
Local roadmap adaptation for mobile
manipulators in incrementally
changing environments

E.J. Heerkens

M
as

te
r o

f S
ci

en
ce

 T
he

si
s

Local roadmap adaptation for
mobile manipulators in
incrementally changing

environments
by

E.J. Heerkens

to obtain the degree of Master of Science in Mechanical Engineering
at the Delft University of Technology,

to be defended on July 21, 2021 at 1:00 PM.

Student number: 4375610
Project duration: September 1, 2020 – July 21, 2021
Thesis committee: Dr. J. Alonso-Mora, TU Delft, supervisor

M. Spahn, TU Delft, daily supervisor
Dr.Ing. S. Grammatico, TU Delft
Prof.Dr.Ir. M. Wisse, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Supplementary data available, doi: 10.4121/14912766.v1

http://repository.tudelft.nl/
http://doi.org/10.4121/14912766.v1

Abstract

Mobile manipulators will be deployed in supermarkets for a large variety of tasks, for instance, for restocking
products. The operation time of mobile manipulators can be reduced by generating coupled trajectories for
the base and the robot’s arm. When planning for high Degree of Freedom (DOF) robots, such as a mobile
manipulator, in an obstacle-cluttered environment, the graph construction for sampling-based planners is
time-consuming. If changes in the environment occur, most sampling-based algorithms reconstruct the en-
tire graph. In some dynamic environments, planning can be simplified by the assumption of an incrementally
changing environment; this is a mostly static environment where slight changes occur that do not violate the
connectivity of the free configuration space, indicating that a significant part of the graph remains valid.

The main contribution of this thesis is a new motion planning algorithm: the adaptive roadmap algorithm
(ARM). ARM is a multi-query sampling-based motion planning algorithm that can locally adapt vertices and
edges of the graph to account for incremental changes in the environment to allow faster planning than algo-
rithms that reconstruct the entire graph. ARM generates a 3D grid to represent the workspace. The grid cells
are marked as occupied or free based on the presence of obstacles in the environment. To determine what
vertices and edges of the roadmap need to be updated due to a change in the occupancy of the 3D grid by an
incremental change, ARM assigns the vertices and edges to the 3D grid cells. ARM performs this assignment
based on the workspace representations of the vertices and edges of the roadmap by 3D bounding boxes sur-
rounding robot configurations. If the occupancy of one or multiple grid cells is changed due to an obstacle,
the algorithm resamples the vertices associated with the occupied grid cells and removes the edges associ-
ated with the occupied grid cells. Then, the updated roadmap is used for motion planning, and if additional
changes occur, this roadmap update is repeated.

We carried out different experiments in simulation performing coupled motion planning for mobile ma-
nipulators. A simplified implementation of ARM, which enables the implementation in the Robot Operating
System, reported a 35−40% speedup of the planning time compared to the single-query algorithm rapidly-
exploring random tree, which reconstructs the entire graph for every new query or change in the environ-
ment. The speedup the simplified implementation gained compared to existing planners will be magnified
for the non-simplified ARM as the roadmap adaptation by ARM is 10% faster than by the simplified ARM.
Further experiments demonstrated that the algorithm successfully adapted the roadmap for a real-world sys-
tem, not merely in simulation. We conclude that local roadmap adaptation by our proposed algorithm allows
faster planning than algorithms that reconstruct the entire graph for mobile manipulators in incrementally
changing environments.

iii

Nomenclature

Abbreviations

ARM Adaptive roadmap algorithm

DOF Degrees of freedom

ER Elastic roadmap algorithm

EXOTica Extensible Optimization Toolset

OMPL Open Motion Planning Library

PRM Probabilistic roadmap

PRM (MQ) Probabilistic roadmap, conventional multi-query implementation

PRM (SQ) Probabilistic roadmap, single-query implementation that clears the roadmap after every query

ROS Robot Operating System

RRT Rapidly-exploring random tree

sARM Simplified adaptive roadmap algorithm

Symbols

(nx ,ny ,nz) Index of a 3D grid cell of ARM/sARM, where nx , ny , nz are the indices in the x−, y− and
z−dimension in the grid.

∆q Interpolation resolution for collision checking of edges

∆qe Interpolation resolution for assigning edges to grid cells in ARM

δk Size of the 3D grid cells of ARM/sARM, where k denotes the dimension in W : k ∈ {x, y, z}

RN Euclidean space

SN N-sphere

q Robot configuration

qgoal Desired configuration

qinv Invalid configuration representing a vertex invalidated due to an incremental change

qnew Configuration replacing qinv in the roadmap adaptation by ARM

qstart Initial configuration

CO Occupied configuration space

C Configuration space

Cfree Free configuration space

Csub Subset of the configuration space close by the vertex invalidated due to an incremental change,
in which random samples are drawn to find a replacing vertex in ARM/sARM

O Obstacle

v

vi Nomenclature

W Workspace

σ Path

bbq 3D bounding box representing a robot configuration in W

bbmaxk Maximum boundary of bbq for every dimension k ∈ {x, y, z}

bbmink Minimum boundary of bbq for every dimension k ∈ {x, y, z}

E Set of edges

eL Edge length

eLval Longest valid segment of an edge

G(V ,E) Graph that consists of a set of vertices V and edges E

I Ee Set of 3D grid cell indices associated with an edge e determined based on the interpolation by
∆qe in ARM

IO Set of occupied grid indices of ARM/sARM

IQq Set of 3D grid cell indices associated with the bounding box representing q in ARM

M Mapping from 3D grid cells to associated vertices and edges

R(V ,E) Roadmap, which is a multi-query graph, that consists of a set of vertices V and edges E

Ra(V ,E) Roadmap adapted by ARM/sARM that consists of a set of vertices V and edges E

V Set of vertices

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Coupled motion planning for a mobile manipulator . 1
1.1.2 Motion planning for high-DOF robots . 1
1.1.3 Incrementally changing environment . 2

1.2 Research question . 3
1.3 Contribution . 3
1.4 Requirements . 3
1.5 Thesis structure . 4

2 Preliminaries 5
2.1 Motion planning problem. 5

2.1.1 Configuration space . 5
2.1.2 Obstacle representation . 5
2.1.3 Path . 6
2.1.4 Planning with differential constraints . 6

2.2 Motion planning properties. 6
2.3 Graph theory . 7

2.3.1 Graph . 7
2.3.2 Connectivity . 8

2.4 Sampling-based motion planning. 8
2.4.1 Description . 8
2.4.2 Metrics. 8
2.4.3 Graph construction . 9
2.4.4 Finding a path . 10

2.5 Rapidly-exploring random tree . 10
2.6 Probabilistic roadmap . 11

3 Related Work 13
3.1 Roadmap adaptation based on edge adaptation . 13
3.2 Roadmap adaptation based on vertex adaptation . 14
3.3 Discussion . 18

4 Methods 21
4.1 Requirements on the completeness, optimality and anytime 21
4.2 Self-adjusting roadmap algorithm . 21

4.2.1 3D workspace . 21
4.2.2 High-DOF robot . 21
4.2.3 Invalid edges . 22

4.3 Method overview . 22
4.4 Method description . 22

4.4.1 3D grid generation . 22
4.4.2 Assignment of vertices and edges to cells . 22
4.4.3 Roadmap adaptation. 25

vii

viii Contents

4.5 Parameters . 28
4.5.1 Initial roadmap . 28
4.5.2 3D grid cell size . 28
4.5.3 Nearest neighbours . 28
4.5.4 Safety margin bounding box . 28
4.5.5 Resampling area . 28

4.6 Discussion . 29

5 Experiments & Results 31
5.1 Implementation ARM within the Robot Operating System . 31

5.1.1 Open Motion Planning Library. 31
5.1.2 Extensible Optimization Toolset . 31
5.1.3 Limitations implementation using OMPL and EXOTica 32
5.1.4 Simplified adaptive roadmap algorithm . 33
5.1.5 Technical details on the implementation. 34
5.1.6 Discussion . 35

5.2 Planning scenarios . 35
5.2.1 Planners . 35
5.2.2 Robots . 36
5.2.3 Initial environment . 36
5.2.4 Incremental changes. 37
5.2.5 Collision checking . 37
5.2.6 Queries . 38

5.3 Experiment 1: Effect of robot DOFs on the planning time . 39
5.3.1 Setup. 39
5.3.2 Results . 39
5.3.3 Discussion . 39
5.3.4 Conclusion. 41

5.4 Experiment 2: Comparison of the time spent on roadmap adaptation by ARM and sARM 41
5.4.1 Setup. 41
5.4.2 Results . 41
5.4.3 Discussion . 42
5.4.4 Conclusion. 43

5.5 Experiment 3: Effect of the resampling area on the adaptation time of sARM 43
5.5.1 Setup. 43
5.5.2 Results . 43
5.5.3 Discussion . 43
5.5.4 Conclusion. 44

5.6 Experiment 4: Effect of the grid cell size on the planning time of sARM 44
5.6.1 Setup. 44
5.6.2 Results . 44
5.6.3 Discussion . 44
5.6.4 Conclusion. 45

5.7 Experiment 5: Disconnected roadmap due to adaptations by sARM 45
5.7.1 Setup. 45
5.7.2 Results . 46
5.7.3 Discussion . 46
5.7.4 Conclusion. 47

5.8 Experiment 6: Benchmark sARM to state-of-the-art planners 47
5.8.1 Setup. 47
5.8.2 Results . 47
5.8.3 Discussion . 48
5.8.4 Conclusion. 49

Contents ix

5.9 Experiment 7: Effect of increasing the area affected by incremental changes on the speedup of
sARM . 49
5.9.1 Setup. 49
5.9.2 Results . 50
5.9.3 Discussion . 51
5.9.4 Conclusion. 51

5.10 Experiment 8: Real-world implementation of sARM . 51
5.10.1 Setup. 51
5.10.2 Results . 52
5.10.3 Discussion . 52
5.10.4 Conclusion. 52

6 Conclusion & Future Work 55
6.1 Conclusion . 55
6.2 Future work . 56

6.2.1 Implementation of non-simplified ARM as planner . 56
6.2.2 Benchmarking to more sophisticated algorithms . 57
6.2.3 Roadmap enhancement . 57
6.2.4 3D grid improvement . 57
6.2.5 Less conservative workspace representation of configurations. 57
6.2.6 Biased resampling . 58

Bibliography 61

A Parameter selection OMPL planners 65
A.1 Range parameter RRT . 65

A.1.1 Experiment setup . 65
A.1.2 Results . 65
A.1.3 Discussion . 66
A.1.4 Conclusion. 66

A.2 Nearest neighbour parameter PRM . 66
A.2.1 Experiment setup . 66
A.2.2 Results . 66
A.2.3 Discussion . 66
A.2.4 Conclusion. 67

List of Figures

1.1 Mobile manipulator robot . 2
1.2 Graph in 2D configuration space . 2

2.1 Workspace and configuration space of a 2-DOF manipulator . 6
2.2 Dubins and Reeds-Shepp path segments . 7
2.3 Graph connectivity . 8
2.4 Graph in 2D configuration space with indicated components . 9
2.5 Rapidly-exploring random tree algorithm . 10
2.6 Probabilistic roadmap (PRM) algorithm . 11

3.1 Reactive deforming roadmaps algorithm (RDR) . 14
3.2 Replanning with path deformation algorithm . 14
3.3 Workspace connectivity graph incremental elastic roadmap algorithm 16
3.4 Adaptation algorithm . 16
3.5 Self-adjusting roadmaps algorithm . 17
3.6 Incremental adaptive randomized roadmaps algorithm . 17

4.1 Overview adaptive roadmap algorithm . 23
4.2 Environment and roadmap representation by the adaptive roadmap algorithm 24
4.3 Assignment of vertices to grid cells by the adaptive roadmap algorithm 24
4.4 Assignment of edges to grid cells by the adaptive roadmap algorithm 25
4.5 Mapping from grid cells to associated vertices and edges by the adaptive roadmap algorithm . . 25
4.6 Roadmap adaptation by the adaptive roadmap algorithm . 27

5.1 Structure of a planning problem in the Extensible Optimization Toolset with a planner imple-
mented from the Open Motion Planning Library . 32

5.2 Overview simplified adaptive roadmap algorithm . 33
5.3 Properties of the 10-DOF mobile manipulator used in the experiments 36
5.4 Experiment environments . 37
5.5 Sphere-based collision checking . 38
5.6 Results Experiment 1: effect of the robot DOFs on the planning time 40
5.7 Incremental changes for the experiments . 42
5.8 Queries for the experiments . 42
5.9 Results Experiment 5: the disconnected roadmap due to adaptations 46
5.10 Results Experiment 6: benchmarking of the simplified adaptive roadmap algorithm to state-of-

the-art algorithms . 48
5.11 Results Experiment 7: effect of increasing the area affected by incremental changes 50
5.12 Results Experiment 8: implementation of the simplified adaptive roadmap algorithm on the

real system . 53

xi

List of Tables

3.1 Related work on algorithms that locally adapt a roadmap . 19

5.1 Specification of the spheres for the sphere-based collision checking in Experiment 1 39
5.2 Results Experiment 1: effect of the robot DOFs on the planning time 40
5.3 Results Experiment 2: comparison of the time spent on roadmap adaptation by the adaptive

roadmap algorithm and the simplified adaptive roadmap algorithm 42
5.4 Results Experiment 3: effect of the resampling area on the performance of the simplified adap-

tive roadmap algorithm . 44
5.5 Results Experiment 4: effect of the grid cell size on the planning time for the simplified adaptive

roadmap algorithm . 45
5.6 Results Experiment 5: failure rate caused by the disconnected roadmap due to adaptations . . . 46
5.7 Results Experiment 6: benchmarking of the simplified adaptive roadmap algorithm to state-of-

the-art algorithms . 48
5.8 Results Experiment 7: effect of increasing the area affected by incremental changes 50
5.9 Experiment setups for Experiments 1-8 . 54

A.1 Results of the range parameter selection selection for the rapidly-exploring random tree algo-
rithm in the Open Motion Planning Library . 65

A.2 Results of the number of nearest neighbours parameter selection selection for the probabilistic
roadmap algorithm in the Open Motion Planning Library . 67

xiii

1
Introduction

Robots are deployed for improving productivity in industrial applications by performing repetitive tasks. For
retail stores, robots can reduce the workload of store employees, for example, by stocking shelves. The AI for
Retail (AIR) Lab Delft [1] researches the use of robotics in stores and warehouse environments. The robot
used for in-store proceedings is a mobile manipulator (see Figure 1.1), which consists of a moving platform
with a robotic arm on top. Mobile manipulators are useful for manipulating objects over large distances [27].
Clearly, such robots should operate autonomously and fast. An important part of the autonomous behaviour
of robots is navigating through the environment they operate in [32]. The planning problem is the problem
of finding a sequence of valid configurations from an initial to the desired configuration while adhering to
constraints, such as obstacles to be avoided and joint limits not to be exceeded. The planning problem is
solved by global motion planning algorithms. Local motion planning algorithms are reactive approaches,
which are used to deal with unforeseen situations, such as the appearance of obstacles, while executing the
global plan [32]. The space a robot operates in is defined as the workspace.

1.1. Motivation
1.1.1. Coupled motion planning for a mobile manipulator
A challenging feature of planning for a mobile manipulator is the large number of degrees of freedom (DOFs)
[35], in the case of the mobile manipulator in the AIRLab (Figure 1.1): 10 DOFs. In many applications, the
planning for the base and arm is decoupled to simplify planning for mobile manipulators. This results in a
sequenced motion, where locomotion and manipulation never occur at the same time [43]. However, in the
interest of improving the efficiency in supermarkets, reducing the operation time to perform tasks by retail
robots is desired.

The operation time of mobile manipulators can be reduced by generating coupled trajectories for the
base and the robot’s arm, which results in the robot behaving more human-like by moving the arm towards
the desired configuration while moving through the workspace [54, 55]. Additionally, this planning approach
increases flexibility, ensuring movement of the arm if a problem is infeasible when not considering the arm.
For instance, the robot could fold its arm to avoid an obstacle hanging from the ceiling. This flexibility enables
fulfilling more complex planning problems due to considering the robot as one instead of two separate parts.
In the interest of reducing the operation time, coupled planning for all DOFs of the mobile manipulator is
favorable over planning for the base and arm separately.

1.1.2. Motion planning for high-DOF robots
The configuration space is introduced to prevent keeping track of all points on the robot to ensure a collision-
free path [36]. In the configuration space, the robot is viewed as a point, and the obstacles are mapped to this
space. This simplifies planning for an arbitrarily shaped robot to planning for a point. A configuration is a
specification of all DOFs of the robot. The configuration space contains all possible configurations of the
robot. The dimension of the configuration space equals the number of DOFs of the robot. For algorithmic
purposes, one often discretises the configuration space, which gives rise to a graph. This graph consists of
vertices representing valid robot configurations and edges representing feasible paths (see Figure 1.2 for an
example). The graph reduces the planning problem to a discrete planning problem and is used to query for a

1

2 Introduction

solution [32]. In Chapter 2 we will introduce the configuration space and graphs more formally.

Figure 1.1: This figure presents the mobile ma-
nipulator robot from the AI for Retail (AIR) Lab
Delft [1], which consists of a moving base and
an arm on top. This robot consists of 10 de-
grees of freedom (DOF): 3 of the base and 7 of
the arm.

Figure 1.2: This figure visualises a graph in a 2D configuration space that is
used to query for a solution and thereby reduces the planning problem to a
discrete planning problem. A graph consists of vertices representing valid
robot configurations and edges representing feasible paths. The obstacles
are mapped to the configuration space.

To solve planning problems, different types of global motion planning algorithms exist. Based on the
graph construction, two types of motion planners can be distinguished: combinatorial and sampling-based
planners [32]. Combinatorial planners discretise the space without losing information because they explicitly
represent all valid and invalid configurations, resulting in correctly reporting the existence or non-existence
of a solution, which is defined as the completeness of a planner [29]. Due to the explicit representation of all
configurations, the number of vertices of the graph in the configuration space grows exponentially with every
added DOF. This implies that the planning time, which is the time it takes to find a path from an initial to a goal
configuration, increases as well. In practice, the computational cost for planning for high DOF robots, such
as a mobile manipulator, is substantial when using combinatorial planners[32]. Sampling-based planners
avoid explicit construction of all configurations and, with this, deliberately trade completeness for a shorter
planning time by sampling the configuration space [22]. When planning in a high dimensional configuration
space, the graph of sampling-based planners does not grow exponentially with every added DOF, ensuring
the planning problems can be solved within practical time bounds [21]. Therefore, sampling-based planners
are often more practical than combinatorial planners when planning for high-DOF robots such as mobile
manipulators.

Single-query algorithms construct a graph for a specific query, which is a specification of a start and goal
configuration. Multi-query algorithms allow planning for many queries in the same space by using a single
graph. A roadmap is a multi-query graph. Roadmaps need to cover the entire planning space to allow plan-
ning for different queries, resulting in more time spend on graph construction than single-query planners
[32]. When planning for a high-DOF robot in an obstacle cluttered environment, such as a supermarket, the
graph construction is time-consuming due to the excessive sampling necessary to construct a graph because
more samples are invalid than in an environment with fewer obstacles [23]. For planning problems that
require an expensive graph construction, reusing the graph is desirable. However, a common drawback of
multi-query sampling-based algorithms is that if changes in the workspace occur, the time-consuming graph
construction must be repeated. This time-consuming reconstruction makes multi-query planners unsuit-
able for dynamic environments; therefore, single-query algorithms are widely used in these environments
[48]. The robot remains stationary while a single-query algorithm generates a new graph for every query.
Resampling is the repeated sampling for graph construction by probing the configuration space for every
environmental change or new query. This resampling is time-consuming because the graph construction
requires excessive sampling as was previously explained.

1.1.3. Incrementally changing environment
To deploy a robot in a supermarket, we make assumptions about the environment to simplify the plan-
ning problem; as in a dynamic environment, there are no restrictions concerning the magnitude of changes.

1.2. Research question 3

Firstly, we assume that the free configuration space is connected, which indicates that any collision-free con-
figuration can reach another collision-free configuration [56]. For motion planning, this indicates that always
a path exists between two collision-free configurations. Then, we simplify the dynamic supermarket environ-
ment: although a supermarket is a dynamic environment, we assume a significant part of the environment
remains unchanged because static shelves occupy it. In the corridors between the shelves, obstacles such as
customers, baskets and boxes appear. We assume that these obstacles do not violate the connectivity of the
free configuration space. We call an environment that is mostly static, where slight changes occur, that do
not violate the connectivity of the free configuration space an incrementally changing environment. For a
graph generated by a sampling-based algorithm, incremental changes in the environment imply that a sig-
nificant part of the graph remains valid between two queries, indicating that a significant part of the vertices
and edges remain collision-free.

The incrementally changing environment assumption allows various algorithms proposed in earlier work
to locally adapt a multi-query graph, which prevents time-consuming resampling for an incremental change
or new query by reusing the graph [14, 24–26, 34, 41, 51, 58–60]. However, these algorithms are not suitable for
planning for mobile manipulators in supermarket environments for various reasons. Some algorithms plan
in a 2D workspace for a low-DOF robot [14, 24–26, 41], which is unsuitable for a mobile manipulator that
simultaneously plans for the base and arm. Other algorithms are computationally expensive [34, 51, 58–60],
which may cause the robot to remain stationary during the roadmap adaptation. These algorithms and their
limitations will be discussed more extensively in Chapter 3.

1.2. Research question
When performing coupled motion planning for the base and the arm of a mobile manipulator in a supermar-
ket environment, time-consuming resampling for graph reconstruction due to incremental changes must be
avoided to reduce the planning time. Algorithms proposed in earlier work locally adapt a roadmap, avoiding
graph reconstruction. However, these algorithms are not yet applicable for mobile manipulators in super-
markets. Therefore, the research question for this MSc Thesis is:

How can local roadmap adaptation allow fast planning for mobile manipulators assuming the environment
changes incrementally?

Here "fast" indicates a speedup compared to algorithms that reconstruct the graph due to a change in the
environment.

1.3. Contribution
The main contribution of this thesis is the introduction of a new motion planning algorithm: the adaptive
roadmap algorithm (ARM) that allows fast planning for mobile manipulators in incrementally changing en-
vironments by locally adapting the roadmap. ARM does not have to reconstruct its roadmap due to incre-
mental changes or a new query, which decreases the operation time compared to algorithms that reconstruct
their graph for every query or environmental change, and remain stationary while doing so. Reconstructing
the graph is time-consuming for high-DOF robots in obstacle-cluttered environments, which makes ARM
particularly convenient for coupled motion planning for mobile manipulators in obstacle-cluttered environ-
ments, such as supermarkets.

While there are some limitations, which we discuss in Chapter 6, our algorithm achieves fast planning for
mobile manipulators in incrementally changing environments.

1.4. Requirements
We set requirements for an algorithm that locally adapts the roadmap in the context of mobile manipulators
in incrementally changing environments. The algorithm must:

R1 reuse its roadmap for multiple queries.

• Reusing the roadmap prevents the time-consuming reconstruction the roadmap.

R2 locally adapt the roadmap to changes; these changes can be due to appearing or disappearing obsta-
cles.

4 Introduction

• Locally adapting the roadmap to changes ensures all vertices and edges remain valid. We addi-
tionally aim to deal with disappearing obstacles to prevent parts of the environment where once
an obstacle was present from becoming inaccessible.

R3 be applicable for a high-DOF robot (high dimensional configuration space).

• Being applicable for high-DOF robots enables planning for a mobile manipulator.

R4 be applicable in a 3D workspace.

• Being applicable in a 3D workspace prevents collision of the entire mobile manipulator, including
the protruding arm, with obstacles.

R5 adapt the roadmap faster than replanning.

• Adapting the roadmap fast ensures retaining the advantage of reusing the roadmap over recon-
structing a graph for every query or change in the environment.

1.5. Thesis structure
This thesis starts with some preliminaries in Chapter 2. Then, we present related work proposing algorithms
that locally adapt a roadmap in Chapter 3, followed by the methods describing our proposed algorithm in
Chapter 4. Then, we describe experiments and present the results in Chapter 5. Finally, we discuss conclu-
sions and proposals for future work in Chapter 6.

2
Preliminaries

This chapter describes the background and formal definitions to prepare for the further contents of this the-
sis. We discuss the motion planning problem in Section 2.1, motion planning properties in Section 2.2, graph
theory in Section 2.3, sampling-based motion planning in Section 2.4 and two widely used sampling-based
motion planners in Section 2.5 and Section 2.6. Readers familiar with these topics may skip this chapter.

2.1. Motion planning problem
The motion planning problem is defined as finding a sequence of valid configurations from an initial to the
desired configuration while adhering to some set of constraints, such as avoiding obstacles and not exceeding
joint limits [32]. A configuration q is a specification of all degrees of freedom (DOFs) of the robot. We denote
the initial configuration by qstart and the desired configuration by qgoal. We formulate the environment by:

• The robot is moving in the workspace W , which is a Euclidean space RN (with N = 2,3).

• The obstacles represented by rigid objects in W are denoted by Oi , or equivalently WOi , for i =
1, ...,no , where no is the number of obstacles.

Then, we formulate the motion planning problem as: given qstart and qgoal, generate a path σ, which consists
of a continuous sequence of robot configurations from qstart to qgoal while adhering to the constraints. We
want to keep track of when the robot avoids obstacles. For this purpose, we introduce the configuration
space.

2.1.1. Configuration space
The configuration space is introduced to prevent keeping track of all points on the robot to ensure a collision-
free path [36]. This space allows a more formal definition of the motion planning problem. In C we view the
robot as a point and map the obstacles to this space to simplify planning for an arbitrarily shaped robot to
planning for a point. All possible configurations of the robot are in C, leading to the addition of a dimension
to C for every DOF of the robot. We model C as the Cartesian product of all DOFs

C = C1 × ...×CNDOF s (2.1)

with NDOF s the number of DOFs of the robot. We describe the DOFs by bounded intervals on R, and circles
on S. We present an example of a 2-DOF manipulator, with a 2D C represented by the parameters: θ1 and
θ2 (see Figure 2.1a), which are angular coordinates described by S, assuming the joints have no limits. If the
joints would have had limits, we describe the angles by a segment of the circle, which is a finite interval and
would have been described by R [32]. We determine C of this robot as the Cartesian productS×S. The DOFs
can be numerically presented in R2 by [0,2π)× [0,2π) (see Figure 2.1b).

2.1.2. Obstacle representation
We map the obstacles to C to describe in-collision configurations. Assume that we represent the robot by a
rigid object, A⊂W , we can find the in-collision configurations by:

COi = {q ∈ C|A(q)∩Oi 6= ;} (2.2)

5

6 Preliminaries

(a) (b)

Figure 2.1: These figures illustrate (a) the workspace W and (b) the numerical representation of the configuration space C of a manipu-
lator with 2 degrees of freedom (DOFs) described by two angles θ1 and θ2 which are assumed to have no limits.

where A(q) denotes the subset of W occupied by a robot configuration q. If the robot consists of m bodies,
we find COi in Equation (2.2) for {A1,A2, ...,Am}. The configuration space obstacle region is the union of
COi :

CO =
no⋃

i=1
COi . (2.3)

The free configuration space can be determined from C and CO:

Cfree = C\CO. (2.4)

2.1.3. Path
We can now define the motion planning problem as finding a path from a start configuration qstart to a goal
configuration qgoal in Cfree. A valid solution to the motion planning problem is the continuous function σ

mapping path parameter τ, usually in [0,1], to a curve in Cfree, that is, a continuous map

σ : [0,1] → Cfree (2.5)

with:

σ(0) = qstart, σ(1) = qgoal and σ(τ) ∈ Cfree ∀τ ∈ [0,1].

2.1.4. Planning with differential constraints
Besides the geometrical constraints induced by the obstacles and the joint limits, there may be additional
constraints on the motion, such as differential constraints, which restrict the robot’s motion based on the
time derivative of the robot configurations. If the robot configuration depends on the path taken to reach it,
the differential constraints are nonintegrable. These constraints are also called nonholonomic constraints.

Considering the wheels underneath the robot is an example of a nonholonomic constraint. The structure
of the wheels prevents the robot from instantaneously moving sideways and rotating in place. This gives rise
to a nonholonomic constraint characterised by the minimum turning radius of a robot. To adhere to this
constraint in motion planning, we introduce Dubins curves [12] and Reeds-Shepp curves [44] to describe a
path segment in the x-y plane by composing it into a sequence of motions, as describing them by straight
lines is impossible. For Dubins curves, these motions consist of: straight, right turn, and left turn. For Reeds-
Shepp curves, these motions are additionally available in reverse. A straight line describes a straight motion
and an arc of a circle of the minimum turning radius describes the turns (see Figure 2.2). Dubins curves
consist of three path segments and Reeds-Shepp curves of three to five path segments.

2.2. Motion planning properties
Several properties to describe motion planning algorithms are defined in literature:

• The guarantee of correctly reporting the existence or non-existence of a solution is defined as complete-
ness. An algorithm is incomplete if no solution may be found, even if one does exists [29]. Additionally,
if C is represented by a grid, an algorithm is resolution complete if a valid path is found, if one exists,

2.3. Graph theory 7

Figure 2.2: This figure illustrates Dubins and Reeds-Shepp segments used for describing path segments of robots with differential con-
straints induced by wheels underneath a robot. These segments consist of right turns (R), left turns (L) and straight lines (S). The turns
are arcs of a circle with the minimum turning radius (rmin). For Reeds-Shepp curves these motions are additionally available in reverse.

at a certain level of resolution of the grid. A motion planning algorithm is probabilistic complete if the
probability that the algorithm finds a solution goes to one as the running time goes to infinity; however,
it does not return that no solution exists if this is the case [30].

• The optimality is defined as finding an optimal path for a given cost function in finite time. An algo-
rithm is asymptotically optimal if it returns a sequence of solutions converging to an optimal solution
[7]. An algorithm is non-optimal if no guarantees exist that the solution is optimal.

• Anytime is defined as providing a solution when the algorithm is terminated before it ends. However,
the longer the algorithm is running, the better the solution quality [11].

• The time it takes to find a path from an initial to a goal configuration is the planning time of an algo-
rithm.

• The number of operations required to solve a computational problem is defined as the complexity. The
complexity is described by the resources required, such as time and storage. Usually, one studies the
worst-case time complexity because proving lower bounds is much more difficult. The upper bound
on the amount of time or storage required to solve a problem by an algorithm is described by the big O
notation [52].

2.3. Graph theory
Graph theory is the basis for sampling-based motion planning algorithms that are widely used to solve mo-
tion planning problems. Graph theory is the study of graphs in mathematics used to model relations between
objects. In this section, we introduce essential concepts of graph theory.

2.3.1. Graph
A graph (G = (V ,E)) is a set of of vertices (V) and edges (E), where each edge is a connection between vertices
(see Figure 2.3a). The set of vertices is:

V = {
v1, v2, ..., vnv

}
,

where nv is the number of vertices of the graph. The set of edges is:

E ⊆ {(
vi , v j

)∣∣vi , v j ∈V & vi 6= v j
}

with vertices vi and v j the source and target vertex of the edge (vi , v j), respectively.

8 Preliminaries

B
A

C D

G
E

H
I

J

F

(a)

B
A

C D

G
E

H
I

J

F

(b)

Figure 2.3: These figures illustrate (a) a connected graph consisting of vertices (A-J) and edges, which are the connections between the
vertices and (b) a graph that consists of two connected components that contain a subset of the vertices.

2.3.2. Connectivity
A graph is connected if a path exists between any pair of vertices in the graph (Figure 2.3a). Connected com-
ponents are subsets of vertices, Vc ⊆V , for c ∈ {1, ...,nc }, with nc the number of connected components, which
comprise at maximum of all vertices in V (see Figure 2.3b). If a graph consists of more than one connected
component, the graph is disconnected. Two vertices are connected if a path, a sequence of vertices connected
by edges, exists between them. Vertices in the same connected component are connected.

2.4. Sampling-based motion planning
Sampling-based algorithms are widely used to solve motion planning problems. In this section, we introduce
the essential concepts.

2.4.1. Description
Sampling-based algorithms avoid explicit construction of CO by sampling to probe C [33]. A collision check-
ing module facilitates the probing, which returns whether a sample is valid or not. By avoiding the exact rep-
resentation of C, sampling-based planners reduce the time complexity of solving planning problems. How-
ever, this is generally done at the cost of completeness, resulting in sampling-based planners being proba-
bilistic complete at best. Sampling-based planners capture the connectivity of Cfree by sampling to construct
a graph. For sampling-based motion planning, the vertices are collision-free robot configurations: V ⊆ Cfree.
There will only be an edge if there exists a path in Cfree between two vertices.

Figure 2.4 shows a simple graph in a 2D C (C = R2). Note that in this figure, the obstacles are visualised;
however, a sampling-based algorithm is not aware of these because it does not explicitly reconstruct CO.
A collision checking module returns whether a vertex or edge is valid, which ensures the graph is in Cfree.
When qstart and qgoal are in the same connected component, we can extract a path. Different sampling-based
algorithms implement different approaches for constructing the graph and finding a path. We describe the
most commonly used methods in this section.

2.4.2. Metrics
Sampling-based algorithms require a function for measuring the distance between two points in C. To de-
termine metrics for C, we introduce the notion of a metric space (X ,ρ), which is a topological space X with
a distance function ρ : X × X → R. We denote the distance by ρ(a,b), where a,b ∈ X . A metric for DOFs
described in RN is the Lp metric:

ρp (x, x ′) =
(N∑

i=1

∣∣xi −x ′
i

∣∣p
) 1

p ∀p ≥ 1. (2.6)

The most common case is L2, which is known as the Euclidean distance in RN . The distance for DOFs de-
scribed in S is better described by the distance along the circle, as we define ρ(x, x ′) for x, x ′ ∈ [0,2π] by:

ρ(x, x ′) = mi n
{∣∣x −x ′∣∣,2π− ∣∣x −x ′∣∣}. (2.7)

2.4. Sampling-based motion planning 9

Figure 2.4: This figure illustrates a graph G(V ,E) in a 2D configuration space (C =R2), constructed by a sampling-based motion planner.
A vertex is a collision-free possible configuration of the robot, in this example described by the degrees of freedom (DOFs) x1 and x2,
and an edge is a connection between two vertices, in this example between vi and v j . Note that a sampling-based motion planner is not
aware of the obstacles as they are illustrated because it does not explicitly reconstruct them.

Nonholonomic robots need a more complicated metric for their base coordinates than L2, because two
points can not be connected by a straight line. The path is described by Dubins or Reeds-Shepp curves. For
these robots, the metrics of Equation (2.6) and Equation (2.7) are combined to find the length of a Dubins or
Reeds-Shepp curve for the base trajectory.

2.4.3. Graph construction
The graph construction consists of generating vertices, edges and performing collision checks to check whether
the attempted vertices and edges are in Cfree.

• Generating vertices that comprise the graph is performed by sampling in C. The performance of the
planning algorithm is dependent on the order of the sampling since the graph construction is often
terminated early [32]. Denseness means that the vertices come close to any configuration in C. A set of
vertices (V) of the same topological space as C is dense in C if the closure, which consists of all points
including the limit points of a set, of V is equal to C. Achieving denseness is impossible if C is infinite.
Randomly sampling a uniform sequence in C yields a probably dense set V , which means that the
probability that V is dense approaches one as more samples are generated [32]. Suppose C = [0,1] and
k samples are independently at random drawn from C, the probability that none of the samples falls
into the interval, I ⊂ [0,1], of length e is (1− e)k , which converges to zero if k goes to infinity. In other
words: for any nonzero-length interval in C, the probability that it contains no samples converges to
zero as k goes to infinity. If k is not very large, no guarantee of coverage of C by vertices exists. If C is
given by X1 × X2 and the uniform random samples x1 and x2 are drawn from X1 and X2, respectively,
the sample (x1, x2) is a uniform random sample of C. The generated sample is added to the graph as a
vertex if the collision checking module returns it is in Cfree.

• Generating edges that connect vertices is necessary to enable the robot to move from one vertex to
another. The most common approach for determining what vertices to attempt to connect to is the
k-Nearest Neighbour method, which attempts to connect to the k nearest neighbours. Here, k is a
predetermined value. The nearest neighbours are determined using the metrics corresponding to the
shapes (R orS) of the dimensions of C [32] (Section 2.4.2). The edge is added to the graph if the collision
checking module returns it is in Cfree.

• Collision checking is considered to be a black box by the motion planning algorithm, which ensures
independence of geometrical models of the robot and environment. The input of the collision checking
module is a configuration, q, in C. To check whether an edge is collision-free, we define an edge as
a path segment, e : [0,1] → C, and find whether e([0,1]) ⊂ Cfree. The most common approach is to
interpolate the interval [0,1] of the edge. The corresponding collision checking module is called for the
interpolated configurations [32]. The interpolation resolution, ∆q is related to the edge length eL :

eL = e(1)−e(0) (2.8)

10 Preliminaries

and the longest valid segment of an edge eLval :

eLval =∆q ·eL . (2.9)

Commonly, a fixed ∆q in C is determined [32], which has to be small enough to prevent missing ob-
stacles. However, it should not be smaller than necessary to prevent checking a large number of con-
figurations for collision. Therefore, we must determine eLval to find a suitable value of ∆q . A recursive
binary strategy ensures the fastest collision checking [15], which starts by checking the configuration
in the middle of the edge, whereafter it recurses on the two halves. If the edge is collision-free, this
does not lead to a difference in time spend on collision checking; however, if an edge is in-collision, it
often saves time compared to checking the edge for collision from 0 to 1. The computational cost of
sampling-based motion planners is mainly driven by the time necessary for collision checking [39].

2.4.4. Finding a path
By constructing a graph, we simplify the problem to a discrete planning problem, and we can extract a path
when qstart and qgoal are in the same connected component of the graph. The path can be extracted by, for
example, performing a graph search on the constructed graph or by returning the path once these configura-
tions are connected.

Single-query algorithms plan for one specific qstart and qgoal. If a new qstart or qgoal is provided, a new
graph is constructed to obtain a feasible path [32]. A widely used single-query algorithm is rapidly-exploring
random tree (RRT), which will be more extensively introduced later in this chapter.

Multi-query algorithms plan for multiple qstart and qgoal from one single graph. If a new qstart or qgoal

are provided, the same vertices and edges are used to find a new path [21]. These vertices and edges form a
roadmap. Because the roadmap is not specific for a certain query, it must capture the connectivity of Cfree

to ensure that the algorithm can answer future queries. A widely used multi-query algorithm is probabilistic
roadmap (PRM), which will be more extensively introduced later in this chapter.

2.5. Rapidly-exploring random tree
A widely used single-query algorithm is rapidly-exploring random tree (RRT) [31], to which literature pro-
posed various extensions. RRT builds a collision-free tree by incrementally sampling in C from qstart, without
having to set the number of samples a priori. As each sample is drawn, it is attempted to connect this to the
nearest vertex in the existing tree. If this is successful, the sample is included in the graph as a vertex. If a ver-
tex is within a predefined distance to qgoal, the path is found, and the algorithm is terminated. The algorithm
queries for a solution by going back in the tree to the parent of the vertex from qgoal to qstart. RRT allows spec-
ification of a bias towards specific areas, such as the goal area. The goal bias is quantified by the probability
that qgoal instead of a random sample is selected during tree expansion. Figure 2.5 presents a visualisation of
RRT in a simple environment containing two obstacles.

(a) (b) (c) (d)

Figure 2.5: These figures present an illustration of the sampling-based rapidly-exploring random tree (RRT) algorithm finding a path in
an environment containing two obstacles. (a) A tree is grown from the start (qstart) to the goal configuration (qgoal), by sampling in the
configuration space C and connected as a new vertex to the tree if it is collision-free, (b) if sample is generated that is not collision-free
connectable to the nearest neighbour in the tree, the sample and edge are not added, (c) shows the exploring of the free space and (d)
the planner terminates when a sample is close to qgoal, the path is returned (blue).

We present the graph construction of the RRT algorithm in Algorithm 1. Firstly, empty lists are created for
the vertices (V) and edges (E) of the graph, and it is determined what the maximum number of expansions

2.6. Probabilistic roadmap 11

the algorithm will perform (n) is. Then, as long as the number of expansions is less than n, new configura-
tions, q, are randomly generated in C (line 4), and if a valid connection can be made to the closest neighbour
in V (line 5-6), it is stored as a vertex in V (line 7) and the connection is stored in E (line 8). This is repeated
until the number of expansions is equal to n or if qgoal is reached. The output of this algorithm is the con-
structed graph G(V ,E). The graph construction can be terminated early, before the number of expansions
reaches n, dependent on the implementation of the algorithm, for example, if the path is found.

Algorithm 1 RRT graph construction algorithm [8]

Input: n: maximum number of expansions
Output: G(V ,E): Graph
1: V ← qstart

2: E ←;
3: for i < n do
4: q ← a random configuration in C
5: q′ ← closest neighbour to q in V
6: if f (q,q′) ∈ Cfree then
7: V ←V ∪q
8: E ← E ∪ {(q,q′)}
9: end if

10: end for
11: // Check if qgoal is reached
12: return G(V ,E)

2.6. Probabilistic roadmap
A widely-used multi-query algorithm is the probabilistic roadmap (PRM) [23] algorithm, to which literature
proposed various extensions. Conventional PRM consists of two steps:

1. Construct roadmap.

2. Query for a solution.

The roadmap construction is performed by generating uniform random samples in C and if they are in Cfree,
added as vertices to the roadmap. After that, connections between the vertices are created and if they are
in Cfree, added as edges. Then, as part of the second step, qstart and qgoal are connected to the roadmap by
searching for edges in Cfree connecting to neighbours in the roadmap, and lastly, a graph search algorithm is
performed to find the path. If a new query is presented, the new qstart and qgoal are added to the roadmap
and, if they are both connected to the graph, a path can be found, and if they are not, new random uniform
samples are generated until they are. Figure 2.6 presents this algorithm in an environment with two obstacles.

(a) (b) (c) (d)

Figure 2.6: These figures present an illustration of the sampling-based probabilistic roadmap (PRM) algorithm finding a path in an
environment containing two obstacles. (a) Random samples in the configuration space C are generated (X) and (b) connected to the
roadmap by a local planner if the connection is collision-free, then, (c) the start (qstart) and goal configuration (qgoal) are connected to
the roadmap and lastly, (d) a graph search algorithm finds a path from qstart to qgoal (blue).

We present the basic roadmap construction of PRM in the pseudocode Algorithm 2 [8]. Firstly, the maxi-
mum number of vertices the roadmap will consist of (n) and the value of k for the k-nearest neighbour search,

12 Preliminaries

to know what neighbours a vertex should connect to, are set. Then, empty lists are created for the vertices
(V) and edges (E) of the roadmap (line 1-2). As long as the number of vertices in V is less than n, new con-
figurations, q, are randomly generated in the space in C (line 5), and if a configuration is in Cfree, it is stored
as a vertex in V (line 7). This repeats until the number of vertices in V is equal to n or the graph construction
is terminated. After that, for all vertices in V the k nearest neighbours, which are not already connected, it is
searched whether a connection can be made between the two vertices (f (q,q′)) (line 10-12). If this is the case,
the connection is added to the edges of the graph (E) (line 13). The output of this algorithm is the constructed
roadmap R(V ,E). The graph construction can be terminated early, before the roadmap consists of n vertices,
dependent on the implementation of the algorithm. For example, if the path is found, if these configurations
are added before completing the roadmap construction instead of successively as described in the two steps
above.

Algorithm 2 PRM roadmap construction algorithm [8]

Input: n: number of vertices to put in the roadmap
k: number of closest neighbours to examine for configuration

Output: R(V ,E): Roadmap
1: V ←;
2: E ←;
3: while |V | < n do
4: repeat
5: q ← a random configuration in C
6: until q ∈ Cfree

7: V ←V ∪q
8: end while
9: for all q ∈V do

10: Nq ← the k closest neigbours of q chosen from V according to a distance metric
11: for all q′ ∈ Nq do
12: if (q,q′) ∉ E and f (q,q′) ∈ Cfree then
13: E ← E ∪ (q,q′)
14: end if
15: end for
16: end for
17: return R(V ,E)

3
Related Work

Algorithms that locally adapt a roadmap to an incremental change are a promising solution to deal with
changes while keeping the computation time low. We can achieve a critical speed-up by eliminating the
reconstruction of the graph. The adjustments in the roadmap may be necessary due to either appearing or
disappearing obstacles.

In this chapter, we discuss algorithms that locally adapt a roadmap proposed in earlier work. Table 3.1
at the end of this chapter presents the main properties, test conditions, methods of roadmap adjustment,
and to which extent they fulfil the requirements of Section 1.4. The eight discussed algorithms decide in
what area the roadmap needs to be changed and adapt it. All algorithms in this chapter are applicable
under the assumption of the incrementally changing environment. This assumption makes it possible to
change the roadmap locally since the environment remains mostly unchanged. These algorithms would
not be applicable without this assumption. All algorithms are extensions to PRM, introduced in Section 2.6.
The roadmap adaptation occurs in all algorithms after the roadmap construction of PRM and then use the
adapted roadmap Ra(V ,E) to query for a solution. We divide the algorithms into two subcategories: meth-
ods that adapt edges and that adapt vertices. We discuss these algorithms in the items in the corresponding
section.

3.1. Roadmap adaptation based on edge adaptation
• An algorithm that deforms the edges to change the roadmap is the reactive deforming roadmaps (RDR)

algorithm [14]. Instead of edges connecting the vertices, it consists of deformable links to make the
roadmap adjust to the movement of obstacles. A deformable link is the representation of an edge by
particles. Instead of removing the links that are in CO, the links are deformed based on Newtonian
Physics and Hooke’s Law resulting in no loss of connectivity information. If it is not possible to de-
form the link to prevent collision, or if this results in an increase in the path length above a predefined
threshold, the link is removed. Besides, this algorithm instantiates the movement of the vertices if this
is necessary. In Figure 3.1 the deformation and movement of the edges as a response to a moving ob-
stacle is visualised. As the obstacle moves, it may be necessary to add vertices or links to capture the
connectivity. The algorithm keeps track of the removed links for testing whether these are valid at a
later point during the planning, creates new edges between two vertices and samples in unexplored
regions. Therefore, RDR can deal with disappearing obstacles. Experiments in a 2D environment with
a 3-DOF mobile base robot and 14 similar 3-DOF mobile base robots as dynamic obstacles showed that
the roadmap is repaired after the invalidation of the previously planned roadmap by dynamic obsta-
cles. However, this algorithm is a proof-of-concept implementation without being optimized, and thus
the performance is insufficient for implementation. This algorithm was created for a 2D workspace
and a low-DOF robot, and therefore, not suitable for planning for a mobile manipulator.

• The replanning with path deformation algorithm combines path deformation with replanning to ad-
just the roadmap [60]. This algorithm deforms an edge or reconstructs the roadmap if an edge is in CO
and can find shortcuts. A shortcut is an edge connecting two vertices directly, which were previously
connected by two edges with another vertex in between by moving the vertex qi in Figure 3.2 toward the
interpolated point between the vertices qi−1 and qi+1 to q0. Due to triangular inequality, this shortcut

13

14 Related Work

Dynamic vertex

C-space particle

(a)

Reactive link

(b) (c)

Figure 3.1: These figures present the deformation of the edges proposed in the reactive deforming roadmaps algorithm (RDR) [14]. RDR
represents its roadmap as (a) dynamic vertices (blue) and reactive links as edges (orange) and (b) deforms the reactive links in response
to a moving obstacle (green) or (c) moves the vertices and removes the links. The links are deformed based on Newtonian Physics and
Hooke’s Law. Adapted from [14].

edge is always the same length or shorter than the sum of the two edges, which previously connected
the two vertices. If an edge is within the repulsion area of an obstacle, the deformation function moves
q0 to qnew projected onto the boundary of the repulsion area around the obstacle. The path deforma-
tion procedure is initiated for every change in the environment. If deformation does not find a path
in Cfree, replanning, as proposed in earlier work [61], was suggested, in which planning and execution
run parallel, ensuring replanning while the robot is moving. If obstacles in the environment disappear,
the replanning framework ensures that this area will be accessible for new samples. However, no new
vertices are placed in previously occupied areas. The algorithm’s performance was assessed by testing
with a 7-DOF manipulator in a 3D workspace in an environment with a static wall and a moving bar-
shaped object as obstacles. The deformation of the edges according to changes in the environment
was done successfully. The combination of edge adaptation and replanning was 4 and 6 times faster
than with either deformation or replanning, respectively. This algorithm is undesirable for planning in
incrementally changing environments because the entire roadmap is continuously adapted, while only
a slight adaptation is necessary, resulting in unnecessary, time-consuming computations.

Figure 3.2: This figure presents the process of finding shortcuts in the replanning with path deformation algorithm [60], in which a direct
connection from vertex qi−1 to vertex qi+1 can be made instead of being connected through vertex qi , resulting in a shorter path due to
triangular inequality. The algorithm deforms the shortcut edge if it is within the repulsion area of an obstacle and returns qnew , which
is a projection of the interpolated point q0 of an edge to the boundary of the repulsion area around the obstacle [60].

3.2. Roadmap adaptation based on vertex adaptation
• An algorithm that adapts vertices by deliberately trading probabilistic completeness for computational

efficiency is the elastic roadmap (ER) algorithm [58, 59]. The ER algorithm represents the roadmap
in the workspace. Vertices are virtual placements of the robot in the environment, connected with an
edge to another vertex if a controller can move the robot from one vertex to the other. ER generates
vertices close to obstacle boundary features, e.g., at corners and next to edges, with the configuration

3.2. Roadmap adaptation based on vertex adaptation 15

of the robot arm pointing towards the obstacle. Controllers constantly adapt vertices to allow reac-
tivity in changing environments. When collision can no longer be avoided within the bounds of the
controller, ER deactivates the vertices. The algorithm reactivates the vertices if an obstacle disappears
or moves on. Lastly, it extracts a sequence of edge controllers. If an obstacle moves, the vertex moves
along with the obstacle. This space, previously occupied by the vertex, is not covered with new vertices,
resulting in this area not being accessible for motion planning. Experiments verify the working princi-
ple of the algorithm by assigning a task to move the end-effector of a robot in a 3D environment along
a trajectory. The experiments deploy two robots: a 10-DOF mobile manipulator, the UMass mobile
manipulator, in the presence of two to five mobile robots as obstacles or two static cones incrementally
appearing in the environment, and with a stationary 12-DOF manipulator in the presence of a moving
truss. The algorithm successfully adapted the roadmap and ensured the robots operate autonomously
while adhering to all motion constraints. The errors of the end-effector tracking the path were mostly
below 2cm in all three dimensions. This algorithm is not suitable for a robot in a store environment
because it is computationally expensive as the vertex controllers need accurate real-time information
about Cfree to ensure the vertices remain valid, consequently increasing the planning time.

• To ensure that the ER algorithm can deal with environmental uncertainty associated with unstructured
environments by using local sensor data which instantiates an ER, the expected shortest-path elastic
roadmap (ESPER) algorithm [51] extends ER. ESPER assumes that the robot can only obtain informa-
tion about the environment through onboard sensors, on top of a global map with static obstacles, that
place and adjust vertices of the roadmap to reduce the computational complexity of dealing with un-
certainty. Apart from locally determining whether a motion results in collision, this algorithm deals
with edges in CO in the global environment in the currently known state by removing edges that are
frequently in CO or for a long time. The Expected Shortest-Path algorithm [5] was used to compute
a policy that provides, for each sensory input, the edges with minimum expected costs. Additionally,
this algorithm makes it possible to wait for an edge to become unblocked, dependent on the estima-
tion of how long this will take. Experiments assessed the performance of this algorithm with a 10-DOF
mobile manipulator, consisting of a Nomadic XR-4000 holonomic mobile base with a 7-DOF Barrett
WAM robotics arm mounted on top in a 3D environment with as a dynamic obstacle a human. ES-
PER ensured whole-body motion while taking the task constraints into account, based on two onboard
sensors: an RGB-D sensor and a laser range finder. The end-effector error with respect to the base lo-
calisation error was 6cm at a maximum. The running time of ESPER and ER was equal if obstacles are
moving slowly with respect to the robot velocity and up to 10% shorter for ESPER if the ratio of obstacle
velocity to robot velocity was above 0.5. This algorithm is not suitable for high-DOF robots in incre-
mentally changing environments for the same reason as ER.

• To ensure the ER algorithm can deal with more drastic changes in the environment, such as opening
doors, the incremental elastic roadmap (IER) algorithm [34] extends the ER algorithm. IER implements
a more efficient method to capture connectivity at all times. A sphere-based wavefront is the basis for
the workspace connectivity graph [6]. The wavefront floods the free workspace with spheres and min-
imises the number of spheres by preferring large spheres over small ones. After that, the workspace
connectivity graph is created by placing vertices at the sphere centres and adding edges between the
vertices if the corresponding spheres overlap significantly. This graph guides an underlying sampling-
based planner in C to locally generate new vertices and add them to the existing roadmap and remove
invalid vertices if these are not within the free workspace. Figure 3.3 presents a visualisation of the
roadmap connectivity graph. Experiments evaluated the performance of this algorithm. A 10-DOF mo-
bile manipulator moved a tray upright to a goal location in an unknown 3D environment, in which four
walls were placed and removed. The algorithm successfully updated the workspace connectivity graph
and ensured navigation to the goal in continuous motion while satisfying the motion constraints. For
non-drastic changes, as is the case in this thesis, this adaptation locally runs a sampling-based planner
to explore the space, where adapting a single vertex would also be sufficient.

• The adaptation algorithm adapts the roadmap to changes in the environment by automatically moving
the vertices to the free space [41]. This algorithm based the movement of vertices on the motion dy-
namics of evenly distributed gases in the environment and the repulsion of particles to each other [20].

16 Related Work

(a) (b) (c)

Figure 3.3: These figures present an illustration of the workspace connectivity graph based on a sphere-based wavefront to guide an un-
derlying sampling-based planner for roadmap adaptation in the incremental elastic roadmap (IER) algorithm [34]. In (a) the workspace
that is decomposed by (b) maximum sized spheres to create the (c) workspace connectivity graph by creating vertices at the centers of
the spheres and adding edges between the vertices if the spheres overlap significantly [34].

An expansive repulsion between vertices ensures that the vertices do not get too close to each other.
Additionally, a sensory repulsion factor pushes the vertices away from the obstacles observed by the
robot’s sensors. The automatic movement of vertices to the free space ensures that this algorithm deals
with disappearing obstacles. Figure 3.4 presents the repulsion between vertices and sensory repulsion.
After rearranging the vertices, the algorithm updates the edges. Experiments with a 2-DOF two-link
robot in a 2D environment with five different-sized rectangular dynamic obstacles showed that if the
environment changes suddenly or if dynamic obstacles are present, the algorithm successfully adapted
the roadmap. This algorithm is unsuitable for planning for a mobile manipulator because it is created
for a 2D workspace and a low-DOF robot.

(a) (b) (c) (d)

Figure 3.4: These figures present a visualisation of the roadmap adjustment of the adaptation algorithm [41] based on the motion dy-
namics of gases with (a) expansive repulsion between vertices (nodes) and (b) sensory repulsion between an obstacle and a vertex that
(c) are combined to initiate (d) movement of a vertex [41].

• The self-adjusting roadmaps algorithm [24] clusters the generated vertices in a grid-based structure
based on their spatial coordinates, making it affordable to check for collision to deal with unknown
obstacles quickly. The size of the grid cells depends on the number of obstacles in the environment. If
the robot moves through the environment and senses an obstacle, the grid cells corresponding to the
sensed part of this obstacle are marked. The algorithm pushes all vertices within the grid cell away from
the obstacle to maintain the roadmap connectivity. Figure 3.5 shows the process of pushing away the
vertices. Experiments in different 2D environments with stationary and randomly moving polygonal-
shaped obstacles on a 3-DOF mobile base showed that the running time of this algorithm was lower,
with a higher success rate and similar path length to conventional sampling-based algorithms [16, 31]
and ER. Additionally, the algorithm outperformed the conventional algorithms when dealing with nar-
row corridors. If obstacles in the environment disappeared, the algorithm ensured that this area is
accessible for new samples. However, no new vertices were placed in previously occupied areas. This
algorithm is unsuitable for planning for a mobile manipulator because it is created for a 2D workspace
and a low-DOF robot, and merely the vertices are adapted, not the edges.

• The incremental adaptive randomized roadmaps algorithm was proposed [25, 26] to locally adapt its
roadmap using the information of clustered vertices, based on spatial coordinates and their uncer-

3.2. Roadmap adaptation based on vertex adaptation 17

(a) (b) (c) (d)

Figure 3.5: These figures present the roadmap adjustment proposed in the self-adjusting roadmaps algorithm [24]. An initial roadmap
covers the entire space, ignoring the obstacles: in (a) this roadmap, the robot and the area covered by the sensor (green) are visualised. If
(b) an obstacle (red) appears to be on the path of the robot, (c) the grid cells in which the part of the obstacle sensed by the robot (orange)
are determined and (d) the vertices in the corresponding grid cells are pushed away (red circles). After this roadmap adjustment, the
roadmap is ready to be used for graph search [24].

tainty. The algorithm is based on PRM∗ [21], an asymptotically optimal variant of PRM, and performs
hybrid sampling classification and self-adjustment to deal with planning uncertainty. The vertices are
stored in a matrix structure based on their Cartesian coordinates to ensure a cheap computational
search for vertices in a specific region; based on this matrix, an initial roadmap is created. A second
matrix with uncertainty data corresponding to the vertices is created. As the robot moves, it scans the
surrounding area. The collision status is updated in the uncertainty matrix for all visible cells if the
status differs from the previously known status. After that, the matrix with the stored vertices will be
updated based on the changes in the uncertainty matrix. The algorithm removes all connections to the
newly occupied vertex and creates new connections to the newly free vertices. Additionally, it checks
the collision status of the vertices around those with a change in collision status. Figure 3.6 shows the
roadmap adaptation. This procedure repeats with a predefined constant frequency. The algorithm
deals with the disappearance of obstacles by changing the value in the uncertainty matrix, making the
vertex accessible. Experiments in four different 2D office environments on a 3-DOF mobile base robot
with either two (unknown) rectangular static or dynamic obstacles of different sizes showed successful
navigation from start to goal, without stopping if the solution path is updated. The running time of
the proposed algorithm was shorter, the path length was slightly shorter, and the failure rate was lower
than that of single-query algorithms reconstructing the roadmap [3, 42]. This algorithm is unsuitable
for planning for a mobile manipulator because it is created for a 2D workspace and a low-DOF robot,
and merely the vertices are adapted, not the edges.

(a) (b) (c)

Figure 3.6: These figures visualise the roadmap adaptation method of the incremental adaptive randomized roadmaps algorithm [25]. If
(a) the robot is following a planned path (red) and a new obstacle (grey) is sensed, (b) the associated vertices are temporarily deactivated
and the corresponding edges are removed, and (c) the path is adjusted accordingly. The vertices and edges, and therefore the path,
are continuously updated due to changes in the environment. The grey circle is the robot, the green circle is the vision range of the
robot, and the red area around the obstacle is the expanded obstacle for safety where the neighbouring vertices to the vertices in CO are
additionally deactivated [25].

18 Related Work

3.3. Discussion
None of the discussed algorithms is applicable for coupled motion planning for a mobile manipulator in an
incrementally changing environment. No algorithm meets all requirements in Section 1.4, as is presented in
Table 3.1. Therefore, in this research, we aim to develop an algorithm that meets all requirements, unlike the
existing algorithms, enabling roadmap adaptation for coupled motion planning for a mobile manipulator in
an incrementally changing environment.

The proposed algorithm extends the principle of vertex and edge assignment for quick lookup of the self-
adjusting roadmap algorithm proposed in [25] and extends this for a high-DOF robot in a 3D workspace and
for dealing with invalid edges. The remaining algorithms are less suitable as foundation because they have
an unnecessary high planning time due to the adaptation [34, 51, 58–60], resulting in, in the worst case, the
robot remaining stationary during the roadmap adaptation or are challenging to extend for a high-DOF robot
[14, 25, 26, 41].

3.3.D
iscu

ssio
n

19

Error
compared

to
R1 R3 R4 R5

Paper Algorithm name Citation O
n-

bo
ar

d
se

ns
or

s

U
nc

er
ta

in
ty

 in
co

rp
or

at
ed

W
ith

 re
sp

ec
t t

o
ob

st
ac

le
s

C
lu

st
er

ed
 b

as
ed

 o
n

co
or

di
na

te
s

M
ov

e
ve

rt
ic

es

D
ef

or
m

 e
dg

es

Re
m

ov
e

ed
ge

s

2D 3D 2-
lin

k
ro

bo
t

M
ob

ile
 ro

bo
t

M
an

ip
ul

at
or

M
ob

ile
 m

an
ip

ul
at

or

3-
D

O
F

ro
bo

ts
(s

)

Ri
gi

d
ob

je
ct

(s
)

H
um

an

W
al

ls

Si
m

ul
at

io
n

Re
al

-w
or

ld

ER C
on

ve
nt

io
na

l S
Q

 a
lg

or
ith

m
(s

)

C
on

ve
nt

io
na

l M
Q

 a
lg

or
ith

m
(s

)

ER C
on

ve
nt

io
na

l S
Q

 a
lg

or
ith

m
(s

)

C
on

ve
nt

io
na

l M
Q

 a
lg

or
ith

m
(s

)

ER C
on

ve
nt

io
na

l S
Q

 a
lg

or
ith

m
(s

)

C
on

ve
nt

io
na

l M
Q

 a
lg

or
ith

m
(s

)

ER M
ul

ti-
qu

er
y

A
da

pt
 v

er
tic

es
 a

nd
 e

dg
es

A
pp

ea
rin

g
ob

st
ac

le
s

D
is

ap
pe

ar
in

g
ob

st
ac

le
s

H
ig

h-
D

O
F

ro
bo

t

3D
 w

or
ks

pa
ce

Fa
st

Gayle et al. (2007) Reactive deforming
roadmaps (RDR)

[14] x x x x x x x x x x

Yang et al. (2007),
Yang et al. (2010)

Elastic roadmaps (ER) [58,59] x x x x x x x x x x x x x x x x x x

Yoshida et al. (2011)
Replanning with path
deformation [60] x x x x x x x x x

Sieverling et al. (2014) Expected shortest-path
elastic roadmap (ESPER)

[51] x x x x x x x x x + − x x x x x x

Lehner et al. (2015)
Incremental elatic roadmap
(IER) [34] x x x x x x x x x x x x x

Park et al. (2016) Adaptation algorithm [41] x x x x x x x x x x x

Khaksar et al. (2018) Self-adjusting roadmap [24] x x x x x x x x + + + = = = + + + x x x

Khaksar et al. (2018),
Khaksar et al. (2020)

Incremental adaptive
randomized roadmaps

[25,26] x x x x x x x x x + + + x x x x

Algorithm

Adjusting the
roadmap

Sensors Vertex
localization

Requirements

Workspace Path length
compared to

Success rate
compared to

PerformanceImplementation

Running time
compared to

Robot TestIncremental obstacles R2

Table 3.1: Table summarizing the information about the algorithms that locally adapt a roadmap discussed in this chapter, their performance compared to other algorithms in the table or conventional
single-query (SQ) or multi-query (MQ) algorithms, and whether the algorithms meet the requirements from Section 1.4. Note that a + in a cell indicates better performance on this metric for the proposed
algorithm it does not indicate that the value for this metric is higher. The empty cells in the cells comparing two algorithms indicate that no comparison between these algorithms is presented in the paper
proposing the algorithm.

4
Methods

This chapter describes the proposed algorithm, the adaptive roadmap algorithm (ARM), that locally adapts
its roadmap for mobile manipulators to ensure the roadmap is reusable for multiple queries even though
incremental changes in the environment occur. The algorithm extends the principle of vertex and edge as-
signment for quick lookup of the self-adjusting roadmap algorithm [25]. Firstly, we discuss requirements on
completeness, optimality and anytime of motion planning algorithms.

4.1. Requirements on the completeness, optimality and anytime
The motion planning properties completeness, optimality, and anytime, introduced in Section 2.2, are not
requirements of ARM.

All existing algorithms that perform roadmap adaptation, discussed in Chapter 3, relax the completeness
requirement to compute a solution in a reasonable amount of time. As we aim to reduce the operation time,
we want to decrease the computation time necessary for adapting the roadmap.

Optimality is not a requirement of the algorithm because due to changes in the environment, the opti-
mality of the algorithm would cause recomputation of the path to ensure it remains optimal, which increases
the planning time. As we aim to reduce the operation time, we benefit from decreasing the planning time.

The result of relaxing the completeness and optimality of the algorithm is that the algorithm generates
motion plans for high-DOF robots at interactive rates.

Lastly, the algorithm does not need to be anytime since we do not aim to provide solutions if the algorithm
is terminated early. If the roadmap adaptation algorithm is terminated early the roadmap is not entirely in
Cfree. Therefore, we do not need solutions of an early terminated algorithm.

4.2. Self-adjusting roadmap algorithm
We establish extensions to the self-adjusting roadmap algorithm [25] (Chapter 3) since it does not meet re-
quirements R2, R3, and R4. We shortly introduce extensions: to W =R3 (R4), to a high-DOF robot (R3), and to
deal with edges in CO (R2). We do not extend the algorithm to deal with disappearing obstacles (R2) since it
does not place vertices in the previously occupied areas. However, ARM makes the area accessible for vertices
to extend the algorithm in future work by placing vertices in areas where obstacles have disappeared.

4.2.1. 3D workspace
The assignment of a robot configuration q must be extended from W = R2 to W = R3 to adhere to R4. ARM
represents the environment with 3D grid cells for assigning configurations instead of the 2D grid cells; we
refer to this structure as the 3D grid. The cells in the 3D grid are either occupied or free, which can be updated
based on appearing or disappearing obstacles.

4.2.2. High-DOF robot
ARM represents each robot configuration by a bounding box around the mobile manipulator in W since this
is the space that contains information about the updated environment. This representation enables using the
3D grid to assess whether a configuration is valid. For the circular mobile robot in the self-adjusting roadmap

21

22 Methods

algorithm, this representation is more straightforward because C =R2 ×S easily maps to W =R2 by inflating
the configuration with the robot radius. For a mobile manipulator, the Cartesian coordinates of all points on
the robot must be taken into account to prevent, for example, a collision of the arm while the base is in Cfree.
ARM determines the bounding box based on the Cartesian coordinates of informative points on the robot.
ARM assigns this box to 3D grid cells, and if an associated grid cell is occupied, ARM initiates the roadmap
adaptation.

We altered the vertex adaptation procedure for a high-DOF robot by random sampling in C in the neigh-
bourhood of the invalid vertex to generate a replacing vertex. In [25], the vertex is pushed away from the
centre of the appeared obstacle by altering the Cartesian coordinates of the base. However, for the exten-
sion to a high-DOF robot, ARM adapts all DOFs of the robot to ensure a configuration is collision-free. ARM
performs random sampling in C, which this is a commonly used method to generate robot configurations.
ARM samples in the neighbourhood of the invalid vertex to maintain the connectivity of the roadmap. If the
randomly drawn sample is collision-free, ARM adds it as a vertex and connects it to the roadmap.

4.2.3. Invalid edges
ARM removes invalid edges to ensure the entire roadmap is in Cfree. In [25], the edges are not updated, except
when the source or target vertex of the edge is associated with occupied grid cells. However, if the grid cells
to which the source and target vertex are assigned are free, and the middle of the edge is associated with
occupied grid cells, the self-adjusting roadmap algorithm does not initiate adaptations. ARM assigns the
edges to grid cells by interpolating them and assigning the interpolated configurations to grid cells. If a grid
cell is occupied, the algorithm removes the associated edges.

4.3. Method overview
The adaptive roadmap algorithm (ARM) is a multi-query sampling-based motion planning algorithm that
can locally adapt vertices and edges of the graph to account for incremental changes in the environment. The
algorithm requires an initial roadmap, generated with a sampling-based planner such as PRM. ARM generates
a 3D grid to represent the workspace. The grid cells are marked as occupied or free based on the presence of
obstacles in the environment. To determine what vertices and edges of the roadmap need to be updated if the
occupancy of the 3D grid changes due to an incremental change, a mapping from the grid cells to the vertices
and edges is required. To acquire this mapping, the algorithm represents the vertices in W by a 3D bounding
box surrounding the entire robot configuration and the edges by surrounding interpolated configurations.
ARM uses these representations to assign all vertices and edges of the roadmap to the 3D grid cells to obtain
a mapping. ARM initiates the roadmap adaptation due to a changing occupancy of grid cells and resamples
the vertices and removes the edges associated with occupied grid cells. The local adaptation of the roadmap
ensures it is reusable if obstacles appear. Figure 4.1 visualises these steps. The adapted roadmap Ra(V ,E) can
be extracted to perform a graph search and find a path. Then, if the environment changes incrementally, this
roadmap is adapted.

4.4. Method description
In this section, we elaborate on the parts of the proposed algorithm indicated with bright blue in Figure 4.1.

4.4.1. 3D grid generation
The proposed algorithm represents the environment with a 3D occupancy grid. The size of the grid cells in
the 3D grid are denoted by δk , where k denotes the dimension of W : k ∈ {x, y, z}. Figure 4.2a presents the 3D
grid structure in an environment with obstacles. Initially, the algorithm marks all grid cells that are (partially)
occupied by the static obstacles (visualised in black) as occupied (visualised in grey). Then, if an obstacle
appears or disappears, ARM updates the occupancy of the grid cells associated with this obstacle. We refer to
a grid cell by its grid index (nx ,ny ,nz), where nx , ny and nz are the indices in the x-, y- and z-dimension in
the grid, respectively. We denote the set of occupied grid indices by IO.

4.4.2. Assignment of vertices and edges to cells
The algorithm assigns vertices and edges to 3D grid cells to ensure checking which vertices and edges are in-
collision is quick by extracting the vertices and edges associated with the changed grid cells. The assignment
of vertices and edges to the 3D grid cells consists of three steps:

4.4. Method description 23

If change occupancy 3D
grid

R(V,E)

Roadmap
adaptation:

1. Identify vertices and
edges associated
with changed cells

2. Replace vertex by
resampling and
connect to R(V,E)

3. Remove invalid
edges

R(V,E)
3D grid
Grid with assigned
 vertices and edges

Assign vertices and
edges to cells:

1. Workspace
representation

2. Assignment of
vertices

3. Assignment of
edges

Ra(V,E)

R(V,E)
Grid with assigned
 vertices and edges

Update occupancy 3D
grid

3D gridAppearing/
disappearing

obstacle

3D grid generationEnvironment size

Grid cell size 3D grid

Repeated for every change

Performed once during initialisation

Figure 4.1: This flow diagram describes the adaptive roadmap algorithm (ARM) proposed in this thesis. The initialisation (green box)
consists of the 3D grid generation and the assignment of vertices and edges to the 3D cells. ARM requires an initial roadmap R(V ,E). The
algorithm generates a 3D grid that represents the workspace. The grid cells can be marked occupied or free to represent the occupancy
of the environment. Next, it assigns the vertices and edges to the grid cells to obtain a mapping from grid cell to associated vertices
and edges, which ensures a quick lookup of invalid vertices and edges if the occupancy of a grid cell is changed. For every incremental
change, the occupancy of the 3D grid is updated and the roadmap adaptation of the vertices and edges associated with the occupied
grid cells is initiated (purple box). The adapted roadmap Ra (V ,E) can be extracted to perform a graph search and find a path. Section 4.4
discusses the bright blue steps in the flow chart.

1. Workspace representation: to assign configurations to grid cells in the 3D grid, ARM represents them
inW by creating a 3D bounding box bbq around the robot in a certain configuration. The bounding box
is described by six values: the minimum bbmink and maximum bbmaxk boundary for every dimension:
k ∈ {x, y, z}. ARM creates the bounding box based on the Cartesian coordinates of informative points on
the robot since representing the entire robot with Cartesian coordinates is time-consuming. For mobile
manipulators, the informative points are the Cartesian coordinates of points exterior of the base, such
as the corner points and the centres of the arm joints, obtained from forward kinematics. The algorithm
determines the minimum and maximum value for every dimension from these points and sets them
to bbmink and bbmaxk , respectively. The bounding boxes have a yaw of zero to simplify the assignment
to grid cells. We present a visualisation of the bounding box representations of mobile manipulators in
W in Figure 4.2b.

2. Assignment of vertices: for every cell in the 3D grid, ARM determines what vertices are associated with
it based on the bounding box representation of all vertices. Suppose we are given some bounding box
bbq for the vertex represented by q. For k ∈ {x, y, x} the minimum and maximum coordinates of the
bounding box are given by bbmink and bbmaxk . We then denote by IQq the set of indices associated to
bounding box representing q, which is the set of all indices (nx ,ny ,nz) such that

bbbmink /δkc ≤ nk ≤ dbbmaxk /δke (4.1)

for k ∈ {x, y, z}. b c and d e round the number to the lower and higher integer, respectively. The vertex
is assigned to the associated grid cells. Figure 4.3 presents visualisations of the assignment of vertices
to grid cells.

3. Assignment of edges: to ensure the entire roadmap is collision-free, and not merely the vertices, ARM
determines the edges associated with the grid cells by assigning interpolated configurations of the edge

24 Methods

𝛅x𝛅y

𝛅z

nxny
nz

(a) (b)

Figure 4.2: These figures illustrate (a) the representation of the environment by a 3D grid and its occupancy (Section 4.4.1) and (b) the
representation of the roadmap vertices in W (Section 4.4.2) in the same environment to allow assignment of the vertices to grid cells in
the initialisation of the proposed adaptive roadmap algorithm. The 3D grid representation of the environment consists of grid cells of
size δx ×δy ×δz , where grid cells can be marked occupied (grey) or free (white). The indices of the grid cells in x−, y− and z− direction
are denoted by nx , ny and nz , respectively. Initially, ARM marks all grid cells associated with static obstacles (black) as occupied; if an
obstacle appears or disappears, the occupancies of the grid cells associated with this obstacle are updated. We visualise the roadmap (b)
in W without the 3D grid from (a) for clarity. The blue bounding boxes are the vertices in W , of which the size is dependent on the entire
robot configuration. We visualise the edges by projecting the (x, y) values of the path (orange lines) and the source and target vertex
(green dots) on the ground plane. The edges are created with Dubins curves with a minimum turning radius of 0.2m. Note that we do
not visualise the arm configurations in the projection of the edges.

nxny
nz

(a)

1

2

3

Nv

1

...

3

...

Ng

2

Vertices Grid cells

(b)

Figure 4.3: These figures illustrate the assignment of vertices to grid cells performed in the initialisation of the proposed adaptive
roadmap algorithm. In (a) the W-representation (blue) of one of the vertices from Figure 4.2b is visualised in the 3D grid (Figure 4.2a),
and assigned to the eight associated grid cells (orange) using Equation (4.1). The indices of the grid cells in x−, y− and z− direction are
denoted by nx , ny and nz , respectively. This assignment is performed for all vertices of the roadmap to obtain the mapping from vertex
to grid cell in (b), where Nv denotes the number of vertices and Ng the number of grid cells.

to grid cells. ARM represents the interpolated configurations by bounding boxes and assigning them
to grid cells, equivalent to the assignment of vertices. The interpolation strategy is equivalent to the
interpolation for collision checking of the edges in Section 2.4.3. However, the interpolation resolution,
determined with Equation (2.9), is larger than the resolution for collision checking of edges to prevent
unnecessary computations. We aim to find interpolated configurations on the edge that are likely in
different grid cells. Therefore, eLval j

in Equation (2.9) is based on the grid cell size. For this application,

eLvalx
and eLvaly

describe the distance between two configurations that are likely in different grid cells,
based on the DOFs describing the x- and y-coordinate of the base. For every edge, ∆qex and ∆qey in
Equation (2.9) are computed by setting eLvalx

to δx and eLvaly
to δy . The fixed resolution for all DOFs

∆qe for the assignment of the edge to grid cells with Equation (2.9) is the minimum value of the two to
prevent missing an associated grid cell:

∆qe = min(∆qex ,∆qey). (4.2)

ARM additionally includes the source and target vertex of the edge as well as interpolated configura-
tions for the assignment to grid cells. We denote by I Ee the set of indices associated with an edge

4.4. Method description 25

determined by the assignment of interpolated configurations:

I Ee =
Nm⋃

m=1
IQqm (4.3)

for m = 1, ..., Nm , where Nm is the number of interpolated configurations. The edge is assigned to the
associated grid cells. Figure 4.4 presents visualisations of the assignment of edges to grid cells.

nxny
nz

(a)

1

2

3

Ne

1

...

3

...

Ng

2

Edges Grid cells

(b)

Figure 4.4: These figures illustrate the assignment of edges to grid cells performed in the initialisation of the proposed adaptive roadmap
algorithm. In (a) one of the edges from Figure 4.2b (orange line on the x y−plane) is visualised in the 3D grid (Figure 4.2a) with the
corresponding interpolated configurations in W (purple) for the assignment. The interpolated configurations consist of the source and
target vertex of the edge, and configurations in between that are likely in different grid cells (item 3 in Section 4.4.1). The indices of
the grid cells in x−, y− and z− direction are denoted by nx , ny and nz , respectively. This assignment is performed for all edges of the
roadmap, to obtain the mapping from edge to grid cell in (b), where Ne denotes the number of edges and Ng the number of grid cells.

1

3

...

Ng

2

Grid cells

1

3

...

No

2

Incremental
change

1

2

3

Nv

...

Vertices

1

2

3

Ne

...

Edges

Figure 4.5: This diagram illustrates the mapping from grid cells occupied by the incremental changes to the associated vertices and edges
the proposed adaptive roadmap algorithm uses to determine what vertices and edges need adaptation. Firstly, the incremental changes
are assigned to grid cells (Section 4.4.1). Then, the previously performed assignment of vertices and edges to the grid cells (Section 4.4.2)
allows us to map from the grid cells to the associated vertices and edges. These vertices and edges need to be adapted. ARM performs
this mapping for all incremental changes. No , Ng , Nv and Ne denote the number of incremental changes, grid cells, vertices and edges,
respectively.

4.4.3. Roadmap adaptation
The algorithm replaces invalid vertices by random sampling in C in the neighbourhood of the invalid vertex
and removes invalid edges. We present the roadmap adaptation in Algorithm 3. The roadmap adaptation

26 Methods

Algorithm 3 Roadmap adaptation by ARM

Input: R(V ,E): Roadmap
IO: occupied grid cells
M : mapping from grid cells to assigned vertices and edges
k: number of closest neighbours to examine for configuration
d : resampling area that defines the bounds on Csub

Output: Ra (V ,E): Adapted roadmap
1: if change in IO then
2: for all v ∈V associated with changed IO (from M) do . Section 4.4.3 step 1
3: qinv ← v
4: V = V \ qinv
5: E = E \ e(qinv)
6: Csub ← subspace of C to sample close by qinv . Equation (4.4)
7: updated = false
8: while updated = false do
9: qnew ← random configuration in Csub

10: bbqnew ← workspace bounding box representing qnew . Section 4.4.2 step 1
11: IQqnew ← grid cell indices associated with qnew . Equation (4.1)
12: if IQqnew ∩ IO = ; then
13: Nqnew ← k neighbours to qnew in V
14: for all q′ ∈ Nqnew do
15: I Ee ′ ← grid cell indices associated with (qnew,q′) . Equation (4.3)
16: if I Ee ′ ∩ IO = ; then
17: if qnew 6∈V then
18: V ← V ∪qnew
19: end if
20: E ← E ∪ (qnew,q′)
21: end if
22: end for
23: if qnew ∈V then
24: updated = true
25: end if
26: end if
27: end while
28: end for
29: for all e ∈ E associated with changed IO (from M) do . Section 4.4.3 step 1
30: E = E \ e . Section 4.4.3 step 3
31: end for
32: end if
33: return Ra (V ,E)

can be described by the following steps, which are additionally visualised in Figure 4.6 after the discussion of
each step:

1. Identify vertices and edges associated with changed cells: identify vertices (line 2) and edges (line 29)
associated with the changed grid cell indices (IO) from the mapping M , which is the mapping from
grid cells to its associated vertices and edges, determined from the previously performed mapping of
vertices and edges to grid cells (Section 4.4.2). We present a visualisation of the mapping from occupied
grid cells to vertices and edges in Figure 4.5.

2. Replace vertex by resampling and connect to R(V,E): firstly, ARM removes the configuration qinv rep-
resenting the invalid vertex (line 4), including the in- and outgoing edges (line 5). To ensure no areas
become inaccessible due to the absence of vertices, ARM generates a configuration for the replacing
vertex qnew nearby qinv in W . By generating a replacing vertex nearby the invalid vertex, a narrow pas-
sage in W due to an appearing obstacle, which often suggests the presence and location of a narrow
passage in C, is more likely to remain accessible. To obtain qnew nearby qinv, ARM specifies a subspace
of C to draw samples from: Csub ⊂ C, with bounds on the x- and y-dimension based on qinv (line 6).
ARM sets the bounds to a a predetermined distance d from qinv. The values for the x- and y-dimension
of qnew are bounded by:

4.4. Method description 27

qinv(x)−d ≤ qnew(x) ≤ qinv(x)+d

qinv(y)−d ≤ qnew(y) ≤ qinv(y)+d .
(4.4)

The remaining DOFs do not have additional bounds in Csub, other than the joint limits.
If ARM draws a random sample qnew from Csub (line 9), it determines the indices of the associated

grid cells IQqnew of the random sample using the bounding box W-representation bbqnew from Sec-
tion 4.4.2 (line 10-11). If no associated grid cell is occupied (line 12), ARM determines with a nearest
neighbour search the set of vertices of the roadmap qnew can connect to: Nqnew (line 13). ARM assigns
these connections, also candidate edges e ′, between qnew and corresponding neighbours q′ to grid cell
indices (line 15). If at least one connection exists that is not associated with occupied grid cell indices
IO (line 16), ARM adds the sample as a vertex (18) and the valid connections as edges (qnew,q′) (line
20) to the roadmap. Lastly, ARM assigns qnew and its associated edges to grid cells and adds them to
M , to prepare for future incremental changes. The vertex replacement is completed if the first ran-
dom sample qnew adheres to the remaining constraints, is not associated with occupied grid cells and
is connectable to the roadmap. The algorithm performs random sampling until a qnew satisfies these
conditions (line 8-27).

3. Remove invalid edges: the algorithm removes the invalid edges (line 30). Figure 4.6b shows an edge
that is in-collision, while the source and target vertex of the edge are not, pointing out the importance
of assigning and removing the invalid edges.

-2 -1 0 1 2

-2

-1

0

1

2

(a)

-2 -1 0 1 2

-2

-1

0

1

2

(b)

-2 -1 0 1 2

-2

-1

0

1

2

(c) (d)

Figure 4.6: This figure illustrates the roadmap adaptation performed by the proposed adaptive roadmap algorithm. The grid cells asso-
ciated with the obstacles (black) are marked as occupied (grey) and the bounding boxes representing the vertices are visualised in light
blue. We represent the initial roadmap from Figure 4.2b in (a) 2D by projecting the bounding boxes and the 3D grid to the ground plane,
and visualizing the edges with straight lines (black) for a clearer visualisation of the algorithm steps. In (b) an obstacle is added and the
associated grid cells are marked (grey), and the associated vertex and edge, that require adaptation, are determined (red). (c) Shows the
adapted roadmap, where one vertex is adapted (green) and one edge is removed, which (d) visualises in 3D.

28 Methods

4.5. Parameters
The magnitude of several parameters considerably influences the performance of ARM: the initial roadmap,
3D grid cell size, nearest neighbours, the safety margin of the bounding box representation of the robot, and
the resampling area.

4.5.1. Initial roadmap
The performance of ARM depends predominantly on the initial roadmap since ARM does not generate ad-
ditional vertices besides replacing the invalid vertices. The roadmap must consist of sufficient vertices and
edges to capture the connectivity of Cfree to ensure the roadmap contains a path between any collision-free
qstart and qgoal. We know a path exists as this is in the definition of an incrementally changing environment
Chapter 1. Additionally, if a roadmap that consists of few vertices is adapted, the roadmap may become dis-
connected. The configurations qstart and qgoal may connect to two different connected components, result-
ing in failure of the algorithm. Therefore, the initial roadmap must consist of sufficient vertices. However, if it
consists of many vertices, ARM initiates many adaptations if one obstacle appears. One must verify whether
the initial roadmap captures the connectivity of Cfree without too many vertices.

4.5.2. 3D grid cell size
The size of the 3D grid cells that ensures the best performance is dependent on the environment. The grid
cells must not be too large to prevent large areas from becoming inaccessible due to an occupied cell because
an obstacle occupies a small part of the grid cell. This could result in narrow passages becoming inaccessi-
ble. Therefore, the width of the narrow passages must be taken into account when determining the grid cell
size. Additionally, if an environment consists of obstacles with curved bounds, a large grid cell size results in
inaccessibility of areas in the environment close by the curved obstacle bounds.

If the grid cells are small with respect to the appearing obstacles, more computations are necessary before
the adaptation is initiated. The components δx and δy are dependent on the size of the incremental changes,
and δz is dependent on whether the environment contains obstacles above ground level. If δz is 1m, and an
obstacle appears with lower bound z = 1.5m, the area from z = 1m to z = 2m is marked as occupied due to the
discretisation: the robot is allowed underneath if it is below 1m. If δz is 0.5m, the robot can go underneath if
it is below 1.5m.

4.5.3. Nearest neighbours
The number of nearest neighbours qnew attempts to connect to affects the computational costs of the roadmap
adaptation. If the value is too large, the algorithm performs many collision checks to check whether a valid
motion exists between two vertices, while qnew was already connected to the roadmap. If this value is too
small, the new vertex will likely not be able to connect to the roadmap, and the algorithm keeps resampling
until it finds a connectable qnew, resulting in a time-consuming roadmap adaptation. If the environment
contains few obstacles, the necessary number of nearest neighbours for connecting the new vertex to the
roadmap is lower than in an obstacle-cluttered environment because more connections to nearest neigh-
bours are collision-free.

4.5.4. Safety margin bounding box
A safety margin can be applied to inflate the bounding box used for the representation of the robot in W to
ensure the robot does not get too close to obstacles. However, if the safety margin is too large, unnecessary
roadmap adaptations will be initiated due to the conservative representation of the robot in W . We suggest
determining the safety margin depending on the environment.

4.5.5. Resampling area
If the area in which ARM generates a replacing vertex is too small, finding a replacing vertex is computation-
ally expensive, and if it is too large, it affects the connectivity of C. The space in which replacing vertices are
generated is Csub, of which the size is denoted by the parameter d . If d is too small, Csub is mainly occupied
by the appeared obstacle, and the new samples are likely to be in-collision, which makes finding qnew com-
putationally expensive. However, if d is too large, qnew may be further from qinv, which could result in an area
becoming inaccessible due to the absence of vertices.

4.6. Discussion 29

4.6. Discussion
The proposed algorithm performs roadmap adaptation based on the mapping from 3D grid cells representing
the workspace to vertices and edges, which allows quick lookup of what vertices and edges are associated with
occupied grid cells and need to be adapted to ensure the roadmap remains collision-free. The parameters dis-
cussed in Section 4.5 greatly influence the performance of the algorithm and are dependent on the planning
problem to be solved. The parameter settings of the proposed algorithm must be determined specifically for
the planning problem to be solved. The proposed algorithm meets requirements R1-R4. A proof-of-concept
implementation of the roadmap adaptation is required to confirm that ARM meets these requirements. To
evaluate whether ARM meets R5, we must perform benchmarking experiments to compare ARM to conven-
tional sampling-based algorithms.

5
Experiments & Results

This chapter describes the implementation of ARM within the Robot Operating System (ROS), experiment
setups and results for all experiments performed. Experiments evaluate the effect of the number of DOFs
on the planning time, compare the time spent on roadmap adaptation of the proposed ARM and its simpli-
fied implementation within ROS, perform parameter selection for sARM, evaluate the performance of sARM
compared to state-of-the-art sampling-based planners, and test sARM in real-world experiments. Table 5.9
at the end of this chapter presents the experiment setups.

5.1. Implementation ARM within the Robot Operating System
We integrate the proposed algorithm in the Robot Operating System (ROS) [2] to allow using the algorithm for
robots in simulation and real-world. ROS is an open-source collection of frameworks useful for the develop-
ment of robot software. ROS supports collaboration among researchers all around the world in the robotics
community. For the implementation of the planning algorithm within ROS, we use the Extensible Optimiza-
tion Toolset (EXOTica) [19]. EXOTica is an interface for setting motion planning problems and solvers. This
enables us to set our algorithm, created in the Open Motion Planning Library (OMPL) [53], as a solver in
EXOTica.

5.1.1. Open Motion Planning Library
We created an OMPL planner that adapts the roadmap. OMPL is a library that contains state-of-the-art
sampling-based motion planners written in C++. This library exists merely of planning algorithms and not of
collision checkers, a representation of W or a form of visualisation, which provides the freedom to set these
separately. These elements are considered black boxes for OMPL. OMPL is easily integrable into ROS with
other software packages, such as EXOTica and MoveIt [10]. We use OMPL due to its existing state-of-the-art
sampling-based planners that allow benchmarking and because it facilitates the addition of a new sampling-
based planning algorithm to the library.

In an sampling-based planner in OMPL, a query is presented, and the planner is aware of certain space
information, such as the number of robot DOFs and the optimisation objective. The sampling-based planner
aims to find a collision-free path for the query. The collision checking module is set externally.

5.1.2. Extensible Optimization Toolset
We use EXOTica to set the planning problem by specifying the robot, the environment, and the collision
checking approach. Additionally, we set our OMPL planner to solve the motion planning problem. EXOTica
is an interface of software tools created for developing and evaluating motion synthesis algorithms within
ROS. We use EXOTica because it has a more generic and open architecture than the commonly used toolbox
MoveIt, and therefore, allows for fast prototyping for research purposes.

In EXOTica, the environment is set by its size and the additional models that may interact with the robot.
This information is used by the collision checking module, which the user can set. The input of this module is
a configuration, and the output is whether it is valid or not. Figure 5.1 presents a flow diagram of the structure
of EXOTica and the implementation of an OMPL planner. The collision checker and planning scene contents
are considered a black box for the planner in OMPL.

31

32 Experiments & Results

Sampling-based
motion planner

Collision
checker

Query

Environment

Robot model

valid/invalidq

Path

OMPL

EXOTica

Planning scene:

Robot
Environment

Figure 5.1: This flow diagram describes the structure of a planning problem in the Extensible Optimization Toolset (EXOTica), where an
Open Motion Planning Library (OMPL) algorithm solves the planning problem. Within EXOTica, the planning scene is set, which consists
of the environment and the robot. EXOTica uses this planning scene in the collision checker, which the user can set. A sampling-based
motion planner from OMPL is set to solve the problem and find a path. A robot can execute this path in simulation or real-world. The
communication between the planner in OMPL and the collision checker in EXOTica consists merely of the configuration sent to the
collision checker, which returns whether the configuration is valid or not.

5.1.3. Limitations implementation using OMPL and EXOTica
Limitations due to a lack of communication between OMPL and EXOTica prevent the implementation of
ARM using EXOTica. The planner in OMPL is aware of the roadmap, and the collision checker in EXOTica is
aware of the grid cells and their occupancy; however, the communication between the planner and collision
checker consists merely of a configuration sent to the collision checker, which returns whether it is valid or
not. The collision checker in EXOTica can perform the assignment of configurations sent by the planner to
grid cells. However, this information is not available to the planner in OMPL and cannot be used by the
planner to identify invalid vertices and edges due to a change, to initiate roadmap adaptation.

We establish three approaches to make the 3D grid information available for the planner for implemen-
tation of ARM in ROS using OMPL and EXOTica:

• Hard-code the initial environment and robot model in the planner in OMPL and perform the cell as-
signment of configurations as well in the collision checker in EXOTica as in the planner in OMPL. Be-
sides performing the same assignment double, which slows down the planning time and makes the
planner inapplicable if the initial environment or robot changes.

• Use a lookup table that consists of configurations and associated grid cells. The collision checker ap-
pends this lookup table in EXOTica for every configuration it receives from OMPL. Besides the state
validity for collision checking, an additional information stream is necessary to access this lookup ta-
ble from OMPL. Additionally, we need the updated occupancy of the 3D grid in the planner, which
allows the planner to look up which configurations are associated with the changed grid cells. For ev-
ery call to the collision checker, which is done often for checking candidate vertices and edges [23], the
lookup table is appended because the probability that the exact configuration as a random sample is
already in the lookup table is zero.

• Use a lookup table, as in the second approach, that is not appended for every collision check. If con-
figurations are close to each other, we can assume that these are associated with the same grid cells.
For this implementation, interpolation is necessary to assign configurations that are not in the lookup
table to grid cells. This interpolation prevents the size of the lookup table from infinitely being in-
creased with new configuration-grid cell pairs. The lookup table must consist of a sufficient number
of configurations and assigned grid cells to ensure a successful assignment. We suggest implementing
supervised learning to learn the lookup table from training data to ensure the most informative grid
cell-configuration pairs are added. We suggest performing this learning before the motion planning to

5.1. Implementation ARM within the Robot Operating System 33

prevent continuous information streams between OMPL and EXOTica. Additionally, we must imple-
ment an information stream with the updated occupancy of the 3D grid to the planner. Due to time
constraints, we suggest implementing learning to create a lookup table for future work.

We did not implement these three approaches to overcome the lack of communication regarding the grid cell
assignment of vertices and edges due to the discussed limitations. Therefore, we suggest a simplified ARM
algorithm to enable ARM implementation in ROS using OMPL and EXOTica.

Additionally, we provide a proof-of-concept implementation of the assignment and lookup of vertices and
edges using the 3D grid cells and roadmap adaptation by the non-simplified ARM. This implementation can
not be used as a planner.

5.1.4. Simplified adaptive roadmap algorithm
We implement a simplified version of ARM (sARM) using OMPL and EXOTica to allow implementation in
ROS. sARM does not perform the initial assignment of vertices and edges to grid cells because the planner
in OMPL can not use this information. Therefore, we implemented a slightly different approach to identify
the invalid vertices and edges before the roadmap adaptation. Instead of instantly determining the invalid
vertices and edges based on the initial assignment of vertices and edges to grid cells (Section 4.4.2), sARM
checks all vertices for validity for an incremental change. Checking all vertices does not drive the planning
time because the number of collision checks performed by checking all vertices of the roadmap is around
600-1000 times less compared to constructing a new roadmap of the same size with PRM [23]. The 3D grid
generation, updating the occupancy of this grid, representation of configurations in W and the adaptation of
the vertices are equal to the proposed ARM (Section 4.4.1).

Figure 5.2 presents a flow diagram of sARM. To summarise, sARM generates a 3D grid, where grid cells
represent the occupancy of the environment. For every change of the occupancy of one or multiple grid
cells, the roadmap adaptation is initiated. The algorithm checks all vertices for validity to determine which to
adapt. The roadmap adaptation consists of removing invalid vertices and connected edges, replacing them
by resampling and connecting them to the roadmap by creating edges. sARM repeats this procedure for every
change in occupancy of grid cells in the 3D grid. The adapted roadmap Ra(V ,E) can be extracted to perform
a graph search and find a path.

If change occupancy 3D
grid

R(V,E)

R(V,E)
3D grid
Grid with assigned
 vertices and edges

Ra(V,E)

Update occupancy 3D
grid

3D gridAppearing/
disappearing

obstacle

3D grid generationEnvironment size

Grid cell size 3D grid

Repeated for every change

Performed once during initialisation

Assign vertices and
edges to cells:

1. Workspace
representation

2. Assignment of
vertices

3. Assignment of
edges

R(V,E)
Grid with assigned
 vertices and edges Simple roadmap

adaptation:

1*. Check vertices for
validity

2.Replace vertex by
resampling and connect

to R(V,E)

R(V,E)

Figure 5.2: This flow diagram describes the simplified adaptive roadmap algorithm (sARM), which enables the implementation in the
Robot Operating System for this thesis. This algorithm is slightly different compared to the proposed adaptive roadmap algorithm (ARM)
in Figure 4.1. We visualise the elements that are not in sARM, but are in ARM transparent, and the step that is altered with a dashed
border. The initialisation (green box) consists of the 3D grid generation. For every incremental change, the occupancy of the 3D grid is
updated and the roadmap adaptation of the invalid vertices is initiated (purple box). sARM checks all vertices for validity to determine
which to adapt because the initial assignment of vertices and edges to grid cells is not performed. The adapted roadmap Ra (V ,E) can be
extracted to perform a graph search and find a path. We discuss the bright blue step in the flow chart in Section 5.1.4

We elaborate on the roadmap adaptation, indicated in bright blue in Figure 5.2, since the remaining steps

34 Experiments & Results

are equal to ARM and discussed in Section 4.4. Algorithm 4 presents the roadmap adaptation performed by
sARM, which is slightly different from the adaptation of ARM, described in Algorithm 3: the identification of
invalid vertices is altered, and lines 29-31 of Algorithm 3 are removed. As the roadmap adaptation is non-
divergent from the adaptation in lines 5-30 in Algorithm 3, we refer to these lines in Algorithm 4. The two
steps of the roadmap adaptation of this algorithm are:

1*. Check all vertices for validity: for every change in the environment (line 2). sARM checks all vertices
v ∈V for validity using the collision checker set in EXOTica, which assigns a configuration to grid cells,
to identify invalid vertices due to the incremental change. If the set IQq, the indices of the grid cells
associated with the configuration representing the vertex, intersects with the set IO, the indices as-
sociated with occupied grid cells (line 4), the configuration is invalid: qinv. If the corresponding grid
cells are free, the configuration is valid. This step is divergent from step 1 of the roadmap adaptation
in Section 4.4.3, hence the *, because the initial assignment of vertices and edges to grid cells is not
performed, disabling the quick lookup by the mapping M .

2. Replace vertex by resampling and connect to R(V,E): see step 2 of the roadmap adaptation in the pro-
posed ARM (Section 4.4.3) and lines 5-30 in Algorithm 3.

Algorithm 4 Roadmap adaptation by sARM

Input: R(V ,E): Initial roadmap
IO: occupied grid cells
k: number of closest neighbours to examine for configuration
d : resampling area that defines the bounds on Csub

Output: Ra (V ,E): Adapted roadmap
1: if change in IO then
2: for all v ∈V do . Section 5.1.4 item 1*
3: q ← v
4: if IQq ∩ IO 6= ; then
5: qinv ← q
6-31: Algorithm 3: lines 5-30

32: end if
33: end for
34: end if
35: return Ra (V ,E)

The edges that become invalid due to the incremental change, of which the source and target vertex are
valid, are not adapted by sARM as is done in step 3 of ARM (Section 4.4.3). Checking all edges for validity, as
is done with the vertices, is costly due to the interpolation of edges for collision checking.

5.1.5. Technical details on the implementation
We add a new planner to the planners in OMPL that can locally adapt the roadmap. The implementation of
the planner is based on the implementation of PRM in OMPL. The roadmap in OMPL is an object of the class
ompl::base::PlannerData, which inherits from the graph structure adjacency_list of the Boost Graph Library
[49, 50]. The planner in OMPL requires an initial roadmap, which it retains valid by checking whether the
vertices are valid if the algorithm is called and adapting the invalid vertices, as is described in 5.1.4. If sARM
successfully adapts the roadmap to a change in the environment, a graph search with A* provides the path
for the query, which is an optimal and efficient algorithm that bases its cost value on the travelled distance
and a heuristic based on the distance to the goal [46].

The planning problem is set in EXOTica, which implements the planner from OMPL as the solver. Within
the planning problem, EXOTica loads the robot from a Unified Robot Description Format (URDF) file, which
contains information about the kinematic structure, and a Semantic Robot Description Format (SRDF) file,
which contains semantic information such as joint groups or additional transforms. EXOTica loads the ob-
stacles in the environment from a .scene file, in which the obstacle locations, sizes and shapes are specified.
One can specify additional parameters, such as the environment bounds and joint groups to plan for, in the
planning problem in EXOTica. Lastly, we set the constraints for the planning problem in a task map that maps
C to the task space and can be loaded as a plugin in EXOTica; an example of a task map is a collision check-
ing module. The task map for sARM checks for collision with obstacles, based on the occupancy of the 3D

5.2. Planning scenarios 35

grid, and additionally checks adherence to the joint limits and whether the robot is not in self-collision. The
task map creates the 3D grid in the initialisation and sets the grid cells associated with the static obstacles
to occupied. If obstacles appear or disappear, the occupancy of grid cells associated with the obstacle is up-
dated. For every configuration the task map receives from OMPL for collision checking receives, it performs
the following steps:

1. Check whether the joint limits are satisfied.

2. Check whether the configuration is not in self-collision.

3. Assign configurations to grid cells based on their representation in W . Check whether the associated
grid cells are free.

The task map returns the sample is valid to OMPL if all steps are satisfied. If any step is not satisfied, the
sample is invalid and the successive steps are not performed.

The planning problem in EXOTica can be altered, by changing the robot, obstacles or task map specific
parameters, such as the 3D grid cell size, which makes this implementation of sARM suitable for various
problems.

5.1.6. Discussion
No instant determination of the vertices and edges associated with a grid cell is performed in sARM due to
the lack of communication between the planner in OMPL and the collision checker in EXOTica. We simplify
ARM to sARM to enable implementation of the planner in ROS and use this planner to evaluate the effect
of locally adapting the roadmap on the planning time for mobile manipulators. However, it must be noted
that in the implemented algorithm, the roadmap is not entirely in Cfree, because the edges associated with a
newly occupied grid cell, of which the source and target vertices are in free grid cells, are not adapted. For
future research, we suggest implementing the non-simplified ARM as a planner, which additionally ensures
all edges are in Cfree and enables quick lookup of vertices and edges associated with an incremental change.
In this thesis, we provide a proof-of-concept implementation of the assignment and lookup of vertices and
edges using the 3D grid cells and roadmap adaptation by the non-simplified ARM.

5.2. Planning scenarios
Before presenting the experiment setups, we discuss details regarding the problem and planner settings re-
ferred to in the experiments.

5.2.1. Planners
In the experiments, we implement two state-of-the-art sampling-based motion planners: RRT (Section 2.5)
and PRM (Section 2.6). RRT represents the single-query for comparison, and PRM the multi-query algorithm.
The third planner referred to in these experiments is the proposed algorithm: sARM. The planner-specific
settings are set for every experiment individually.

• RRT: the implementation of RRT in OMPL [53] is used for the experiments. Settings of RRT that can
be specified in OMPL are the range parameter, which is the maximum length of an edge to be added
in the tree, and the goal bias, introduced in Section 2.5. OMPL suggests to set the goal bias to 0.05,
which we do for the experiments in this chapter. The range parameter is set to 15m, determined with
the experiment in Appendix A.1.

• PRM: the implementation of PRM in OMPL [53] is used for the experiments. The implementation of
PRM in OMPL adds qstart and qgoal to the roadmap as first configurations in the roadmap construction
step and if they are connected, the solution is returned. This is slightly different from the description
of PRM in Section 2.6, where first, the entire roadmap is constructed, and then, qstart and qgoal are
connected. The setting for PRM that can be specified in OMPL is the number of nearest neighbours,
introduced in Section 2.6. We set the number of nearest neighbours parameter to 10, determined with
the experiment in Appendix A.2.

• sARM: we use sARM (Section 5.1.4), which we implemented in OMPL, for the experiments. The initial
roadmaps for sARM in these experiments are generated with PRM in the corresponding environment.
As ARM uses an equivalent connection strategy for a new vertex to nearest neighbours as PRM, we set

36 Experiments & Results

the number of nearest neighbours parameter to 10, which resulted in a good performance for PRM in
Appendix A.2.

5.2.2. Robots
We plan for two robots in the experiments: a 3-DOF mobile robot and a 10-DOF mobile manipulator. Both
robots consist of the same mobile robot, which is considered nonholonomic due to the wheels underneath
the robot. To adhere to these constraints, Reeds-Shepp Curves describe the path between two vertices. We set
the minimum turning radius of the robots in these experiments to 0.2m. The distance function for the DOFs
represented in R are computed with Equation (2.6), and for the DOFs represented in Swith Equation (2.7).

• 3-DOF mobile robot: the mobile robot is the Boxer indoor mobile robot developed by Clearpath, which
has three DOFs: translation in the 2D plane and yaw: C = R2 ×S, with a fixed top mount. Figure 5.3
presents the properties of the mobile robot, which is the base of the visualised mobile manipulator.
More technical details concerning the mobile base are provided by Clearpath [9].

• 10-DOF mobile manipulator: the mobile manipulator consists of a base, which is the previously intro-
duced 3-DOF Clearpath mobile robot, and a manipulator on top, which is the 7-DOF PANDA robotic
arm developed by Franka Emika [13]. Therefore, this robot has 10-DOF in total, with C = R2 ×S×R7,
because all arm joints have limits. We perform coupled motion planning for the base and arm of the
mobile manipulator. Figure 5.3 presents an image of the mobile manipulator with indicated properties.
More technical details concerning the robotic arm are provided by Franka Emika [13].

0.75 m0.55 m

0.66 m

A1: [-2.90, 2.90]

A2: [-1.76, 1.76]

A3: [-2.90, 2.90]

A4: [-3.07, -0.07]

A5: [-2.90, 2.90]A6: [-0.02, 3.75]

A7: [-2.90, 2.90]

Figure 5.3: This figure presents the properties of the 10 degrees of freedom (DOFs) mobile manipulator, which includes the 3-DOF
mobile robot as base. The 7 DOFs of the robot arm, A1 to A7, rotating at junctures highlighted with blue lines, are indicated with the
corresponding joint limits (in radians).

5.2.3. Initial environment
In the experiments, we plan in four 3D environments: an environment without obstacles, an environment
with three obstacles, a supermarket environment with ten obstacles, and a partially lowered supermarket
environment with eight obstacles. All environments have a ground plane of equal size (20x20m) and a height
of 2m because the robots can not extend higher than 2m. Figure 5.4 presents the environments.

• Zero-obstacle environment: every configuration is valid if the joint and environment limits are satis-
fied.

• Three-obstacle environment: see Figure 5.4a.

• Ten-obstacle environment: representing a supermarket, see Figure 5.4b. We use this environment
because a supermarket is an incrementally changing environment, as was explained in Chapter 1.

5.2. Planning scenarios 37

• Eight-obstacle environment: representing a partially lowered supermarket environment, see Figure 5.4c
where the robot must bend the arm to go under the obstacles in the air and can not go around. Envi-
ronments where the robot has to fold the arm to pass by an obstacle require the flexibility from coupled
motion planning. The robot cannot pass by this obstacle if the planning for the base and arm is decou-
pled.

(a) (b) (c)

Figure 5.4: These figures present the initial environments of equal size (20x20x2m) with obstacles for the experiments, with (a) three
obstacles, (b) ten obstacles, representing a supermarket with the smallest isle width of 2m and (c) eight obstacles, representing a partially
lowered supermarket environment, where we replaced four obstacles from the supermarket environment with two obstacles in the air
with a lower bound of z = 1.25m.

5.2.4. Incremental changes
In the experiments for assessing the performance of sARM, the planning environments are incrementally
changing. We add one obstacle in an unoccupied space for every new query and remove the previously added
obstacle while the initial environment remains constant. Adding an obstacle for every query ensures equiv-
alent behaviour as if an obstacle appears during the execution of a trajectory since both induce roadmap
adaptation for sARM and reconstruction for state-of-the-art sampling-based planners.

5.2.5. Collision checking
The sampling-based planners use two collision checking approaches in the experiments: sphere-based col-
lision checking and collision checking based on a 3D occupancy grid. Both collision checking approaches
determine equivalently whether a configuration adheres to the joint limits and whether no self-collision oc-
curs due to the configuration. These methods check differently whether a robot configuration is in-collision
with an obstacle.

We created both collision checkers in EXOTica in this thesis because the standard collision checker in EX-
OTica [40] is time-consuming and can not solve a planning problem in practical time bounds. This approach
represents the robot by a triangle mesh and checks for every triangle whether it is in contact with remain-
ing objects. This is time-consuming as many triangles represent the robot, resulting in many checks are
performed for every configuration. The standard collision checker can not solve one query for the 10-DOF
mobile manipulator in the ten-obstacle environment of Figure 5.4b within one hour, using RRT and PRM
with various settings. If we represent the robot by primitive shapes, such as spheres and boxes, less collision
checks are necessary. For instance, if the robot is represented by a box, and checks whether it is in collision
with a box-shaped obstacle, merely four contacts have to be checked to determine whether the boxes overlap.

• Sphere-based collision checking: represent the robot and the environment by englobing spheres; this
approach is widely used for collision checking, for example, in [47, 62]. A robot sphere is denoted by a
and an obstacle sphere by b. Consider the robot spheres of a configuration represented by the union
S Aq, and the obstacle spheres by the union SB :

S Aq =
na⋃

i=1
ai & SB =

nb⋃
j=1

bi

Where na and nb are the number of robot and obstacle spheres, respectively. A non-linear constraint
for collision avoidance is set, ensuring that the spheres englobing the robot do not intersect with the

38 Experiments & Results

spheres englobing the obstacles:

S Aq ∩SB =;,

imposing that the distance between the spheres is larger than the sum of their radii:∥∥pi −p j
∥∥≥ ri + r j ∀i ∈ 1, ...,na , j ∈ 1, ...,nb (5.1)

Where pi and p j are the centre positions of the i -th robot sphere and j -th obstacle sphere, respectively,
and ri and r j are the radii of the i -th robot sphere and j -th obstacle sphere, respectively. Figure 5.5
presents an englobed mobile manipulator and an englobed obstacle.

The number of spheres representing the robot must be chosen carefully. More spheres represent the
robot more accurately, which results in less conservative collision checking: where robot configurations
are invalid while the englobing sphere is in-collision, but the robot is not. However, more computations
of Equation (5.1) are necessary if the robot is represented by more spheres, increasing the planning
time.

• Collision checking based on a 3D occupancy grid: represents the environment with a 3D grid as in
Section 4.4.1. This collision checking approach represents a configuration in W by a bounding box and
is assigned to grid cells, equivalent as we discussed in step 1 and 2 in Section 4.4.2. If an obstacle is
associated with an assigned grid cell, the configuration is invalid.

(a) (b)

Figure 5.5: These figures visualise the englobing spheres of (a) the 10 degrees of freedom (DOFs) mobile manipulator and (b) an obstacle
in sphere-based collision checking. If the robot spheres do not intersect with obstacle spheres, the robot configuration is in Cfree.

The self-collision check used in all experiments is from the standard collision checker in EXOTica [40]
based on triangular meshes. The self-collision check does not check a link with all remaining robot links for
collision, as it is specified that some links never collide. As the self-collision check does not check all robot
links, the planning time remains within practical time bounds.

5.2.6. Queries
For the planning problems in the experiments, we generate different queries to ensure the results are not
dependent on a specific query. For every new query, the new start state is the previous goal state, and the
new goal state is the next valid goal state that was set. We specify the number of queries planned for in the
experimental setups. The queries are environment-specific; for the zero- and three-obstacle environments,
we determine them by uniform random sampling in the environment. For the ten- and eight-obstacle envi-
ronments, based on supermarkets with narrow corridors, the (x, y) positions of the base for the queries are
manually determined to ensure the robot can reach all corridors (see Figure 5.8). We randomly select the
values for the remaining DOFs from a list of valid configurations to ensure no goal states limit the constraints
or are in self-collision.

5.3. Experiment 1: Effect of robot DOFs on the planning time 39

5.3. Experiment 1: Effect of robot DOFs on the planning time
We performed experiments to show the effect of the robot DOFs on the planning time for single- and multi-
query algorithms in obstacle-cluttered environments, to support the relevance of the research question of
this thesis.

5.3.1. Setup

We carried out experiments in simulation to compare different planners in different scenarios consisting of
the various robots and environments. We set the planning problems in EXOTica [19]. We present details on
the problem and planner settings in Table 5.9. Besides the planners discussed in Section 5.2.1, we included a
PRM implementation that clears the roadmap after every run as a third planner to evaluate the performance
of a multi-query algorithm in a changing environment, where the roadmap can not be reused. We refer
to this PRM implementation as single-query PRM: PRM (SQ), where PRM (MQ) refers to the conventional
multi-query implementation of PRM. We solved planning problems in different environments because the
obstacles in the environment greatly influence the planning time of planning algorithms. For the sphere-
based collision checking, we represented the 3-DOF robot by a single sphere englobing the entire robot, and
the 10-DOF robot by four spheres for an accurate representation of the robot configuration. Table 5.1 presents
the positions of the spheres on the kinematic chain and Figure 5.5a a visualisation.

We assessed the planning time for all combinations in the experiment setup. Additional metrics, such as
the number of performed collision checks, number of vertices and edges of the roadmap, path length, and
success rate, are additionally assessed to get a clear insight into the planning time drivers.

Object Parent link Offset [m] Radius [m]
3-DOF robot base link [0.3,0,0.25] 0.54

10-DOF robot

base link [0.3,0,0.25] 0.54
link 1 [0,0,0] 0.20
link 5 [0,0,0] 0.20
link 7 [0,0,0] 0.23

three-obstacle
environment

obs1 [0,1,0] 1.5
obs1 [0,-1,0] 1.5
obs2-obs3 [0,0,0] 2

ten-obstacle
environment

obs1-obs10 [0,2,0] 1.35
obs1-obs10 [0,0,0] 1.35
obs1-obs10 [0,-2,0] 1.35

Table 5.1: This table visualises the positions of the spheres for sphere-based collision checking for the robots (Section 5.2.2) and two
environments with static obstacles (Section 5.2.3) for Experiment 1 (Section 5.3). The centre of the sphere is at the offset from the parent
link. We represented the rectangular obstacle (obs1) in the three-obstacle environment by two spheres and the two square obstacles
(ob2-obs3) by a single sphere. In the ten-obstacle environment, all obstacles (obs1-obs10) were represented by three spheres.

5.3.2. Results

From the results presented in Figure 5.6, it is clear that as the number of obstacles increased, the planning
time increased. Table 5.2 presents the results concerning the mean planning time, number of vertices, num-
ber of edges, number of collision checks, path length, and success rate. PRM (MQ) had the lowest planning
time for both robots in the environments with three and ten obstacles. PRM (SQ) had the lowest planning
time for the 3-DOF and 10-DOF robots in the empty environment.

5.3.3. Discussion

As the number of obstacles increased, all algorithms performed more collision checks on candidate vertices
and edges that are invalid and, therefore, not added to the roadmap, specifically for the 10-DOF robot due to
collision of the arm. Collision checking is the main drive of sampling-based planners [39], and is therefore
considered the principal reason for the increase in planning time if the number of obstacles increases.

40 Experiments & Results

Figure 5.6: This boxplot presents the results of Experiment 1 (Section 5.3) that assessed the effect of the robot degrees of freedom (DOFs)
on the planning time for hundred queries for a 3-DOF robot and a 10-DOF robot in different environments. 0 obs, 3 obs and 10 obs refer
to the environments in Section 5.2.3. The black lines connect the mean planning times, indicated with red diamonds. The value of the
upper adjacent of PRM (SQ) in the ten-obstacle environment is 41.5s, which is cut off in this visualisation to prevent elongation of the
y-axis. PRM (SQ) indicates an implementation of PRM that clears the roadmap after every query. The experiment setup is presented in
Table 5.9

Planner
Robot
DOFs

Planning
time [s]

Number of
vertices

Number of
edges

Number of colli-
sion checks

Path length
[m]

Success

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

0
o

b
st

ac
le

s

RRT
3 0.12 ± 0.07 26.3 ± 16.0 26.3 ± 16.0 - 19.8 ± 8.1 100%
10 0.15 ± 0.11 28.0 ± 20.6 28.0 ± 20.6 - 30.9 ±15.2 100%

PRM (MQ)
3 0.05 ± 0.01 99.1 ± 57.9 113.5 ± 71.8 - 15.4 ± 5.9 100%
10 0.05 ± 0.01 101.0 ± 58.0 117.0 ± 70.2 - 20.6 ± 8.1 100%

PRM (SQ)
3 0.02 ± 0.00 2.0 ± 0.0 1.0 ± 0.0 - 13.2 ± 5.4 100%
10 0.02 ± 0.00 2.0 ± 0.0 1.0 ± 0.0 - 15.1 ± 5.6 100%

3
o

b
st

ac
le

s

RRT
3 3.23 ± 2.41 22.2 ± 15.7 22.2 ± 15.7 1125.5 ± 843.8 19.6 ± 10.3 100%
10 3.52 ± 3.16 22.9 ± 19.2 22.9 ± 19.2 1216.3 ± 1082.4 30.9 ± 17.6 100%

PRM (MQ)
3 1.36 ± 0.38 105.1 ± 57.9 104.2 ± 69.7 490.8 ± 137.6 17.4 ± 8.5 100%
10 1.30 ± 0.39 102.0 ± 58.0 98.7 ± 65.7 442.4 ± 124.9 23.5 ± 10.6 100%

PRM (SQ)
3 1.55 ± 2.82 8.1 ± 10.1 5.4 ± 9.9 563.9 ± 1027.1 18.2 ± 11.7 100%
10 1.67 ± 2.19 8.1 ± 7.6 5.6 ± 6.8 566.8 ± 746.7 27.2 ± 19.2 100%

10
o

b
st

ac
le

s RRT
3 5.96 ± 10.91 41.1 ± 79.4 41.1 ± 79.4 2033.6 ± 3725.8 21.3 ± 9.5 100%
10 9.60 ± 14.11 53.7 ± 83.2 53.7 ± 83.2 3027.9 ± 4492.7 39.7 ± 19.9 100%

PRM (MQ)
3 4.33 ± 16.89 841.3 ± 195.6 1002.3 ± 235.1 1495.9 ± 5860.7 17.3 ± 6.6 100%
10 3.79 ± 16.71 549.5 ± 166.0 532.1 ± 175.3 1213.4 ± 5329.7 39.9 ±14.5 98%

PRM (SQ)
3 7.02 ± 15.69 24.5 ± 48.7 24.7 ± 57.5 2445.4 ± 5473.7 22.3 ± 14.8 98%
10 14.69 ± 19.81 58.3 ± 71.5 48.4 ± 68.3 4629.4 ± 6230.9 47.4 ± 25.3 99%

Table 5.2: This table presents the results of Experiment 1 (Section 5.3) evaluating the effect of the robot DOFs on the planning time for
hundred queries, concerning the mean and standard deviations of the planning time, number of vertices, edges, collision checks, path
length, and success rates for the three planners. PRM (SQ) is an implementation of PRM that clears the roadmap after every query. We
present the experiment setup in Table 5.9

PRM (MQ) had the lowest planning time for the 10-DOF robot in the three- and ten-obstacle environment
because the time-consuming graph construction due to the obstacles is performed once. After all, the graph
is reusable. However, if PRM planned in a dynamic environment and has to construct a new roadmap for
every query (PRM (SQ)), the planning time was four times the planning time if the roadmap is reused (PRM

5.4. Experiment 2: Comparison of the time spent on roadmap adaptation by ARM and sARM 41

(MQ)) in the ten-obstacle environment. For the zero-obstacle environment, the planning time of PRM (SQ)
was lowest due to the implementation of PRM in OMPL, where before the graph construction, qstart and qgoal

are added to the roadmap. In the zero-obstacle environment, this resulted in directly connecting qstart and
qgoal and returning the solution faster than if samples are drawn in RRT or qstart and qgoal are connected to
the roadmap, and a path is searched in PRM (MQ).

It must be noted that the self-collision check took up 90% of the time spend on a single collision check due
its costly approach (Section 5.2.5). As this is equivalent for all planning problems in all experiments, this does
not affect the comparisons in this thesis. The planning times can be decreased by implementing a custom
self-collision checker based on primitive shapes.

5.3.4. Conclusion

This experiment confirmed that the planning time is lowest for environments with obstacles when reusing the
roadmap, specifically for a high-DOF robot. The large planning time for PRM (SQ) due to the reconstruction
of the roadmap supports the use of single-query algorithms, such as RRT, in dynamic environments. More
importantly, it uncovers the potential of adapting the roadmap locally to changes, which is favourable over
single-query methods if the roadmap adaptation takes less time than solving the problem with a single-query
algorithm.

5.4. Experiment 2: Comparison of the time spent on roadmap adaptation
by ARM and sARM

In this experiment, we compared the time spent on the roadmap adaptation by ARM and sARM to gain insight
into how the algorithm’s planning time would change if the non-simplified algorithm is implemented as a
planner. We focused on comparing the roadmap adaptation and not on the overall planning time. As we do
not solve planning problems in this experiment, we do not use EXOTica. In further experiments, sARM is
implemented as a planner, and we evaluate its performance. Even though we do not deploy the planners in
this experiment, we refer to the methods of roadmap adaptation by ARM and sARM.

5.4.1. Setup

We used the classes from OMPL for the implementation of the roadmap adaptation by sARM and ARM. Ta-
ble 5.9 presents the experimental details. We did not set the number of queries, maximum allowed time, and
graph search algorithm as we do not solve planning problems.

We run the adaptation by ARM and sARM for the same initial environment where we add for every run an
incremental change of 1×1×1m such that space for the robot to pass by is left (see Figure 5.7). The initial
roadmap is equal for both roadmap adaptation approaches. We evaluated the roadmap adaptation for fifty
incremental changes.

For ARM and sARM we assessed the time spent on: identification of the invalid vertices of the roadmap,
resampling a vertex and connecting the resampled vertex to the roadmap. For ARM, we additionally assessed
the time spent on the initial assignment of vertices and edges and the time spent on identifying the invalid
edges and removing them, as sARM does not identify and remove edges of which the source or target vertex
is not in collision. We divided the time for replacing vertices, connecting them to the roadmap and removing
invalid edges by the number of vertex or edge adaptations the algorithms performed to provide a straightfor-
ward comparison.

5.4.2. Results

ARM and sARM resampled on average 2.4 ± 2.8 and 2.5 ± 2.6 vertices, respectively, and ARM removed 11.2
± 9.7 edges for each incremental change. ARM and sARM spent 7.57 ± 8.18 and 8.61 ± 8.52 seconds on the
roadmap adaptation due to one incremental change, respectively; the roadmap adaptation is 10% faster by
ARM than by sARM. For ARM, this excludes the 10.91 ± 0.29 seconds spent on the initial assignment of vertices
and edges, which it performs once. sARM does not perform this initial assignment. Table 5.3 presents a
specification of the time spent on the roadmap adaptation for ARM and sARM. ARM identifies the invalid
vertices of the roadmap due to an incremental change 1000x faster than sARM.

42 Experiments & Results

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

2

3

4

5

6

7

8

9

10

1112

13
14

15

16

17

18

19

20

21

22

23 24

25

26

27
28

29

30
31

32

33

34

3536

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

6667

68

6970

71

72

73

74

75

76

77

78

79

80

8182

83

84

85

86

87

88

1

89 90 91 9293

94 95

96

97

98

99

Figure 5.7: This figure presents the 2D projection of the in-
cremental changes (Section 5.2.4) used in the experiments in
the ten- and eight-obstacle environment (Section 5.2.3). The
obstacles are 1×1×1m (blue) and we present the order the ob-
stacles are added and removed by the numbering. We project
this to 2D for clarity. The obstacles are at the ground, 0.5m,
1m or 1.5m above the ground.

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 5.8: This figure presents the (x, y) position of the
base of goal configurations in the ten- and eight-obstacle
environments (Section 5.2.3) used in the experiments. For
every new query, the start is the previous goal configuration.

ARM sARM
Update occupancy 3D grid [s] 1.75×10−4 ± 8.37×10−6 3.26×10−4 ± 2.79×10−5

Identify invalid vertices of the roadmap [s] 8.55×10−4 ± 5.24×10−5 0.66 ± 0.016
Identify invalid edges of the roadmap [s] 1.04×10−3 ± 1.53×10−3 -
Find replacing vertex (per vertex) [s] 2.80 ± 0.94 3.04 ± 1.21
Connect replacing vertex to the roadmap
(per vertex) [s]

0.45 ± 0.16 0.44 ± 0.17

Remove invalid edges (per edge) [s] 1.46×10−6 ± 1.63×10−6 -

Table 5.3: This table presents the results of Experiment 2 (Section 5.4) that compares the time spent on roadmap adaptation by the
proposed adaptive roadmap algorithm (ARM) and the simplified implementation (sARM) to gain an insight in how the planning time
of the algorithm would change if the non-simplified algorithm is implemented as a planner. The time is indicated by the mean ± the
standard deviation. We present the experiment setup in Table 5.9

5.4.3. Discussion
ARM and sARM perform a similar number of vertex adaptations. Additionally, the time spent on finding a
replacing vertex and connecting it to the roadmap is similar as they perform identical steps for the vertex
adaptation. The time required to find a replacing vertex is the primary driver of the roadmap adaptation time
for ARM and sARM as many randomly drawn samples to replace the vertex are invalid due to the narrow
corridors in the initial environment and the forced resampling in the neighbourhood of the invalid vertex,
and thus the incremental obstacle, to maintain the connectivity of the graph.

The approaches differ by the time spent on the identification of the invalid vertices. ARM identifies the
invalid vertices 1000x faster as it uses the mapping from grid cells to vertices for a quick lookup of the vertices
associated with the incremental change while sARM checks all vertices for validity due to an incremental
change. To obtain this mapping, ARM invests time, approximately 11s, to assign all vertices and edges to
grid cells. As the difference in roadmap adaptation time for every incremental change is approximately 1s in
favour of ARM, the time investment of the initial assignment of vertices and edges was returned after eleven
incremental changes.

Additionally, ARM ensures that the entire roadmap is in C f r ee , where sARM merely updates the invalid
edges of which the source or target vertex is invalid. ARM removed approximately 11 edges for every incre-
mental change, indicating that after every incremental change the roadmap is adapted by sARM, 11 invalid
edges remain in the roadmap. This highlights the importance of adapting edges of which the source and tar-
get vertex are valid, but the edge itself is not. If the initial roadmap consists of short edges with respect to
the obstacle size, this will not occur because the source or target vertex will also be invalid. The identifica-

5.5. Experiment 3: Effect of the resampling area on the adaptation time of sARM 43

tion of the invalid edges by sARM would be time-consuming as the initial assignment of vertices and edges
can not be used when solving planning problems using EXOTica as was explained in Section 5.1.4. To solve
planning problems with EXOTica, which enables the planner’s implementation within ROS, we use sARM.
We perform the remaining experiments in this chapter with sARM. However, for roadmap adaptation that
ensures the entire roadmap is in Cfree, and for a speedup of the adaptation once the time investment of the
initial assignment is returned, implementing ARM within ROS is suggested for future work.

5.4.4. Conclusion
In this experiment, the roadmap adaptation due to an incremental change is 10% faster by ARM than by
sARM as a quick lookup of invalid vertices and edges is enabled. ARM invests time in the initial assignment of
vertices and edges to the grid cells to allow this quick lookup. In this experiment, the invested time is returned
after approximately 11 incremental changes.

5.5. Experiment 3: Effect of the resampling area on the adaptation time of
sARM

In this experiment, we determined the resampling area for sARM that ensures the fastest roadmap adapta-
tion. sARM sets a subspace of C is set, Csub, with (x,y) bounds determined by a shift of d from the invalid
vertex to obtain a replacing vertex close to the invalid vertex (Equation (4.4)). sARM generates a new vertex in
Csub by random sampling. We assessed the time sARM spends roadmap adaptation for different values of d .

5.5.1. Setup
We carried out experiments in simulation solving motion planning problems with sARM with d = [1m,6m]
in two environments. We set the planning problems in EXOTica [19]. We present details on the problem and
planner settings in Table 5.9. We added an obstacle for every query and remove the previously added obsta-
cle. We placed the obstacles in the corridors such that space for the robot to pass by is left (see Figure 5.7).
The appearing obstacles were 1×1×1m because this is approximately the size of incremental changes rep-
resenting appearing boxes in corridors in a supermarket environment. The initial roadmap we use in these
experiments was equal for all values of d . The grid cell size used for the 3D occupancy grid collision checking
was 1×1×0.25m for both environments because this is proportionate to the size of the appearing obstacles,
does not make the narrow corridors inaccessible, and δz = 0.25m allows the robot to bend its arm to go under
the obstacles in the air. Except for the d-value, all problem and planner settings are equal.

We assessed the adaptation time, which is the planning time divided by the number of adaptations, be-
cause d affects the time necessary to perform a single adaptation. Even though the initial roadmap was equal,
the number of adaptations can differ due to the randomised generation of a replacing vertex. The lowest value
of d is preferred to ensure the replacing vertex is close by the invalid vertex to maintain the connectivity of
the roadmap. However, this must not increase the planning time due to time-consuming resampling.

5.5.2. Results
Table 5.4 presents the adaptation time for the values of d = [1m,6m]. For the ten-obstacle environment, the
results showed a similar adaptation time for d = [2m,6m]. The adaptation time for d = 1m is more than
double than for the remaining d-values with a success rate of 76%, while the success rates of the remaining
d-values are 98−100%. In the eight-obstacle environment, d = [1m,6m] showed a similar adaptation time.
The success rate for d = 1m is 44%, while the success rates of the remaining d-values are 98−100%.

5.5.3. Discussion
We performed this experiment for fifty queries because too many roadmap adaptations cause the roadmap
to divide into multiple connected components, which causes failure if qstart and qgoal are connected to a
different component. When planning for fifty queries, and thus fifty appearing obstacles, no disconnected
components arise for these planning problems, ensuring the results of this experiment are not affected by the
roadmap getting disconnected.

Changing the d−value does not result in substantial differences in the adaptation time, except for d = 1m.
If d = 1m, sARM resampled in a mainly occupied Csub, due to the appearing obstacle of 1× 1× 1m, which
resulted in a higher adaptation time and a lower success rate because the algorithm more often failed to find
a valid replacing vertex in the allowed time.

44 Experiments & Results

d [m] Adaptation time [s] Success
Mean ± STD

10
o

b
st

ac
le

s 1 9.02 ± 13.34 76%
2 3.80 ± 1.10 100%
3 4.08 ± 1.37 100%
4 4.05 ± 0.92 100%
5 4.09 ± 1.18 98%
6 4.35 ± 1.23 100%

8
o

b
st

ac
le

s

1 4.42 ± 2.53 44%
2 3.72 ± 1.58 100%
3 3.60 ± 1.08 100%
4 3.94 ± 1.25 100%
5 4.00 ± 1.68 98%
6 3.98 ± 1.40 100%

Table 5.4: This table presents the results of Experiment 3 (Section 5.5) for the ten-obstacle and the more challenging eight-obstacle en-
vironment for fifty queries where for every query an obstacle of 1×1×1m appeared, to determine the d-value that ensures the fastest
roadmap adaptation by the proposed simplified adaptive roadmap algorithm (sARM). The d-value describes the subspace of the con-
figuration space in which samples are drawn to find a replacing sample close by the invalid sample by sARM. The adaptation time is the
planning time of sARM divided by the number of performed adaptations. We present the experiment setup in Table 5.9

5.5.4. Conclusion
For both environments, we conclude sARM with d = 2m performs best as the adaptation time is similar to
the higher d-values and the replacing vertex is sampled closer by the invalid vertex than for higher values of
d , which is favorable in the interest of maintaining a connected graph.

5.6. Experiment 4: Effect of the grid cell size on the planning time of sARM
In this experiment, we evaluated which grid cell size ensured the lowest planning time for sARM. In Sec-
tion 4.5 we described that the size of the 3D grid cells influences the planning time of sARM and that the grid
cell size is dependent on the environment geometry and the size of the appearing obstacles.

5.6.1. Setup
We carried out experiments in simulation solving planning problems with sARM with various grid cell sizes,
which we set in EXOTica [19]. We present details on the problem and planner settings in Table 5.9. We added
an obstacle for every query and remove the previously added obstacle. The incremental changes were equal
to Experiment 3 (Section 5.5): 1× 1× 1m (see Figure 5.7). All planner and parameter settings were equal,
except for the grid cell size. We set the value of d to 2m because this ensured the fastest roadmap adaptation
in Experiment 3 (Section 5.5) in this environment.

The grid cell sizes in this experiment were 0.1×0.1×0.1m, 0.25×0.25×0.25m, 0.5×0.5×0.5m and 1×1×1m,
thus one tenth, a quarter, half and the equal to the size of the incremental changes, respectively. To maintain
accessibility of the corridors that are in the initial environment, the grid cell size was 1×1×1m at maximum.

In this experiment, we evaluated the planning time of the implementations of sARM with different grid
cell sizes.

5.6.2. Results
Table 5.5 presents the results of this experiment. The planning time was similar for the grid with cells of size
0.5×0.5×0.5m and 1×1×1m, slightly higher for the grid with cells of size 0.25×0.25×0.25m, and more than
double for the grid with cells of size 0.1×0.1×0.1m. As the grid cell size increased, the number of roadmap
adaptations increased, the number of collision checks increased, and the path length was higher.

5.6.3. Discussion
For sARM with larger grid cells, more vertex adaptations were initiated due to the more conservative ap-
proach of representing the occupancy of the environment by the large grid cells. The increased number of
adaptations caused the increase in collision checks, which were performed to find a replacing vertex. The
conservative approach also caused narrow passages getting blocked for the larger grid cells, increasing the
path length.

5.7. Experiment 5: Disconnected roadmap due to adaptations by sARM 45

δx =
δy = δz
[m]

Planning
time [s]

Number of
vertices

Number of
edges

Number of colli-
sion checks

Path length
[m]

Number of
adaptations

Success

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD
0.1 34.91 ± 24.79 160.0 ± 0.0 436.5 ± 72.85 3050.3 ± 1728.7 40.1 ± 21.2 2.2 ± 1.6 98%
0.25 14.76 ± 16.55 160.0 ± 0.0 436.5 ± 77.4 3364.9 ± 1914.6 41.5 ± 20.2 2.5 ± 1.9 100%
0.5 12.94 ± 16.67 160.0 ± 0.0 452.6 ± 85.4 3407.3 ± 2155.6 45.9 ± 24.5 2.7 ± 2.2 100%
1 12.77 ± 16.67 160.0 ± 0.0 389.0 ± 33.9 3677.9 ± 2677.3 48.8 ± 22.6 3.3 ± 2.8 100%

Table 5.5: This table presents the results of Experiment 4 (Section 5.6) for fifty queries solved by the proposed simplified adaptive
roadmap algorithm where for every query an obstacle of 1×1×1m appeared, to determine the effect of the grid cell size on the planning
time. δk denotes the length of the grid cell in dimension k. We present the experiment setup in Table 5.9

The adaptation time, which is the planning time divided by the number of adaptations, is lower for larger
grid cells, as more vertices were adapted while the planning time did not increase. The higher adaptation time
for the smaller grid cells is because more grid cells need to be updated if an obstacle appears. Additionally, the
assignment of the vertices was more time-consuming as they were assigned to more grid cells. For the grid
cell sizes of 0.25×0.25×0.25m and 0.5×0.5×0.5m, this does not show in the planning time as the increased
adaptation time was compensated by the lower number of adaptations performed. For a grid cell size 0.1×
0.1× 0.1m, the lower number of adaptations did not compensate for the increased adaptation time as the
planning time was more than double the planning time of the remaining grid cell sizes.

Note that δz is additionally dependent on the obstacles in the air and must be set to a value that ensures
the robot can bend its arm to go under obstacles.

For environments with different geometries, this experiment must be repeated to find the grid cell size
that results in the lowest planning time; as we discussed that the grid cell size must be determined based on
the environment geometry and width of the narrow passages in Section 4.5.2.

5.6.4. Conclusion
As the planning times of the grid cells of half (0.5×0.5×0.5m) and equal to (1×1×1m) the size of the incre-
mental changes were lowest, these values are preferred over smaller grid cell sizes. We favor the grid cells of
half the size of the incremental changes as the path length is shorter. This experiment must be repeated when
planning in a different environment as the grid cell size is environment-specific.

5.7. Experiment 5: Disconnected roadmap due to adaptations by sARM
This experiment aimed to find the contribution of the roadmap getting disconnected on the failure rate of
sARM. Too many roadmap adaptations cause the roadmap to divide into multiple connected components,
as was discussed in Section 5.5.3.

5.7.1. Setup
We carried out experiments in simulation where sARM adapted the roadmap to changes and solved the mo-
tion planning problem, and assessed the causes of failure. We set the planning problems in EXOTica [19].
We present details on the problem and planner settings in Table 5.9. sARM solved 200 queries reusing a sin-
gle roadmap, and for every query, an obstacle was added, and the previously added obstacle was removed.
Figure 5.7 presents the hundred incremental changes, which we added for the first hundred queries, and the
addition was repeated for the second hundred. The grid cell size for the 3D occupancy grid collision checking
was 0.5×0.5×0.25m, since Experiment 4 (Section 5.6) reported the best performance and δz = 0.25m allows
the robot to bend its arm to go under the obstacles in the air.

The disconnected roadmap results in failure if qstart and qgoal are connected to different connected com-
ponents. Due to the assumption that the incremental changes do not violate the connectivity of the free
configuration space (Section 1.1.3), we know a path exists between qstart and qgoal.

We evaluated the failure rate (100% − success rate) of sARM with respect to the total number of adapta-
tions performed on a single roadmap. Additionally, we assessed the contribution to the failure rate of qstart

and qgoal in different components.

46 Experiments & Results

5.7.2. Results
Table 5.6 presents the failure rate of sARM with respect to the total number of adaptations it performed: the
more adaptations sARM performed on a single roadmap, the higher the failure rate. Every failure of sARM
was caused by qstart and qgoal connected to a different connected component. Figure 5.9a presents the initial
roadmap and Figure 5.9b the disconnected roadmap after 521 adaptations.

Adapted vertices Failure
100 2.0%
200 7.5%
300 11.3%
400 14.0%
500 17.8%

Table 5.6: This table presents the results of Experiment 5 (Section 5.7) that aims to find how the roadmap disconnection due to the adap-
tations affects the failure rate. We report the failure rate (100% − success rate) of the proposed simplified adaptive roadmap algorithm
with respect to the total number of vertex adaptations it performed on a single roadmap, evaluated for 200 queries where for every query
an obstacle of 1×1×1m appeared. We present the experiment setup in Table 5.9

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

(a) (b)

Figure 5.9: These figures visualise a 2D projection of the (x,y) coordinates of the (a) initial roadmap and the (b) disconnected roadmap
after 521 adaptations by sARM due to two hundred incremental changes in an environment with static obstacles (blue) in Experiment 5
(Section 5.7). We visualise the 2D projection of hundred incremental changes with dashed blue squares; the addition of these obstacles
was repeated if all obstacles are added once. The roadmap consists of three connected components in green, orange and red, and
four disconnected vertices in black. Note that all experiments are performed in 3D taking all dimensions of the robot and obstacles
into account; however, the visualisation of the (x, y) coordinates of the base in the roadmap is more intuitive to show the disconnected
roadmap. We present the experiment setup in Table 5.9.

5.7.3. Discussion
The roadmap getting disconnected due to adaptations is the principal reason for failure of sARM. The roadmap
gets disconnected because sARM resamples the invalid vertices in their neighbourhood and the replacing
vertices connect to their nearest neighbours, which are not necessarily the same as the invalid vertices. If the
roadmap is disconnected, this does not necessarily result in a failure because qstart and qgoal can be connected
to the same component.

For the experiments with sARM in this research, the number of adaptations to a single roadmap must be
limited by limiting the number of incremental changes to prevent affecting the performance of sARM. Adapt-
ing the roadmap for fifty incremental changes of 1× 1× 1m resulted in approximately 100 adaptations. As
Table 5.6 reported a low failure rate for the 100 adaptations (2%), we suggest limiting the number of incre-
mental changes in the experiments to fifty. However, we must note that this aspect needs improvement in
future work.

For future work, we suggest performing local roadmap enhancement by generating new vertices in roadmap
areas affected by many adaptations to prevent the disconnected roadmap from affecting the performance of
sARM.

5.8. Experiment 6: Benchmark sARM to state-of-the-art planners 47

5.7.4. Conclusion
The roadmap getting disconnected due to too many adaptations on a single roadmap is the principal reason
for failure of sARM. This prevents reusing a single roadmap infinitely.

5.8. Experiment 6: Benchmark sARM to state-of-the-art planners
We performed benchmark experiments to determine whether locally adapting the roadmap by sARM is faster
than replanning with a state-of-the-art algorithm (R5 in Section 1.4).

5.8.1. Setup
We carried out experiments in simulation to benchmark sARM to state-of-the-art sampling-based motion
planners, RRT and PRM, in two incrementally changing environments. We set the planning problems in
EXOTica [19]. We present details on the problem and planner settings in Table 5.9. We added an obstacle for
every query and remove the previously added obstacle. The incremental changes were obstacles of 1×1×1m
(see Figure 5.7) because this is approximately the size of incremental changes representing appearing boxes
in corridors in a supermarket environment. For both environments, the grid cell size for the 3D occupancy
grid collision checking was 1× 1× 0.25m, because this is proportionate to the size of incremental changes,
does not make the narrow corridors inaccessible, and δz = 0.25m allows the robot to bend its arm to go under
the obstacles in the air. This experiment planned for fifty queries, and thus fifty incremental changes, to
prevent the roadmap from splitting into multiple components, as shown in Experiment 5 (Section 5.7).

We evaluated the number of collision checks, in addition to the planning time, since this is known to
be the main driver of the planning time of sampling-based motion planners [39], and this metric is not de-
pendent on the computer used to solve the problem, resulting in more universal benchmarking outcomes.
Additionally, we assessed the sources of the collision checks, to get an insight in what parts of sARM are yet
to be improved. For a complete interpretation of the results, we assessed the contribution of the collision
checks to the planning time. Additional metrics, such as the number of vertices and edges of the graph and
success rate, are determined to allow a complete interpretation of the results.

5.8.2. Results
For the three planners in the incrementally changing environments, we visualise the planning time and the
time spend on collision checks in Figure 5.10a, and it is clear that collision checking was the principal driver
of the planning time. We visualise the planning time and the number of collision checks in Figure 5.10b
and Figure 5.10c, respectively. Table 5.7 additionally presents the number of vertices, number of edges, path
length, and success rate.

The success rate of sARM was equal to or higher than RRT and PRM in both environments. The mean
number of collision checks sARM performed was approximately 40% and 30% and the mean planning time
was approximately 40% and 35% less than RRT in the ten-obstacle and eight-obstacle environment, respec-
tively. The mean number of collision checks sARM performed was approximately 60% and 70% and the mean
planning time was approximately 65% and 75% less than PRM in the ten-obstacle and eight-obstacle envi-
ronment, respectively. All algorithms performed more collision checks in the eight-obstacle environment.

The path length of the solution found with sARM was lower than with RRT and PRM in the ten-obstacle
environment and higher in the eight-obstacle environment.

Additionally, we assessed the sources of the collision checks in sARM in the ten-obstacle and eight-obstacle
environment that perform on average 2.3 and 4.7 adaptations for every incremental change, respectively:

10 obs 8 obs
11% 9% Initially checking all vertices whether they are valid because sARM does not

perform the quick 3D grid lookup.
20% 30% Generating replacing vertices close by the invalid vertex.
22% 31% Connecting the replacing vertices to the roadmap.
47% 30% Connecting qstart and qgoal to the roadmap.

For the eight-obstacle environment, the percentage of collision checks spent on generating replacing vertices
and connecting them to the roadmap increased compared to the collision checks spent on initially checking
all vertices and connecting qstart and qgoal to the roadmap.

48 Experiments & Results

(a) (b) (c)

Figure 5.10: These figures present the results of the benchmarking Experiment 6 (Section 5.8) of the proposed simplified adaptive
roadmap algorithm (sARM) to state-of-the-art algorithms: the rapidly-exploring random tree algorithm (RRT) and the probabilistic
roadmap algorithm (PRM) (Section 5.2.1). (a) Bar graph representing the planning time and time spent on collision checking, indi-
cated in blue, to verify that the collision checking takes up the major part of the planning time for RRT, PRM and the proposed sARM and
boxplots of (b) the number of collision checks and (c) the planning time for fifty queries in Experiment 6 in the ten-obstacle (10 obs) and
the more challenging eight-obstacle (8 obs) environment (Section 5.2.3) for fifty queries, where for every query an obstacle of 1×1×1m
appeared. The red diamonds indicate the mean planning time for each planner. We present the experiment setup in Table 5.9

Planner
Planning
time [s]

Number of
vertices

Number of
edges

Number of colli-
sion checks

Path length
[m]

Number
of adapta-
tions

Success

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD

10
o

b
s RRT 14.77 ± 19.75 120.7 ± 195.6 120.7 ± 195.6 4899.7 ± 6585.4 51.5 ± 25.3 - 96%

PRM 20.55 ± 19.94 77.7 ± 75.0 155.3 ± 186.1 6510.0 ± 6424.5 57.9 ± 32.3 - 98%
sARM 9.01 ± 11.88 111 ± 0.0 276.0 ± 31.4 2873.6 ± 3887.7 32.7 ± 20.5 2.3 ± 2.9 100%

8
o

b
s

RRT 20.56 ± 20.54 122.3 ± 151.3 122.3 ± 151.3 6429.4 ± 6374.9 59.6 ± 25.8 - 98%
PRM 48.38 ± 35.88 171.9 ± 107.2 374.6 ± 271.2 15240.0 ± 11372.0 60.0 ± 38.8 - 88%
sARM 13.70 ± 15.59 237.0 ± 0.0 682.3 ± 130.3 4582.4 ± 5296.1 69.6 ± 36.0 4.7 ± 6.5 98%

Table 5.7: This table presents the results of the benchmarking of the proposed simplified adaptive roadmap algorithm (sARM) to the
state-of-the-art planners: the rapidly-exploring random tree algorithm (RRT) and the probabilistic roadmap algorithm (PRM) (Sec-
tion 5.2.1) in Experiment 6 (Section 5.8), concerning the mean and standard deviations of the planning time, number of vertices, edges,
collision checks, and success rates for the three planners in the ten-obstacle (10 obs) and the more challenging eight-obstacle (8 obs)
environment (Section 5.2.3) for fifty queries, where for every query an obstacle of 1×1×1m appeared. We present the experiment setup
in Table 5.9

5.8.3. Discussion
Based on the decreased number of collision checks, sARM performed better than PRM and RRT. This reduc-
tion in collision checks resulted in a reduction of the planning time. The better performance is due to the
roadmap reusal instead of constructing a new graph for every new query or environmental change. PRM
performed worst since it has to reconstruct the entire roadmap for every run, which is more time-consuming
than the reconstruction of the graph by RRT, equivalent to Experiment 1 (Section 5.3).

The lower path length of the solution of sARM compared to RRT and PRM was because the narrow pas-
sages induced by the incremental changes are accessible due to the replacement of an invalid vertex by a
vertex in its neighbourhood. RRT and PRM are unlikely to find a path through narrow passages by random
sampling in the entire Cfree. In the eight-obstacle environment, the path length of the solution of sARM is
higher than of RRT and PRM. This environment contained narrow corridors in the initial environment and
induced by the incremental changes, making finding a valid vertex close by the invalid vertex challenging.
Therefore, the resampled vertex was further from the invalid vertex and it connected to different neighbours,
and the connection through the narrow passage is lost. This results in an increased path length as the path
takes a detour around this passage.

In the eight-obstacle environment, RRT, PRM and sARM performed 40%, 135% and 50% more collision

5.9. Experiment 7: Effect of increasing the area affected by incremental changes on the speedup of sARM 49

checks than in the ten-obstacle environment, respectively. For RRT and PRM this is explained by the narrow
passages in Cfree, induced by narrow passages in W ; sampling-based methods sample randomly, resulting
in drawing many samples by the algorithms in the entire Cfree to generate samples in the narrow passage
such that connections through them appear [18, 57]. The narrow passages had a larger effect on PRM as it
attempts to generate more vertices and edges that are more likely invalid due to the narrow passages. The
increased number of collision checks for sARM was due to the doubling in the performed number of adapta-
tions and the narrow passages. The initial roadmap consisted of double the number of vertices compared to
the ten-obstacle environment, resulting in approximately double the vertices that become invalid due to an
incremental change. Compared to the ten-obstacle environment, the doubling of the number of adaptations
in the eight-obstacle environment causes the number of collision checks to increase by approximately 42%,
as the collision checks spent on generating a new vertex and connecting it to the roadmap is doubled. The
remaining 8% of the 50% increase in collision checks was due to the generation of new vertices in the narrow
passages, where more attempted vertices were invalid. This is reflected in the specification of the source of
collision checks in the eight-obstacle environment, where a higher percentage of the collision checks is spent
on generating replacing vertices and connecting them to the roadmap.

The success rate of PRM was decreased for the eight-obstacle environment because the roadmap con-
struction is more time-consuming in this environment as vertices or edges are necessary in the narrow pas-
sages to solve a planning problem. This results in more often exceeding the maximum allowed time.

The performance of PRM and RRT in the ten-obstacle environment was worse than the performance of
PRM (SQ) and RRT in Experiment 1 (Section 5.3) in the same environment due to the narrow passages in Cfree

induced by the incremental changes.
The main drive of the collision checks of sARM (69%) was due to connecting vertices to the roadmap:

either the replacing vertex, qstart or qgoal. This can be reduced by decreasing the number of neighbours these
vertices attempt to connect to. However, this increases the probability that the vertices will not connect to
any neighbours, as the nonholonomic constraints of the base and the randomly sampled arm configurations
make connecting a random configuration to neighbouring vertices challenging.

5.8.4. Conclusion
The results of this experiment demonstrate the success of sARM reducing the number of collision checks,
and accordingly, the planning time, compared to RRT and PRM. sARM satisfied R5 (Section 1.4) because
the planning time is decreased compared to the state-of-the-art algorithms for both incrementally changing
environments.

5.9. Experiment 7: Effect of increasing the area affected by incremental
changes on the speedup of sARM

In Experiment 6 (Section 5.8), we reported an increase in the number of collision checks, and thus the plan-
ning time, due to the increased number of adaptations by sARM. If more vertices are invalid due to the incre-
mental changes, we expect the speedup of sARM compared to the state-of-the-art algorithms to disappear.
In this experiment, we aim to determine the effect of increasing the area in the workspace affected by incre-
mental obstacles on the speedup by sARM.

5.9.1. Setup
We carried out experiments in simulation to benchmark sARM to RRT and PRM while we increased the num-
ber of obstacles simultaneously added to the environment compared to Experiment 6 (Section 5.8). We set
the planning problems in EXOTica [19]. We present details on the problem and planner settings in Table 5.9.
We performed the experiment in the ten-obstacle environment, to ensure the increase in collision checks,
and thus the planning time, was due to updating more vertices instead of updating vertices in narrow pas-
sages as would occur in the eight-obstacle environment. All problem and planner settings are equal to the
ten-obstacle environment in Experiment 6 (Section 5.8), except for the number of obstacles added and re-
moved for every query. For every query, we added two obstacles of 1× 1× 1m to occupy double grid cells
and thus invalidate double the vertices of the roadmap compared to when adding one obstacle of this size.
In the ten-obstacle environment in Experiment 6 (Section 5.8), sARM performed approximately 41% fewer
collision checks than RRT. We expected to loose the speedup of sARM if the number of collision checks is
equal for sARM and RRT. Therefore, we added two obstacles as we expected this to increase the number of
collision checks by approximately 42%, based on the sources of the collision checks reported in Experiment

50 Experiments & Results

6 (Section 5.8) where the remaining sources of collision checks do not scale with the number of vertices that
need to be adapted.

We evaluated the number of collision checks and the planning time, as in Experiment 6 (Section 5.8).
Additionally, we assessed the sources of the collision checks for sARM, the number of vertices and edges of
the graph and success rate to allow a complete interpretation of the results.

5.9.2. Results
Figure 5.11 presents the number of collision checks and planning time for the three planners where for every
query two obstacles are added. Table 5.8 additionally presents the number of vertices, edges, path length,
number of adaptations and success rate of the planners.

(a) (b)

Figure 5.11: These figures present the results of the benchmarking Experiment 7 (Section 5.9) where we add two obstacles of 1×1×1m for
every query, to determine the effect of increasing the area affected by incremental changes on the in Experiment 6 (Section 5.8) reported
speedup of sARM compared to state-of-the-art algorithms: the rapidly-exploring random tree algorithm (RRT) and the probabilistic
roadmap algorithm (PRM) (Section 5.2.1). We present boxplots of (a) the number of collision checks and (b) the planning time for fifty
queries in Experiment 7 (Section 5.9) in the ten-obstacle environment. The red diamonds indicate the mean value for each planner. We
present the experiment setup in Table 5.9

Planner
Planning
time [s]

Number of
vertices

Number of
edges

Number of colli-
sion checks

Path length
[m]

Number
of adapta-
tions

Success

Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD Mean ± STD
RRT 13.59 ± 10.02 94.0 ± 127.4 94.0 ± 127.4 4632.3 ± 4428.0 61.4 ± 50.6 - 96%
PRM 22.27 ± 11.65 128.0 ± 76.8 118.8 ± 83.8 7000.0 ± 4020.9 66.2 ± 20.2 - 98%
sARM 14.10 ± 8.99 111 ± 0.0 249.4 ± 22.9 4232.5 ± 2239.0 66.0 ± 18.8 5.5 ± 3.4 94%

Table 5.8: This table presents the results of the benchmarking Experiment 7 (Section 5.9) where we add two obstacles of 1× 1× 1m
for every query, to determine the effect of increasing the area affected by incremental changes on the in Experiment 6 (Section 5.8)
reported speedup of the proposed simplified adaptive roadmap algorithm (sARM) compared to state-of-the-art algorithms: the rapidly-
exploring random tree algorithm (RRT) and the probabilistic roadmap algorithm (PRM) (Section 5.2.1). We present the experiment setup
in Table 5.9

The number of collision checks and planning time were similar for RRT and sARM, and approximately
60% higher for PRM. The success rates were 96% 98% and 94% for RRT, PRM and sARM, respectively.

We compare the results to the ten-obstacle environment in Experiment 6 (Section 5.8) as we use equal
problem and planner settings, except that we doubled the number of obstacles added for each query. By
adding two obstacles instead of one, the number of adaptations by sARM is increased by approximately 40%.
The number of collision checks for PRM and sARM increased by approximately 7% and 45%, and the plan-
ning times by approximately 8% and 55%, respectively. The number of collision checks and planning time
decreased by 4% and 7%, respectively. The success rates of RRT and PRM were unchanged, while the suc-

5.10. Experiment 8: Real-world implementation of sARM 51

cess rate of sARM dropped from 100% to 94%. The path lengths for RRT, PRM and sARM are increased by
approximately 20%, 15% and 105%, respectively, compared to the experiment with one incremental obstacle.

Additionally, we assessed the sources of the collision checks by sARM that performed on average 5.5 adap-
tations:

7% Initially checking all vertices whether they are valid because sARM does not
perform the quick 3D grid lookup.

30% Generating replacing vertices close by the invalid vertex.
33% Connecting the replacing vertices to the roadmap.
32% Connecting qstart and qgoal to the roadmap.

The percentage of collision checks spent on generating replacing vertices and connecting them to the roadmap
increased compared to the collision checks spent on initially checking all vertices and connecting qstart and
qgoal to the roadmap.

5.9.3. Discussion
We compared these results of adding two obstacles to adding one obstacle in Experiment 6 (Section 5.8).
The number of collision checks and the planning time of RRT and PRM changed slightly, as adding two ob-
stacles simultaneously did not initiate more graph reconstructions. The path lengths of RRT and PRM were
increased as the extra obstacle initiates an additional narrow passage, which is often not covered with vertices
by random sampling [23], resulting in an alternative path that does not include the narrow passage.

The success rate of sARM dropped compared to the environment where one obstacle was added as more
vertex adaptations were performed, resulting in the roadmap getting disconnected as we discussed in Exper-
iment 5 (Section 5.7). Additionally, the disconnected roadmap caused the increase in the path length as the
connected component that qstart and qgoal connected to does not cover the entire space. The increased num-
ber of collision checks and planning time of sARM can be explained by the increased number of adaptations
sARM performs due to the additional obstacle. The increase of the collision checks spent on generating a
replacing vertex and connecting it to the roadmap can be explained by the increased number of adaptations
sARM performed.

When adding two obstacles, the number of collision checks, and thus the planning time, increased for
sARM while it remained similar for RRT, resulting in the loss of the speedup from sARM compared to RRT.
However, the speedup compared to PRM remained. It must be noted that the limit on the incremental
changes that ensures sARM adapts the roadmap faster than RRT and PRM reconstruct the graph depends
the planning problem, for instance, on the environment and the initial roadmap of sARM. Therefore, we can
not determine a limit on the incremental changes to maintain the speedup of sARM compared to conven-
tional algorithms.

5.9.4. Conclusion
An increase of the workspace area affected by incremental obstacles in the environment invalidates more
vertices, resulting in more adaptations performed by sARM. This may cause losing the speedup compared to
RRT and PRM.

5.10. Experiment 8: Real-world implementation of sARM
We performed real-world experiments to assess whether the algorithm can be applied on a real mobile ma-
nipulator and not merely in simulation.

5.10.1. Setup
We performed the real-world experiments in the corridor at RoboHouse [45], where the AIRLab Delft is lo-
cated. We set the planning problems in EXOTica [19]. We present the details on the problem and planner
settings in Table 5.9. A path was planned from qstart to qgoal whereafter an obstacle was added on the shortest
path. The appearing obstacle was 0.6× 0.3× 0.3m and the 3D grid cell size was 0.5× 0.5× 0.25m, approxi-
mately the size of the appearing obstacle, and the z-value of 0.25 to allow the robot to go under the obstacle.
The roadmap adaptation by sARM must ensure a safe path from qgoal back to qstart. We performed this exper-
iment with the obstacle placed on the ground, and with the obstacle 1.5m above the ground, where the robot
must bend its arm, or navigate its base around, to pass. All other problem and planner settings are identical.

52 Experiments & Results

We evaluated whether sARM successfully adapted the roadmap to a change and ensured a safe path for
the real robot.

5.10.2. Results
Figure 5.12 visualises the roadmaps and paths of the robot before and after the obstacles are added to the
environment. The roadmap was successfully adapted by sARM for both appearing obstacles and the path
from qgoal to qstart took the obstacle into account. For the incremental change by an obstacle on the ground,
three vertices were adapted and for the incremental change by an obstacle in the air, two vertices. The videos
of the real-world experiments can be downloaded from the doi: 10.4121/14912766.v1 [17].

5.10.3. Discussion
sARM successfully performed the roadmap adaptation in real-world experiments. If the roadmap adaptation
performed by sARM was not successful, the robot would have gone through the appeared obstacle, as this still
would have been the shortest path A* found. sARM ensures the roadmap is applicable for multiple queries,
despite the incremental changes in the environment.

The extensive arm movement of the robot when the obstacle appeared on the ground was due to the
random sampling to construct the roadmap: any valid configuration can be included in the roadmap and
thus be part of the planned path. This extensive arm movement does not occur when planning for the base
and the arm separately, as in these situations, the arm remains static during locomotion.

The success for the obstacle that appeared in the air uncovers the advantage of coupled planning for the
base and arm, where the robot can bend its arm to pass the obstacle. If the planning for the base and the arm
would have been decoupled, the robot would have had to navigate around it.

5.10.4. Conclusion
sARM successfully adapted the roadmap to an appearing obstacle on the ground and in the air in the real-
world experiments. The path is planned by performing graph search on the adapted roadmap, which ensures
that it takes the incremental change into acount.

http://doi.org/10.4121/14912766.v1

5.10. Experiment 8: Real-world implementation of sARM 53

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.12: These figures present the results of real-world Experiment 8 (Section 5.10): roadmap and real-world paths of (a,b) the 10
degrees of freedom (DOF) robot from start to goal and after the adaptation (c,d) from goal to start after an obstacle is added on the floor
or (e,f) in the air. We present simplified roadmaps where the base coordinates of the vertices and edges of the roadmap are visualised
in black. Additionally, the occupied grid cells (grey), the appearing obstacle (light blue), start (green), goal (red), adapted vertices (pink)
and path (blue) are visualised. We do not visualise the roadmap of the remainder of the corridor (cut off on the right) since this does
not change. The photos contain configurations representing the robot’s path with the start (green) and goal (red) configuration. Due to
the obstacle, the roadmap was adapted by the proposed simplified adaptive roadmap algorithm (sARM) and the graph search algorithm
(A*) returned a collision-free path. Note that all experiments were performed in 3D, taking all dimensions of the robot and obstacles
into account; however, the visualisation of the (x, y) DOFs in the roadmap allows an intuitive interpretation. We present the experiment
setup in Table 5.9.

54
E

xp
erim

en
ts

&
R

esu
lts

Experiment 3 Experiment 4 Experiment 5 Experiment 8

RR
T

P
RM

 (M
Q

)

P
RM

 (S
Q

)

A
RM

*

sA
RM

*

sA
RM

sA
RM

sA
RM

RR
T

P
RM

 (M
Q

)

sA
RM

RR
T

P
RM

 (M
Q

)

sA
RM

sA
RM

Test Simulation x x x x x x x x x x x x x x

Real-world x

Robot 3-DOF x x x

10-DOF x x x x x x x x x x x x x

Initial environment 0 obstacles (20x20x2m) x x x

3 obstacles (20x20x2m) x x x

10 obstacles (20x20x2m) x x x x x x x x x x x x x x

8 obstacles (20x20x2m) x x x x

RoboHouse corridor x

Changing environment Static x x x

Incremental changes
#(size [m])

1(1,1,1) 1(1,1,1) 1(1,1,1) 1(1,1,1) 1(1,1,1) 1(1,1,1) 1(1,1,1) 1(1,1,1) 2(1,1,1) 2(1,1,1) 2(1,1,1) 1(0.3x0.6x0.3)

Queries 100 100 100 n/a n/a 50 50 200 50 50 50 50 50 50 2

Collision checker Δq 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Sphere-based x x x

Occupancy 3D grid (size
[m]) + safety [m]

(1,1,1)+0.1 (1,1,1)+0.1 10 obs: (1,1,0.25)+0.1
8 obs: (1,1,0.25)+0.1

[(0.1,0.1,0.1)+0.1
(0.25,0.25,0.25)+0.1,

(0.5,0.5,0.5) +0.1,
 (1,1,1)+0.1]

(0.5,0.5,0.25)+0.1 10 obs: (1,1,0.25)+0.1
8 obs: (1,1,0.25)+0.1

10 obs: (1,1,0.25)+0.1
8 obs: (1,1,0.25)+0.1

10 obs: (1,1,0.25)+0.1
8 obs: (1,1,0.25)+0.1

(1,1,0.25)+0.1 (1,1,0.25)+0.1 (1,1,0.25)+0.1 (0.5,0.5,0.25)+0.1

Fail criterium Maximum time [s] 120 120 120 n/a n/a 120 120 120 120 120 120 120 120 120 120

RRT Range 0.05 0.05 0.05

Goal bias 15 15 15

PRM Nearest neighbors 10 10 10 10

Graph search A* A* A* A*

ARM/sARM Nearest neighbors 10 10 10 10 10 10 10 10

d [m] 2 2 [1,6] 2 2 2 2 2

Graph search n/a n/a A* A* A* A* A* A*

Initial roadmap
(vertices,edges)

(168,348) (168,348) 10 obs: (168,348)
8 obs: (237,480)

(160,322) (160,322) 10 obs: (111,230)
8 obs: (237,480)

(111,230) (81,324)

Experiment 1 Experiment 6

P
la

nn
er

 s
et

tin
gs

P
ro

bl
em

 s
et

tin
gs

Experiment 7Experiment 2

Table 5.9: This table presents the problem and planner settings for Experiments 1-8 (Section 5.3-Section 5.10). PRM (SQ) refers to an implementation of the probabilistic roadmap algorithm (PRM) that
clears the roadmap after every run, and PRM (MQ) to the conventional implementation of PRM. ARM* and sARM* refer to implementations of the proposed algorithm and its simplified implementation
that merely perform the roadmap adaptation and can not be used as a planner. The incremental changes are denoted by #(size), where # refers to the number of incremental changes of rectangles of size,
in (x, y, z). Details on the 3D occupancy grid collision checking are provided by the size, in (x, y, z), of the grid cells and the safety margin used to inflate the bounding box representing the robot in W . We
discuss the problem and planner settings more extensively in Section 5.2.

6
Conclusion & Future Work

This chapter provides the conclusion of the conducted research by answering the research question from
Chapter 1 and evaluating whether the proposed algorithm meets the requirements. It also provides proposals
for future work.

6.1. Conclusion
This thesis answers the research question:

How can local roadmap adaptation allow fast planning for mobile manipulators assuming the environment
changes incrementally?

We conclude that local roadmap adaptation allows fast planning for mobile manipulators in incrementally
changing environments by using our proposed algorithm: the adaptive roadmap algorithm (ARM). A bench-
marking experiment with the simplified implementation of ARM (sARM) confirms that local roadmap adap-
tation allows fast planning in the incrementally changing environment. This experiment reported speedups
of 35−40% and 65−75% compared to the state-of-the-art algorithms RRT (Section 2.5) and PRM (Section 2.6),
respectively. The speedup sARM gained compared to existing planners will be magnified for ARM as the
roadmap adaptation by ARM is approximately 10% faster than by sARM. However, future work is necessary
to improve the algorithm, which we discuss later in this chapter (Section 6.2).

Following the discussions of the experiments (Chapter 5), we can now evaluate to what extend ARM (Sec-
tion 4.4) and sARM (Section 5.1.4) fulfill the requirements R1-R5, defined in Section 1.4. We conclude that
ARM and sARM can:

R1 reuse its roadmap for multiple queries.

• ARM: the roadmap is applicable for multiple queries by design. Note that in the current version
of the algorithm, the number of incremental changes must be limited to maintain a connected
roadmap and allow planning for multiple queries, as we discussed in Experiment 5 (Section 5.7).

• sARM: Experiment 6 (Section 5.8) presented a success rate of the algorithm of 98−100% without
performing reconstruction of the roadmap, which verifies that it is applicable for multiple queries.
As with ARM, the number of incremental changes must be limited.

R2 locally adapt the roadmap to changes; these changes can be due to appearing or disappearing obsta-
cles.

• ARM: by design, the algorithm can locally adapt its roadmap due to an appearing obstacle by up-
dating vertices and removing edges to ensure V ⊂ Cfree and E ⊂ Cfree if these are associated with a
grid cell occupied due to an obstacle. However, the algorithm does not deal with the disappear-
ance of obstacles since it does not generate new vertices in grid cells associated with disappearing
obstacles. ARM sets the grid cells from which obstacles have disappeared to free, enabling the
generation of new vertices and edges in these grid cells due to an incremental change close by.
Experiment 2 (Section 5.4) verified this with the implementation of the roadmap adaptation of
ARM.

55

56 Conclusion & Future Work

• sARM: the algorithm can locally adapt its roadmap due to an appearing obstacle by updating the
vertices to ensure V ⊂ Cfree. However, the simplifications prevent the removal of edges, which
results in E 6⊂ Cfree. Additionally, the algorithm does not deal with the disappearance of obstacles
since it does not generate new vertices in grid cells associated with disappearing obstacles. sARM
sets these grid cells to free, enabling the generation of new vertices and edges in these grid cells
due to an incremental change close by. Experiments 3-8 (Section 5.5-Section 5.10) verified this.

R3 be applicable for a high-DOF robot (high dimensional configuration space).

• ARM: the dimension of the robot is not limited due to the sampling in C to generate replacing ver-
tices. Experiment 2 (Section 5.4) verified this with the implementation of the roadmap adaptation
of ARM for a 10-DOF mobile manipulator.

• sARM: the simplifications do not affect the applicability for a high-DOF robot; therefore, sARM
meets this requirement. Experiments 3-8 (Section 5.5-Section 5.10) with a 10-DOF mobile ma-
nipulator verified this.

R4 be applicable in a 3D workspace.

• ARM: by design, the algorithm is applicable in W = R3, by generating a 3D bounding box around
the entire robot as workspace representation of a configuration. The implementation of the roadmap
adaptation of ARM in Experiment 2 (Section 5.4) successfully represented configurations in W .

• sARM: the algorithm is applicable in W = R3 as the workspace representation of configurations
is equivalent to ARM. The Experiments 3-8 (Section 5.5-Section 5.10) successfully represented
configurations in W .

R5 adapt the roadmap faster than replanning.

• ARM: we did not present comparisons concerning the planning times as we implemented the
roadmap adaptation of this algorithm and not the entire planner. However, we expect the speedup
sARM gained compared to existing planners will be magnified for ARM as the roadmap adaptation
by ARM is faster than by sARM.

• sARM: the results of the benchmarking Experiment 6 (Section 5.8) for coupled motion planning
for a mobile manipulator in different incrementally changing environments reported a 30−40%
reduction in performed collision checks, which resulted in a 35− 40% speedup of the planning
time, compared to the single-query algorithm rapidly-exploring random tree (RRT) that recon-
structs its graph for every new query or change in the environment. Compared to the multi-query
algorithm probabilistic roadmap (PRM) the decrease in collision checks was 60−70%, which re-
sulted in a 65−75% speedup of the planning time. As the roadmap reconstruction is more time-
consuming for PRM, sARM achieved more reduction in the planning time than compared to RRT.
The number of incremental changes appearing simultaneously must be limited to maintain the
advantage of sARM, as we concluded from the results of Experiment 7 (Section 5.9).

sARM meets all requirements but one (R2). ARM ensures that the entire roadmap is in Cfree, and not merely
the edges; however, it does not meet R2 since it does not deal with disappearing obstacles. ARM must be
implemented as a planner to assess whether it meets R5.

6.2. Future work
This section identifies directions for future work, based on limitations that arose in our work, as described
in earlier chapters. In Section 6.2.1 and Section 6.2.2 we suggest future work for a more extensive evalua-
tion of the proposed algorithm, in Section 6.2.3 we propose an approach that maintains a high success rate
if the algorithm performs many adaptations on a single roadmap, and in Section 6.2.4, Section 6.2.5, and
Section 6.2.6 we propose extensions to the algorithm to improve the performance even further.

6.2.1. Implementation of non-simplified ARM as planner
Future work is needed to implement ARM as a planner, without simplifications as in sARM, to assess whether
it meets all requirements from Section 1.4 and to implement it in simulation and on the real robot. The sim-
plified implementation does not perform the quick lookup of vertices and edges if the occupancy of grid cells

6.2. Future work 57

is updated due to the lack of communication between OMPL and EXOTica, as was discussed in Section 5.1.
For future research, we suggest implementing ARM as a planner within OMPL. ARM not alone ensures all
edges in the roadmap are in Cfree, the roadmap adaptation by ARM is faster than by sARM. The speedup
sARM gained compared to existing planners will be magnified for ARM.

To enable the implementation of ARM in simulation and on the real robot in ROS using EXOTica, ad-
ditional communication between OMPL and EXOTica is necessary to allow assigning vertices and edges. We
suggest implementing a learned lookup table, which allows us to find the associated grid cells for a configura-
tion. We suggest learning the table to ensure the most informative grid cell-configuration pairs are included.
The lookup table is generated before the algorithm execution, and the planner loads it during the planner
initialisation. Additionally, the planner needs to receive data concerning the updated occupancy of the 3D
grid.

6.2.2. Benchmarking to more sophisticated algorithms

For a complete assessment of the performance of ARM, we suggest performing benchmarking experiments
with more sophisticated algorithms than RRT and PRM. Algorithms we suggest to include in the benchmark-
ing are RRTX [37], which is a single-query planner that locally adapts its graph to changes, and the multi-
query algorithms that locally adapt their roadmap that are suitable for mobile manipulators in Chapter 3
[34, 51, 58, 59]. We did not compare our algorithm to RRTX , as existing implementations are merely suitable
for mobile robots in 2D workspaces [38], or are applicable for high-DOF robots but can not deal with changes
in the environment [28]. No implementations for the algorithms from Chapter 3 are available. We did not
create implementations of the more sophisticated algorithms in this thesis due to time constraints.

6.2.3. Roadmap enhancement

We suggest roadmap enhancement by locally adding vertices or edges to prevent the roadmap from splitting
into multiple components after many adaptations and to enable dealing with disappearing obstacles. If a
roadmap is adapted many times, the roadmap may become disconnected, which means that the roadmap
will not consist of one connected component, but of multiple; which causes failure if qstart and qgoal connect
to a different component. The algorithm must evaluate whether the roadmap consists of multiple compo-
nents to unite the components. We suggest counting the total number of vertices and the vertices of the
connected component of a randomly chosen vertex. If these values differ, the roadmap enhancement must
be initiated. We suggest to generate new vertices in areas affected by incremental changes. The new vertices
try to connect to the neighbouring vertices, and if connecting to vertices of different connected components
is possible, these two components are united. An alternative to sampling in affected areas is reinstating the
invalid vertices due to appeared obstacles that have disappeared. Additionally, this approach enables the
algorithm to deal with disappearing obstacles as areas where once an obstacle appeared will be accessible if
the obstacle is gone.

6.2.4. 3D grid improvement

To enhance the performance of ARM, we suggest improving the way the, currently simplistic, 3D grid struc-
ture represents the environment. We suggest altering the 3D grid to allow varying resolutions. Smaller grid
cells can represent areas where small obstacles cause incremental changes to limit the number of adapta-
tions due to a tiny obstacle to the vertices that are actually in CO. Additionally, smaller grid cells ensure the
passages in narrow corridors are accessible for the robot due to the less conservative occupancy of the grid
cells. Lastly, smaller grid cells allow a less conservative representation of areas occupied by non-rectangular
obstacles. Larger grid cells can represent regions where larger obstacles appear to allow quicker initiation of
the roadmap adjustment because the occupancy of fewer grid cells needs to be updated.

6.2.5. Less conservative workspace representation of configurations

We suggest an alternative representation of the robot in W for a more accurate assignment of configurations
to grid cells, resulting in improved roadmap adaptation and more flexibility. We suggest representing the
robot with two bounding boxes: one for the base and one for the arm. This increases the flexibility because it
enables extending the arm above an obstacle while the base is next to the obstacle.

58 Conclusion & Future Work

6.2.6. Biased resampling
We suggest guiding the resampling of invalid vertices to speed up finding a replacing vertex and connecting
it to the roadmap. The narrow passages induced by the incremental changes in the corridors cause more
attempted replacing vertices to be invalid. As the 3D occupancy grid informs us on the narrow passages in
W , we suggest to bias the resampling to Cfree, for instance by potential field techniques [4] to attract sampling
in the narrow passage.

We suggest an additional approach to speed up finding a replacing vertex: by predefining meaningful
arm configurations to draw a configuration from, while randomly sampling to obtain a base configuration.
For instance, these meaningful arm configurations could consist of a configuration in which the arm is en-
tirely above the base and configurations where the arm is bend and rotated to the right, left, front and back of
the base. We are confident these configurations are not in self-collision or violate the joint limits. We expect
that in many situations, at least one of these arm configurations ensures assignment of the configuration to
solely free grid cells. However, if all predefined arm configurations result in assigning the configuration to
occupied grid cells, we suggest random sampling for the entire robot. Additionally, if the robot is represented
by multiple bounding boxes as suggested in Section 6.2.5 and merely the box representing the arm is associ-
ated with occupied grid cells, we suggest attempting to find a replacing vertex by merely adapting the arm by
drawing a configuration from the predefined arm configurations while maintaining the pose of the base. If
this does not result in a valid replacing vertex, we suggest resampling the entire robot configuration.

For nonholonomic robots in environments with narrow corridors, such as supermarkets, we suggest guid-
ing the resampling of the invalid vertex by the orientation of the base to be aligned with the passage. Aligning
configurations with the corridors makes connecting to neighbours more straightforward for nonholonomic
robots, as this prevents driving along arcs within a narrow space. To enable this guided sampling, areas con-
taining corridors in the initial environment must be marked, and the base orientation to align it with the
passage must be specified.

Acknowledgements

I would like to thank Dr. J. Alonso-Mora for getting me interested in motion planning during one of my first
MSc courses, for being my supervisor, and thereby providing me the opportunity to graduate within the AMR
group at the TU Delft.

Furthermore, I would like to thank Max Spahn for being my daily supervisor. I could always count on your
thoughts during the weekly catch-ups and you always responded within minutes to my questions on Teams.
You taught me a lot this year about robotics as well as academic work.

I would like to thank Robbert and my roommates, as you were always there to celebrate the ups or cheer
me up during the downs when writing a thesis from home in the COVID-19 pandemic.

Last, but not least, I would like to thank my parents and sisters for always supporting me and believing in
me during the journey from elementary school to a Master of Science.

E.J. Heerkens
Delft, July 9, 2021

59

Bibliography

[1] AIRLab Delft. https://icai.ai/airlab-delft/. Accessed on: 28-09-2020.

[2] ROS. https://www.ros.org. Accessed on: 10-05-2021.

[3] Ali Akbar Agha-mohammadi, Suman Chakravorty, and Nancy M. Amato. FIRM: Sampling-based feed-
back motion-planning under motion uncertainty and imperfect measurements. International Journal
of Robotics Research, 33(2):268–304, 2014. ISSN 17413176. doi: 10.1177/0278364913501564.

[4] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed representation approach.

[5] Amy J. Briggs, Carrick Detweiler, Daniel Scharstein, and Alexander Vandenberg-Rodes. Expected short-
est paths for landmark-based robot navigation. The International Journal of Robotics Research, 23(7):
717–728, 2004. doi: 10.1007/978-3-540-45058-0_23.

[6] Oliver Brock and Lydia E. Kavraki. Decomposition-based motion planning: A framework for real-time
motion planning in high-dimensional configuration spaces. IEEE Conference on Robotics and Automa-
tion (ICRA), 2:1469–1474, 2001. doi: 10.1109/ROBOT.2001.932817.

[7] Andrej Brodnik, Svante Carlsson, Robert Sedgewick, J.I. Munro, and E.D. Demaine. Resizable arrays in
optimal time and space. Proceedings of the 6th International Workshop on Algorithms and Data Struc-
tures, pages 10–22, 1999. doi: 10.1007/3-540-48447-7_4.

[8] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard, Lydia E. Kavraki,
and Sebastian Thrun. Principles of Robot Motion-Theory, Algorithms and Implementation. The MIT
Press, London, England, 2005.

[9] Clearpath. Boxer Indoor Robotic Platform: Datasheet. https://go.pardot.com/l/92812/
2018-10-18/5p7x5n/92812/113199/Boxer_DataSheet_2020.pdf. Accessed on: 20-05-2021.

[10] David Coleman, Sachin Chitta, and Ioan A. Şucan. Reducing the barrier to entry of complex robotic
software: a moveit! case study. Journal of Software Engineering for Robotics, 5(1):3–16, 2014. doi: 10.
6092/JOSER_2014_05_01_p3. Software available at http://github.com/ros-planning/moveit.

[11] Thomas Dean and Mark Boddy. An analysis of time-dependent planning. Proceedings of the Seventh
National Conference on Artificial Intelligence, page 49–54, 1988. doi: 10.5555/2887965.

[12] Lester Eli Dubins. On curves of minimal length with a constraint on average curvature, and with pre-
scribed initial and terminal positions and tangents. American Journal of Mathematics, 79(3):497–516,
1957. doi: 10.2307/2372560.

[13] Franka Emika. Panda: Datasheet. https://wiredworkers.io/wp-content/uploads/2019/12/
Panda_FrankaEmika_ENG.pdf. Accessed on: 20-05-2021.

[14] Russell Gayle, Avneesh Sud, Ming C. Lin, and Dinesh Manocha. Reactive deformation roadmaps: Mo-
tion planning of multiple robots in dynamic environments. IEEE International Conference on Intelligent
Robots and Systems, pages 3777–3783, 2007. doi: 10.1109/IROS.2007.4399287.

[15] Roland Geraerts and Mark H. Overmars. A comparative study of probabilistic roadmap plan-
ners. Springer Tracts in Advanced Robotics, 7 STAR:43–57, 2004. ISSN 16107438. doi: 10.1007/
978-3-540-45058-0_4.

[16] Kris Hauser. Lazy collision checking in asymptotically-optimal motion planning. Proceedings - IEEE In-
ternational Conference on Robotics and Automation, 2015-June(June):2951–2957, 2015. ISSN 10504729.
doi: 10.1109/ICRA.2015.7139603.

61

https://icai.ai/airlab-delft/
https://www.ros.org
https://go.pardot.com/l/92812/2018-10-18/5p7x5n/92812/113199/Boxer_DataSheet_2020.pdf
https://go.pardot.com/l/92812/2018-10-18/5p7x5n/92812/113199/Boxer_DataSheet_2020.pdf
http://github.com/ros-planning/moveit
https://wiredworkers.io/wp-content/uploads/2019/12/Panda_FrankaEmika_ENG.pdf
https://wiredworkers.io/wp-content/uploads/2019/12/Panda_FrankaEmika_ENG.pdf

62 Bibliography

[17] Evelien Heerkens. Experiment data and videos, underlying the msc thesis: Local roadmap
adaptation for mobile manipulators in incrementally changing environments, Jul 2021. URL
https://data.4tu.nl/articles/dataset/Experiment_data_and_videos_underlying_the_
MSc_thesis_Local_roadmap_adaptation_for_mobile_manipulators_in_incrementally_
changing_environments/14912766/1.

[18] D. Hsu, L. E Kavraki, J. C. Latombe, R. Motwani, and S. Sorkin. On finding narrow passages with proba-
bilistic roadmap planners. Robotics: The Algorithmic Perspective, 1998.

[19] Vladimir Ivan, Yiming Yang, Wolfgang Merkt, Michael Camilleri, and Sethu Vijayakumar. EXOTica: An
Extensible Optimization Toolset for Prototyping and Benchmarking Motion Planning and Control, pages
211–240. 2019. ISBN 978-3-319-91589-0. doi: 10.1007/978-3-319-91590-6_7. Software available at
http://github.com/ipab-slmc/exotica,.

[20] Edwin A. Jackson. Equilibrium Statistical Mechanics. Prentice-Hall, Upper Saddle River, USA, 1968. doi:
10.1063/1.3035486.

[21] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research, 30(7):846–894, 2011. ISSN 02783649. doi: 10.1177/
0278364911406761.

[22] Lydia E. Kavraki and Jean-Claude Latombe. Randomized preprocessing of configuration space for fast
path planning. IEEE International Conference on Robotics and Automation, 1994. doi: 10.1109/IROS.
1994.407619.

[23] Lydia E. Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
tion, 12:566–580, 1996. doi: 10.1109/70.508439.

[24] Weria Khaksar, Md Zia Uddin, and Jim Torresen. Self-Adjusting Roadmaps: A Fast Sampling-Based
Path Planning Algorithm for Navigation in Unknown Environments. IEEE International Conference on
Robotics and Biomimetics, pages 1094–1101, 2018. doi: 10.1109/ROBIO.2018.8665326.

[25] Weria Khaksar, Md Zia Uddin, and Jim Torresen. Incremental Adaptive Probabilistic Roadmaps for Mo-
bile Robot Navigation under Uncertain Condition. 15th International Conference on Electrical Engineer-
ing, Computing Science and Automatic Control, 2018. doi: 10.1109/ICEEE.2018.8533989.

[26] Weria Khaksar, Md Zia Uddin, and Jim Torresen. Multiquery Motion Planning in Uncertain Spaces: In-
cremental Adaptive Randomized Roadmaps. International Journal of Applied Mathematics and Com-
puter Science, 29(4):641–654, 2020. ISSN 20838492. doi: 10.2478/amcs-2019-0047.

[27] Oussama Khatib. Mobile manipulation: The robotic assistant. Robotics and Autonomous Systems, 26(2):
175–183, 1999. doi: 10.1016/S0921-8890(98)00067-0.

[28] Kavraki Lab. Ompl ompl::geometric::rrtxstatic class reference. https://ompl.kavrakilab.org/
classompl_1_1geometric_1_1RRTXstatic.html, 2019. Accessed on: 01-07-2021.

[29] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Press, 1991. ISBN 978-0-7923-9129-6.
doi: 10.1007/978-1-4615-4022-9.

[30] Jean-Paul Laumond. Robot motion planning and control. Springer, Toulouse, 1988. ISBN 3-540-76219-1,.

[31] Steven M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. Technical report, 1998.

[32] Steven M. LaValle. Planning algorithms. Planning Algorithms, 2006. doi: 10.1017/CBO9780511546877.

[33] Steven M. LaValle and James J. Kuffner. Randomized kinodynamic planning. The International Journal
of Robotics Research, 20:378–400, 2001. doi: 10.1177/02783640122067453.

[34] Peter Lehner, Arne Sieverling, and Oliver Brock. Incremental, sensor-based motion generation for mo-
bile manipulators in unknown, dynamic environments. Proceedings - IEEE International Conference on
Robotics and Automation, pages 4761–4767, 2015. ISSN 10504729. doi: 10.1109/ICRA.2015.7139861.

https://data.4tu.nl/articles/dataset/Experiment_data_and_videos_underlying_the_MSc_thesis_Local_roadmap_adaptation_for_mobile_manipulators_in_incrementally_changing_environments/14912766/1
https://data.4tu.nl/articles/dataset/Experiment_data_and_videos_underlying_the_MSc_thesis_Local_roadmap_adaptation_for_mobile_manipulators_in_incrementally_changing_environments/14912766/1
https://data.4tu.nl/articles/dataset/Experiment_data_and_videos_underlying_the_MSc_thesis_Local_roadmap_adaptation_for_mobile_manipulators_in_incrementally_changing_environments/14912766/1
http://github.com/ipab-slmc/exotica
https://ompl.kavrakilab.org/classompl_1_1geometric_1_1RRTXstatic.html
https://ompl.kavrakilab.org/classompl_1_1geometric_1_1RRTXstatic.html

Bibliography 63

[35] Qinghua Li, Yaqi Mu, Yue You, Zhao Zhang, and Chao Feng. A Hierarchical Motion Planning for Mobile
Manipulator. IEEJ Transactions on Electrical and Electronic Engineering, pages 1390–1399, 2020. ISSN
19314981. doi: 10.1002/tee.23206.

[36] Tomas Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Transactions on Comput-
ers, 32(2):108–120, 1983. doi: 10.1109/TC.1983.1676196.

[37] Michael Otte and Emilio Frazzoli. RRT X: Asymptotically Optimal Single-Query Sampling-Based Motion
Planning with Quick Replanning. The International Journal of Robotics Research, 2016. doi: 10.1177/
0278364915594679.

[38] Michael W. Otte. Ottelab code rrt-x. http://ottelab.com/html_stuff/code.html, 2015. Accessed
on: 01-07-2021.

[39] Jia Pan and Dinesh Manocha. Fast probabilistic collision checking for sampling-based motion plan-
ning using locality-sensitive hashing. International Journal of Robotics Research, 35(12):1477–1496, 2016.
ISSN 17413176. doi: 10.1177/0278364916640908.

[40] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library for collision and proximity
queries. In 2012 IEEE International Conference on Robotics and Automation, pages 3859–3866, 2012. doi:
10.1109/ICRA.2012.6225337.

[41] Jae Han Park, Ji Hun Bae, and Moon Hong Baeg. Adaptation algorithm of geometric graphs for robot
motion planning in dynamic environments. Mathematical Problems in Engineering, 2016, 2016. ISSN
15635147. doi: 10.1155/2016/3973467.

[42] Vinay Pilania and Kamal Gupta. A localization aware sampling strategy for motion planning under un-
certainty. IEEE International Conference on Intelligent Robots and Systems, pages 6093–6099, 2015. ISSN
21530866. doi: 10.1109/IROS.2015.7354245.

[43] Vinay Pilania and Kamal Gupta. Mobile manipulator planning under uncertainty in unknown en-
vironments. The International Journal of Robotics Research, 37(2):316–339, 2018. doi: 10.1177/
0278364918754677.

[44] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes bothforwards and backwards. Pacific
Journal of Mathematics, 145(2):367–393, 1990. doi: 10.2140/pjm.1990.145.367.

[45] RoboValley. Robohouse. https://robovalley.com/robohouse/, 2021. Accessed on: 17-06-2021.

[46] Stuart J. Russell. Artificial intelligence a modern approach. Norvig, Peter, Boston, 2018. ISBN 978-
0134610993.

[47] Magnus Selin, Mattias Tiger, Daniel Duberg, Fredrik Heintz, and Patric Jensfelt. Efficient autonomous
exploration planning of large-scale 3-d environments. IEEE Robotics and Automation Letters, 4(2):1699–
1706, 2019. doi: 10.1109/LRA.2019.2897343.

[48] Andrew Short, Zengxi Pan, Nathan Larkin, and Stephen van Duin. Recent progress on sampling based
dynamic motion planning algorithms. IEEE International Conference on Advanced Intelligent Mecha-
tronics (AIM), pages 1305–1311, 2016. doi: 10.1109/AIM.2016.7576950.

[49] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost graph library. http://www.boost.org/
libs/graph/doc/index.html, 2001. Accessed on: 24-05-2021.

[50] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User Guide and Refer-
ence Manual. Addison-Wesley Longman Publishing Co, Boston, MA, USA, 2002.

[51] Arne Sieverling, Nicolas Kuhnen, and Oliver Brock. Sensor-based, task-constrained motion genera-
tion under uncertainty. Proceedings - IEEE International Conference on Robotics and Automation, pages
4348–4355, 2014. ISSN 10504729. doi: 10.1109/ICRA.2014.6907492.

[52] Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology, Boston, 2006.
ISBN 0-619-21764-2.

http://ottelab.com/html_stuff/code.html
https://robovalley.com/robohouse/
http://www.boost.org/libs/graph/doc/index.html
http://www.boost.org/libs/graph/doc/index.html

64 Bibliography

[53] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning Library. IEEE Robotics &
Automation Magazine, 19(4):72–82, 2012. doi: 10.1109/MRA.2012.2205651. Software available at http:
//github.com/ompl/ompl,.

[54] Shantanu Thakar, Liwei Fang, Brual Shah, and Satyandra Gupta. Towards time-optimal trajectory plan-
ning for pick-and-transport operation with a mobile manipulator. In 2018 IEEE 14th International Con-
ference on Automation Science and Engineering (CASE), pages 981–987, 2018. doi: 10.1109/COASE.2018.
8560446.

[55] Shantanu Thakar, Pradeep Rajendran, Ariyan M. Kabir, and Satyandra K. Gupta. Manipulator motion
planning for part pickup and transport operations from a moving base. IEEE Transactions on Automa-
tion Science and Engineering, 2020. doi: 10.1109/TASE.2020.3020050.

[56] R.L. Wilder. Evolution of the topological concept of "connected". American Mathematical Monthly, 85
(9):720–726, 1978. doi: 10.2307/2321676.

[57] S. A. Wilmarth, N. M. Amato, , and P. F. Stiller. Motion planning for a rigid body using random networks
on the medial axis of the free space. Proceedings on the fifteenth annual symposium on computational
geometry, 1999.

[58] Yuandong Yang and Oliver Brock. Elastic roadmaps: Globally task-consistent motion for autonomous
mobile manipulation in dynamic environments. Robotics: Science and Systems, 2:279–286, 2007. ISSN
2330765X. doi: 10.15607/rss.2006.ii.036.

[59] Yuandong Yang and Oliver Brock. Elastic roadmaps-motion generation for autonomous mobile manip-
ulation. Autonomous Robots, 28(1):113–130, 2010. ISSN 09295593. doi: 10.1007/s10514-009-9151-x.

[60] Eiichi Yoshida and Fumio Kanehiro. Reactive robot motion using path replanning and deformation.
Proceedings - IEEE International Conference on Robotics and Automation, (December 2013):5456–5462,
2011. ISSN 10504729. doi: 10.1109/ICRA.2011.5980361.

[61] Eiichi Yoshida, Kazuhito Yokoi, and Pierre Gergondet. Online replanning for reactive robot motion: Prac-
tical aspects. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 -
Conference Proceedings, pages 5927–5933, 2010. doi: 10.1109/IROS.2010.5649645.

[62] Matt Zucker, Nathan Ratliff, Anca D. Dragan, Mihail Pivtoraiko, Matthew Klingensmith, Christopher M.
Dellin, J. Andrew Bagnell, and Siddhartha S. Srinivasa. CHOMP: Covariant Hamiltonian optimization for
motion planning. International Journal of Robotics Research, 32(9-10):1164–1193, 2013. ISSN 02783649.
doi: 10.1177/0278364913488805.

http://github.com/ompl/ompl
http://github.com/ompl/ompl

A
Parameter selection OMPL planners

In this appendix, we present performed experiments for selecting the parameters for RRT and PRM in the
Open Motion Planning Library (OMPL) [53] for the experiments in Chapter 5. We benchmarked the planners
with different values for the parameters based on the default value set for the planner in OMPL.

A.1. Range parameter RRT
For RRT, we aim to select a value for the range parameter, which is the maximum length of an edge to be
added to the graph.

A.1.1. Experiment setup
We carried out experiments in simulation to compare the effect of changing the range parameter of RRT on
the performance. We set the planning problems in EXOTica [19]. We performed the parameter selection for
the 10-DOF mobile manipulator in Section 5.2.2 in the static ten-obstacle environment in Section 5.2.3 be-
cause we aimed to deploy our proposed algorithm in obstacle-cluttered environments and therefore perform
parameter selection for RRT for benchmarking. We evaluated the planner for 50 runs to get more substanti-
ated results. We set the fail criterion to a maximum planning time of 120s. We set the goal bias, introduced in
Section 2.5, to 0.05 as is suggested by OMPL. For collision checking, we used the collision checking based on
the occupancy of a 3D grid from Section 5.2.5 and an interpolation resolution for checking the validity of the
edges of 0.01. The range parameter RRT in OMPL estimates for this environment in the configuration of the
planner is 10m. We compared the performance of RRT with range parameters of values 5m, 10m, 15m and
20m. We evaluated the planning time, path length, and success rate of the results.

A.1.2. Results
We present the results of RRT for the different range parameters in Table A.1. The planning time was lowest
for the range parameter of 15m. The path length was similar for the range parameters of 10m and 15m and
slightly lower for 5m and slightly higher for 20m. The success rate was highest for a range of 20m.

Range
[m]

Planning
time [s]

Number of
collision
checks

Path length
[m]

Success

Mean ± STD Mean ± STD Mean ± STD
5 19.73 ± 25.64 5993.5 ± 7780.6 46.4 ± 21.9 86%
10 19.61 ± 23.80 6039.4 ± 7320.8 49.8 ± 19.6 82%
15 13.49 ± 18.37 3786.7 ± 5127.9 49.9 ± 19.3 88%
20 22.14 ± 29.00 6597.5 ± 8652.3 53.1 ± 23.9 92%

Table A.1: This table presents the results of the Experiment to select the parameter for the range, which is the maximum length of an
edge to be added to the graph, of the rapidly-exploring random tree (RRT) algorithm in the Open Motion Planning Library (OMPL) [53].
We discuss the experiment setup in Appendix A.1.1.

65

66 Parameter selection OMPL planners

A.1.3. Discussion
None of the range parameters ensured the best performance on planning time, path length and success rate.
The range of 15m performed best on planning time and second-best on path length and success rate. The
planning time of the range parameter of 20m was nearly doubled compared to the value of 15m, while the
success rate was merely increased by 4%. This increased adaptation time is because longer edges are more
likely to be invalid due to an obstacle, resulting in more attempts necessary to find a valid edge and construct
the tree. The increased planning times for the range values of 5 and 10, compared to a range of 15, were
because more edges are generated to reach qgoal as the edges are shorter. Additionally, more edges that would
not be part of the graph were generated before the goal was reached, increasing the planning time. The range
parameter of 15m ensures the best performance of RRT in this environment based on its lowest planning time
and second-best success rate.

For environments of different sizes or with different obstacles, this experiment must be repeated. All
experiments RRT solves a planning problem in, in this thesis, have the same size. The eight-obstacle envi-
ronment in Section 5.2.3 consists of a similar geometry as the ten-obstacle environment in this experiment.
If the range parameter results in a high success rate for this obstacle-cluttered environment, it will also result
in a high success rate for environments with fewer obstacles, such as the zero-obstacle and three-obstacle
environments in Section 5.2.3. As we do not perform parameter selection for all environments separately, we
suggest setting the value to 15m, which results in a good performance for all environments.

If one desires to find the parameter that ensures the best performance for RRT, the range parameter selec-
tion must be performed for more range values between 5 and 20. Additionally, one can perform the parameter
selection specifically for every environment.

A.1.4. Conclusion
The range parameter of 15m ensured the best performance of RRT in this environment, and we assume that
it is also suitable for the remaining environments RRT solves planning problems in, in this thesis.

A.2. Nearest neighbour parameter PRM
For PRM we aimed to select a value for the number of nearest neighbours a new vertex attempts to connect
to.

A.2.1. Experiment setup
We carried out experiments in simulation to compare the effect of changing the nearest neighbours of PRM
on the performance. We set the planning problems in EXOTica [19]. We performed the parameter selection
for the 10-DOF mobile manipulator in Section 5.2.2 in the static ten-obstacle environment in Section 5.2.3
because we aimed to deploy our proposed algorithm in obstacle-cluttered environments and therefore per-
formed parameter selection for PRM for benchmarking. We evaluated the planner for 50 runs to get more
substantiated results. We set the fail criterion to a maximum planning time of 120s. For collision checking,
we used the collision checking based on the occupancy of a 3D grid from Section 5.2.5 and an interpolation
resolution for checking the validity of the edges of 0.01. The default nearest neighbour parameter in OMPL
is 10. We compared the performance of PRM with 5, 10, 15 and 20 as the number of nearest neighbours. We
evaluated the planning time, path length, and success rate of the results.

A.2.2. Results
We present the results of PRM for the different number of nearest neighbours in Table A.2. If the number
of nearest neighbours was 5, the success rate was 64 %. The remaining values for the number of nearest
neighbours ensured a higher success rate. The planning time was highest if the parameter was set to 20.
When the parameter was 10, the planning time was slightly higher than when it was 15; however, the success
rate was 10 % higher.

A.2.3. Discussion
None of the nearest neighbour parameters ensured the best performance on planning time, path length and
success rate. The values 5 and 20 are unsuitable due to their low success rate and high planning time, re-
spectively. The low success rate of 5 nearest neighbours is due to the inability to connect a new sample to the
roadmap resulting in drawing more samples that would not be part of the roadmap. This increases the plan-
ning time and results more often in not finding a solution within the maximum allocated time. The increased

A.2. Nearest neighbour parameter PRM 67

Nearest
neigh-
bours

Planning
time [s]

Number of colli-
sion checks

Path length
[m]

Success

Mean ± STD Mean ± STD Mean ± STD
5 3.95 ± 7.52 18743.2 ± 10027.0 43.9 ± 15.0 64%
10 5.85 ± 11.56 1904.3 ± 3798.6 36.0 ± 12.2 98%
15 4.02 ± 3.65 1218.7 ± 1127.0 38.1 ± 13.2 88%
20 11.45 ± 26.19 3647.7 ± 8340.6 47.3 ± 16.9 92%

Table A.2: This table presents the results of the experiment that performs the parameter selection for the number of nearest neighbours
a new vertex attempts to connect to in the probabilistic roadmap algorithm (PRM) in the Open Motion Planning Library (OMPL) [53].
We discuss the experiment setup in Appendix A.2.1.

planning time of 20 nearest neighbours is due to the more time-consuming collision checks are performed
on attempted connections. This increased time-consuming collision checks caused the success rate of 15
nearest neighbours to decrease, as the planning time is increased above the maximum allowed time. The
success rate of 98% makes the parameter 10 most suitable for planning with PRM in this environment.

For environments of different sizes or with different obstacles, this experiment must be repeated. All
experiments PRM solves a planning problem in, in this thesis, have the same size. The eight-obstacle envi-
ronment in Section 5.2.3 consists of a similar geometry as the ten-obstacle environment in this experiment.
Therefore, we assume the number of nearest neighbour parameter of 10 is also suitable for this environment.
If the nearest neighbour parameter results in a high success rate for this obstacle-cluttered environment, it
will also result in a high success rate for environments with fewer obstacles, such as the zero-obstacle and
three-obstacle environments in Section 5.2.3. However, in environments with fewer obstacles, a lower num-
ber of nearest neighbours will result in a higher success rate than in an obstacle-cluttered environment since
fewer attempted connections are invalid. As we do not perform parameter selection for all environments
separately, we suggest setting the value to 10, which results in a good performance for all environments.

If the goal is to find the optimal number of nearest neighbours parameter for PRM, we suggest performing
the parameter selection for more values between 5 and 20. Additionally, we suggest performing the parameter
selection specifically for every environment.

A.2.4. Conclusion
The number of nearest neighbours parameter of 10 ensured the best performance of PRM in this environ-
ment, and we assume that it is also suitable for the remaining environments PRM solves planning problems
in, in this thesis.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Coupled motion planning for a mobile manipulator
	Motion planning for high-DOF robots
	Incrementally changing environment

	Research question
	Contribution
	Requirements
	Thesis structure

	Preliminaries
	Motion planning problem
	Configuration space
	Obstacle representation
	Path
	Planning with differential constraints

	Motion planning properties
	Graph theory
	Graph
	Connectivity

	Sampling-based motion planning
	Description
	Metrics
	Graph construction
	Finding a path

	Rapidly-exploring random tree
	Probabilistic roadmap

	Related Work
	Roadmap adaptation based on edge adaptation
	Roadmap adaptation based on vertex adaptation
	Discussion

	Methods
	Requirements on the completeness, optimality and anytime
	Self-adjusting roadmap algorithm
	3D workspace
	High-DOF robot
	Invalid edges

	Method overview
	Method description
	3D grid generation
	Assignment of vertices and edges to cells
	Roadmap adaptation

	Parameters
	Initial roadmap
	3D grid cell size
	Nearest neighbours
	Safety margin bounding box
	Resampling area

	Discussion

	Experiments & Results
	Implementation ARM within the Robot Operating System
	Open Motion Planning Library
	Extensible Optimization Toolset
	Limitations implementation using OMPL and EXOTica
	Simplified adaptive roadmap algorithm
	Technical details on the implementation
	Discussion

	Planning scenarios
	Planners
	Robots
	Initial environment
	Incremental changes
	Collision checking
	Queries

	Experiment 1: Effect of robot DOFs on the planning time
	Setup
	Results
	Discussion
	Conclusion

	Experiment 2: Comparison of the time spent on roadmap adaptation by ARM and sARM
	Setup
	Results
	Discussion
	Conclusion

	Experiment 3: Effect of the resampling area on the adaptation time of sARM
	Setup
	Results
	Discussion
	Conclusion

	Experiment 4: Effect of the grid cell size on the planning time of sARM
	Setup
	Results
	Discussion
	Conclusion

	Experiment 5: Disconnected roadmap due to adaptations by sARM
	Setup
	Results
	Discussion
	Conclusion

	Experiment 6: Benchmark sARM to state-of-the-art planners
	Setup
	Results
	Discussion
	Conclusion

	Experiment 7: Effect of increasing the area affected by incremental changes on the speedup of sARM
	Setup
	Results
	Discussion
	Conclusion

	Experiment 8: Real-world implementation of sARM
	Setup
	Results
	Discussion
	Conclusion

	Conclusion & Future Work
	Conclusion
	Future work
	Implementation of non-simplified ARM as planner
	Benchmarking to more sophisticated algorithms
	Roadmap enhancement
	3D grid improvement
	Less conservative workspace representation of configurations
	Biased resampling

	Bibliography
	Parameter selection OMPL planners
	Range parameter RRT
	Experiment setup
	Results
	Discussion
	Conclusion

	Nearest neighbour parameter PRM
	Experiment setup
	Results
	Discussion
	Conclusion

