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Salt cavern volume estimation from pressure response: 
compressibility-based method 

Luiza Queroga Caldas 

Technische Universiteit Delft – Delft, Netherlands 

___________________________________________________________________________________ 

Abstract 
Salt caverns formed by solution mining may cause soil subsidence, because the surrounding adapts to fill the 
void (cavity) created in the strata. The cavern volume is hence not only a function of salt extraction (estimated 
from mass balance) but also a function of salt creep. The cavern size can be measured by sonar, but a less 
costly way would be to correlate cavern volume to cavern compressibility. The size of the cavern can be obtained 
by a compressibility test. The compressibility test consists of injecting brine or fresh water into the cavern, 
causing a pressure build-up. The pressure increase depends on the cavern volume and compressibility. 

Bérest et al. (2006) [1] derived an equation that expresses the pressure response to injection of a volume V 
of fresh water. The equation includes creep that can be derived from a separate geometric creep model that 
relates the strain to the stress history using the Norton-Hoff law for describing an Arrhenius type of response 
model, and thermal expansion effects influenced by the geothermal temperature. It also considers Darcy flow 
and leakage through the permeable salt cavity. 
This thesis investigates the sensitivity related to the various mechanisms in the Bérest and Van Sambeek (2005) 
model. It also extends the model by introducing chemical dissolution of salt effects and taking into account the 
impact of the sump (insoluble precipitates at the bottom of the cavern). We state the model equations and solve 
them for an example of interest. We can also compare the calculated pressure response to the results of a 
pressure test. In this pressure test a given volume of fresh water is injected above the sump and produced at 
the top of the cavity. The produced salt concentration is also one of the parameters measured in the test.  
There are at least two widely used methods to obtain or predict cavern size of active salt solution mining caverns, 
namely sonar surveys and leaching simulators. However, these data can be flawed due to uncertainties of the 
methods and the accuracy of measuring devices like flow meters. The compressibility test can then be used as 
an additional survey method. The test execution is simple and inexpensive, making it possible to be performed 
more frequently than a sonar survey. 
The cavern volume is obtained from a compressibility test data by using a solution that includes not only the 
injection volume, but also volumes introduced by other phenomena. These other phenomena are caused by 
thermal, hydraulic, mechanical, and chemical influences. Previous work has attempted to introduced solutions 
incorporating these influences for idle caverns. The proposed solution incorporates these effects in an active 
leaching salt cavern. It also introduces the impact of sump (insoluble on cavern bottom) to be included in the 
model. The proposed solution is then tested against field data. 
The work here differs from previous work that it presents a comprehensive description of the various methods 
used in the literature and practice. Where current models predict cavity volumes with a mean absolute 
percentage error of 33% (Thiel’s method for BAS3O) to 127% (Bérest  et al. for BAS4) for the studied caverns 
(BAS3O and BAS4), the model here, which includes the presence of insoluble particles, and a well-established 
creep model is able to predict cavity volumes to an accuracy of 33% (proposed model for BAS3O) to 12% 
(proposed model for BAS4).  

Keywords: salt solution mining, compressibility, pressure test, cavern volume estimation. 
___________________________________________________________________________________ 
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1. Introduction 
Subsurface salt caverns resulting from solution 
mining can cause surface subsidence.  Subsidence 
must be tracked and reported to government 
agencies. A GPS (Global Positioning System) real 
time survey is used to keep track of the surface 
level. The data give information on the size of the 
subsidence bowl (described by a Gaussian curve as 
function of distance to cavern center location), with 
a maximum level drop occurring above the cavern 
for the case of single caverns. Once the level drop 
reaches a limit the leaching operation in that cavern 
must terminate.  

A model for subsidence caused by salt caverns is 
presented by Fokker, [2]. The key input in 
determining and predicting the level of subsidence 
is the size of the open cavity and volume of salt 
dissolved (produced salt volume). 

𝑉௦ = 𝑉ௗ − 𝑉௢௖  ,             (1) 

where, 𝑉௦ refers to the subsidence volume, 𝑉ௗto the 
dissolution volume and 𝑉௢௖  to the open cavity 
volume. Echo measurements are the most common 
imaging tool used to obtain salt cavern shapes and 
volumes and are accomplished using a costly 
wireline procedure. Depending on the eccentricity 
of the shape of the cavity and level of irregularities, 
the sonar tool alone might not be enough to get an 
accurate volume.  

The use of imaging equipment has pitfalls as to 
inferring an under- or overestimation of cavern 
volumes. This drawback is caused by the inability of 
using acoustic waves to measure behind sharp 
edges [3]. Indeed, the acoustic imaging tool, Figure 
1, has a characteristic wave frequency of 100 to 600 
kHz (wave length is dependent on sonic velocity in 
the infill fluid) and it might not be able to measure 
behind sharp points in the cavity due to level of 
resolution of the wave propagation.  

Cavern volume underestimation can also be 
caused by insoluble minerals and trapped brine at 
the bottom of the cavern (sump), which prevents to 
get an accurate profile below the sump.  

 

 

Figure 1 Illustration of echo measurement operation in a 
salt cavity, [4].  

Wireline operations are particularly difficult in 
deviated wells, resulting in a long period of shut in 
to perform the sonar survey. In some cases, it 
happens that the tool cannot pass the well and 
cannot be used. In optimal scenarios of vertical 
wells, the operation takes days causing production 
deferment. Therefore, it is useful to develop 
methods to determine the cavern volume using flow 
rates and pressure data. This is also useful to keep 
continuous, frequent, monitoring of the cavity 
volume; meanwhile sonar measurements are done 
on a yearly basis.  

To assure an accurate sonar measurement of 
cavern size a volume balance strategy is used. This 
is a secondary tool for quality control of the echo 
survey. However, both (echo and volume balance) 
methods present uncertainties linked to equipment 
calibration and consistency in procedure (caused 
for instance by a change of service company or 
tool). A third method uses pressure data. This 
alternative can then be of help to reconcile 
discrepancies in the results; or replace some of the 
costly echo volume measurement by a cheap 
alternative in the form of a pressure cycle, 
measuring flow volumes only. 

Indeed, the proposed solution is to obtain volume 
estimation from pressure trends, since a correlation 
between cavern size and pressure response can be 
established from compressibility tests, [5]. 
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Three different approaches to obtain cavern volume 
from compressibility tests are applied to field data 
viz Thiel [5], Van Sambeek et al [6] and Bérest et al. 
[1]. They are compared with an alternative 
methodology presented in this paper. 

2.  Concepts review 
The salt cavern system is represented in Figure 2. 
The illustration depicts a salt solution mining cavern 
of irregular shape under indirect production mode, 
when brine is produced from central tubing. The 
cavern upward growth is controlled by a small 
volume of inert fluid with lower density than water, 
called blanket.  

 

Figure 2 Representation of a salt cavern as a result of 
solution mining.  

The injected water then circulates inside the cavern 
and dissolves the salt at the walls. This dissolution 
process liberates insoluble particles (clay and 
calcium sulphate in the case of BAS3O and BAS4 
caverns) that accumulate at the bottom of the cavity 
and is referred to as sump. A dead zone is 
composed of saturated brine that rest at the bottom 
due to undersaturated brine buoyance.  

2.1. Compressibility Test 
The compressibility test consists of injecting fluid 
into the cavern during production shut-in causing 
compression of the system.  

During a compressibility test one of the lines is shut-
in and the opposite line is used for injection. This 
causes a pressure build-up which correlates with 
the cavern volume, Figure 3. In this way it is 
possible to obtain the cavern size. The pressure 
increase will be linearly related to the volume 
injection if only elastic behavior occurs, [7].  

 

Figure 3 Compressibility test elastic response, [5]. The 
illustration on the left is a schematic drawing of the test 
with an injection volume on central tubing (∆𝑉௜௡௝) and 
pressure reading on annular (∆𝑃). On the right is the plot 
of ∆𝑉௜௡௝ on vertical axis and ∆𝑃 on horizontal axis, where 
the slope (𝛽𝑉) is the product of cavern volume and cavern 
compressibility. 

However, this linear relationship only occurs in short 
tests. In long tests other influences in the system 
must be taken into account, which will result in a 
non-linear relationship between injection and 
pressure response. The coupling of all phenomena 
results in a THMC (Thermal Hydraulic Mechanical 
Chemical) process, which includes: 

- Brine warming; 
- Brine permeations and leaks; 
- Cavity creep; 
- Rock dissolution. 

Also, elastic behavior is still accounted for as cavern 
compressibility.  

2.2. Rock contribution 
The rock salt exhibits an elastic-viscoplastic 
behavior, which is a superposition of both elastic 
and viscoplastic deformation. 

The elastic component of the deformation is 
described by cavity compressibility.  
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2.2.1. Cavity elastic deformation 
When fluid is injected into the cavern the formation 
deforms elastically to increase its volume, while the 
fluid within the cavern is compressed. The elastic 
deformation is an immediate response besides 
other time dependent factors. Assuming elastic 
behavior the cavern wall volumetric deformation is 
determined by a relationship between the rock 
elastic constants (𝐸, 𝜗), effective stress (𝜎௘௙௙ =

𝑃ஶ − 𝑃௖), and cavity geometry (shape factor 𝐹), [8].  

ఋ௏

௏
= −𝐹

(ଵାణ)

ா
(𝑃ஶ − 𝑃௖)  (2) 

The full derivation is given in appendix B. The 
effective stress is function of cavern pressure (𝑃௖) 
and the lithostatic stress (or pressure) (𝑃ஶ) which is 
assumed as uniform all over the cavity. Rock salt is 
an isotropic material, and therefore the maximum 
(𝑆𝐻) and minimal (𝑆ℎ) horizontal stresses have the 
same value, [9]. The overburden stress is referred 
as 𝑆𝑣, and defined as function of depth and 
overlying strata density, [10]. 

𝑆𝑣 =  ∫ 𝜌(𝑧)𝑔 𝑑𝑧
௭

଴
  (3) 

Considering the average rock salt density of 
2160 𝑘𝑔/𝑚3 (density of halite), the vertical stress as 
function of depth is approximately 2.12 𝑀𝑃𝑎/𝑘𝑚, 
[11]. For a rock of viscoelastic behavior, according 
to Maxwell and Burgers model, the stress state 
approaches lithostatic condition. The assumption of 
lithostatic condition is known as Heim’s rule, and 
𝑆𝐻 = 𝑆ℎ = 𝑆𝑣 after a long time, [11] [12] ,therefore 
𝑃ஶ → 𝑆𝑣.  

From eq. (2), cavern isothermal compressibility is 
obtained in appendix B, resulting in, 

𝛽௖ = 𝐹
ଵାణ

ா
.         (4) 

The parameters are obtained from a rock sample 
laboratory analysis, except for the shape factor. 

2.2.2. Shape factor 
The shape factor can vary from 2 for the case of an 
infinite cylinder to 1.5 (least compressible) for the 
case of a sphere. For flat cavities (penny-shaped), 
the shape factor can be greater than that of an 
infinite cylinder, [8]. Figure 4 shows the impact of 
cavern geometry on the shape factor. 

 
Figure 4 Cavern shape factor for an elliptical cavern, [8]. 
On the vertical axis is the shape factor varying from 1.5 
for a sphere to 2 for a cylinder. On the horizontal axis is 
the ratio between cavern length and height. 

During a cavern life span the shape factor changes 
due to changes in leaching mode. Under indirect 
dissolution (or production mode) most dissolution 
occurs at the injection depth (casing shoe), causing 
a faster cavern radial growth. Hence, cavern 
shaped is not constant in time. 

2.3. Fluid contribution 
Inside salt cavities used for salt solution mining 
three fluids are present: brine, inert fluid (diesel), 
and insoluble mixture. Each of these fluids are 
present in different proportions. The brine is the 
main fluid occupying the circulation zone of the 
cavern and can have different salt concentrations 
with depth or radially due to diffusion. The inert fluid 
is presented at significantly smaller volume. The 
sump is composed by a mixture of brine and 
insoluble material that precipitates at cavern 
bottom.  

The fluid trapped inside of the cavern will compress 
to accommodate the injected volume during 
compressibility test. The final compressibility is 
obtained from the combination of each of fluids in 
the system. 

2.3.1. Brine compressibility 
When the composition is poorly known, which will 
be almost always the case in practice, brine 
isothermal compressibility is obtained from echo 
surveys.  From this datum brine compressibility is 
obtained [7], 
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𝛽௕ =
ଵ

ఘ್௖೑
మ.         (5) 

A reasonable value for brine compressibility in 
saturated caverns is 2.57 × 10ିଵ଴ 𝑃𝑎ିଵ, [13]. If the 
cavity is undersaturated due to high fresh water 
injection volumes and low production, brine 
compressibility can be higher, but never more than 
that of fresh water (4.45 × 10ିଵ଴ 𝑃𝑎ିଵ). In fact, 
dissolution of the salt occurs very rapidly, as per 
calculations in Appendix D, and therefore the 
compressibility will tend to be that of a saturated 
brine. 

2.3.2. Blanket compressibility  
Blanket compressibility is much larger than brine. 
The total open cavern compressibility is defined as 
the volume average between diesel and brine, [7]. 

𝛽௙ = 𝑥𝛽௕ + (1 − 𝑥)𝛽ௗ          (6) 

However, the volume fraction of inert fluid is very 
small compared with that of brine. Therefore, in 
most cases (for active salt solution mining caverns) 
the blanket compressibility impact can be neglected 
and 𝛽௙ → 𝛽௕. 

2.3.3. Sump compressibility 
In previous studies the sump influence is 
disregarded and only the volume of free brine is 
considered. The sump is present on the bottom of 
the cavern, and it consists of an accumulation of 
precipitation of insoluble material and trapped brine. 
This creates a liquid-solid mixture on the bottom of 
the cavity, [14]. The compressibility of the sump is 
obtained by an average between trapped brine and 
insoluble components, or from analysis of samples.  

𝛽௦ = (1 − 𝑦)𝛽௜௡௦ + 𝑦𝛽௕          (7) 

For old salt caverns the volume of sump becomes 
extensive, thus impacting in total cavern 
compressibility. Cavern total compressibility is 
obtained from the summation of cavity and average 
of infill fluid compressibility,  

𝛽 = 𝛽௖ + 𝑦𝛽௕ + (1 − 𝑦)𝛽௦.         (8) 

The impact of sump is included in the data analysis 
results, as obtained from volume balance data. 

3. Proposed model 
The behaviour of the cavern depends in four main 
physical phenomena, namely; 

 Thermal – brine warming; 

 Hydraulic – brine losses; 
 Mechanic – rock creep, 

 Chemical – salt dissolution. 

These effects are more significant in large sized 
(100,00 𝑚ଷ) caverns at great depths (> 2,000𝑚), 
since at those depths temperatures and overburden 
pressure are high. The cavern volume will 
determine the significance of the contribution of 
these factors when compared with injected 
volumes, as presented in normalized values in 
appendix D and appendix E.  

Due to these phenomena it is not possible to obtain 
a linear relationship between pressure build up and 
injectivity in a compressibility test as proposed by 
Thiel, [15]. The solution is to incorporate such 
effects into the model by taking each influence 
separately as proposed by Bérest [1] and Van 
Sambeek, [6]. 

The individual effect of each phenomenon is 
discussed in detail below. 

3.1. Thermal 
At cavern depth the geothermal temperature is 
higher than that of the injected water, or of the 
average temperature of the brine inside the cavity. 
As a result, the brine warms up and expands. The 
added thermal volume is a function of the 
temperature increase inside the cavern. 

The added volume caused by thermal phenomena 
is described by the brine volumetric thermal 
expansion coefficient,  

∆𝑉௧௛ = 𝛾௕𝑉௖∆𝑇௕.                  (9) 

The brine temperature increase is obtained from the 
heat equation for a cavity bounded by geothermal 
temperature and known initial brine temperature. 

Rock temperature can be calculated from the 
correlation between depth and geothermal gradient 
𝑇ஶ = 10 + 0.03 ∗ 𝑧, where 𝑧 is depth in 𝑚. However, 
temperature within rock salt is lower than that of 
other formations, Figure 5. This is due to the high 
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thermal conductivity of rock salt (𝐾௦
௧௛ = 6 𝑊/𝑚௢𝐶), 

[16]. 

 

Figure 5 Geothermal temperature as function of depth for 
rock salt (Ez53 cavity), [16].  

The model for temperature increase is then 
obtained by using the heat equation and Fourier’s 
law for conductive heat transfer. Van Sambeek [6] 
proposed the solution for the temperature increase, 
assuming constant geothermal temperature at rock 
wall and average initial brine temperature. The 
derivation of the solution is given in appendix B. For 
the spherical cavity the solution can be simplified to,  

∆𝜃 =
ଷఞ

గ
[𝜃ோ

ஶ − 𝜃௜(0)] ൤
௧

௧೎
೟೓ + 2ට

௧

௧೎
೟೓൨.            (10) 

We did not attempt to verify this solution in this work 
since the details of the derivation provided by Van 
Sambeek are unclear.  

The thermal capacity ratio is given by 𝜒 =
ఘೞ஼ೞ

ఘ್஼್
 

(obtained in appendix B) and the characteristic time 
for a sphere is as, 

𝑡௖
௧௛ =

ோమ

గ ௞ೞ
೟೓.             (11) 

For a cylindrical form the temperature increase is 
then as in, 

∆𝜃 =
ଶఞ

గ
[𝜃ோ

ஶ − 𝜃௜(0)] ൤
௧

ଶ௧೎
೟೓ + 2ට

௧

௧೎
೟೓ ൨.           (12) 

However, the characteristic time is then a 
logarithmic function dependent on cavern geometry 
and empirical values, as given by, [17]. 

𝑡௖
௧௛ = 𝑎 exp ൥−

ଵ

ଶ
ቆ

୪୬ቀ
ಹ/ವ

ಲబ
ቁ

௕
ቇ

ଶ

൩             (13) 

The equations are obtained as in appendix B. 
According to Karimi-Jafari, [17], typical values for 
the empirical constants are 𝑎 = 4.67 𝑦𝑒𝑎𝑟𝑠, 𝑏 =

1.97 and 𝐴଴ = 0.91. The ratio between cylinder 
height and diameter is 𝐻/𝐷. 

3.2. Hydraulic 
There are two ways for hydraulic losses in the 
system. One is by leakages from topsides and 
fittings. Second is by permeation of brine into the 
formation. The latest is the expected to be the least 
important due to extremely low salt permeability. 
Permeation losses become relevant if the cavity has 
interbedded permeable formations within the salt 
formation, or due to connectivity of secondary 
porosity as cavern pressure approaches lithostatic. 

Leakages occur as a function of pressure build up. 
The higher the pressure being applied in piping and 
fitting, the higher will be the fluid loss. The volume 
loss by leak is given by, [18], 

∆𝑉௟௘௔௞ = 𝜓(𝑃௖ − 𝑃௢),          (14) 

where 𝜓 is the leak constant rate in 
௠ଷ

௉௔.௦
. Permeation 

losses are also linked to the difference between 
cavern and pore pressure, as dictated by Darcy’s 
law, [2] [19]. 

The model for permeation losses is then obtained 
by using fluid diffusivity equation and Darcy’s law 
for flow in porous media. An analytical solution is 
obtained in appendix B by taken the assumption of 

steady-state flow regime (
డ௉

డ௧
= 0), incompressible 

flow, laminar flow, and non-slip of fluid at wall, as 
mentioned by Dake, [19]. 

The solution for the total volume loss during the test 
from diffusivity equation for a spherical sphere 
(spherical flow) is then obtained for the cavern 
surface as in appendix B, resulting in,  

∆𝑉௣ = 𝑡
ସగ௄ೞ

ఎ್
ቀ

ோ೎௥ಮ

௥ಮିோ೎
ቁ (𝑃௖ − 𝑃௢).             (15) 

Taken the same assumptions for the case of 
cylindrical cavity (with predominant radial flow) the 
solution is then as, 
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∆𝑉௣ = 𝑡
ଶగு ೞ

ఎ್
ቆ

ଵ

୪୬
ೝಮ
ೃ೎

ቇ (𝑃௖ − 𝑃௢).             (16) 

For the case where rஶ → ∞, then the solution 
reduces to ∆𝑉௣(rஶ → ∞) = 0. 

Values for rock permeability vary from a highly 
permeable salt 𝐾௦ = 10ିସ𝑚𝐷 (comparable to 
competent clay) to a low permeable salt 𝐾௦ =

10ିଵ𝑛𝐷 (at the measuring lower bound), [20] [21]. 

The total hydraulic volume loss is then obtained by 
summing both leak and permeation losses. 

∆𝑉௛௬ = ∆𝑉௣ + ∆𝑉௟௘௔௞          (17) 

However, even for highly permeable salts with great 
contact area the volume losses by permeation are 
very small. Leak rates are more likely to have 
significant impact than permeation losses. 

3.3. Mechanical 
One of the mechanisms with larger impact in cavern 
volume change in time is creep (viscoplastic 
deformation). Salt deformation can be elastic or 
viscoplastic.  

 

Figure 6 Strain of a Burgers type material, [7], [17]. On 
the vertical axis the stress (thin solid line curve), strain 
(thick solid line) and strain rate (dotted line). Time is on 
horizontal axis. The plot describes the strain (creep 
deformation) as a function of time caused by a constant 
effective stress and relaxation response. The deformation 
shows firstly an immediate elastic response, followed by 
a transient state, and finally a steady-state deformation 
characterized by a constant deformation rate.   

During the viscoplastic behavior two states are 
observed; transient and steady-state creep, as in 
Figure 6. The transient regime, or primary creep, 
occurs whenever there is a change in effective Von 
Mises stress (or equivalent shear parameter) on the 

rock until it reaches steady-state, or secondary 
creep, [22].  

Steady-state creep is observed in caverns under 
creep for an extended period. The negative primary 
creep occurs in a pressurization test, whereas it 
adds to creep in de depressurization test. For a 
conservative measure of creep in a compression 
test (as the primary creep reduction is more difficult 
to quantify) steady-state stress creep is assumed to 
be dominant. During the compressibility test the 
pressure increase is much smaller than that of the 
effective stress, therefore this is a reasonable to 
assumption. Steady-state creep Norton-Hoff law for 
unidimensional stress is expressed as,      

𝜀௦̇௦ = 𝐴 𝑒
ି 

ೂ

ೃ೅ಮ  𝜎௡.          (18) 

Observe that 𝐴, 𝑄, 𝑅 and 𝑛 are empirical constants, 
which can be obtained from lab core analysis. Note 
that these parameters may be scale dependent and 
that laboratory data are not optimal for field 
behavior.  

The solution for salt cavity deformation is then 
obtained by using the equilibrium equation and 
Norton-Hoff’s creep law for isotropic material. The 
equilibrium equation for a sphere is presented in 
appendix B, [23]. It is assumed that radial 
component of the deformation is predominant. 

 
డఙೝೝ

డ௥
+

ଶ

௥
(𝜎௥௥ − 𝜎ఏఏ) = 0  (19) 

For the case of cylindrical geometry, the equilibrium 
is then written as, [11], 

 
డఛೝഇ

డ௥
+

ଵ

௥

డఙഇഇ

డఏ
+

ଶఛೝഇ

௥
= 0.   (20) 

The total volume change in the massive caused by 
the geometric creep can be obtained by integrating 
displacement around the cavity and applying known 
boundary conditions, as shown in detail in appendix 
B. The solution for the deformation rate for steady-
state creep for the spherical form is presented 
below, [6]. 

௏̇೎

ଷ௏೎
= −

ଵ

ଶ
ቂ

ଷ

ଶ௡
(𝑃ஶ − 𝑃஼)ቃ

௡

𝐴𝑒
ି 

ೂ

ೃ೅ಮ        (21) 

In the case of rock cooling (cooled down of cavern 
wall) the creep could be slightly overestimated by 
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taking the far field (initial) temperature to be 
representative of wall temperature. 

The cylindrical form of the equation is also 
presented by Van Sambeek, [6], as obtained in 
appendix B and displayed below. 

௏̇೎

ଶ௏೎
= −

√ଷ

ଶ
ቂ

√ଷ

௡
(𝑃ஶ − 𝑃஼)ቃ

௡

𝐴𝑒
ି 

ೂ

ೃ೅ಮ       (22) 

The negative sign means the reduction of cavity 
radius. Since in steady-state the creep rate is 
constant, then the total creep volume during a 
period of time for a sphere is, 

Δ𝑉௖௥ = 𝑡 ∗ 𝑉௖ ൬
ଷ

ଶ
ቂ

ଷ

ଶ௡
(𝑃ஶ − 𝑃௖)ቃ

௡

𝐴𝑒
ି

ೂ

ೃ೅ಮ൰.  (23) 

For the case of a cylindrical cavity the creep volume 
is given by, 

Δ𝑉௖௥ = 𝑡 ∗ 𝑉௖ ൬√3 ቂ
√ଷ

௡
(𝑃ஶ − 𝑃௖)ቃ

௡

𝐴𝑒
ି

ೂ

ೃ೅ಮ൰.  (24) 

Creep deformation is then the same as the total 
mechanical influence in the cavern, Δ𝑉௖௥ = Δ𝑉௠௖ . 

3.4. Chemical 
The brine inside an idle cavern has already reached 
the maximum saturation, hence additional 
dissolution occurs only due to pressure increase 
changing maximum saturation point, [16].  

Meanwhile, in an active cavern brine is yet 
undersaturated with a concentration profile leading 
to continuous dissolution, [24].  

Due to the dissolution the cavern size increases, 
and the brine density changes. Both factors will play 
a role in the pressure response of the system. 

The amount of salt being dissolved can be obtained 
from Fick’s law, which describes the mass transfer 
in a system. The equation without advective flux, is 
written as, 

𝐽(𝑟, 𝑡) = −𝐷௔௕∇𝐜.        (25) 

To simplify the chemical problem, it is assumed that 
the concentration of salt inside the cavern is a 
function of time. Hence, the equation can be 
simplified by taking a mass transfer rate for a zero-
dimensional model as presented, 

𝑁 = 𝑘(𝑐௦௔௧ − 𝑐).            (26) 

The convective mass transfer coefficient (𝑘) is 
obtained from the Sherwood, Grashof, and Schmidt 
number, i.e. [25]; [26]. 

𝑆ℎ = 0.13(𝐺𝑟𝑆𝑐)ଵ/ଷ =
௞௛

஽ೌ್
   (27) 

𝐺𝑟 =
௛య௚ ∆

௩మ         (28) 

𝑆𝑐 =
௩

஽ೌ್
    (29) 

The change in salt volume in brine is the same as 
the salt dissolved from the cavern wall. Hence, 
change in concentration in time can be obtained as, 

ସగோ೎
య

ଷ

ௗ௖

ௗ௧
= 4𝑘𝜋𝑅௖

ଶ(𝑐௦௔௧ − 𝑐),  (30) 

ௗ௖

ௗ௧
=

ଷ

ோ೎
𝑘(𝑐௦௔௧ − 𝑐) =

ே

௛
 .             (31) 

The detailed solution is elucidated in appendix B.  

In case of compressibility test, due to the short 
duration, the amount of salt dissolved is much 
smaller than that of the cavity. It is plausible to 
assume that the dissolution rate is somewhat 
constant during the test. 

The total volume of salt consumed from the cavern 
wall for a spherical shaped cavity is then presented 
in equation (30) as its simplified form for a steady-
state dissolution. 

∆𝑉ௗ = 4𝜋𝑅௖
ଶ ௞(௖ೞೌ೟ି௖బ)

ఘೞ
𝑡        (32) 

For the case of a cylindrical cavity with predominant 
radial dissolution then the dissolved salt volume is; 

∆𝑉ௗ = 2𝜋𝑅௖𝐻
௞(௖ೞೌ೟ି௖బ)

ఘೞ
𝑡.       (33) 

The concentration must be converted from 𝑚𝑜𝑙/𝑚ଷ 
to 𝑘𝑔/𝑚ଷ, by dividing the molar concentration by 

salt molecular weight, ( 0.0584
௞௚

௠௢௟
 for 𝑁𝑎𝐶𝑙). 

4. Methodology 
The proposed approach, analogous to Thiel’s 
relationship, obtains cavern volume from pressure 
response assuming constants compressibility, [15].  
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∆𝑉௔ௗ = 𝛽𝑉௙Δ𝑃௖   (34) 

where, 𝑉௙ is the average cavern volume. 

The components are replaced by identified 
volumetric changes in the cavern. 

∆𝑉௔ௗ = ∆𝑉௧௛ + ∆𝑉௜௡௝ − ∆𝑉௛௬     (35) 

𝑉௙ = 𝑉௢ + ∆𝑉௖௛ − ∆𝑉௠௖      (36) 

Where, 𝑉௢ is the initial cavern volume (before test). 
The appropriate relationship is obtained in appendix 
A. The LHS of equation (34) describes the volume 
gained by compressibility which should be, as in 
equation (35), the same amount of volume added 
by volumetric expansion of brine (∆𝑉௧௛), the injected 
volume (∆𝑉௜௡௝), and subtracted volume loss by 

permeation and leak (∆𝑉௛௬). The latest, ∆𝑉௛௬,  has a 

negative contribution since it describes flow from 
the cavern to the formation. The RHS of equation 
(34) is composed as in equation (36) by the cavern 
volume after radial size changes due to chemical 
dissolution (∆𝑉௖௛) causing a positive increment and 
creep deformation (∆𝑉௠௖) causing a negative radial 
size change (creep is reducing cavity size).  

Substituting ∆𝑉௔ௗ  components in equations (34), by 
(35) and (36), results in a coupled analytical solution 
for the change in pressure, 

∆𝑉௜௡௝ + ∆𝑉௧௛ − ∆𝑉௛௬  = 𝛽(𝑉௢ + ∆𝑉௖௛ − ∆𝑉௠௖)Δ𝑃௖.(37) 

This can be re-written as; 

∆௏೔೙ೕ

୼௉೎
= 𝑉௢ ቂ𝛽 ቀ1 +

∆௏೎೓

௏೚ −
∆௏೘೎

௏೚ ቁ −
ଵ

୼௉೎
ቀ

∆௏೟೓

௏೚ −
∆௏೓೤

௏೚ ቁቃ. 

               (38) 

The LHS of equation (38) is obtained from 
measurements taken during the test, for injection 
and pressure. The RHS is obtained from pressure 
measurement, known parameters and estimated 
cavern radius (or volume). The parameters can be 
estimated from the laboratory; however, scale 
dependency may cause that parameters from 
laboratory are not accurate for field predictions. 

As in appendix A, the equation can then be re-
written as isolating the cavern volume on LHS; 

𝑉௢ =
∆௏೔೙ೕ

୼௉೎
ቂ𝛽 ቀ1 +

∆௏೎೓

௏೚ −
∆௏೘೎

௏೚ ቁ −
ଵ

୼௉೎
ቀ

∆௏೟೓

௏೚ −
∆௏೓೤

௏೚ ቁቃ
ିଵ

.

             (39) 

Each of the volumetric components are obtained as 
in equations from previous section, and the 

hydraulic response, 
∆௏೔೙ೕ

୼௉೎
 ,from field measurements. 

4.1. Coupled form 
The coupled form is obtained by substituting the 
equations (9), (17), (23) and (32) in equation (39). 
An analytical solution for the spherical cavern, for 
the case of 𝑟ஶ ≫ 𝑅௖, as in appendix B, is 

∆௏೔೙ೕ

୼௉೎
= 𝑉௢ ൥𝛽 ቀ1 + 𝑡

ଷ

ோ

௞(௖ೞೌ೟ି௖బ)

ఘೞ
  − 𝑡

ଷ

ଶ
𝐴∗ ቂ

ଷ

ଶ௡
(𝑃ஶ −

𝑃஼)ቃ
௡

 ቁ −
ଵ

୼௉೎
൭𝛾௕

ଷఞ

గ
[𝑇ஶ − 𝑇௕

௢] ൤
௧

௧೎
೟೓ + 2ට

௧

௧೎
೟೓൨ −

𝑡(𝑃௖ − 𝑃௢) ቀ
ଷ

ோయ

௄

ఎ್
+ 𝜓௢ቁ൱൩.      (40) 

On the LHS is the ratio between volume injected 
and pressure readings, on the RHS, from left to 
right, are the terms for salt dissolution, creep, 
volumetric thermal expansion, permeation and 
leaks.  

Analogous to the spherical form, the equation for 
cylindrical shaped cavities is; 

∆௏೔೙ೕ

୼௉೎
= 𝑉௢ ൤𝛽 ൬1 +

ଶ

ோ
ቀ1 +

ோ

ு
ቁ

௞(௖ೞೌ೟ି௖బ)

ఘೞ
 𝑡 −

𝑡√3𝐴∗ ቂ
√ଷ

௡
(𝑃ஶ − 𝑃௖)ቃ

௡

 ൰ −
ଵ

୼௉೎
൬𝛾௕

ଶఞ

గ
[𝑇ஶ − 𝑇௕

௢] ൤
௧

ଶ௧೎
೟೓ +

2ට
௧

௧೎
೟೓൨ − 𝑡(𝑃௖ − 𝑃௢)𝜓௢൰൨      (41) 

For the case of cylindrical cavities, the equivalent 

radius is 𝑅௖ = ඥ𝑉/𝜋𝐻. 

Observe that, on the RHS of the equation, due to 
the compressibility factor and magnitude, the 
thermal and leaking volumes are more significant.  

4.2.  Measurement Readings 
Cavern pressure and temperature measurements 
are often obtained by surface equipment. In situ 
data are not available, unless bottom hole gauges 
are installed.  
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This imposes a challenge in estimating brine in situ 
temperature, and values can be estimated from 
production data.  

On the pressure side, the increase in pressure read 
at the surface is the same as that inside the cavern 
(Δ𝑃௖ = Δ𝑊𝐻𝑃), when measured at the tubing 
opposite to the injection line. The same applies for 
the outer annular (of total true vertical depth 𝐻௔௡௡) 
filled with blanket fluid, except that corrections must 
be made due to the blanket fluid (usually diesel) 
cooling.  

𝜌ௗ
௙

=
ఘ೏

೚

ଵାఊ೏∆்
            (42) 

𝛿𝑃௧௛ = ൫𝜌ௗ
௙

− 𝜌ௗ
௢൯𝑔𝐻௔௡௡       (43) 

The change in temperature, ∆𝑇, in equation (42) is 
different than that of the brine and obtained from 
observed temperature measurements of the 
blanket at the wellhead. During the test in winter 
conditions this plays a significant role when taking 
measurement from the diesel blanket, since cold 
water injection cools down the blanket fluid on the 
outer string. The opposite effect occurs, and is 
observed in the field, when warm brine is bled of 
causing the outer annular fluid temperature to 
increase and consequently the pressure reading on 
the outer annular increases instead of decreases. 

Outer blanket pressure information is useful as an 
alternative in case of errors in opposite annular 
measurements. The error may be caused for e.g. by 
salt crystallization in the brine filled tubing creating 
a blockage between cavern and piping. 

4.3. Model sensitivity 
A full sensitivity of each of the parameters on the 
process volumes of the model, equation (39), is 
presented separately in appendix D. The referred 
process volumes include: thermal volume due to 
brine expansion (∆𝑉௧௛), creep volume causing 
cavern size reduction (∆𝑉௠௖), chemical volume 
causing cavern size increase (∆𝑉௖௛), and hydraulic 
volume caused by permeation and leaks (∆𝑉௛௬). 

From the extensive results found in appendix D, the 
largest sensitivity to cavern volume prediction for 
Bérest and Van Sambeek models are in the creep 
volume and the second largest sensitivity is for the 
thermal volume. For Thiel method the largest 
sensitivity is to compressibility, since this is the only 

input parameter in this model. For the proposed 
model the largest sensitivity is to the thermal 
volume. 

The largest sensitivity in creep prediction is caused 
by Norton-Hoff law constants. On thermally added 
volume the largest sensitivity lays on the initial brine 
temperature. Chemical volume is largely impacted 
by the overall brine concentration.  

The sensitivity analysis is performed by varying one 
of the parameters and observing the impact in the 
THMC process volumes. The set of parameters 
applied are summarized in Table 1. 

Table 1 Input values for sensitivity analysis. Values 
without reference are based on field data measurements 
and calculations. 

 Parameter (from field data 
and references) 

    Value Unit 

𝐴  Norton-Hoff law constant 1.3 ∗ 10ିଶ [
ଵ

௦ ୑௉௔೙
]   

𝛼  Thermal diffusivity [17] 3 ∗ 10ି଺ [
௠మ

௦
] 

𝛽  Total compressibility 3.5 ∗ 10ିଵ଴ [𝑃𝑎ିଵ] 

𝛽௕  Brine compressibility [7] 2.3 ∗ 10ିଵ଴ [𝑃𝑎ିଵ] 

𝛽௦  Sump compressibility [4] . 82 ∗ 10ିଵ଴ [𝑃𝑎ିଵ] 

𝐶௕  Brine heat capacity [17] 3840 [
ௐ

୩୥℃
] 

𝐶௦  Salt heat capacity [17] 926 [
ௐ

୩୥℃
] 

𝑐௙  Fluid sound velocity  1865 [
௠

௦
] 

𝑐௦௔௧ Saturated concentration [27] 53 ∗ 10ଷ [
௠௢௟

௠య
] 

𝐷௔௕ Salt mass diffusivity coeff. 
[28] 

0.12 ∗ 10ିଽ [
௠మ

௦
] 

𝐸  Young’s modulus of halite 2 ∗ 10ଵ଴ [𝑃𝑎]  

𝛾௕  Volumetric expansion [17] 4.4 ∗ 10ିସ [℃ିଵ] 

𝑔  Acceleration of gravity 9.81 [
௠

௦మ
] 

𝐾௦  Permeability of rock [20] 10ିଵଽ [𝑚ଶ] 

𝐾௦
௧௛ Thermal conductivity [17] 6 [

ௐ

௠℃
] 

𝑛  Norton-Hoff law exponent 3.6 [−] 

𝜂௕  Dynamic viscosity (brine) [2] 1.2 ∗ 10ିଷ [𝑃𝑎. 𝑠] 

𝑃ஶ  Lithostatic pressure 5.8 ∗ 10଻ [𝑃𝑎] 

∆𝑃  Pressure increase in cavern 10 ∗ 10ହ [𝑃𝑎] 

𝜓௢  Leak constant rate [1] 10ିଵ଻ [
௠య

௠య௉௔.௦
] 

ொ

ோ
  Norton-Hoff law constant 6201 [𝐾] 
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𝜌௕  Brine density  1265 [
௞௚

௠య
] 

𝑇௢  Initial brine temperature 60 [℃] 

𝑇ஶ  Geothermal temperature [16] 86.5 [℃] 

Creep is the most sensitive parameter affecting the 
mechanical volume. Creep varies drastically with 
the Norton-Hoff empirical parameters.  

𝐴∗ = 𝐴 𝑒
ି 

ೂ

ೃ೅ಮ          (44) 

In equation (44) the geothermal temperature 𝑇ஶ is 
in 𝐾𝑒𝑙𝑣𝑖𝑛. The values for 𝐴 can very from 
0.64 /𝑦𝑀𝑃𝑎௡  (Etrez cavity) to 2.7 ∗ 10ହ /𝑦𝑀𝑃𝑎௡ 
(Salina), [6]. The coefficient 𝑄/𝑅 will vary between 
4100 𝐾 (Etrez) to 9810 𝐾 (Palo Duro).  

Figure 7 and Figure 8 display the impact of different 
empirical values in mechanical volume (creep) 
contributions.   

 

Figure 7 Sum of volume fractions for thermal, hydraulic, 
mechanical and chemical factors; for a high creep 
constant (𝐴∗ = 1.47 ∗ 10ିଵଵ 𝑠ିଵ𝑃𝑎ି௡) scenario as 
maximum observed in BAS3O and BAS4 field data. 

 

Figure 8 Sum of volume fractions for thermal, hydraulic, 
mechanical and chemical factors; for a low creep 
constant (𝐴∗ = 1.73 ∗ 10ିଵଶ 𝑠ିଵ𝑃𝑎ି௡) scenario as 
minimum observed in BAS3O and BAS4 field data. 

Observe that the hydraulic volume contribution is 
extremely small during the test for any of the 
models, for the case of a 10 𝑏𝑎𝑟 pressure build-up 

in the cavern. This can change if leaking rates or 
permeation become significant. 

However, the added volume that most severely 
impacts the cavern volume estimation during the 
test is the thermally added volume, since chemical 
and mechanical volumes are supressed by the 
compressibility factor in the proposed model, as 
shown in equation (39). 

The compressibility factor impact on the pressure 
reading is displayed in Figure 9. 

 

Figure 9 Compressibility factor impact in pressure reading 
during the test according to proposed model. 

Another important aspect is that cavern volume is 
important in defining a representative injection 
volume during the test. The higher the pressure 
increase, the less susceptible are the readings to 
equipment inaccuracies (for instance due to 
unreliable calibration) and the effects of fluid density 
changes due to cooling or heating on the translation 
of surface pressures to cavern pressures. 

Supposing a target of 10 𝑏𝑎𝑟 pressure increase in a 
cavity of compressibility of  𝛽 = 3.3 ∗ 10ିଵ଴ 𝑃𝑎ିଵ, 
the necessary injected volume as a function of 
cavern size is plotted in Figure 10.  

 

Figure 10 Injection volume to cause 10 𝑏𝑎𝑟 pressure 
increase in a 3.3 ∗ 10ିଵ଴ 𝑃𝑎ିଵ compressible cavern as a 
function of cavern volume. 
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As the cavern compressibility increases, the line 
inclination also increases, and the higher will be the 
volume necessary for the same pressure increase. 
The opposite occurs for a lower compressibility 
case. This also plays a role in defining the injection 
limits due to design pressure limits of the system. 
Once pressure build-up inside the cavity reaches 
operational design limits the test must be 
interrupted. 

Another important datum to be estimated for the test 
is the cavity equivalent radius, which is unknown 
before the test. The cavity equivalent radius is given 

by 𝑅௖ = ቀ
ଷ

ସగ
𝑉஼ቁ

ଵ/ଷ

, where 𝑉௖ is the cavity volume. 

The radius must then be obtained from estimations 
from production volume balance data, leaching 
simulators or echo measurements. The impact of 
this unknown in the finally obtained cavern volume 
from the model is assessed in Figure 11.  

 

Figure 11 Error caused by wrong prediction of cavern 
equivalent radius in a spherical cavern size case, for the 
case of a 10 ℎ𝑜𝑢𝑟𝑠 long test with total 10 𝑏𝑎𝑟 build-up. 

The picture shows that the error is within acceptable 
limits for an uncertainty on the cavern radius of up 
to 17% for a 10 hours long test. For shorter period 
of test the error reduces.  

The error is linked to the fact that the cavern radius 
is of importance to the chemical, thermal (in the 
characteristic time) and hydraulic term. However, 

the only term with significant impact in the model is 
the thermal impact. A wrong estimation on cavern 
radius impacts the thermal characteristic time, 
causing the error in measured cavern volume.  

5. Case study results 
One of the biggest challenges in applying volume 
prediction models from compressibility testing is 
that in situ data are rare, and input parameters of 
the constitutive relations are uncertain. These 
parameters can be measured in laboratory, 
nevertheless they are scale dependent and it is not 
clear is they are useful for field prediction. An 
example of is the uncertainty on the Norton-Hoff law 
parameters, also the lack of in situ pressure 
measurements.  

As mentioned in section 4.2 the pressure readings 
are impacted by cooling of the piping fluid affecting 
the density and therefore the pressure reading.  

The model has been tested to obtain cavern 
volumes from BAS3O and BAS4 cavities in 
Zechstein formation, composed of 95% Halite rock. 
Insoluble material present in the cavities is mainly 
Anhydrite, which is deposited deposit at the sump.  

Pressure data from compressibility tests has been 
used. The procedures consist of injection low 
amounts of fresh water into the production string 
and is also referred to as counter flush as it washes 
out crystals in production piping. The available 
measurements included temperature and pressure 
at central tubing, annular and outer annular 
(blanket) strings.  The test duration varies from 
three to ten hours, allowing enough time for the 
secondary effect to take place. Also, the volumes 
injected are significantly small when compared to 
the total cavern volume.  

5.1. BAS3O 
Previous literature has been applied and 
parameters were calibrated to obtain the best fit 
volume prediction when compared to known cavern 
volumes. The impact of the sump and diesel cooling 
have been included to improve results. 
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Figure 12 Cavern volume estimation for different models compared to known cavern volume (Vc), BAS3O. 

The results are discussed and interpreted in detail 
in appendix E. From the plot, Figure 12, it is visible 
that the data for BAS3O are scattered. The 
proposed model is referred as 𝑉_𝑚 in the plot. 

 The cavern volume predictions using Van 
Sambeek and Bérest models are overestimated, 
because these models include secondary volumes, 
such as creep, as part of the injection represented 
by the LHS of equation (34). Meanwhile, in the 
proposed model the change of cavity radius due to 
creep and salt dissolution is on the RHS of equation 
(34) and here it is multiplied by the compressibility 
factor. 

Another important difference in the models is that 
Van Sambeek and Bérest take the dissolution as a 
result of pressure increase only, which is not true 
for active leaching caverns.  

When compared to Thiel’s relationship the 
proposed model has the thermally added volume as 
the main reason for distinction in results. Indeed, 
the proposed model is very sensitive to assumed 
brine average temperature.  

The peaks in the volumes obtained may be inferred 
as test failures or uncertainty on input parameters. 
In these circumstances the test must be repeated, 
and the parameters calibrated. Causes for test 
failure are untracked leaks or wrong estimation of 
the brine temperature and compressibility. 

An alternative to in situ temperature measurements 
would be to the use of more accurate predictive 
model temperature difference between produced 
and in situ brine. 

On the other hand, leakages can be spotted by 
pressure fluctuations (or pressure drop at well head 
gauges. This is a plausible hypothesis for BAS3O 
issues, since its well is a side track with complex 
completions and fittings. 

Also, observe that the pressure increase inferred in 
the cavity jumps down in May 2016. This is an 
indication of a great change in hydraulic response 
caused by change in one or more process 
parameters, for e.g. cavern compressibility or 
creep. The operator clarified that in May 2016 a 
workover operation took place, and the cavern 
operating pressure increased by about 20 𝑏𝑎𝑟.  

5.2. BAS4 
Pressure data from BAS4 are also analysed. The 
cavern is on production since 2006 and shows a 
nearly steady state production behaviour (when 
squeeze volumes equals to salt production).  

Due to extensive leaching the cavity has a 
significant volume of sump when compared to 
BAS3O, which is accounted for in the total cavern 
compressibility for all models. The results are 
presented Figure 13.  
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Figure 13 Cavern volume estimation for different models compared to known cavern volume (Vc), for BAS4 

In the case of BAS4 the data show less scatter data 
than that of BAS3O cavern, since the system 
presents less uncertainty and variations in input 
parameters (for example the brine temperature due 
to the long time that cavern is under production).  

For the case of BAS4 the proposed model is the 
only one to reach values close to the forecasted 
volume (which fits sonar survey estimated cavern 
volume). The reason for that is the underestimation 
of chemical volume from Bérest and Van Sambeek 
approach, which is proposed for idle cavities, but 
also once again (as in BAS3O results) due to the 
incorporation of creep as added volume in the LHS 
of equation (34).  

Thiel’s model on the other hand underestimates the 
volume by not considering secondary effects 
volumes. However, Thiel’s model gives consistent 
results and may be applied with a constant 
correction factor for BAS4. This remark does not 
mean that the model is correct but rather that there 
is a quantity, not identified by Thiel, of that order of 
magnitude. 

The proposed model although nearer to forecasted 
volumes yet gives results above desirable error 
margin of 5%. The issue once again may be caused 
by wrong in situ brine temperature estimation or test 
failure. 

6. Conclusion 
Cavern compressibility models fail to obtain 
accurate cavern volumes for deep caverns in active 
solution mined caverns. However, in some cases 
accurate results are obtained with Thiel’s model 
which can be calibrated with constant correction 
factor, what explicit shows that essential 
mechanisms are missing in the model. 

The proposed model focusses on caverns under 
active leaching, and therefore it shall be tested if it 
is applicable for idle caverns. Also, the model has 
only been tested for moderate test durations (three 
to ten hours).  

In summary the proposed model can only reach an 
accuracy of up to 10% by eliminating unreliable data 
set, as in appendix E. The unreliable data set can 
be tracked as peaks when compared with cavern 
volume forecast, where error is too great meaning 
that the model did not deliver reliable results. The 
reason for these peaks is still unknown.  

Furthermore, this study presents useful comparison 
between different existing models for 
compressibility-based cavern volume estimation 
and brings a new point of view to the issue of active 
leaching caverns. It is one step forward to 
understanding how to improve compressibility test 
analysis for deep salt caverns to obtain cavern 
volume estimations. 
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6.1. Discussion 
In all models the sensitivity of the volume relies on 
the cavern compressibility. The difference is in the 
way secondary effects are or not accounted for, and 
how they are taken into account.  

If creep and is accounted for as injected volume the 
cavern volume is significantly overestimated. Also, 
if the cavern volume change due to chemical 
dissolution must be calculated for a situation of 
undersaturated brine for the case of active caverns, 
instead of additional dissolution caused by pressure 
build-up only.    

In Thiel’s method secondary effects are neglected. 
Bérest and Van Sambeek present the secondary 
effects, or salt cavern phenomena, volumes as part 
of the injected volume, hence leading to 
overestimations. The proposed model is different 
from the referred previous models because it takes 
creep (mechanical) and dissolution volume 
changes as part of the volume change of the cavity 
space instead; and takes thermal and leak volumes 
as part of injection. 

In the Bérest and Van Sambeek approach the 
volumes added by creep and thermal expansion are 
significant to obtain cavern volume. Meanwhile, in 
the proposed model creep is suppressed, leaving 
cavern compressibility and thermal impact as the 
main contributors to pressure response. 

The main pitfall in Thiel’s model when compared to 
the other options, is that it does not admit a cavern 
pressure build-up in the absence of injection. This 
can only be true in a static condition, which does not 
occur since the system is dynamic with continuous 
influence of other phenomena.  

The proposed model’s fails to deliver results within 
5% accuracy, and it is yet unclear the reason for the 
error in cavern volume estimations. Nevertheless, 
the proposed model achieves the desired 5% 
accuracy in 8 of 20 data sets.  

The mean absolute percentage error of the 
proposed model is 32% for BAS3O and 12% for 
BAS4, what is lower than that of Thiel (33% and 
43%), Van Sambeek (45% and 114%) and Bérest 
(66% and 127%). Further studies to mitigate 
uncertainties (such as lab experiments and 
controlled tests) are necessary to improve existing 
methods. 

The work here differs from previous work that it 
presents a comprehensive description of the 
various methods used in the literature and practice. 
Where current models predict cavity volumes with a 
maximum accuracy of 33%, the model here, which 
includes the presence of insoluble particles, and a 
well-established creep model is able to predict 
cavity volumes to an accuracy of 12%.    

6.2. Recommendations 
The data set used for compressibility-based volume 
estimation come from counter flush operations, 
which have a low injection rate of 10 𝑚ଷ/ℎ. The 
impact of such small injection volumes when 
compared to other phenomena involved needs to 
be studied. An attempt to investigate this issue was 
done by applying in total three tests with high 
injection rates of 100 𝑚ଷ/ℎ and 180 𝑚ଷ/ℎ for 
2 ℎ𝑜𝑢𝑟𝑠 in both wells. The results were 
inconclusive, and more data is necessary to 
perform an analysis on the impact of injection 
volume in pressure readings. However, it was 
observed that the system tends to a linear trend 
after a certain amount of time (which varies) in all 
three tests. 

This model can be tested to shut-in conditions 
without fluid injection for validation under slow 
pressure increase. Implementation of this scenario 
requires that the model parameters be extremely 
accurate, and it may be useful to find unknown (or 
uncertain) variables from history matching. 

Thermal impact on applied models is assumed to 
be an added volume, however a more accurate 
approach would be to take it as change in brine 
density and therefore total cavern brine volume. 

It is recommended to test this alternative approach 
obtained from the mass-volume relationship inside 
the cavern, as shown in detail in appendix A and 
discussed in appendix F. The alternative method is 
based on mass balance as below, for the case of 
significant blanket volume.   

𝑉 =
∆௏೔೙ೕ

∆௉೎
൬

ఘ್
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௏
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௏
ቀ1 +

ఘೞ

ఘ್
ቁ +

∆௏೟೓

௏
ቀ

ଵ

ଵାఊ್∆்
ቁቃቅ

ିଵ

,        (45) 

which can also be re-written as; 
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𝑉 =
∆௏೔೙ೕ
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ቃቅ

ିଵ

.         

(46) 

The solutions disregards permeation effects since it 
has been proven to be negligible for salt rock, and 
leaks can be incorporated by subtraction from the 
injected volume. 

Other phenomena such as rock cooling impact in 
pressure response in active leaching cavities is also 
unclear. The mechanical and thermal terms of all 
models assume a constant rock temperature, what 
may not be true, and needs yet to be studied.  
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Nomenclature 
 Parameter Unit 

𝐴  Norton-Hoff law constant [
ଵ

௦ ௉௔೙]   

𝐴∗  Norton-Hoff law constant [
ଵ

௦ ௉௔೙]   

𝐴௖   Salt cavern surface area [𝑚ଶ] 

𝛽  Total cavern compressibility [𝑃𝑎ିଵ] 

𝛽௕  Brine compressibility [𝑃𝑎ିଵ] 

𝛽௖  Cavity elastic deformation [𝑃𝑎ିଵ] 

𝛽ௗ  Diesel compressibility  [𝑃𝑎ିଵ] 

𝛽௙  Fluid compressibility [𝑃𝑎ିଵ] 

𝛽௜௡௦  Insoluble rock compressibility [𝑃𝑎ିଵ] 

𝛽௦  Sump compressibility [𝑃𝑎ିଵ] 

𝐶௕  Brine heat capacity [
ௐ

୩୥℃
] 

𝐶௦  Salt heat capacity [
ௐ

୩୥℃
] 

𝐜  Salt concentration vector [
௞௚

௠య.௠
] 

𝑐  Salt concentration in brine [
௞௚

௠య] 

𝑐௢  Initial salt concentration in brine [
௞௚

௠య] 

𝑐௙  Fluid sound velocity  [
௠

௦
] 

𝑐௦௔௧  Salt concentration at saturation [
௠௢௟

௠య ] 

𝑐௧  Total formation compressibility [𝑃𝑎ିଵ] 

𝜒  Thermal capacity ratio [−] 

𝐷௔௕  Salt mass diffusivity coefficient  [
௠మ

௦
] 

𝐸  Young’s modulus of the rock [𝑃𝑎]  

𝜀  Strain [
௠య

௠య] 

𝜀௦̇௦  Steady-state creep rate [
௠య

௠య௦
] 

𝜗  Poisson’s ratio of the rock [−] 

𝐹  Shape factor [−]  

𝐺  Shear modulus [−] 

𝐺𝑟  Grashof number [−] 

𝛾௕  Brine volumetric expansion [
௠య

௠య℃
] 

𝛾ௗ   Diesel volumetric expansion [
௠య

௠య℃
] 

𝑔  Acceleration of gravity [
௠

௦మ] 

𝐻  Cylindrical cavity height [𝑚] 

𝐻௔௡௡  Annular tubing vertical depth [𝑚] 

ℎ, 𝐿௖    Characteristic length of sphere [𝑚] 

𝐽  Transfer rate [
௞௚

௦
] 

𝐾௦  Permeability of salt formation [𝑚ଶ] 

𝐾௦
௧௛  Thermal conductivity of salt [

ௐ

௠℃
] 

𝑘௦
௧௛  Thermal diffusivity of salt [

௠మ

௦
] 

𝑘  Convective mass transfer coef. [
௠

௦
] 

𝑀  Mass of brine in the cavity [𝑘𝑔] 

𝑚  Mass of brine injected [𝑘𝑔] 

𝜇  Lamé’s constant [𝑃𝑎] 

𝑁  Mass transfer per unit area [
௞௚

௠మ] 

𝑛  Norton-Hoff law exponent [−] 

𝑣  Kinematic viscosity [
௠మ

௦
] 

𝜂௕  Dynamic viscosity of brine [𝑃𝑎. 𝑠] 

𝑃ஶ  Lithostatic pressure [𝑃𝑎] 

𝑃௖, 𝑃  Pressure inside cavern [𝑃𝑎] 

𝑃௢  Pore pressure (halmostatic) [𝑃𝑎] 

∆𝑃௖  Cavern pressure build-up [𝑃𝑎] 

𝛿𝑃௧௛  Tubing head pressure correction [𝑃𝑎] 

𝜑  Salt porosity [−] 

𝜓  Leak constant [
௠య

௉௔.௦
] 
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𝜓௢  Leak constant per cavern volume [
௠య

௠య௉௔.௦
] 

ொ

ோ
  Norton-Hoff law constant [𝐾] 

𝑅ஶ. 𝑟ஶ  Radial distance to aquifer  [𝑚] 

𝑅௖, 𝑅  Cavity equivalent radius [𝑚] 

𝑟  Radial distance from cavity [𝑚] 

𝜌௕  Brine density [
௞௚

௠య] 

𝜌௕
௙  Final brine density after test [

௞௚

௠య] 

𝜌௕
௢  Initial brine density before test [

௞௚

௠య] 

𝜌ௗ
௙  Final diesel density [

௞௚

௠య] 

𝜌ௗ
௢  Initial diesel density [

௞௚

௠య] 

𝜌ௗ  Diesel density [
௞௚

௠య] 

𝜌௙  Fluid average density [
௞௚

௠య] 

∆𝜌௙  Fluid average density change [
௞௚

௠య] 

𝝈  Stress tensor  [𝑃𝑎] 

𝜎௘௙௙  Effective stress [𝑃𝑎] 

𝑆𝐻∗  Maximum horizontal stress [𝑃𝑎] 

𝑆ℎ∗  Minimum horizontal stress [𝑃𝑎] 

𝑆ℎ  Sherwood number [−] 

𝑆𝑐  Schmidt number [−] 

𝑇, 𝜃  Cavern fluid temperature [℃, 𝐾] 

𝑇௢ , 𝜃௢  Initial cavern fluid temperature [℃, 𝐾] 

𝑇ஶ, 𝜃ோ
ஶ  Rock geothermal temperature [℃, 𝐾] 

𝑡  Test duration, time [𝑠] 

𝑡௖
௧௛  Characteristic thermal time [𝑠] 

𝑢  Radial dislocation (deformation) [𝑚] 

𝑉  Cavern volume [𝑚ଷ] 

𝑉௢  Initial cavern volume (before test) [𝑚ଷ] 

𝑉௙  Final cavern volume (after test) [𝑚ଷ] 

∆𝑉  Cavity volume change [𝑚ଷ] 

∆𝑉௖௛  Cavity dissolved volume [𝑚ଷ] 

∆𝑉௖௥ , ∆𝑉௠௖ Cavity deformation volume [𝑚ଷ] 

∆𝑉௛௬   Hydraulic volume loss [𝑚ଷ]  

∆𝑉௜௡௝  Injected volume [𝑚ଷ] 

∆𝑉௟௘௔௞    Leaked volume [𝑚ଷ] 

∆𝑉௔ௗ   Total added volume [𝑚ଷ]  

WHP  Wellhead pressure [𝑃𝑎] 

𝑥ௗ  Diesel fraction in cavity volume [−] 

𝑥௜௡௦  Insoluble fraction in sump volume [−] 

𝜆  Lamé’s constant [𝑃𝑎] 

𝑦  Open cavity volume fraction [−] 
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Appendix A –  Compressibility test 

The correlation obtained by Thiel for compressibility test is based in a mass-volume relationship to 
accommodate the injected volume in the cavern, [7] [15]. To obtain a solution is assumed that brine density and 
compressibility is uniform inside the cavern. If the cavern contains different fluids, such as blanket, then the 
density and compressibility of the combined fluid is taken. 

In this section Thiel’s model and the proposed model for compressibility-based volume estimation is obtained. 

A.1. Pressure build-up relationship (Thiel’s model) 
According to the solution proposed by Thiel’s the cavity pressure response is only being impacted by fluid 
compressibility (assumed to be constant) and injection volume. To obtain Thiel’s relationship we must assume 
a brine and diesel filled cavern, [7]. The total mass within the cavern is then; 

𝑀 = 𝜌௙𝑉 = [𝑥ௗ𝜌ௗ + (1 − 𝑥ௗ)𝜌௕]𝑉 .    (A. 1) 

where; 𝜌௙ is the fluid average density, 𝑉 the cavern volume, 𝑥ௗ the diesel fraction, and 𝜌௕ the brine density. As 

the cavern deforms elastically under pressure change, the added volume in the cavity will be; 

∆𝑉 = 𝛽௖∆𝑃௖𝑉.       (A. 2) 

where, 𝛽௖ is the cavity compressibility (assuming isentropic behaviour) and ∆𝑃௖ the pressure build-up in the 
cavern. If an additional mass of brine, 𝑚, is forced into the cavern we obtain;  

𝑚 = 𝜌௕∆𝑉௜௡௝.      (A. 3) 

The pressure increases by the following mass-volume relationship, including fluid density variation ∆𝜌௙; 

𝑀 + 𝑚 = 𝜌௙(𝑉 +  ∆𝑉) + ∆𝜌௙(𝑉 +  ∆𝑉).     (A. 4) 

Substituting  (A.1) and (A.3) into equation (A.4) we obtain: 

𝜌௕∆𝑉௜௡௝ = 𝜌௙∆𝑉 + ∆𝜌௙𝑉 +  ∆𝜌௙∆𝑉.       (A. 5) 

The variation in fluid density is defined as function of cavern pressure and fluid average compressibility by: 

∆𝜌௙ = 𝜌௙𝛽௙∆𝑃௖        (A. 6) 

and; 

𝛽௙ = 𝑥𝛽ௗ + (1 − 𝑥)𝛽௕.           (A. 7) 

Substituting (A.6) into equation (A.5) we obtain: 

ఘ್∆௏೔೙ೕ

ఘ೑
= 𝛽௙∆𝑃௖𝑉 + ൫1 + 𝛽௙∆𝑃௖൯∆𝑉.      (A. 8) 

Substituting (A.2) into equation (A.8) we obtain: 

∆௏೔೙ೕ

௏
=

ఘ೑

ఘ್
ൣ𝛽௙ + 𝛽௖ +  𝛽௖𝛽௙∆𝑃௖൧∆𝑃௖,     (A. 9) 
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where the factor 𝛽௖𝛽௙∆𝑃௖
ଶ is assumed to be nearly zero, and:    

∆௏೔೙ೕ

௏
= ∆𝑃௖

ఘ೑

ఘ್
൫𝛽௙ + 𝛽௖൯.            (A. 10) 

For the case where diesel volume is much smaller than that of the brine (
ఘ೑

ఘ್
→ 1), the equation (A.10) can be 

simplified resulting in; 

∆௏೔೙ೕ

௏
= ∆𝑃௖൫𝛽௙ + 𝛽௖൯ = ∆𝑃௖𝛽.         (A. 11) 

This relationship gives the pressure build-up due to injected volume only. This is only accurate for a short 
enough test so that other effects do not impact the readings.  

A.2. Proposed model for pressure build-up 
The cavern pressure build-up is not only a consequence of the volume injected in the cavern, but also from 
other volume contributions. The equation is then better re-written as: 

∆௏ೌ೏

௏೑ = 𝛽Δ𝑃௖,          (A. 12) 

where, 𝑉௙ is the final cavern volume at the end of the test, and ∆𝑉 is different from the previous equation. Here 
∆𝑉௔ௗ refers to the total added volume, including injection, thermal expansion and subtracting hydraulic volume 
losses. The components are replaced by identified volumetric changes in the cavern; 

∆𝑉௔ௗ = ∆𝑉௜௡௝ + ∆𝑉௧௛ − ∆𝑉௛௬ ,             (A. 13.a) 

and 

𝑉௙ = 𝑉௢ + ∆𝑉௖௛ − ∆𝑉௠௖.          (A.13.b) 

Then, by substituting (A.13.a) and (A.13.b) in the equation (A.12) the following equations is obtained; 

∆𝑉௜௡௝ + ∆𝑉௧௛ − ∆𝑉௛௬  = 𝛽Δ𝑃௖(𝑉௢ + ∆𝑉௖௛ − ∆𝑉௠௖)            (A. 14) 

Where, 𝑉௢ is the initial cavern volume before the test. The equation is re-written by isolating 
∆௏೔೙ೕ

௏೚  in LHS. 

∆௏೔೙ೕ

௏೚ = 𝛽Δ𝑃௖ ቀ1 +
∆௏೎೓

௏೚ −
∆௏೘೎

௏೚ ቁ − ቀ
∆௏೟೓

௏೚ −
∆௏೓೤

௏೚ ቁ.    (A. 15) 

Reciprocal to the previous equation the relationship can be re-written by isolating 
∆௏೔೙ೕ

୼௉೎
 in LHS, which has as 

advantage that the right side consists of measured parameters. So, we obtain; 

∆௏೔೙ೕ

୼௉೎
= 𝛽(𝑉௢ + ∆𝑉௖௛ − ∆𝑉௠௖) − ቀ

∆௏೟೓

୼௉೎
−

∆௏೓೤

୼௉೎
ቁ.        (A. 16) 

Once each volume component is dependent on cavern volume, it is useful to write the equation (A.16) as; 

∆௏೔೙ೕ

୼௉೎
= 𝛽𝑉௢ ቀ1 +

∆௏೎೓

௏೚ −
∆௏೘೎

௏೚ ቁ − ቀ
∆௏೟೓

୼௉೎
−

∆௏೓೤

୼௉೎
ቁ.          (A. 17) 

Isolating the target variable, the unknown volume we obtain: 

∆௏೔೙ೕ

୼௉೎
= 𝑉௢ ቂ𝛽 ቀ1 +

∆௏೎೓

௏೚ −
∆௏೘೎

௏೚ ቁ −
ଵ

୼௉೎
ቀ

∆௏೟೓

௏೚ −
∆௏೓೤

௏೚ ቁቃ.    (A. 18) 
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Hence, the cavern volume is; 

𝑉௢ =
∆௏೔೙ೕ

୼௉೎
ቂ𝛽 ቀ1 +

∆௏೎೓

௏೚ −
∆௏೘೎

௏೚ ቁ −
ଵ

୼௉೎
ቀ

∆௏೟೓

௏೚ −
∆௏೓೤

௏೚ ቁቃ
ିଵ

    (A. 19) 

Although the cavern volume 𝑉௢ appears on the right side of the equation (A.19) this will be eliminated since, as 
in appendix B, each contributing volume is dependent of 𝑉௢, so dividing each of them by 𝑉௢ is useful. 

A.3. Mass-volume alternative model for pressure build-up  
An alternative method can be proposed using the same principal as Thiel and incorporating the secondary 
effects. This is an alternative model based on mass-volume relationship to estimate cavity pressure response.  
Now the correlation is not only being impacted by the injected volume and compressibility, but also by other 
phenomena. We once again assume a brine and diesel filled cavern. The total mass within the cavern is then; 

𝑀 = 𝜌௙𝑉 = [𝑥ௗ𝜌ௗ + (1 − 𝑥ௗ)𝜌௕]𝑉 .    (A. 20) 

A mass change due to chemical dissolution is then added due to mass transfer on the cavern wall;  

∆𝑀௖௛ = 𝜌௦∆𝑉௖௛,       (A. 21) 

where; 𝜌௦ is the salt density and ∆𝑉௖௛ is the volume of salt dissolved. Now the cavern changes elastically under 
pressure build-up and also due to viscoplastic deformation (creep or mechanical volume) combined with volume 
increase with salt rock dissolution. The added volume in the cavity will be; 

∆𝑉 = 𝛽௖∆𝑃௖𝑉 − ∆𝑉௠௖ + ∆𝑉௖௛,      (A. 22) 

where, 𝛽௖ is the cavity compressibility, ∆𝑃௖  the pressure build-up in the cavern, ∆𝑉௠௖  is the mechanical reduced 
volume (caused by creep), and ∆𝑉௖௛ is the dissolved salt volume. If an additional mass of brine is forced into 
the cavern; 𝑚 = 𝜌௕∆𝑉௜௡௝, as in equation (A.3), then the pressure increases by the following mass-volume 

relationship, including fluid density variation ∆𝜌௙; 

𝑀 + ∆𝑀௖௛ + 𝑚 = 𝜌௙(𝑉 +  ∆𝑉) + ∆𝜌௙(𝑉 +  ∆𝑉).     (A. 23) 

Substituting  (A.20) into equation (A.23) we obtain, 

∆𝑀௖௛ + 𝑚 = 𝜌௙  ∆𝑉 + ∆𝜌௙(𝑉 +  ∆𝑉).           (A. 24) 

Substituting  (A.3) and (A.21) into equation (A.24) we obtain, 

𝜌௦∆𝑉௖௛ + 𝜌௕∆𝑉௜௡௝ = 𝜌௙  ∆𝑉 + ∆𝜌௙(𝑉 +  ∆𝑉).     (A. 25) 

The variation in fluid density, ∆𝜌௙, is defined as function of cavern pressure and fluid average compressibility 

as in equation (A.7), 

∆𝜌௙ = 𝜌௙𝛽௙∆𝑃௖ + ∆𝜌௙
௧௛ = 𝜌௙𝛽௙∆𝑃௖ + 𝜌௙ ቀ

ଵ

ଵାఊ್∆்
− 1ቁ.   (A. 26) 

Substituting (A.26) into equation (A.25) we obtain 

𝜌௦∆𝑉௖௛ + 𝜌௕∆𝑉௜௡௝ = 𝜌௙  ∆𝑉 + 𝜌௙ ቂ𝛽௙∆𝑃௖ + ቀ
ଵ

ଵାఊ೏∆்
− 1ቁቃ (𝑉 +  ∆𝑉).       (A. 27) 

Replacing the term ቀ
ଵ

ଵାఊ್∆்
− 1ቁ = 𝜔௧௛, the equation can be simplified to 
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ఘೞ

ఘ೑
∆𝑉௖௛ +

ఘ್

ఘ೑
 ∆𝑉௜௡௝ =  ∆𝑉 + ൣ𝛽௙∆𝑃௖ + 𝜔௧௛൧(𝑉 +  ∆𝑉).    (A. 28) 

Substituting (A.22) into equation (A.28), we obtain 

ఘೞ

ఘ೑
∆𝑉௖௛ +

ఘ್

ఘ೑
 ∆𝑉௜௡௝ =  𝛽௖∆𝑃௖𝑉 − ∆𝑉௠௖ + ∆𝑉௖௛ + ൣ𝛽௙∆𝑃௖ + 𝜔௧௛൧(𝑉 +  𝛽௖∆𝑃௖𝑉 − ∆𝑉௠௖ + ∆𝑉௖௛).  (A. 29) 

In equation (A.29) the terms 𝜔௧௛𝛽௖∆𝑃௖ = ቀ
ଵ

ଵାఊ೏(∆ ೟்)
− 1ቁ 𝛽௖∆𝑃௖ → 10ିଵ  and 𝛽௙𝛽௖∆𝑃௖

ଶ → 10ିଵ଴ , meanwhile the 

other terms tend to 10ିହ order of magnitude. Therefore, the referred terms can be disregarded, and by re-
arranging the equation we obtain 

ఘ್

ఘ೑
 ∆𝑉௜௡௝ = 𝑉ൣ൫𝛽௖ + 𝛽௙൯∆𝑃௖ + 𝜔௧௛൧ − ∆𝑉௠௖൫1 + 𝛽௙∆𝑃௖ + 𝜔௧௛൯ + ∆𝑉௖௛ ൬1 + 𝛽௙∆𝑃௖ + 𝜔௧௛ −

ఘೞ

ఘ೑
൰. (A. 30)     

Substituting the compressibility 𝛽 = 𝛽௙ + 𝛽௖, we obtain 

ఘ್

ఘ೑

∆௏೔೙ೕ

∆௉೎
= 𝑉 ቀ𝛽 +

ఠ೟೓

∆௉೎
ቁ − ∆𝑉௠௖ ቀ

ଵ

∆௉೎
+ 𝛽௙ +

ఠ೟೓

∆௉೎
ቁ + ∆𝑉௖௛ ൬

ଵ

∆௉೎
+ 𝛽௙ +

ఠ೟೓

∆௉೎
−

ఘೞ

ఘ೑

ଵ

∆௉೎
൰, (A. 31)     

where; ቀ
ଵ

∆௉೎
→ 10ିହቁ ≫  ቀ𝛽௙ +

ఠ೟೓

∆௉೎
→ 10ିଵ ቁ and therefore the term can be dropped out, and the equation 

becomes 

ఘ್

ఘ೑

∆௏೔೙ೕ

∆௉೎
= 𝑉 ቀ𝛽 +

ఠ೟೓

∆௉೎
ቁ − ∆𝑉௠௖ ቀ

ଵ

∆௉೎
ቁ + ∆𝑉௖௛ ቀ

ଵ

∆௉೎
ቁ ൬1 +

ఘೞ

ఘ೑
൰.   (A. 32)  

For the case of blanket volume being much smaller than that of brine then 
ఘ್

ఘ೑
→ 1, we obtain    

∆௏೔೙ೕା∆௏೘೎ି∆௏೎೓൬ଵା
ഐೞ
ഐ್

൰

∆௉೎
= 𝑉 ቀ𝛽 +

ఠ೟೓

∆௉೎
ቁ.    (A. 33)  

Finally, and replacing back  𝜔௧௛ = ቀ
ଵ

ଵାఊ್∆்
− 1ቁ =

ఊ್∆்

ଵାఊ್∆்
 then the equation includes the thermal volume 

∆௏೔೙ೕା∆௏೘೎ି∆௏೎೓൬ଵା
ഐೞ
ഐ್

൰

∆௉೎
= 𝑉 ቀ𝛽 −

ଵ

∆௉೎

ఊ್∆்

(ଵାఊ್∆்)
ቁ.   (A. 34)  

By re-arranging the terms in equation (A.34) we obtain 

∆௏೔೙ೕ

∆௉೎
= 𝑉 ቄ𝛽 −

ଵ

∆௉೎
ቂ

∆௏೘೎

௏
−

∆௏೎೓

௏
ቀ1 +

ఘೞ

ఘ್
ቁ +

∆௏೟೓

௏
ቀ

ଵ

ଵାఊ್∆்
ቁቃቅ,   (A. 35)  

which can be rearranged to 

𝑉 =
∆௏೔೙ೕ

∆௉೎
ቄ𝛽 −

ଵ

∆௉೎
ቂ

∆௏೘೎

௏
−

∆௏೎೓

௏
ቀ1 +

ఘೞ

ఘ್
ቁ +

∆௏೟೓

௏
ቀ

ଵ

ଵାఊ್∆்
ቁቃቅ

ିଵ

.   (A. 36)  

For the case of blanket volume being significant, then 
ఘ್

ఘ೑
< 1 equation (A.36) becomes 

∆௏೔೙ೕ

∆௉೎
൬

ఘ್

ఘ೑
൰ = 𝑉 ቄ𝛽 −

ଵ

∆௉೎
ቂ

∆௏೘೎

௏
−

∆௏೎೓

௏
ቀ1 +

ఘೞ

ఘ್
ቁ +

∆௏೟೓

௏
ቀ

ଵ

ଵାఊ್∆்
ቁቃቅ,  (A. 37)  

Which can be rearranged to 
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𝑉 =
∆௏೔೙ೕ

∆௉೎
൬

ఘ್

ఘ೑
൰ ቄ𝛽 −

ଵ

∆௉೎
ቂ

∆௏೘೎

௏
−

∆௏೎೓

௏
ቀ1 +

ఘೞ

ఘ್
ቁ +

∆௏೟೓

௏
ቀ

ଵ

ଵାఊ್∆்
ቁቃቅ

ିଵ

.  (A. 38)  

This alternative solution is not entirely tested in this work and is suggested for future studies since previous 
models failed. A discussion on this alternative method is discussed in appendix F. 

Since ∆𝑉௧௛ = 𝑉𝛾௕∆𝑇  and if  
ఘ್

ఘ೑
→ 1 , then equation (A.38) can also be rewritten as 

𝑉 =
∆௏೔೙ೕ

∆௉೎
ቄ𝛽 −

ଵ

∆௉೎
ቂ

∆௏೘೎

௏
−

∆௏೎೓

௏
ቀ1 +

ఘೞ

ఘ್
ቁ +

ఊ್∆்

ଵାఊ್∆்
ቃቅ

ିଵ

.  (A. 39)  
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Appendix B –  Model equations 

In this section solutions in both spherical and cylindrical form are presented.  

To transform the equation from rectangular (𝑥, 𝑦, 𝑧) to spherical coordinates (𝑟, 𝜙, 𝜃) the transformation applied: 

൝
𝑥 = 𝑟 cos 𝜙 sin 𝜃
𝑦 = 𝑟 sin 𝜙 sin 𝜃
𝑧 = cos 𝜃             

 . 

In cylindrical coordinates following transformation is applied:  

൝
𝑥 = 𝑟 cos 𝜙
𝑦 = 𝑟 sin 𝜙
𝑧 = 𝑧           

 . 

A summary of the obtained solutions, in this section, is presented in Table 1Table 2. As shown in appendix A 
the pressure build-up in the cavity is not only related to the cavern volume and cavern compressibility but also 
to other phenomena. Table 2 summarizes the set of equations for the volume added by each phenomenon 
(thermal, hydraulic, mechanical and chemical).   

Table 2 Summary of solutions used in the proposed model as obtained in appendix B. 

 Sphere Cylinder 

Thermal ∆௏೟೓

୚
= 𝛾௕

ଷఞ

గ
ቂ𝑇ஶ − 𝑇௕

௢ ቀ1 −
ఊ್

ఘ್஼್
∆𝑃௖ቁቃ ൤

௧

௧೎
೟೓ +

2ට
௧

௧೎
೟೓൨  

∆௏೟೓

୚
= 𝛾௕

ଶఞ

గ
ቂ𝑇ஶ − 𝑇௕

௢ ቀ1 −
ఊ್

ఘ್஼್
∆𝑃௖ቁቃ ൤

௧

ଶ௧೎
೟೓ + 2ට

௧

௧೎
೟೓൨  

Hydraulic ∆௏೓೤

௏
= 𝑡(𝑃௖ − 𝑃௢) ቀ

ଷ

ோయ

௄

ఎ್
ቀ

ோ௥ಮ

௥ಮିோ
ቁ + 𝜓௢ቁ  

∆௏೓೤

௏
(𝑟ஶ ≫ 𝑅௖) = 𝑡(𝑃௖ − 𝑃௢) ቀ

ଷ

ோమ

௄

ఎ್
+ 𝜓௢ቁ  

∆௏೓೤

୚
= 𝑡(𝑃௖ − 𝑃௢) ൬

ଶ

ோమ

௄

ఎ್
ቀln

௥ಮ

ோ
ቁ

ିଵ

+ 𝜓௢൰  

   

Mechanic ∆௏೘೎

௏
= 𝑡

ଷ

ଶ
𝐴∗ ቂ

ଷ

ଶ௡
(𝑃ஶ − 𝑃஼)ቃ

௡

  ∆௏೘೎

௏
= 𝑡√3𝐴∗ ቂ

√ଷ

௡
(𝑃ஶ − 𝑃௖)ቃ

௡

  

Chemical ∆௏೎೓

୚
=

ଷ

ோ

௞(௖ೞೌ೟ି௖బ)

ఘೞ
 𝑡  

∆௏೎೓

୚
=

ଶ

ோ
ቀ1 +

ோ

ு
ቁ

௞(௖ೞೌ೟ି௖బ)

ఘೞ
 𝑡  

 

The thermal states that the relative volume change due to temperature effects as function of time is dependent 
of several parameters such as brine and rock properties (brine volumetric expansion coefficient 𝛾௕, density 𝜌௜, 
and heat capacity 𝐶௜). It also includes the characteristic time 𝑡௖

௧௛, which is dependent on thermal diffusivity of 
salt and cavern radius.  

The hydraulic influence as function of time is dependent of the leak constant rate 𝜓௢, pressure gradient and 

hydraulic diffusivity 
௄

ఎ್
 of the brine lost by permeation.  

The mechanic states that deformation is obtained from steady-state creep using Norton-Hoff law.  

On the chemical influences the function is dependent on time, salt concentration 𝑐଴, convective mass transfer 
coefficient 𝑘, cavern radius and salt density.  

Each of the solutions is obtained and explained in detail in this section for both spherical and cylindrical case. 
However, only spherical solutions are applied to the field data.  
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The solution for pressure build-up during a compressibility test can then be presented as function of the knowns 
contributing volumes in equation (A.18).  

For the case of a spherical cavern the solution is;  

∆௏೔೙ೕ

୼௉೎
= 𝑉௢ ൥𝛽 ቀ1 +

ଷ

ோ

௞(௖ೞೌ೟ି௖బ)

ఘೞ
 𝑡 − 𝑡

ଷ

ଶ
𝐴∗ ቂ

ଷ

ଶ௡
(𝑃ஶ − 𝑃஼ )ቃ

௡

 ቁ −
ଵ

୼௉೎
൭𝛾௕

ଷఞ

గ
ቂ𝑇ஶ − 𝑇௕

௢ ቀ1 −
ఊ್

ఘ್஼್
∆𝑃௖ቁቃ ൤

௧

௧೎
೟೓ + 2ට

௧

௧೎
೟೓൨ −

𝑡(𝑃௖ − 𝑃௢) ቀ
ଷ

ோయ

௄

ఎ್
ቀ

ோ௥ಮ

௥ಮିோ
ቁ + 𝜓௢ቁ൱൩.     (B. 1) 

In a cylindrical cavern the equation is written as 

∆௏೔೙ೕ

୼௉೎
= 𝑉௢ ൥𝛽 ൬1 +

ଶ

ோ
ቀ1 +

ோ

ு
ቁ

௞(௖ೞೌ೟ି௖బ)

ఘೞ
 𝑡 − 𝑡√3𝐴∗ ቂ

√ଷ

௡
(𝑃ஶ − 𝑃௖)ቃ

௡

 ൰ −
ଵ

୼௉೎
൭𝛾௕

ଶఞ

గ
ቂ𝑇ஶ − 𝑇௕

௢ ቀ1 −
ఊ್

ఘ್஼್
∆𝑃௖ቁቃ ൤

௧

ଶ௧೎
೟೓ +

2ට
௧

௧೎
೟೓൨ − 𝑡(𝑃௖ − 𝑃௢) ൬

ଶ

ோమ

௄

ఎ್
ቀln

௥ಮ

ோ
ቁ

ିଵ

+ 𝜓௢൰൱൩.  (B. 2) 

B.1. Thermal 
B.1.1. Governing Equations 
For the thermal problem the heat equation is solved, which is presented in cartesian coordinates. 

𝜌௦𝐶௦
డ்

డ௧
− ∇. (𝑘௦∇T) + �̇� = 0      (B. 3) 

𝜌௦𝐶௦
డ்

డ௧
− ቂ

డ

డ௫
ቀ𝑘௦

డ்

డ௫
ቁ +

డ

డ௬
ቀ𝑘௦

డ்

డ௬
ቁ +

డ

డ௭
ቀ𝑘௦

డ்

డ௭
ቁቃ + �̇� = 0    (B. 4) 

Where, �̇� is energy source or sink. 

a) Sphere 
By replacing in the transient heat equation, the spherical differential equation is obtained. 

𝜌௦𝐶௦
డ்

డ௧
− ቂ

ଵ

௥మ

డ

డ௥
ቀ𝑘௦𝑟ଶ డ்

డ௥
ቁ +

ଵ

௥మ ୱ୧୬మ ఏ

డ

డథ
ቀ𝑘௦

డ்

డథ
ቁ +

ଵ

௥మ ୱ୧

డ

డఏ
ቀ𝑘௦ sin 𝜃 

డ்

డఏ
ቁቃ + �̇� = 0    (B. 5) 

Rock salt is homogenous and isotropic, hence presenting uniform properties. Also, heat transfer is predominant 
in one direction, in this case radially from the far way boundaries of the sphere to the cavern cavity wall. The 
equation can then be re-written in its one-dimensional form to describe the heat flux from the rock to the brine 
inside the cavity. 

𝜌௦𝐶௦
డ்

డ௧
− 𝑘௦

ଵ

௥మ

డ

డ௥
ቀ𝑟ଶ డ்

డ௥
ቁ + �̇� = 0      (B. 6) 

b) Cylinder 
Analogous to previous solution, considering the material isotropic and predominance of radial heat transfer then 
the equation can be reduced from its extended form (B.6) to reduced form (B.7). 

𝜌௦𝐶௦
డ்

డ௧
− ቂ

ଵ

௥

డ

డ௥
ቀ𝑘௦  𝑟

డ்

డ௥
ቁ +

ଵ

௥మ

డ

డథ
ቀ𝑘௦ 𝑟

డ்

డథ
ቁ +

డ

డ௭
ቀ𝑘௦

డ்

డ௭
ቁቃ + �̇� = 0   (B. 7) 

𝜌௦𝐶௦
డ்

డ௧
− 𝑘௦

ଵ

௥

డ

డ௥
ቀ𝑟

డ்

డ௥
ቁ + �̇� = 0     (B. 8) 
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B.1.2. Analytical solution 
Carslaw & Jaeger, [29] present the solution for a solid at initial temperature (𝜃௜(0) = 𝜃௢) and bounded by 
constant surface temperature (𝜃ோ

ஶ). The solution is given by Van Sambeek et al. [6] and Berést et al [30], by 
applying the conditions, 

⎩
⎪
⎨

⎪
⎧

డఏೃ

డ௧
= 𝑘௦

௧௛Δ𝜃ோ

∬ 𝐾௦
௧௛ డఏೃ

డ௡
𝑑𝑆ஐ = 𝜌௕𝐶௕𝑉𝜃ప̇ௌಈ

𝜃ோ(𝑤𝑎𝑙𝑙, 𝑡) = 𝜃௜(𝑡)

𝜃ோ(𝑟𝑜𝑐𝑘 𝑚𝑎𝑠𝑠, 0) = 𝜃ோ
ஶ

     ,      (B. 9) 

where all heat supplied by the rock is used in the brine warming process, and �̇� is zero since no geothermal 
heat flux is considered. 

a) Sphere 
In the case of cavity with spherical shape, the brine temperature solution is given as below, [30]. 

𝜃(𝑟, 𝑡) = 𝜃௢ + 𝑇௢
௔

௥
erf

௥ି௔

√ସ௞௧
         (B. 10) 

Or in the case that 𝑎 = 𝑎(𝑡) we obtain 

𝜃(𝑟, 𝑡) = 𝜃௢ + ∫
డఏ

డ௧
[𝑎(𝜏), 𝜏]

௔(ఛ)

௥
erf

௥ି௔(௧)

√ସ௞௧
𝑑𝜏

௧

଴
 .    (B. 11) 

The solution is presented in a simplified form as derived by Van Sambeek, [6], which include the thermal 

capacity ratio 𝜒 that is obtained by applying the boundary conditions in (B.9) where 𝑘௦
௧௛ =

௄ೞ
೟೓

ఘೞ஼ೞ
. 

∆𝜃 =
ଷఞ

గ
[𝜃ோ

ஶ − 𝜃௜(0)] ൤
௧

௧೎
೟೓ + 2ට

௧

௧೎
೟೓൨          (B. 12.a) 

𝜒 =
ఘೞ஼ೞ

ఘ್஼್
     (B. 12.b) 

𝑡௖
௧௛ =

ோమ

గ ௞ೞ
೟೓          (B. 12.c) 

The term [𝜃ோ
ஶ − 𝜃௜(0)] in equation (B.12.a) is the temperature difference between rock and brine, which can be 

re-written as [𝑇ஶ − 𝑇௕
௢].  

Another approach and solution are presented by VanSant, [31], for the case of a spherical object with infinity 
conductivity in an infinite medium. The assumption of infinity conductivity implies that there is no temperature 
gradient inside the brine. 
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Figure 14 On the left the problem is illustrated by a solid sphere with infinity conductivity with initial temperature, embedded 
by an infinite solid with known initial temperature. On the right a plot of the problem solution as function of Fourier number 

(𝐹𝑜 =
ఈ௧

௅೎
మ) and system thermal capacity ratio (𝜒 =

ఘೞ஼ೞ

ఘ್஼್
) . 

The solution for brine temperature can be found graphically in Figure 14, where  

்್(௧)ି்್,బ

ಮ்ି்್,బ
= 𝑓 ቀ𝐹𝑜,

ଵ

ఞ
ቁ ,     (B. 13) 

and 

𝐹𝑜 =
ఈ௧

௅೎
మ  .      (B. 14) 

If work performed during fluid pressurization is considered, from Van Sambeek [6], the impact in temperature 
can be written as: 

∆𝜗 =
ଷఞ

గ
ቂ

ఊ್

ఘ್஼್
𝑇௕

௢∆𝑃௖ቃ ൤
௧

௧೎
೟೓ + 2ට

௧

௧೎
೟೓൨     (B. 15) 

Where, ∆𝜗 is the temperature increase due to pressure change only. During a compressibility test this impact 
is very small, unless significant pressure increase is inferred to the cavern. 

By using Van Sambeek solution, the final increase in temperature due to warming and pressure is written as: 

∆𝑇 =
ଷఞ

గ
ቂ𝑇ஶ − 𝑇௕

௢ ቀ1 −
ఊ್

ఘ್஼್
∆𝑃௖ቁቃ ൤

௧

௧೎
೟೓ + 2ට

௧

௧೎
೟೓൨    (B. 16) 

b) Cylinder 
Bérest and Van Sambeek also present a solution for a cylindrical shape (eq. B.17 and B.18) and its simplified 
form (eq. B.19). 

𝜃(𝑟, 𝑡) = 𝜃௢ + 𝑇௢Υ ቀ
௥

ோ
, 𝑡ቁ      (B. 17) 

𝜃(𝑟, 𝑡) = 𝜃௢ + ∫
డఏ

డ௧
[𝑎(𝜏), 𝜏]Υ ቀ

௥

ோ(௧ିఛ)
, 𝑡 − 𝜏ቁ 𝑑𝜏

௧

଴
     (B. 18.a) 

Υ ቀ
௥

ோ
, 𝑡ቁ = 1 +

ଶ

గ
∫ 𝑒௞௨మ௧  

௃೚(௨௥)௒೚(௨ோ)ି௒೚(௨௥)௃೚(௨ோ)

௃೚
మ(௨ோ)ା௒೚

మ(௨ோ)

ௗ௨

௨
 

ஶ

଴
   (B. 18.b) 
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∆𝜃 =
ଶఞ

గ
[𝜃ோ

ஶ − 𝜃௜(0)] ൤
௧

ଶ௧೎
೟೓ + 2ට

௧

௧೎
೟೓ ൨     (B. 19) 

As derived by Karimi-Jafari [17], the characteristic time for a cylindrical shape is: 

𝑡௖
௧௛ = 𝑎 exp ൥−

ଵ

ଶ
ቆ

୪୬
ಹ/ವ

ಲబ
ቁ

௕
ቇ

ଶ

൩ .     (B. 20) 

Where; 𝑎, 𝑏, 𝐴଴ are empirical constants, and  𝐻/𝐷  the cylinder height and diameter ratio. 

An alternative solution is presented by VanSant, [31], for the case of an infinite cylinder with infinity conductivity 
in an infinite medium. The brine temperature evolution in time is given below. 

்್ି ಮ்

்್,బି்ಮ
=

ସ(ଶఞ)

గమ ∫ exp(−𝜆ଶ𝐹𝑜)
ௗఒ

ఒஃ
 

ஶ

଴
      (B. 21) 

Λ = [𝜆𝐽௢(𝜆) − 2𝜒𝐽ଵ(𝜆)]ଶ + [𝜆𝑌௢(𝜆) − 2𝜒𝑌ଵ(𝜆)]ଶ      (B. 22) 

Analogous to the spherical case, incorporating brine temperature increase due to pressure as derived by Van 
Sambeek, the solution can be written as: 

∆𝑇 =
ଶఞ

గ
ቂ𝑇ஶ − 𝑇௕

௢ ቀ1 −
ఊ್

ఘ್஼್
∆𝑃௖ቁቃ ൤

௧

ଶ௧೎
೟೓ + 2ට

௧

௧೎
೟೓൨ .    (B. 23) 
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B.2. Hydraulic 
There are two forms for fluid loss in the system; one is by permeation and the other by leaks within the system. 
Such leaks may occur by loss of fluid to well completions, topsides, or within the cavern sump. According to 
Bérest [1], the leak is linked to the difference between cavern and pore pressure. 

∆𝑉௟௘௔௞ = 𝑡𝜓(𝑃௖ − 𝑃௢) = 𝑡𝜓௢𝑉(𝑃௖ − 𝑃௢) ,    (B. 24) 

where; 𝜓 is a leaking constant. The total hydraulic volume change ∆𝑉௛௬ is then obtained by summing leak and 

permeation losses, i.e. 

∆𝑉௛௬ =  ∆𝑉௣ + ∆𝑉௟௘௔௞ .     (B. 25) 

B.2.1. Governing equations 
From mass conservation and total compressibility (𝑐௧ = 𝑐௙௟௨௜ௗ + 𝑐௙௢௥௠௔௧௜௢௡), we obtain 

ఝఎ್௖೟

௄ೞ

డ௉

డ௧
− ∇ଶ𝑃 = 0 .     (B. 26) 

a) Sphere 
For spherical coordinates the equation can be written as below i.e., 

ଵ

௥మ

డ

డ௥
ቀ𝑟ଶ డ௉

డ௥
ቁ +

ଵ

௥మ ୱ୧୬మ ఏ

డ

డథ
ቀ

డ௉

డథ
ቁ +

ଵ

௥మ ୱ୧୬ ఏ

డ

డఏ
ቀsin 𝜃  

డ௉

డఏ
ቁ =

ఝఎ್௖೟

௄ೞ

డ௉

డ௧
 .  (B. 27) 

For the case of predominantly flow in radial direction, the spherical form can be simplified i.e., 

ଵ

௥మ

డ

డ௥
ቀ𝑟ଶ డ௉

డ௥
ቁ =

ఝఎ್௖೟

௄ೞ

డ௉

డ௧
 .     (B. 28) 

b) Cylinder 
In cylindrical coordinates the equation can be written as below. 

ଵ

௥

డ

డ௥
ቀ𝑟

డ௉

డ௥
ቁ +

ଵ

௥మ

డ

డథ
ቀ𝑟

డ௉

డథ
ቁ +

ଵ

௭

డ

డ௭
ቀ 

డ௉

డ௭
ቁ =

ఝఎ್௖೟

௄ೞ

డ௉

డ௧
    (B. 29) 

For a predominant linear flow in radial direction, the equation can be simplified as  

ଵ

௥

డ

డ௥
ቀ𝑟

డ௉

డ௥
ቁ =

ఝఎ್௖೟

௄ೞ

డ௉

డ௧
 .     (B. 30) 

B.2.2. Analytical solution 
By applying boundary conditions, the solutions for spherical and cylindrical caverns are obtained. 

a) Sphere 
Since the brine is permeating to the formation for a long time with cavern pressure above halmostatic, it is 
plausible to assume that steady-state flow is stablished.  

ଵ

௥మ

డ

డ௥
ቀ𝑟ଶ డ௉

డ௥
ቁ = 0 →  ቀ𝑟ଶ డ௉

డ௥
ቁ = 𝐶ଵ  ,    (B. 31) 

డ௉

డ௥
=

஼భ

௥మ →  ∫ 𝑑𝑃 = ∫
஼భ

௥మ 𝑑𝑟  ,    (B. 32) 

𝑃(𝑟) = 𝐶ଵ ቀ−
ଵ

௥
ቁ + 𝐶ଶ   .    (B. 33) 

The Dirichlet boundary conditions are then applied to obtain constants for equation (B.33), i.e., 



    Master’s thesis report 
                 Luiza Queroga Caldas (4614968) 

Page 36 of 64 
 

ቐ
𝑃௖ = 𝐶ଵ ቀ−

ଵ

ோ೎
ቁ + 𝐶ଶ

𝑃(𝑟ஶ) = 𝐶ଵ ቀ−
ଵ

௥ಮ
ቁ + 𝐶ଶ

  →  𝐶ଵ =
௉೚ି௉೎

ቀ
భ

ೃ೎
ି

భ

ೝಮ
ቁ
  .    (B. 34) 

Applying Neumann boundary conditions from Darcy’s law 𝑞 = −
௄ೞ஺೎

ఎ್

డ௉

డ௥
 we obtain 

డ௉

డ௥
= −

௤ఎ್

ସగ௥మ௄ೞ
=

஼భ

௥మ → 𝐶ଵ = −
௤ఎ್

ସగ௄ೞ
  .    (B. 35) 

By substituting (B.34) and (B.35) in equation (B.33 we obtain 

𝑃(𝑟) − 𝑃௖ =
௤ఎ್

ସగ௄ೞ
ቀ

ଵ

ோ೎
−

ଵ

௥
ቁ  .     (B. 36) 

At the cavern wall then the volumetric flow rate will be 

𝑞 =
ସగ௄ೞ

ఎ್
ቀ

ோ೎௥ಮ

௥ಮିோ೎
ቁ (𝑃௖ − 𝑃௢) .     (B. 37) 

Therefore, the total volume loss by permeation ∆𝑉௣ for steady-state condition during the test is; 

∆𝑉௣ = 𝑡
ସగ௄ೞ

ఎ್
ቀ

ோ೎௥ಮ

௥ಮିோ೎
ቁ (𝑃௖ − 𝑃௢) .     (B. 38) 

The dependency on the boundary radius, distance to aquifer, is eliminated if (𝑟 = 𝑟ஶ) ≫ 𝑅௖ at equation (B.36), 

where 𝑃(𝑟 = 𝑟ஶ) = 𝑃୭. This results ins 
ଵ

ோ೎
≫

ଵ

௥ಮ
,  and 𝑞 reduces to 𝑞 =

ସగ௄ೞோ೎

ఎ್
(𝑃௖ − 𝑃௢). Equation (B.38) than can 

be written as 

∆𝑉௣(rஶ ≫ Rେ) = 𝑡
ସగ௄ோ೎

ఎ್
(𝑃௖ − 𝑃௢) .    (B. 39) 

This is a useful relation for the cases where 𝑟ஶ ≫ 𝑅௖, and unknown.  

b) Cylinder 
Assuming steady-state we obtain Darcy flow and 

ଵ

௥

డ

డ௥
ቀ𝑟

డ௉

డ௥
ቁ = 0 →  ቀ𝑟

డ௉

డ௥
ቁ = 𝐶ଵ ,         (B. 40) 

డ௉

డ௥
=

஼భ

௥
→  ∫ 𝑑𝑃 = ∫

஼భ

௥
𝑑𝑟 ,    (B. 41) 

𝑃(𝑟) = 𝐶ଵ ln 𝑟 + 𝐶ଶ  .    (B. 42) 

Applying Dirichlet boundary conditions to equation (B.42) the first constant is obtained, i.e. 

൜
𝑃௖ = 𝐶ଵ ln 𝑟௖ + 𝐶ଶ

𝑃(𝑟ஶ) = 𝐶ଵ ln 𝑟ஶ + 𝐶ଶ
  →  𝐶ଵ =

௉೚ି௉೎

୪୬
ೝಮ
ೃ೎

  .    (B. 43) 

Applying Neumann boundary conditions, and using Darcy’s law 𝑞 = −
௄ೞ஺೎

ఎ್

డ௉

డ௥
 we obtain 

డ௉

డ௥
= −

௤ఎ್

ଶగ௥ு௄ೞ
=

஼భ

௥
→ 𝐶ଵ = −

௤ఎ್

ଶగு௄ೞ
  .    (B. 44) 

Therefore, by substituting in equation (B.42) and subtracting it from (B.43) we obtain 
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𝑃(𝑟) − 𝑃௖ = −
௤ఎ್

ଶగு௄
ln

௥

ோ೎
  .    (B. 45) 

The volumetric flow rate 𝑞 is then given by 

𝑞 =
ଶగு௄ೞ

ఎ್
ቆ

ଵ

୪୬
ೝಮ
ೃ೎

ቇ (𝑃௖ − 𝑃௢) .      (B. 46) 

Therefore, the total volume loss by permeation is; 

∆𝑉௣ = 𝑡
ଶగு௄ೞ

ఎ್
ቆ

ଵ

୪୬
ೝಮ
ೃ೎

ቇ (𝑃௖ − 𝑃௢) .         (B. 47) 

The dependency on the boundary radius, i.e. distance to aquifer, cannot be eliminated in this case. This is for 
(𝑟 = 𝑟ஶ) ≫ 𝑅௖ at equation (B.45), then (𝑃(𝑟 = 𝑟ஶ) − 𝑃୭) → ∞, what is unphysical result. This is caused by the 
logarithmic singularity. The physical meaning is that either a transient solution should be used, or a 
representative radius should be defined. 
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B.3. Mechanical 
B.3.1. Governing equations 
The mechanical behaviour is obtained by applying Cauchy’s Equation of motion (eq. B.48) or the equilibrium 
equation for the case of static equilibrium (eq. B.49), [11]. 

𝜌𝒇 + 𝑑𝑖𝑣 𝝈 = 𝜌
డమ௨

డ௧మ ,            (B. 48) 

which reduces for stationary conditions to 

𝜌𝒇 + 𝑑𝑖𝑣 𝝈 = 0 .              (B. 49) 

The constitutive relationship between strain and stress from Hooke’s law gives, [32], 

𝝈 = 2𝜇𝜺 + 𝜆𝜹 ∑ 𝜀௞௞௞  ,      (B. 50) 

where 𝜇 and 𝜆 are Lamé’s elastic constants, and 𝜹 is the Kronecker delta (𝛿௜௝ = 1 if 𝑖 = 𝑗 and 𝛿௜௝ = 0 if 𝑖 ≠ 𝑗). 

𝜇 = 𝐺 =
ா

ଶ(ଵାణ)
  and 𝜆 =

ణா

(ଵାణ)(ଵିଶణ)
  .    (B. 51) 

For isotropic materials equation (B. 50) can be also expressed as; 

𝜺 =
ଵାణ

ଶ
𝝈 −

ణ

ா
𝑡𝑟(𝝈)𝐈 .      (B. 52) 

Here, the deformation is denotated as the Cauchy’s strain tensor,  

𝜺 =
ଵ

ଶ
(∇𝒖 + (∇𝒖)்) .             (B. 53) 

But if ∇𝒖 is symmetric ∇𝒖 = (∇𝒖)், and therefore 

𝜺 = ∇𝒖  .        (B. 54) 

Navier-Cauchy equilibrium equation is then obtained by substituting Cauchy’s strain tensor (B.53) into Hooke’s 
law (B.50), and then into the equilibrium equation (B.49), [11], i.e. 

(𝜆 + 𝐺)∇(∇. 𝒖) + 𝑮∇ଶ𝒖 + 𝜌𝒇 = 0  .    (B. 55) 

a) Sphere 
For spherical coordinates the problem is illustrated as in Figure 15. 

 

Figure 15 Spherical coordinates system, [11] 
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Adopting (𝑢, 𝑣, 𝑤) as the displacement in (𝑟, 𝜃, 𝜙) directions. The equilibrium equation, (B.49), in spherical 
coordinates in isotropic and impermeable solid than becomes, [11] [23]:  

𝜌𝑓௥ +  
డఙೝೝ

డ௥
+

ଶ

௥
(𝜎௥௥ − 𝜎ఏఏ) = 0      (B. 56.a) 

𝜌𝑓ఏ +
ଵ

௥

డఙഇഇ

డఏ
= 0       (B. 56.b) 

b) Cylinder 

 

Figure 16 Cylindrical coordinates system, [11] 

Adopting (𝑢, 𝑣) as the displacement in (𝑟, 𝜃) directions, and no displacement in 𝑧. The equilibrium equation 
(B.49) for an infinite cylinder than becomes, [11], [32]:  

𝜌𝑓௥ +  
డఙೝೝ

డ௥
+

ଵ

௥

డఛഇೝ

డఏ
+

ఙೝೝିఙഇഇ

௥
= 0  ,    (B. 57.a) 

𝜌𝑓ఏ +  
డఛೝഇ

డ௥
+

ଵ

௥

డఙഇഇ

డఏ
+

ଶఛೝഇ

௥
= 0 .            (B. 57.b) 

B.3.2. Analytical solution 
By applying boundary conditions, the solutions for spherical and cylindrical caverns are obtained. 

a) Sphere 
Elastic and plastic deformations are obtained by applying governing equations of motion and Hooke’s 
relationships. 

ELASTIC SCENARIO 

For Hooke’s law (B.52) in spherical coordinates, [11]; 

൥

𝜀௥௥

𝜀ఏఏ

𝜀థథ

൩ =
ଵ

ா
൥

1 −𝜗 −𝜗
−𝜗 1 −𝜗
−𝜗 −𝜗 1

൩ ൥

𝜎௥௥

𝜎ఏఏ

𝜎థథ

൩ .     (B. 58) 

The stress-strain relationship can be written as: 

𝜀௥௥ =
ଵ

ா
(𝜎௥௥ − 2𝜗𝜎ఏఏ)  ,    (B. 59) 

𝜀ఏఏ = 𝜀థథ =
ଵ

ா
[(1 − 𝜗)𝜎ఏఏ − 𝜗𝜎௥௥] .    (B. 60) 

Due to symmetry, only the radial displacement and normal strains are nonzero, [17], i.e. 
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𝜀௥௥ =
డ௨

డ௥
  ,     (B. 61) 

𝜀ఏఏ = 𝜀థథ =
௨

௥
  .     (B. 62) 

Reciprocal to Hooke’s law (read e.g. Jaeger et al.) [11] reads 

𝜎௥௥ = (2𝜇 + 𝜆)𝜀௥௥ + 𝜆൫𝜀ఏఏ + 𝜀థథ൯ ,         (B. 63) 

𝜎ఏఏ = 𝜎థథ = (2𝜇 + 𝜆)𝜀ఏఏ + 𝜆൫𝜀௥௥ + 𝜀థథ൯.     (B. 64) 

which can also be re-written as equations (B.65) and (B.66); 

𝜎௥௥ = (2𝜇 + 𝜆)
డ௨

డ௥
+ 2𝜆

௨

௥
  ,     (B. 65) 

𝜎ఏఏ = 𝜎థథ = 2(𝜇 + 𝜆)
௨

௥
+ 𝜆

డ௨

డ௥
 .        (B. 66) 

Substituting in the equilibrium equation, (B.57) we obtain 

𝜌𝑓௥ +
డమ௨

డ௥మ +
ଶ

௥

డ௨

డ௥
− 2

௨

௥మ = 0 .           (B. 67) 

For negligible body forces, (B.67) can also be written as 

డ

డ௥
ቂ

ଵ

௥మ  
డ

డ௥
(𝑟ଶ𝑢)ቃ = 0 .     (B. 68) 

Integrating equation (B.68) shows that 𝑢 must be of the form 

𝑢(𝑟) = 𝐶ଵ𝑟 +
஼మ

௥మ  .     (B. 69) 

The relevant stress components take the form 

𝜎௥௥(𝑟) = (2𝜇 + 𝜆) ቀ𝐶ଵ −
ଶ஼మ

௥య ቁ + 2𝜆 ቀ𝐶ଵ +
஼మ

௥యቁ = 𝐶ଵ
∗ +

஼మ
∗

௥య  ,  (B. 70) 

𝜎ఏఏ = 𝜎థథ = 2(𝜇 + 𝜆) ቀ𝐶ଵ +
஼మ

௥యቁ + 𝜆 ቀ𝐶ଵ −
ଶ஼మ

௥య ቁ = 𝐶ଵ
∗ −

ଵ

ଶ

஼మ
∗

௥య  .  (B. 71) 

Boundary conditions at the wall and far from the spherical cavity are applied to obtain the constants above, i.e. 

𝜎௥௥(∞) = 0 → 𝐶ଵ
∗ = 0  ,    (B. 72) 

𝜎௥௥(𝑅) = (𝑃ஶ − 𝑃௖) → 𝐶ଶ
∗ = (𝑃ஶ − 𝑃௖)𝑅ଷ .    (B. 73) 

Therefore, the stress components as a function of radial distance to the cavity are given by 

𝜎௥௥ = (𝑃ஶ − 𝑃௖)
ோయ

௥య  ,    (B. 74) 

𝜎ఏఏ = −
ଵ

ଶ
(𝑃ஶ − 𝑃௖)

ோయ

௥య  .    (B. 75) 

upon replacing it in: 
௨

௥
=

ଵ

ா
[(1 − 𝜗)𝜎ఏఏ − 𝜗𝜎௥௥], (B.60) we obtain 



    Master’s thesis report 
                 Luiza Queroga Caldas (4614968) 

Page 41 of 64 
 

௨

௥
= −

(ଵାణ)

ଶா
 
ோయ

௥య
(𝑃ஶ − 𝑃௖)   .    (B. 76) 

The total radial displacement at the wall of the spherical cavity is given by, 𝑢(𝑅), hence; 

ఋ௏

௏
=

஺೎௨(ோ)

௏
=

ସగோమ௨(ோ)
ర

య
గோయ

= 3
௨(ோ)

ோ
 .    (B. 77) 

Therefore, from eq. (B.76) the volume deformation as function of pressure is, 

ఋ௏

௏
= −

ଷ

ଶ

(ଵାణ)

ா
 (𝑃ஶ − 𝑃௖)   .    (B. 78) 

This also leads to cavity compressibility for a spherical shape, i.e., 

𝛽 = −
ଵ

௏

డ௏

డ௉
→ 𝛽௖ =

ଷ

ଶ

(ଵାణ)

ா
  .    (B. 79) 

PLASTIC SCENARIO 

From Karimi-Jafari the solution for the plastic deformation is presents, [17]. It is established that on the plastic 
zone the deformation rate will be a combination of elastic and plastic behavior, i.e., 

𝜀̇ = 𝜀̇௘ + 𝜀̇௩௣  .          (B. 80) 

The rate of deformation components can be written as 

𝜀௥̇௥ =
డ௩

డ௥
=

ଵ

ா
(�̇�௥௥ − 2𝜗�̇�ఏఏ) + �̇� + �̇� ,    (B. 81) 

𝜀ఏ̇ఏ =
௩

௥
=

ଵ

ா
[(1 − 𝜗)�̇�ఏఏ − 𝜗�̇�௥௥] − �̇� ,    (B. 82) 

𝜀థ̇థ =
௩

௥
=

ଵ

ா
[(1 − 𝜗)�̇�ఏఏ − 𝜗�̇�௥௥] − �̇� .    (B. 83) 

From the relationship it is possible to conclude that �̇� = �̇�. Integrating both equations we obtain 

𝜀௥௥ =
డ௨

డ௥
=

ଵ

ா
(𝜎௥௥ − 2𝜗𝜎ఏఏ) + 2𝜆 ,    (B. 84) 

𝜀ఏఏ =
௨

௥
=

ଵ

ா
[(1 − 𝜗)𝜎ఏఏ − 𝜗𝜎௥௥] − 𝜆 .    (B. 85) 

Applying Tresca’s criterium for failure [17], (𝜎௥௥ − 𝜎ఏఏ = 2𝑐), in the equilibrium equation; 

డఙೝೝ

డ௥
+

ଶ

௥
(𝜎௥௥ − 𝜎ఏఏ) = 0       (B. 86) 

డఙೝೝ

డ௥
+

ସ௖

௥
= 0       (B. 87) 

Tresca’s criteria is chosen instead of Von Mises because at the grain level yielding occurs due to displacement 
on the slip plane. However, Von Mises criteria could be applied, but this solution is more complex and not 
presented here. 

By integrating eq. (B.87) and subsequently (B.86) a solution for the equation is obtained, which reads 

𝜎௥௥ = −4𝑐 ln
௥

ோ
+ 𝐶ଷ   ,       (B. 88) 
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𝜎ఏఏ = −4𝑐 ln
௥

ோ
+ 𝐶ଷ  − 2𝑐 .      (B. 89) 

The boundary condition is that at the wall of the spherical cavity 𝜎௥௥ (𝑅) = (𝑃ஶ − 𝑃௖), thus 𝜆 = 0 at the wall, [17]. 
Therefore, the total plastic radial displacement in the spherical cavity is: 

ఋ௏

௏
= 3

௨(ோ)

ோ
= −

ଷ

ா
ቂ(1 − 2𝜗)(𝑃ஶ − 𝑃௖) −

ଷ

ଶ
(1 − 𝜗) exp ቂ(𝑃ஶ − 𝑃௖) ቀ

ଷ

ସ௖
ቁ − 1ቃቃ   (B. 90) 

STEADY-STATE PLASTIC SCENARIO 

For the case of a steady state creep the stress in the massive is at stationary state, thus stress rates are zero; 

�̇�௥௥ = �̇�ఏఏ = 0 ,      (B. 91) 

or 

డ௩

డ௥
+

ଶ௩

௥
= 0 .      (B. 92) 

Karimi-Jafari [17] and Van Sambeek [6] propose that the solution for geometric creep under Norton-Hoff model 
in permanent regime for sphere is 

ఋ௏

௏
= 3

௨(ோ)

ோ
=

ଷ

ଶ
𝐴∗ ቂ

ଷ

ଶ௡
(𝑃ஶ − 𝑃஼)ቃ

௡

  .    (B. 93) 

b) Cylinder 
From the governing equations the solution for elastic and plastic deformation are obtained as below. 

ELASTIC SCENARIO 

For Hooke’s law (B.52) in spherical coordinates, disregarding 𝑧 which covers stability of cavity roof, [11] 

൥

𝜀௥௥

𝜀ఏఏ

𝜀௥ఏ

൩ =
ଵ

ா
൥

1 −𝜗 0
−𝜗 1 0
0 0 1 + 𝜗

൩ ൥

𝜎௥௥

𝜎ఏఏ

𝜏௥ఏ

൩ .    (B. 94) 

The stress-strain relationship is written as 

𝜀௥௥ =
ଵ

ா
(𝜎௥௥ − 𝜗𝜎ఏఏ) ,     (B. 95) 

𝜀ఏఏ =
ଵ

ா
(𝜎ఏఏ − 𝜗𝜎௥௥) ,     (B. 96) 

𝜀௥ఏ =
ଵାణ

ா
𝜏௥ఏ =

ଵ

ଶఓ
𝜏௥ఏ .      (B. 97) 

The stress-strain relationship can also be written as in Malvern, [33]: 

𝜀௥௥ =
డ௨

డ௥
  ,     (B. 98) 

𝜀ఏఏ =
ଵ

௥

డ௩

డఏ
+

௨

௥
  ,     (B. 99) 

𝜀௥ఏ =
ଵ

ଶ
ቀ

ଵ

௥

డ௨

డఏ
+

డ௩

డ௥
−

௩

௥
ቁ .     (B. 100) 

Therefore, the volumetric strain is, [11], 
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𝜀୚ = 𝜀௥௥ + 𝜀ఏఏ =
డ௨

డ௥
+

௨

௥
+

ଵ

௥

డ௩

డఏ
 .    (B. 101) 

Reciprocal to Hooke’s law, (B. 50) we obtain 

𝜎௥௥ = (2𝜇 + 𝜆)𝜀௥௥ + 𝜆𝜀ఏఏ  ,    (B. 102) 

𝜎ఏఏ = (2𝜇 + 𝜆)𝜀ఏఏ + 𝜆𝜀௥௥ ,    (B. 103) 

𝜏௥ఏ = (2𝜇)𝜀௥ఏ  .    (B. 104) 

which can be re-written, from (B.98), (B.99) and (B.100) as the equations below; 

𝜎௥௥ = (2𝜇 + 𝜆)
డ௨

డ௥
+ 𝜆 ቀ

ଵ

௥

డ௩

డఏ
+

௨

௥
ቁ  ,    (B. 105) 

𝜎ఏఏ = (2𝜇 + 𝜆) ቀ
ଵ

௥

డ௩

డఏ
+

௨

௥
ቁ + 𝜆

డ௨

డ௥
   ,    (B. 106) 

𝜏௥ఏ = 𝜇 ቀ
ଵ

௥

డ௨

డఏ
+

డ௩

డ௥
−

௩

௥
ቁ = 2𝜇𝜀୚  .    (B. 107) 

Substituting in the equilibrium equation we obtain  

𝜌𝑓௥ + (𝜇 + 𝜆)
డఌ౒

డ௥
+ 𝜇 ቀ

డమ௨

డ௥మ +
ଵ

௥

డ௨

డ௥
−

௨

௥మ +
ଵ

௥మ

డమ௨

డఏమ −
ଶ

௥మ

డ௩

డఏ
ቁ = 0 ,   (B. 108) 

𝜌𝑓ఏ + (𝜇 + 𝜆)
డఌ౒

డఏ
+ 𝜇 ቀ

డమ௩

డ௥మ +
ଵ

௥

డ௩

డ௥
−

௩

௥మ +
ଵ

௥మ

డమ௩

డఏమ −
ଶ

௥మ

డ௩

డఏ
ቁ = 0 .   (B. 109) 

From Kirsch (1898) [34], Malvern, [33], and Grandi et al [10] the radial stress, circumferential stress and 
tangential shear stress can be written as 

𝜎௥௥ =
ଵ

ଶ
(𝑆𝐻∗ + 𝑆ℎ∗) ቀ1 −

ோమ

௥మቁ +
ଵ

ଶ
(𝑆𝐻∗ − 𝑆ℎ∗) ቀ1 − 4

ோమ

௥మ + 3
ோర

௥రቁ cos 2𝜃 + (𝑃௖ − 𝑃௢)
ோమ

௥మ    , (B. 110) 

𝜎ఏఏ =
ଵ

ଶ
(𝑆𝐻∗ + 𝑆ℎ∗) ቀ+1 −

ோమ

௥మቁ −
ଵ

ଶ
(𝑆𝐻∗ − 𝑆ℎ∗) ቀ1 + 3

ோర

௥రቁ cos 2𝜃 − (𝑃௖ − 𝑃௢)
ோమ

௥మ   , (B. 111) 

𝜏௥ఏ = −
ଵ

ଶ
(𝑆𝐻∗ − 𝑆ℎ∗) ቀ1 + 2

ோమ

௥మ − 3
ோర

௥రቁ sin 2𝜃    . (B. 112) 

where 𝑆𝐻∗ = 𝑆𝐻 − 𝑃௢, also in the case of rock salt 𝑆𝐻 = 𝑃ஶ. For an infinite cylinder, in isotropic medium, 
assuming an impermeable wall, referred to as Lamé’s solution is; 

𝜎௥௥ = 𝑃ஶ ቀ1 −
ோమ

௥మቁ + 𝑃௖
ோమ

௥మ = −(𝑃ஶ − 𝑃𝑐 )
ோమ

௥మ + 𝑃ஶ ,    (B. 113) 

𝜎ఏఏ = 𝑃ஶ ቀ1 +
ோమ

௥మቁ − 𝑃௖
ோమ

௥మ = (𝑃ஶ − 𝑃𝑐 )
ோమ

௥మ + 𝑃ஶ ,    (B. 114) 

𝜏௥ఏ = 0  .      (B. 115) 

Observe that, with boundary conditions at the wall and far from the cylindrical cavity: 

𝜎௥௥(𝑅) = 𝑃௖    and 𝜎௥௥(∞) = 𝑃ஶ ,   (B. 116.a) 

𝜎ఏఏ(𝑅) = 2𝑃ஶ − 𝑃௖  and  𝜎ఏఏ(∞) = 𝑃ஶ  .              (B. 116.b) 

Therefore, by substituting (B.116.a) and (B.116.b) in (B.95) the radial strain becomes 
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𝜀௥௥ =
డ௨

డ௥
=

ଵ

ா
ቂ(−𝑃ஶ + 𝑃௖  )

ோమ

௥మ
(1 + 𝜗)ቃ .    (B. 117) 

By integrating (B.117) we obtain 

௨

௥
= −

ଵ

ா
ቂ(𝑃ஶ − 𝑃𝑐 )

ோమ

௥మ
(1 + 𝜗)ቃ .     (B. 118) 

The total radial displacement in the cylindrical cavity is given by, 𝑢(𝑅), and tanking p as the perimeter of the 
cylinder cross-section; 

ఋ௏

௏
=

୮ ௨(ோ)

஺೎
=

ଶగோ௨(ோ)

గோమ = 2
௨(ோ)

ோ
      (B. 119) 

Therefore, from equation (B.118) the volume deformation as function of pressure can be written as 

ఋ௏

௏
= −2

(ଵାణ)

ா
(𝑃ஶ − 𝑃𝑐 ) .    (B. 120) 

This also leads to cavity compressibility for a spherical shape in isentropic medium 

𝛽 = −
ଵ

௏

డ௏

డ௉
→ 𝛽௖ = 2

(ଵାణ)

ா
  .    (B. 121) 

PLASTIC SCENARIO 

From Karimi-Jafari, on the plastic zone the deformation rate will be sum of elastic and visco-plastic deformation 
rate, 

𝜀̇ = 𝜀̇௘ + 𝜀̇௩௣ .       (B. 122) 

The rate of relevant deformation components can be written as 

𝜀௥̇௥ =
డ௩

డ௥
=

ଵ

ா
(�̇�௥௥ − 𝜗�̇�ఏఏ) + �̇� + �̇� ,    (B. 123) 

𝜀ఏ̇ఏ =
௩

௥
=

ଵ

ா
(�̇�ఏఏ − 𝜗�̇�௥௥) − �̇�  .    (B. 124) 

From the relationship it is possible to conclude that �̇� = �̇�. Integrating both equations we obtain 

𝜀௥௥ =
డ௨

డ௥
=

ଵ

ா
(𝜎௥௥ − 𝜗𝜎ఏఏ) + 2𝜆  ,    (B. 125) 

𝜀ఏఏ =
௨

௥
=

ଵ

ா
(𝜎ఏఏ − 𝜗𝜎௥௥) − 𝜆  .    (B. 126) 

STEADY-STATE PLASTIC SCENARIO 

For the case of a steady state creep the stress in the massive is at stationary state, thus; 

�̇�௥௥ = �̇�ఏఏ = 0  ,     (B. 127) 

డ௩

డ௥
+

௩

௥
= 0  .     (B. 128) 

The solution for the stress around the cavity is as derived by Karimi-Jafari is 

𝜎௥௥ = ቀ
ோ

௥
ቁ

మ

೙
(𝑃ஶ − 𝑃௖) − 𝑃ஶ ,     (B. 129) 
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𝜎ఏఏ = ቀ
ோ

௥
ቁ

మ

೙
(𝑃ஶ − 𝑃௖) ቀ1 −

ଶ

௡
ቁ − 𝑃ஶ ,    (B. 130) 

𝜎௭௭ = ቀ
ோ

௥
ቁ

మ

೙ (𝑃ஶ − 𝑃௖) ቀ1 −
ଵ

௡
ቁ − 𝑃ஶ .    (B. 131) 

Therefore, from Van Sambeek [6], the solution for Norton-Hoff permanent creep model for a cylinder is; 

ఋ௏

௏
= 2

௨(ோ)

ோ
= √3𝐴∗ ቂ

√ଷ

௡
(𝑃ஶ − 𝑃௖)ቃ

௡

 .    (B. 132) 
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B.4. Chemical 
B.4.1. Governing equations 
Assume that the accumulated mass in the cavity is equal to the transferred mass form the its boundary. 

𝑉௖
ௗ௖

ௗ௧
= 𝐴௖𝑘(𝑐௦௔௧ − 𝑐(𝑡))  ,     (B. 133) 

And 𝑘 is obtained from mass transfer dimensionless numbers i.e. 

𝑆ℎ = 0.13(𝐺𝑟𝑆𝑐)ଵ/ଷ =
௞௛

஽ೌ್
 ,     (B. 134) 

𝐺𝑟 =
௛య௚ ∆

ఎ್
మ   ,     (B. 135) 

𝑆𝑐 =
ఎ್

ఘ஽ೌ್
  .     (B. 136) 

a) Sphere 
Therefore, for a spherical cavern eq. (B.133) reads 

ௗ௖

ௗ௧
=

ଷ

ோ
𝑘(𝑐௦௔௧ − 𝑐(𝑡)) .     (B. 137)  

b) Cylinder 
For a finite cylindrical cavern, the equation is then written as 

ௗ௖

ௗ௧
= 2 ቀ

ଵ

ோ
+

ଵ

ு
ቁ 𝑘(𝑐௦௔௧ − 𝑐(𝑡)) =

ଶ

ோ
ቀ1 +

ோ

ு
ቁ 𝑘൫𝑐௦௔௧ − 𝑐(𝑡)൯ .   (B. 138) 

B.4.2. Analytical solution 
By applying boundary conditions, the solutions for spherical and cylindrical caverns are obtained. 

a) Sphere 
If the initial brine concentration is known, and 𝑘 does not change significantly in time, as does the cavern 
average brine concentration (𝑐଴), then a steady state transfer can be assumed. This is only valid during the 
short period of time of the test, i.e. 

∆௏೏

୚
=

ଷ

ோ

௞(௖ೞೌ೟ି௖బ)

ఘೞ
𝑡  .     (B. 139)  

b) Cylinder 
Analogous to sphere case solution we obtain  

∆௏೏

୚
=

ଶ

ோ
ቀ1 +

ோ

ு
ቁ

௞(௖ೞೌ೟ି௖బ)

ఘೞ
 𝑡 .      (B. 140) 

However, for the case of 𝐻 ≫ 𝑅 or dissolution occurs only radially, the equation becomes 
∆௏೏

୚
=

ଶ

ோ
𝑘(𝑐௦௔௧ − 𝑐଴)𝑡.  
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Appendix C –  Physical constants 

The physical constants used to obtain the results to be presented in the upcoming sections are here 
summarized. A range of the possible values is used to obtain upper and lower ranges of cavern volume, and 
standard values for tuning. 

Table 3 List of parameters and used values for sensitivity analysis of the models 

Symbol Parameter Value Unit 

Minimum Maximum Standard 

𝐴  Norton-Hoff law constant 7.3 ∗ 10ିହ 7.31 ∗ 10ିଵ 1.3 ∗ 10ିଶ [
ଵ

௦ ୑௉௔೙]  

𝛼  Thermal diffusivity   3 ∗ 10ି଺ [
௠మ

௦
] 

𝛽  Total cavern compressibility 2.0 ∗ 10ିଵ଴ 9.7 ∗ 10ିଵ଴ 3.5 ∗ 10ିଵ଴ [𝑃𝑎ିଵ] 

𝛽௕  Brine compressibility 2.3 ∗ 10ିଵ଴ 4.5 ∗ 10ିଵ଴ 2.3 ∗ 10ିଵ଴ [𝑃𝑎ିଵ] 

𝛽௦  Sump compressibility   0.82 ∗ 10ିଵ଴ [𝑃𝑎ିଵ] 

𝐶௕  Brine heat capacity   3840 [
ௐ

୩୥℃
] 

𝐶௦  Salt heat capacity   926 [
ௐ

୩୥℃
] 

𝑐௙  Fluid sound velocity  1500 1865 1865 [
௠

௦
] 

𝑐௦௔௧  Salt concentration at saturation   53 ∗ 10ଷ [
௠௢௟

௠య ] 

𝐷௔௕   Salt mass diffusivity coefficient    0.12 ∗ 10ିଽ [
௠మ

௦
] 

𝐸  Young’s modulus of the rock 0.5 ∗ 10ଵ଴ 4 ∗ 10ଵ଴ 2 ∗ 10ଵ଴ [𝑃𝑎]  

𝛾௕  Brine volumetric expansion   4.4 ∗ 10ିସ [℃ିଵ] 

𝑔  Acceleration of gravity   9.81 [
௠

௦మ] 

𝐾௦  Permeability of salt formation 10ିଶଶ 10ିଵଽ 10ିଵଽ [𝑚ଶ] 

𝐾௦
௧௛  Thermal conductivity of salt   6 [

ௐ

௠℃
] 

𝑛  Norton-Hoff law exponent 3.1 3.6 3.6 [−] 

𝜂௕  Dynamic viscosity of brine   1.2 ∗ 10ିଷ [𝑃𝑎. 𝑠] 

𝑃ஶ  Lithostatic pressure   5.8 ∗ 10଻ [𝑃𝑎] 

𝜓௢  Leak constant per cavern volume 10ିଶ଴ 10ିଵହ 10ିଵ଻ [
௠య

௠య௉௔.௦
] 

ொ

ோ
  Norton-Hoff law constant 4100 7500 6120 [𝐾] 

𝜌௕  Brine density   1265 [
௞௚

௠య] 

𝑇௢ , 𝜃௢  Initial cavern fluid temperature 45 75 60 [℃, 𝐾] 

𝑇ஶ, 𝜃ோ
ஶ  Rock geothermal temperature 75 95 86.5 [℃, 𝐾] 
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Appendix D –  Sensitivity to parameters 

The sensitivity analysis of the of each component contributing in the pressure response of any of the model is 
studied is this section. The objective is to assess the impact of uncertainties in each term (thermal, hydraulic, 
mechanical, and chemical volume) of the models. The chemical model sensitivity assessment is done for the 
case of undersaturated brine, rather than additional dissolution due to cavern pressure increase as suggested 
by Van Sambeek and Bérest.  

D.1. Thermal 
The sensitivity of the total volume added by thermal influences during a compressibility test is displayed below 
for the case of a 10଺ 𝑚ଷ cavern, with standard parameters as stablished in appendix C. The results are for the 
volume added after 1 hour of shut-in of the cavern with a 10 𝑏𝑎𝑟 pressure increase. Each of the parameters is 
then changed to analyse its impact in the total volume, Figure 17. 

 

Figure 17 Sensitivity analysis plots for thermal volume used in all models. The sensitivity is performed for a cavity of 10଺ 𝑚ଷ 
in 1 ℎ𝑜𝑢𝑟 of compressibility test, all values are shown for a total pressure increase of 10 𝑏𝑎𝑟. 
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D.2. Hydraulic 
The sensitivity of the total volume added by hydraulic influences during the compressibility test is displayed 
below for the case of a 10଺ 𝑚ଷ cavern, with standard parameters as stablished in appendix C. The results are 
for 1 hour of shut-in. Each of the parameters is then changed to analyse its impact in the total volume, as in 
plots from Figure 18. 

 

Figure 18 Sensitivity analysis plots for hydraulic volume used in all models. The sensitivity is performed for a cavity of 10଺ 𝑚ଷ 
in 1 ℎ𝑜𝑢𝑟 of compressibility test, all values are shown for a total pressure increase of 10 𝑏𝑎𝑟 

D.3. Mechanical 
The total volume added by creep, or plastic deformation, of the rock salt during the compressibility test is 
depended on Norton-Hoff parameters, and cavern shape. In respect to shape the minimum radial creep occurs 
when the cavern has a spherical shape, and the maximum when it has a cylindrical. Hence, for different shapes; 

ቀ
ஔ௏̇೎ೝ

୚
ቁ

௦௣௛௘௥௘
=

ଷ

ଶ
𝐴∗ ቂ

ଷ

ଶ௡
(𝑃ஶ − 𝑃஼)ቃ

௡

     ∝       ቀ
ஔ௏̇೎ೝ

୚
ቁ

௖௬௟௜௡ௗ௘௥
= √3𝐴∗ ቂ

√ଷ

௡
(𝑃ஶ − 𝑃௖)ቃ

௡

  (D.1) 

𝑓(Ω) = 𝑎 ቂ
௔

௡
ቃ

௡

, 𝑎 = ቂ
ଷ

ଶ
, √3ቃ     (D.2) 

In eq. (D.2) the variable 𝑓(Ω) is a function of shape 𝑎 (which is different form shape factor 𝐹) and 𝑛 the Norton-
Hoff law coefficient.  

The sensitivity of the volume change in the cavern due to creep after 1 hour of shut-in is displayed in Figure 19. 
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Figure 19 Sensitivity analysis plots for mechanical volume used in all models. The sensitivity is performed for a cavity of 
10଺  𝑚ଷ in 1 ℎ𝑜𝑢𝑟 of compressibility test, all values are shown for a total pressure increase of 10 𝑏𝑎𝑟. Rock cooling occurs 
when the temperature of the rock is below the geothermal temperature due to cold water injection. 

D.4. Chemical  
One of the most important aspects of active leaching caverns is the dissolution impact in compressibility testing. 
Brine concentration can be obtained from production data before the test. 

 

Figure 20 Sensitivity analysis plots for chemical volume applied in proposed model. The sensitivity is performed for a cavity 
of 10଺  𝑚ଷ in 1 ℎ𝑜𝑢𝑟 of compressibility test, all values are shown for a total pressure increase of 10 𝑏𝑎𝑟. 
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D.5. Compressibility 
Another important factor in compressibility tests is the cavern compressibility itself, which is depend on the rock 
properties and cavern fluid.  

The shape factor very from a sphere to a cylindrical cavity, although it can be greater than that for penny-shaped 
cavity. Rock properties relevant to obtain elastic deformation are rock Young Modulus and Poisson’s ratio, which 
can vary between 5 𝐺𝑃𝑎 to 40 𝐺𝑃𝑎 and 0.2 to 0.3, respectively, for rock salt. Hence, the compressibility factor 
for salt cavities that are not penny-shaped is between 𝛽௖ = 0.45 ∗ 10ିଵ଴ 𝑃𝑎ିଵ and 𝛽௖ = 5.2 ∗ 10ିଵ଴ 𝑃𝑎ିଵ. 

Fluid compressibility is dependent on density, and therefore it’s sonic velocity. The compressibility of the fluid 
within the cavity may vary from fresh water to saturated brine. The sonic velocity in fresh water is 1500 𝑚/𝑠 for 
a 1000 𝑘𝑔/𝑚ଷ density, and in saturated brine from 1865 𝑚/𝑠 and 1299 𝑘𝑔/𝑚ଷ (as observed in field data). Thus, 
brine, or fluid, compressibility can vary from 𝛽௪ = 4.4 ∗ 10ିଵ଴ 𝑃𝑎ିଵ to 𝛽௕ = 2.2 ∗ 10ିଵ଴ 𝑃𝑎ିଵ for a saturated 
solution of sodium chloride. 

Figure 21 displays the range of compressibility between spherical and cylindrical shaped caverns. 

 
Figure 21 On the right plot cavity compressibility is displayed as function of rock constants, on the left the range of possible 
total compressibility from cavity and saturated to undersaturated brine density without sump contribution 

This analysis is usefull to determine unphysical values of the compressibility for a salt cavern that can be used 
to disregard data from unsuccesful compressibility test. For caverns under leaching for a long period of time the 
compressibilty factor should tend to the most right side range for highly saturated brine, meanwhile for midaged 
caverns the value can be more abrangent.  

Furthermore, the compressibility of a not perfectly spherical or perfectly cylindrical cavities must be within the 
overlaying range, for e.g. the compressibility of a real shaped cavern filled with highly saturated brine is expected 
to be between 𝛽 = 2.8 ∗ 10ିଵ଴ 𝑃𝑎ିଵ and 𝛽 = 6.1 ∗  10ିଵ଴ 𝑃𝑎ିଵ for any shape (non-penny shaped cavity) and 
fluid density. Penny shaped caivities can present much larger values of compressibility than that of a cylinder 
[8], and such shape is characteristic of cavities with more than one well, what is not the case of BAS3O and 
BAS4.  

Also, rock properties are assumed to be constant, thus the ratio (1 + 𝜗)/𝐸 is not changing, but the shape of the 
cavity or brine concentration might change with leaching mode.  

Retaken the previous example of a saturated cavern at any moment in time, given that the rock has 𝐸 = 20 𝐺𝑃𝑎 
and 𝜗 = 0.2, the total compressibility must then be between 𝛽 = 3.1 ∗ 10ିଵ଴ 𝑃𝑎ିଵ and 𝛽 = 3.4 ∗  10ିଵ଴ 𝑃𝑎ିଵ 
according to cavern shape. This analysis is usefull to narrowdown the possible values for the cavern 
compressibility, Figure 22. 
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Figure 22 On the right cavity compressibility range as a function of shape for given rock constants, on the left the impact of 
brine density on the total compressibility for the same rock constants with unknown shape (range from spherical to cylindrical 
shape case). 
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Appendix E –  Results for BAS3O and BAS4 

Field data was tested for different models, with a different range of possible parameters. The parameters range 
is established from possible values from observed production data. The cavern equivalent radius and shape is 
necessary input to the model. Although, they are unknown it is possible to obtain an estimated range from 
leaching simulators and volume balance forecasts. They model is then tuned to obtain best fit results.  

E.1. BAS3O 
E.1.1. Field data 
Field data is analysed by adopting Thiel’s approach. At this perspective the slope between injected volume by 
cavern volume and normalized pressure increase is directly correlated to cavern volume and compressibility. 
By plotting compressibility tests performed at different dates in time, for BAS3O well, it is possible to see that 
the trend is not linear. This becomes clearer by plotting the derivative of the data set, what can be interpreted 
by Thiel’s compressibility or hydraulic response.   

 
Figure 23 Compressibility test normalized data set for BAS3O. 

 
Figure 24 Compressibility of the cavern for each moment of the test from data set for BAS3O. 
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E.1.1. Analysis 
Previous models have been applied to field data using the range of parameters in appendix C. The model has 
been tuned to incorporate the impact of sump on the compressibility. From the analysis of the range of possible 
outcomes (Figure 25, 26 and 27). The range represents the area between the minimum physically possible 
cavern volume (calculated using the referred model by applying low case parameters) and the maximum cavern 
volume (applying the referred model using high case scenario parameters) . It is possible to conclude that there 
is indeed a trend between compressibility and cavern volumes. However, the level of uncertainty is too large for 
the given models. 

 
Figure 25 Maximum range of BAS3O cavern volume interpretation for different compressibility for Thiel's approach 

   
Figure 26 Maximum range of BAS3O cavern volume interpretation for different compressibility and secondary phenomena 
parameters for Bérest’s approach 

 
Figure 27 Maximum range of BAS3O cavern volume interpretation for different compressibility and secondary phenomena 
parameters for Van Sambeek's approach 
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The proposed model is then applied. The model helps in narrowing down the range of possible outcomes from 
the test when compared to Van Sambeek and Bérest approach, Figure 28. It is possible for it to be improved 
by calibrating the input data with laboratory surveys, such as creep constants and downhole brine temperature.  

 

Figure 28 Maximum range of BAS3O cavern volume interpretation for different compressibility and secondary phenomena 
parameters for new proposed model. 

The calibrated results for each of the models is presented in Figure 29. 

 

Figure 29 Summary of results from tuned field data for BAS3O 

The model gives some sharp results. In the data points where it fails, a possible explanation is either test failure 
due to untracked leaks or change in average in situ brine temperature. Thiel’s model shows a consistent 
approximation if properly calibrated, with an error of up to 30%, except for October 2015 and April 2016. Also, 
for Thiel’s model 6 data points fall within the range of 10% accuracy under calibration of parameters to achieve 
best fit for the model. The proposed model presents 8 data points with error inferior to 5% under calibration to 
achieve best fit curve for this model. 

Other models present a higher discrepancy, and therefore are not accurate for cavity volume prediction for the 
case of BAS3O. 
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E.2. BAS4 
E.2.1. Field data 
Analogous to BAS3O the same analysis has been performed for the compressibility test data set. For this cavern 
the data seems to be more linear, Figure 30, with exception of some data points. Cavern hydraulic response 
falls into a range of smaller values than that of BAS3O, Figure 31. However, the caverns should present similar 
responses, since they are both located at the same halite formation and similar depths. The difference between 
the cavities is due to the fact that BAS4 is larger and older than BAS3O.  

 
Figure 30 Compressibility test data set for BAS4. 

 
Figure 31 Compressibility of the cavern for each moment of the test from data set for BAS4. 
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Under Thiel’s model the cavities would have an unphysical value for cavern shape and compressibility, as in 
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E.2.2. Analysis 
Previous models are applied to the BAS4 cavern data set. Even with tuning of the parameters to best fit real 
values it is difficult to match cavern volume with the known volume data set. For the case of Thiel’s model for 
compressibility test the volume is considerably underestimated, Figure 32. For the other models, Figure 33 and 
Figure 34,  the size is overestimated due to the creep input as part of the injected volume. 

 
Figure 32 Maximum range of BAS4 cavern volume interpretation for different compressibility for Thiel's approach 

 
Figure 33 Maximum range of BAS4 cavern volume interpretation for different compressibility and secondary phenomena 
parameters for Bérest’s approach 

 
Figure 34 Maximum range of BAS4 cavern volume interpretation for different compressibility and secondary phenomena 
parameters for Van Sambeek's approach 
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The proposed model narrows down the range of possible values, when compared to Bérest and Van Sambeek, 
and succeeds to deliver cavern volumes within the range of maximum and minimal possible outcomes 
(according to maximum field observed creep, brine temperature and a range of cavern compressibility), Figure 
35. Accurate results can then be obtained by tuning of parameters.  

 

Figure 35 Maximum range of BAS4 cavern volume interpretation for different compressibility and secondary phenomena 
parameters for new proposed model 

The models are then calibrated and compared, Figure 36, using physical possible compressibility factors aligned 
with those of BAS3O. The values must be somewhat similar since caverns are in same formation, and only fluid 
compressibility can be different between caverns.  

 

Figure 36 Summary of results from tuned field data for BAS4 

The proposed model is then the only to satisfy volume prediction for BAS4 with 12% average error, since Thiel’s 
model results in unphysically low compressibility (below saturated brine).  
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Appendix F –  Alternative model analysis 

The alternative model presented in the recommendation has been applied to the data set, however it has not 
been fully investigated in this work. The alternative model is obtained as in appendix A, eq. (A.39), by applying 
a mass-volume balance approach to the compressibility problem,  

𝑉 =
∆௏೔೙ೕ

∆௉೎
ቄ𝛽 −

ଵ

∆௉೎
ቂ

∆௏೘೎

௏
−

∆௏೎೓

௏
ቀ1 +

ఘೞ

ఘ್
ቁ +

ఊ್∆்

ଵାఊ್∆்
ቃቅ

ିଵ

.   (F.1) 

Each contributing volume is obtained as summarized in appendix B, table 2. 

The prosed model and alternative proposed model are compared by applying sensitivity analysis since they 
result in extremely different values for the same input parameters.  

F.1. Sensitivity to compressibility 
From figures 37 and 38 we conclude that the alternative model is not as sensitive to cavern compressibility as 
the proposed model. In addition to that one can observe that by changing the compressibility alone in the 
alternative model, figure 38, it is not possible to achieve the forecasted cavern volume, hence other parameters 
have to be changed to increase accuracy. 

 

Figure 37 Sensitivity analysis of estimated cavern volume for BAS3O from model to compressibility, adopting calibration 
parameters as in appendix C. 

 

Figure 38 Sensitivity analysis of estimated cavern volume for BAS3O from alternative model to compressibility, adopting 
calibration parameters as in appendix C. 
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The same analysis is then performed for BAS4 cavern, figure 39 and 40. From figure 40 we conclude that the 
alternative model does not admit such low compressibility values for the case of September 2016 BAS4 data 
set, since denominator in equation (F.1) would be to low resulting in a jump in predict volume. 

 

Figure 39 Sensitivity analysis of estimated cavern volume for BAS4 from model to compressibility, adopting calibration 
parameters as in appendix C. 

 

Figure 40 Sensitivity analysis of estimated cavern volume for BAS4 from alternative model to compressibility, adopting 
calibration parameters as in appendix C. 

From figure 37 and 39 we conclude that the caverns compressibility should be near to that predicted for the 
proposed model. No conclusion can be inferred for the alternative model from figures 38 and 40, because that 
data is not enough to obtain a common value for cavern compressibility. 

F.2. Sensitivity to temperature 
The sensitivity analysis is then performed for different initial brine temperature, figure 41 and 42, for the 
alternative model for BAS3O and BAS4 cavern data set. The result displays the alternative model is more 
sensitive to brine temperature than to the compressibility, and it once again results in unphysical values for 
September 2016 BAS4 data set.  
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Figure 41 Sensitivity analysis of estimated cavern volume for BAS3O from alternative model to temperature, adopting 
calibration parameters as in appendix C. 

 

 

Figure 42 Sensitivity analysis of estimated cavern volume for BAS4 from alternative model to temperature, adopting 
calibration parameters as in appendix C. 

 

F.3. Tuning of alternative model 
In an attempt to obtain best fit curve for the alternative model the values for compressibility and initial brine 
temperature have been calibrated.  

Some data points have their error reduced when compared to the proposed model, yet the proposed model 
comes out with the lowest average error. In addition to that the best fit solutions for the alternative model is only 
reached by applying unphysical values for cavity compressibility (lower than that of the fluid within the cavity 
alone). 
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Figure 43 On the right, best fit estimated cavern volume for BAS3O using alternative model. On the left error from best fit 
curve for alternative model in BAS3O data set. 

 

Figure 44 On the right, best fit estimated cavern volume for BAS4 using alternative model. On the left error from best fit 
curve for alternative model in BAS4 data set. 

F.4. Indicators for tuning of proposed model 
The proposed model has to be calibrated as the system changes in time with leaching operation. From the 
sensitivity analysis performed in this section it is possible to conclude that compressibility and temperature are 
a major player in estimated cavern volume from proposed model. The calibration to field application can use of 
charts in figure 45 and 46 to update model parameters according to known values of cavern volume after a 
sonar survey and performing a compressibility test immediately after (within days) the sonar operation. 
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Figure 45 Indicator of brine temperature, for the case of proposed model, for known cavern volume and compressibility test 
measurements. 

 

Figure 46 Indicator of cavern compressibility, for the case of proposed model, for known cavern volume and compressibility 
test measurements. 


