1 ­33,8 ­39,7 7,8
M007­067 07.28.45 NSL SDP 99,9 48,4 49,9 47,9
M006­054 07.28.00 BNH VDW 7,8 21,0 20,3 8,4
M008­082 07.28.00 TRP AKS ­3,0 0,9 0,5 22,3
M007­074 07.18.45 NSL HHH 28,9 21,6 21,6 29,5
M006­052 07.18.00 BNH VDW 43,9 35,1 35,1 41,7
M008­086 07.18.00 TRP AKS 12,1 7,0 7,0 7,9
M007­066 07.08.45 NSL SDP 32,1 22,7 22,7 28,1
M006­058 07.08.00 BNH VDW 13,5 13,9 13,9 13,5

difference between the estimation by the TRM and the realisation through the TSM. Therefore it is also
interesting to see what the impact of the proposed actions by the TRM is on the realisation through
the TSM. Therefore the original timetable and the realised rescheduled time is plotted in Figure 5.20.
From this Figure can be concluded that when metros are delayed by the TRM this is generally correctly
realised by the TSM, however when a metro is scheduled for an earlier departure by the TRM, the TSM
has more trouble realising this. There are metros with an earlier departure, however they are more
limited than the TRM suggests. A more in­depth analysis of this effect reveals that this is a limitation of
the TRM as used in this research: to limit the noise in the model of other effects impacting rescheduling
decisions, the TRM optimizes only a part of the line, between Capeslebrug and Schiedam Centrum.
However, to yield an accurate picture of the entire line and to account for the fact that metros can
also arrive late, the whole line is simulated through the TSM. This however results in that vehicles
scheduled for an earlier departure at the first station used in the TRM, vehicles might not get there in
time because at the preceding section of the line they don’t depart early. This could also explain why
the model converges relatively quickly before starting to deteriorate; options for scheduling a metro
earlier than its original time are limited when running the realised timetable. Nevertheless it is still very
relevant to analyse the decisions made by the TRM to optimize the timetable; they provide useful input
for what rescheduling are relevant in dealing with transfer passenger flows. Additionally this also might
represent an accurate picture of real life operations, should the model be applied real time, it is also
not possible to make a metro depart early in retrospect.

To better analyse the implementation of the proposed schedule by the TRM through the TSM, a time­
distance diagram of the base run from Table 5.9 is presented in Figure 5.21 and a time­distance diagram
the second iteration is presented in Figure 5.22. In this Figure the light grey colored paths represent
the planned original timetable. The blue colored lines represent a metro running ’on schedule’, in this
case from the original timetable, measured in deviation from scheduled headway of less than 70%.
The red dots represent a metro that has a deviation from the scheduled headway compared to to the
following vehicle of more than 70% and is therefore considered to be delayed and the vehicle and is
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the vehicle that is considered to be bunched. When comparing these figures it can be concluded that
some bunching is resolved in the optimized timetable with 52 green cases in Figure 5.21 and 42 in
5.22. Delay is however not resolved, as in both diagrams there are 99 red cases. From these time
distance diagrams can be concluded that in general the realised timetable after optimization mainly
contains metros that depart later.

Figure 5.21: Time Distance Diagram of Base run from the base scenario

Figure 5.22: Time Distance Diagram of the 2nd iteration from the base scenario
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5.5.2. Increased number of Transfer Passengers
To test the impact of more transfer passengers on the metro timetable and to compare the actions taken
by the TRM in this scenario to the base scenario, in this scenario the number of transfer passengers
is increased with 20 %. The timing of the peaks is kept the same as in the arrival pattern of the 4th of
November in the base scenario and also the passenger numbers in the rest of the metro system is kept
at the same level. For this experiment also weight set 𝑊2 is used, to make a fair comparison between
the base scenario and this scenario. The results of this experiment are presented in Table 5.11. From
this Table can be concluded that the most improvement is already achieved after one iteration. To
compare to what extent the TRM takes different rescheduling actions compared to the base scenario,
also the rescheduling actions of the TRM are plotted in Figure 5.23. From this Figure can be concluded
that the general actions of the TRM remain the same, but that the magnitude of the actions is different
then for the base scenario.

Table 5.11: Results of the TRM in the scenario with an increased arrival rate at Rotterdam Blaak, weight set𝑊2

Estimated by TRM Realised through TSM

Iter. Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Improve­
ment

Base 498.99 2656.07 1.43 14.39 2992.99
1 447.42 2569.88 1.41 11.89 2872.12 470.45 2581.81 1.67 14.39 2900.24 3.1%
2 434.85 2478.23 1.56 11.99 2772.12 508.25 2696.25 2.09 17.34 3040.86 0.3%
3 470.83 2596.80 2.03 16.16 2916.07

Figure 5.23: Rescheduling actions taken per metro, in deviation from original timetable seconds, with increased passenger
numbers at Blaak

From this analysis can thus be concluded that thus both the timing of the arrival of transfer passengers
and the number of arriving transfer passengers can impact which rescheduling decisions would yield
the optimal result.

5.5.3. Increased Passenger numbers
In this scenario the passenger numbers in the model are increased. As well the number of transfer
passengers as the total number of passengers in the metro is increased in this scenario. First the
model is ran without the optimization to see what impact increased passenger numbers would have on
the system. This is done for different percentages of passenger increase; 10, 20 and 30%. The results
of these runs are presented in Figures 5.24 and 5.25. These results were again obtained using weight
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set𝑊2. From Figure 5.25 can be concluded that the dwell time of vehicles at each station increase with
each increase of passenger numbers. The increase in time can seem relatively small, in the order of
magnitude of seconds, so the question is how much impact does this actually have on the schedule?

Figure 5.24: Development of delays for different stations with increased passenger numbers

When looking at the delay development in Figure 5.25 for each station there can be concluded that even
these relatively small increases in dwell time can have a substantial impact on the delay development
over the line for each station, with average delays increasing around 30 seconds when comparing the
base scenario to the highest growth scenario. The average dwell times and delays for each growth
scenario are also depicted in Table 5.12.

Table 5.12: Average Delays and Dwell Times in Growth Scenarios

Scenario Average Delay Average Dwell Time
Base 58,8s 30,9s
10% Increase 70,7s 31,9s
20% Increase 79,4s 32,8s
30% Increase 90,4s 33,9s

Figure 5.25: Development of delays for different stations with increased passenger numbers
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Table 5.13: Results of the TRM in the scenario with an increased arrival rate at all stations, weight set𝑊2

Estimated by TRM Realised through TSM

Iter. Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Improve­
ment

Base 587,61 3466,75 1,78 15,41 3863,62
1 534,85 3332,87 1,65 13,43 3693,92 579,59 3381,4 1,9 16,54 3773,3 2.3%
2 541,13 3233,05 1,84 14,48 3598,62 584,05 3394,26 2,1 18,03 3789,64 1.9%
3 541,75 3253,18 1,99 15,32 3619,45 594,23 3424,75 2,33 18,97 3827,22 0.9%

With the current timetable an increase in passenger numbers would thus have a substantial impact
on the dwell times of metro vehicles and also on the delay development of the line. To see what
improvements to the timetable would be possible in the case of growing passenger numbers, also the
TRM is ran for the 20% growth scenario. The results of these TRM runs are presented in Table 5.13

5.5.4. Altered train frequency
In the scenario of an altered train frequency the peaks in passenger demand are differently distributed
over the hour to simulate a change in frequency on the train side. From the transfer passenger de­
mand analysis in section 5.3.1 there can be concluded that not every train arrival at the transfer station
yields a similar peak in passenger demand. When looking at the peak demand distribution there can
be concluded that between 7.30 and 8.30 there are 6 peaks with more than 40 transfer passengers
checking­in in one minute. Four of these peaks are caused by the IC Dordrecht ­ Rotterdam and two
are caused by the SPR Dordrecht ­ Rotterdam. In this scenario it is assumed that the same distribution
of these trains causing peaks apply. This will result in a passenger arrival distribution of 9 peaks in
transfer passengers between 7.30 and 8.30, of which 6 are caused by by the IC and 3 are caused by
the SPR.

Dwell times and delays for this scenario are compared to the dwell times and delays in the base scenario
in Figures 5.26a and 5.26b. From these Figures can be concluded that the constructed scenario with
an altered train frequency doesn’t have much impact on the development of delays and dwell times in
the network.

(a) Delays (b) Dwell Time

Figure 5.26: Base scenario delays and dwell times compared to the altered train frequnecy scenario

In Figure 5.27 the rescheduling actions per metro that are taken by the TRM for this scenario are
plotted. The metros that now have to deal with a peak in demand are highlighted with a black rectangle.
When comparing the rescheduling actions in Figure 5.27 with the rescheduling actions presented in
Figure 5.19 it can be concluded that this different demand pattern does indeed impact the rescheduling
decisions by the TRM and also results in other metros having to deal with the peak in demand than
in the Base scenario. However, as from the base scenario can be concluded that a different demand
pattern can result in very different solution by the TRM, there is no strong indication that this is due to
a different train frequency, but rather just the altered demand pattern.
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Figure 5.27: Rescheduling actions taken per metro, in deviation from the original timetable in seconds, with an altered train
frequency

Table 5.14: Results of the TRM in the scenario with an altered train frequency at Rotterdam Blaak, with reducing in  vehcile time
as main objective

Estimated by TRM Realised through TSM

Iter. Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Improve­
ment

Base 491,06 2620,77 1,41 12,64 2952,35
1 442,09 2534,68 1,39 11,62 2833,28 479,31 2631,8 1,69 14,34 2956,12 ­0.1%
2 441,22 2531,79 1,55 11,62 2829,81 504,13 2704,52 2,09 16,87 3046,23 ­3.0%
3 471,26 2601,3 2,01 14,56 2920,33





6
Conclusions and Recommendations

The objective of this Thesis is to gain insight in the dynamic relation between transfer passengers from
a lower frequency rail line to a high frequency metro line. This insight is obtained through two ways; first
by quantifying the correlation between transfer passenger flows and metro reliability of a real life case
study. Four sequential steps in the transfer process from lower frequency rail to higher frequency rail
are analysed and correlation analyses on these four sequential steps are performed. Secondly there is
researched what rescheduling measures can be applied in this real life case study to minimize the im­
pact of these disturbances. This is done using an existing simulation framework, the Simulation­Based
Traffic Management for Metro Network (SBTM­MN). This simulation framework consists of several el­
ements: a Tranpsort Simulation Model (TSM), which simulates the metro network of the case study
using the simulation software OpenTrack and accounts for passenger­vehicle interactions during this
simulation and a Train Rescheduling Model (TRM), which optimizes the timetable of the metro network
for several objectives. With this simulation framework, first is researched what rescheduling measures
can be applied in the current situation to reduce the impact of transfer passenger flows and resched­
ule the timetable for the benefit of the passenger. Additionally several scenarios are researched with
this simulation framework to assess the impact of transfer passenger flows in specific scenarios. With
these analyses and simulations the research questions can be answered, which is done Section 6.1.
The main contributions of this thesis, both societal and scientific, are discussed in Section 6.2. Limi­
tations that should be considered when interpreting the results of this Thesis are discussed in Section
6.3. Finally in Section 6.4 the recommendations and suggestions for future research as a result of this
Thesis are presented.

6.1. Answers to research questions
In chapter 1.2 the research questions laying the basis of this research are presented. In this section
the answers to all the sub­questions are presented which enables us to answer the main research
question.

1. Using smart card data, what correlations between transfer passengers from lower frequency rail
mode and disturbances in an higher frequency railway network can be found and how can this
be quantified?

To answer this first sub­question, several data analyses are performed. The described corre­
lation is split into 4 separate sequential correlations: the correlation between train arrivals and
the passenger demand for the next metro, the correlation between passenger demand and the
dwell time of a metro, and the correlations between dwell time of a metro and delays or head­
way deviations. From these data analyses can be concluded that there is a strong correlation
between the number of (transfer) passengers and the arrival of the train, leading to a significantly
higher demand for the next metro vehicle. Peaks in passenger demand in the researched transfer
station Rotterdam Blaak were clearly caused by passengers checking in from the train platform.
From the second data analysis can be concluded that there is also a clear correlation between the
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number of boarding and alighting passengers and the dwell time of a metro, thus so far a higher
passenger demand due to a train arrival would indeed lead to a longer dwell time of a metro.

The next step that is researched is if this longer dwell time could be responsible for causing
disturbances and delays in the network. Several different analyses were performed, however
there is no clear indication that a longer dwell time at the transfer station alone is able to cause
disturbances and delays in the network. However, there is still the possibility that it can be a
contributing factor. Since the peaks in passenger demand do cause a metro vehicle to have a
longer dwell time, a small delay is inevitable. In the researched data however, often it is the case
that this delay can be caught up again. However, there are also indications in the data that metros
can be delayed in such a way that these delays cannot be caught up again, causing bunching
between vehicles. This is also confirmed by the analysis of headway deviation. The average
headway deviation over the line is very stable and barely increases along the line, however the
10% most delayed trains do suffer from an increased headway deviation along the line.

There are thus clear quantifiable correlations between the number of transfer passengers and
passenger demand for the next metro, with 94% of the peaks in passenger demand being ex­
plained by arriving transfer passengers during the morning peak. There is also a clear correlation
between passenger demand and the dwell time of a metro, with about 45% of the dwell time
being explained by the number of boarding and alighting passengers during the morning peak.
The correlation between passenger demand and delay is less clear. As the dwell time is strongly
influenced by the number of boarding and alighting passengers, passenger demand and there­
fore also a higher demand due to transfer passengers, can cause a longer dwell time, but this
doesn’t necessarily cause a delay for the metro. If a metro is already delayed it can contribute
to an increasing delay. The average delay of metros affected by transfer passengers also lies
17 seconds higher than for other metros. The same also holds for headway; a flow of transfer
passengers can contribute to an increasing deviation in headway, but doesn’t necessarily cause
large headway deviations.

2. What control and rescheduling strategies to minimise disturbances are currently used in railway
networks and what KPI’s are used to asses their performance? There are many rescheduling
measures possible in railway networks. In this thesis the following rescheduling measures used
in public transport networks were considered: Increasing or decreasing driving speed, increasing
or decreasing the dwell time of a vehicle, scheduling a metro for an earlier or later departure,
changing the route of a vehicle, overtaking another vehicle, rolling stock reservation and short
turning. In the network of the case study, the metro network of Rotterdam, only the first three
rescheduling measures are applied. For metro networks in general and also the metro network
of Rotterdam it is usually practically not feasible to change the route of a vehicle or take over
another vehicle. Rolling stock reservation is a rescheduling measure that is applied in metro net­
works mainly in Asia. It is a very interesting rescheduling measure in very overcrowded networks
that are dealing with a lot of cases of denied boarding to balance the demand at different stations.
However, as the case study network doesn’t deal with a lot of denied boarding, this reschedul­
ing measure is also not considered for the case study. Lastly short turning is considered as an
rescheduling option. This is an interesting measure should the network have difficulties dealing
with a lot of knock­on delays. However, as there are also no indications that this is a big prob­
lem for the network of Rotterdam, this rescheduling measure is also not added to the simulation
framework.

There are several KPI’s common to assess the performance in metroway networks. An obvious
indicator is ofcourse punctuality. However, what might be even more important, especially in high
frequency systems, is the headway between vehicles. Therefore deviation from headway is also
included to asses the performance of control and rescheduling measures. As these control and
rescheduling measures are becoming more passenger oriented, which is also the case for the
SMTB­MN framework in this research, also more passenger oriented KPI’s are needed to asses
their performance. These KPI’s include passenger waiting time and passenger in­vehicle time.

3. Which control and reschedulingmethods can best be applied tominimize disturbances and delays
caused by transfer passenger flows? The rescheduling measures that are considered applicable
and relevant as answer of the previous sub question are setup in a modelling study with several
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scenarios. To answer this sub question the SBTM­MN framework is used to obtain an optimized
timetable for the benefit of the passenger while looking out for schedule adherence as well. This
optimized timetable is obtained using an optimization function which accounts for passenger wait­
ing time, passenger in­vehicle time and schedule adherence. Because this optimization function
isn’t specifically designed to optimize for the arrival of transfer passengers at the researched
transfer station, several scenarios are ran in which only the distribution of passenger arrivals was
changed and all other parameters were kept the same. Through this simulation and the TRM
an optimized timetable was obtained for several days of historical data. From these experiments
can be concluded that these different arrival rates have a substantial impact on the optimized
timetable and change the decisions made by the TRM. Although there are some indications that
the TRM tends to schedule metros affected by transfer passengers earlier than other metros, the
rescheduling decisions also remain strongly dependant on other factors in the system.

Concluded can be that with the set of increasing/decreasing running time between two stations,
increasing the dwell time or dispatching a metro earlier or later for departure, an improved sched­
ule can be obtained. The recommended rescheduling actions strongly depend on the situation
at the transfer station as well as the surrounding stations. For each situation a recommended
solution can be obtained through the TRM. Next to the base scenario also a scenario is ran in
which the arrival distribution of transfer passengers from historical data is increased with 20%
to test what the impact would be on the rescheduling decisions made by the TRM. From this
scenario can be concluded that compared to the base scenario a similar pattern in rescheduling
decisions can be found as compared to the same data from the base set, but that the decisions
are somewhat intensified. For example a metro that is already scheduled earlier in the base sce­
nario will now get scheduled even earlier. Also in this case the rescheduling decisions remain
strongly dependant on the situation.

Also a scenario is ran in which the overall passenger numbers are increased. From this scenario
can be concluded that without optimizing the timetable dwell times and delays will increase with
raising passenger numbers. Through the TRM also an optimized timetable for this scenario can
be obtained, however the possible improvements do not increase the same as the dwell times
and delays in the network.

4. What is the impact of a change in frequency on train side to the impact of transfer passenger
flows? The SBTM­MN framework is also ran with an altered train frequency at the transfer station
implemented. The results of this run are compared to the base scenario. From the different runs
with the base scenario could already be concluded that different distributions of arriving transfer
passengers can lead to very different optimal timetables. This is also the case for running the
optimization with an altered train frequency. However from the comparison of the simulation with
the TSM without an optimized timetable can be concluded that there is no big change in the de­
velopment of dwell times and delays in the network should the frequency of the train change. This
is of course given the fact that assumptions have been made on the distribution of passengers
over the ’new’ train frequencies, which can turn out to be very different in the future.

What impact do transfer passenger flows from lower frequency railway transportation mode
have on disturbances in high frequency metro networks and which control and rescheduling
methods are recommended to minimise these disturbances?

In this research is found that transfer passenger flows from a lower frequency railway transportation
mode can significantly impact the demand and dwell time of the next arriving metro vehicle. However
no strong indications were found that such a peak in demand alone can cause disturbances in the
metro network. A peak in demand caused by transfer passengers flows can however contribute to
the development of delays over the network. A combination of three different rescheduling methods
is used to obtain the optimized schedule for several transfer passenger arrival distributions. A rule of
thumb that can be derived from the rescheduling measures obtained is that metro vehicles that deal
with a peak in transfer passengers tend to get rescheduled earlier than their original time. However,
each distribution resulted in different rescheduling decisions and improvement possibilities. Through
the usage of the SBTM­MN framework recommended rescheduling decisions can be obtained for each
situation.
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6.2. Main Contributions
This Thesis has several main contributions. The contribution of this research can be seen twofold:
scientific and societal. These two main contributions are discussed in this section.

6.2.1. Scientific contribution
Recent public transport research is shiftingmore andmore towards passenger oriented real time control
strategies, demand prediction, at­stop control measures and the ever continuing search for possible
improvements to the reliability and attractiveness of public transport systems. This research contributes
to several topical research topics by touching upon the combination of peaks in passenger demand,
service reliability, vehicle bunching and rescheduling measures. Especially rescheduling measures
have been researched frequently in the past years, however the number of applications remains limited.
With the application of this combination of research topics in a microscopic simulation tool this study
aims to bring these research topics one step closer to a more broader application in real life. The main
scientific contributions of this research are:

• The analysis and quantification of the impact of peaks in passenger demand caused by transfer
passengers in case of a difference in service frequency on the reliability of the high frequency
system. This research quantified the relation between peaks in (transfer)passenger demand and
delays and headway deviations in a high frequency metro system.

• Develop adaptations to a simulation­based framework to simulate the impact of peaks in pas­
senger demand and simulate their impact on dwell time and delay development over the line in
combination with simulating for according passenger numbers and dwell times on other parts of
the simulated networks as well.

• Develop insights in the usage of rescheduling measures in the context of peak demand at transfer
stations in a high frequency metro network.

• Explore several possible scenarios in the case study to estimate the impact of increasing numbers
of transfer passengers, an increasing number of passengers on the entire line and a change in
frequency on the train side.

6.2.2. Societal contribution
This research also has several societal contributions. With the increasing demand for public transport
worldwide and also in the Netherlands, where the case study is situated, there is a growing need for
improving efficiency in these public transport systems as they grow towards their capacity limits. With
the application of this research in the case study of Rotterdam this research provides more insight
into the possible improvements in this network next to providing insights for similar metro networks
worldwide. The specific societal contributions of this research are:

• Providing a clear insight for the operators in the impact of transfer passenger flows and to what
extent they are able to cause disturbances in their networks.

• How to reschedule the timetable for the benefit of the passenger, reducing the overall travel time
of passengers while looking out for operational schedule adherence.

• Providing some insight in possible development of dwell times and delays for future growth sce­
nario’s.

6.3. Limitations
This Thesis is written with limited time and limited resources, therefore several assumptions and limi­
tations are applicable to the results of this Thesis. These assumptions and limitations are discussed in
this section.

• The quantified correlations between transfer passenger demand and the reliability of the metro
line were obtained using case study data. The results of these exact quantification’s are thus only
applicable to the used case study. In similar networks the interactions and found quantification’s
might be similar, however as they can be dependant on a lot of factors such as station compo­
sition, passenger behaviour, train composition and schedules and many other factors, careful
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considerations should be made when applying the results of this research to other case studies.

• A limited number of iterations is ran in obtaining the improved timetable for the different scenarios.
Many more combinations of objective weights and passenger data usage are possible, possibly
resulting in better outcomes than currently achieved.

• This study focused on the situation mainly during the morning peak. Also the optimization of the
schedule is done using a simulation of morning peak hours only. Simulating other times of the
day could result in very different outcomes, though the correlation analysis already pointed out
the effect of transfer passenger numbers is less substantial when looking at the entire day. It
could however be interesting to look at the difference between morning peak and evening peak
hours.

• The used simulation framework is adapted in such a way that the arrival of transfer passengers
to the network is modelled as realistically as possible. Due to limited resources and to be able to
measure the pure effect of this one transfer station the surrounding transfer stations are using a
flat arrival based on the historical data during peak hours, resulting in an accurate picture of total
passengers but eliminating peaks in passenger demand on other stations. In real life this can
also influence the behaviour of metro vehicles, resulting in more complex recommendations for
rescheduling measures.

• Only a part of the total metro network of the case study was used to perform the optimizations on.
Expanding the optimization area of this research can lead to different outcomes for the researched
areas as well, as more variables are introduced in the model.

• The optimized timetables from the TRM used as input for the TSM generally correctly implement
metros that are delayed in the optimized timetable. To limit the noise in the model of other effects
impacting rescheduling decisions, the TRMoptimizes only a part of the line, betweenCapeslebrug
and Schiedam Centrum. However, to yield an accurate picture of the entire line and to account
for the fact that metros can also arrive late, the whole line is simulated through the TSM. This
however results in that vehicles scheduled for an earlier departure at the first station used in the
TRM, vehicles don’t get there in time because in the proceeding section of the line they don’t
depart early. Because of some of the optimized earlier departure get lost in the realisation of the
optimization, the resulting timetable might be less optimal than predicted.

6.4. Recommendations and Future Research
The conclusions of this Thesis result in several recommendations and input for future research. In
this research the specific situation for rescheduling for transfer passenger flows is studied. However,
this increased demand in passengers for the next vehicle doesn’t necessarily have to come from a
train arrival. A connection to another metro line could be a possible source, especially in the case
of a difference in service frequency. But there are also many more factors that can cause a peak in
passenger demand, such as a large event, the end of a concert or a show, resulting in a lot of people
arriving in or leaving the area at the same time. With the knowledge that this can contribute to a longer
dwell time of a vehicle and can contribute to delay development on the line it is interesting to research
what the how the developed framework would perform in such circumstances as well.

From an operator perspective, specifically for the RET in the case study of the metro network of Rot­
terdam, there are also several recommendations. As opposed to the expectations indicated by the
RET the correlation analysis indicated a less strong correlation between transfer passenger arrivals
and disturbances in the metro network than expected. Nevertheless, as peaks in passenger demand
can impact the dwell time significantly and this effect increases with increasing passenger numbers
towards the coming years, there are recommended rescheduling strategies to deal with these peaks in
passenger demand. A rule of thumb advice for the RET is that when is known upfront that a metro has
to deal with a peak in passenger demand at the transfer station, the metro needs to be rescheduled
earlier or being allowed a longer dwell time in the schedule to deal with this peak in demand. However
as the obtained rescheduling measures are also strongly dependent on the situation at the surrounding
stations as well, there should be continuously looked for improvements as the situation changes.

There are still many areas in which the used modelling framework can be expanded. The obtained im­
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provement could be further improved further with more computational capacity, also enabling a broader
improvement of the timetable over the entire network, resulting in a more balanced timetable which
would account for more factors downstream than the current model. Also in the case of scheduling
earlier departures for a part of the network, as was done in this research, additional implementations
need to be made to ensure that metros are able to arrive earlier to the first stop of the optimized part.
This can either be done through adapting the model or optimzing for the entire line.

The current framework is only suited to analyse realised data. Each run still includes a lot of manual
labour to run each iteration. Further developments of the SBTM­MN framework are needed to further
automate the process to make it potentially interesting for real­time applications. Additionally the run
time of the model is currently a limiting factor. As the obtained solution keeps changing as the situation
on the line and on the stations changes, the iterations need to be performed very fast to update to the
latest situation. This would be a necessity for eventually being able to apply rescheduling decisions
real time. The current produced solutions could provide a general direction for rescheduling measures
for similar situations.
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1Delft University of Technology, MSc Transport, Infrastructure and Logistics, Faculty of civil engineering and geosiences, Stevinweg 1, 2628 CN Delft

2Delft University of Technology, Faculty of civil engineering and geosiences, Department of Transport & Planning, Stevinweg 1, 2628 CN Delft

3Delft University of Technology, Faculty of technology, policy and management, Department of Engineering systems and services, Jaffalaan 5, 2628 BX Delft

4Royal HaskoningDHV, Adiesgroep Rail Utrecht, Leidseveer 4, 3511 SB Utrecht

Abstract—Sudden peaks in passenger demand for high fre-
quency metro systems can cause an unexpected increase in dwell
time and can contribute to delay development in the network.
In this research a quantification for this effect is researched in
the case of a train to metro transfer. Determined is to what
extend peaks in passenger demand can contribute to delay
development in network, and what rescheduling measures are
applicable for dealing with these peaks in demand. Peaks in
passenger demand can contribute to delay development in the
network, but a single peak is unlikely to cause a large delay to a
metro service. Nevertheless simulating this effect yields various
rescheduling possibilities to improve the timetable for this effect,
and decreasing the weighted travel time for the passengers. The
rescheduling advises generated by the model can be used to
improve rescheduling decisions in high frequency metro networks
dealing with peaks in passenger demand.

Index Terms—Public Transport, Peak demand, Rescheduling,
Metro, Train, Transfer.

I. INTRODUCTION

PUBLIC transport systems all over the world are dealing
with increasing demand. These systems are often running

at almost their maximum capacities. Therefore there is an
increasing need to find ways to operate these systems in an
increasingly efficient manner, as especially for metro networks
it can be very expensive and can have a high impact on the
urban environment to add capacity through new infrastruc-
ture. In recent transportation research there is an increasing
attention for the operational conditions of public transportation
systems and the impact of passenger-vehicle interactions on
the timetables of these networks, as these interactions play an
important part in determining the line capacity and reliability
[1]. However, traditional simulation models assume that these
(small) delays caused by passenger-vehicle interactions are
caught up using the buffer times in the schedule. However, the
modelling study by Pardini Susacasa [2] in which passenger-
vehicle interactions are included, concludes that these interac-
tions can prevent vehicles from catching up on these delays
or even worsen the development of delays and disturbances in
the network.

One of the causes of small delays can be a strong fluctuation
in passenger demand per vehicle. Peaks in passenger demand
can have a strong impact on the dwell time of a vehicle, as
most of the dwell time of a vehicle is explained by the number
of boarding and alighting passengers [3]. When the passenger
demand is higher for a longer period of time, this can be

accounted for in the timetable. However, this is harder for
unexpected or short peaks in demand. In high frequency metro
networks with transfer stations to lower frequency intercity rail
networks the arrival flow of passengers can strongly depend
on the arrival of intercity rail services [4]. The demand for
the next metro vehicle becomes unexpectedly high, causing
a longer dwell time for the next vehicle and could possible
trigger or contribute to delays. When correctly accounting
for passenger-vehicle interactions these delays can then easily
propagate throughout the network [2].

By better understanding how peaks in demand or flows
of transfer passengers can impact the schedule of a metro
network, measures can be taken to minimize the disturbances
and delays caused by these transfer passenger flows. This
can be done using real time traffic rescheduling measures.
Examples of these rescheduling measures include increasing
the dwell time of a vehicle, skipping a stop or scheduling an
earlier or later departure of a vehicle [5]. These rescheduling
measures can be applied with different objectives which can
include passenger waiting time or adherence to the timetable
[6].

This paper studies the impact of transfer passenger flows
from train to metro on the development of delays and headway
deviations in the metro network. With this impact analysis
this paper studies rescheduling possibilities to reduce the
overall travel time for the passenger while looking out for the
development of delays on the line. The main contributions of
this study include gaining more insight in the dynamic relation
between transfer passenger arrivals and the development of
delays and deviations in a metro network and reducing delays
and headway deviations on this metro line by a simulation
study with rescheduling measures.

The objectives of this study are twofold: (I) quantifying the
correlation between arrivals of transfer passenger flows and
disturbances in high frequency metro networks, and (II) to
find rescheduling strategies to accommodate for these transfer
passenger flows.

The outline if this paper is as follows: a literature review on
transfer passenger modelling, dwell time, vehicle bunching and
rescheduling is given in section II. Then the methodology for
the correlation analysis is presented in Section III, followed by
the methodology of the simulation study to find rescheduling
strategies in section IV. The case study and results of this study
are presented in Section V, finally followed by the conclusions
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in Section VI.

II. LITERATURE REVIEW

This study touches upon several relevant research fields.
Looking at a transfer from train to metro from a passenger
perspective, there are several research fields this study touches
upon when capturing the correlation between the arrival of
transfer passengers and the reliability of the metro. Firstly,
analysis of transfer passenger flows is considered. Secondly
the impact of a difference in service frequency. Thirdly passen-
ger demand and the impact on vehicle dwell time is discussed,
followed by vehicle bunching and lastly real time rescheduling
methods.

A. Transfer passenger flows
Smart card data is increasingly used to model the behaviour

of passengers in a network. Examples of applications include
determining which train a passenger took based of on a
combination of smart card data and automatic vehicle location
data for single lines [7] or for lines with a transfer included
[8]. Besides passenger train assignment models, also the
behaviour of passengers in stations themselves are relevant
study topic. It is only very recent that passenger behaviour
and vehicle ridership are combined in one study [9]. This study
provides possible applications for crowding estimation, transit
optimization and disruption management.

Another important factor in the modelling of transfer pas-
senger flows is the consideration that passenger behaviour can
strongly depend on demographic characteristics, as well as
environmental aspects of the station [10]. All these factors
provide important input for this study. The contribution of
this study will lie in the combination of passenger behaviour
characteristics in the case of a transfer between services with
a difference in frequency.

B. Difference in service frequency
A difference in service frequency can have a significant

impact on what would be the optimal timetable solution. Using
a mathematical optimization model it is possible to minimize
the waiting time of transfer passengers at the connecting sta-
tion [11]. There is recognized that indeed these intercity train
arrivals can play an important role in the passenger demand
at this station. Looking at a metro timetable from a more
demand-driven perspective, there can be concluded that current
timetables for metro services can prove to be inadequate to
accommodate for the dynamic nature of passenger demand
[4]. What is not yet covered in these researches however is
the impact of these peaks in demand on the reliability of the
metro network.

C. Dwell time
Dwell time is a widely researched topic in public transpi-

ration research. Deviations in dwell time play an important
role in determining the capacity of a line, especially in high
frequency systems [12]. A small deviation in dwell time of
several seconds can already significantly affect the operation

of a line [13]. Not accounting for these fluctuating dwell times
in simulation and timetable studies can cause underestimation
of delay developments throughout a metro line [2].

One of the main determinants of dwell time is the number of
passengers boarding and alighting the vehicle. With fluctuating
passenger numbers, dwell times of vehicles can therefore differ
strongly. However, when these passenger numbers are known,
it is also possible to calculate this dwell time [14]. In systems
with a very high demand on board crowding also plays an
important role. Crowding levels contribute to the dwell time in
a non-linear way [13]. Taking into account peaks in passenger
demand and being able to predict the dwell time of a vehicle
based on these passenger demand peaks and crowding levels
are an important contributing factor to this research.

D. Vehicle bunching

In high frequency networks, with vehicles arriving upto
every 2 or 3 minutes, a small delay can already cause a vehicle
to get in close proximity of the following vehicle. When this
happens, bunching of these vehicles can occur. Especially for
bus systems, bunching has already been researched for many
years. However, applications of mitigating effects for both bus
[15] and rail [5] remain limited. Because of the high frequency
of metro systems, it is not necessarily the case that bunching is
only caused by large delays, smaller delays can also eventually
lead to bunching [16].

E. Rescheduling Measures

Rescheduling measures can be used to reschedule trains
from the original timetable to decrease delays in the system.
Several rescheduling measures that are often used include:
increasing the dwell time of a vehicle, increase or decrease
vehicle speed between stations, dispatching a vehicle early,
skipping a stop, changing the route, overtaking another vehicle
and short turning [17]. Using rescheduling measures can
help prevent vehicle bunching. Especially for high frequency
railway lines, aiming at more even headway on the line can
turn out to be more effective measure than aiming for schedule
adherence [18]. However, using regularity based operations
would require a significant shift current agreements with au-
thorities, which usually require certain on-time performances
[19].

F. Research Gap

Based on this review can be concluded that this study
touches upon multiple relevant fields resulting in two scientific
gaps: (I) Studying the development of delays and headway
deviations in a metro network in the context of peak demands
caused by transfer passengers in case of a difference in service
frequency. (II) Using a simulation framework to improve the
timetable for the benefit of the passenger in the context transfer
stations and of peaks in passenger demand at these transfer
stations.
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III. TRANSFER PASSENGER IMPACT ANALYSIS

In this section the methodology for the analysis of the
impact of transfer passengers on disruptions and delays is
presented. The aim of this analysis is to quantify to what
extent peak demand caused by transfer passengers can cause
disturbances and delays in the metro network. To achieve this
a smart card data analysis is performed. For this there is made
use of a case study, in which several metro lines and intercity
railway lines share a single transfer station. In this case study
the metro lines run with a frequency 18 metros per direction
per hour in total, on alternating lines. The railway lines run
with a frequency of 8 trains per hour per direction in total,
also on alternating lines and with alternating vehicle types. The
focus lies on the train to metro transfer, the other way around is
not considered. To assess the propagation of delays throughout
the metro network, the stations surrounding the transfer station
in the metro network should also be considered. Because the
busiest section of the line is serviced by multiple lines, which
then separate into different directions at certain stations, a
decision is made to focus on the part of the network where
the different lines are running on the same infrastructure.
The stations that are covered on this part of the line will be
considered, other stations disregarded. This is done because
in this part of the network the chance of bunching vehicles is
the highest and the impact of small delays is expected to be
the largest. The case study is further discussed in section V.

A. Input data

For the correlation analysis several types of input data are
used. Data is gathered for the same period of time from
different sources. The time period selected is November 2019.
This month is selected because there are no major holidays in
the Netherlands during this period of time, resulting in an
accurate representation of each weekday. Additionally there is
chosen for data from before the Covid-19 pandemic due to
the drastic change in travel behaviour during this pandemic.
The expectation is that the impact of transfer passengers is the
largest during rush hours, the focus of the correlation analysis
therefore lies in the rush hours.

The first data set that is used contains passenger smart
card data from the researched transfer station for the metro
network. Based on the location of the tap-in of a passenger
can be derived whether a passenger at this station was an
originating passenger or a transfer passenger. Based on this
data an arrival pattern of originating and transfer passengers
can be constructed. This is then linked to the next set of input
data; vehicle data. Vehicle data for the relevant lines of the
metro network is collected for the same period of time as the
passenger data. The vehicle data set contains automatic vehicle
location data for all metros including scheduled and realised
arrival and departure times at all stations and the number
of boarding and alighting passengers at each stop and the
passenger load after the boarding and alighting process. The
third data set contains train arrival data, with the scheduled
and realised departure for all trains in the same time period at
the researched transfer station.

Fig. 1. Schematic overview of the studied correlations

B. Correlation Analyses
With this input data the correlation analysis can be per-

formed. The correlation analysis is split up in several analyses
of each step of the transfer process. The first analysis concerns
to what extend the arrival of transfer passengers impacts the
passenger demand for the next metro vehicle. For each peak
in demand in the data during the morning peak, there is
analysed to what extend these peaks are caused by the arrival
of transfer passengers. The next step is to look at to what
extend the passenger demand impacts the dwell time of a
metro vehicle. The final two steps are to asses the impact
of an increased dwell time on the development of delays in
the network and deviation in headway. An overview of these
correlation analyses is given in Figure 1.

Each correlation in studied separately using statistical pro-
cessing software SPSS. For each correlation presented in
Figure 1 a linear regression analysis is performed. The current
variable (V arn) is used to predict the next variable (V arn+1).
For the first regression analysis the number of arriving transfer
passengers is thus used to predict the total passenger demand
for the next metro vehicle. The formulas used for the regres-
sion analyses are presented in Equations 1, 3, 2 and 4.

V arn+1 = βV arn
0 + βV arn

1 V arn + ε (1)

β
V arn+1

1 =

∑n
i=1(V arn+1 − V arn+1)(V arn − V arn)/n∑n

i=1(V arn+1 − V arn+1)2/n
(2)

β
V arn+1

0 = V arn+1 − βV arn+1

1 V arn (3)

R2
V arn+1

=

∑n
i=1(

ˆV arn+1i − V arn+1)
2∑n

i=1(V arn+1i − V arn+1)2
(4)

In the first correlation, the number of arriving transfer
passengers and passenger demand, the passenger demand per
minute is used. The total passenger demand per minute is
correlated to the transfer passenger demand per minute. The
R2 is used to determine to what extend peaks in passenger
demand are caused by transfer passengers, the β0 and β1 are
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parameters used to predict the total passenger demand based
on the number of transfer passengers.

In second correlation, the total passenger demand and metro
dwell time, the aim is to find parameters for calculating the
dwell time of a metro vehicle based on the number of boarding
and alighting passengers and the passenger load of the vehicle.
This regression analysis is performed on all cases, but also
on several subsets of the data. This is done because when
considering all cases in this regression analysis there is a
high chance of picking up a lot of ’noise’ in determining
the correlation. Other variables that have an impact on the
dwell time have a higher impact in certain subsets then others.
One of the subsets that is explored are delayed metros. In
this subset extra dwell time due to the vehicle arriving early
to stop is eliminated, enabling a more pure estimation of
the boarding and alighting element in the dwell time of a
metro. Additionally also for this correlation the subset of
morning peak only, between 6am and 10am is explored, due
to the higher passenger volumes in this time period. Also a
separate analysis is performed of metros marked as ’affected
by transfer passengers’, which is defined by the first metro
arriving after a peak in transfer passengers of more than 50
transfer passengers.

In the third correlation is tested to what extend an increased
dwell time at the transfer station can lead to delays down-
stream. This is tested for several stations downstream, again
using a regression analysis. The fourth and final correlation
analysis is performed with also dwell time at the transfer
station and deviation in headway.

These correlation analyses only concern the transfer sta-
tions. To model passenger demand and dwell times at the
surrounding stations accurately as well, for each station con-
sidered in the model, the average number of arriving passen-
gers for the morning peak is determined. Also using passenger
numbers, a dwell time function is constructed for each of these
stations, enabling the model to predict the dwell time based
on the number of boarding and alighting passengers and the
passenger loads at each of these stations.

With the obtained parameters from the correlation analysis
the next step of this study is to apply the quantified corre-
lations in a simulation framework, enabling to test several
rescheduling measures and run several scenarios with an
accurate representation of peaks in demand caused by transfer
passengers.

IV. MODEL DEVELOPMENT AND RESCHEDULING
METHODS

The next part of this study consists of a simulation study.
The aim of this is to obtain rescheduling strategies to deal with
peaks in passenger demand, in this case caused by transfer
passengers. For this study an existing simulation framework
is used, the Simulation-Based Traffic Management for Metro
Networks (SBTM-MN) [2].

A. Simulation-Based Traffic Management for Metro Net-
works (SBTM-MN)

In this framework the metro network of the case study is
simulated in OpenTrack, an object oriented railway simulation

tool [20]. The framework consists of several elements: a
Transport Simulation Model (TSM), a Transport Simulation
Model of the Real World (TSM-RW) and a Train Rescheduling
Model (TRM). A schematic overview of the framework can
be found in Figure 2. A simulation iteration is started with
the TSM-RW which simulates the metro network for a given
time horizon with Real-World data. It consists of a passenger
module and a train module. The train module uses OpenTrack
to simulate train movements, the passenger module is used to
keep track of passenger movements throughout the network
and calculates the dwell time for each metro at each station
based on the number of boarding and alighting passengers
and the passenger load of a metro. The Real-World data used
consists of a set of passenger chipcard data and the original
timetable of the metro network. The aim of the TSM-RW is to
mimic the real life situation of the case study as realistically as
possible. The TSM-RW then feeds information such as train
and station occupation and realised train events to the TSM.

Fig. 2. SBTM-MN Framework [2]

The TSM predicts passenger demand and distribution over
the network and simulates train movements for a given time
horizon. The TSM also consists of a passenger module and
a train module. Where the TSM-RW uses historical chipcard
data to generate passengers throughout the network, the TSM
uses average arrivals at stations to generate passengers, al-
lowing the exploration of different scenarios. The results of
a run with the TSM-RW and TSM are then used as input
for the TRM. The TRM interacts iteratively with the TSM to
reschedule the timetable for the benefit of the passengers. The
TRM computes a rescheduled timetable for the given input
of passenger demand and aims to minimize passenger journey
times. It comes up with a tentative solution that is evaluated
throughout a run in the simulation and is considered to be a
linear programming problem [2]. This process is performed
iteratively until the timetable no longer improves or starts to
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deteriorate. The best performing solution is then selected. The
TRM makes use of the following rescheduling measures:
• Increasing the dwell time of a train at the station
• Increasing or decreasing the speed of a train in a segment

between two stations
• Dispatching a vehicle earlier or later than scheduled
The objective function of the TRM aims to minimize the

waiting time for all passengers (Wt), the in vehicle time of all
passengers (Ivt) , the deviation from the departure times of all
metros at all stations (Ys,m) and the deviation of arrival time
of metro vehicles at the terminal (Xm). The weights that can
be adjusted are to minimize for: passenger waiting time (βw),
minimize passenger in-vehicle time (βi), the total deviation
from the timetable (βa) and to delays at the terminal station
(βt). All these factors are weighted accordingly to stress the
importance of specific terms. These weights can be changed
to tweak the objective, as they weight the different objectives
in the objective function. The mathematical formulation of the
TRM is as follows:

min βw∗Wt+βi∗Ivt+βa∗
∑
m∈M

∑
s∈Sm

Ys,m+βt∗
∑
m∈M

Xm

(5)
Subject to [2]:

tdeps,m − tarrs,m ≥ emin
s ∀s ∈ Sm,m ∈M (6)

tarrs+1,m − tdeps,m ≥ qmin
s,s+1 ∀s ∈ Sm,m ∈M (7)

tdeps,m+1 − tarrs,m ≥ houts ∀m ∈M−,s, s ∈ S (8)

tdeps,m+1 − tarrs,m ≥ hins ∀m ∈M+,s, s ∈ S (9)

tdeps,n − tarrs,m ≥ cmin
m,n,s ∀m,n, s ∈ V (10)

tarrl,m − tarrsm ≤ xm ∀m ∈M (11)

tarrsm − tarrl,m ≤ xm ∀m ∈M (12)

tdepss,m − tdeps,m ≤ Ys,m ∀m ∈M, s ∈ Sm (13)

tdeps,m − tdepss,m ≤ Ys,m ∀m ∈M, s ∈ Sm (14)

tdeps,m − tdepos,m ≤ u ∀S ∈ S,m ∈M (15)

tdepos,m − tdeps,m ≤ u ∀S ∈ S,m ∈M (16)

In which equation (5) is the objective function. This ob-
jective function minimizes the weighted waiting time for all
passengers (Wt), In-vehicle time for all passengers (Ivt),
Deviation from departure time at all stations (Ys,m) and
Deviation from schedule at the terminal station (Xm). The
corresponding weights are represented by their corresponding
β.

The waiting and in-vehicle time is calculated using passen-
ger data from the TSM. The waiting time can be calculated
as the average number of passengers over time waiting at a

station, multiplied by the time elapsed between arrivals. The
waiting time is calculated using equation (17) [2].

Wt =

∑
s∈S

((t
arr
s,0 −t0)∗

(ws,0 + ŵs)

2
)+

∑
s∈S

∑
m∈Ms

((t
arr
s,m−t

arr
s,m−1∗

(ws,m + rs,m−1)

2
)

(17)

Also the In Vehicle Time is calculated using data from the
TRM. Using the capacity of a metro vehicle, with the load
for each metro there can be determined whether a passenger
is standing or not. Assuming that a passenger perceives in-
vehcile time more negative when standing, the in-vehicle time
can be calculated using equation (18) [2].

Ivt =
∑
m∈M

∑
s ∈ Sm(lsits,m∗γsit+lstands,m ∗γstand)∗(tarrs+1,m−tarrs,m)

(18)
The objective function is subject to the following con-

straints: constraint (6) ensures that the time spent by train
at a station should be greater than or equal to the minimum
dwell time. Constraint (7) ensures that the travel time between
two stations cannot be smaller than the minimum driving
time, while constraints (8) and (9) ensure that the headway
between two trains cannot be smaller than the minimum safety
headway. Constraint (10) is used for the minimum connection
time between two consecutive train services, service can only
depart if inbound train has arrived. Constraints (11), (12),
(13) and (14) are used for the linearization of schedule
adherence term in objective function. Finally constraints (15)
and (16) ensure a limitation of the step size between the
current and previous iteration. A complete list of indices, sets,
variables and parameters and their explanation can be found
in Appendix A

B. Adaptations to the SBTM-MN framework
There are several adaptations to the SBTM-MN framework

[2] to make the framework suitable for usage in this study. The
framework has to be update to work with the metro lines under
review in this study, as well as with updated data such that all
data corresponds to the data used for the correlation analysis.
An adaptation to the passenger module of the TSM is made
such that it is able to simulate peaks in demand caused by
arriving transfer passengers as found in the correlation analysis
from the previous section.

C. Validation and KPI’s
The validation of the models used in this study can be

seen twofold: first the outcomes of the TSM and the TSM-
RW are validated against historical data to ensure a correct
representation of metro vehicle behaviour in the model, espe-
cially on the line segment of interest around the researched
transfer station. Second the timetable resulting from the TRM
should be validated in terms of performance and improvement
compared to the existing timetable.

To measure the performance of the different models and to
check their validity they need to be compared to historical data
and to each other. To make this comparison, Key Performance
Indicators (KPI’s) are needed to asses the performance of the
different models. As the passenger vehicle interaction is one



ANALYSING THE IMPACT OF PEAK DEMAND AND RESCHEDULING OF HIGH FREQUENCY METRO NETWORK 6

of the main contributing factors of the SBTM-MN framework
and play an important role in the definition of the transfer
passenger problem, it is very important that the passenger
numbers are correctly represented in the model. Next, with
the correct passenger numbers, the dwell times generated with
the model are compared to actual dwell times from the data to
ensure a correct representation. Also the delays generated in
the model are validated. Especially in high frequency systems
it’s also very common to look at regularity or deviation
headways [21]. This is measured as the scheduled headway
minus the actual headway divided by the scheduled headway.

More recently there are also more passenger oriented KPI’s
for public transport networks coming up. Rather than mea-
suring the punctuality of a train, the delay of individual
passengers is calculated based on chip card data [22]. Also in
the SBTM-MN the optimization can be performed with this
passenger objective rather than the vehicle perspective, with
as KPI’s passenger waiting time and passenger in vehicle
time. Therefore these KPI’s are also in this research used to
assess the performance of schedules created with the SBTM-
MN framework, with also vehicle delay in mind.

D. Objective weights

The TRM can optimize for different objectives. Because
of the limited time and resources available for this study a
limited number of objective weights can be tested. The first
weight two sets W1 and W2 presented in Table I are expected
to yield the best performing solutions in terms of percentages
total weighted improvement when optimizing for the passenger
objective while still looking out for delay development in the
network [2]. Because the interest of this research also lies in
improving the service reliability of metro networks, also the
performance of W3 is tested in which there is only optimized
for schedule adherence. Using the base scenario there is tested
which of these three objective combinations yields the highest
improvement, this set objectives will then be used to run the
other scenarios.

TABLE I
OBJECTIVE WEIGHTS USED

Waiting Time
βw

In-Vehicle Time
βi

Train delays at
all stations βa

Train delays at
terminal βt

W1 1 2/3 1/3 0
W2 2/3 1 1/3 0
W3 0 0 1 0

The number of combinations used to obtained results for
this study are a limitation for this study. As not all com-
binations are explored, there is a possibility that there are
better combinations of weights possible to obtain a more
suitable timetable. However with the current set of weight sets
chosen the Timetable will be rescheduled for the benefit of the
passenger using W1 and W2, yielding a balanced solution. The
comparison with W3 is made to see what happens when only
optimizing for the timetable objective, and a consideration can
be made on how desirable this would be.

V. CASE STUDY AND RESULTS

In this section the case study used in this research is
explained in section V-A. Scenarios that are tested with the
simulation framework are explained in section V-B. The results
of the Transfer Passenger Impact Analysis are presented in
section V-C followed the results of the modelling study in
V-D.

A. Case Study
The case study used in this study is the metro network of

Rotterdam. In this network there are several transfer stations.
The transfer station on which is focused in this study is
Rotterdam Blaak. This is the station with the highest passenger
numbers after Rotterdam Centraal. However, as Rotterdam
Centraal has train arrivals in such a frequent way that the
passenger flow becomes more or less continuous and is also
the starting point of metro line D, this station is disregarded.

The set of stations considered around Rotterdam Blaak is
the section on which the three metro lines A, B and C serving
Rotterdam Blaak run on the same infrastructure. After these
stations the lines separate, which makes it less likely that
metros still interfere with each oter and have a lower chance
of bunching after these stations.

Fig. 3. Study area of this research

To check whether the chosen study area is suitable for
this study, a time-distance diagrams for the morning peak
is constructed. This is done for the eastern direction, as the
majority of passengers arriving at Rotterdam Blaak travels
towards the city center. This is presented in Figure 4. In
this figures the light grey colored paths represent the planned
timetable. The blue colored lines represent a metro running ’on
schedule’, in this case measured in deviation from scheduled
headway of less than 70%. The red dots represent a metro
that has a deviation from the scheduled headway compared to
to the following vehicle of more than 70% and is therefore
considered to be delayed and the vehicle and is the vehicle
that is considered to be bunched.

The updated SBTM-MN framework is used to test for
different scenarios and find what rescheduling decisions would
be the best choice for these specific scenarios. To ensure
valid results of the rescheduling measures obtained with the
framework, several validations are performed. The model
is validated against actual data in terms of the number of
passengers generated for each station, the dwell times realised
by the model and the delays developed in the network. Results
of these validations indicate that the model yields a very
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Fig. 4. Time Distance Diagrams of Metrolines A, B and C direction east
from the morning peak of Thursday November 28th, 2019h

accurate representation of the network when compared to the
historical data set.

B. Scenarios
With the adaptions to the model in place, several scenario’s

are explored and tested with the model. The goal is to
evaluate the rescheduled timetables with the TRM for different
scenarios.

1) Base scenario: In this scenario is explored how the
existing timetable can be improved. This is done with
passenger arrival data from four different historical days
in the data set, including the day with the most transfer
passengers in the data set. These runs are compared
to see what the impact of different transfer passenger
arrival rates is on the optimal rescheduled timetable.
Also the distribution of the passengers numbers over
these different train arrivals will be varied, however the
total number of passengers will be kept in the same
magnitude. The outcomes of this scenario are used to
understand what rescheduling measures can be used
under current circumstances to improve the timetable.

2) Increasing the number of transfer passengers: In this
scenario the number of transfer passengers is increased
with 20%. The timing of the peaks is kept the same as in
the in the base scenario and also the passenger numbers
in the rest of the metro system is kept at the same level.
This is also used to test to what extent other rescheduling
decisions are best applicable in case of a 20% increase in
transfer passengers. This percentage is chosen as average
growth scenario from the next scenario, in which overall
passenger growth is tested.

3) Increasing passenger numbers: Overall passenger
numbers in the metro system and for the train are in-
creased. This scenario is used to discover to what extent
increasing passenger numbers over the coming years will
have an increasing impact on the daily operation of the
metro. Based on expected passenger growth numbers
[23], different growth scenarios are considered: 10%,
20% and 30%.

4) Higher frequency of Train Services: This scenario is
used to test what the impact is of a higher frequency on

the train side. In this scenario the frequency of the train
is from 15 minutes per line per direction to 10 minutes
per line per direction. The total number of passengers
is kept the same as in the base scenario, however the
distribution of the passengers is changed to simulate a
10 minute interval of trains. This also means that the
number of transfer passengers per train is lower.

C. Results Transfer Passenger Impact Analysis
The correlation analyses as explained in Section III is

carried out with data sets from the case study.

Total Passenger Demand - Number of Transfer Passengers
The first correlation that is tested is the correlation between
the arrival of transfer passengers and the passenger demand for
the next metro vehicle. The results of the data for one morning
peak is plotted in Figure 5. From this Figure can be concluded
that almost all high peaks in passenger demand are caused by
the arrival of transfer passengers. This can also be concluded
from the parameters obtained from linear regression analysis
over all morning peaks, presented in Table II. There can also be
concluded that the impact per train service can strongly differ.
From the Figure can be concluded that mainly the trains in
the direction of Rotterdam Centraal are responsible for peaks
in demand.

Fig. 5. Total passenger demand - Number of transfer passengers at Rotterdam
Blaak, with train arrivals

TABLE II
RESULTS REGRESSION ANALYSIS TOTAL PASSENGER DEMAND - NUMBER

OF TRANSFER PASSENGERS

Cases Selected Param Value Param Value Param Value
Entire Day R2

day 0.638 β0day 6.790 β1day 0.976
Morning Peak R2

am 0.935 β0am 4.479 β1am 1.019

The goodness of fit is estimated through the adjusted R2.
Here can be concluded that during the day the variance
in overall passenger demand can be explained for 64%
by transfer passengers, and during the morning peak this
increases to 94%. The estimated parameters for β1 is a logical
result, lying around 1 meaning that for every passenger that
transfers from the train, demand for the next metro also raises
with 1, indicating a largely 1:1 relation. β0 in this case would
then represent the base number of check-ins per minute.
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When thus having a good insight in the arrival of trains to
the station peaks in passenger demand can easily be predicted.

Dwell Time - Total Passenger Demand
The next regression analysis that is performed is between
passenger demand and the dwell time of a metro, in which
several subsets of the data are explored. The results of these
analyses are presented in Table III. Concluded can be that the
dwell time of metro vehicles can for 25% be explained by the
number of boarding passengers. This almost doubles when is
aimed to filter out as much other effects as possible, which
is the case for metros during the morning peak or in case of
delayed metros.

TABLE III
RESULTS REGRESSION ANALYSIS PASSENGER DEMAND - DWELL TIME

Cases Selected Param Value Param Value Param Value
Entire Day R2

day 0.253 β0day 27.534 β1day 0.097
Delayed metros R2

del 0.488 β0del 25.615 β1del 0.141
Morning peak R2

am 0.450 β0am 26.597 β1am 0.102

Because the interest of this study lies in the metros that
are dealing with peak demands, a distinction is made between
metros that are dealing with a peak in demand and metros
that are not. A peak in demand is defined as a metro that is
dealing with more than 50 arriving transfer passengers since
the previous metro. The results of this analysis is presented in
Figure 6. The R2 found for peak demand cases only is 0.450.
Concluded can be that metros dealing with peaks in passenger
demand are mainly on the higher end of the dwell time and
passenger number spectrum, making it more likely for these
metros to deal with an increase in dwell time.

Fig. 6. Dwell time - Number of boarding passengers at Rotterdam Blaak,
with metros affected by transfer passengers highlighted, morning peak only.

Delay - Dwell Time
The third correlation that is researched is between dwell time
at Rotterdam Blaak and delay. A regression analysis between
dwell time at Rotterdam Blaak and delay at the next station,
Beurs, is performed. The results of this analysis are presented

in Table IV. From this analysis can be concluded that only
7,5% of the variance in delay can be explained by dwell time
at Blaak. This does increase for metros affected by transfer
passengers, however.

TABLE IV
RESULTS REGRESSION ANALYSIS DWELL TIME BLAAK - BEURS

DEPARTURE DELAY

Cases Param Value Param Value Param Value
All Cases R2

all 0.075 β0all -2.201 β1all 1.825
Affected by
transfer pax R2

aff 0.174 β0aff -25.475 β1aff 2.380

The average departure delay at the next stop, Beurs, of
metro vehicles during the morning peak affected by transfer
passengers, significantly differs from the other metro vehicles
during the morning peak. This can be concluded from Table V.
Concluding that there is an impact on the delay when a metro
has to pick up a substantial load of transfer passengers. How-
ever, as the explained variance from the regression analysis
remains limited, to what extent it has an impact can differ
strongly. The dwell time at the transfer station, Rotterdam
Blaak, can thus be a contributing factor in the development
of delays over the line, but there is no clear indication that
a large increase in delay is systematically caused by longer
dwell times at Blaak.

TABLE V
AVERAGE DEPARTURE DELAYS AT BEURS FOR METRO’S THAT ARE OR

AREN’T AFFECTED BY TRANSFER PASSENGERS

Affected by
Transfer Passengers

Average Departure
Delay Beurs (s) Standard Error

No 55.31 1.17
Yes 72.41 3.18

Headway - Dwell Time
The last regression analysis that is performed is correlating
the dwell time at Blaak to headway deviations along the line.
When correlating the dwell time at Blaak at the headway
deviation at the next station an R2 of 0.02 is found, concluding
that no useful parameters can be obtained for this correlation.
The same analysis was also done for other stations on the line,
but no clear correlation was found. Concluding that the dwell
time at Blaak only is a significant enough contributor to cause
headway deviations, however it can still be a contributing
factor in causing headway deviations.

D. Results Simulation with Adapted SBTM-MN Framework
1. Base Scenario
The actions of the TRM are compared to see the impact of
these different arrival distributions, while everything else is
kept the same. The results of the best performing run, obtained
with passenger arrival data from November 4th, 2019, are
presented in Table VI. In this table the waiting time, in-
vehicle time, deviation from schedule at the final station and
the total deviation from schedule for all vehicles is presented.
The total cost is the weighted sum of these cost, weighted for
the weight set used, in this case W2. This is done for each
estimate by the TRM and the results of the realised run of
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the corresponding timetable from the optimization. From this
Table can be concluded that an overall 2,5% improvement in
total cost can be obtained by using rescheduling.

TABLE VI
RESULTS OF THE TRM IN THE BASE SCENARIO

Estimated by TRM

Run Waiting
Time [h]

In-
Vehilce
Time [h]

Deviat.
at
Termin
[h]

Dep.
Deviat-
ion all
dep. [h]

Total
Cost
[h]

Impro-
vement

Base
1 433.93 2490.71 1.34 11.09 2783.70
2 435.56 2379.20 1.29 9.176 2672.63
3 442.58 2417.39 1.32 9.99 2715.78
4 467.64 2504.44 1.72 13.21 2820.60

Realised through TSM
Base 482.37 2576.29 1.39 12.52 2902.05
1 462.07 2519.86 1.39 11.98 2831.89 2.4%
2 473.23 2510.35 1.52 12.38 2829.97 2.5%
3 513.37 2607.38 1.82 15.40 2954.76 -1.8%
4 554.65 2698.30 2.07 16.91 3073.71 -4.7%

When running the TRM for different arrival rates at Rotter-
dam Blaak, resulting in other metros having to deal with peaks
in demand due to arriving transfer passengers quite different
solutions are obtained. The results of these different runs are
presented in Table VII, in which the average time a metro
is rescheduled compared to the original timetable over the
line is presented. On average, a metro dealing with a peak in
transfer passenger demand is rescheduled 6 seconds later than
its original timetable, opposed to an average of 33 seconds
later for all other metros. The impact of arriving passengers at
Rotterdam Blaak is thus substantial enough to result in very
different decisions for the TRM to reschedule a metro.

TABLE VII
RESCHEDULING DECISIONS FOR DIFFERENT ITERATIONS, WITH METROS

DEALING WITH PEAK DEMAND IN BOLD

Blaak Arrival Data From: 4/11,
2019

7/11,
2019

14/11,
2019

19/11,
2019

M008-083 08.28.15 TRP AKS -36,7 -23,9 -24,1 -21,6
M007-068 08.18.45 NSL HHH 60,0 9,0 9,0 33,8
M008-087 08.18.15 TRP AKS -0,8 11,4 12,0 16,3
M006-053 08.18.00 BNH VDW -14,3 -37,1 -37,1 -23,6
M007-070 08.08.45 NSL SDP 81,1 41,5 42,4 56,3
M006-051 08.08.00 BNH VDW -10,8 42,3 52,2 16,2
M008-090 08.08.00 TRP AKS -36,0 9,1 9,7 54,8
M007-065 07.58.45 NSL HHH 74,6 54,5 44,2 50,2
M006-057 07.58.00 BNH VDW 68,3 62,5 65,5 -0,6
M008-085 07.58.00 TRP AKS -31,8 -2,5 -3,2 76,3
M007-071 07.48.45 NSL SDP 146,3 115,1 116,2 127,4
M006-056 07.48.00 BNH VDW 59,5 64,3 63,8 4,5
M008-084 07.48.00 TRP AKS -41,2 -7,2 -8,3 66,3
M007-069 07.38.45 NSL HHH 44,3 71,9 73,2 83,3
M006-059 07.38.00 BNH VDW 26,9 -2,5 -21,2 -24,8
M008-088 07.38.00 TRP AKS -42,1 -33,8 -39,7 7,8
M007-067 07.28.45 NSL SDP 99,9 48,4 49,9 47,9
M006-054 07.28.00 BNH VDW 7,8 21,0 20,3 8,4
M008-082 07.28.00 TRP AKS -3,0 0,9 0,5 22,3
M007-074 07.18.45 NSL HHH 28,9 21,6 21,6 29,5
M006-052 07.18.00 BNH VDW 43,9 35,1 35,1 41,7
M008-086 07.18.00 TRP AKS 12,1 7,0 7,0 7,9
M007-066 07.08.45 NSL SDP 32,1 22,7 22,7 28,1
M006-058 07.08.00 BNH VDW 13,5 13,9 13,9 13,5

To better analyse the implementation of the proposed sched-
ule by the TRM through the TSM, a time-distance diagram

of the base run from Table VI is presented in Figure 7 and
a time-distance diagram the second iteration is presented in
Figure 8. In this Figure the same colors as in Figure 4 are
used. A rough rule of thumb that can be concluded is that
metros dealing with a peak in passenger demand tend to get
rescheduled a little earlier or less later than other metros. Other
metros get rescheduled later. However, this is not applicable to
all cases. Concluded can be that rescheduling decisions remain
very dependant on a lot of different variables, and that for each
case a recommended rescheduling strategy can be obtained
through the TRM.

Fig. 7. Time Distance Diagram of the best performing solution in the base
scenario using weight set W2

Fig. 8. Time Distance Diagram of the best performing solution in the base
scenario using weight set W2

2. Increased Number of Transfer Passengers
The results of this experiment are presented in Table VIII.
For this experiment the arrival data of the 4th of November is
used and increased with 20%. A slightly higher improvement
of 3.1% is achieved in this scenario. Comparing the actions
of the TRM to the same day used as in the base scenario,
concluded can be that the general actions of the TRM remain
the same, but that the magnitude of the actions is different
then for the base scenario. From this analysis can thus be
concluded that thus both the timing of the arrival of transfer
passengers and the number of arriving transfer passengers can
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impact which rescheduling decisions would yield the optimal
result.

TABLE VIII
RESULTS OF THE TRM IN THE SCENARIO WITH AN INCREASED ARRIVAL

RATE AT ROTTERDAM BLAAK

Estimated by TRM

Run Waiting
Time [h]

In-
Vehilce
Time [h]

Deviat.
at
Termin
[h]

Dep.
Deviat-
ion all
dep [h]

Total
Cos
t [h]

Impro-
vement

Base
1 447.42 2569.88 1.41 11.89 2872.12
2 434.85 2478.23 1.56 11.99 2772.12
3 470.83 2596.80 2.03 16.16 2916.07

Realised through TSM
Base 498.99 2656.07 1.43 14.39 2992.99
1 470.45 2581.81 1.67 14.39 2900.24 3.1%
2 508.25 2696.25 2.09 17.34 3040.86 0.3%
3

3. Increased Number of Passengers
The results of these runs are presented in Table IX. It be
concluded that increasing passenger numbers will indeed cause
in increase in average dwell time, also resulting in an increase
in delay development over the line.

TABLE IX
AVERAGE DELAYS AND DWELL TIMES IN GROWTH SCENARIOS

Scenario Average Delay Average Dwell Time
Base 58,8s 30,9s
10% Increase 70,7s 31,9s
20% Increase 79,4s 32,8s
30% Increase 90,4s 33,9s

For the 20% increase scenario also the TRM is ran to
see the impact on rescheduling possibilities with an overall
increase in passenger numbers. The results of this experiment
are presented in Table X. From this table can be concluded
that the improvement percentage remains similar to the base
scenario. Looking at the actions of the TRM, again a different
set of actions is recommended by the TRM, making it again
as case specific as in the base scenarios.

TABLE X
RESULTS OF THE TRM IN THE SCENARIO WITH AN INCREASED ARRIVAL

RATE AT ALL STATIONS

Estimated by TRM

Run Waiting
Time [h]

In-
Vehilce
Time [h]

Deviat.
at
Termin
[h]

Dep.
Deviat-
ion all
dep. [h]

Total
Cost
[h]

Impro-
vement

Base
1 534,85 3332,87 1,65 13,43 3693,92
2 541,13 3233,05 1,84 14,48 3598,62
3 541,75 3253,18 1,99 15,32 3619,45

Realised through TSM
Base 587,61 3466,75 1,78 15,41 3863,62
1 579,59 3381,4 1,9 16,54 3773,3 2.3%
2 584,05 3394,26 2,1 18,03 3789,64 1.9%
3 594,23 3424,75 2,33 18,97 3827,22 0.9%

4. Altered Train Frequency
In the scenario of an altered train frequency the peaks in
passenger demand are differently distributed over the hour

to simulate a change in frequency on the train side. When
comparing the average dwell times and delays developing in
the network, concluded can be that there is no big difference
between the base scenario and an altered train frequency. The
TRM is also ran for this scenario, the results are presented
in Table XI. In this scenario the TRM fails to improve
the timetable. However, as from the base scenario can be
concluded that a different demand pattern can result in very
different solution by the TRM, there is no strong indication
that this is due to a different train frequency, but rather just
the altered demand pattern.

TABLE XI
RESULTS OF THE TRM IN THE SCENARIO WITH AN ALTERED TRAIN

FREQUENCY AT ROTTERDAM BLAAK

Estimated by TRM

Run Waiting
Time [h]

In-
Vehilce
Time [h]

Deviat.
at
Termin
[h]

Dep.
Deviat-
ion all
dep. [h]

Total
Cost
[h]

Impro-
vement

Base
1 442,09 2534,68 1,39 11,62 2833,28
2 441,22 2531,79 1,55 11,62 2829,81
3 471,26 2601,3 2,01 14,56 2920,33

Realised through TSM
Base 491,06 2620,77 1,41 12,64 2952,35
1 479,31 2631,8 1,69 14,34 2956,12 -0.1%
2 504,13 2704,52 2,09 16,87 3046,23 -3.0%

VI. CONCLUSION

The objective of this study is to gain insight in the dynamic
relation between transfer passengers from a lower frequency
rail line to a high frequency metro line. This insight is
obtained through two ways; first by quantifying the correlation
between transfer passenger flows and metro reliability of a
case study. Four sequential steps in the transfer process from
lower frequency rail to higher frequency rail are analysed
and correlation analyses on these four sequential steps are
performed. Secondly there is researched what rescheduling
measures can be applied in this real life case study to minimize
the impact of these disturbances. This is done using an existing
simulation framework. Several scenarios are researched with
this simulation framework to assess the impact of transfer
passenger flows in specific scenarios.

There are clear quantifiable correlations between the number
of transfer passengers and passenger demand for the next
metro, with 94% of the peaks in passenger demand being
explained by arriving transfer passengers during the morning
peak. There is also a clear correlation between passenger
demand and the dwell time of a metro, with about 45% of the
dwell time being explained by the number of boarding and
alighting passengers during the morning peak. The correlation
between passenger demand and delay is less clear. As the
dwell time is strongly influenced by the number of boarding
and alighting passengers, passenger demand and therefore also
a higher demand due to transfer passengers, can cause a longer
dwell time, but this doesn’t necessarily cause a delay for
the metro. If a metro is already delayed it can contribute
to an increasing delay. The average delay of metros affected
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by transfer passengers also lies 17 seconds higher than for
other metros. The same also holds for headway; a flow of
transfer passengers can contribute to an increasing deviation
in headway, but doesn’t necessarily cause large headway
deviations.

With the set of increasing/decreasing running time between
two stations, increasing the dwell time or dispatching a metro
earlier or later for departure, an improved schedule can be
obtained. The recommended rescheduling actions strongly
depend on the situation at the transfer station as well as
the surrounding stations. For each situation a recommended
solution can be obtained through the TRM. Next to the base
scenario also a scenario is ran in which the arrival distribution
of transfer passengers from historical data is increased with
20% to test what the impact would be on the rescheduling
decisions made by the TRM. From this scenario can be con-
cluded that compared to the base scenario a similar pattern in
rescheduling decisions can be found as compared to the same
data from the base set, but that the decisions are somewhat
intensified. For example a metro that is already scheduled
earlier in the base scenario will now get scheduled even earlier.
Also in this case the rescheduling decisions remain strongly
dependant on the situation. Also a scenario is ran in which the
overall passenger numbers are increased. From this scenario
can be concluded that without optimizing the timetable dwell
times and delays will increase with raising passenger numbers.
Through the TRM also an optimized timetable for this scenario
can be obtained, however the possible improvements do not
increase the same as the dwell times and delays in the network.
From the different runs with the base scenario could already
be concluded that different distributions of arriving transfer
passengers can lead to very different optimal timetables. This
is also the case for running the optimization with an altered
train frequency.

In this study is found that transfer passenger flows from a
lower frequency railway transportation mode can significantly
impact the demand and dwell time of the next arriving urban
rail vehicle. However no strong indications were found that
such a peak in demand alone can cause disturbances in the
urban rail network. A peak in demand caused by transfer
passengers flows can however contribute to the development
of delays over the network. A combination of three different
rescheduling methods is used to obtain the optimized
schedule for several transfer passenger arrival distributions.
Though there are some indications that generally urban rail
vehicles that deal with a peak in transfer passengers tend
to get rescheduled earlier than other urban rail vehicles,
each distribution resulted in different rescheduling decisions
and improvement possibilities. Through the usage of the
SBTM-MN framework recommended rescheduling decisions
can be obtained for each situation.

Limitations and Future Research
There are several limitations that should be taken into account
when interpreting the conclusions of this study.
• The quantified correlations between transfer passenger

demand and the reliability of the metro line were ob-
tained using case study data. The results of these exact

quantification’s are thus only applicable to the used case
study. In similar networks the interactions and found
quantification’s might be similar, however as they can be
dependant on a lot of factors such as station composition,
passenger behaviour, train composition and schedules and
many other factors, careful considerations should be made
when applying the results of this research to other case
studies.

• A limited number of iterations is ran in obtaining the im-
proved timetable for the different scenarios. Many more
combinations of objective weights and passenger data
usage are possible, possibly resulting in better outcomes
than currently achieved.

• This study focused on the situation mainly during the
morning peak. Also the optimization of the schedule is
done using a simulation of morning peak hours only.
Simulating other times of the day could result in very
different outcomes.

• The used simulation framework is adapted in such a way
that the arrival of transfer passengers to the network
is modelled as realistically as possible. Due to limited
resources and to be able to measure the pure effect of
this one transfer station the surrounding transfer stations
are using a flat arrival based on the historical data during
peak hours, resulting in an accurate picture of total
passengers but eliminating peaks in passenger demand
on other stations. In real life this can also influence the
behaviour of metro vehicles, resulting in more complex
recommendations for rescheduling measures.

• Only a part of the total metro network of the case study
was used to perform the optimizations on. Expanding the
optimization area of this research can lead to different
outcomes for the researched areas as well, as more
variables are introduced in the model.

There are still many areas in which the used modelling
framework can be expanded. The obtained improvements
could be further improved further with more computational
capacity, also enabling a broader improvement of the timetable
over the entire network, resulting in a more balanced timetable
which would account for more factors downstream than the
current model.

The current framework is only suited to analyse realised
data. Each run still includes a lot of manual labour to run each
iteration. Further developments of the SBTM-MN framework
are needed to further automate the process to make it poten-
tially interesting for real-time applications. As the obtained
solution keeps changing as the situation on the line and on
the stations changes, this would be a necessity for eventually
being able to apply rescheduling decisions real time. The
current produced solutions could provide a general direction
for rescheduling measures for similar situations.
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objective optimization-simulation approach for real time rescheduling
in dense railway systems,” European Journal of Operational Research,
vol. 286, no. 2, pp. 662 – 672, 2020.

[6] E. Hassannayebi, S. H. Zegordi, M. Yaghini, and M. R. Amin-Naseri,
“Timetable optimization models and methods for minimizing passenger
waiting time at public transit terminals,” Transportation Planning and
Technology, vol. 40, no. 3, pp. 278–304, 2017.

[7] Y. Zhu, H. N. Koutsopoulos, and N. H. Wilson, “A probabilistic
passenger-to-train assignment model based on automated data,” Trans-
portation Research Part B: Methodological, vol. 104, pp. 522 – 542,
2017.
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[16] A. Fonzone, J.-D. Schmöcker, and R. Liu, “A model of bus bunching un-
der reliability-based passenger arrival patterns,” Transportation Research
Procedia, vol. 7, pp. 276 – 299, 2015, 21st International Symposium on
Transportation and Traffic Theory Kobe, Japan, 5-7 August, 2015.

[17] K. Gkiotsalitis and O. Cats, “At-stop control measures in public trans-
port: Literature review and research agenda,” Transportation Research
Part E: Logistics and Transportation Review, vol. 145, p. 102176, 2021.

[18] J. J. Fabian and G. E. Sánchez-Martı́nez, “Simulation-based comparison
of holding strategies for a multibranch light rail service,” Transportation
Research Record, vol. 2648, no. 1, pp. 23–32, 2017.

[19] O. Cats, “Regularity-driven bus operation: Principles, implementation
and business models,” Transport Policy, vol. 36, pp. 223 – 230, 2014.

[20] D. Hürlimann, “Objektorientierte modellierung von infrastrukturele-
menten und betriebsvorgängen im eisenbahnwesen,” Ph.D. dissertation,
ETH Zurich, Zürich, 2002.
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APPENDIX

TABLE XII
VARIABLES, SETS AND PARAMETERS OF THE TRM [2]

Parameter Explanation
Indices and Sets
S Set of stations in the network
s Current station in set stations s ∈ S
M Set of vehicles, with M+ for inbound trains and M− for outbound trains
m Single metro in set of metros m ∈ M
Sm Set of stations to be served by metro m
Ms Set of metros that serve station s
V Set of trains pairs m,n that have a connection at station s
Decision Variables
tarrs,m Time of arrival of vehicle m at station s
tdeps,m Time of departure of vehicle m from station s
Xm Extra variable to linearize absolute deviations from scheduled arrivals
at terminal stations
Parameters obtained from the simulation
ls,m Passenger occupation in vehicle m at the moment of departure from station s
rs,m Passengers left behind by vehiclem at station s
ws,m Passengers waiting at station s when vehicle m arrives
ŵs Passengers waiting at a station s at the time in which the optimization is triggered
t0 Time in which the optimization is triggered

emin
s

Minimal dwell time at station s. This is the maximumbetween the originally scheduled
dwell time and the time needed for passenger exchange in the last iteration.

tdepos,m Realised departure time of trainm from station s in the last simulation
tarrsm Originally scheduled time of arrival of trainm at its destination station
tdepss,m Originally scheduled time of departure of trainm from station s
General Parameters
γsit Crowding multiplier for sitting passengers
γstand Crowding multiplier for standing passengers
βw Cost coefficientmultiplier for waiting time
βi Cost coefficientmultiplier for in vehicle time
βo Cost coefficientmultiplier for schedule deviation at the terminal station
qmin
s,h Minimal running time for the stretch between two consecutive stations s and h
houts Required headway between two consecutive outbound trains at station s
hins Required headway between two consecutive inbound trains at station s
u Allowed margin of difference between iterations
km Sitting capacity of train m
cmin
m,n,s Minimal connection time between trainsm and n at station s



B
Time Distance Diagrams

In this appendix all the time­distance diagrams that were plotted using the available data are presented,
for weekdays only.

Figure B.1: Friday November 1st, 2019
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80 B. Time Distance Diagrams

Figure B.2: Monday November 4th, 2019

Figure B.3: Tuesday November 5th, 2019
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Figure B.4: Wednesday November 6th, 2019

Figure B.5: Thursday November 7th, 2019



82 B. Time Distance Diagrams

Figure B.6: Friday November 8th, 2019

Figure B.7: Monday November 11th, 2019
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Figure B.8: Tuesday November 12th, 2019

Figure B.9: Wednesday November 13th, 2019



84 B. Time Distance Diagrams

Figure B.10: Thursday November 14th, 2019

Figure B.11: Friday November 15th, 2019
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Figure B.12: Monday November 18th, 2019

Figure B.13: Tuesday November 19th, 2019



86 B. Time Distance Diagrams

Figure B.14: Wednesday November 20th, 2019

Figure B.15: Thursday November 21th, 2019
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Figure B.16: Friday November 22th, 2019

Figure B.17: Monday November 25th, 2019



88 B. Time Distance Diagrams

Figure B.18: Tuesday November 26th, 2019

Figure B.19: Wednesday November 27th, 2019
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Figure B.20: Thursday November 28th, 2019

Figure B.21: Friday November 29th, 2019





C
Acronyms Used

For the readabilities of some tables acronyms are used to indicate certain stations in the network. Their
acronym and their corresponding full name can be found in table C.1.

Table C.1: Acronyms Used

Acronym Full Station Name Acronym Full Station Name
ALD Alexander HVT Hoogvliet
ABL Ambachtsland KLZ Kralingse Zoom
BRS Beurs MCP Marconiplein
BNH Binnenhof NSL Nesselande
BLK Blaak NVT Nieuw Verlaat
CCT Capelle Centrum OTF Oosterflank
CPB Capelsebrug OPL Oostplein
CHV Coolhaven PWG Parkweg
AKS De Akkers PNS Pernis
TRP De Terp PSL Prinsenlaan
TTN De Tochten RMH Romeynshof
DHV Delfshaven SKL Schenkel
DZT Dijkzigt SDM Schiedam Centrum
EDP Eendrachtsplein TSL Troelstralaan
GDW Gerdesiaweg TWR Tussenwater
GKD Graskruid VSZ Vijfsluizen
HRL Heemraadlaan VSL Voorschoterlaan
HSP Hesseplaats ZPT Zalmplaat
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D
Model Runs with less performing

objectives

Table D.1: Results of the TRM in the base scenario, Weight set𝑊1

Estimated by TRM Realised through TSM

Iter. Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Improve­
ment

Base 482.47 2568.79 1.39 12.52 2204.18
1 423.01 2500.58 1.45 11.66 2093.94 466.23 2538.00 1.53 12.89 2162.53 1.9%
2 423.59 2416.01 1.58 10.73 2037.84 485.81 2559.87 1.88 14.17 2197.12 0.3%
3 432.95 2477.02 1.96 10.73 2088.66 519.58 2645.07 2.35 17.87 2288.92 ­3.8%

Table D.2: Results of the TRM in the base scenario, Weight set𝑊3

Estimated by TRM Realised through TSM

Iter. Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Improve­
ment

Base 482,47 2576,29 1,39 12,52 12,52
1 470,36 2515,24 0,95 7,8 7,8 482,05 2575,28 1,4 12,6 12,6 ­0.6%
2 470,43 2514,01 0,96 7,84 7,84 514.97 2689.28 1.74 15.17 15.17 ­21.2%
3 498.87 2661.86 1.27 9.66 9.66

Table D.3: Results of the TRM in the scenario with a 30% increase in passengers, weight set𝑊2

Estimated by TRM Realised through TSM

Iter. Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Improve­
ment

Base 634,47 3851,45 1,41 12,09 4278,46
1 567,07 3705,74 1,29 11,18 4087,52 650,24 4016,19 2,11 17,69 4455,58 ­4.1%
2 598,4 3847,91 1,93 15,19 4251,9 677,93 4054,21 2,58 21,04 4513,17 ­5.5%
3 638,75 3869,59 2,44 18,45 4301,58
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94 D. Model Runs with less performing objectives

Table D.4: Results of the TRM in the base scenario with a Blaak arrival data from November 19th, weight set𝑊2

Estimated by TRM Realised through TSM

Iter. Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Waiting
Time [h]

In­Vehilce
Time [h]

Deviation
at
Terminal
[h]

Deviations
from all
departures
[h]

Total
Cost [h]

Improve­
ment

Base 496 2641,48 1,43 12,69 2976,38
1 446,99 2555,24 1,4 11,71 2857,14 484,32 2632,46 1,69 14,47 2960,17 0.3%
2 448,61 2530,89 1,57 11,81 2833,9 531,2 2776,7 2,23 17,81 3136,76 ­5.4%
3 491,92 2669,79 2,12 15,72 3002,97 562,6 2892,56 2,64 21,75 3274,88 ­10.0%
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