Delft University of Technology

Signed graphs with maximum nullity two

Arav, Marina ; Dahlgren, F. Scott; van der Holst, Hein

DOI
10.1016/j.laa.2023.06.016

Publication date
2023

Document Version

Final published version
Published in
Linear Algebra and Its Applications

Citation (APA)

Arav, M., Dahlgren, F. S., \& van der Holst, H. (2023). Signed graphs with maximum nullity two. Linear Algebra and Its Applications, 675, 29-47. https://doi.org/10.1016/j.laa.2023.06.016

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Green Open Access added to TU Delft Institutional Repository
 'You share, we take care!' - Taverne project

https://www.openaccess.nI/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Signed graphs with maximum nullity two

Marina Arav ${ }^{\text {a }}$, F. Scott Dahlgren ${ }^{\text {b }}$, Hein van der Holst ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
${ }^{\text {b }}$ Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands

A R T I C L E I N F O

Article history:

Received 16 June 2021
Received in revised form 17 June 2023
Accepted 18 June 2023
Available online 22 June 2023
Submitted by R. Brualdi

MSC:

05C22
05C50
15A03

Keywords:
Signed graph
Nullity
Symmetric

A B S T R A C T

A signed graph is a pair (G, Σ), where $G=(V, E)$ is a graph (in which parallel edges are permitted, but loops are not) with $V=\{1, \ldots, n\}$ and $\Sigma \subseteq E$. The edges in Σ are called odd and the other edges of E even. If there are parallel edges, then only two edges in each parallel class are permitted, one of which is even and one of which is odd. By $S(G, \Sigma)$ we denote the set of all symmetric $n \times n$ matrices $A=\left[a_{i, j}\right]$ with $a_{i, j}<0$ if i and j are connected by an even edge, $a_{i, j}>0$ if i and j are connected by an odd edge, $a_{i, j} \in \mathbb{R}$ if i and j are connected by both an even and an odd edge, $a_{i, j}=0$ if $i \neq j$ and i and j are non-adjacent, and $a_{i, i} \in \mathbb{R}$ for all vertices i.
The maximum nullity $M(G, \Sigma)$ of a signed graph (G, Σ) is the maximum nullity attained by any $A \in S(G, \Sigma)$. Arav et al. gave a combinatorial characterization of 2-connected signed graphs (G, Σ) with $M(G, \Sigma)=2$. In this paper, we give a complete combinatorial characterization of the signed graphs (G, Σ) with $M(G, \Sigma)=2$.
© 2023 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A signed graph is a pair (G, Σ), where $G=(V, E)$ is a graph (in which parallel edges are permitted, but loops are not) and $\Sigma \subseteq E$. (We refer to [6] for the notions and concepts in graph theory.) The edges in Σ are called odd and the other edges even. If there are parallel edges, then only two edges in each parallel class are permitted, one of which is even and one of which is odd. If $V=\{1,2, \ldots, n\}$, we denote by $S(G, \Sigma)$ the set of all real symmetric $n \times n$ matrices $A=\left[a_{i, j}\right]$ with

- $a_{i, j}<0$ if i and j are connected by an even edge,
- $a_{i, j}>0$ if i and j are connected by an odd edge,
- $a_{i, j} \in \mathbb{R}$ if i and j are connected by both an odd and an even edge,
- $a_{i, j}=0$ if $i \neq j$ and i and j are non-adjacent, and
- $a_{i, i} \in \mathbb{R}$ for all vertices i.

For a signed graph $(G, \Sigma), M(G, \Sigma)$ is the maximum of the nullities of the matrices in $S(G, \Sigma)$. The signed graph parameter $M(G, \Sigma)$ generalizes the graph parameter $M(G)$ in the sense that $M(G)=\max _{\Sigma \subseteq E} M(G, \Sigma)$. See Fallat and Hogben [7] for a survey on the graph parameter $M(G)$. A matrix $A=\left[a_{i, j}\right] \in S(G, \Sigma)$ has the SAP if $X=0$ is the only symmetric matrix $X=\left[x_{i, j}\right]$ such that $x_{i, j}=0$ if i and j are adjacent vertices or $i=j$, and $A X=0$. The parameter ξ of a signed graph (G, Σ) is defined as the largest nullity of any matrix $A \in S(G, \Sigma)$ satisfying the SAP. It is clear that $\xi(G, \Sigma) \leq M(G, \Sigma)$ for any signed graph (G, Σ). This signed graph parameter ξ is analogous to the parameter ξ for simple graphs introduced by Barioli, Fallat, and Hogben [5].

If $G=(V, E)$ is a graph and $U \subseteq V, \delta(U)$ denotes the set of edges of G that have exactly one end in U. The symmetric difference of two sets A and B is the set $A \Delta B=A \backslash B \cup B \backslash A$. If (G, Σ) is a signed graph and $U \subseteq V(G)$, we say that (G, Σ) and $(G, \Sigma \Delta \delta(U))$ are sign-equivalent and call the operation $\Sigma \rightarrow \Sigma \Delta \delta(U)$ re-signing on U. Re-signing on U amounts to performing a diagonal similarity on the matrices in $S(G, \Sigma)$, and hence it does not affect $M(G, \Sigma)$ and $\xi(G, \Sigma)$.

Let (G, Σ) be a signed graph. If H is a subgraph of G, then we say that H is odd if $\Sigma \cap E(H)$ has an odd number of elements, otherwise we call H even. Zaslavsky showed in [11] that two signed graphs are sign-equivalent if and only if they have the same set of odd cycles. Thus, two signed graphs (G, Σ) and $\left(G, \Sigma^{\prime}\right)$ that have the same set of odd cycles have $M(G, \Sigma)=M\left(G, \Sigma^{\prime}\right)$ and $\xi(G, \Sigma)=\xi\left(G, \Sigma^{\prime}\right)$.

Contracting an edge e with ends u and v in a graph G means deleting e and identifying the vertices u and v. A graph H is a minor of G if H can be obtained from a subgraph of G by contracting edges. If H is isomorphic to a minor of G, we also write that G has an H-minor. A signed graph (H, Γ) is a weak minor of a signed graph (G, Σ) if (H, Γ) can be obtained from (G, Σ) by deleting edges and vertices, contracting edges, and resigning around vertices. We use weak minor to distinguish it from minor in which only even edges are allowed to be contracted (possibly after re-signing around vertices). The
parameter ξ has the nice property that if (H, Γ) is a weak minor of the signed graph (G, Σ), then $\xi(H, \Gamma) \leq \xi(G, \Sigma)$.

In [8], Fiedler showed that the paths are the only graphs G for which $M(G) \leq 1$. Johnson et al. [9] characterized all graphs G with $M(G) \leq 2$. Barioli et al. [5] characterized the class of graph G with $\xi(G)$, and Hogen and van der Holst characterized the class of graphs G with $\xi(G) \leq 2$.

For a graph $G=(V, E)$ and a subset $S \subseteq V, G-S$ denotes the graph obtained by deleting all vertices in S; we write $G-v$ for $G-\{v\}$. A graph G is connected if for every two vertices u and v of G are connected by a path. A graph $G=(V, E)$ is 2-connected if $|V|>2$ and $G-v$ is connected for every $v \in V$. Any 2 -connected graph contains a cycle.

In [3], Arav et al. showed that a signed graph (G, Σ) has $M(G, \Sigma) \leq 1$ if and only if (G, Σ) is sign-equivalent to a signed graph (H, \emptyset), where H is a path. Furthermore, they showed that a signed graph (G, Σ) has $\xi(G, \Sigma) \leq 1$ if and only if (G, Σ) is sign-equivalent to a signed graph (H, \emptyset), where H is a disjoint union of paths. Observe that in case the signed graph (G, Σ) is connected, $M(G, \Sigma) \leq 1$ if and only if $\xi(G, \Sigma) \leq 1$. In [2], Arav et al. characterized combinatorially the class of 2-connected signed graphs (G, Σ) with $M(G, \Sigma)=2$, which coincides with the class of 2 -connected signed graphs (G, Σ) with $\xi(G, \Sigma)=2$. In [1], Arav et al. characterized combinatorially the signed graphs (G, Σ) with $\xi(G, \Sigma) \leq 2$. In this paper, we provide a combinatorial characterization of the signed graphs (G, Σ) with $M(G, \Sigma)=2$.

2. Global structure signed graphs (G, Σ) with $M(G, \Sigma)=2$

In this section, we provide a global structure of signed graphs (G, Σ) with $M(G, \Sigma) \leq$ 2. In the following sections, we then provide the exact structure.

Lemma 1. Let (G, Σ) be a disjoint union of $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$. Then $M(G, \Sigma)=$ $M\left(G_{1}, \Sigma_{1}\right)+M\left(G_{2}, \Sigma_{2}\right)$.

Lemma 2. Let (G, Σ) be a disconnected signed graph with $M(G, \Sigma)=2$. Then G consists of two components, each of which is a path.

The proof of the following lemma follows Formulas 1 and 2 in Arav et al. [4].
Lemma 3. Let (G, Σ) be a 1-sum of $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ at vertex s. Let $\left(H_{1}, \Omega_{1}\right)$ and $\left(H_{2}, \Omega_{2}\right)$ be obtained from $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$, respectively, by deleting vertex s. Then

$$
M(G, \Sigma)=\max \left\{M\left(G_{1}, \Sigma_{1}\right)+M\left(G_{2}, \Sigma_{2}\right)-1, M\left(H_{1}, \Omega_{1}\right)+M\left(H_{2}, \Omega_{2}\right)-1\right\}
$$

If $\left(H_{1}, \Omega_{1}\right)$ and $\left(H_{2}, \Omega_{2}\right)$ are signed graph, then by attaching $\left(H_{2}, \Omega_{2}\right)$ to $\left(H_{1}, \Omega_{1}\right)$ we mean identifying a vertex of $\left(H_{2}, \Omega_{2}\right)$ with a vertex of $\left(H_{1}, \Omega\right)$. Furthermore, if P is a path with at least one edge, we mean by attaching a pendant path P at vertex v to
$\left(H_{1}, \Omega\right)$ identifying an end of P with v. Here, we assume that all edges of P are even. Observe that attaching a path (without the adjective pendant) to (H_{1}, Ω_{1}) allows an internal vertex of the path to be identified with a vertex of $\left(H_{1}, \Omega_{1}\right)$.

The following lemma follows immediately from Lemma 3.
Lemma 4. If (G, Σ) is obtained from a signed graph $\left(G_{1}, \Sigma_{1}\right)$ by attaching a pendant path at vertex v, then

$$
M(G, \Sigma)=\max \left\{M\left(G_{1}, \Sigma_{1}\right), M\left(G_{1}-v, E\left(G_{1}-v\right) \cap \Sigma_{1}\right)\right\}
$$

In particular,

$$
M(G, \Sigma) \geq M\left(G_{1}, E\left(G_{1}\right) \cap \Sigma\right)
$$

Lemma 5. Let (G, Σ) be a connected signed graph containing a cycle. If $M(G, \Sigma)=2$, then

1. (G, Σ) is obtained from a 2-connected signed graph (H, Ω) with $M(H, \Omega)=2$ by attaching pendant paths at vertices of (H, Ω); or
2. (G, Σ) is obtained from an odd cycle with two edges by attaching pendant paths at vertices of this odd cycle.

Furthermore, at each vertex of H at most two pendant paths can be attached.
Proof. Suppose, for a contradiction, that (G, Σ) is a 1-sum of $\left(H_{1}, \Omega_{1}\right)$ and $\left(H_{2}, \Omega_{2}\right)$, where both H_{1} and H_{2} contain a cycle. Since $M\left(H_{1}, \Omega_{1}\right) \geq \xi\left(H_{1}, \Omega_{1}\right) \geq 2$ and $M\left(H_{2}, \Omega_{2}\right) \geq \xi\left(H_{2}, \Omega_{2}\right) \geq 2$, we obtain, by Lemma 3, that

$$
M(G, \Sigma) \geq M\left(H_{1}, \Omega_{1}\right)+M\left(H_{2}, \Omega_{2}\right)-1 \geq 2+2-1=3
$$

a contradiction. Therefore, (G, Σ) is obtained from either a 2-connected signed graph (H, Ω) by attaching trees to some vertices of H or from an odd cycle (H, Ω) with two edges by attaching trees to some vertices.

If (G, Σ) is obtained from a 2-connected signed graph (H, Ω) with $M(H, \Omega) \geq 3$, then $M(G, \Sigma) \geq 3$. Thus, $M(H, \Omega)=2$ in this case.

Let v be a vertex of H that has an attached tree T. If T contain a vertex of degree ≥ 3, then $M(T, \Sigma \cap E(T)) \geq 2$, and hence

$$
M(G, \Sigma) \geq M(H, \Omega)+M(T, \Sigma \cap E(T))-1 \geq 2+2-1=3
$$

Therefore, (G, Σ) is obtained from (H, Ω) by attaching paths to vertices of H. Furthermore, at each vertex at most two paths can be attached.

In the next section, we study the structure of 2-connected signed graphs (H, Ω) with $M(H, \Omega)=2$.

3. Wide partial 2-paths

In this section, we first make some definitions; see [2].
By K_{4}^{i} we denote the signed graph $\left(K_{4},\{e\}\right)$, where e is an edge of K_{4}. A pair $\{e, f\}$ of nonadjacent edges in K_{4}^{i} is called split if both e and f belong to an even and an odd triangle.

A sided wide 2-path $[(G, \Sigma), \mathcal{F}]$ is defined recursively as follows:

1. Let (G, Σ) be an even or odd cycle or a K_{4}^{i}. If (G, Σ) is a cycle, let \mathcal{F} be two distinct edges in this cycle. If $(G, \Sigma)=K_{4}^{i}$, let \mathcal{F} be a split pair of edges in K_{4}^{i}. Then $[(G, \Sigma), \mathcal{F}]$ is a sided wide 2-path.
2. Let $[(G, \Sigma), \mathcal{F}]$ be a sided wide 2-path and let e and f be distinct edges in an even or odd cycle C. If (H, Ω) is obtained from (G, Σ) by identifying the edge f of C with an edge h in \mathcal{F}, then $[(H, \Omega),(\mathcal{F} \backslash\{h\}) \cup\{e\}]$ is a sided wide 2-path.
3. Let $[(G, \Sigma), \mathcal{F}]$ be a sided wide 2-path and let $\{e, f\}$ be a split pair of edges in K_{4}^{i}. If (H, Ω) is obtained from (G, Σ) by identifying the edge f of K_{4}^{i} with an edge h in \mathcal{F}, then $[(H, \Omega),(\mathcal{F} \backslash\{h\}) \cup\{e\}]$ is a sided wide 2-path.

The edges in \mathcal{F} are called the sides of the sided wide 2-path. A wide 2-path is a signed graph (G, Σ) for which there exists a set \mathcal{F} of two distinct edges of (G, Σ) such that $[(G, \Sigma), \mathcal{F}]$ is a sided wide 2-path. A signed graph (G, Σ) is a partial wide 2-path if it is a spanning subgraph of a wide 2-path. Observe that if G is a partial 2-path, then (G, Σ) is a partial wide 2-path for any $\Sigma \subseteq E(G)$.

Let (G, Σ) be a signed graph. A pair $\left[G_{1}, G_{2}\right]$ of subgraphs of G is a wide separation of (G, Σ) if there exists an odd 4-cycle C_{4} such that $G_{1} \cup C_{4} \cup G_{2}=G, E\left(G_{1}\right) \cap E\left(C_{4}\right)=\emptyset$, $E\left(G_{2}\right) \cap E\left(C_{4}\right)=\emptyset, V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset, V\left(G_{1}\right) \cap V\left(C_{4}\right)=\left\{r_{1}, r_{2}\right\}$ and $V\left(G_{2}\right) \cap V\left(C_{4}\right)=$ $\left\{s_{1}, s_{2}\right\}$, where r_{1} and r_{2} are nonadjacent vertices of C_{4} and s_{1} and s_{2} are nonadjacent vertices of C_{4}. We call r_{1}, r_{2} the vertices of attachment of G_{1} and s_{1}, s_{2} the vertices of attachment of G_{2} in the wide separation. In the definition of sided wide 2-path, we allow the sided wide 2-path be built up from even and odd cycle, and K_{4}^{i}; the K_{4}^{i},s might yield wide separations in a 2 -connected partial wide 2-path.

By K_{n}^{e} and K_{n}^{o} we denote the signed graphs $\left(K_{n}, \emptyset\right)$ and $\left(K_{n}, E\left(K_{n}\right)\right)$, respectively. By $K_{n}^{=}$we denote the signed graph (G, Σ), where G is the graph obtained from K_{n} by adding to each edge an edge in parallel, and where Σ is the set of edges of K_{n}. (It is will be clear from the context whether we mean the graph $K_{3}^{=}$or the signed graph $K_{3}^{=}$.) By $K_{2,3}^{e}$, we denote the signed graphs $\left(K_{2,3}, \emptyset\right)$.

By W_{4} we denote the graph obtained from C_{4} by adding a new vertex v, called the $h u b$, and connecting it to each vertex of C_{4}. The subgraph C_{4} in W_{4} is called the rim of W_{4}. Any edge between v and a vertex of the rim of W_{4} is called a spoke. Let e_{1}, e_{2} be two

Fig. 1. The signed four-wheel.
nonadjacent edges of the C_{4} in W_{4}. By W_{4}^{o}, we denote the signed graph ($W_{4},\left\{e_{1}, e_{2}\right\}$). See Fig. 1 for a picture of W_{4}^{o}; here a bold edge is an odd edge and a thin edge an even edge. This signed graph appears as a special case in the characterization of 2-connected signed graphs (G, Σ) with $M(G, \Sigma)=2$.

In [2], Arav et al. proved the following theorem.
Theorem 6. Let (G, Σ) be a 2-connected signed graph. Then the following are equivalent:
(i) $M(G, \Sigma)=2$,
(ii) $\xi(G, \Sigma)=2$,
(iii) (G, Σ) has no weak minor isomorphic to $K_{3}^{=}, K_{4}^{e}, K_{4}^{o}$, or $K_{2,3}^{e}$.
(iv) (G, Σ) is a partial wide 2-path or is isomorphic to W_{4}^{o}.

In the next section, we prove that if (G, Σ) is obtained from W_{4}^{o} by attaching single pendant paths to some of its vertices, then $M(G, \Sigma)=2$. In Section 6, we will study the cases where (G, Σ) is obtained from a partial wide 2 -path by adding pendant paths.

4. Pendant paths on an odd 4 -wheel

Lemma 7. Let S be a subset of the vertex set of the signed graph W_{4}^{o}. If (G, Σ) is obtained from W_{4}^{o} by attaching single pendant paths to all the vertices of S, then $M(G, \Sigma)=2$. If (G, Σ) is obtained from W_{4}^{o} by attaching pendant paths to all vertices of S and some of the vertices have two or more pendant paths, then $M(G, \Sigma)>2$.

Proof. Suppose first that (G, Σ) is obtained from W_{4}^{o} by attaching single pendant paths to the vertices of S. Let

$$
\mathcal{G}:=\left\{W_{4}^{o}-R: R \subseteq S\right\}
$$

Then

$$
M(G, \Sigma)=\max \{M(H, \Omega):(H, \Omega) \in \mathcal{G}\}
$$

As $M(H, \Omega) \leq 2$ for all $(H, \Omega) \in \mathcal{G}, M(G, \Sigma) \leq 2$. Since (G, Σ) has a cycle, $M(G, \Sigma)=2$.

Fig. 2. The $K_{3}^{=}$-family.

Suppose next that (G, Σ) is obtained from W_{4}^{o} by attaching pendant paths to all the vertices of S and there is a vertex $s \in S$ that has two or more attached pendant paths. Then, as the signed graph obtained from (G, Σ) by deleting vertex s contains a cycle and two or more paths, $M(G, \Sigma) \geq 3$.

5. Signed graphs of the $K_{3}^{=}$-family

A triangle in a graph is a subgraph isomorphic to K_{3}. A ΔY-transformation on a triangle T of a signed graph (G, Σ) means deleting the edges T, adding a new vertex v, and connecting v with the vertices of the triangle with edges, giving these new edges any sign. The $K_{3}^{=}$-family is the family of signed graphs obtained from $K_{3}^{=}$by repeatedly subdividing one edge in a parallel class, and then applying a ΔY-transformation on the resulting triangle. See Fig. 2; here, a solid line is an even edge, a dotted line is an odd edge, and a dashed line is either an even or an odd edge.

Lemma 8. [1] Every member (G, Σ) of the $K_{3}^{=}$-family has $\xi(G, \Sigma)=3$.
Hence, if a signed graph (G, Σ) has a weak minor isomorphic to a signed graph in the $K_{3}^{=}$-family, then $M(G, \Sigma) \geq \xi(G, \Sigma) \geq 3$.

6. Pendant paths on 2-connected partial wide 2-paths

6.1. Partial wide 2-paths with two wide separations

Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2 connected partial wide 2-path (H, Ω). Suppose $\left[H_{1}, H_{2}\right]$ and $\left[H_{3}, H_{4}\right]$ are distinct wide separations of (H, Ω) such that $H_{1} \subseteq H_{3}$ and $H_{4} \subseteq H_{2}$. Let r_{1}, r_{2} be the vertices of attachment of H_{2} and let s_{1}, s_{2} be the vertices of attachment of H_{3}, and let P_{1} and P_{2} be vertex-disjoint paths between $\left\{r_{1}, r_{2}\right\}$ and $\left\{s_{1}, s_{2}\right\}$, where P_{i} connects r_{i} and s_{i}. If P is a path in H, we denote by $l(P)$ the length of P. We call (G, Σ) a $S T$-graph if the following holds:

1. no vertex of H is the end of two or more pendant paths,
2. $l\left(P_{1}\right)+l\left(P_{2}\right) \leq 1$, and
(a) if $l\left(P_{1}\right)+l\left(P_{2}\right)=1$, then both H_{1} and H_{2} are disconnected,
(b) if $l\left(P_{1}\right)+l\left(P_{2}\right)=0$, then exactly one of H_{1} and H_{2} is disconnected and the other one is a path Q, and if Q has length ≥ 2, then there is at most one pendant path incident with an end of Q, and there are no pendant paths incident with an internal vertex of Q, and
3. exactly one pendant path is incident with a vertex of $P_{1} \cup P_{2}$.

We allow edges between the vertices r_{1}, r_{2} and between the vertices s_{1}, s_{2}.
A path in a graph $G=(V, E)$ is induced if it is of the form $G[S]$ for some $S \subseteq V$. The path cover number of a graph G, denoted $P(G)$, is the minimum number of vertexdisjoint induced paths covering all vertices of G. In the proof of Lemma 10, we use the following result of Sinkovic [10].

Theorem 9. If G is a partial 2-path, then $M(G)=P(G)$.
Lemma 10. If (G, Σ) is a ST-graph, then $M(G, \Sigma)=2$.
Proof. Let (G, Σ) be a ST-graph. Let P be the pendant path incident with a vertex p of $P_{1} \cup P_{2}$. Let $\left(G^{\prime}, \Sigma^{\prime}\right):=(G, \Sigma)-V(P-p)$ and let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=(G, \Sigma)-V(P)$.

As $\left(G^{\prime}, \Sigma^{\prime}\right)$ is a 2 -connected partial wide 2 -path, $M\left(G^{\prime}, \Sigma^{\prime}\right)=2$, and, as $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ has path cover number $2, M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)=2$, by Theorem 9. By Lemma $4, M(G, \Sigma)=$ $\max \left\{M\left(G^{\prime}, \Sigma^{\prime}\right), M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)\right\}=2$.

Lemma 11. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω) with at least two wide separations. If there is a vertex with at least two pendant paths attached, then $M(G, \Sigma) \geq 3$.

Proof. Let v be the vertex of H to which at least two paths are attached. If $H-v$ has a component containing a cycle, then, as two pendant paths are attached to v, $M(G, \Sigma) \geq 3$. If $H-v$ has no component containing a cycle, then one component of $H-v$ has a vertex of degree four. Also in this case $M(G, \Sigma) \geq 3$.

Lemma 12. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω). Let $\left[H_{1}, H_{2}\right]$ and $\left[H_{3}, H_{4}\right]$ be distinct wide separations of (H, Ω) such that $H_{1} \subseteq H_{3}$ and $H_{4} \subseteq H_{2}$. Let r_{1}, r_{2} be the vertices of attachment of H_{2} and let s_{1}, s_{2} be the vertices of attachment of H_{3}, and let P_{1} and P_{2} be vertex-disjoint paths between $\left\{r_{1}, r_{2}\right\}$ and $\left\{s_{1}, s_{2}\right\}$, where P_{i} connects r_{i} and s_{i}. Suppose a pendant path is incident with a vertex of P_{1} or P_{2}. Then $M(G, \Sigma)=2$ if and only if (G, Σ) is a ST-graph.

Proof. Suppose $M(G, \Sigma)=2$.
Since $\xi(G, \Sigma) \leq M(G, \Sigma)$, we obtain by Lemma 8 that (G, Σ) has no weak minor isomorphic to a signed graph in the $K_{3}^{=}$-family.

By Lemma 11, at most one pendant path can be incident with each vertex of H.
Suppose next that a pendant path is incident with an internal vertex of P_{1} or P_{2}. Then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)$. We may therefore assume that every pendant path that is incident with a vertex of $P_{1} \cup P_{2}$ is incident with an end of P_{1} or P_{2}.

We next prove that

$$
l\left(P_{1}\right)+l\left(P_{2}\right) \leq 1 .
$$

By symmetry, we may assume that a pendant path is incident with an end of P_{1}. If P_{1} has at least two edges, then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. Hence P_{1} has at most one edge. If P_{2} has at least two edges, then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. Hence P_{2} has at most one edge. If both P_{1} and P_{2} have exactly one edge, then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence P_{1} or P_{2} has length zero.

Suppose first that $l\left(P_{1}\right)+l\left(P_{2}\right)=1$. By symmetry, we may assume that $l\left(P_{1}\right)=1$ and $l\left(P_{2}\right)=0$. If H_{1} or H_{4} is connected, then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)$ or $K_{3}^{=}(\Delta Y)^{2}$. Hence both H_{1} and H_{4} are disconnected. Suppose now to the contrary that more than one pendant path is incident with vertices of $P_{1} \cup P_{2}$. Let ($G^{\prime}, \Sigma^{\prime}$) be obtained from (G, Σ) be removing these pendant paths and their vertices of attachment. Then, as $M(G, \Sigma) \geq M\left(G^{\prime}, \Sigma^{\prime}\right)$, and $\left(G^{\prime}, \Sigma^{\prime}\right)$ has path cover number ≥ 3, we obtain that $M(G, \Sigma) \geq 3$; a contradiction. Hence at most one pendant path is incident with $P_{1} \cup P_{2}$. Then (G, Σ) is a ST-graph.

Suppose next that $l\left(P_{1}\right)=l\left(P_{2}\right)=0$. Then $r_{1}=s_{1}$ and $r_{2}=s_{2}$. If H_{1} and H_{4} are connected, then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)$. If H_{1} and H_{4} are disconnected, then the removal of the pendant path with its vertex of attachment yields a signed graph $\left(G^{\prime}, \Sigma^{\prime}\right)$ with $M\left(G^{\prime}, \Sigma^{\prime}\right) \geq 3$. Hence $M(G, \Sigma) \geq 3$; a contradiction. By symmetry, we may therefore assume that H_{1} is disconnected and H_{4} is connected. In the same way as above, there is exactly one pendant path incident with $P_{1} \cup P_{2}$. By symmetry, we may assume that (G, Σ) has a pendant path P incident with P_{1}.

If H_{4} contains a cycle, then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, H_{4} has no cycle. Let Q be the path in H_{4} connecting the vertices of attachment in the wide separation $\left[H_{3}, H_{4}\right]$. If (G, Σ) has a pendant path incident with an internal vertex of Q, then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. Hence any pendant path incident with H_{4} is incident with one of the vertices of attachment of H_{4} in the wide separation $\left[H_{3}, H_{4}\right]$. If Q has length ≥ 2 and (G, Σ) has pendant paths incident with both ends of Q, then (G, Σ) has a weak minor isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence either Q has length 1 or (G, Σ) has only a pendant path attached to one of the ends of Q, if any. Then (G, Σ) is a ST-graph.

The converse implication follows from Lemma 10.

A signed graph has two parallel paths if there exist two pairs of vertices u_{1}, u_{2} and v_{1}, v_{2} such that (G, Σ) is a spanning subgraph of a sided wide 2-path with sides $u_{1} u_{2}$ and $v_{1} v_{2}$, and there exist two disjoint paths connecting u_{1} and v_{1}, and u_{2} and v_{2}, respectively.

Lemma 13. Let (G, Σ) be a signed graph with two parallel paths. Then $M(G, \Sigma) \leq 2$.
Proof. The signed graph (G, Σ) is a spanning subgraph of a sided wide 2-path with sides $u_{1} u_{2}$ and $v_{1} v_{2}$. A zero forcing argument starting with the vertex-set $\left\{u_{1}, u_{2}\right\}$, similar as done in [2], shows that $M(G, \Sigma) \leq 2$.

Lemma 14. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω) with at least two distinct wide separations. Then, $M(G, \Sigma)=2$ if and only if (G, Σ) has two parallel paths or (G, Σ) is a ST-graph.

Proof. Suppose $M(G, \Sigma)=2$. Let $\left[H_{1}, H_{2}\right]$ and $\left[H_{3}, H_{4}\right]$ be distinct wide separations of (H, Ω) such that $H_{1} \subseteq H_{3}$ and $H_{4} \subseteq H_{2}$; we take [H_{1}, H_{2}] in (H, Ω) such that there is no wide separation $\left[H_{1}^{\prime}, H_{2}^{\prime}\right]$ with H_{1}^{\prime} a proper subgraph of H_{1}, and similar, we take [H_{3}, H_{4}] in (H, Ω) such that there is no wide separation $\left[H_{3}^{\prime}, H_{4}^{\prime}\right]$ such that H_{4}^{\prime} is a proper subgraph of H_{4}. Let r_{1}, r_{2} be the vertices of attachment of H_{2} and let s_{1}, s_{2} be the vertices of attachment of H_{3}, and let P_{1} and P_{2} be vertex-disjoint paths between $\left\{r_{1}, r_{2}\right\}$ and $\left\{s_{1}, s_{2}\right\}$, where P_{i} connects r_{i} and s_{i}. By Lemma 12, we may assume that no pendant path is incident with a vertex of P_{1} or P_{2}, for otherwise we obtain a ST-graph. Let u_{1}, u_{2} be the vertices of attachment of H_{1}. By Lemma 11, no two pendant paths of G are incident with a vertex of H.

Suppose H_{1} contains a cycle C; we may assume that C is at the end of the partial wide 2-path H, that is, there is a 2 -separation (C, F) of H. Let $\left\{v_{1}, v_{2}\right\}:=V(C) \cap V(F)$. Let Q_{1} and Q_{2} be two vertex-disjoint paths between $\left\{v_{1}, v_{2}\right\}$ and $\left\{u_{1}, u_{2}\right\}$, with Q_{i} connecting v_{i} and u_{i}. If a pendant path is incident with a vertex of $Q_{1}-v_{1}$ or $Q_{2}-v_{2}$, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)$-minor. Let P be the path obtained from C by removing any edge between v_{1} and v_{2}. If there are two pendant paths incident with nonadjacent vertices of P, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{2}$-minor. Hence, at most two pendant paths are incident with vertices of P, and if two pendant paths are incident with vertices of P, then these vertices are adjacent in P.

If H_{1} contains no cycle, but H_{1} is connected, let P be the path in H_{1} connecting u_{1} and u_{2}. If there are two pendant paths incident with nonadjacent vertices of P, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{2}$-minor. Hence, at most two pendant paths are incident with vertices of P, and if two pendant paths are incident with vertices of P, then these vertices are adjacent in P.

We do the same on H_{4} if H_{4} is connected.
If H_{1} and H_{4} are connected, then (G, Σ) has two parallel paths. Similarly, if at least one of H_{1} and H_{4} is disconnected, then (G, Σ) has two parallel paths.

We next prove the converse. If there is a pendant path incident with a vertex of $P_{1} \cup P_{2}$, then the result follows from Lemma 12. If no pendant path is incident with a
vertex of $P_{1} \cup P_{2}$, then by the previous lemma $M(G, \Sigma) \leq 2$. Since H is 2 -connected, $M(G, \Sigma)=2$.

6.2. Partial wide 2-paths with one wide separation

Let (G, Σ) be a signed graph such that the removal of pendant paths yields a partial wide 2-path (H, Ω) with exactly one wide separation $\left[H_{1}, H_{2}\right.$]. Let u_{1} and u_{2} be the vertices of attachment of H_{1} and let w_{1} and w_{2} be the vertices of attachment of H_{2}. We call (G, Σ) a $S A$-graph if the following holds:
(a) no vertex of H is the end of two or more pendant paths;
(b) H_{2} is a path, and no pendant path is incident with interior vertices of H_{2};
(c) the removal of any edge between u_{1} and u_{2} from H_{1}, if any, yields a path P with length ≥ 2; if a pendant path is incident with an internal vertex of P, then P has length two;
(d) there is one pendant path incident with u_{1} and one pendant path incident with u_{2};
(e) if H_{2} has an internal vertex and pendant paths are incident with w_{1} and w_{2}, then no pendant path is incident with an internal vertex of P.

Lemma 15. If (G, Σ) is a $S A$-graph, then $M(G, \Sigma)=2$.

Proof. Let P_{1} and P_{2} be the pendant paths incident with u_{1} and u_{2}, respectively. Let $\left(G^{\prime}, \Sigma^{\prime}\right):=(G, \Sigma)-V\left(P_{1}\right)$ and let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=(G, \Sigma)-V\left(P_{1}-u_{1}\right)$. Since G^{\prime} is a partial 2-path with path cover number $2, M\left(G^{\prime}, \Sigma^{\prime}\right) \leq M\left(G^{\prime}\right)=2$.

Suppose first that $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ has a pendant path Q incident with one of the vertices in $\left\{w_{1}, w_{2}\right\}$; let w be the vertex to which Q is incident. Let $(H, \Omega):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)-$ $V(Q)$ and let $\left(H^{\prime}, \Omega^{\prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)-V(Q-w)$. Since (H, Ω) is a partial 2-path with path cover number $2, M(H, \Omega)=2$, by Theorem 9 . A zero forcing argument shows that $M\left(H^{\prime}, \Omega^{\prime}\right) \leq 2$. Since $M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)=\max \left\{M(H, \Omega), M\left(H^{\prime}, \Omega^{\prime}\right)\right\}$, we obtain that $M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)=2$. Since $M(G, \Sigma)=\max \left\{M\left(G^{\prime}, \Sigma^{\prime}\right), M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)\right\}$, we see that $M(G, \Sigma)=$ 2 if (G, Σ) has a pendant path Q incident with one of the vertices in $\left\{w_{1}, w_{2}\right\}$.

We may therefore assume that $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ has no pendant paths incident with any vertex in $\left\{w_{1}, w_{2}\right\}$. Then a zero forcing argument shows that $M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \leq 2$. Since $M(G, \Sigma)=\max \left\{M\left(G^{\prime}, \Sigma^{\prime}\right), M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)\right\}$, we see that $M(G, \Sigma)=2$.

Lemma 16. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω) with exactly one wide separation $\left[H_{1}, H_{2}\right]$. Suppose H_{1} and H_{2} are connected. Then $M(G, \Sigma)=2$ if and only if (G, Σ) has two parallel paths or (G, Σ) is a SA-graph.

Proof. Suppose that $M(G, \Sigma)=2$.

If there is a vertex s of H such that in (G, Σ) at least two pendant paths R_{1}, R_{2} are incident with s, let $\left(G^{\prime}, \Sigma^{\prime}\right):=(G, \Sigma)-V\left(R_{1}\right)$. Then $\left(G^{\prime}, \Sigma^{\prime}\right)$ consists of at least two components, one of which contains a cycle, so $M\left(G^{\prime}, \Sigma^{\prime}\right) \geq 3$. By Lemma $3, M(G, \Sigma) \geq 3$. Hence, there is no vertex s of H such that in (G, Σ) at least two pendant paths R_{1}, R_{2} are incident with s.

Let u_{1}, u_{2} be the vertices of attachment of H_{1}, and let w_{1}, w_{2} be the vertices of attachment of H_{2}. Suppose first that H_{1} contains a cycle C. We may assume that C is at the end of the partial wide 2-path H, that is, there is a 2 -separation (C, F) of H. Let $\left\{v_{1}, v_{2}\right\}:=V(C) \cap V(F)$. Let Q_{1} and Q_{2} be two vertex-disjoint paths between $\left\{v_{1}, v_{2}\right\}$ and $\left\{u_{1}, u_{2}\right\}$. If a pendant path of (G, Σ) is incident with H_{1}, but not with a vertex of C, then the pendant path is incident with a vertex of $Q_{1}-v_{1}$ or a vertex of $Q_{2}-v_{2}$. Then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)$-minor, so $M(G, \Sigma) \geq \nu(G, \Sigma) \geq 3$, a contradiction. Hence any pendant path that is incident with a vertex of H_{1} is incident with a vertex of C. Let P_{1} be the path obtained from C by removing any edge between v_{1} and v_{2}. If there are two pendant paths incident with nonadjacent vertices on P_{1} and one is not incident
 the following holds:

- at most two pendant paths of (G, Σ) are incident with vertices of P_{1}, and if two pendant paths of (G, Σ) are incident with vertices of P_{1}, then these vertices are adjacent,
- three pendant paths of (G, Σ) are incident with vertices of P_{1}, P_{1} has length 2 , and the ends of P_{1} are u_{1} and u_{2}, or
- two pendant paths of (G, Σ) are incident with the ends of P_{1} and the ends are u_{1} and u_{2}.

If H_{1} has no cycles, then H_{1} is a path P_{1} connecting u_{1} and u_{2}. If there are two pendant paths incident with nonadjacent vertices on P_{1} and one is not incident with an end of P_{1}, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{2}$-minor, a contradiction. Hence, one of the following holds:

- at most two pendant paths of (G, Σ) are incident with vertices of P_{1}, and if two pendant paths of (G, Σ) are incident with vertices of P_{1}, then these vertices are adjacent,
- three pendant paths of (G, Σ) are incident with vertices of P_{1}, P_{1} has length 2 , and the ends of P_{1} are u_{1} and u_{2}, or
- two pendant paths of (G, Σ) are incident with the ends of P_{1} and the ends are u_{1} and u_{2}.

In the same way, we do the above for H_{2}.
Suppose that, for $i=1,2$, there are at most two pendant paths incident with vertices of P_{i} and if two pendant paths are incident with vertices of P_{i}, then these vertices are
adjacent in P_{i}. Then (G, Σ) has two parallel paths. Hence, we may assume that either pendant paths are incident with both ends of P_{1}, the ends of P_{1} are u_{1} and u_{2}, and P_{1} has length ≥ 2, or pendant paths are incident with both ends of P_{2}, the ends of P_{2} are w_{1} and w_{2}, and P_{2} has length ≥ 2. By symmetry, we may assume that pendant paths are incident with both ends of P_{1}, the ends of P_{1} are u_{1} and u_{2}, and P_{1} has length ≥ 2. Then H_{2} contains no cycle, for otherwise (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{2}$-minor. So H_{2} is a path connecting w_{1} and w_{2}.

If a pendant path of (G, Σ) is incident with an internal vertex of P_{2}, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor, a contradiction. Hence, no pendant path of (G, Σ) is incident with an internal vertex of P_{2}. If P_{1} has length >2, then no pendant path of (G, Σ) is incident with an internal vertex of P_{1}. If P_{1} has length 2 , a pendant path of (G, Σ) is incident with an internal vertex of P_{1}, and P_{2} has length ≥ 2, then no pendant path is incident with at least one of the vertices w_{1} and w_{2}, for otherwise (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. Thus, (G, Σ) is a SA-graph.

For the converse, use Lemmas 13 and 15 .

Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2 connected partial wide 2-path (H, Ω) with exactly one wide separation [H_{1}, H_{2}]. Let u_{1} and u_{2} be the vertices of attachment of H_{1}, suppose the vertices u_{1} and u_{2} are connected by a path of length ≥ 2 in H_{1}, and suppose H_{2} is disconnected. We call (G, Σ) a $M K$ graph if each of the following hold:

1. no vertex is the end of two or more pendant paths;
2. there is a pendant path at u_{1}, and no pendant path at u_{2};
3. $H_{1}-u_{2}$ is a path;
4. each pendant path P incident with a vertex of the path $H_{1}-\left\{u_{1}, u_{2}\right\}$ is incident with an end of $H_{1}-\left\{u_{1}, u_{2}\right\}$, and if P is incident with the end of $H_{1}-\left\{u_{1}, u_{2}\right\}$ adjacent to u_{1}, then no edge connects an internal vertex of $H_{1}-\left\{u_{1}, u_{2}\right\}$ with u_{2}.

Lemma 17. If (G, Σ) is a MK-graph, then $M(G, \Sigma)=2$.
Proof. Let v_{1} and v_{2} be the vertices of attachment of H_{2}. Let P be the pendant path at u_{1} and let $\left(G^{\prime}, \Sigma^{\prime}\right):=(G, \Sigma)-V\left(P-u_{1}\right)$, and let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=(G, \Sigma)-V(P)$. By Lemma 4, $M(G, \Sigma)=\max \left\{M\left(G^{\prime}, \Sigma^{\prime}\right), M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)\right\}$. Since $\left(G^{\prime}, \Sigma^{\prime}\right)$ is a signed graph with two parallel paths, $M\left(G^{\prime}, \Sigma^{\prime}\right) \leq 2$, and hence we may assume that $M(G, \Sigma)=M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$. In $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$, there are two pendant paths attached to u_{2}. Let Q be one of them. Let $(F, \Psi):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)-V\left(Q-u_{2}\right)$ and let $\left(F^{\prime}, \Psi^{\prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)-V(Q)$. Since $\left(F^{\prime}, \Psi^{\prime}\right)$ consists of two disjoint paths, $M\left(F^{\prime}, \Psi^{\prime}\right)=2$. Since (F, Ψ) is a signed graph with two parallel paths, $M(F, \Psi) \leq 2$. By Lemma $4, M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)=\max \left\{M(F, \Psi), M\left(F^{\prime}, \Psi^{\prime}\right)\right\}=2$.

Lemma 18. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω) with exactly one wide separation $\left[H_{1}, H_{2}\right]$. Suppose
that H_{2} is disconnected and H_{1} is connected. Then $M(G, \Sigma)=2$ if and only if (G, Σ) has two parallel paths or (G, Σ) is a MK-graph.

Proof. Suppose that $M(G, \Sigma)=2$. Since $M(G, \Sigma) \geq \xi(G, \Sigma),(G, \Sigma)$ has no weak minor isomorphic to a graph in the $K_{3}^{=}$-family.

Let u_{1} and u_{2} be the vertices of attachment of H_{1}. Suppose first that H_{1} contains a cycle C. Let Q_{1} and Q_{2} be vertex-disjoint path between $\left\{u_{1}, u_{2}\right\}$ and $V(C)$; let v_{1} and v_{2} be the vertices of Q_{1} and Q_{2} on C, respectively.

We first assume that a pendant path incident with a vertex of $Q_{1} \cup Q_{2}-\left\{v_{1}, v_{2}\right\}$.
If a pendant path is incident with a vertex of $Q_{1} \cup Q_{2}-\left\{v_{1}, v_{2}, u_{1}, u_{2}\right\}$, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)$-minor. Hence, any pendant path of (G, Σ) incident with a vertex of $Q_{1} \cup Q_{2}-\left\{v_{1}, v_{2}\right\}$ is incident with u_{1} or u_{2}. By symmetry, we may assume that a pendant path P_{1} of (G, Σ) is incident with u_{1}. Then Q_{1} has length ≥ 1. Then P_{1} is the only pendant path incident with u_{1}, for otherwise $G-V\left(P_{1}\right)$ consists of at least two component, one of which contains a cycle. If Q_{2} has length ≥ 1, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{2}$-minor. Hence, Q_{2} has length 0 , and therefore, $H_{1}-u_{2}$ has no cycle. If a pendant path is incident with u_{2}, then, as $M(G, \Sigma) \geq M\left(G-V\left(P_{1}\right), E\left(G-V\left(P_{1}\right)\right) \cap \Sigma\right)$ and $G-V\left(P_{1}\right)$ is a tree with path cover number $\geq 3, M(G, \Sigma) \geq 3$. Hence, no pendant path is incident with u_{2}. If a pendant path is incident with an internal vertex of the path $H_{1}-\left\{u_{1}, u_{2}\right\}$, then (G, Σ) contains a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. Hence any pendant path incident with a vertex of the path $H_{1}-\left\{u_{1}, u_{2}\right\}$ is incident with an end of $H_{1}-\left\{u_{1}, u_{2}\right\}$. If an edge connects an internal vertex of $H_{1}-\left\{u_{1}, u_{2}\right\}$ with u_{2}, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)$-minor. Hence (G, Σ) is a MK-graph.

We may therefore assume that each pendant path incident with a vertex of H_{1} is incident with a vertex of C. Let P be the path obtained from C by removing all edges between v_{1} and v_{2}. If two pendant paths are incident with nonadjacent vertices on P and one is not incident with u_{1} and u_{2}, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{2}$-minor. If $u_{1}=v_{1}$ and $u_{2}=v_{2}$, and pendant paths are incident with u_{1} and u_{2}, let P_{1} be the pendant path incident with u_{1}. If $\left(G^{\prime}, \Sigma^{\prime}\right):=(G, \Sigma)-V\left(P_{1}\right)$, then $\left(G^{\prime}, \Sigma^{\prime}\right)$ is a tree with path cover number ≥ 3, and hence $M(G, \Sigma) \geq 3$. Hence, there are at most two pendant paths incident with vertices of P and these vertices are adjacent in P_{1}. Then (G, Σ) has two parallel paths.

We may therefore assume that H_{1} has no cycle. Then H_{1} is a path P connecting u_{1} and u_{2}. Suppose that there are pendant paths incident with nonadjacent vertices on P. Then the length of P is at least 2 . Suppose a pendant path is incident with u_{1}. If there is a pendant path at u_{2}, then, as $M(G, \Sigma) \geq M\left(G-V\left(P_{1}\right), E\left(G-V\left(P_{1}\right)\right) \cap \Sigma\right)$ and $G-V\left(P_{1}\right)$ is a tree with path cover number $\geq 3, M(G, \Sigma) \geq 3$. Hence, no pendant path is incident with u_{2}. If a pendant path is incident with an internal vertex of $P-\left\{u_{1}, u_{2}\right\}$, then (G, Σ) contains a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. Hence, any pendant path is incident with an end of $P-\left\{u_{1}, u_{2}\right\}$. If a pendant path is incident with the end of $P-\left\{u_{1}, u_{2}\right\}$ adjacent to u_{1} and an edge connects an internal vertex of $P-\left\{u_{1}, u_{2}\right\}$ with u_{2}, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)$-minor. Thus, (G, Σ) is a MK-graph. Hence, we may assume that no pendant
path is incident with u_{1} or u_{2}. Then (G, Σ) has a weak $K^{=}(\Delta Y)^{3}$-minor, a contradiction. Hence, we may assume at most two pendant paths are incident with vertices of P and these vertices are adjacent in P. Then (G, Σ) has two parallel paths.

For the converse, use Lemmas 13 and 17.

Lemma 19. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2connected partial wide 2-path (H, Ω) with exactly one wide separation. Then $M(G, \Sigma)=2$ if and only if (G, Σ) has two parallel paths, (G, Σ) is a SA-graph, or (G, Σ) is a MKgraph.

Proof. Let $\left[H_{1}, H_{2}\right]$ be the wide separation of (G, Σ). Suppose that $M(G, \Sigma)=2$. If H_{1} and H_{2} are connected, then, by Lemma 16, either (G, Σ) has two parallel paths or (G, Σ) is a SA-graph. Suppose next that H_{1} or H_{2} is disconnected; we may assume that H_{2} is disconnected. Let u_{1} and u_{2} be the vertices of attachment of H_{1}. If H_{1} has a path of length ≥ 2, then, by Lemma 18 , either (G, Σ) has two parallel paths or (G, Σ) is a MK-graph. We may therefore assume that either H_{1} consists of only one edge connecting u_{1} and u_{2}, or H_{1} is disconnected. In both cases, (G, Σ) has two parallel paths.

The converse follows from Lemmas 13, 15, and 17.

6.3. Partial wide 2-paths with no wide separations

In [9], Johnson et al. characterized the class of graphs G with $M(G)=2$. For signed graphs (G, Σ) such that the removal of pendant paths yields a 2 -connected partial 2path with no wide separation, the characterization when $M(G, \Sigma)=2$ is similar to their result.

Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2 connected partial 2-path (H, Ω). Suppose C_{1} and C_{2} are distinct cycles in H such that there exist 2 -separations $\left(C_{1}, H_{1}\right)$ and $\left(C_{2}, H_{2}\right)$ of H. Let P_{1} and P_{2} be vertex-disjoint paths between C_{1} and C_{2}, and let u_{1}, u_{2} be the ends of P_{1} and P_{2}, respectively, on C_{1}, and let v_{1}, v_{2} be the ends of P_{1} and P_{2}, respectively, on C_{2}. We call (G, Σ) a $S H$-graph if $l\left(P_{1}\right)=0$ and $l\left(P_{2}\right) \leq 1$, and

1. if $l\left(P_{1}\right)=0$ (so $u_{1}=v_{1}$) and $l\left(P_{2}\right)=1$, then

- there is a single pendant path incident with each end of the paths P_{1} and P_{2};
- if the path $C_{1}-u_{1} u_{2}$ has length 2 , then at most one pendant path is incident with the internal vertex of $C_{1}-u_{1} u_{2}$, and if the path $C_{1}-u_{1} u_{2}$ has length ≥ 3, then no pendant path is incident with a vertex of $C_{1}-\left\{u_{1}, u_{2}\right\}$;
- if the path $C_{2}-v_{1} v_{2}$ has length 2 , then at most one pendant path is incident with the internal vertex of $C_{2}-v_{1} v_{2}$, and if the path $C_{2}-v_{1} v_{2}$ has length ≥ 3, then no pendant path is incident with a vertex of $C_{2}-\left\{v_{1}, v_{2}\right\}$;

2. if $l\left(P_{1}\right)=l\left(P_{2}\right)=0$, then

- there is a single pendant path incident with each end of the paths P_{1} and P_{2};
- the path $C_{1}-u_{1} u_{2}$ has length 3 , and single pendant paths are incident with the internal vertices of $C_{1}-u_{1} u_{2}$;
- if the path $C_{2}-v_{1} v_{2}$ has length 2 , then at most one pendant path is incident with the internal vertex of $C_{2}-v_{1} v_{2}$, and if the path $C_{2}-v_{1} v_{2}$ has length ≥ 3, then no pendant path is incident with a vertex of $C_{2}-\left\{v_{1}, v_{2}\right\}$.

Lemma 20. If (G, Σ) is a SH-graph, then $M(G, \Sigma)=2$.
Proof. Let P be the pendant path incident with u_{1}. Let $\left(G^{\prime}, \Sigma^{\prime}\right):=(G, \Sigma)-V(P)$ and let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=(G, \Sigma)-V\left(P-u_{1}\right)$. By Lemma $4, M(G, \Sigma)=\max \left\{M\left(G^{\prime}, \Sigma^{\prime}\right), M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)\right\}$. Since $\left(G^{\prime}, \Sigma^{\prime}\right)$ is a tree with path cover number $2, M\left(G^{\prime}, \Sigma^{\prime}\right)=2$, and since ($G^{\prime \prime}, \Sigma^{\prime \prime}$) has two parallel paths, $M\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \leq 2$. Thus, $M(G, \Sigma)=2$.

We call the signed graph obtained from a signed 5 -cycle by attaching pendant paths to each of its vertices a SF-graph.

The following lemma can be proved in the same way as Lemma 20.
Lemma 21. If (G, Σ) is a SF-graph, then $M(G, \Sigma)=2$.
Lemma 22. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2connected partial 2-path (H, Ω). Suppose (H, Ω) has no wide separation. Then $M(G, \Sigma)=$ 2 if and only if (G, Σ) has two parallel paths, (G, Σ) is a SH-graph, or (G, Σ) is a SFgraph.

Proof. Suppose $M(G, \Sigma)=2$.
We first assume that there are at least two distinct cycles in H. Let C_{1} and C_{2} be distinct cycles such that there exist 2-separations $\left(C_{1}, L_{1}\right)$ and $\left(C_{2}, L_{2}\right)$ of H. Let P_{1} and P_{2} be vertex-disjoint paths between C_{1} and C_{2}, and let u_{1}, u_{2} be the ends of P_{1} and P_{2}, respectively, on C_{1}, and let v_{1}, v_{2} be the ends of P_{1} and P_{2}, respectively, on C_{2}.

If a pendant path of G is incident with an internal vertex of P_{1} or P_{2}, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)$-minor, contradicting that $M(G, \Sigma)=2$. Hence any pendant path is incident with a vertex of C_{1} or C_{2}. If there are no pendant paths incident with nonadjacent vertices of $C_{1}-u_{1} u_{2}$, and there are no pendant paths incident with nonadjacent vertices of $C_{2}-v_{1} v_{2}$, then (G, Σ) has two parallel paths. We may therefore assume that there are pendant paths incident with nonadjacent vertices of $C_{1}-u_{1} u_{2}$, or that there are pendant paths incident with nonadjacent vertices of $C_{2}-v_{1} v_{2}$. We assume the former, and let w_{1}, w_{2} be the vertices on C_{1} to which the pendant paths R_{1}, R_{2}, respectively, are incident; we take w_{1} and w_{2} such that the distance between w_{1} and w_{2} in $C_{1}-u_{1} u_{2}$ is maximum. We may assume that w_{1} coincides with u_{1} or is between u_{1} and w_{2} on $C_{1}-u_{1} u_{2}$. If $w_{1} \neq v_{1}$ and $w_{2} \neq v_{2}$, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{2}$-minor. Therefore, $w_{1}=v_{1}$ or $w_{2}=v_{2}$; we may assume that $w_{1}=v_{1}$. Then $u_{1}=w_{1}=v_{1}$.

Exactly one pendant path is incident with u_{1}. For if at least two pendant paths, T_{1} and T_{2}, are incident with u_{1}, let $\left(G^{\prime}, \Sigma^{\prime}\right):=(G, \Sigma)-V\left(T_{1}\right)$. Then $\left(G^{\prime}, \Sigma^{\prime}\right)$ consists of
at least two components, one of which is a tree with path cover number ≥ 2, and hence $M(G, \Sigma) \geq M\left(G^{\prime}, \Sigma^{\prime}\right) \geq 3$, a contradiction.

Suppose now first that the length of P_{2} is at least one.
Suppose a pendant path Q_{2} is incident with a vertex of $C_{2}-v_{1} v_{2}$ that is nonadjacent to u_{1} in $C_{2}-v_{1} v_{2}$. If R_{2} is not incident with u_{2}, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. Hence R_{2} is incident with u_{2}. In the same way, Q_{2} is incident with v_{2}. Then the length of P_{1} is one, for otherwise (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. If $C_{1}-u_{1} u_{2}$ has length ≥ 3 and a pendant path is incident with a vertex of $C_{1}-\left\{u_{1}, u_{2}\right\}$, then (G, Σ) has either a weak $K_{3}^{=}(\Delta Y)^{3}$ - or a weak $K_{3}^{=}(\Delta Y)^{2}$-minor. In the same way, if $C_{2}-v_{1} v_{2}$ has length ≥ 3, then no pendant path is incident with a vertex of $C_{2}-\left\{v_{1}, v_{2}\right\}$. Then (G, Σ) is a Sea Horse. We may therefore assume that if a pendant path is incident with a vertex of $C_{2}-v_{1}$, then it is incident with the vertex adjacent to u_{1} in $C_{2}-v_{1} v_{2}$.

If a pendant path is incident with a vertex of $C_{1}-\left\{u_{1}, w_{2}\right\}$ that is nonadjacent to w_{2} in $C_{1}-u_{1} u_{2}$, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{2}$-minor. Hence, any pendant path incident with a vertex of $C_{1}-\left\{u_{1}, w_{2}\right\}$ is incident with a vertex adjacent to w_{2}. If a pendant path is incident with the vertex adjacent to u_{1} in $C_{2}-v_{1} v_{2}$, then (G, Σ) has two parallel paths. If no pendant path is incident with a vertex of $C_{2}-u_{1}$, then (G, Σ) has two parallel paths.

Suppose next that the path P_{2} has length 0 ; then $u_{2}=v_{2}$. If no pendant path is incident with u_{2} and a pendant path is incident with a vertex $v \neq v_{2}$ of $C_{2}-v_{1} v_{2}$ that is nonadjacent to u_{1} in $C_{2}-v_{1} v_{2}$, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor (as R_{1} and R_{2} are at distance ≥ 2 on $C_{1}-u_{1} u_{2}$). If no pendant path is incident with u_{2} and all pendant paths incident with vertices of $C_{2}-v_{1} v_{2}$ are adjacent to u_{1} in $C_{2}-v_{1} v_{2}$, then (G, Σ) has two parallel paths.

We may therefore assume that a pendant path is incident with u_{1} and a pendant path is incident with u_{2}. If a pendant path is incident with a vertex of C_{1} that is nonadjacent to u_{1} and u_{2} in $C_{1}-u_{1} u_{2}$, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. Therefore, any pendant path incident with a vertex of $C_{1}-\left\{u_{1}, u_{2}\right\}$ is adjacent to u_{1} or u_{2} in $C_{1}-u_{1} u_{2}$. In the same way, any pendant path incident with a vertex of $C_{2}-\left\{u_{1}, u_{2}\right\}$ is adjacent to u_{1} or u_{2} in $C_{2}-u_{1} u_{2}$. If Q_{1} is a pendant path incident with a vertex of $C_{1}-\left\{u_{1}, u_{2}\right\}$ that is nonadjacent to u_{1} in $C_{1}-u_{1} u_{2}$, and Q_{2} is a pendant path incident with a vertex of $C_{2}-\left\{u_{1}, u_{2}\right\}$ that is nonadjacent to u_{1} in $C_{2}-u_{1} u_{2}$, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$ minor. In the same way, there are no pendant paths Q_{1} and Q_{2} with Q_{1} incident with a vertex of $C_{1}-\left\{u_{1}, u_{2}\right\}$ that is nonadjacent to u_{2} in $C_{1}-u_{1} u_{2}$ and Q_{2} incident with a vertex of $C_{2}-\left\{u_{1}, u_{2}\right\}$ that is nonadjacent to u_{2} in $C_{2}-u_{1} u_{2}$. Hence, if there are two vertices of $C_{1}-\left\{u_{1}, u_{2}\right\}$ with pendant paths attached to them, then $C_{1}-u_{1} u_{2}$ has length three, and if in addition there is a pendant path incident with a vertex of $C_{2}-\left\{u_{1}, u_{2}\right\}$, then $C_{2}-u_{1} u_{2}$ has length two. Then (G, Σ) is a Seahorse. The case where there are two vertices of $C_{2}-\left\{u_{1}, u_{2}\right\}$ with pendant paths attached to them is similar.

We may therefore assume that at most one pendant path is incident with a vertex of $C_{1}-\left\{u_{1}, u_{2}\right\}$ and at most one pendant path is incident with a vertex of $C_{2}-\left\{u_{1}, u_{2}\right\}$. By symmetry, we may assume that if a pendant path is incident with a vertex of $C_{1}-\left\{u_{1}, u_{2}\right\}$,
then this vertex is adjacent to u_{1}. Then any pendant path incident with a vertex of $C_{2}-\left\{u_{1}, u_{2}\right\}$ that is adjacent to u_{2}. Then (G, Σ) has two parallel paths.

We may therefore assume that H contains at most one cycle. As H is 2-connected, H is a cycle with size ≥ 3. If a vertex on H has more than two pendant paths attached to it, then, by Lemma $4, M(G, \Sigma) \geq 3$. Hence, we may assume that any vertex on H has at most two pendant paths attached to it. Suppose next that there are two pendant paths attached to a vertex v. If a pendant path is incident with vertex that is not adjacent to v, then, by Lemma $4, M(G, \Sigma) \geq 3$. Hence, any pendant path is either incident with v or incident with a vertex adjacent to v. If there is a vertex adjacent to v with more than one pendant path attached, then, by Lemma $4, M(G, \Sigma) \geq 3$. Hence to any vertex adjacent to v at most one pendant path is attached. Then (G, Σ) has two parallel paths. Therefore, we may assume that at most one pendant path is incident with each vertex of H.

Let P_{1}, \ldots, P_{k} be the pendant paths attached to H, where we assume that P_{1}, \ldots, P_{k} are in this order around H. If $k \geq 6$, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. If $k=5$ and there are pendant path P_{i} and P_{i+1} (index modulo k) that are at distance ≥ 2 on H, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. If $k=5$ and there are no consecutive pendant paths at distance ≥ 2, then (G, Σ) is a SF-graph. If $k=4$ and there is a pendant path that is at distance ≥ 2 from the other pedant paths, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. If $k=4$ and for all pendant paths, there is a distinct pendant path at distance 1 , then (G, Σ) has two parallel paths. If $k=3$ and the pendant paths in each pair of pendant path are at distance ≥ 2 on H from one another, then (G, Σ) has a weak $K_{3}^{=}(\Delta Y)^{3}$-minor. If $k=3$ and two pendant paths at distance 1 on H, then (G, Σ) has two parallel paths. If $k \leq 2$, then, clearly, (G, Σ) has two parallel paths.

7. The main result

We now provide a combinatorial characterization of signed graph (G, Σ) with $M(G, \Sigma)=2$.

Theorem 23. Let (G, Σ) be a signed graph. Then $M(G, \Sigma)=2$ if and only if one of the following holds:

1. (G, Σ) has two parallel paths, but G is not a path;
2. (G, Σ) is a SH-graph;
3. (G, Σ) is a SF-graph;
4. (G, Σ) is a SA-graph;
5. (G, Σ) is a MK-graph;
6. (G, Σ) is a ST-graph; or
7. (G, Σ) is obtained from W_{4}^{o} by attached single pendant paths at some of the vertices of W_{4}^{o}.

Proof. The "if" statement is clear.
We now prove the "only if" statement. Suppose $M(G, \Sigma)=2$.
If G is disconnected, then G has exactly two components, for otherwise $M(G, \Sigma) \geq 3$. Furthermore, each component is a path, for otherwise $M(G, \Sigma) \geq 3$. Then (G, Σ) is a signed graph with two parallel paths.

We may therefore assume that G is connected. If G has no cycle, then G is a tree. Since $M(G, \Sigma)=M(G)$ when G is a forest, G has path cover number 2 . Then (G, Σ) is a signed graph with two parallel paths. We may therefore assume that G has a cycle. By Lemma 5, (G, Σ) can be obtained from a 2-connected signed graph (H, Ω) with $M(H, \Omega)=2$ or from an odd cycle with two edges by attaching pendant paths. Furthermore, at each vertex of H at most two pendant paths can be attached. In the latter case, (G, Σ) is a signed graph with two parallel paths. We may assume that the former case holds. By Theorem $6,(H, \Omega)$ is either a partial wide 2-path or is isomorphic to W_{4}^{o}. If (H, Ω) is isomorphic to W_{4}^{o}, then, by Lemma 7, only single pendant paths can be attached at vertices of W_{4}^{o}. We may therefore assume that (H, Ω) is a partial wide 2-path. Then the statement follows from Lemmas 14, 19, and 22.

Declaration of competing interest

None declared.

Data availability

No data was used for the research described in the article.

References

[1] M. Arav, F.S. Dahlgren, H. van der Holst, Signed graphs with stable maximum nullity at most two, Linear Algebra Appl. 620 (2021) 124-146.
[2] M. Arav, F.J. Hall, Z. Li, H. van der Holst, Two-connected signed graphs with maximum nullity at most two, Linear Algebra Appl. 611 (2021) 82-93.
[3] M. Arav, F.J. Hall, Z. Li, H. van der Holst, The inertia set of a signed graph, Linear Algebra Appl. 439 (5) (2013) 1506-1529.
[4] M. Arav, H. van der Holst, J. Sinkovic, On the inertia set of a signed tree with loops, Linear Algebra Appl. 510 (2016) 361-372.
[5] F. Barioli, S. Fallat, L. Hogben, A variant on the graph parameters of Colin de Verdière: implications to the minimum rank of graphs, Electron. J. Linear Algebra 13 (2005) 387-404.
[6] R. Diestel, Graph Theory, second edition, Springer-Verlag, New York, 2000.
[7] S.M. Fallat, L. Hogben, Minimum rank, maximum nullity, and zero forcing numbers of graphs, in: L. Hogben (Ed.), Handbook of Linear Algebra, 2nd edition, CRC Press, Boca Raton, FL, 2014.
[8] M. Fiedler, A characterization of tridiagonal matrices, Linear Algebra Appl. 2 (1969) 191-197.
[9] C.R. Johnson, R. Loewy, P.A. Smith, The graphs for which the maximum multiplicity of an eigenvalue is two, Linear Multilinear Algebra 57 (7) (2009) 713-736.
[10] J. Sinkovic, Maximum nullity of outerplanar graphs and the path cover number, Linear Algebra Appl. 432 (8) (2010) 2052-2060.
[11] T. Zaslavsky, Signed graphs, Discrete Appl. Math. 4 (1) (1982) 47-74.

[^0]: * Corresponding author.

 E-mail address: hvanderholst@gsu.edu (H. van der Holst).

