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Spectral Domain Green’s Function of an Infinite
Dipole With Nonzero Metal Thickness and

Rectangular Cross Section
Erik A. Speksnijder, Riccardo Ozzola , Graduate Student Member, IEEE, and Andrea Neto , Fellow, IEEE

Abstract— The calculation of the transmission line Green’s
function (TL GF) of an infinite metal line of rectangular cross
section embedded in a generalized stratification is presented. The
proposed procedure is quasi-analytical and extends prior models
to account effectively for the nonzero thickness of the conductors.
From Green’s function of an infinite dipole, an equivalent
network is derived to represent the current propagating along
the dipole and the reactive loading due to the feeding gap
dimensions. The method is validated with numerical simulations
and available experimental results. Examples of dipoles in free
space, microstrips, and leaky dipoles are shown.

Index Terms— Dipole, equivalent circuit, Green’s function,
microstrip, skin effect, spectral domain representation.

I. INTRODUCTION

THE analysis of printed dipoles and microstrips has been
the subject of a large body of the scientific literature [1].

Nowadays, there are several commercial tools [2], [3], [4],
[5] that can easily provide an accurate estimation of the
characterizing parameters. Moreover, to increase the speed and
accuracy of the analysis, in the last 30 years, transmission line
Green’s functions (TL GF) have emerged [6], [7], [8], [9],
[10], [11]. These can perform an efficient analysis and provide
physical insight into the dispersion properties of open-ended
lines. In fact, relying on these transmission line GF, antennas,
such as leaky wave lenses [12], slots [13], and connected
arrays [14], are nowadays routinely designed.

The Terahertz Sensing Group has developed a user-friendly
code [15] that implements the TL GF for the most used open
line configurations, as described in [16]. These latter lines
have become relevant with the advances of sub-millimeter
wave architectures and the corresponding micrometric sizes.
Unfortunately, the TL GF formulation cannot include the metal
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thickness as a characterizing parameter to date. The metal
thickness can be a design parameter if one wishes, for instance,
to realize a resistor or, on the contrary, minimize the losses
in an integrated transmission line. In this article, a TL GF
formulation for dipoles of nonzero metal thickness embedded
in general stratifications is described. Our formulation models
the current in the cross section with a single basis function,
as [6], [8], and [16]; however, the basis function also represents
the vertical current profile.

The spectral domain formulation, similar to [6] and [8],
allows to derive the current spectrum, and from this, the
characteristic impedance, the propagation constant, and the
losses of the line are extracted. In addition, a transmission
line equivalent circuit is introduced to characterize the input
impedance of the dipole. The circuit includes a term associated
with the characteristic impedance of the line and the reactance
associated with the delta-gap excitation, which is dependent
on the cross section and the length of the gap.

This article is structured as follows. In Section II, the
formulation is presented in Section III, the results regarding
the propagation in a dipole in free space, in a microstrip, and
in a printed dipole are discussed, and finally, in Section IV, the
transmission line equivalent circuit is derived, and an example
is presented. Part of the mathematical derivation is discussed
in the appendixes to ease the readability.

II. FORMULATION

The formulation in this section extends [6], [8], and [16]
to account for the thickness of the metal. All the steps are
included to highlight the assumptions and the approximations
used in this article.

Let us consider the infinitely long dipole shown in
Fig. 1(a) and (b), embedded in an arbitrary stratification, ori-
ented along the x-axis, constituted by a homogeneous material
having a conductivity σ (or equivalently a resistivity ρ =

1/σ ), having a rectangular cross section A, wy wide, and wz

thick, and excited by a feeding port 1 long. If the port is
sufficiently small, the fringing of the incident field can be
neglected, and it can be considered as a 1-gap generator,
where the field is assumed to be uniform. The current flowing
in the dipole is assumed to have only the axial component, i.e.,
oriented along x̂ . As the width of the dipole is much smaller
than the wavelength, the separation of variables can be applied

0018-9480 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. (a) Sketch of an infinitely long dipole oriented along x , wy wide,
and wz thick, and excited by a δ-gap generator 1 long, (b) vertical section
of the dipole in an arbitrary stratification, and (c) transmission line equivalent
representation of the stackup.

in the cross section. By resorting to the local form of Ohm’s
law, i.e., j⃗ = σ e⃗, by expressing the total field as the sum of
the incident and the scattered one, the following expression is
obtained:

ρ i(x) jt (y, z) = v(x)ei
t (y, z) + es

x (x, y, z) (1)

where i(x) and jt (y, z) are the longitudinal and transverse
dependencies of the current distribution, respectively, v(x)

and ei
t (y, z) are the longitudinal and transverse expressions

of the incident field, and es
x (x, y, z) is the x-component of

the scattered field. As the excitation is modeled as a 1-gap
generator 1 long, v(x) and ei

t (y, z) can be written as follows:

v(x) =
V0

1
rect

( x
1

)
(2)

ei
t (y, z) = rect

(
y

wy

)
rect

(
z

wz

)
(3)

where rect is the rectangular pulse, i.e., rect(x) := 1
∀|x | < 1/2, and V0/1 is the magnitude of the incident field
on the gap. By isolating the incident field on the left-hand side
and by expressing the scattered field as the radiation from the
currents on the dipole, one can write the following expression:

V0

1
rect

( x
1

)
ei

t (y, z) = ρ i(x) jt (y, z)

− gE J
xx (x, y, z) ∗

[
i(x) jt (y, z)

]
(4)

where gE J
xx (x, y, z) is the stratified media space Green’s func-

tion providing the electric field from the electric currents, and
the symbol ∗ is a spatial convolution which in its extended
form has the following expression:∫

+∞

−∞

∫ wy/2

−wy/2

∫ wz

0

[
gE J

xx

(
x − x ′, y − y′, z − z′

)
×i
(
x ′
)

jt
(
y′, z′

)]
dx ′dy′dz′. (5)

Green’s function gE J
xx in (5) can be expressed in the spectral

domain as follows:

gE J
xx

(
x − x ′, y − y′, z − z′

)
=

1
4π2

∫
+∞

−∞

∫
+∞

−∞

[
G E J

xx

(
kx , ky, z, z′

)
×e− jkx(x−x ′)e− jky(y−y′)

]
dkx dky (6)

where G E J
xx (kx , ky, z, z′) is the spectral domain stratified media

Green’s function, with kx and ky being the wavenumber
domain counterparts of the x- and y-coordinates, and which
is known [17, Appendix A.3] having the following analytical
expression:

G E J
xx

(
kx , ky, z, z′

)
= −

vTM
(
z, z′

)
k2

x + vTE
(
z, z′

)
k2

y

k2
x + k2

y
(7)

where vTM
(
z, z′

)
and vTE

(
z, z′

)
are the voltage solutions at

z of the TM and TE transmission line equivalent problems,
as shown in Fig. 1(c), when the sources are placed at z′. Their
calculation is carried out as in [17, Appendix A].

Thanks to the rectangular cross section, the separation of
variables can be applied, and the dependence of the transverse
current distribution jt can be written as follows:

jt (y, z) = jt,y(y) jt,z(z). (8)

By substituting (6) into (5), one can calculate the Fourier
transforms of i and jt with respect to x ′ and y′, and obtaining
the following expression for the scattered field:

es
x (x, y, z)

=
1

4π2

∫
+∞

−∞

∫
+∞

−∞

∫ wz

0

[
G E J

xx

(
kx , ky, z, z′

)
× I (kx )Jt,y

(
ky
)

jt,z
(
z′
)
e− jkx x e− jky y]dkx dkydz′ (9)

where I (kx ) is the Fourier transform of i , performed with
respect to x , and Jt,y(ky) is the Fourier transform of jt,y(y).
One can more conveniently express (4) in the spectral domain,
where the spectra in kx can be equated as for infinitely long
dipoles, the equality holds for every x , yielding

V0 sinc
(

kx1

2

)
ei

t (y, z)

= I (kx )

[
ρ jt (y, z) −

1
2π

∫
+∞

−∞

∫ wz

0
G E J

xx

(
kx , ky, z, z′

)
× Jt,y

(
ky
)

jt,z
(
z′
)
e− jky ydkydz′

]
. (10)

One can first define the following projection operator:

⟨ f, g⟩A =

∫∫
A

f (y, z)g∗(y, z)dydz (11)

and can then project the left and the right-hand side of (10)
on the test function j̃t , which is expressed as follows:

j̃t (y, z) = j̃ t,y(y) j̃ t,z(z). (12)

This can be defined by having a unitary flux on the cross
section, i.e., ⟨ j̃t , ei

t ⟩A = 1, and therefore, the Fourier transform
of the current I along the dipole can be calculated as follows:

I (kx ) =
V0 sinc(kx1/2)

D(kx )
(13)

Authorized licensed use limited to: TU Delft Library. Downloaded on August 19,2024 at 13:03:04 UTC from IEEE Xplore.  Restrictions apply. 



4532 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 72, NO. 8, AUGUST 2024

where sinc := sin(x)/x is the Fourier transform of the rect
function, and D is the transverse Green’s function of the
dipole, defined in the following manner:

D(kx ) = ρ⟨ jt , j̃t ⟩A −
1

2π

∫
+∞

−∞

∫ wz

0

∫ wz

0[
G E J

xx

(
kx , ky, z, z′

)
× Jt,y

(
ky
)
J̃ t,y

(
−ky

)
jt,z
(
z′
)

j̃∗

t,z(z)
]

× dzdz′dky . (14)

By taking advantage of the formulation in [18, eq. (72)],
whose steps are reported for the sake of completeness in
Appendix A, the integrals in z and z′ can be closed analytically
for suitable choices of jt and j̃ t . For the specific choice of
the basis functions used in this article, their analytical result
of (14) is reported in the supplementary material. The current
distribution along y in (8) can be defined by having the
following edge singular behavior as in [8]:

jt,y(y) =
2

πwy

1√
1 −

(
2y
wy

)2
rect

(
y

wy

)
. (15)

and for (12) as follows:

j̃ t,y(y) =
rect

(
y/wy

)
wy

(16)

to allow for the convergence when calculating the projections
in (14).

A. Profile of the Currents Along z

The choice of jt,z in (8) and j̃ t,z in (12) must take into
account the stratification where the dipole is embedded in,
as imbalanced currents flow on the top and bottom parts of
the metal. To this aim, the current flow is split into two
distributions, each representing a wave propagating in a lossy
metal [19]. The current distributions on the bottom and top
parts of the metal, respectively, are as follows:

jt,1(y, z) =
(1 + j) jt,y(y)e−(1+ j)z/δp

δp
(
1 − e−(1+ j)wz/δp

)
× rect

(
z − wz/4

wz/2

)
(17)

jt,2(y, z) =
(1 + j) jt,y(y)e−(1+ j)(z−wz)/δp

δp
(
1 − e(1+ j)wz/δp

)
× rect

(
z − 3wz/4

wz/2

)
(18)

where δp is the penetration depth, and as sketched in Fig. 2.
When the penetration depth becomes comparable with wz ,
the current profile along z has to include also the multiple
reflections at the interfaces, which are not accounted for
in the proposed method. In fact, to obtain a semianalytical
solution, the current is approximated with a reduced number
of basis functions. In addition to this, to ease the analytical
calculations, due to its compact Fourier transform, we have
chosen for the current distribution along y the edge singular
distribution (15), which does not depend on δp. Therefore,
these assumptions imply approximated results in the low-
frequency regime. By performing the projections on the test

Fig. 2. Sketch of the current distribution on the dipole, highlighting the
y-dependent distribution jt,y(y), the z-dependent distributions jt,z1(z) and
jt,z2(z), and the currents on the axis i1(x) and i2(x).

functions j̃ t,1 and j̃ t,2, which are the split-current counterpart
of (12), the following matrix equation is written:[

V1(kx )

V2(kx )

]
=

[
⟨ei

t , jt,1⟩A

⟨ei
t , jt,2⟩A

]
sinc

(
kx1

2

)
=

[
D11(kx ) D12(kx )

D21(kx ) D22(kx )

][
I1(kx )

I2(kx )

]
(19)

with I1(kx ) and I2(kx ) being the spectrum of the currents
flowing on the bottom and top sides, respectively, as shown
in Fig. 2. The entries Dmn(kx ) are defined in the following
manner:

Dmn(kx ) = ρ⟨ jt,m, j̃ t,n⟩A −
1

2π

∫
+∞

−∞

∫ wz

0

∫ wz

0[
G E J

xx

(
kx , ky, z, z′

)
×Jt,y

(
ky
)
J̃ t,y

(
−ky

)
jt,zm

(
z′
)

j∗

t,zn(z)
]
dzdz′dky

(20)

and by resorting to [18] to express the stratified media Green’s
function, thanks to the chosen current distributions, the space-
domain integrals of (20) can be solved analytically. The
solution of (19) is given in the following expressions:

I1(kx ) =
D22(kx )V1(kx ) − D12(kx )V2(kx )

det(D(kx ))
(21)

I2(kx ) =
D11(kx )V1(kx ) − D21(kx )V2(kx )

det(D(kx ))
(22)

where det(D(kx )) is the 2 × 2 matrix determinant. By solv-
ing the dispersion equation det(D(kx )) = 0, one can find
the two poles kxp,1 and kxp,2. This allows us to interpret the
currents propagating on either the top or bottom part as the
superposition of two contributions expressed as follows:

i1,res,h(x) = − j
D22V1 − D12V2

(det(D))′
e− jkx x

∣∣∣∣
kx =kxp,h

(23)

i2,res,h(x) = − j
D11V1 − D21V2

(det(D))′
e− jkx x

∣∣∣∣
kx =kxp,h

(24)

where the index h denotes either pole 1 or pole 2. The current
on either the bottom (23) or the top (24) of the dipole is the
superposition of the modes associated with pole 1 and pole 2.
By calculating the imbalance between the currents as follows:

R =
i1,res,1(x) + i1,res,2(x)

i2,res,1(x) + i2,res,2(x)

∣∣∣∣
x=0

(25)
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one can write a single asymmetric transverse current distribu-
tion as follows:

jt,z(z) =
(1 + j)

(
R e−(1+ j)z/δp + e(1+ j)(z−wz)/δp

)
δp(R + 1)e−(1+ j)wz/δp

(
e(1+ j)wz/δp − 1

)
× rect

(
z − wz/2

wz

)
(26)

to be used in (8) to calculate the transverse Green’s func-
tion (14), to be used in the current spectrum (13). The
analytical solution of the integrals of (14) involving (26), is
given in the supplementary material.

III. RESULTS

This section discusses the applications of the formulation
derived in Section II.

A. Dipole in Free Space

For a dipole in free space, due to the symmetry of the
problem, the parameter R from (25) is equal to unity, resulting
in the following current profile along z:

jt,z(z) =
(1 + j)

(
e−(1+ j)z/δp + e(1+ j)(z−wz)/δp

)
2δpe−(1+ j)wz/δp

(
e(1+ j)wz/δp − 1

)
× rect

(
z − wz/2

wz

)
(27)

and where the following free-space Green’s function is used:

G E J
xx = −

jζ
k

k2
− k2

x√
k2 − k2

x − k2
y

. (28)

The current distribution i(x) can be found by calculating
the following inverse Fourier transform:

i(x) =
1

2π

∫
+∞

−∞

V0 sinc(kx1/2)

D(kx )
e− jkx x dkx (29)

where the integration path CR has been deformed around the
real axis to avoid the square-root branch cuts in the kx -plane,
as shown in Fig. 3(a). The region of convergence (RoC) of (29)
depends on the observation point x . If x < 0 the convergence
is guaranteed for Im{kx } > 0, otherwise for x > 0 in the
half-plane Im{kx } < 0, therefore, the path needed to close the
integral at infinity has to be chosen accordingly, as shown in
Fig. 3(a), and depending on the path either the pole kxp or
−kxp results enclosed.

As an example, the current is calculated at f = 300 GHz
for a dipole excited with 1 V and having wy = wz = 10 µm,
1 = 20 µm, and σ = 106 S/m, resulting in a good agreement
with CST, as reported in Fig. 3(b). As shown, the residue
contribution alone does not fully represent the current along
the dipole at a large distance from the feed. As shown in [20]
and [21], an infinite dipole in free space also supports a space
wave with logarithmic decay.

B. Microstrip

Unlike the dipoles in homogeneous space, some topologies
support a dominant residue contribution. For instance, if the
dipole is backed by a ground plane, the radiation from the

Fig. 3. (a) Complex plane topology for (29) and (b) current along a dipole
in free space calculated with the inverse Fourier transform of (13), with
the residue contribution, and CST for wy = wz = 10 µm, 1 = 20 µm, and
σ = 1 × 106 S/m, and having unitary excitation.

feed is negligible, and thus, the residue contribution provides
the dominant propagating wave. The effective permittivity and
the losses associated with the propagating mode are shown in
Fig. 4 for different metal widths and thicknesses.

For the topologies that support a dominant residue contribu-
tion, i.e., dipoles embedded in stratifications that significantly
alter the propagation constant with respect to free space,
a characteristic impedance Z0 can be defined for the mode
associated with the residue, defined as in [22] and [23] as
follows:

Z0 = j
D′
(
kxp
)

2
. (30)

The characteristic impedance is instrumental for the definition
of an equivalent circuit that can be used to accurately charac-
terize the impact of the dimensions of the feeding gap.

The characteristic impedance Z0 is evaluated for the dipole
as shown in Fig. 5. It is constituted by a material of conduc-
tivity σ = 4.11 × 107 S/m, and it is printed over a grounded
slab thick d = 10 µm having a relative permittivity εr = 4.3.
Given the topology, it is a microstrip. Fig. 5(a) and (b) shows
the impact of the metal thickness wz on the real part of
the characteristic impedance for different values of the width
wy . As expected, the values of Z0 increase by reducing the
width wy and the metal thickness wz . The impact of wz

on the characteristic impedance is larger when it starts to
be comparable with wy , producing a variation of 12% for
wy = 5 µm for the minimum considered thickness. The results
produced with the method presented here are compared with
the ones obtained with [15], which does not consider the
thickness wz . The results are also compared with the ones
obtained using the commercial tool Sonnet [2]. In both cases,
there is a fair agreement. The attenuation constant is shown
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Fig. 4. Effective permittivity for (a) wy = 15 µm and (b) wy = 5 µm
and attenuation constant for (c) wy = 15 µm and (d) wy = 5 µm of a
dipole constituted by a material of conductivity σ = 4.11 × 107 S/m, printed
over a grounded slab thick d = 10 µm for different values of the metal
thickness wz .

Fig. 5. Real part of the characteristic impedance for (a) wy = 15 µm
and (b) wy = 5 µm and attenuation constant for (c) wy = 15 µm and
(d) wy = 5 µm of a dipole constituted by a material of conductivity
σ = 4.11 × 107 S/m, printed over a grounded slab thick d = 10 µm for
different values of the metal thickness wz .

in Fig. 5(c) and (d) for wy = 15 µm and wy = 5 µm,
respectively. The losses slightly increase by decreasing wy ,
and their dependence on the thickness is minor.

As a further validation of the accuracy of the presented
method, we compare in Fig. 6 our method with the mea-
surements and the simulations of [24], which presents the
state-of-the-art numerical tool [2] for modeling microstrip
lines and their losses. The line has a length of 6.888 mm,

Fig. 6. S12 comparison between the measurements and the simulations of the
81-layer model with 128 cells of [24] and the spectral domain characterization.

Fig. 7. (a) Conductor losses versus the aspect ratio of the metal at 9 GHz, for
a microstrip of thickness wz = 1.524 µm and conductivity σ = 4 × 107 S/m,
when printed on a dielectric having a permittivity εr = 11 and thickness
h = 254 µm. (b) Conductor losses versus the frequency for a microstrip
of thickness wz = 6 µm, width wy = 152.4 µm, and a conductivity
σ = 4 × 107 S/m, when printed on a substrate of thickness h = wy/2 and
permittivity εr = 11.

a width wy = 51 µm and a thickness wz = 7 µm, it is
constituted by a material of σ = 3.45×107 S/m printed at the
interface between two dielectrics having permittivity 12.9 and
3.2, and thickness 75 and 16 µm, respectively. The comparison
shows an excellent agreement between the measurements and
the two simulations. However, the minor differences between
the spectral domain method and the numerical solution of [24]
could be attributed to how the currents are modeled over the
cross section. In fact, in [24], the current in the microstrip is
divided into 81 layers along z and 128 cells along y, while for
the method here proposed, we resort to (15) and (26), which
allows us to derive a semianalytical solution.

Our method is also tested with the conductor losses of [25],
[26] obtained with the concept of the quasi-transverse electro-
magnetic surface impedance. In Fig. 7(a), we reproduce [25,
Fig. 7], which shows the attenuation constant of a microstrip
at 9 GHz versus the aspect ratio wy/wz for a thickness wz =

1.524 µm and conductivity σ = 4 × 107 S/m, when printed
on a dielectric having a permittivity εr = 11 and thickness
h = 254 µm. The results of [25] are in better agreement
with the ones obtained with the commercial tools HFSS and
ADS. However, the present tool allows for a better agreement
with both the reference tools for small aspect ratios, i.e.,
wy/wz ≈ 1, which is the condition where [25] commits the
largest error. In Fig. 7(b), we reproduce [25, Fig. 6] by showing
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Fig. 8. (a) Real and (b) imaginary parts of the characteristic impedance,
and (c) attenuation constant versus the metal conductivity calculated at
300 GHz, for a microstrip of width wy and wz thick printed on a dielectric
h = 10 µm-thick and having dielectric permittivity εr = 4.3. (d) Penetration
depth versus the conductivity calculated at 300 GHz.

the attenuation constant versus the frequency for a microstrip
of thickness wz = 6 µm, width wy = 152.4 µm, and a
conductivity σ = 4 × 107 S/m, when printed on a substrate of
thickness h = wy/2 and permittivity εr = 11. The results
obtained by Hamham et al. [25] are in better agreement
with the reference tools than the spectral domain, which is
superimposed with [26].

The impact of the conductivity σ on the characteristic
impedance is investigated in Fig. 8, where the characteristic
impedance Z0 and the attenuation constant α are studied at
300 GHz for different widths and thicknesses of the microstrip
when it is printed on a dielectric of permittivity εr = 4.3 and
thickness h = 10 µm. As shown in Fig. 8(a), the real part
of the characteristic impedance depends mainly on the width
of the line wy , and, for smaller values of σ , also this latter
and wz starts to have an impact. The imaginary part of Z0 is
shown in Fig. 8(b), exhibiting large negative values, i.e., high
losses for smaller values of σ . The attenuation constant α is
shown in Fig. 8(c). In good conductors α is mainly due to σ

and wy , and weakly dependent on wz . Instead, for low values
of σ , also the metal thickness plays an important role in the
attenuation constant. It is worth mentioning that, as previously
stated the results are affected by the penetration depth [see
Fig. 8(d)] becoming comparable with the other dimensions in
the geometry.

C. Printed Leaky Dipoles

As a final example, we consider the case of a dipole printed
between free space and a dielectric half-space. In this case, the
propagation is much more dispersive with respect to frequency

Fig. 9. (a) Characteristic impedance, (b) effective permittivity, (c) total atten-
uation constant, and (d) attenuation constant of the ohmic losses associated
with a leaky mode supported on a dipole constituted by a metal of conductivity
σ = 4.11 × 107 S/m, width wy = 5 µm, and thickness wz , and printed on a
semi-infinite dielectric medium of permittivity εr = 4.3.

due to the excitation of a dominant leaky wave. The dispersion
can be appreciated by looking at the characteristic impedance
in Fig. 9(a), where the significant imaginary part indicates
the radiation losses. The real part of the effective propagation
constant is shown in Fig. 9(b), where it is noticeable that the
predictions of the present tool associate a significant impact
on the thickness of the metal, which is disregarded in the tool
in [15] and [16]. Finally, the attenuation versus the frequency
is shown in Fig. 9(c) and (d). The radiation-induced losses
are clearly the main cause of the attenuation, as shown in
Fig. 9(d).

As it can be seen from Fig. 9(b), the effective permittivity
decreases when increasing the metal thickness, as a larger
share of the current is located in free space. However, the
effective permittivity depends on the average between the
permittivities of the dielectrics above and below the dipole.
Therefore, the propagation along a thick metal dipole can be
equivalently reproduced on a planar line located between one
of the two original dielectrics and a less dense one. As an
example, in Fig. 10, the permittivity of the dipoles of Fig. 9
are synthesized using [15] by decreasing the permittivity of
the dielectric from εr = 4.3 to εr = 4.05 and εr = 3.97,
and εr = 3.65 to obtain the same effective permittivity of
wz = 0.5 µm, wz = 1 µm, and wz = 5 µm, respectively. The
bandwidth in which the synthesis is valid decreases with the
metal thickness.

IV. TRANSMISSION LINE EQUIVALENT CIRCUIT

Once the TL GF is validated, it is useful to look at the
dominant spectral components of the current, highlighting the
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Fig. 10. Synthesis of the effective permittivity in dipoles with nonzero metal
thickness by using planar dipoles printed on a different medium.

impact of the low and high parts of the spectrum. These are
then used to derive an equivalent circuit that represents the
input impedance of a 1-gap fed dipole.

A. Spectral Components of the Current

In the case of a dominant polar contribution, the current
spectrum (13) can be approximated around the pole kxp with
its Laurent expansion. This constitutes the dynamic component
of the current Idyn, which is expressed as follows:

I (kx ) ≈ Idyn(kx ) =
2kxp sinc(kx1/2)

D′
(
kxp
)(

k2
x − k2

xp

) for kx → kxp. (31)

By performing analytically the inverse Fourier transform
of (31), as in Appendix B, the dynamic current component can
be written, outside the feeding gap, as the following traveling
wave:

idyn(|x | > 1/2) = − j
sinc

(
kxp1/2

)
D′
(
kxp
) e− jkxp |x | (32)

and inside the gap as the following standing wave:

idyn(|x | < 1/2) = 2
1 − cos

(
kxpx

)
e− jkxp1/2

1kxp D′
(
kxp
) . (33)

In Fig. 11, the dynamic current is compared with the total
current at f = 300 GHz in a dipole constituted by a metal
with conductivity σ = 4.11 × 107 S/m of width wy = 30 µm,
and printed on a grounded dielectric slab with permittivity
εr = 4.3 and thickness d = 10 µm for two values of the
gap-size 1 and the metal thickness wz . Inside and outside
the gap area, the dynamic current is associated with variations
dominated by the wavenumber kxp. If away from the gap, the
total and the dynamic currents are superimposed, close to the
gap, the imaginary part of the current is significantly different
from the dynamic one, especially for smaller gap sizes. This
has to be imputed to the current’s high-spectrum component,
which is not taken into account in (31) and becomes more
important when decreasing the gap size.

The quasi-static component of I , i.e., for kx → ∞, can be
approximated by an asymptotic expression for D, as shown in

Fig. 11. Comparison between the total and the dynamic currents at
f = 300 GHz in a dipole constituted by a metal with conductivity
σ = 4.11 × 107 S/m and width wy = 30 µm, and printed on a grounded
dielectric slab with permittivity εr = 4.3 and thickness d = 10 µm for
(a) 1 = 1 µm and wz = 1 µm, (b) 1 = 10 µm and wz = 1 µm, (c) 1 = 1 µm
and wz = 30 µm, and (d) 1 = 10 µm and wz = 30 µm. The gap is highlighted
in the red-shaded areas in the insets.

Appendix C, which yields to the following expression:

D(kx ) ≈ D∞(kx ) = ρ⟨ jt , j̃t ⟩A

−
Jt,y(0)

wy

∫ wz

0

∫ wz

0

[
G E J

xx

(
kx , 0, z, z′

)
jt,z
(
z′
)

jt,z(z)
]

× dzdz′

for kx → ∞. (34)

In Fig. 12, the relative error between D and D∞, i.e.,
|D − D∞|/|D| is shown versus kx for different values of the
width wy . The convergence rate increases with wy , as for
smaller values, the decay in (69) is slower.

B. Dynamic Admittance

Once the nature of the current is established, it suggests
deriving the equivalent circuit for the input impedance of a
delta gap fed dipole. The ideas are similar to those discussed
in [13], [27], [28], and [29]. With respect to those cases, the
presentation here allows us to highlight the impact of the metal
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Fig. 12. Relative error between D and D∞ versus kx calculated for
different values of wy for a dipole constituted by a metal with conductivity
σ = 4.11 × 107 S/m of thickness wz = 1 µm, and printed on a grounded
dielectric slab with permittivity εr = 4.3 and thickness d = 10 µm.

Fig. 13. Transmission line equivalent circuit of an infinitely long dipole,
represented by two transmission line sections placed in series and connected
to a transformer, constituting Ydyn,dip, and Ydyn,src and Yqs placed in parallel.

thickness. The equivalent circuit is shown in Fig. 13, and all
its components will be discussed in this section.

The admittance associated with the dynamic component of
the current can be calculated with the following integral in
the kx complex plane extending to the dipoles the procedure
presented for the slots in [27]:

Ydyn = −
1

2π

∫
+∞

−∞

2kxp sinc2(kx1/2)

D′
(
kxp
)(

k2
x − k2

xp

)dkx (35)

whose solution is derived in Appendix D, and is written as
follows:

Ydyn = Ydyn,dip + Ydyn,src (36)

where Ydyn,dip is associated with the propagation along the
dipole and expressed as follows:

Ydyn,dip = −
j

D′
(
kxp
) sinc2

(
kxp1

2

)
=

1
2Z0

n2 (37)

and Ydyn,src is associated with the standing wave confined
inside the source and calculated with the following analytical
expression:

Ydyn,src =
2
(
sinc

(
kxp1

)
− 1

)
1kxp D′

(
kxp
) . (38)

Then, one can derive the transmission line equivalent circuit
shown in Fig. 13, where two transmission line sections of
characteristic impedance Z0 are connected in series to a
transformer of turn ratio n, and placed in parallel with Ydyn,src.
The dynamic admittance Ydyn represents only the admittance
associated with modal current waves traveling along the dipole
with propagation constant kxp, while the quasi-static effect
of the gap has to be separately taken into account. This
corresponds to the opportune modeling of the fast-varying

Fig. 14. Comparison of the input admittance calculated with the full spectral
integral and with the equivalent circuit of a dipole constituted by a metal with
conductivity σ = 4.11 × 107 S/m and width wy = 20 µm, and printed on a
grounded dielectric slab with permittivity εr = 4.3, and thickness d = 10 µm
for (a) fixed value of the metal thickness and different gap lengths and (b) fixed
gap length and different metal thicknesses.

current in the gap area, that were highlighted in the insets
of Fig. 11.

C. Quasi-Static Admittance

One can define the quasi-static admittance by using the
following expression:

Yqs =
1

2π

∫
+∞

−∞

sinc2(kx1/2) − sinc2(kx1large/2
)

D∞(kx )
dkx (39)

where 1large is a feeding gap much larger than 1, typically
in the order of λ0/10. The admittance Yqs represents the
reactance associated with the capacitive effect given by the
fields fringing around the feeding gap. The numerator of (39)
isolates the capacitance of the gap of size 1. In fact, the
subtraction operates as a filter that removes the low part
of the spectrum, while the quasi-static component is left
untouched as this component is negligible for 1large. As shown
in Fig. 11, the impact of the quasi-static component of the
current increases when decreasing the gap size or increasing
the metal thickness, as these two parameters increase the gap
capacitance. The definition of the quasi-static admittance Yqs
allows us to derive the transmission line equivalent circuit
shown in Fig. 13, where Yqs is placed in parallel with Ydyn.

While the concept of dynamic admittance is meaningful
only in the presence of a dominant polar contribution (e.g.,
in a mictrostrip), the quasi-static component can always be
defined.

In Fig. 14, the input admittance of a dipole obtained by
integrating (13) on the gap is compared with the one calculated
with its transmission line equivalent circuit. The dipole is
constituted by a metal having a conductivity σ = 4.11 ×

107 S/m and width wy = 20 µm, and it is printed on a
grounded dielectric slab having permittivity εr = 4.3 and
thickness d = 10 µm. In Fig. 14(a), the input admittance
is calculated for a metal thickness wz = 5 µm and for the
length of the feeding port 1 = 1 µm and 1 = 5 µm. For
every value of 1, there is an excellent agreement between the
values obtained with the full integration and those obtained
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Fig. 15. (a) Transmission line circuit. (b) Lumped element circuit.

with the equivalent circuit. Moreover, one can recognize the
effect of the shunt capacitance associated with the gap, as the
imaginary part increases when decreasing 1, leaving the real
part unaffected. In Fig. 14(b) in turn, the input admittance
is studied for 1 = 1 µm, for different values of the metal
thickness. This latter affects both the real and imaginary parts,
as it impacts both the characteristic impedance of the line and
the capacitance of the feeding gap.

V. CONCLUSION

In this contribution, we derive a TL GF formalism to model
dipoles with nonzero metal thickness. Thanks to the spectral
domain formalism, the procedure can be used to efficiently
analyze dipoles embedded in an arbitrary stratification, and
allowing the analysis of microstrips and dipoles printed at the
interface of two media radiating leaky waves. By comparison
with state-of-the-art numerical techniques, up-to-par perfor-
mances are shown. Finally, a transmission line equivalent
circuit is derived, allowing for a deep physical insight on the
propagation mechanism along the dipole, and on the effect of
the feeding gap.

APPENDIX A
DERIVATION OF THE FORMULATION FOR THE

POTENTIAL OF [18]

In the transmission line equivalent problem of Fig. 1(c), with
the positive z-axis oriented upward and the unitary current
source located at z′, the voltage solution at z ∈ [t1; t2]
can be expressed as the sum of two terms. One models the
propagation in an infinite transmission line with characteristic
impedance Z0i and propagation constant kzi , while the other
one accounts for the reflections given by the discontinuities at
z = t1 and z = t2. This problem can be simplified with the
transmission line sketched in Fig. 15(a), where the loads ZL1
and ZL2 are the impedances seen at z = t1 and z = t2, looking
downward and upward, respectively. The voltage at z is given
by the following expressions:

v1(z) = V +

1 e jkzi z(1 + 0L1e j2kzi (t1−z)) (40)

v2(z) = V +

2 e− jkzi z(1 + 0L2e− j2kzi (t2−z)) (41)

where 1 and 2 denote the section below and above the source,
respectively, and

0L1 =
ZL1 − Z0i

ZL1 + Z0i
(42)

0L2 =
ZL2 − Z0i

ZL2 + Z0i
(43)

are the reflection coefficients between the loads ZL1 and ZL2

and the line, calculated at z = t1 and z = t2, respectively.
By enforcing the voltage at z′ to be equal to the input

impedance Z in multiplied by the 1-A excitation, one can derive
the following expressions for V +

1 and V +

2 :

V +

1 = Z in
e− jkzi z′

1 + 0L1e j2kzi (t1−z′)
(44)

V +

2 = Z in
e jkzi z′

1 + 0L2e− j2kzi (t2−z′)
(45)

which yield to the following expressions for v1(z) v2(z):

v1(z) = Z in
1 + 0L1e j2kzi (t1−z)

1 + 0L1e j2kzi (t1−z′)
e jkzi(z−z′) (46)

v2(z) = Z in
1 + 0L2e− j2kzi (t2−z)

1 + 0L2e− j2kzi (t2−z′)
e− jkzi(z−z′). (47)

The input impedance Z in is the parallel between Zu and Zd ,
i.e., the impedances seen at z′

+
upward and z′

−
downward,

respectively. Zd and Zu can be expressed as follows:

Zd = Z0i
1 + 0L1e j2kzi(t1−z′)

1 − 0L1e j2kzi (t1−z′)
(48)

Zu = Z0i
1 + 0L2e− j2kzi(t2−z′)

1 − 0L2e− j2kzi (t2−z′)
(49)

which allow us to calculate Z in as their parallel as follows:

Z in =
Z0i

2

(
1 + 0L2e− j2kzi(t2−z′)

)(
1 + 0L1e j2kzi(t1−z′)

)
1 − 0L10L2e− j2kzi (t2−t1)

.

(50)

By using (50) in (46) and (47), one obtains the following
expressions:

v1(z) =
Z0i

2

(
1 + 0L1e j2kzi (t1−z)

)(
1 + 0L2e− j2kzi(t2−z′)

)
1 − 0L10L2e− j2kzi (t2−t1)

× e jkzi(z−z′) (51)

v2(z) =
Z0i

2

(
1 + 0L1e j2kz(t1−z′)

)(
1 + 0L2e− j2kzi (t2−z)

)
1 − 0L10L2e− j2kzi (t2−t1)

× e− jkzi(z−z′). (52)

By calculating the products in (51) and (52), one can write
the following voltage expression:

v1(z) =
Z0i

2

(
e jkzi(z−z′) + Q

(
z, z′

))
(53)

v2(z) =
Z0i

2

(
e− jkzi(z−z′) + Q

(
z, z′

))
(54)

where

Q
(
z, z′

)
=

0L2e− jkzi(2t2−z−z′) + 0L1e− jkzi(z+z′
−2t1)

1 − 0L10L2e− j2kzi (t2−t1)

Authorized licensed use limited to: TU Delft Library. Downloaded on August 19,2024 at 13:03:04 UTC from IEEE Xplore.  Restrictions apply. 



SPEKSNIJDER et al.: SPECTRAL DOMAIN GREEN’S FUNCTION OF AN INFINITE DIPOLE 4539

+
20L10L2e− j2kzi (t2−t1) cos

[
kzi
(
z − z′

)]
1 − 0L10L2e− j2kzi (t2−t1)

. (55)

Therefore, one can write the following expression which is
valid in either regions 1 and 2:

v(z) =
Z0i

2

(
e− jkzi |z−z′

|
+ Q

(
z, z′

))
(56)

APPENDIX B
DYNAMIC CURRENT SPACE DISTRIBUTION

Given the expression of the spectrum of the dynamic
current (31), its space domain expression can be conveniently
written as follows:

idyn(x) = f (x) ∗
1
1

rect
( x
1

)
=

1
1

∫ 1/2

−1/2
f
(
x − x ′

)
dx ′ (57)

where f is a function to be determined, whose spectrum is
defined in (31), and which can be calculated with the following
inverse Fourier transform:

f (x) =
1

2π

∫
+∞

−∞

2kxp

D′
(
kxp
)(

kx − kxp
)(

kx + kxp
)e− jkx x dkx .

(58)

The considerations regarding the integral (58) are the same
for (29). However, as we want do derive an analytical expres-
sion for f , both x < 0 and x > 0 must be considered.
By combining the expressions resulting from the two con-
ditions, one obtains f (x) as follows:

f (x) = − j
e− jkxp |x |

D′
(
kxp
) (59)

which is a single expression valid for every value of x .
Consequently, one can calculate the dynamic current as

follows:

idyn(x) = −
j

1D′
(
kxp
) ∫ 1/2

−1/2
e− jkxp |x−x ′

|dx ′ (60)

where, due to the absolute value at the exponent, different
approaches have to be used.

If x < −1/2 or x > 1/2, (60) is written as follows:

−
je∓ jkxp x

1D′
(
kxp
) ∫ 1/2

−1/2
e± jkxp x ′

dx ′ (61)

where the choice of the signs at the exponent is for x >

1/2 and x < −1/2, respectively, and by calculating the
integral, one finds (32).

If −1/2 < x < 1/2, one can define the change of variable
x ′′

= x − x ′, write (60) as follows:

−
j

1D′
(
kxp
)∫ x+1/2

x−1/2
e− jkxp |x ′′

|dx ′′ (62)

and expand the absolute value as follows:

−
j

1D′
(
kxp
)( ∫ 0

x−1/2
e jkxp x ′′

dx ′′
+

∫ x+1/2

0
e− jkxp x ′′

dx ′′

)
(63)

and finally, by integration, one obtains (33).

APPENDIX C
ASYMPTOTIC

By recalling the definition of the sinc function

sinc
(

kywy

2

)
=

1
wy

∫ wy/2

−wy/2
e jky ydy (64)

the integral between −wy/2 and wy/2 can be written as the
superposition of three contributions as follows:

1
wy

(∫
+∞

−∞

e jky ydy −

∫
−wy/2

−∞

e jky ydy −

∫
+∞

wy/2
e jky ydy

)
.

(65)

By substituting (65) into (14), one obtains the following
expression:

D(kx ) = D0 + D1(kx ) + D2(kx ) (66)

where

D0 = ρ⟨ jt , j̃t ⟩A (67)

D1(kx ) = −
Jt,y(0)

wy

∫ wz

0

∫ wz

0

[
G E J

xx

(
kx , 0, z, z′

)
× jt,z

(
z′
)

j̃∗

t,z(z)
]
dzdz′

(68)

D2(kx ) =
1

2πwy

∫
C∞

[∫ wz

0

∫ wz

0

( ∫
+∞

−∞

G E J
xx

(
kx , ky, z, z′

)
×Jt,y

(
ky
)
e jky ydky

)
jt,z
(
z′
)

j̃∗

t,z(z)dzdz′
]
dy

(69)

with C∞ = [−∞, −wy/2] ∪ [wy/2, +∞]. For large values
of kx , kz has a large imaginary part, making the propagation
along z strongly attenuated. Therefore the contributions of the
reflections are negligible, and the source can be represented
as to be radiating in a homogeneous medium, as shown in
Fig. 16. The integral between the round brackets in (69) can
be written in the following form:

(
k2

− k2
x

) ∫ +∞

−∞

J0
(
kywy/2

)√
k2 − k2

x − k2
y

e jky y′

dky (70)

where J0 is the first-kind zeroth-order Bessel function and
the homogeneous space Green’s function has been used. The
solution of (70) can be seen as the field radiated at y′

∈ C∞ by
lines of current located between −wy/2 and wy/2 and having
the profile of jt y and having expression

π
(
k2

− k2
x

)
H (2)

0

(√
k2 − k2

x |y
′
|

)
∗ jt y

(
y′
)

(71)

where H (2)
0 is the second kind zeroth order Hankel function.

For kx → ∞, the Hankel function represents a spatial
decay, which can be made arbitrarily small. Therefore, the
contribution of (69) results negligible with respect to (67)
and (68).
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Fig. 16. Sketch of cut-off modes propagating in stratified media and their
equivalent propagation in a homogeneous medium.

APPENDIX D
DYNAMIC ADMITTANCE

The dynamic admittance Ydyn is defined with the spectral
domain integral (35) and due to its integrand function can be
expressed—in a similar fashion as (57)—with the following
space integrals:

Ydyn =
1

12

∫ 1/2

−1/2

∫ 1/2

−1/2
f
(
x − x ′

)
dxdx ′ (72)

where the function f is the same as (59), and which allows
us to express Ydyn as follows:

Ydyn = −
j

D′
(
kxp
)
12

∫ 1/2

−1/2

(∫ 1/2

−1/2
e− jkxp |x−x ′

|dx ′

)
dx . (73)

The integral in brackets can be calculated as in (63), which
results into (33), allowing us to calculate the dynamic admit-
tance with the following single integral:

−
2

D′
(
kxp
)
1kxp

∫ 1/2

−1/2

(
1 − cos

(
kxpx

)
e− jkxp1/2)dx (74)

which can be closed into the following expression:

2
D′
(
kxp
)
1kxp

(
e− jkxp1/2 sinc

(
kxp1/2

)
− 1

)
. (75)

By expanding the complex exponential in (75) into sine and
cosine and by using the identity cos(x) sinc(x) = sinc(2x),
(75) can be rewritten as follows:

2
(
sinc

(
kxp1

)
− 1

)
1kxp D′

(
kxp
) −

j
D′
(
kxp
) sinc2

(
kxp1

2

)
(76)

which yields (36)–(38).
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