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A signed graph is a pair (G, Σ), where G = (V, E) is a graph 
(in which parallel edges are permitted, but loops are not) with 
V = {1, . . . , n} and Σ ⊆ E. The edges in Σ are called odd and 
the other edges of E even. If there are parallel edges, then only 
two edges in each parallel class are permitted, one of which is 
even and one of which is odd. By S(G, Σ) we denote the set 
of all symmetric n × n matrices A = [ai,j ] with ai,j < 0 if i
and j are connected by an even edge, ai,j > 0 if i and j are 
connected by an odd edge, ai,j ∈ R if i and j are connected 
by both an even and an odd edge, ai,j = 0 if i �= j and i and 
j are non-adjacent, and ai,i ∈ R for all vertices i.
The maximum nullity M(G, Σ) of a signed graph (G, Σ) is the 
maximum nullity attained by any A ∈ S(G, Σ). Arav et al. 
gave a combinatorial characterization of 2-connected signed 
graphs (G, Σ) with M(G, Σ) = 2. In this paper, we give a 
complete combinatorial characterization of the signed graphs 
(G, Σ) with M(G, Σ) = 2.
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1. Introduction

A signed graph is a pair (G, Σ), where G = (V, E) is a graph (in which parallel edges 
are permitted, but loops are not) and Σ ⊆ E. (We refer to [6] for the notions and concepts 
in graph theory.) The edges in Σ are called odd and the other edges even. If there are 
parallel edges, then only two edges in each parallel class are permitted, one of which is 
even and one of which is odd. If V = {1, 2, . . . , n}, we denote by S(G, Σ) the set of all 
real symmetric n × n matrices A = [ai,j ] with

• ai,j < 0 if i and j are connected by an even edge,
• ai,j > 0 if i and j are connected by an odd edge,
• ai,j ∈ R if i and j are connected by both an odd and an even edge,
• ai,j = 0 if i �= j and i and j are non-adjacent, and
• ai,i ∈ R for all vertices i.

For a signed graph (G, Σ), M(G, Σ) is the maximum of the nullities of the matrices in 
S(G, Σ). The signed graph parameter M(G, Σ) generalizes the graph parameter M(G) in 
the sense that M(G) = maxΣ⊆E M(G, Σ). See Fallat and Hogben [7] for a survey on the 
graph parameter M(G). A matrix A = [ai,j ] ∈ S(G, Σ) has the SAP if X = 0 is the only 
symmetric matrix X = [xi,j ] such that xi,j = 0 if i and j are adjacent vertices or i = j, 
and AX = 0. The parameter ξ of a signed graph (G, Σ) is defined as the largest nullity 
of any matrix A ∈ S(G, Σ) satisfying the SAP. It is clear that ξ(G, Σ) ≤ M(G, Σ) for 
any signed graph (G, Σ). This signed graph parameter ξ is analogous to the parameter 
ξ for simple graphs introduced by Barioli, Fallat, and Hogben [5].

If G = (V, E) is a graph and U ⊆ V , δ(U) denotes the set of edges of G that 
have exactly one end in U . The symmetric difference of two sets A and B is the set 
AΔB = A \B∪B \A. If (G, Σ) is a signed graph and U ⊆ V (G), we say that (G, Σ) and 
(G, ΣΔδ(U)) are sign-equivalent and call the operation Σ → ΣΔδ(U) re-signing on U . 
Re-signing on U amounts to performing a diagonal similarity on the matrices in S(G, Σ), 
and hence it does not affect M(G, Σ) and ξ(G, Σ).

Let (G, Σ) be a signed graph. If H is a subgraph of G, then we say that H is odd if 
Σ ∩ E(H) has an odd number of elements, otherwise we call H even. Zaslavsky showed 
in [11] that two signed graphs are sign-equivalent if and only if they have the same set 
of odd cycles. Thus, two signed graphs (G, Σ) and (G, Σ′) that have the same set of odd 
cycles have M(G, Σ) = M(G, Σ′) and ξ(G, Σ) = ξ(G, Σ′).

Contracting an edge e with ends u and v in a graph G means deleting e and identifying 
the vertices u and v. A graph H is a minor of G if H can be obtained from a subgraph 
of G by contracting edges. If H is isomorphic to a minor of G, we also write that G has 
an H-minor. A signed graph (H, Γ) is a weak minor of a signed graph (G, Σ) if (H, Γ)
can be obtained from (G, Σ) by deleting edges and vertices, contracting edges, and re-
signing around vertices. We use weak minor to distinguish it from minor in which only 
even edges are allowed to be contracted (possibly after re-signing around vertices). The 
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parameter ξ has the nice property that if (H, Γ) is a weak minor of the signed graph 
(G, Σ), then ξ(H, Γ) ≤ ξ(G, Σ).

In [8], Fiedler showed that the paths are the only graphs G for which M(G) ≤ 1. 
Johnson et al. [9] characterized all graphs G with M(G) ≤ 2. Barioli et al. [5] charac-
terized the class of graph G with ξ(G), and Hogen and van der Holst characterized the 
class of graphs G with ξ(G) ≤ 2.

For a graph G = (V, E) and a subset S ⊆ V , G − S denotes the graph obtained by 
deleting all vertices in S; we write G −v for G −{v}. A graph G is connected if for every 
two vertices u and v of G are connected by a path. A graph G = (V, E) is 2-connected 
if |V | > 2 and G − v is connected for every v ∈ V . Any 2-connected graph contains a 
cycle.

In [3], Arav et al. showed that a signed graph (G, Σ) has M(G, Σ) ≤ 1 if and only if 
(G, Σ) is sign-equivalent to a signed graph (H, ∅), where H is a path. Furthermore, they 
showed that a signed graph (G, Σ) has ξ(G, Σ) ≤ 1 if and only if (G, Σ) is sign-equivalent 
to a signed graph (H, ∅), where H is a disjoint union of paths. Observe that in case the 
signed graph (G, Σ) is connected, M(G, Σ) ≤ 1 if and only if ξ(G, Σ) ≤ 1. In [2], Arav 
et al. characterized combinatorially the class of 2-connected signed graphs (G, Σ) with 
M(G, Σ) = 2, which coincides with the class of 2-connected signed graphs (G, Σ) with 
ξ(G, Σ) = 2. In [1], Arav et al. characterized combinatorially the signed graphs (G, Σ)
with ξ(G, Σ) ≤ 2. In this paper, we provide a combinatorial characterization of the signed 
graphs (G, Σ) with M(G, Σ) = 2.

2. Global structure signed graphs (G, Σ) with M(G, Σ) = 2

In this section, we provide a global structure of signed graphs (G, Σ) with M(G, Σ) ≤
2. In the following sections, we then provide the exact structure.

Lemma 1. Let (G, Σ) be a disjoint union of (G1, Σ1) and (G2, Σ2). Then M(G, Σ) =
M(G1, Σ1) + M(G2, Σ2).

Lemma 2. Let (G, Σ) be a disconnected signed graph with M(G, Σ) = 2. Then G consists 
of two components, each of which is a path.

The proof of the following lemma follows Formulas 1 and 2 in Arav et al. [4].

Lemma 3. Let (G, Σ) be a 1-sum of (G1, Σ1) and (G2, Σ2) at vertex s. Let (H1, Ω1) and 
(H2, Ω2) be obtained from (G1, Σ1) and (G2, Σ2), respectively, by deleting vertex s. Then

M(G,Σ) = max{M(G1,Σ1) + M(G2,Σ2) − 1,M(H1,Ω1) + M(H2,Ω2) − 1}.

If (H1, Ω1) and (H2, Ω2) are signed graph, then by attaching (H2, Ω2) to (H1, Ω1)
we mean identifying a vertex of (H2, Ω2) with a vertex of (H1, Ω). Furthermore, if P is 
a path with at least one edge, we mean by attaching a pendant path P at vertex v to 
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(H1, Ω) identifying an end of P with v. Here, we assume that all edges of P are even. 
Observe that attaching a path (without the adjective pendant) to (H1, Ω1) allows an 
internal vertex of the path to be identified with a vertex of (H1, Ω1).

The following lemma follows immediately from Lemma 3.

Lemma 4. If (G, Σ) is obtained from a signed graph (G1, Σ1) by attaching a pendant path 
at vertex v, then

M(G,Σ) = max{M(G1,Σ1),M(G1 − v,E(G1 − v) ∩ Σ1)}.

In particular,

M(G,Σ) ≥ M(G1, E(G1) ∩ Σ).

Lemma 5. Let (G, Σ) be a connected signed graph containing a cycle. If M(G, Σ) = 2, 
then

1. (G, Σ) is obtained from a 2-connected signed graph (H, Ω) with M(H, Ω) = 2 by 
attaching pendant paths at vertices of (H, Ω); or

2. (G, Σ) is obtained from an odd cycle with two edges by attaching pendant paths at 
vertices of this odd cycle.

Furthermore, at each vertex of H at most two pendant paths can be attached.

Proof. Suppose, for a contradiction, that (G, Σ) is a 1-sum of (H1, Ω1) and (H2, Ω2), 
where both H1 and H2 contain a cycle. Since M(H1, Ω1) ≥ ξ(H1, Ω1) ≥ 2 and 
M(H2, Ω2) ≥ ξ(H2, Ω2) ≥ 2, we obtain, by Lemma 3, that

M(G,Σ) ≥ M(H1,Ω1) + M(H2,Ω2) − 1 ≥ 2 + 2 − 1 = 3,

a contradiction. Therefore, (G, Σ) is obtained from either a 2-connected signed graph 
(H, Ω) by attaching trees to some vertices of H or from an odd cycle (H, Ω) with two 
edges by attaching trees to some vertices.

If (G, Σ) is obtained from a 2-connected signed graph (H, Ω) with M(H, Ω) ≥ 3, then 
M(G, Σ) ≥ 3. Thus, M(H, Ω) = 2 in this case.

Let v be a vertex of H that has an attached tree T . If T contain a vertex of degree 
≥ 3, then M(T, Σ ∩E(T )) ≥ 2, and hence

M(G,Σ) ≥ M(H,Ω) + M(T,Σ ∩E(T )) − 1 ≥ 2 + 2 − 1 = 3.

Therefore, (G, Σ) is obtained from (H, Ω) by attaching paths to vertices of H. Further-
more, at each vertex at most two paths can be attached. �
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In the next section, we study the structure of 2-connected signed graphs (H, Ω) with 
M(H, Ω) = 2.

3. Wide partial 2-paths

In this section, we first make some definitions; see [2].
By Ki

4 we denote the signed graph (K4, {e}), where e is an edge of K4. A pair {e, f}
of nonadjacent edges in Ki

4 is called split if both e and f belong to an even and an odd 
triangle.

A sided wide 2-path [(G, Σ), F ] is defined recursively as follows:

1. Let (G, Σ) be an even or odd cycle or a Ki
4. If (G, Σ) is a cycle, let F be two distinct 

edges in this cycle. If (G, Σ) = Ki
4, let F be a split pair of edges in Ki

4. Then 
[(G, Σ), F ] is a sided wide 2-path.

2. Let [(G, Σ), F ] be a sided wide 2-path and let e and f be distinct edges in an even 
or odd cycle C. If (H, Ω) is obtained from (G, Σ) by identifying the edge f of C with 
an edge h in F , then [(H, Ω), (F \ {h}) ∪ {e}] is a sided wide 2-path.

3. Let [(G, Σ), F ] be a sided wide 2-path and let {e, f} be a split pair of edges in Ki
4. 

If (H, Ω) is obtained from (G, Σ) by identifying the edge f of Ki
4 with an edge h in 

F , then [(H, Ω), (F \ {h}) ∪ {e}] is a sided wide 2-path.

The edges in F are called the sides of the sided wide 2-path. A wide 2-path is a signed 
graph (G, Σ) for which there exists a set F of two distinct edges of (G, Σ) such that 
[(G, Σ), F ] is a sided wide 2-path. A signed graph (G, Σ) is a partial wide 2-path if it is 
a spanning subgraph of a wide 2-path. Observe that if G is a partial 2-path, then (G, Σ)
is a partial wide 2-path for any Σ ⊆ E(G).

Let (G, Σ) be a signed graph. A pair [G1, G2] of subgraphs of G is a wide separation of 
(G, Σ) if there exists an odd 4-cycle C4 such that G1∪C4∪G2 = G, E(G1) ∩E(C4) = ∅, 
E(G2) ∩E(C4) = ∅, V (G1) ∩V (G2) = ∅, V (G1) ∩V (C4) = {r1, r2} and V (G2) ∩V (C4) =
{s1, s2}, where r1 and r2 are nonadjacent vertices of C4 and s1 and s2 are nonadjacent 
vertices of C4. We call r1, r2 the vertices of attachment of G1 and s1, s2 the vertices of 
attachment of G2 in the wide separation. In the definition of sided wide 2-path, we allow 
the sided wide 2-path be built up from even and odd cycle, and Ki

4; the Ki
4’s might yield 

wide separations in a 2-connected partial wide 2-path.
By Ke

n and Ko
n we denote the signed graphs (Kn, ∅) and (Kn, E(Kn)), respectively. 

By K=
n we denote the signed graph (G, Σ), where G is the graph obtained from Kn by 

adding to each edge an edge in parallel, and where Σ is the set of edges of Kn. (It is will 
be clear from the context whether we mean the graph K=

3 or the signed graph K=
3 .) By 

Ke
2,3, we denote the signed graphs (K2,3, ∅).
By W4 we denote the graph obtained from C4 by adding a new vertex v, called the 

hub, and connecting it to each vertex of C4. The subgraph C4 in W4 is called the rim of 
W4. Any edge between v and a vertex of the rim of W4 is called a spoke. Let e1, e2 be two 
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Fig. 1. The signed four-wheel.

nonadjacent edges of the C4 in W4. By W o
4 , we denote the signed graph (W4, {e1, e2}). 

See Fig. 1 for a picture of W o
4 ; here a bold edge is an odd edge and a thin edge an even 

edge. This signed graph appears as a special case in the characterization of 2-connected 
signed graphs (G, Σ) with M(G, Σ) = 2.

In [2], Arav et al. proved the following theorem.

Theorem 6. Let (G, Σ) be a 2-connected signed graph. Then the following are equivalent:

(i) M(G, Σ) = 2,
(ii) ξ(G, Σ) = 2,
(iii) (G, Σ) has no weak minor isomorphic to K=

3 , Ke
4 , Ko

4 , or Ke
2,3.

(iv) (G, Σ) is a partial wide 2-path or is isomorphic to W o
4 .

In the next section, we prove that if (G, Σ) is obtained from W o
4 by attaching single 

pendant paths to some of its vertices, then M(G, Σ) = 2. In Section 6, we will study the 
cases where (G, Σ) is obtained from a partial wide 2-path by adding pendant paths.

4. Pendant paths on an odd 4-wheel

Lemma 7. Let S be a subset of the vertex set of the signed graph W o
4 . If (G, Σ) is obtained 

from W o
4 by attaching single pendant paths to all the vertices of S, then M(G, Σ) = 2. 

If (G, Σ) is obtained from W o
4 by attaching pendant paths to all vertices of S and some 

of the vertices have two or more pendant paths, then M(G, Σ) > 2.

Proof. Suppose first that (G, Σ) is obtained from W o
4 by attaching single pendant paths 

to the vertices of S. Let

G := {W o
4 −R : R ⊆ S}.

Then

M(G,Σ) = max{M(H,Ω) : (H,Ω) ∈ G}.

As M(H, Ω) ≤ 2 for all (H, Ω) ∈ G, M(G, Σ) ≤ 2. Since (G, Σ) has a cycle, M(G, Σ) = 2.
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Fig. 2. The K=
3 -family.

Suppose next that (G, Σ) is obtained from W o
4 by attaching pendant paths to all the 

vertices of S and there is a vertex s ∈ S that has two or more attached pendant paths. 
Then, as the signed graph obtained from (G, Σ) by deleting vertex s contains a cycle 
and two or more paths, M(G, Σ) ≥ 3. �
5. Signed graphs of the K=

3 -family

A triangle in a graph is a subgraph isomorphic to K3. A ΔY -transformation on a 
triangle T of a signed graph (G, Σ) means deleting the edges T , adding a new vertex 
v, and connecting v with the vertices of the triangle with edges, giving these new edges 
any sign. The K=

3 -family is the family of signed graphs obtained from K=
3 by repeatedly 

subdividing one edge in a parallel class, and then applying a ΔY -transformation on the 
resulting triangle. See Fig. 2; here, a solid line is an even edge, a dotted line is an odd 
edge, and a dashed line is either an even or an odd edge.

Lemma 8. [1] Every member (G, Σ) of the K=
3 -family has ξ(G, Σ) = 3.

Hence, if a signed graph (G, Σ) has a weak minor isomorphic to a signed graph in the 
K=

3 -family, then M(G, Σ) ≥ ξ(G, Σ) ≥ 3.

6. Pendant paths on 2-connected partial wide 2-paths

6.1. Partial wide 2-paths with two wide separations

Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-
connected partial wide 2-path (H, Ω). Suppose [H1, H2] and [H3, H4] are distinct wide 
separations of (H, Ω) such that H1 ⊆ H3 and H4 ⊆ H2. Let r1, r2 be the vertices of 
attachment of H2 and let s1, s2 be the vertices of attachment of H3, and let P1 and P2
be vertex-disjoint paths between {r1, r2} and {s1, s2}, where Pi connects ri and si. If 
P is a path in H, we denote by l(P ) the length of P . We call (G, Σ) a ST-graph if the 
following holds:

1. no vertex of H is the end of two or more pendant paths,
2. l(P1) + l(P2) ≤ 1, and
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(a) if l(P1) + l(P2) = 1, then both H1 and H2 are disconnected,
(b) if l(P1) + l(P2) = 0, then exactly one of H1 and H2 is disconnected and the other 

one is a path Q, and if Q has length ≥ 2, then there is at most one pendant 
path incident with an end of Q, and there are no pendant paths incident with 
an internal vertex of Q, and

3. exactly one pendant path is incident with a vertex of P1 ∪ P2.

We allow edges between the vertices r1, r2 and between the vertices s1, s2.
A path in a graph G = (V, E) is induced if it is of the form G[S] for some S ⊆ V . 

The path cover number of a graph G, denoted P (G), is the minimum number of vertex-
disjoint induced paths covering all vertices of G. In the proof of Lemma 10, we use the 
following result of Sinkovic [10].

Theorem 9. If G is a partial 2-path, then M(G) = P (G).

Lemma 10. If (G, Σ) is a ST-graph, then M(G, Σ) = 2.

Proof. Let (G, Σ) be a ST-graph. Let P be the pendant path incident with a vertex p
of P1 ∪ P2. Let (G′, Σ′) := (G, Σ) − V (P − p) and let (G′′, Σ′′) := (G, Σ) − V (P ).

As (G′, Σ′) is a 2-connected partial wide 2-path, M(G′, Σ′) = 2, and, as (G′′, Σ′′)
has path cover number 2, M(G′′, Σ′′) = 2, by Theorem 9. By Lemma 4, M(G, Σ) =
max{M(G′, Σ′), M(G′′, Σ′′)} = 2. �
Lemma 11. Let (G, Σ) be a signed graph such that the removal of pendant paths yields 
a 2-connected partial wide 2-path (H, Ω) with at least two wide separations. If there is a 
vertex with at least two pendant paths attached, then M(G, Σ) ≥ 3.

Proof. Let v be the vertex of H to which at least two paths are attached. If H − v

has a component containing a cycle, then, as two pendant paths are attached to v, 
M(G, Σ) ≥ 3. If H − v has no component containing a cycle, then one component of 
H − v has a vertex of degree four. Also in this case M(G, Σ) ≥ 3. �
Lemma 12. Let (G, Σ) be a signed graph such that the removal of pendant paths yields 
a 2-connected partial wide 2-path (H, Ω). Let [H1, H2] and [H3, H4] be distinct wide 
separations of (H, Ω) such that H1 ⊆ H3 and H4 ⊆ H2. Let r1, r2 be the vertices of 
attachment of H2 and let s1, s2 be the vertices of attachment of H3, and let P1 and P2 be 
vertex-disjoint paths between {r1, r2} and {s1, s2}, where Pi connects ri and si. Suppose 
a pendant path is incident with a vertex of P1 or P2. Then M(G, Σ) = 2 if and only if 
(G, Σ) is a ST-graph.

Proof. Suppose M(G, Σ) = 2.
Since ξ(G, Σ) ≤ M(G, Σ), we obtain by Lemma 8 that (G, Σ) has no weak minor 

isomorphic to a signed graph in the K=
3 -family.
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By Lemma 11, at most one pendant path can be incident with each vertex of H.
Suppose next that a pendant path is incident with an internal vertex of P1 or P2. 

Then (G, Σ) has a weak minor isomorphic to K=
3 (ΔY ). We may therefore assume that 

every pendant path that is incident with a vertex of P1 ∪ P2 is incident with an end of 
P1 or P2.

We next prove that

l(P1) + l(P2) ≤ 1.

By symmetry, we may assume that a pendant path is incident with an end of P1. If P1

has at least two edges, then (G, Σ) has a weak minor isomorphic to K=
3 (ΔY )3. Hence 

P1 has at most one edge. If P2 has at least two edges, then (G, Σ) has a weak minor 
isomorphic to K=

3 (ΔY )3. Hence P2 has at most one edge. If both P1 and P2 have exactly 
one edge, then (G, Σ) has a weak minor isomorphic to K=

3 (ΔY )2. Hence P1 or P2 has 
length zero.

Suppose first that l(P1) + l(P2) = 1. By symmetry, we may assume that l(P1) = 1
and l(P2) = 0. If H1 or H4 is connected, then (G, Σ) has a weak minor isomorphic 
to K=

3 (ΔY ) or K=
3 (ΔY )2. Hence both H1 and H4 are disconnected. Suppose now to 

the contrary that more than one pendant path is incident with vertices of P1 ∪ P2. Let 
(G′, Σ′) be obtained from (G, Σ) be removing these pendant paths and their vertices of 
attachment. Then, as M(G, Σ) ≥ M(G′, Σ′), and (G′, Σ′) has path cover number ≥ 3, we 
obtain that M(G, Σ) ≥ 3; a contradiction. Hence at most one pendant path is incident 
with P1 ∪ P2. Then (G, Σ) is a ST-graph.

Suppose next that l(P1) = l(P2) = 0. Then r1 = s1 and r2 = s2. If H1 and H4 are 
connected, then (G, Σ) has a weak minor isomorphic to K=

3 (ΔY ). If H1 and H4 are 
disconnected, then the removal of the pendant path with its vertex of attachment yields 
a signed graph (G′, Σ′) with M(G′, Σ′) ≥ 3. Hence M(G, Σ) ≥ 3; a contradiction. By 
symmetry, we may therefore assume that H1 is disconnected and H4 is connected. In 
the same way as above, there is exactly one pendant path incident with P1 ∪ P2. By 
symmetry, we may assume that (G, Σ) has a pendant path P incident with P1.

If H4 contains a cycle, then (G, Σ) has a weak minor isomorphic to K=
3 (ΔY )2. Hence, 

H4 has no cycle. Let Q be the path in H4 connecting the vertices of attachment in the 
wide separation [H3, H4]. If (G, Σ) has a pendant path incident with an internal vertex 
of Q, then (G, Σ) has a weak minor isomorphic to K=

3 (ΔY )3. Hence any pendant path 
incident with H4 is incident with one of the vertices of attachment of H4 in the wide 
separation [H3, H4]. If Q has length ≥ 2 and (G, Σ) has pendant paths incident with 
both ends of Q, then (G, Σ) has a weak minor isomorphic to K=

3 (ΔY )2. Hence either Q
has length 1 or (G, Σ) has only a pendant path attached to one of the ends of Q, if any. 
Then (G, Σ) is a ST-graph.

The converse implication follows from Lemma 10. �
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A signed graph has two parallel paths if there exist two pairs of vertices u1, u2 and 
v1, v2 such that (G, Σ) is a spanning subgraph of a sided wide 2-path with sides u1u2 and 
v1v2, and there exist two disjoint paths connecting u1 and v1, and u2 and v2, respectively.

Lemma 13. Let (G, Σ) be a signed graph with two parallel paths. Then M(G, Σ) ≤ 2.

Proof. The signed graph (G, Σ) is a spanning subgraph of a sided wide 2-path with sides 
u1u2 and v1v2. A zero forcing argument starting with the vertex-set {u1, u2}, similar as 
done in [2], shows that M(G, Σ) ≤ 2. �
Lemma 14. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 
2-connected partial wide 2-path (H, Ω) with at least two distinct wide separations. Then, 
M(G, Σ) = 2 if and only if (G, Σ) has two parallel paths or (G, Σ) is a ST-graph.

Proof. Suppose M(G, Σ) = 2. Let [H1, H2] and [H3, H4] be distinct wide separations of 
(H, Ω) such that H1 ⊆ H3 and H4 ⊆ H2; we take [H1, H2] in (H, Ω) such that there 
is no wide separation [H ′

1, H
′
2] with H ′

1 a proper subgraph of H1, and similar, we take 
[H3, H4] in (H, Ω) such that there is no wide separation [H ′

3, H
′
4] such that H ′

4 is a 
proper subgraph of H4. Let r1, r2 be the vertices of attachment of H2 and let s1, s2 be 
the vertices of attachment of H3, and let P1 and P2 be vertex-disjoint paths between 
{r1, r2} and {s1, s2}, where Pi connects ri and si. By Lemma 12, we may assume that no 
pendant path is incident with a vertex of P1 or P2, for otherwise we obtain a ST-graph. 
Let u1, u2 be the vertices of attachment of H1. By Lemma 11, no two pendant paths of 
G are incident with a vertex of H.

Suppose H1 contains a cycle C; we may assume that C is at the end of the partial 
wide 2-path H, that is, there is a 2-separation (C, F ) of H. Let {v1, v2} := V (C) ∩V (F ). 
Let Q1 and Q2 be two vertex-disjoint paths between {v1, v2} and {u1, u2}, with Qi

connecting vi and ui. If a pendant path is incident with a vertex of Q1 − v1 or Q2 − v2, 
then (G, Σ) has a weak K=

3 (ΔY )-minor. Let P be the path obtained from C by removing 
any edge between v1 and v2. If there are two pendant paths incident with nonadjacent 
vertices of P , then (G, Σ) has a weak K=

3 (ΔY )2-minor. Hence, at most two pendant 
paths are incident with vertices of P , and if two pendant paths are incident with vertices 
of P , then these vertices are adjacent in P .

If H1 contains no cycle, but H1 is connected, let P be the path in H1 connecting u1
and u2. If there are two pendant paths incident with nonadjacent vertices of P , then 
(G, Σ) has a weak K=

3 (ΔY )2-minor. Hence, at most two pendant paths are incident with 
vertices of P , and if two pendant paths are incident with vertices of P , then these vertices 
are adjacent in P .

We do the same on H4 if H4 is connected.
If H1 and H4 are connected, then (G, Σ) has two parallel paths. Similarly, if at least 

one of H1 and H4 is disconnected, then (G, Σ) has two parallel paths.
We next prove the converse. If there is a pendant path incident with a vertex of 

P1 ∪ P2, then the result follows from Lemma 12. If no pendant path is incident with a 
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vertex of P1 ∪ P2, then by the previous lemma M(G, Σ) ≤ 2. Since H is 2-connected, 
M(G, Σ) = 2. �
6.2. Partial wide 2-paths with one wide separation

Let (G, Σ) be a signed graph such that the removal of pendant paths yields a partial 
wide 2-path (H, Ω) with exactly one wide separation [H1, H2]. Let u1 and u2 be the 
vertices of attachment of H1 and let w1 and w2 be the vertices of attachment of H2. We 
call (G, Σ) a SA-graph if the following holds:

(a) no vertex of H is the end of two or more pendant paths;
(b) H2 is a path, and no pendant path is incident with interior vertices of H2;
(c) the removal of any edge between u1 and u2 from H1, if any, yields a path P with 

length ≥ 2; if a pendant path is incident with an internal vertex of P , then P has 
length two;

(d) there is one pendant path incident with u1 and one pendant path incident with u2;
(e) if H2 has an internal vertex and pendant paths are incident with w1 and w2, then 

no pendant path is incident with an internal vertex of P .

Lemma 15. If (G, Σ) is a SA-graph, then M(G, Σ) = 2.

Proof. Let P1 and P2 be the pendant paths incident with u1 and u2, respectively. Let 
(G′, Σ′) := (G, Σ) −V (P1) and let (G′′, Σ′′) := (G, Σ) −V (P1 −u1). Since G′ is a partial 
2-path with path cover number 2, M(G′, Σ′) ≤ M(G′) = 2.

Suppose first that (G′′, Σ′′) has a pendant path Q incident with one of the vertices 
in {w1, w2}; let w be the vertex to which Q is incident. Let (H, Ω) := (G′′, Σ′′) −
V (Q) and let (H ′, Ω′) := (G′′, Σ′′) − V (Q − w). Since (H, Ω) is a partial 2-path with 
path cover number 2, M(H, Ω) = 2, by Theorem 9. A zero forcing argument shows 
that M(H ′, Ω′) ≤ 2. Since M(G′′, Σ′′) = max{M(H, Ω), M(H ′, Ω′)}, we obtain that 
M(G′′, Σ′′) = 2. Since M(G, Σ) = max{M(G′, Σ′), M(G′′, Σ′′)}, we see that M(G, Σ) =
2 if (G, Σ) has a pendant path Q incident with one of the vertices in {w1, w2}.

We may therefore assume that (G′′, Σ′′) has no pendant paths incident with any 
vertex in {w1, w2}. Then a zero forcing argument shows that M(G′′, Σ′′) ≤ 2. Since 
M(G, Σ) = max{M(G′, Σ′), M(G′′, Σ′′)}, we see that M(G, Σ) = 2. �
Lemma 16. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 
2-connected partial wide 2-path (H, Ω) with exactly one wide separation [H1, H2]. Suppose 
H1 and H2 are connected. Then M(G, Σ) = 2 if and only if (G, Σ) has two parallel paths 
or (G, Σ) is a SA-graph.

Proof. Suppose that M(G, Σ) = 2.
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If there is a vertex s of H such that in (G, Σ) at least two pendant paths R1, R2 are 
incident with s, let (G′, Σ′) := (G, Σ) − V (R1). Then (G′, Σ′) consists of at least two 
components, one of which contains a cycle, so M(G′, Σ′) ≥ 3. By Lemma 3, M(G, Σ) ≥ 3. 
Hence, there is no vertex s of H such that in (G, Σ) at least two pendant paths R1, R2
are incident with s.

Let u1, u2 be the vertices of attachment of H1, and let w1, w2 be the vertices of 
attachment of H2. Suppose first that H1 contains a cycle C. We may assume that C is 
at the end of the partial wide 2-path H, that is, there is a 2-separation (C, F ) of H. Let 
{v1, v2} := V (C) ∩ V (F ). Let Q1 and Q2 be two vertex-disjoint paths between {v1, v2}
and {u1, u2}. If a pendant path of (G, Σ) is incident with H1, but not with a vertex of C, 
then the pendant path is incident with a vertex of Q1 − v1 or a vertex of Q2 − v2. Then 
(G, Σ) has a weak K=

3 (ΔY )-minor, so M(G, Σ) ≥ ν(G, Σ) ≥ 3, a contradiction. Hence 
any pendant path that is incident with a vertex of H1 is incident with a vertex of C. 
Let P1 be the path obtained from C by removing any edge between v1 and v2. If there 
are two pendant paths incident with nonadjacent vertices on P1 and one is not incident 
with u1 or u2, then (G, Σ) has a weak K=

3 (ΔY )2-minor, a contradiction. Hence, one of 
the following holds:

• at most two pendant paths of (G, Σ) are incident with vertices of P1, and if two 
pendant paths of (G, Σ) are incident with vertices of P1, then these vertices are 
adjacent,

• three pendant paths of (G, Σ) are incident with vertices of P1, P1 has length 2, and 
the ends of P1 are u1 and u2, or

• two pendant paths of (G, Σ) are incident with the ends of P1 and the ends are u1
and u2.

If H1 has no cycles, then H1 is a path P1 connecting u1 and u2. If there are two 
pendant paths incident with nonadjacent vertices on P1 and one is not incident with an 
end of P1, then (G, Σ) has a weak K=

3 (ΔY )2-minor, a contradiction. Hence, one of the 
following holds:

• at most two pendant paths of (G, Σ) are incident with vertices of P1, and if two 
pendant paths of (G, Σ) are incident with vertices of P1, then these vertices are 
adjacent,

• three pendant paths of (G, Σ) are incident with vertices of P1, P1 has length 2, and 
the ends of P1 are u1 and u2, or

• two pendant paths of (G, Σ) are incident with the ends of P1 and the ends are u1
and u2.

In the same way, we do the above for H2.
Suppose that, for i = 1, 2, there are at most two pendant paths incident with vertices 

of Pi and if two pendant paths are incident with vertices of Pi, then these vertices are 
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adjacent in Pi. Then (G, Σ) has two parallel paths. Hence, we may assume that either 
pendant paths are incident with both ends of P1, the ends of P1 are u1 and u2, and P1
has length ≥ 2, or pendant paths are incident with both ends of P2, the ends of P2 are 
w1 and w2, and P2 has length ≥ 2. By symmetry, we may assume that pendant paths 
are incident with both ends of P1, the ends of P1 are u1 and u2, and P1 has length ≥ 2. 
Then H2 contains no cycle, for otherwise (G, Σ) has a weak K=

3 (ΔY )2-minor. So H2 is 
a path connecting w1 and w2.

If a pendant path of (G, Σ) is incident with an internal vertex of P2, then (G, Σ) has 
a weak K=

3 (ΔY )3-minor, a contradiction. Hence, no pendant path of (G, Σ) is incident 
with an internal vertex of P2. If P1 has length > 2, then no pendant path of (G, Σ) is 
incident with an internal vertex of P1. If P1 has length 2, a pendant path of (G, Σ) is 
incident with an internal vertex of P1, and P2 has length ≥ 2, then no pendant path is 
incident with at least one of the vertices w1 and w2, for otherwise (G, Σ) has a weak 
K=

3 (ΔY )3-minor. Thus, (G, Σ) is a SA-graph.
For the converse, use Lemmas 13 and 15. �
Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-

connected partial wide 2-path (H, Ω) with exactly one wide separation [H1, H2]. Let u1
and u2 be the vertices of attachment of H1, suppose the vertices u1 and u2 are connected 
by a path of length ≥ 2 in H1, and suppose H2 is disconnected. We call (G, Σ) a MK-
graph if each of the following hold:

1. no vertex is the end of two or more pendant paths;
2. there is a pendant path at u1, and no pendant path at u2;
3. H1 − u2 is a path;
4. each pendant path P incident with a vertex of the path H1 − {u1, u2} is incident 

with an end of H1 − {u1, u2}, and if P is incident with the end of H1 − {u1, u2}
adjacent to u1, then no edge connects an internal vertex of H1 − {u1, u2} with u2.

Lemma 17. If (G, Σ) is a MK-graph, then M(G, Σ) = 2.

Proof. Let v1 and v2 be the vertices of attachment of H2. Let P be the pendant path at u1
and let (G′, Σ′) := (G, Σ) −V (P −u1), and let (G′′, Σ′′) := (G, Σ) −V (P ). By Lemma 4, 
M(G, Σ) = max{M(G′, Σ′), M(G′′, Σ′′)}. Since (G′, Σ′) is a signed graph with two par-
allel paths, M(G′, Σ′) ≤ 2, and hence we may assume that M(G, Σ) = M(G′′, Σ′′). 
In (G′′, Σ′′), there are two pendant paths attached to u2. Let Q be one of them. Let 
(F, Ψ) := (G′′, Σ′′) − V (Q − u2) and let (F ′, Ψ′) := (G′′, Σ′′) − V (Q). Since (F ′, Ψ′) con-
sists of two disjoint paths, M(F ′, Ψ′) = 2. Since (F, Ψ) is a signed graph with two parallel 
paths, M(F, Ψ) ≤ 2. By Lemma 4, M(G′′, Σ′′) = max{M(F, Ψ), M(F ′, Ψ′)} = 2. �
Lemma 18. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 
2-connected partial wide 2-path (H, Ω) with exactly one wide separation [H1, H2]. Suppose 
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that H2 is disconnected and H1 is connected. Then M(G, Σ) = 2 if and only if (G, Σ)
has two parallel paths or (G, Σ) is a MK-graph.

Proof. Suppose that M(G, Σ) = 2. Since M(G, Σ) ≥ ξ(G, Σ), (G, Σ) has no weak minor 
isomorphic to a graph in the K=

3 -family.
Let u1 and u2 be the vertices of attachment of H1. Suppose first that H1 contains a 

cycle C. Let Q1 and Q2 be vertex-disjoint path between {u1, u2} and V (C); let v1 and 
v2 be the vertices of Q1 and Q2 on C, respectively.

We first assume that a pendant path incident with a vertex of Q1 ∪Q2 − {v1, v2}.
If a pendant path is incident with a vertex of Q1 ∪Q2 − {v1, v2, u1, u2}, then (G, Σ)

has a weak K=
3 (ΔY )-minor. Hence, any pendant path of (G, Σ) incident with a vertex 

of Q1 ∪ Q2 − {v1, v2} is incident with u1 or u2. By symmetry, we may assume that a 
pendant path P1 of (G, Σ) is incident with u1. Then Q1 has length ≥ 1. Then P1 is 
the only pendant path incident with u1, for otherwise G − V (P1) consists of at least 
two component, one of which contains a cycle. If Q2 has length ≥ 1, then (G, Σ) has a 
weak K=

3 (ΔY )2-minor. Hence, Q2 has length 0, and therefore, H1−u2 has no cycle. If a 
pendant path is incident with u2, then, as M(G, Σ) ≥ M(G −V (P1), E(G −V (P1)) ∩Σ)
and G − V (P1) is a tree with path cover number ≥ 3, M(G, Σ) ≥ 3. Hence, no pendant 
path is incident with u2. If a pendant path is incident with an internal vertex of the path 
H1 − {u1, u2}, then (G, Σ) contains a weak K=

3 (ΔY )3-minor. Hence any pendant path 
incident with a vertex of the path H1−{u1, u2} is incident with an end of H1−{u1, u2}. 
If an edge connects an internal vertex of H1 − {u1, u2} with u2, then (G, Σ) has a weak 
K=

3 (ΔY )-minor. Hence (G, Σ) is a MK-graph.
We may therefore assume that each pendant path incident with a vertex of H1 is 

incident with a vertex of C. Let P be the path obtained from C by removing all edges 
between v1 and v2. If two pendant paths are incident with nonadjacent vertices on P and 
one is not incident with u1 and u2, then (G, Σ) has a weak K=

3 (ΔY )2-minor. If u1 = v1
and u2 = v2, and pendant paths are incident with u1 and u2, let P1 be the pendant 
path incident with u1. If (G′, Σ′) := (G, Σ) − V (P1), then (G′, Σ′) is a tree with path 
cover number ≥ 3, and hence M(G, Σ) ≥ 3. Hence, there are at most two pendant paths 
incident with vertices of P and these vertices are adjacent in P1. Then (G, Σ) has two 
parallel paths.

We may therefore assume that H1 has no cycle. Then H1 is a path P connecting u1
and u2. Suppose that there are pendant paths incident with nonadjacent vertices on P . 
Then the length of P is at least 2. Suppose a pendant path is incident with u1. If there is a 
pendant path at u2, then, as M(G, Σ) ≥ M(G −V (P1), E(G −V (P1)) ∩Σ) and G −V (P1)
is a tree with path cover number ≥ 3, M(G, Σ) ≥ 3. Hence, no pendant path is incident 
with u2. If a pendant path is incident with an internal vertex of P−{u1, u2}, then (G, Σ)
contains a weak K=

3 (ΔY )3-minor. Hence, any pendant path is incident with an end of 
P − {u1, u2}. If a pendant path is incident with the end of P − {u1, u2} adjacent to u1
and an edge connects an internal vertex of P −{u1, u2} with u2, then (G, Σ) has a weak 
K=

3 (ΔY )-minor. Thus, (G, Σ) is a MK-graph. Hence, we may assume that no pendant 
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path is incident with u1 or u2. Then (G, Σ) has a weak K=(ΔY )3-minor, a contradiction. 
Hence, we may assume at most two pendant paths are incident with vertices of P and 
these vertices are adjacent in P . Then (G, Σ) has two parallel paths.

For the converse, use Lemmas 13 and 17. �
Lemma 19. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-
connected partial wide 2-path (H, Ω) with exactly one wide separation. Then M(G, Σ) = 2
if and only if (G, Σ) has two parallel paths, (G, Σ) is a SA-graph, or (G, Σ) is a MK-
graph.

Proof. Let [H1, H2] be the wide separation of (G, Σ). Suppose that M(G, Σ) = 2. If H1
and H2 are connected, then, by Lemma 16, either (G, Σ) has two parallel paths or (G, Σ)
is a SA-graph. Suppose next that H1 or H2 is disconnected; we may assume that H2
is disconnected. Let u1 and u2 be the vertices of attachment of H1. If H1 has a path 
of length ≥ 2, then, by Lemma 18, either (G, Σ) has two parallel paths or (G, Σ) is a 
MK-graph. We may therefore assume that either H1 consists of only one edge connecting 
u1 and u2, or H1 is disconnected. In both cases, (G, Σ) has two parallel paths.

The converse follows from Lemmas 13, 15, and 17. �
6.3. Partial wide 2-paths with no wide separations

In [9], Johnson et al. characterized the class of graphs G with M(G) = 2. For signed 
graphs (G, Σ) such that the removal of pendant paths yields a 2-connected partial 2-
path with no wide separation, the characterization when M(G, Σ) = 2 is similar to their 
result.

Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-
connected partial 2-path (H, Ω). Suppose C1 and C2 are distinct cycles in H such that 
there exist 2-separations (C1, H1) and (C2, H2) of H. Let P1 and P2 be vertex-disjoint 
paths between C1 and C2, and let u1, u2 be the ends of P1 and P2, respectively, on C1, 
and let v1, v2 be the ends of P1 and P2, respectively, on C2. We call (G, Σ) a SH-graph
if l(P1) = 0 and l(P2) ≤ 1, and

1. if l(P1) = 0 (so u1 = v1) and l(P2) = 1, then
• there is a single pendant path incident with each end of the paths P1 and P2;
• if the path C1 − u1u2 has length 2, then at most one pendant path is incident 

with the internal vertex of C1 − u1u2, and if the path C1 − u1u2 has length ≥ 3, 
then no pendant path is incident with a vertex of C1 − {u1, u2};

• if the path C2−v1v2 has length 2, then at most one pendant path is incident with 
the internal vertex of C2 − v1v2, and if the path C2 − v1v2 has length ≥ 3, then 
no pendant path is incident with a vertex of C2 − {v1, v2};

2. if l(P1) = l(P2) = 0, then
• there is a single pendant path incident with each end of the paths P1 and P2;
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• the path C1 − u1u2 has length 3, and single pendant paths are incident with the 
internal vertices of C1 − u1u2;

• if the path C2−v1v2 has length 2, then at most one pendant path is incident with 
the internal vertex of C2 − v1v2, and if the path C2 − v1v2 has length ≥ 3, then 
no pendant path is incident with a vertex of C2 − {v1, v2}.

Lemma 20. If (G, Σ) is a SH-graph, then M(G, Σ) = 2.

Proof. Let P be the pendant path incident with u1. Let (G′, Σ′) := (G, Σ) −V (P ) and let 
(G′′, Σ′′) := (G, Σ) −V (P −u1). By Lemma 4, M(G, Σ) = max{M(G′, Σ′), M(G′′, Σ′′)}. 
Since (G′, Σ′) is a tree with path cover number 2, M(G′, Σ′) = 2, and since (G′′, Σ′′) has 
two parallel paths, M(G′′, Σ′′) ≤ 2. Thus, M(G, Σ) = 2. �

We call the signed graph obtained from a signed 5-cycle by attaching pendant paths 
to each of its vertices a SF-graph.

The following lemma can be proved in the same way as Lemma 20.

Lemma 21. If (G, Σ) is a SF-graph, then M(G, Σ) = 2.

Lemma 22. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-
connected partial 2-path (H, Ω). Suppose (H, Ω) has no wide separation. Then M(G, Σ) =
2 if and only if (G, Σ) has two parallel paths, (G, Σ) is a SH-graph, or (G, Σ) is a SF-
graph.

Proof. Suppose M(G, Σ) = 2.
We first assume that there are at least two distinct cycles in H. Let C1 and C2 be 

distinct cycles such that there exist 2-separations (C1, L1) and (C2, L2) of H. Let P1 and 
P2 be vertex-disjoint paths between C1 and C2, and let u1, u2 be the ends of P1 and P2, 
respectively, on C1, and let v1, v2 be the ends of P1 and P2, respectively, on C2.

If a pendant path of G is incident with an internal vertex of P1 or P2, then (G, Σ) has 
a weak K=

3 (ΔY )-minor, contradicting that M(G, Σ) = 2. Hence any pendant path is in-
cident with a vertex of C1 or C2. If there are no pendant paths incident with nonadjacent 
vertices of C1−u1u2, and there are no pendant paths incident with nonadjacent vertices 
of C2 − v1v2, then (G, Σ) has two parallel paths. We may therefore assume that there 
are pendant paths incident with nonadjacent vertices of C1 − u1u2, or that there are 
pendant paths incident with nonadjacent vertices of C2 − v1v2. We assume the former, 
and let w1, w2 be the vertices on C1 to which the pendant paths R1, R2, respectively, 
are incident; we take w1 and w2 such that the distance between w1 and w2 in C1 − u1u2
is maximum. We may assume that w1 coincides with u1 or is between u1 and w2 on 
C1 −u1u2. If w1 �= v1 and w2 �= v2, then (G, Σ) has a weak K=

3 (ΔY )2-minor. Therefore, 
w1 = v1 or w2 = v2; we may assume that w1 = v1. Then u1 = w1 = v1.

Exactly one pendant path is incident with u1. For if at least two pendant paths, T1
and T2, are incident with u1, let (G′, Σ′) := (G, Σ) − V (T1). Then (G′, Σ′) consists of 
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at least two components, one of which is a tree with path cover number ≥ 2, and hence 
M(G, Σ) ≥ M(G′, Σ′) ≥ 3, a contradiction.

Suppose now first that the length of P2 is at least one.
Suppose a pendant path Q2 is incident with a vertex of C2 − v1v2 that is nonadjacent 

to u1 in C2−v1v2. If R2 is not incident with u2, then (G, Σ) has a weak K=
3 (ΔY )3-minor. 

Hence R2 is incident with u2. In the same way, Q2 is incident with v2. Then the length 
of P1 is one, for otherwise (G, Σ) has a weak K=

3 (ΔY )3-minor. If C1 − u1u2 has length 
≥ 3 and a pendant path is incident with a vertex of C1−{u1, u2}, then (G, Σ) has either 
a weak K=

3 (ΔY )3- or a weak K=
3 (ΔY )2-minor. In the same way, if C2 − v1v2 has length 

≥ 3, then no pendant path is incident with a vertex of C2 − {v1, v2}. Then (G, Σ) is a 
Sea Horse. We may therefore assume that if a pendant path is incident with a vertex of 
C2 − v1, then it is incident with the vertex adjacent to u1 in C2 − v1v2.

If a pendant path is incident with a vertex of C1 − {u1, w2} that is nonadjacent to 
w2 in C1 − u1u2, then (G, Σ) has a weak K=

3 (ΔY )2-minor. Hence, any pendant path 
incident with a vertex of C1 − {u1, w2} is incident with a vertex adjacent to w2. If a 
pendant path is incident with the vertex adjacent to u1 in C2 − v1v2, then (G, Σ) has 
two parallel paths. If no pendant path is incident with a vertex of C2 − u1, then (G, Σ)
has two parallel paths.

Suppose next that the path P2 has length 0; then u2 = v2. If no pendant path is 
incident with u2 and a pendant path is incident with a vertex v �= v2 of C2 − v1v2 that 
is nonadjacent to u1 in C2 − v1v2, then (G, Σ) has a weak K=

3 (ΔY )3-minor (as R1 and 
R2 are at distance ≥ 2 on C1 − u1u2). If no pendant path is incident with u2 and all 
pendant paths incident with vertices of C2 − v1v2 are adjacent to u1 in C2 − v1v2, then 
(G, Σ) has two parallel paths.

We may therefore assume that a pendant path is incident with u1 and a pendant path 
is incident with u2. If a pendant path is incident with a vertex of C1 that is nonadjacent to 
u1 and u2 in C1−u1u2, then (G, Σ) has a weak K=

3 (ΔY )3-minor. Therefore, any pendant 
path incident with a vertex of C1 −{u1, u2} is adjacent to u1 or u2 in C1 − u1u2. In the 
same way, any pendant path incident with a vertex of C2 −{u1, u2} is adjacent to u1 or 
u2 in C2 − u1u2. If Q1 is a pendant path incident with a vertex of C1 − {u1, u2} that 
is nonadjacent to u1 in C1 − u1u2, and Q2 is a pendant path incident with a vertex of 
C2 −{u1, u2} that is nonadjacent to u1 in C2 −u1u2, then (G, Σ) has a weak K=

3 (ΔY )3-
minor. In the same way, there are no pendant paths Q1 and Q2 with Q1 incident with 
a vertex of C1 − {u1, u2} that is nonadjacent to u2 in C1 − u1u2 and Q2 incident with a 
vertex of C2 − {u1, u2} that is nonadjacent to u2 in C2 − u1u2. Hence, if there are two 
vertices of C1−{u1, u2} with pendant paths attached to them, then C1−u1u2 has length 
three, and if in addition there is a pendant path incident with a vertex of C2 −{u1, u2}, 
then C2 −u1u2 has length two. Then (G, Σ) is a Seahorse. The case where there are two 
vertices of C2 − {u1, u2} with pendant paths attached to them is similar.

We may therefore assume that at most one pendant path is incident with a vertex of 
C1−{u1, u2} and at most one pendant path is incident with a vertex of C2−{u1, u2}. By 
symmetry, we may assume that if a pendant path is incident with a vertex of C1−{u1, u2}, 
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then this vertex is adjacent to u1. Then any pendant path incident with a vertex of 
C2 − {u1, u2} that is adjacent to u2. Then (G, Σ) has two parallel paths.

We may therefore assume that H contains at most one cycle. As H is 2-connected, H
is a cycle with size ≥ 3. If a vertex on H has more than two pendant paths attached to 
it, then, by Lemma 4, M(G, Σ) ≥ 3. Hence, we may assume that any vertex on H has at 
most two pendant paths attached to it. Suppose next that there are two pendant paths 
attached to a vertex v. If a pendant path is incident with vertex that is not adjacent 
to v, then, by Lemma 4, M(G, Σ) ≥ 3. Hence, any pendant path is either incident with 
v or incident with a vertex adjacent to v. If there is a vertex adjacent to v with more 
than one pendant path attached, then, by Lemma 4, M(G, Σ) ≥ 3. Hence to any vertex 
adjacent to v at most one pendant path is attached. Then (G, Σ) has two parallel paths. 
Therefore, we may assume that at most one pendant path is incident with each vertex 
of H.

Let P1, . . . , Pk be the pendant paths attached to H, where we assume that P1, . . . , Pk

are in this order around H. If k ≥ 6, then (G, Σ) has a weak K=
3 (ΔY )3-minor. If k = 5

and there are pendant path Pi and Pi+1 (index modulo k) that are at distance ≥ 2
on H, then (G, Σ) has a weak K=

3 (ΔY )3-minor. If k = 5 and there are no consecutive 
pendant paths at distance ≥ 2, then (G, Σ) is a SF-graph. If k = 4 and there is a 
pendant path that is at distance ≥ 2 from the other pedant paths, then (G, Σ) has a 
weak K=

3 (ΔY )3-minor. If k = 4 and for all pendant paths, there is a distinct pendant 
path at distance 1, then (G, Σ) has two parallel paths. If k = 3 and the pendant paths 
in each pair of pendant path are at distance ≥ 2 on H from one another, then (G, Σ)
has a weak K=

3 (ΔY )3-minor. If k = 3 and two pendant paths at distance 1 on H, then 
(G, Σ) has two parallel paths. If k ≤ 2, then, clearly, (G, Σ) has two parallel paths. �
7. The main result

We now provide a combinatorial characterization of signed graph (G, Σ) with 
M(G, Σ) = 2.

Theorem 23. Let (G, Σ) be a signed graph. Then M(G, Σ) = 2 if and only if one of the 
following holds:

1. (G, Σ) has two parallel paths, but G is not a path;
2. (G, Σ) is a SH-graph;
3. (G, Σ) is a SF-graph;
4. (G, Σ) is a SA-graph;
5. (G, Σ) is a MK-graph;
6. (G, Σ) is a ST-graph; or
7. (G, Σ) is obtained from W o

4 by attached single pendant paths at some of the vertices 
of W o

4 .
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Proof. The “if” statement is clear.
We now prove the “only if” statement. Suppose M(G, Σ) = 2.
If G is disconnected, then G has exactly two components, for otherwise M(G, Σ) ≥ 3. 

Furthermore, each component is a path, for otherwise M(G, Σ) ≥ 3. Then (G, Σ) is a 
signed graph with two parallel paths.

We may therefore assume that G is connected. If G has no cycle, then G is a tree. Since 
M(G, Σ) = M(G) when G is a forest, G has path cover number 2. Then (G, Σ) is a signed 
graph with two parallel paths. We may therefore assume that G has a cycle. By Lemma 5, 
(G, Σ) can be obtained from a 2-connected signed graph (H, Ω) with M(H, Ω) = 2 or 
from an odd cycle with two edges by attaching pendant paths. Furthermore, at each 
vertex of H at most two pendant paths can be attached. In the latter case, (G, Σ) is a 
signed graph with two parallel paths. We may assume that the former case holds. By 
Theorem 6, (H, Ω) is either a partial wide 2-path or is isomorphic to W o

4 . If (H, Ω) is 
isomorphic to W o

4 , then, by Lemma 7, only single pendant paths can be attached at 
vertices of W o

4 . We may therefore assume that (H, Ω) is a partial wide 2-path. Then the 
statement follows from Lemmas 14, 19, and 22. �
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