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 a b s t r a c t

Constitutive evaluations often dominate the computational cost of finite element (FE) simula-
tions whenever material models are complex. Neural constitutive models (NCMs), i.e., neural 
network-based constitutive models, offer a highly expressive and flexible framework for model-
ing complex material behavior in solid mechanics. However, their practical adoption in large-scale 
FE simulations remains limited due to significant computational costs, especially in repeatedly 
evaluating stress and stiffness. NCMs thus represent an extreme case: their large computational 
graphs make stress and stiffness evaluations prohibitively expensive, restricting their use to small-
scale problems. In this work, we introduce COMMET, an open-source FE framework whose ar-
chitecture has been redesigned from the ground up to accelerate high-cost constitutive updates. 
Our framework features a novel assembly algorithm that supports batched and vectorized consti-
tutive evaluations, compute-graph-optimized derivatives that replace automatic differentiation, 
and distributed-memory parallelism via MPI. These advances dramatically reduce runtime, with 
speed-ups exceeding three orders of magnitude relative to traditional non-vectorized automatic 
differentiation-based implementations. While we demonstrate these gains primarily for NCMs, the 
same principles apply broadly wherever for-loop based assembly or constitutive updates limit per-
formance, establishing a new standard for large-scale, high-fidelity simulations in computational 
mechanics.

1.  Introduction

The use of neural constitutive models (NCMs), i.e., neural network-based constitutive models in solid mechanics, has gained 
significant traction due to their exceptional expressivity, especially when compared to traditional constitutive models. This growing 
interest is largely motivated by the universal approximation theorem [1] which states that even relatively simple neural networks 
can approximate arbitrary continuous functions. This insight enables a paradigm shift in material modeling from human postulation 
of constitutive models to data-driven learning of material responses.

Traditionally, constitutive models were formulated by collecting limited experimental data and subsequently postulating physically 
admissible equations to fit this data. This process is inherently suboptimal, as it relies on the intuition of individual mechanicians to 
derive suitable equations – an approach unlikely to consistently yield the best representations of material behavior. NCMs offer an 
attractive alternative: they can flexibly learn to reproduce observed material responses, obviating the need to craft distinct models 
for different materials manually.
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$\bm {d}$


$\bm {d}$


${\bm {d}} \gets {\bm {d}} + \Delta {\bm {d}}$


\begin {equation}\K \Delta \bm {d} = -{\bm {r}}. \label {Xeqn1-1}\end {equation}


$\K $


$\bm {r}$


\begin {align}\K & = \begin {bmatrix} K^{11}_{11} & K^{11}_{12} & K^{11}_{13} & K^{12}_{11} & K^{12}_{12} & K^{12}_{13} & \hdots \\ K^{11}_{21} & K^{11}_{22} & K^{11}_{23} & K^{12}_{21} & K^{12}_{22} & K^{12}_{23} & \hdots \\ K^{11}_{31} & K^{11}_{32} & K^{11}_{33} & K^{12}_{31} & K^{12}_{32} & K^{12}_{33} & \hdots \\ K^{21}_{11} & K^{21}_{12} & K^{21}_{13} & K^{22}_{11} & K^{22}_{12} & K^{22}_{13} & \hdots \\ K^{21}_{21} & K^{21}_{22} & K^{21}_{23} & K^{22}_{21} & K^{22}_{22} & K^{22}_{23} & \hdots \\ K^{21}_{31} & K^{21}_{32} & K^{21}_{33} & K^{22}_{31} & K^{22}_{32} & K^{22}_{33} & \hdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end {bmatrix}, & {\bm {r}} & = \begin {bmatrix} r^{1}_{1} \\ r^{1}_{2} \\ r^{1}_{3} \\ r^{2}_{1} \\ r^{2}_{2} \\ r^{2}_{3} \\ \vdots \end {bmatrix},\end {align}


$K^{IJ}_{ij}$


$I,J\in \{1,\,2,\, \ldots ,\,\nNodes \}$


$i,j \in \{1,2,3\}$


$r^{I}_i$


$I$


$i$


\begin {align}K^{IJ}_{ij} & = \intOnDomO {\grad {\shapeFnI }_{k}\brac {\delta _{ij}\tau _{kl} + \cc _{ikjl}}\grad {\shapeFnJ }_{l}} , \label {eq:apprx-k} \\ r_{i}^{I} & = \intOnDomO {\tau _{ij}\grad {\shapeFnI }_{j}} - \intOnBoundN {\shapeFnI \bar {t}_i}. \label {eq:apprx-r}\end {align}


$\domO $


$\shapeFnI : \RR ^3\rightarrow \RR $


$I$


$\grad {\shapeFnI }$


$\shapeFnI $


$\delta $


$\btau $


$\cc $


$\boundN $


$\bar {\bm {t}}$


$\btau $


$\cc $


$\F = \I + \pd {{\bm {u}}}{\X }$


$\I $


$\bm {u}$


$\X $


$\nqp $


$\nEl $


$w^{\el ,\qp }$


\begin {align}&\intOnDomO {\tau _{ij}\grad {\shapeFnI }_{j}} & \approx \sum _{\el }^{\nEl } \sum _{\qp }^{\nqp }w^{\el ,\qp }\tau ^{\el ,\qp }_{ij}\grad {\shapeFn ^{I, \el ,\qp }}_{j},\label {eq:r-quad} \\ &\intOnDomO {\grad {\shapeFnI }_{k}\brac {\delta _{ij}\tau _{kl} + \cc _{ikjl}}\grad {\shapeFnJ }_{l}} & \approx \sum _{\el }^{\nEl } \sum _{\qp }^{\nqp }w^{\el ,\qp }\grad {\shapeFn ^{I, \el ,\qp }}_{k}\brac {\delta _{ij}\tau ^{\el ,\qp }_{kl} + \cc ^{\el ,\qp }_{ikjl}}\grad {\shapeFn ^{J, \el ,\qp }}_{l}.\label {eq:k-quad}\end {align}


$(\cdot )^{\el ,\qp }$


$\qp $


$\el $


$\F \rightarrow \btau , \cc $


$\nqp \times \nEl $


$\en (\F , \Aset )$


$\F $


$\nsv $


$\Aset = \set {\StrucVec ^1,\, \ldots ,\, \StrucVec ^{\nsv }}$


\begin {align}\tau _{ij} & = \pd {\en }{F_{iJ}}F_{jJ}, & \cc _{ijkl} & = F_{jJ}\pdd {\en }{F_{iJ}}{F_{kL}}F_{lL} - \delta _{ik}\tau _{jl}. \label {eq:hyper-stress-stiffness}\end {align}


$\F $


$\F $


$\nu _i$


$i=1,2,3$


$\Pi $


$\C = \F ^{T}\F $


\begin {align}\iI & = \tr {\C }, & \iII & = \frac {1}{2}\brac {\tr {\C }^{2} - \tr {\C ^{2}}}, & \iIII & = \det {\C }, & \iIVind & = \StrucVeci \cdot \C \StrucVecj , \label {eq:standard-inv-I}\end {align}


$i,j\in \{1,\dots ,\nsv \}$


$\actK $


$\actN $


$\actK $


$\actN $


$\actK $


$\actN $


\begin {equation}\en \fOf {\F , \,\Aset } = \actNof {\actKof {\F , \,\Aset }}. \label {eq:comp-se}\end {equation}


$\actN $


$\actN $


$\actN $


$\actK $


$\actN $


$\F $


$\set {\nu _1,\, \nu _2,\, \nu _3,\, \nu _1\nu _2,\, \nu _2\nu _3,\, \nu _3\nu _1, J}$


$\actN $


$\F $


$\F $


$I_1$


$I_2$


$I_3$


$\actN $


$\F $


$\actK $


$\actN $


\begin {align}\pd {\en }{F_{iJ}} & = \pd {\actN }{\actK _m}\pd {\actK _m}{F_{iJ}}, & \pdd {\en }{F_{iJ}}{F_{kL}}= \pdd {\actN }{\actK _m}{\actK _n}\pd {\actK _m}{F_{iJ}}\pd {\actK _n}{F_{kL}} + \pd {\actN }{\actK _m}\pdd {\actK _m}{F_{iJ}}{F_{kL}}. \label {eq:nncm-chain}\end {align}


$1$


$10^{3}$


$\sim 10^3\,-\,10^4$


$\bigO \fOf {\npts }$


$\npts $


$\npts $


$\npts $


$\bigO \fOf {m\npts }$


$m<1$


$2^{10}$


$\sim 10^{6}$


$\sim 10^{6}$


$10^{4}$


$10^{3}$


$10^{4}$


$\sim $


$\tr {\C }$


$\sim 10^{3}$


$10^{4}$


$10^{2}$


$10^{3}$


$10^{3}$


$10^{4}$


$\bigO \fOf {\nDofs ^{1.4}}$


$\nDofs $


$66\,234$


$462\,474$


$3\,436\,362$


$\times $


$\en $


$\F $


$\C $


$\B $


$\en $


$\F $


$\P $


$\CC ^{\P }$


\begin {align}P_{iJ} & := \pd {\en }{F_{iJ}}, & \CC ^{\P }_{iJkL} & := \pdd {\en }{F_{iJ}}{F_{kL}}.\end {align}


\begin {equation}\tau _{ij} = \pd {\en }{F_{iJ}}F_{jJ}. \label {Xeqn3-A.2}\end {equation}


\begin {equation}\CC ^{\P }_{iJkL} = \pd {}{F_{kL}}\brac {F_{iI}S_{IJ}} = \delta _{ik} S_{JL} + F_{iI}\CC _{IJKL}F_{kK}, \label {eq:p-stiffness}\end {equation}


$\S =\F ^{-1}\P $


$\CC =2\pd {\S }{\C }$


\begin {equation}\pd {\bullet }{F_{kL}} = \pd {\bullet }{C_{IJ}}\brac {\delta _{LI}F_{kJ} + F_{kI} \delta _{JL}}. \label {Xeqn5-A.4}\end {equation}


\begin {equation}\cc _{ijkl} = \CC _{IJKL}F_{iI}F_{jJ}F_{kK}F_{lL}. \label {eq:mat-spa-relation}\end {equation}


\begin {align}\cc _{ijkl} = F_{jJ}\brac {\CC ^{\P }_{iJkL} - \delta _{ik} S_{JL} }F_{lL} = F_{jJ}\CC ^{\P }_{iJkL}F_{lL} - \delta _{ik} \tau _{jl} ,\end {align}


$\btau = \F \S \F ^T$


$\en $


$\F $


\begin {align}\tau _{ij} & = \pd {\en }{F_{iJ}}F_{jJ}, & \cc _{ijkl} & = F_{jJ}\pdd {\en }{F_{iJ}}{F_{kL}}F_{lL} - \delta _{ik}\tau _{jl}.\end {align}


\begin {align}\ta & = 2\sum _m \pd {\actN }{\actK _m}\underbrace {\pd {\actK _m}{C_{IJ}}F_{iI}F_{jJ}}_{G^{m}_{ij}}\,\label {eq:stress-cgo} \\ \cc _{ijkl} & = 4\sum _{m,n}\pdd {\actN }{\actK _m}{\actK _m}\underbrace {\pd {\actK _m}{C_{IJ}}F_{iI}F_{jJ}}_{G^{m}_{ij}}\underbrace {\pd {\actK _n}{C_{KL}}F_{kK}F_{lL}}_{G^{n}_{kl}}+4\sum _m \pd {\actN }{\actK _m}\underbrace {\pdd {\actK _m}{C_{IJ}}{C_{KL}}F_{iI}F_{jJ}F_{kK}F_{lL}}_{\GG ^{m}_{ijkl}}.\label {eq:stiffnes-cgo}\end {align}


\begin {align}\G ^{m} & := \F \pd {\actK _m}{\C } \F ^{T}, & \GG ^{m}_{ijkl} & := \pdd {\actK _m}{C_{IJ}}{C_{KL}}F_{iI} F_{jJ} F_{kK} F_{lL}.\label {eq:second-and-fourth}\end {align}


$\G ^{m}$


$\GG ^{m}$


$\G ^{m}$


$\GG ^{m}$


$\pd {\actK _m}{\F }$


$\pdd {\actK _m}{C_{iJ}}{F_{kL}}$


\begin {align}\iI & = \tr {\C }, & \G ^{1} & := \B , & \GG ^{1} & := \OO , \label {eq:standard-start} \\ \iII & = \frac {1}{2}\brac {\tr {\C }^{2} - \tr {\C ^{2}}}, & \G ^{2} & := \B \tr {\B } - \B ^{2} , & \GG ^2 & := \B \otimes \B - \B \stimes \B , \\ \iIII & = \det {\C }, & \G ^3 & := \det {\B } \I , & \GG ^3 & := \det {\B }\brac {\I \otimes \I - \I \stimes \I }, \\ \iIVind & = \StrucVeci \cdot \C \StrucVecj , & \G ^{4,ij} & := \sym {\strucVeci \otimes \strucVecj }, & \GG ^{4,ij} & := \OO , \\ \iVind & = \StrucVeci \cdot \C ^{2}\StrucVecj , & \G ^{5,ij} & := 2\sym {\strucVeci \otimes \B \strucVecj }, & \GG ^{5,ij} & := \B \stimes \sym { \strucVeci \otimes \strucVecj } + \sym {\strucVeci \otimes \strucVecj }\stimes \B .\label {eq:standard-end}\end {align}


$\StrucVeci $


$i^{\text {th}}$


$\strucVeci :=\F \StrucVeci $


$\StrucVeci $


$\sym {\bullet }:=\frac {1}{2}\brac {\bullet + \bullet ^{T}}$


\begin {align}\brac {\a \otimes {\bm {b}}}\bm {c} & = a_i b_jc_j \\ \A \otimes \B & = A_{ij} B_{kl} \e _i\otimes \e _j\otimes \e _k\otimes \e _l, \\ \A \stimes \B & = \frac {1}{2} \brac {A_{ik} B_{jl}+ A_{il} B_{kj}} \e _i\otimes \e _j\otimes \e _k\otimes \e _l,\end {align}


$\e $


$\FIso $


$\FVol $


\begin {equation}\F =\FIso \FVol ,\qquad \FIso := J^{-1/3}\F ,\qquad \FVol := J^{1/3}\I ,\qquad J = \det {\F }. \label {Xeqn7-A.19}\end {equation}


$J$


$\iso {\bullet }$


$\vol {\bullet }$


$\bullet $


\begin {align}\ImIso & := I_m \IThree ^{\eIsom } \qquad \text {for } m \in \invSetIso , \\ \invSetIso & := \set {1, 2, \fOf {4,ij},\, \fOf {5, ij},\, | \, i,j\in \brac {1,\, \nsv }}, \\ \eIsom & := \begin {cases} -2/3 & \text {if } m\in \set {2, \, \fOf {5, ij}\, | \, i,j\in \brac {1,\, \nsv }}, \\ -1/3 & \text {otherwise.} \end {cases}\end {align}


\begin {align}\G ^{m} & = \GIso ^{m}+\eIsom \ImIso \I , \\ \GG ^{m} & = \GGIso ^m + \eIsom \brac {\I \otimes \GIso ^m + \GIso ^m \otimes \I + \ImIso \brac {\eIsom \I \otimes \I -\I \stimes \I }},\end {align}


$\GIso ^m$


$\GGIso ^m$


\begin {align}\GIso ^{1} & := \BIso , & \GG ^{1} & := \OO , \\ \GIso ^{2} & := \BIso \tr {\BIso } - \BIso ^{2} , & \GGIso ^2 & := \BIso \otimes \BIso - \BIso \stimes \BIso , \\ \GIso ^{4,ij} & := \sym {\strucVecIsoi \otimes \strucVecIsoj }, & \GGIso ^{4,ij} & := \OO , \\ \GIso ^{5,ij} & := 2\sym {\strucVecIsoi \otimes \B \strucVecIsoj }, & \GGIso ^{5,ij} & := \BIso \stimes \sym { \strucVecIsoi \otimes \strucVecIsoj } + \sym {\strucVecIsoi \otimes \strucVecIsoj }\stimes \BIso .\end {align}


$J$


\begin {align}\G & = \frac {J}{2} \I , & \GG & = \frac {J}{4}\brac {I\otimes \I - 2 \I \stimes \I }.\end {align}


\begin {equation}\actN \fOf {\bm {\actK }} = f_2 \circ f_1 \circ f_0 \fOf {\bm {\actK }} = \sum _{m\in \invSet }\sum _{k=1}^{n}w_{2,k,m}f_{2}\fOf {f_{1}\fOf {f_{0}\fOf {\actK _m; w_{0,k,m}}; w_{1,k,m}}}, \label {eq:cann-def}\end {equation}


$\invSet $


$w_{i,k,m}$


$i=1,2,3$


$k=1,\ldots ,n$


$k\in \invSet $


\begin {align}f_0 & = \begin {cases} \fOf {\circ } \\ \left <\circ \right > \\ \left \vert \circ \right \vert \\ \vdots \end {cases} & f_1 & = \begin {cases} \fOf {\circ }^{1} \\ \fOf {\circ }^{2} \\ \fOf {\circ }^{3} \\ \vdots \end {cases} & f_2 & = \begin {cases} w_1\fOf {\circ } \\ \exp {w_1\fOf {\circ }}-1 \\ -\ln \fOf {1-w_1\fOf {\circ }} \\ \vdots \end {cases}. \label {eq:cann-fs}\end {align}


$\actN $


\begin {align}\pd {\actN }{\nnInput _m} & = \sum _{k=1}^{n} w_{2,k,m}\pd {f_{2}}{\circ }\pd {f_{1}}{\circ }\pd {f_{0}}{\actK _{m}}, \\ \pdd {\actN }{\nnInput _{m}}{\nnInput _{m}} & = \sum _{k=1}^{n} w_{2,k,m}\brac {\brac {\pdd {f_{2}}{\circ }{\circ }\brac {\pd {f_{1}}{\circ }}^{2}+\pd {f_{2}}{\circ }\pdd {f_{1}}{\circ }{\circ }}\brac {\pd {f_{0}}{\nnInput _m}}^{2} + \pd {f_{2}}{\circ }\pd {f_{1}}{\circ }\pdd {f_{0}}{\nnInput _m}{\nnInput _m}}. \label {eq:cann-chain-rule}\end {align}


$\pdd {\actN }{\nnInput _{m}}{\nnInput _{n}} = 0,\quad \forall m\neq n$


\begin {align}\pd {f_0}{\circ } & = \begin {cases} 1 \\ \frac {1}{2}\fOf {1 + \sign {\circ }} \\ \sign {\circ } \\ \vdots \end {cases} & \pd {f_1}{\circ } & = \begin {cases} 1 \\ 2\fOf {\circ }^{1} \\ 3\fOf {\circ }^{2} \\ \vdots \end {cases} & \pd {f_2}{\circ } & = \begin {cases} w_1 \\ w_1\exp {w_1\fOf {\circ }} \\ \frac {w_1}{1-w_1\fOf {\circ }} \\ \vdots \end {cases} \\ \pdd {f_0}{\circ }{\circ } & = \begin {cases} 0 \\ 0 \\ 0 \\ \vdots \end {cases} & \pdd {f_1}{\circ }{\circ } & = \begin {cases} 0 \\ 2 \\ 6\fOf {\circ }^{1} \\ \vdots \end {cases} & \pdd {f_2}{\circ }{\circ } & = \begin {cases} 0 \\ w^{2}_1\exp {w_1\fOf {\circ }} \\ -\frac {w^{2}_1}{\brac {1-w_1\fOf {\circ }}^{2}} \\ \vdots \end {cases}\end {align}


\begin {align}\z \lay {0} & = \bm {\actK }, \label {eq:icnn-input} \\ \my \lay {k} & = \A \lay {k}\z \lay {k-1} + \B \lay {k}\z \lay {0}+\bias \lay {k},\label {eq:icnn-mid-1} \\ \z ^{(k)} & = \actFof {\my \lay {k}},\label {eq:icnn-mid-2} \\ \actN & = \A \lay {n}\z \lay {n-1} + \B \lay {n}\z \lay {0}.\label {eq:icnn-output}\end {align}


$\bm {\actK }$


$\z ^{(n)}$


$\actF $


$\bias \lay {k}$


$\A \lay {k}$


$\B \lay {k}$


$k=1,\ldots ,\,n-1$


$\bm {\actK }$


$\A \lay {k}$


$k>0$


$\actF $


$\bm {\actK }$


$\A \lay {k}$


$\B \lay {k}$


$\actF $


\begin {align}\pd {\actN }{\actK _m} & = A\lay {n}_{j}\pd {z\lay {n-1}_j}{\actK _m} + B_m\lay {n} \label {eq:icnn-grad-1} \\ \text {(no sum on j) }\pd {z\lay {n-1}_j}{\actK _m} & = \pd {\actF }{y\lay {n-1}_j}\pd {y\lay {n-1}_j}{\actK _m}\label {eq:icnn-grad-dz} \\ \pd {y\lay {n-1}_j}{\actK _m} & = A\lay {n-1}_{jk}\pd {z\lay {n-2}_k}{\actK _m} + B_{jm}\lay {n-1}\label {eq:icnn-grad-3}\end {align}


$\pd {z\lay {n-2}_j}{\actK _m}$


$n-1$


$n-2$


$k=n$


$k=1$


\begin {align}\text {(no sum on j) }\pd {z\lay {1}_j}{\actK _m} & = \pd {\actF }{y\lay {1}_j}\pd {y\lay {1}_j}{\actK _m}, \\ \pd {y\lay {1}_j}{\actK _m} & = A\lay {1}_{jm} + B_{jm}\lay {1}.\end {align}


\begin {align}\pdd {\actN }{K_m}{K_n} & = A\lay {n}_{j}\pdd {z\lay {n-1}_j}{K_m}{K_n} \\ \text {(no sum on j) }\pdd {z\lay {n-1}_j}{K_m}{K_n} & = \pd {\actF }{y\lay {n-1}_j}\pdd {y\lay {n-1}_j}{K_m}{K_n} + \pdd {\actF }{y\lay {n-1}_j}{y\lay {n-1}_j}\pd {y\lay {n-1}_j}{K_m}\pd {y\lay {n-1}_j}{K_n}\label {eq:iccn-2grad-dz} \\ \pdd {y\lay {n-1}_j}{K_m}{K_n} & = A\lay {n-1}_{jk}\pdd {z\lay {n-2}_{k}}{K_m}{K_n} \label {eq:iccn-2grad-end}.\end {align}


$\odot $


$R$


\begin {align}\z \lay {0} & = \bm {\actK }, \\ \bfz ^{(r)} & = \left [\sum _{j=1}^{n_{r-1}} \spli _{r-1,1,j}\Bigl (z^{(r-1)}_j\Bigr ) \ , \ \dots , \ \sum _{j=1}^{n_{r-1}} \spli _{r-1,n_r,j}\Bigl (z^{(r-1)}_j\Bigr )\right ]^T, \\[1mm] \actN & = \sum _{j=1}^{n_{R-1}} \spli _{R-1,1,j}\Bigl (z^{(R-1)}_j\Bigr ).\end {align}


$\spli _{i,j,k}$


\begin {align}\spli (x) & = w_{s} \psi (x)\end {align}


$w_s$


$\psi $


$k^{\text {th}}$


$n_b$


$B_{i,k}$


$c_i$


\begin {align}\psi (x)=\sum _{i=1}^{n_b} c_i B_{i,k}(x), \qquad \text {with} \quad \sum _{i=1}^{n_b} B_{i,k}(x)=1 \quad \text {for}\quad x\in [x_\text {min},x_\text {max}].\end {align}


$k^{\text {th}}$


$m_b=(k+n_b+1)$


$\{t_i\} ^{m_b}_{i=1}$


$k=0$


\begin {equation}B_{i,0}(x) = \begin {cases} 1, \quad \text {if } t_i \leq x < t_{i+1}, \\ 0, \quad \text {otherwise}. \end {cases} \label {Xeqn9-B.21}\end {equation}


$k > 0$


\begin {equation}B_{i,k}(x) = \frac {x - t_i}{t_{i+k} - t_i} B_{i,k-1}(x) + \frac {t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1,k-1}(x). \label {Xeqn10-B.22}\end {equation}


\begin {equation}t_{i+2} - t_{i+1} = t_{i+1} - t_{i}, \quad \forall \ i \in [1, m_b-2]. \label {Xeqn11-B.23}\end {equation}


$w_s$


\begin {equation}c_{i+2} - c_{i+1} \geq c_{i+1} - c_{i} \geq 0, \quad \forall \ i \in [1, n_b-2]. \label {Xeqn12-B.24}\end {equation}


$R^{\beta , t}$


$\beta =1,\ldots ,n_{\beta }$


$t=1,\ldots ,n_t$


$\params $


\begin {equation}\params = \argmin _{\params } \sum _{t=1}^{n_t} \brac {\sum _{(I,i)\in D ^{\text {free}}}\fOf {r_{i}^{I,t}} ^{2} + \sum _{\beta =1} ^{n_\beta } \fOf {R ^{\beta , t} - \sum _{(I,i) \in D_{\beta } ^{\text {fix}}} r_{i}^{I,t}} ^{2}} \label {eq:loss}\end {equation}


$D^{\text {free}}$


$D^{\text {fix}}_{\beta }$


$\beta $


$D^{\text {free}}$


$\params $


$\beta =1,\ldots ,n_\beta $


$\params $


\begin {equation}\en \fOf {\F } = 0.5(\iIi -3) + \log \fOf {\iIIi /3} + (J-1) ^{2}, \label {eq:gt}\end {equation}


$1\times 1$


$0.1$


$0.1$


\begin {equation}\actK \fOf {\F } = \begin {bmatrix} \iIi -3 & \iIIi ^{3/2} - 3 ^{3/2} & (J-1) ^{2} \end {bmatrix} . \label {Xeqn15-C.3}\end {equation}


\begin {equation}\begin {aligned} \F ^{\text {UT}}\fOf {\gamma } & = \begin {bmatrix} 1+ \gamma & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {bmatrix}, & \F ^{\text {UC}}\fOf {\gamma } & = \begin {bmatrix} \frac {1}{1+ \gamma } & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {bmatrix}, & \F ^{\text {BT}}\fOf {\gamma } & = \begin {bmatrix} 1+ \gamma & 0 & 0 \\ 0 & 1+ \gamma & 0 \\ 0 & 0 & 1 \end {bmatrix}, \\ \F ^{\text {BC}}\fOf {\gamma } & = \begin {bmatrix} \frac {1}{1+ \gamma } & 0 & 0 \\ 0 & \frac {1}{1+ \gamma } & 0 \\ 0 & 0 & 1 \end {bmatrix}, & \F ^{\text {SS}}\fOf {\gamma } & = \begin {bmatrix} 1 & \gamma & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {bmatrix}, & \F ^{\text {PS}}\fOf {\gamma } & = \begin {bmatrix} 1+\gamma & 0 & 0 \\ 0 & \frac {1}{1+ \gamma } & 0 \\ 0 & 0 & 1 \end {bmatrix}. \end {aligned} \label {Xeqn16-C.4}\end {equation}


$\tau _{22}$


$\tau _{33}$


$10^{4}$
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Nonetheless, ensuring physical admissibility in NCMs remains crucial for model generalizability. This is of particular importance 
for the integration of NCMs in finite element (FE) solvers where non-physical material behavior typically leads to instabilities. Con-
sequently, recent work has focused on incorporating mathematical constraints into neural network architectures to enforce physical 
principles as an inductive bias while preserving the networks’ expressive capacity [2–20]. Moreover, notable work has been done to 
obtain frameworks for appropriately training such highly-parameterized NCMs in the context of solid mechanics [16,17,21–24]. As 
a result, NCMs have been successfully applied to model a broad range of material behaviors, including (anisotropic) hyperelasticity 
[6,9,21,25–27], viscoelasticity [28,29], plasticity [30–33], generalized standard materials [18], metamaterials [34], electroelasticity 
[35], and thermoelasticity [36,37].

While NCMs have demonstrated remarkable flexibility and expressivity in replicating complex material behavior, their widespread 
adoption is hindered by the high computational cost incurred during integration into numerical solvers, especially FE programs. Unlike 
traditional constitutive models, NCMs require evaluating large computational graphs, making the calculation of stress and stiffness 
tensors significantly more expensive in terms of floating point operations [38], thereby causing the cost of the assembly process to 
overshadow that of linear solves. For example, in a standard FE calculation, comparing a Mooney-Rivlin model with an NCM trained 
to replicate it showed that evaluating stress and stiffness accounted for about 5% of the total computed time with the Mooney Rivlin 
model but rose to 54% with the NCM [39]. Even for elastic material models that require no updating of state variables, computing 
material behavior with an NCM can become the dominant computational bottleneck.

Without targeted improvements to how solvers evaluate NCM computations, the practical utility of these models will remain 
limited to small-scale offline analyses. Bridging this gap between model fidelity and computational performance is therefore critical 
to enabling the routine use of NCMs in large-scale simulations across engineering and scientific domains.

While many studies have focused on improving FE solver performance through better CPU cache utilization and single instruction 
multiple data (SIMD) based vectorization [40–45], these efforts do not address the cost of complex constitutive evaluations, assuming 
relatively inexpensive material models (which is not the case for NCMs). Nonetheless, the techniques developed in those works – 
particularly with regard to batched computations and vectorization – can inspire performance optimizations for solvers utilizing 
NCMs. On the other hand, several studies have employed vectorized constitutive updates for FE solves and inverse problems in solid 
mechanics [6,21,34,35,46,47]. However, these efforts have primarily been implemented in non-performant languages such as Python 
– due to the prevalence of Python-based NCM training environments – or using JAX [48], which lacks sufficient support for scaling 
across multiple compute nodes. Moreover, they have not undergone a quantitative and systematic investigation into their scaling 
behavior or comprehensive performance analysis. Lastly, some efforts [7,25,37,38,49] have focused on retrofitting NCMs into legacy 
FE solvers, including commercial software such as Abaqus [50] and Ansys [51]. While these solvers support user-defined material 
models and routines, their underlying architectures do not support vectorization strategies across multiple quadrature points and 
elements and therefore, suffer from computational bottlenecks. To fully leverage the representational power of NCMs in practical 
applications, it is essential that the surrounding FE solver architecture be re-imagined from the ground up.

To address these challenges, we introduce a novel FE assembly algorithm that enables batched and vectorized evaluation of the 
constitutive model. This vectorization strategy requires simultaneous access to state variables of multiple material points, which in 
turn necessitates a redesign of the conventional FE element-level assembly process. To allow fine-grained control over the performance 
trade-offs introduced by batching, the solver architecture includes a mechanism to explicitly manage the batch size – the number of 
constitutive updates processed in a single vectorized operation. Typically for NCMs, the stress and stiffness are calculated by automatic 
differentiation, which can be slow for NCMs with large computational graphs. Therefore, we further improve FE performance by 
replacing automatic differentiation (AD) with compute graph optimized (CGO) implementations of NCMs. In CGO, we demonstrate 
that a carefully designed analytical treatment of NCMs can outperform AD by enabling efficient analytical computation of first and 
second derivatives. This approach significantly reduces both memory usage and computation time. Finally, we show that batch-
vectorization is compatible with distributed-memory parallelism using message-passing interface (MPI) [52], effectively marrying 
SIMD-based parallelism within each compute node with MPI-based parallelism across multiple compute nodes. This hierarchical 
approach to parallelization enables highly scalable and efficient large-scale simulations. For the scope of this work, we focus on 
hyperelastic material behavior, while noting that the overall framework is agnostic to NCM architecture and can also be applied 
similarly to path-dependent NCMs.

As a companion to this work, we introduce COMMET (COmputational Mechanics and Machine learning Toolbox) – an open-source 
software incorporating the technologies introduced in this work. Specifically, COMMET provides dedicated Python-based modules for 
implementing and training NCMs, as well as a C++-based FE solver which has been developed on top of the Deal.II library [53] with 
batch-vectorization, CGO, and MPI parallelism for scalable simulations using NCMs. We invite the research community to utilize and 
contribute to COMMET to enable broader adoption and further exploration of data-driven constitutive modeling in solid mechanics.

The remaineder of this contribution is organized as follows. Key background on finite elements and neural constitutive models 
is summarized in Section 2. We provide details on the global and batch-vectorized assembly algorithms as well as CGO and MPI 
parallelization in Section 3. The results of extensive benchmarks of the vectorization algorithms and developed solver are presented 
and discussed in Section 4. In Section 5, we present demonstration of the developed solver’s capabilities by simulating the passive 
filling of a human heart while using an NCM to model the material behavior. Finally, we provide concluding remarks in Section 6. 

2.  Background and preliminaries

Before detailing the batch-vectorized FE assembly algorithm for efficient NCM-based large-scale modeling (see Section 3), we 
briefly outline key preliminary knowledge on FE and NCMs in Sections 2.1 and 2.2, respectively.
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2.1.  Finite elements for solid mechanics problems

Here, we concisely introduce the mathematical components of FE that are relevant to this work. For a more complete introduction 
to FE, readers are referred to standard textbooks, e.g., [54–56]. In the context of boundary value problems in nonlinear solid me-
chanics, the global displacement vector d is typically obtained by using the Newton-Raphson (NR) method (or similar gradient-based 
methods) to solve the weak form of the linear momentum balance discretized over a domain. In other words, d is iteratively updated 
by d ← d + Δd, where

𝑲Δd = −r. (1)

Here, 𝑲 and r represent the global stiffness matrix and global residual vector, respectively, of the form 
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, (2)

where 𝐾𝐼𝐽
𝑖𝑗  denotes the tangent stiffness for the pair of nodes 𝐼, 𝐽 ∈ {1, 2, … , 𝑛nodes} in the spatial directions 𝑖, 𝑗 ∈ {1, 2, 3} and 𝑟𝐼𝑖

denotes the force residual for node 𝐼 in direction 𝑖. These entries are given by the following expressions, which result from the 
discretization of the weak form of the balance of equilibrium with negligible body forces in the current configuration (see, e.g. [56] 
Section 4.2.3):

𝐾𝐼𝐽
𝑖𝑗 = ∫Ω0

∇x𝜙
𝐼
𝑘
[

𝛿𝑖𝑗𝜏𝑘𝑙 + 𝕔𝑖𝑘𝑗𝑙
]

∇x𝜙
𝐽
𝑙 dΩ0, (3)

𝑟𝐼𝑖 = ∫Ω0

𝜏𝑖𝑗∇x𝜙
𝐼
𝑗 dΩ0 − ∫Γ𝑁

𝜙𝐼 𝑡𝑖 dΓ𝑁 . (4)

Here, Ω0 denotes the reference material domain, 𝜙𝐼 ∶ R3 → R is the shape function of node 𝐼 , ∇x𝜙𝐼  represents the gradient of 𝜙𝐼
in the spatial configuration, 𝛿 is the Kronecker delta, τ  is the Kirchhoff stress, 𝕔 is the spatial stiffness tensor, Γ𝑁  is the portion of the 
boundary to which a traction condition is prescribed, and t̄ is a prescribed traction. Additionally, the Einstein summation convention 
is invoked for repeated indices.

Both τ  and 𝕔 are constitutive quantities that are functions of the deformation gradient F = I + 𝜕u
𝜕𝑿  and internal state variables, 

where I is the identity tensor, u is the displacement field, and 𝑿 represents the position in the material domain.
The integrals in Eqs.  (3) and (4) are evaluated using numerical quadrature, i.e., as the sum of the integrand evaluated at a finite 

number of 𝑛q quadrature points, within a finite number of elements 𝑛e, and weighted by the volume of the quadrature point within 
that element 𝑤e,q

∫Ω0

𝜏𝑖𝑗∇x𝜙
𝐼
𝑗 dΩ0 ≈

𝑛e
∑

e

𝑛q
∑

q
𝑤e,q𝜏e,q𝑖𝑗 ∇x𝜙

𝐼,e,q
𝑗 , (5)

∫Ω0

∇x𝜙
𝐼
𝑘
[

𝛿𝑖𝑗𝜏𝑘𝑙 + 𝕔𝑖𝑘𝑗𝑙
]

∇x𝜙
𝐽
𝑙 dΩ0 ≈

𝑛e
∑

e

𝑛q
∑

q
𝑤e,q∇x𝜙

𝐼,e,q
𝑘

[

𝛿𝑖𝑗𝜏
e,q
𝑘𝑙 + 𝕔e,q𝑖𝑘𝑗𝑙

]

∇x𝜙
𝐽 ,e,q
𝑙 . (6)

The superscript (⋅)e,q denotes the evaluation at quadrature point q in element e.
Evaluating the summations in Eqs.  (5) and (6) lies at the heart of the so-called assembly process in FE methods. Traditionally, 

the assembly is implemented using nested for-loops: iterating over each element, then over quadrature points, and finally over pairs 
of nodes within each element. In this approach, the number of constitutive calculations (F → τ , 𝕔) performed at each NR iteration 
amounts to 𝑛q × 𝑛e, which is often large. Hence, rapid computation of the constitutive map for many material points is crucial for the 
performant evaluation of the necessary integrals in Eqs.  (5) and (6), and hence, is crucial for a fast assembly process.

For completeness, and for comparison with the new algorithms presented subsequently, the traditional algorithm for FE assembly 
is presented in Algorithm 1.

2.2.  Neural constitutive models

For the scope of this work, we focus on hyperelastic material behavior, while noting that the overall framework is material-agnostic 
and can also be applied to path-dependent material behaviors. To model (anisotropic) hyperelastic material behavior, we postulate a 
strain energy density Ψ(F ,) that is a function of the deformation gradient F  and a set of 𝑛sv structural vectors  =

{

𝑨1, … , 𝑨𝑛sv
}

. 
The Kirchhoff stress and spatial stiffness tensor are then given by (see derivation in Appendix A.1) 

𝜏𝑖𝑗 =
𝜕Ψ
𝜕𝐹𝑖𝐽

𝐹𝑗𝐽 , 𝕔𝑖𝑗𝑘𝑙 = 𝐹𝑗𝐽
𝜕2Ψ

𝜕𝐹𝑖𝐽 𝜕𝐹𝑘𝐿
𝐹𝑙𝐿 − 𝛿𝑖𝑘𝜏𝑗𝑙 . (7)
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Algorithm 1 Traditional algorithm for finite element system assembly.
1: for e = 1,… , 𝑛e do ⊳ Loop over elements
2:  for q = 1,… , 𝑛q do ⊳ Loop over quadrature points for element
3:  F ← I +

∑

𝐼 u
𝐼 ⊗ ∇𝑿𝜙𝐼,e,q ⊳ Evaluate trial F  at quadrature point

4:  τ , 𝕔 ← constitutive_model(F ) ⊳ Evaluate stress and stiffness at quadrature point
5:  for 𝐼 ∈ {Nodes on element e} do ⊳ Loop over nodes for element
6:  𝑟𝐼𝑖 ← 𝑟𝐼𝑖 +𝑤

e,q𝜏e,q𝑖𝑗 ∇x𝜙
𝐼,e,q
𝑗 ⊳ Add contribution to residual Eq. (5)

7:  for 𝐽 ∈ {Nodes on element e} do ⊳ Inner loop over nodes for element
8:  𝐾𝐼𝐽

𝑖𝑗 ← 𝐾𝐼𝐽
𝑖𝑗 +𝑤e,q∇x𝜙

𝐼,e,q
𝑘

[

𝛿𝑖𝑗𝜏
e,q
𝑘𝑙 + 𝕔e,q𝑖𝑘𝑗𝑙

]

∇x𝜙
𝐽 ,e,q
𝑙 ⊳ Add stiffness contribution Eq. (6)

9:  end for
10:  end for
11:  end for
12: end for

Fig. 1. High-level architecture of a neural constitutive model (NCM). The hyperelastic strain energy density formulated as a composition of 
two functions  and  . The kinematic layer  maps the deformation gradient and structural vectors to a set of invariant kinematic scalars, ensuring 
objectivity and material symmetry. These scalars then serve as input to the inner network  , typically a neural network architecture designed to 
satisfy convexity conditions required for polyconvexity. The inner network outputs the final strain energy density, which is used to derive the stress 
and stiffness needed in finite element simulations.

In order to satisfy the axioms of objectivity and material symmetry, the strain energy density is typically not postulated in terms of 
the deformation gradient F  directly, but instead postulated in terms of a set of kinematic scalar values that are invariant to the choice 
of basis for the reference or current configuration. Examples of these scalars include the signed singular values of F , 𝜈𝑖, 𝑖 = 1, 2, 3
[3,57].1 Alternatively, invariants of the right Cauchy-Green tensor C = F 𝑇F , e.g., 

𝐼1 = tr(C), 𝐼2 =
1
2
[

tr(C)2 − tr
(

C2)], 𝐼3 = detC, 𝐼4,𝑖𝑗 = 𝑨𝑖 ⋅C𝑨𝑗 , (8)

where 𝑖, 𝑗 ∈ {1,… , 𝑛sv}, can also be used as inputs for the strain energy density. Hence, in an abstract sense, the strain energy density 
can be thought of as a composition of two functions (see Fig. 1):  which maps the deformation gradient and structural vectors to a 
set of kinematic scalars, and   which maps those scalars to the final strain energy density, i.e.,

Ψ(F , ) =  ((F , )). (9)

1 Additional requirements of Π invariance are required for objectivity and material symmetry in this case; see [3,57] for details.
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In the traditional constitutive modeling paradigm,   is typically a simple analytical function that is postulated by mechanicians. 
However, in the NCM paradigm,   takes the form of a neural network architecture that is agnostic to its use as a constitutive model. In 
this sense,   is simply a highly expressive ansatz for a constitutive equation that is inspired by machine learning. In accordance with 
machine learning (ML) terminology, we term  as the kinematic layer and   as the inner network. To ensure polyconvexity of the NCM 
in F , certain convexity conditions are required for the inner network. These conditions are dependent on the choice of the kinematic 
scalars. For example, if the set of kinematic scalar inputs is {𝜈1, 𝜈2, 𝜈3, 𝜈1𝜈2, 𝜈2𝜈3, 𝜈3𝜈1, 𝐽

}

, then input-convexity2 of   is sufficient 
to guarantee polyconvexity in F  [3,12,57]. However, if the scalar inputs are themselves polyconvex functions in F  (e.g., 𝐼1, 𝐼2, and 
𝐼3), then one requires that   is convex and monotonically increasing in its inputs [6] for the NCM to be polyconvex in F  overall. To 
this end, some inner networks that have been used to date include input convex neural networks (ICNNs) [9,21,58], monotonically 
non-decreasing input convext neural networks (MICNNs) [59], constitutive artificial neural networks (CANNs) [5,8,38,60], and input 
convex Kolmogorov-Arnold networks (ICKANs) [6,61]. Further details on these specific NCM-based architectures are provided in 
Appendix B for completeness.

3.  COMMET: vectorized and batched FE solver enabling efficient NCM implementation

Central to our approach is a novel element assembly algorithm that enables batched and vectorized evaluation of NCMs (see 
Section 3.1). This allows the solver to fully utilize the capabilities of modern CPUs and memory hierarchies, improving cache behavior. 
To enable large-scale simulations, we parallelize the solver using MPI, supporting distributed-memory computation across multiple 
compute nodes while maintaining consistent batched execution of NCM evaluations (see Section 3.3). Finally, we further reduce the 
cost of constitutive evaluations by replacing automatic differentiation-based computations of the stress and tangent stiffness with 
compute graph optimization (see Section 3.2).

3.1.  Assembly vectorization and batching

In the traditional assembly algorithm (see Algorithm 1), one loops over each element and quadrature point and evaluates the 
constitutive updates sequentially, as shown in Fig. 2 (a).

In contrast, we propose to bundle, i.e., batch the constitutive update calculations across multiple quadrature points – both within 
and across multiple elements – and evaluate them in parallel through a single NCM constitutive update instance (i.e., vectorization).

The traditional FE assembly procedure (Algorithm 1) does not readily allow vectorization of the constitutive updates since the state 
variables are overwritten from one quadrature point to the next throughout the assembly procedure. Hence, we alter this procedure 
by creating tables for the relevant state variables across all elements and quadrature points. Each table is stored in a structured and 
contiguous block in the memory. We introduce this assembly process as the globally vectorized algorithm schematically shown in 
Fig. 2 (b). In this algorithm, we perform the constitutive update across the entire mesh in a single vectorized operation as presented 
in Algorithm 2.

While the globally vectorized algorithm is arguably the simplest way to leverage vectorization, memory constraints only render 
it practical for small mesh sizes. The RAM on a compute node is inherently limited, therefore a contiguous block of memory may 
not be available to store a large table of state variables for a high-resolution mesh. We address this issue by dividing the state 
variables table into multiple batches of smaller but equal sizes, with each batch still stored in a contiguous memory block. Fig. 2 (c) 
introduces the second batch-vectorized algorithm which processes the constitutive update in user-chosen batch sizes as detailed 
in Algorithm 3. Practically, we recommend using the batch-vectorized algorithm and determining the optimal batch size subject to 
RAM usage constraints for each machine through computational experiments, as demonstrated in Section 4.1. Note that the globally 
vectorized algorithm is equivalent to the batch-vectorized algorithm with batch size equal to the total number of material/quadrature 
points (subject to memory constraints).

Overall, the batch-vectorization approach leverages the Single Instruction Multiple Data (SIMD) [62] paradigm to accelerate the 
FE assembly. SIMD refers to data-level parallelism where the same instructions are executed simultaneously on multiple data points, 
given that there are no interdependencies between data points or their corresponding instructions. As a simple example, the addition 
of two arrays can be performed in two ways: using a non-SIMD approach, where each element is processed sequentially in a loop, 
e.g., 
for (unsigned int i = 0; i < a r r a y _ s i z e ; i++)

a[ i ] = b[ i ] + c [ i ] ;

or using the faster SIMD approach, where a single instruction adds multiple elements in parallel, e.g., 
a [0 : a r r a y _ s i z e ] = b[0 : a r r a y _ s i z e ] + c [0 : a r r a y _ s i z e ] ;

Within the FE context and the proposed algorithm, the computational benefit of this SIMD approach emerges from multiple 
aspects, the most important ones being as follows.

Data prefetching As illustrated in Fig. 3, modern computers typically employ two types of RAM: dynamic random access memory 
(DRAM) and static random access memory (SRAM) [63].

2 The architecture of an input-convex neural network [58] is designed to ensure that the output is identically convex with respect to the inputs, 
regardless of the network’s weights.
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Fig. 2. Schematic comparison of constitutive update strategies in finite element assembly: (a) the traditional approach whereby the stress and 
stiffness are calculated for one quadrature point at a time, (b) the globally vectorized approach where the state variables (i.e. deformation gradient 
and structural vectors in the case of hyperelasticity) for all quadrature points are collected in tables from which associated stress and stiffness tables 
are calculated in a single vectorized computation, and (c) the batch-vectorized approach where batches of quadrature points are processed at a time.

In general, accessing data from SRAM is roughly two orders of magnitude faster than reading data from DRAM. However, SRAM 
requires more physical space per byte and is significantly more expensive to manufacture. As a result, modern systems use a relatively 
small amount of SRAM – ranging from a few kilobytes to several megabytes – integrated directly into the CPU as a cache. In contrast, 
DRAM is used for main memory, typically on the order of gigabytes, and is connected to the CPU via a memory controller and memory 
bus located on the motherboard.

The cache itself is divided into three levels, L1, L2, and L3 illustrated in Fig. 3. These L1, L2, and L3 SRAM caches have increasing 
sizes and decreasing speeds. For example, a 24-core Intel(R) Xeon(R) Gold 6248R chip has L1, L2, and L3 has cache level sizes of 3 
MiB, 48 MiB, and 71.5 MiB, respectively, and data-retrieval latencies amounting to 4 cycles, 12 cycles, and 44 cycles, respectively 
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Algorithm 2 Algorithm for globally vectorized finite element system assembly.
1: count ← 0
2: for e = 1,… , 𝑛e do ⊳ Loop over elements
3:  for q = 1,… , 𝑛q do ⊳ Loop over quadrature points
4:  {F }[count] ← I +

∑

𝐼 u
𝐼 ⊗ ∇𝑿𝜙𝐼,e,q ⊳ Evaluate trial F  at quadrature point

5:  count + +
6:  end for
7: end for
8: {Ψ}, {τ}, {𝕔} ← vectorized_constitutive_model({F })
9: count ← 0
10: for e = 1,… , 𝑛e do ⊳ Loop over elements
11:  for q = 1,… , 𝑛q do ⊳ Loop over quadrature points
12:  τ , 𝕔 ← {τ}[count], {𝕔}[count] ⊳ Look up quadrature point values
13:  for 𝐼 ∈ {Nodes on element e} do ⊳ Loop over nodes for element
14:  𝑟𝐼𝑖 ← 𝑟𝐼𝑖 +𝑤

e,q𝜏e,q𝑖𝑗 ∇x𝜙
𝐼,e,q
𝑗 ⊳ Add contribution to residual Eq. (5)

15:  for 𝐽 ∈ {Nodes on element e} do ⊳ Inner loop over nodes for element
16:  𝐾𝐼𝐽

𝑖𝑗 ← 𝐾𝐼𝐽
𝑖𝑗 +𝑤e,q∇x𝜙

𝐼,e,q
𝑘

[

𝛿𝑖𝑗𝜏
e,q
𝑘𝑙 + 𝕔e,q𝑖𝑘𝑗𝑙

]

∇x𝜙
𝐽 ,e,q
𝑙 ⊳ Add stiffness contribution Eq. (6)

17:  end for
18:  end for
19:  end for
20: end for

Algorithm 3 Algorithm for batch-vectorized assembly.
1: accumulated_count, count← 0
2: while accumulated_count < 𝑛e do
3:  count← 0
4:  while count < 𝑛b ς count + accumulated_count < 𝑛e do ⊳ Loop over element batch
5:  {F }[count] ← I +

∑

𝐼 u
𝐼 ⊗ ∇𝑿𝜙𝐼,e,q ⊳ Evaluate trial F  at quadrature point

6:  count + +
7:  end while
8:  {Ψ}, {τ}, {𝕔} ← vectorized_constitutive_model({F })
9:  count← 0
10:  while count < 𝑛b ς count + accumulated_count < 𝑛e do ⊳ Loop over element batch
11:  for q = 1,… , 𝑛q do ⊳ Loop over quadrature points
12:  τ , 𝕔 ← {τ}[count], {𝕔}[count] ⊳ Look up quadrature point values
13:  for 𝐼 ∈ {Nodes on element e} do ⊳ Loop over nodes for element
14:  𝑟𝐼𝑖 ← 𝑟𝐼𝑖 +𝑤

e,q𝜏e,q𝑖𝑗 ∇x𝜙
𝐼,e,q
𝑗 ⊳ Add contribution to residual Eq. (5)

15:  for 𝐽 ∈ {Nodes on element e} do ⊳ Inner loop over nodes for element
16:  𝐾𝐼𝐽

𝑖𝑗 ← 𝐾𝐼𝐽
𝑖𝑗 +𝑤e,q∇x𝜙

𝐼,e,q
𝑘

[

𝛿𝑖𝑗𝜏
e,q
𝑘𝑙 + 𝕔e,q𝑖𝑘𝑗𝑙

]

∇x𝜙
𝐽 ,e,q
𝑙 ⊳ Add stiffness contribution Eq. (6)

17:  end for
18:  end for
19:  count + +
20:  end for
21:  end while
22:  accumulated_count ← accumulated_count + count
23: end while

[64,65]. The L1 SRAM cache is further subdivided into L1D and L1I for data and instruction caching, respectively. Main memory, 
although much larger than cache, has a latency on the order of 200 cycles [64,65]. Hence, memory is arranged in a hierarchical 
sense, with decreasing size and increasing speed from main memory to L3, L2, and L1 cache, as illustrated by the hierarchical arrows 
shown in Fig. 3.

When a CPU executes an operation on data, it must first load that data into its registers, which are extremely small and fast 
memory locations (typically 8 - 512 bits in size) embedded directly in the CPU. When loading these data into registers, the hierarchy 
is traversed; the L1 cache is checked first, then L2, L3, and finally, if the data is not contained in the cache, it will be retrieved from 
main memory. Obtaining the desired data from main memory as opposed to cache is termed a cache miss and is costly as the CPU 
often remains idle while it waits for the necessary data to arrive.

Modern CPUs can perform arithmetic operations far faster than they can fetch data from main memory [63]. For instance, a 
floating-point addition typically completes in about one clock cycle [66], whereas retrieving a single double-precision value from 
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Fig. 3. Schematic computer memory hierarchy with decreasing latency and increasing speed from left to right. The hierarchy consists of 
main memory (consisting of DRAM); CPU cache (consisting of SRAM) which is further divided into L3, L2, and L1 cache; and registers. The L1 cache 
is further divided into an L1D cache for storing data and an L1I cache for storing instructions, in contrast to the L3 and L2 cache which store both 
data and instructions. Typically, each CPU has a dedicated L1 and L2 cache while the L3 cache is often shared between multiple CPUs.

main memory can take around 200 cycles. This stark imbalance means that performance is often limited not by compute speed but 
by memory latency. To sustain efficiency, data must therefore be available in the CPU cache at the moment it is needed.

To mitigate this performance gap between computation speed and memory latency, modern CPUs employ a technique known as 
prefetching. Prefetching involves predicting which memory locations will be accessed in the near future and pre-emptively loading 
that data into cache before it is explicitly requested by the CPU. When data is structured contiguously in memory, such as in arrays, 
it enables the hardware prefetcher to recognize regular patterns and preemptively load upcoming cache lines. In contrast, if data 
is scattered across memory in a non-contiguous fashion – as can occur with data structures like linked-lists or trees – prefetching 
becomes much less effective, which leads to more cache misses and stalls as the CPU waits on data from main memory.

In the context of FE assembly – often implemented using object-oriented programming, though not exclusively – state variables 
are typically passed to or stored within individual element instances. This results in a non-contiguous memory layout for the state 
variables. When such a layout is used with NCMs, it can lead to frequent cache misses and processor stalling due to repeated accesses to 
main memory. In contrast, our approach constructs a contiguous data structure for the state variables, enabling hardware prefetching 
to minimize cache misses and significantly improve performance.

Vector registers Modern CPUs are equipped with wide vector registers that support SIMD operations. Common examples include 
128-bit SSE2, 256-bit AVX, and 512-bit AVX-512 registers. Since double-precision floating-point numbers occupy 64 bits, these 
registers can hold 2, 4, and 8 such values, respectively.

These CPUs also support vectorized instructions that operate on all elements within a vector register simultaneously. For instance, 
the assembly instruction VADDPD zmm0, zmm1, zmm2 performs element-wise addition of the 512-bit registers zmm1 and zmm2, storing 
the result in zmm0. This enables 8 double-precision additions to be performed in a single instruction.

To use these vectorized operations, the data must be properly aligned and structured in memory to map cleanly onto the registers. 
As with prefetching, contiguous and well-aligned memory layouts are essential for maximizing the performance benefits of SIMD 
execution.

Overhead of launching compute kernels Beyond hardware-related efficiencies, software implementation choices can also intro-
duce performance bottlenecks. Traditional FE methods – without the use of neural constitutive models (NCMs) – have typically been 
implemented in high-performance languages such as Fortran and C/C++. However, with the rise of ML in computational mechanics, 
NCMs are now almost exclusively implemented and trained in high-level scripting environments like Python [67], where frameworks 
such as PyTorch [68] and TensorFlow [69] operate.

To bridge this software gap for integration of NCMs in FE, recent works [21,34] have developed FE and similar numerical methods 
around NCMs in Python-like environments. While the NCM component benefits from the highly optimized C/C++-like backends 
of these ML libraries, the remaining FE components suffer from well-known performance limitations of Python-like environments, 
thereby becoming computational bottlenecks.

An underexplored alternative is exporting trained NCM models – specifically their weights and computational graphs – from 
Python-based ML frameworks, and importing them into high-performance languages like C/C++, where the rest of the FE code 
is executed efficiently. There are two ways that this can be done: reimplement the NCM model in the C/C++ codebase by hand, 
or export the NCM model via a graph-compilation tool such as TorchScript [70]. Current software environments for ML and high-
performance languages like C/C++ only support the latter as hard-coding neural networks with complex architectures and large 
numbers of parameters would be too labor-intensive.

Each call that is made to the graph-compiled model requires several overhead operations, e.g. the data type, layout, and contiguity 
of the input tensors is checked, reference counters are updated, memory is allocated, etc. The cost of these operations is known as the 
“compute kernel launch overhead”. This cost is distinct from the cost of instantiating an NCM and loading its weights from memory, 
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i.e. even for a single NCM instance the compute kernel launch overhead is incurred for each call made to that instance. In traditional 
FE assembly algorithms (see Algorithm 1), the compute kernel is launched for every material point [38], and so the incurred compute 
kernel launch overhead is multiplied by the number of material points.

To mitigate this, we leverage vectorization by processing multiple material points simultaneously. This approach reduces the 
incurred kernel launch overhead significantly, requiring only one invocation per batch, and thus achieving a speed-up proportional 
to the batch size.

Through low-level monitoring tools and CPU performance counters, one can quantify the benefits of individual optimization 
aspects using micro-benchmarks. However, in the context of FE methods, these aspects are often tightly intertwined, making it 
difficult to isolate their individual contributions. As a result, our work focuses on the overall speed-up achieved from all contributing 
factors combined, while acknowledging that a detailed breakdown of each low-level contribution is beyond the scope.
Remark 1.  The necessity of instructions being identical across all data poses a challenge for constitutive updates that may have 
control flow which differs from one material point to the next, e.g. updates that require local Newton-Raphson iterations for the 
so-called return mapping algorithm in plasticity. A possible solution in this case is to continue iterating across the whole batch 
until the state variables for all material points have converged. We note, however, that many path dependent NCMs that have been 
presented in the literature do not require solving of nonlinear equations for the evolution state variables through such iterative 
schemes [28,30,31,71], and so the proposed global and batch-vectorized algorithms can be applied as is. 

3.2.  Compute graph optimization

When using NCMs in FE solvers, it is necessary to compute the first and second derivatives of the strain energy density function to 
obtain the stress and tangent stiffness in accordance with Eq.  (7). While automatic differentiation (AD) is a widely adopted approach 
for this purpose due to its accuracy and ease of integration [47,72–74], it incurs significant performance overhead - particularly in 
reverse-mode implementations [75,76] required for computing second-order derivatives (Hessians). This overhead stems from the 
need to construct and traverse computational graphs multiple times, along with the storage of intermediate states during evaluation, 
which together lead to increased memory consumption and compute time. Numerical differentiation via input perturbation offers no 
clear advantage: it typically requires multiple evaluations of the NCM, and does not provide accurate gradients, potentially leading to 
unstable simulations. Analytically derived gradients, in contrast, can significantly reduce both memory usage and computational cost. 
However, unlike traditional constitutive models, they are not straightforward to obtain for NCMs with large computational graphs.

To further reduce execution time of the constitutive updates, we introduce a general framework to obtain analytical derivatives 
of NCMs with just one forward pass (i.e., a single evaluation of the NCM). This is significantly faster than AD while providing 
exact gradients unlike numerical differentiation. We term implementations that make use of such analytical derivations as compute 
graph optimization (CGO). Without loss of generality, this work presents the formulation for hyperelasticity, with the extension to 
path-dependent materials identified as a direction for future research.

The core idea is to compute the intermediate derivatives of the network layers in a modular fashion using chain rule of differen-
tiation. We refer back to Section 2.2 and Fig. 1, where the strain energy density is described as a composition of a kinematic layer 
and inner network  Eq.  (9). Accordingly, we obtain the following expressions: 

𝜕Ψ
𝜕𝐹𝑖𝐽

= 𝜕
𝜕𝑚

𝜕𝑚
𝜕𝐹𝑖𝐽

, 𝜕2Ψ
𝜕𝐹𝑖𝐽 𝜕𝐹𝑘𝐿

= 𝜕2
𝜕𝑚𝜕𝑛

𝜕𝑚
𝜕𝐹𝑖𝐽

𝜕𝑛
𝜕𝐹𝑘𝐿

+ 𝜕
𝜕𝑚

𝜕2𝑚
𝜕𝐹𝑖𝐽 𝜕𝐹𝑘𝐿

. (10)

Hence, we can implement the first and second derivatives for different kinematic layer types (principal strains, invariants, etc.) 
and inner network types (different architectures) individually and then combine them through Eq.  (10) to obtain the associated 
computational graph for the gradients of the strain energy density, thus providing modularity.

We provide associated derivatives for various types of kinematic layers in Appendix A.2. As didactic illustrations, we present the 
analytical first and second derivatives for two notable hyperelastic NCMs found in the literature, MICNNs [9,21,58,59] and CANNs 
[5,8,38,60] in B. These derivations can be similarly extended for other NCMs.

3.3.  Compatibility with distributed-memory parallelization for scalable simulations

Parallelization is the primary strategy for accelerating scientific computing applications. On shared-memory machines (worksta-
tions), where all CPUs have access to a common memory space, parallelization is typically achieved by employing multiple threads 
within a single process. This approach is effective as long as the entire problem fits within the memory of a single compute node.

However, computational requirements for large-scale simulations, such as finite element analyses on highly refined meshes, often 
exceed the memory and processing capacity of a single motherboard. In such cases, computations are performed on distributed-
memory systems, or supercomputers, which consist of multiple compute nodes connected by high-speed interconnects. Each node 
has its own private memory, and processes on one node cannot directly access the memory of another. As a result, thread-based 
parallelization within a single process is insufficient. Instead, parallel execution requires launching at least one process per compute 
node, with data exchange between processes handled explicitly. This communication is conventionally managed through the Message 
Passing Interface (MPI) [53,77–79], a standardized and portable message-passing system that has become the de facto approach for 
distributed scientific computing.

Our proposed algorithms for vectorized assembly with NCMs are fully compatible with MPI-based distributed computing. As 
illustrated in Fig. 4, the computational mesh is partitioned into subdomains, each assigned to a specific MPI rank (i.e., process).
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Fig. 4. Schematic comparison of constitutive update procedures in finite element assembly under MPI-based distributed parallelization:
(a) traditional, (b) globally vectorized, and (c) batch-vectorized algorithms apply similarly to the single process case shown in Fig. 2. However, each 
MPI rank is only responsible for assembly on its associated subdomain of the mesh. Accordingly, for the globally vectorized algorithm (b), the table 
sizes correspond to the subdomain owned by the rank as opposed to the entire mesh.
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The globally and batch-vectorized assembly algorithms are then executed independently on each rank for its local subdomain. 
While this strategy increases the number of kernel launches, these launches occur concurrently across ranks and therefore add little 
to the overall overhead.

4.  Results

For the purposes of benchmarking, we investigate three NCM architectures for which architecture and implementation details 
were discussed Section 2.2: MICNNs [9,21,58,59], CANNs [5,8,38,60], and ICKANs [6,61]. These architectures are each trained on 
several (simulated) hyperelastic material data in an unsupervised manner – as presented in the NN-EUCLID framework of Thakolkaran 
et al. [6,21]. Specifically, the training data contains full-field displacements and global reaction forces for test coupons containing 
heterogeneous strain fields. The NCMs are then trained to satisfy the weak form of the linear momentum balance. For demonstration 
purposes and without loss of generality, we assume the ground-truth material model to be a Gent-Thomas hyperelastic material. 
Further details on the synthetic data generation and training of the NCMs are provided in Appendix C.

We emphasize that the framework is agnostic to the specific NCM architecture and, more importantly, to the source of the training 
data. Moreover, the accuracy of the NCMs is not the focus of this work; prior and contemporary studies (e.g., [3,80]) compare the 
performance of various NCMs and explore strategies and architectural enhancements aimed at improving NCM fidelity.

To investigate the effects of vectorization, batching, and CGO, computational experiments are first run only at the material point 
(i.e., quadrature point) level and in the absence of a FE assembler and solver to isolate the mechanisms for any potential speed-ups. 
We term these experiments material point benchmarks (Section 4.1). We then investigate these effects within the context of a FE solver 
(Section 4.2), followed by MPI scaling (Section 4.3) to verify that we can utilize these mechanisms to dramatically speed up the FE 
solver as a whole, while maintaining scalability on large-scale distributed computing.

4.1.  Material point benchmarks

4.1.1.  Material point benchmarks: Effect of vectorization and batching, without CGO
To evaluate the performance gains from vectorization and batching, we conduct computational experiments where constitutive 

updates are computed for a fixed number of material points, corresponding to quadrature points in the FE context. These updates 
are computed in batches of varying sizes, referred to as “batch size”. Each constitutive update includes computing the strain energy 
density, stress tensor, and stiffness tensor. In this benchmark, the stress and stiffness tensors are computed using AD, though these 
will later be replaced by CGO.

For each experiment, we report the absolute number of cache misses, cache misses relative to the non-vectorized baseline, absolute 
wall time, and speed-up in wall time compared to the non-vectorized baseline in Fig. 5.

Here, the non-vectorized baseline refers to the sequential evaluation of constitutive updates for each material point in a loop, 
which is equivalent to a batch-vectorized computation with a batch size of 1. All material point benchmarks are performed on a 
workstation equipped with an AMD Ryzen 9 7950X CPU, the details of which are presented in Table D.2 in Appendix D.

Increasing the batch size from 1 to approximately 103 reduces the number of cache misses by two orders of 
magnitude (Fig. 5 (a,c)). The effect of reduction in cache misses is directly reflected in reduction of wall time 
and increase in speed-up by two orders of magnitude (Fig. 5 (b,d)) over the non-vectorized baseline. The similar-
ity between reduction in cache misses and wall times—i.e. the similarity between Fig. 5 (a) and (b) and between 
Fig. 5 (c) and (d)—are indicative of hardware level optimizations, such as prefetching, as discussed in Section 3.1. 
We emphasize that these results are obtained on a single processor, without the use of GPUs, multi-threading, or multiprocessing.

Moreover, we observe that there is an optimal batch size around ∼ 103 − 104 for which the wall time per material point evaluation 
is minimized. In the context of an FE solver, this motivates for functionality allowing for control of the batch size, so that a user may 
choose the optimal batch size for a given machine. Note that the optimal batch size may vary across different machines.

The computational complexity for non-vectorized constitutive updates is simply (𝑛pts
) where 𝑛pts is the number of material 

points. To determine how batch size affects computational complexity, we perform computational experiments where we fix batch 
size and track wall time for increasing 𝑛pts in Fig. 6.

The batch size reduces the wall time without affecting its linear scaling with respect to 𝑛pts. Therefore, we estimate computational 
complexity of batch-vectorized constitutive updates as (𝑚𝑛pts

) where 𝑚 < 1 is a factor that depends on the choice of batch size and 
computer architecture.

We note that cache misses, speed-ups, and scaling are comparable across diverse NCM architectures—namely, MICNNs [9,21,58,
59], CANNs [5,8,38,60], and ICKANs [6,61]—supporting a reasonable conclusion that the observed performance gains are largely 
agnostic to the choice of NCM architecture. This suggests that, for accelerating FE simulations integrated with NCMs, implementation-
level optimizations—such as vectorization—can have a greater impact on inference speed than architectural enhancements like 
pruning or the choice of NCM architecture itself. In light of this result and for the sake of brevity, we present the performance 
analyses from Section 4.1.2 onward using only the MICNN architecture, while noting that similar performance gains are observed for 
CANNs and ICKANs.
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Fig. 5. Effect of batch size on cache efficiency and computational performance of NCMs. Results are shown for various fixed numbers of 
materials points (indicated in the legend). Metrics include (a) cache misses, (b) wall time, (c) relative cache misses (non-vectorized divided by 
vectorized), and (d) relative speed-up (non-vectorized wall time divided by vectorized wall time).

4.1.2.  Material point benchmarks: Effect of compute graph optimization
As an alternative to AD, we use CGO (see Section 3.2) to obtain stress and stiffness tensors from a pre-trained NCM. To demonstrate 

the performance improvement due to CGO, the computational experiments at the material point-level presented in Section 4.1.1 and 
Fig. 5 are repeated for CGO implementations and compared against AD implementations in Fig. 7.

For fair comparison, the reverse-mode AD framework is implemented using LibTorch [81], which we assume to be highly optimized 
and state-of-the-art at the time of writing.

Combined batch-vectorization and CGO yields speed-ups of nearly three orders of magnitude over the equivalent non-
vectorized non-CGO implementation (Fig. 7 (left)), e.g. 665 times faster at batch size of 210. To isolate the effect of CGO alone, we 
benchmark the speed-up for batch-vectorized and CGO relative to batch-vectorized and non-CGO implementation (Fig. 7 (right)) and 
observe speed-up between 2–10 times depending on the batch size. The remaining speed-up (up to 400 times depending on batch size) 
can be attributed to batch-vectorization – as shown in benchmark of batch-vectorized and non-CGO relative to non-batch-vectorized 
and non-CGO implementation (Fig. 7 (middle)).
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Fig. 6. Scaling of compute time for various batch sizes and NCMs. Wall time grows linearly with the number of material points. Increasing the 
batch size reduces the wall time but maintains the linear scaling with the number of material points.

Fig. 7. Performance improvements from compute graph optimization (CGO): (left) combined speed-ups from CGO and vectorization relative 
to a non-vectorized, non-CGO baseline; (middle) speed-ups due to vectorization only (middle); and (right) Additional speed-ups due to CGO only 
at different batch sizes. Combining CGO and vectorization yields a speed-up of up to three orders of magnitude, whereas vectorization alone yields 
two orders of magnitude speed-up.

In addition to reducing wall time, CGO and batching allows for a reduction in RAM usage. To demonstrate this, we compare the 
RAM usage of batch-vectorized computations with and without CGO in Fig. 8.

The combination of batch-vectorization and CGO dramatically reduces RAM usage relative to global vectorization with 
non-CGO computations (Fig. 8 (left)). For example, the RAM usage is reduced by over 90%, when using batch-vectorization and CGO 
in comparison to globally vectorized non-CGO implementations for ∼ 106 material points and batch sizes of less than 104 (Fig. 8 (left, 
middle)). Additionally, we note that the optimal batch size for speed-up is in the range of 103–104 (Fig. 7). CGO alone accounts for 
∼18–38 % of the reduction in RAM usage (Fig. 8 (right)). The majority of the reduction in RAM usage is typically due to batching 
(Fig. 8 (middle)), however, this largely depends on the total number of material points.

4.2.  FE benchmarks

The material point benchmarks displayed thus far elucidate the effects of vectorization, batching, and CGO on the computational 
cost of constitutive updates of material points when using NCMs. We now translate this cost and speed-up in the context of FE 
simulations. We propose a benchmark simulation utilizing NCMs showcased in Fig. 9.

We simulate a unit cube, fixed at one end, and subjected to a unit axial tensile displacement and a half-rotation at the opposite 
end. We then proceed to apply vectorization, batching, and CGO, as detailed in Section 3, and systematically observe the effects on 
the computational cost. Specifically, we compare the cost of assembly with that of solving the resulting linear system, as these are 
the two most computationally intensive tasks in FE simulations.

For a fair assessment, the linear solver (as part of the nonlinear Newton-Raphson solver) used in these experiments is provided by 
PETSc [77], a highly mature, optimized, and state-of-the-art library (at the time of writing) for solving linear systems of equations. 
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Fig. 8. Reduction of RAM usage by batch-vectorization and CGO: (left) RAM usage of batch-vectorized CGO computations relative to globally 
vectorized non-CGO computations; (middle) batch-vectorized non-CGO computations relative to globally vectorized non-CGO computations, and 
(right) batch-vectorized CGO computations relative to batch-vectorized non-CGO computations. Batch-vectorization and CGO reduce RAM usage 
by more than 90% at ∼ 106 material points.

Fig. 9. Finite element benchmark problem for COMMET performance testing. A unit cube is fixed at one end and subjected to a unit displace-
ment and half-rotation at the other. The reference configuration is shown in grey. Large values of tr(C) (greater than 16) demonstrate the robustness 
of the underlying FE solver.

Specifically, we use a conjugate gradient linear solver with Jacobi relaxation as the preconditioner. We emphasize that the proposed 
framework for accelerating NCMs in finite elements is agnostic to the choice of linear solver and preconditioner; the selections here 
are intended merely as representative examples.

4.2.1.  FE benchmarks: Speed-up due vectorization, batching, and CGO
We benchmark the computational performance of the globally-vectorized (Algorithm 2) and batch-vectorized (Algorithm 3) as-

sembly algorithms in Fig. 10, for both single-core and 16-core multiprocess (via MPI on a single node) simulations.
Combining batch-vectorization and CGO yields a three orders of magnitude speed-up in the constitutive update (Fig. 10 (a), 

left). The speed-ups are slightly diluted by the time taken up by other tasks in assembly (Fig. 10 (b), left), and then diluted further in 
the overall simulation time (Fig. 10 (c), left). However, the overall speed-up is still upwards of two orders of magnitude. (Fig. 10 (c), 
left).

The majority of the speed-up, i.e. two of the three orders of magnitude, results from assembly vectorization (Fig. 10 (a), 
middle). This is determined by repeating the computational experiments without the use of CGO and determining the speed-up 
relative to non-vectorized computations, thus isolating the effect of vectorization (Fig. 10 (a), middle). Comparing vectorized CGO 
computations with vectorized non-CGO computations (Fig. 10 (a), right) isolates the speed-ups due to CGO in different vectorization 
contexts, and shows that CGO accounts for a speed-up of 2–10 times depending on the batch size.
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Fig. 10. Speed-up of FE simulations due to vectorization and CGO: (left column) the combined effects of vectorization and CGO, (middle column) 
the effects of vectorization only, and (right column) the effects of CGO only at different vectorization contexts are shown in the (top group) single 
core and (bottom group) multicore contexts. Additionally, the effects are shown for different sections of the program: (top) constitutive update, 
(middle) assembly, and (bottom) overall.
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Fig. 11. Scaling of assembly and solver wall times with problem size: (left column) the combined effects of vectorization and CGO and (right 
column) vectorization without CGO are displayed in (a) the single core context and (b) multicore context. Assembly retains linear scaling with 
increasing degrees of freedom, while solver complexity grows superlinearly.

Batch-vectorization at the optimal batch size (∼ 103–104) consistently outperforms global-vectorization by a factor of 1–10 
(Fig. 10 (a-c) left). This motivates the usage of the batch-vectorized algorithm for not only alleviating memory constraints, but also 
for the reduction of compute time.

Speed-up is maintained in the multiprocessing context (Fig. 10 (d-f)). However, the optimal batch size is shifted to be in the 
range of 102–103 in contrast to single core case i.e. 103–104. We suspect that this results from the cores sharing the L3 cache; since 
multiple processes are utilizing the cache, the batch size per process must be smaller for the data to fit in the cache than in the single 
core/process case.

The performance improvements due to vectorization, batching, and CGO are further contextualized in Fig. 11 by comparing the 
wall time for solving the linear system of equations with that of assembling the same linear system when using global-vectorization 
and batch-vectorization for various batch sizes as a function of the number of degrees of freedom (DoFs).

Linear (optimal) scaling of assembly wall time with the number of DoFs is maintained when assembly is globally- or 
batch-vectorized (Fig. 11 all subfigures). Furthermore, this scaling is maintained in the single core and multicore contexts, both for 
the CGO and non-CGO cases. By contrast, solving the linear system of equations using the conjugate gradient method with a Jacobi 
preconditioner has an empirically derived computational complexity of approximately (𝑛dofs1.4

)

, where 𝑛dofs is the number of DoFs. 
Hence, with our vectorized FE assembly approach, there will be some problem size for which solving the linear system of equations 
becomes the dominant computational bottle-neck. However, in these experiments, even for problem sizes of 6,440,067 DoFs, which 
is larger than is used in many practical applications, the wall time for non-vectorized (batch size of 1) non-CGO assembly is more 
than 100 times larger than that of the solving the linear system of equations (Fig. 11 (a) right).

Batched-vectorization and CGO alleviates assembly as the computational bottle-neck for problems with more than 
100,000 DoFs (Fig. 11 (a) left). Although vectorization does not alter the linear (ideal) scaling behavior of assembly, it reduces 
the assembly time by a machine- and batch size dependent coefficient (as discussed in Section 4.1.1 and Fig. 6), thus resulting in 
the transition of the computational bottle-neck from being assembly to being the solving of the linear system of equations at a much 
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Fig. 12. Strong scaling behavior of our developed FE solver under MPI parallelization. For (left) assembly, (middle), linear solve, and (right) 
the overall simulation we report as a function of the number of processors used in the computation (a) the speed-up for a fixed problem size of 
6,440,067 DoFs on a single compute node and (b) the wall time for a fixed problem size of 50,923,779 DoFs on a machine with distributed compute 
nodes. Moreover, values are reported for a range of batch sizes.

smaller problem size. Hence, to speed up the FE simulation overall further, it would be more effective to put effort into speeding up 
the linear solver as it is now the dominant computational bottle-neck for the majority of problem sizes of practical relevance.

4.3.  Distributed memory parallelization benchmarks

To evaluate parallelization performance of the batch-vectorized assembly algorithm (Algorithm 3) and surrounding FE solver, we 
evaluate the strong scaling in Fig. 12, i.e. the speed-up of the wall time when using multiple processors relative to the single processor 
wall time, for both the single compute node and multi-compute nodes.3

In a single compute node, data exchange between multiple processors is faster because all processors share the same memory. 
In contrast, in a multi-node setup, data must be communicated over interconnects, which can introduce latency and slow down 
performance.

We focus only on the batch-vectorized case here since, for larger problems, the globally-vectorized algorithm introduces significant 
RAM requirements as discussed in Section 3.1. Moreover, we note that our results in Section 4.2.1 show that batch-vectorized assembly 
outperforms globally vectorized assembly with respect to compute time as well as RAM requirements.

The batch-vectorized assembly algorithm and FE solver displays super-linear strong scaling in the single node case (Fig. 12 
(a)); i.e., the observed speed-up is greater than the ideal linear upper-bound proposed by Amdahl’s law [83]. Super-linear scaling 
typically results from the fact that each CPU has its own L1 and L2 cache [84]. As more CPUs are made available to the program, a 
larger total amount of CPU cache is also made available ultimately reducing the amount of latency that is introduced due to main 
memory reads.

The batch-vectorized assembly algorithm and FE solver displays good strong scaling behavior on as many as 1024 cores 
on a multi-node setup (Fig. 12 (b)). In this case, we no longer observe super-linear scaling, which can be attributed to communication 
latency between multiple compute nodes via interconnects. We note, however, that this is not a feature of the program but rather 
the system on which the program is run. At the same time, the scaling behavior of the batch-vectorized assembly algorithm 
outperforms that of the state-of-the-art linear solver implementation provided by PETSc [77] (Fig. 12 (a) and (b), left and 

3 These computational experiments were run on the Delft Blue Supercomputer [82]. See Table D.2 in D for details of the CPUs used on these 
compute nodes.
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Fig. 13. COMMET functionality showcase. Using NCMs to simulate the diastolic filling of a patient-specific heart. We compute the end-diastolic 
deformation and stretch in the human heart, for which the myocardium was modelled using a MICNN-based NCM. The wall times for vectorized 
CGO implementation are compared to that of non-vectorized non-CGO implementations for assembly (left) and the simulation overall (middle) at 
three different mesh refinement levels. The resulting Kirchhoff stress distribution is shown on the right.

middle). This ensures that assembly remains at least comparable to, if not more scalable than, the linear solve and is therefore 
unlikely to become the scaling bottleneck in large-scale FE simulations.

5.  COMMET: Demonstration of performance on large-scale practical FE simulations

COMMET is not merely an academic exercise to showcase the effects of vectorization, batching, and CGO on simple structured-
mesh benchmarks. Instead, it delivers full finite element functionality for a wide range of solid mechanics problems, including support 
for unstructured meshes, three-dimensional field definitions, and diverse 3D boundary conditions.

To illustrate the capability of COMMET beyond canonical benchmarks, we perform a patient-specific simulation of human heart 
inflation under physiological loading conditions as an example problem. The geometry was reconstructed from high-resolution mag-
netic resonance images of a healthy 44-year-old male subject (178 cm, 70 kg) [85]. Diastolic filling was simulated by applying 
endocardial pressures of 8mmHg and 4mmHg in the left and right ventricles, respectively, representing physiologic end-diastolic 
states [86]. A pericardial constraint was imposed through Robin-type boundary conditions [87]. Myocardial tissue was modeled with 
a MICNN-based NCM, parameterized to reflect average biaxial stiffness of human myocardium [88].

Fig. 13 (right) depicts the resulting end-diastolic stress distributions.
To once again demonstrate the speed-up due batch-vectorization and CGO, the same problem was solved using a non-vectorized 

non-CGO implementation and batch-vectorized CGO (batch size of 512) implementation. Moreover, the problem was solved for three 
levels of mesh refinement resulting in problem sizes of 66 234, 462 474, and 3 436 362 degrees of freedom. Fig. 13 (left) and (right) 
show that batch-vectorization and CGO result in reducing the time for assembly by a factor 417–603 times and reducing the time 
for the total simulation by a factor of 239–55. Hence, it is clear that the computational gains of vectorization, batching, and CGO 
extend beyond synthetic benchmarks to complex, real-world geometries. Such efficiency enables high-fidelity simulations in solid 
mechanics at scales that were previously impractical, and creates opportunities for large-scale studies requiring repeated solves, 
parameter sweeps, or uncertainty quantification.

6.  Conclusion

In this work, we have presented COMMET, a scalable and performant finite element solver designed to accelerate computationally 
intensive constitutive updates. Neural constitutive models (NCMs) represent an extreme but illustrative case, as their large computa-
tional graphs make repeated evaluations of stress and stiffness particularly costly, yet the same bottlenecks arise for many advanced 
material models in nonlinear solid mechanics. Our contributions are threefold: (i) globally and batch-vectorized assembly algorithms 
that restructure the traditional update loop to allow simultaneous evaluation of many material points, (ii) compute-graph-optimized 
derivatives that replace automatic differentiation and provide exact gradients at a fraction of the runtime and memory cost, and (iii) 
full compatibility with distributed-memory parallelism via MPI to ensure scalability across multiple compute nodes.

Extensive computational experiments demonstrated speed-ups exceeding three orders of magnitude in constitutive evaluations 
relative to traditional non-vectorized AD-based implementations, with roughly two orders of magnitude attributable to batch-
vectorization and an additional 2–10× improvement from CGO depending on batch size. Batch-vectorization consistently outper-
formed global vectorization, exhibited an optimal batch size balancing cache efficiency with memory usage, and reduced RAM 
requirements compared to global vectorization. Parallel benchmarks showed superlinear scaling on single nodes and robust scaling 
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to thousands of cores across distributed nodes, ensuring that assembly no longer constitutes the limiting factor in large-scale FE 
analyses.

Although our demonstrations focused on NCMs, the framework is not restricted to them: the same strategies apply wherever 
loop-based constitutive updates dominate runtime, from sophisticated anisotropic plasticity to multiscale homogenization. COMMET 
therefore lays a strong foundation not only for the practical deployment of NCMs but also for accelerating high-fidelity FE simulations 
more broadly across solid mechanics. Future work will target automatic batch-size tuning, support for history-dependent materials, 
multiphysics extensions, and GPU implementation. Through the open-source release of COMMET, we invite the community to adopt, 
extend, and accelerate both neural and conventional constitutive models in computational mechanics.
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Appendix A.  Hyperelasticity formulations

A.1.  Material and spatial stiffnesses

To allow for a generic interface in our code, we elect for defining the strain energy density Ψ as a function of the deformation 
gradient F  instead of e.g. the left or right Cauchy-Green tenors, C or B, respectively. However, taking first and second derivatives 
of Ψ with respect to F  yields the non-symmetric first Piola-Kirchhoff stress P  and associated fourth order stiffness tensor CP , 
respectively, 

𝑃𝑖𝐽 ∶= 𝜕Ψ
𝜕𝐹𝑖𝐽

, CP
𝑖𝐽𝑘𝐿 ∶= 𝜕2Ψ

𝜕𝐹𝑖𝐽 𝜕𝐹𝑘𝐿
. (A.1)

The lack of symmetry in these tensors preclude the usage of Voigt notation representations in code which would allow for significantly 
more performant tensor operations, particular in the case of the fourth order stiffness tensor. Hence, to allow for the performance 
gains provided by Voigt notation, we transform these stress and stiffness tensors into the symmetric spatial counterparts. We use the 
well-known push-forward operation to obtain the symmetric Kirchhoff stress,

𝜏𝑖𝑗 =
𝜕Ψ
𝜕𝐹𝑖𝐽

𝐹𝑗𝐽 . (A.2)

Obtaining the transformation for the stiffness tensor is less trivial. We start by noting

CP
𝑖𝐽𝑘𝐿 = 𝜕

𝜕𝐹𝑘𝐿

[

𝐹𝑖𝐼𝑆𝐼𝐽
]

= 𝛿𝑖𝑘𝑆𝐽𝐿 + 𝐹𝑖𝐼C𝐼𝐽𝐾𝐿𝐹𝑘𝐾 , (A.3)

where S = F −1P  is the second Piola-Kirchhoff stress, C = 2 𝜕S𝜕C  is the material stiffness tensor, and we have used the identity
𝜕∙
𝜕𝐹𝑘𝐿

= 𝜕∙
𝜕𝐶𝐼𝐽

[

𝛿𝐿𝐼𝐹𝑘𝐽 + 𝐹𝑘𝐼𝛿𝐽𝐿
]

. (A.4)

The spatial stiffness tensor is related to the material stiffness tensor by the well-known push forward operation
𝕔𝑖𝑗𝑘𝑙 = C𝐼𝐽𝐾𝐿𝐹𝑖𝐼𝐹𝑗𝐽𝐹𝑘𝐾𝐹𝑙𝐿. (A.5)

By rearranging Eq.  (A.3) and substituting into Eq.  (A.5) we obtain 
𝕔𝑖𝑗𝑘𝑙 = 𝐹𝑗𝐽

[

CP
𝑖𝐽𝑘𝐿 − 𝛿𝑖𝑘𝑆𝐽𝐿

]

𝐹𝑙𝐿 = 𝐹𝑗𝐽C
P
𝑖𝐽𝑘𝐿𝐹𝑙𝐿 − 𝛿𝑖𝑘𝜏𝑗𝑙 , (A.6)

where we have used τ = FSF 𝑇 . Hence, the necessary transformations for obtaining the Kirchhoff stress and spatial stiffness when 
defining Ψ in terms of F  are 

𝜏𝑖𝑗 =
𝜕Ψ
𝜕𝐹𝑖𝐽

𝐹𝑗𝐽 , 𝕔𝑖𝑗𝑘𝑙 = 𝐹𝑗𝐽
𝜕2Ψ

𝜕𝐹𝑖𝐽 𝜕𝐹𝑘𝐿
𝐹𝑙𝐿 − 𝛿𝑖𝑘𝜏𝑗𝑙 . (A.7)
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A.2.  Kinematic layers and derivatives for compute graph optimization

In most cases, the kinematic scalars used as inputs to the inner layer can be obtained from the right Cauchy-Green tensor. Hence, 
using the chain-rule as discussed in Section 3.2 and applying the relevant push forward operations yields the following expressions 
for the Kirchhoff stress and the spatial stiffness tensor:

τ = 2
∑

𝑚

𝜕
𝜕𝑚

𝜕𝑚
𝜕𝐶𝐼𝐽

𝐹𝑖𝐼𝐹𝑗𝐽
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝐺𝑚𝑖𝑗

(A.8)

𝕔𝑖𝑗𝑘𝑙 = 4
∑

𝑚,𝑛

𝜕2
𝜕𝑚𝜕𝑚

𝜕𝑚
𝜕𝐶𝐼𝐽

𝐹𝑖𝐼𝐹𝑗𝐽
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝐺𝑚𝑖𝑗

𝜕𝑛
𝜕𝐶𝐾𝐿

𝐹𝑘𝐾𝐹𝑙𝐿
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝐺𝑛𝑘𝑙

+4
∑

𝑚

𝜕
𝜕𝑚

𝜕2𝑚
𝜕𝐶𝐼𝐽 𝜕𝐶𝐾𝐿

𝐹𝑖𝐼𝐹𝑗𝐽𝐹𝑘𝐾𝐹𝑙𝐿
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

G𝑚𝑖𝑗𝑘𝑙

. (A.9)

Here, we have grouped the derivatives of the kinematic layer along with the deformation gradients resulting from the push-forward 
operations and define these as 

G𝑚 ∶= F
𝜕𝑚
𝜕C

F 𝑇 , G𝑚
𝑖𝑗𝑘𝑙 ∶=

𝜕2𝑚
𝜕𝐶𝐼𝐽 𝜕𝐶𝐾𝐿

𝐹𝑖𝐼𝐹𝑗𝐽𝐹𝑘𝐾𝐹𝑙𝐿. (A.10)

Hence, we can determine the tensors G𝑚 and G𝑚 for each kinematic scalar independently of the inner network used in the NCM. 
Once, the first and second derivatives of the inner network are known, they can be combined with the corresponding G𝑚 and G𝑚

to obtain the stress and stiffness tensors according to Eqs.  (A.8) and (A.9), respectively. We elect for using the tensors defined in 
Eq.  (A.10) as opposed to, say 𝜕𝑚𝜕F  and 𝜕2𝑚

𝜕𝐶𝑖𝐽 𝜕𝐹𝑘𝐿
, as they are symmetric by construction and conveniently allow for the use of Voigt 

notation. We now proceed to present expressions for this second- and fourth-order for the case of standard and isochoric invariants, 
while noting that this approach can be applied similarly to the case of principal stretches.

A.2.1.  Invariants
The standard invariants, and the corresponding second and fourth order tensors as defined in A.10 are given by

𝐼1 = tr(C), G1 ∶= B, G1 ∶= O, (A.11)

𝐼2 =
1
2
[

tr(C)2 − tr
(

C2)], G2 ∶= Btr(B) −B2, G2 ∶= B ⊗B −B⊗B, (A.12)

𝐼3 = detC, G3 ∶= detBI , G3 ∶= detB
[

I ⊗ I − I⊗I
]

, (A.13)

𝐼4,𝑖𝑗 = 𝑨𝑖 ⋅C𝑨𝑗 , G4,𝑖𝑗 ∶= sym
(

𝒂𝑖 ⊗ 𝒂𝑗
)

, G4,𝑖𝑗 ∶= O, (A.14)

𝐼5,𝑖𝑗 = 𝑨𝑖 ⋅C2𝑨𝑗 , G5,𝑖𝑗 ∶= 2sym
(

𝒂𝑖 ⊗B𝒂𝑗
)

, G5,𝑖𝑗 ∶= B⊗sym
(

𝒂𝑖 ⊗ 𝒂𝑗
)

+ sym
(

𝒂𝑖 ⊗ 𝒂𝑗
)

⊗B. (A.15)

Here, 𝑨𝑖 is the 𝑖th structural vector, 𝒂𝑖 ∶= F𝑨𝑖 is the current configuration counterpart of 𝑨𝑖, sym(∙) ∶= 1
2

[

∙ + ∙𝑇
] is the symmetric 

part of a tensor, and the various tensor products are defined as follows:
[𝒂⊗ b]c = 𝑎𝑖𝑏𝑗𝑐𝑗 (A.16)

A⊗B = 𝐴𝑖𝑗𝐵𝑘𝑙e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 , (A.17)

A⊗B = 1
2
[

𝐴𝑖𝑘𝐵𝑗𝑙 + 𝐴𝑖𝑙𝐵𝑘𝑗
]

e𝑖 ⊗ e𝑗 ⊗ e𝑘 ⊗ e𝑙 , (A.18)

where e denotes a basis vector.

A.2.2.  Isochoric invariants
Many hyperelastic materials exhibit behavior that is far stiffer in volumetric deformation than in isochoric (volume-preserving) 

deformation. For this reason, it is common to multiplicatively decompose the deformation gradient into an isochoric F̃  and volumetric 
part F̄ ; that is,

F = F̃ F̄ , F̃ ∶= 𝐽−1∕3F , F̄ ∶= 𝐽 1∕3I , 𝐽 = det F . (A.19)

Here, 𝐽 is the (volumetric) Jacobian and ̃∙ and ̄∙ denote the isochoric and volumetric parts of ∙, respectively. The strain energy density 
function is then postulated in terms of the isochoric invariants,

𝐼𝑚 ∶= 𝐼𝑚𝐼
𝛼𝑚
3 for 𝑚 ∈ ̃, (A.20)

̃ ∶=
{

1, 2, (4, 𝑖𝑗), (5, 𝑖𝑗), | 𝑖, 𝑗 ∈
[

1, 𝑛sv
]}

, (A.21)

𝛼𝑚 ∶=

{

−2∕3 if 𝑚 ∈
{

2, (5, 𝑖𝑗) | 𝑖, 𝑗 ∈
[

1, 𝑛sv
]}

,
−1∕3 otherwise.

(A.22)

The corresponding second- and fourth-order tensors defined in Eq.  (A.10) are then given by
G𝑚 = G̃𝑚 + 𝛼𝑚𝐼𝑚I , (A.23)
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G𝑚 = G̃𝑚 + 𝛼𝑚
[

I ⊗ G̃𝑚 + G̃𝑚 ⊗ I + 𝐼𝑚
[

𝛼𝑚I ⊗ I − I⊗I
]]

, (A.24)

where G̃𝑚 and G̃𝑚 are the isochoric versions of the corresponding terms in Eqs.  (A.15)–(A.15), i.e.

G̃1 ∶= B̃, G1 ∶= O, (A.25)

G̃2 ∶= B̃tr
(

B̃
)

− B̃2, G̃2 ∶= B̃ ⊗ B̃ − B̃⊗B̃, (A.26)

G̃4,𝑖𝑗 ∶= sym
(

𝒂̃𝑖 ⊗ 𝒂̃𝑗
)

, G̃4,𝑖𝑗 ∶= O, (A.27)

G̃5,𝑖𝑗 ∶= 2sym
(

𝒂̃𝑖 ⊗B𝒂̃𝑗
)

, G̃5,𝑖𝑗 ∶= B̃⊗sym
(

𝒂̃𝑖 ⊗ 𝒂̃𝑗
)

+ sym
(

𝒂̃𝑖 ⊗ 𝒂̃𝑗
)

⊗B̃. (A.28)

At the same time, strain energy due to volumetric changes are modelled using 𝐽 , for which the corresponding second- and fourth-
order tensors are 

G = 𝐽
2
I , G = 𝐽

4

[

𝐼 ⊗ I − 2I⊗I
]

. (A.29)

Appendix B.  Inner neural constitutive networks

Here we briefly present the architectures for several NCMs from literature including CANNs [5,8,38,60], MICNNs [9,21,58,59], 
and ICKANs [6,61]. The presentations here are kept brief and readers are referred to the original publications for detailed treatments. 
Additionally, we provide analytical expressions for the first and second derivatives of CANNs and MICNNs as didactic examples for 
usage in CGO. These expressions can be similarly derived for ICKANs and other NCM inner networks.

B.1.  Constitutive artificial neural networks (CANNs)

CANNs [5,8,38,60] have a tree-like architecture that is expressed mathematically as

 () = 𝑓2◦𝑓1◦𝑓0() =
∑

𝑚∈

𝑛
∑

𝑘=1
𝑤2,𝑘,𝑚𝑓2

(

𝑓1
(

𝑓0
(

𝑚;𝑤0,𝑘,𝑚
)

;𝑤1,𝑘,𝑚
))

, (B.1)

where,  is an enumeration of the kinematic scalars used as input to the network, 𝑤𝑖,𝑘,𝑚 𝑖 = 1, 2, 3, 𝑘 = 1,… , 𝑛 𝑘 ∈  are trainable 
weights, and 

𝑓0 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(◦)
⟨◦⟩

|◦|

⋮

𝑓1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(◦)1

(◦)2

(◦)3

⋮

𝑓2 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤1(◦)
exp𝑤1(◦) − 1
− ln

(

1 −𝑤1(◦)
)

⋮

. (B.2)

Following [38], we obtain the first and second derivatives of   using the chain-rule; these are,

𝜕
𝜕𝑚

=
𝑛
∑

𝑘=1
𝑤2,𝑘,𝑚

𝜕𝑓2
𝜕◦

𝜕𝑓1
𝜕◦

𝜕𝑓0
𝜕𝑚

, (B.3)

𝜕2
𝜕𝑚𝜕𝑚

=
𝑛
∑

𝑘=1
𝑤2,𝑘,𝑚

[[

𝜕2𝑓2
𝜕◦𝜕◦

[

𝜕𝑓1
𝜕◦

]2
+
𝜕𝑓2
𝜕◦

𝜕2𝑓1
𝜕◦𝜕◦

]

[

𝜕𝑓0
𝜕𝑚

]2
+
𝜕𝑓2
𝜕◦

𝜕𝑓1
𝜕◦

𝜕2𝑓0
𝜕𝑚𝜕𝑚

]

. (B.4)

Note that, due to the form of Eq.  (B.1), 𝜕2
𝜕𝑚𝜕𝑛

= 0, ∀𝑚 ≠ 𝑛. In order to evaluate the derivatives in Eq.  (B.4) the first and second 
derivatives of the expressions in Eq.  (B.2) are required; these are,

𝜕𝑓0
𝜕◦

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1
2 (1 + sgn(◦))
sgn(◦)
⋮

𝜕𝑓1
𝜕◦

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2(◦)1

3(◦)2

⋮

𝜕𝑓2
𝜕◦

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤1

𝑤1 exp𝑤1(◦)
𝑤1

1−𝑤1(◦)

⋮

(B.5)

𝜕2𝑓0
𝜕◦𝜕◦

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0
0
0
⋮

𝜕2𝑓1
𝜕◦𝜕◦

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0
2
6(◦)1

⋮

𝜕2𝑓2
𝜕◦𝜕◦

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0
𝑤2

1 exp𝑤1(◦)

−
𝑤2
1

[

1−𝑤1(◦)
]2

⋮

(B.6)
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B.2.  Monotonic input convex neural networks (MICNNs)

In short, input convext neural networks (ICNNs) [9,58] are described by the following equations: 
z(0) = , (B.7a)

y(𝑘) = A(𝑘)z(𝑘−1) +B(𝑘)z(0) + c(𝑘), (B.7b)

z(𝑘) = 
(

y(𝑘)), (B.7c)

 = A(𝑛)z(𝑛−1) +B(𝑛)z(0). (B.7d)

Here,  is the input to the network, z(𝑛) is the output of the network,  is an activation function that is applied elementwise, c(𝑘) are 
learnable bias vectors, and A(𝑘) and B(𝑘) are learnable weight matrices. Additionally, Eqs.  (B.7b) and (B.7c) are applied iteratively 
for 𝑘 = 1,… , 𝑛 − 1; that is, for each hidden layer in the network. Convexity of Eq.  (B.7) in  is gauranteed if all values in A(𝑘) are 
non-negative for 𝑘 > 0 and  is convex and monotonically non-decreasing. Furthermore, convexity and non-decreasing monotonicity 
of Eq.  (B.7) in  is gauranteed if all values in A(𝑘) and B(𝑘) are non-negative and  is convex and monotonically non-decreasing.

The relative first derivatives of Eqs.  (B.7a)–(B.7d), determined via use of the chain-rule, are as follows:

𝜕
𝜕𝑚

= 𝐴(𝑛)
𝑗

𝜕𝑧(𝑛−1)𝑗

𝜕𝑚
+ 𝐵(𝑛)

𝑚 (B.8)

(no sum on j) 
𝜕𝑧(𝑛−1)𝑗

𝜕𝑚
= 𝜕
𝜕𝑦(𝑛−1)𝑗

𝜕𝑦(𝑛−1)𝑗

𝜕𝑚
(B.9)

𝜕𝑦(𝑛−1)𝑗

𝜕𝑚
= 𝐴(𝑛−1)

𝑗𝑘

𝜕𝑧(𝑛−2)𝑘
𝜕𝑚

+ 𝐵(𝑛−1)
𝑗𝑚 (B.10)

Note that the expression for 𝜕𝑧
(𝑛−2)
𝑗
𝜕𝑚

 will be identical to that in Eq.  (B.9), however “𝑛 − 1” will be replaced with “𝑛 − 2”. Hence, Eqs. 
(B.9) and (B.10) can be applied recursively from 𝑘 = 𝑛 to 𝑘 = 1, at which point the necessary derivatives are given by

(no sum on j) 
𝜕𝑧(1)𝑗
𝜕𝑚

= 𝜕
𝜕𝑦(1)𝑗

𝜕𝑦(1)𝑗
𝜕𝑚

, (B.11)

𝜕𝑦(1)𝑗
𝜕𝑚

= 𝐴(1)
𝑗𝑚 + 𝐵(1)

𝑗𝑚 . (B.12)

The second derivatives of Eqs.  (B.7a)–(B.7d), determined via use of the chain-rule on Eqs.  (B.8)–(B.10), are as follows:

𝜕2
𝜕𝐾𝑚𝜕𝐾𝑛

= 𝐴(𝑛)
𝑗

𝜕2𝑧(𝑛−1)𝑗

𝜕𝐾𝑚𝜕𝐾𝑛
(B.13)

(no sum on j) 
𝜕2𝑧(𝑛−1)𝑗

𝜕𝐾𝑚𝜕𝐾𝑛
= 𝜕
𝜕𝑦(𝑛−1)𝑗

𝜕2𝑦(𝑛−1)𝑗

𝜕𝐾𝑚𝜕𝐾𝑛
+ 𝜕2
𝜕𝑦(𝑛−1)𝑗 𝜕𝑦(𝑛−1)𝑗

𝜕𝑦(𝑛−1)𝑗

𝜕𝐾𝑚

𝜕𝑦(𝑛−1)𝑗

𝜕𝐾𝑛
(B.14)

𝜕2𝑦(𝑛−1)𝑗

𝜕𝐾𝑚𝜕𝐾𝑛
= 𝐴(𝑛−1)

𝑗𝑘

𝜕2𝑧(𝑛−2)𝑘
𝜕𝐾𝑚𝜕𝐾𝑛

. (B.15)

Note that the recursive logic applies to Eqs.  (B.14) and (B.15) in a similar manner to that applied to Eqs.  (B.9) and (B.10). Hence, 
the (M)ICNN, along with its first and second derivatives can be evaluated in one pass, without the use of automatic differentiation, 
as detailed in Algorithm 4. There, ⊙ denotes the Hadamard product.

B.3.  Input-convex Kolmogorov-Arnold networks (ICKANs)

We first briefly introduce Kolmogorov-Arnold networks (KANs) [61] and we then discuss how this architecture is altered to ensure 
input-convexity in-line with [6]. We note again that, the presentation brief and only included for completeness – readers are referred 
to [6,61] for more detailed treatments. The architecture for KAN of 𝑅 layers is defined as follows:

z(0) = , (B.16)

z(𝑟) =

[𝑛𝑟−1
∑

𝑗=1
𝑠𝑟−1,1,𝑗

(

𝑧(𝑟−1)𝑗

)

, … ,
𝑛𝑟−1
∑

𝑗=1
𝑠𝑟−1,𝑛𝑟 ,𝑗

(

𝑧(𝑟−1)𝑗

)

]𝑇

, (B.17)

 =
𝑛𝑅−1
∑

𝑗=1
𝑠𝑅−1,1,𝑗

(

𝑧(𝑅−1)𝑗

)

. (B.18)

Here, 𝑠𝑖,𝑗,𝑘 are weighted trainable univariate splines, i.e. 
𝑠(𝑥) = 𝑤𝑠𝜓(𝑥) (B.19)
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Algorithm 4 Evaluating an M(ICNN) along with its first and second derivatives with one pass.
1: z ← 
2: 𝜕z

𝜕 ← I

3: 𝜕2z
𝜕𝜕 ← 𝕆

4: for 𝑘 = 1,… , 𝑛 − 1 do
5:  y ← A(𝑘)z +B(𝑘) + c(𝑘)

6:  𝜕y
𝜕 ← A(𝑘) 𝜕z

𝜕 +B

7:  𝜕2y
𝜕𝜕 ← A(𝑘) 𝜕2z

𝜕𝜕

8:  𝜕2z
𝜕𝜕 ← 𝜕

𝜕y ⊙ 𝜕2y
𝜕𝜕 + 𝜕2

𝜕y𝜕y ⊙ 𝜕y
𝜕 ⊗ 𝜕y

𝜕

9:  𝜕z
𝜕 ← 𝜕

𝜕y ⊙ 𝜕y
𝜕

10:  z ←  (y)
11: end for
12:  ← A(𝑛)z +B(𝑛)
13: 𝜕

𝜕 ← A(𝑛) 𝜕z
𝜕 +B(𝑛)

14: 𝜕2
𝜕𝜕 ← A(𝑛) 𝜕2z

𝜕𝜕

15: Output:  , 𝜕𝜕 ,
𝜕2
𝜕𝜕

where 𝑤𝑠 is a trainable weight and 𝜓 is 𝑘th-order a B-spline consisting of 𝑛𝑏 basis functions 𝐵𝑖,𝑘 with control points 𝑐𝑖, i.e. 

𝜓(𝑥) =
𝑛𝑏
∑

𝑖=1
𝑐𝑖𝐵𝑖,𝑘(𝑥), with

𝑛𝑏
∑

𝑖=1
𝐵𝑖,𝑘(𝑥) = 1 for 𝑥 ∈ [𝑥min, 𝑥max]. (B.20)

To define the 𝑘th-order B-spline basis functions, we consider a set of 𝑚𝑏 = (𝑘 + 𝑛𝑏 + 1) knots {𝑡𝑖}𝑚𝑏𝑖=1 and apply De Boor’s recursive 
algorithm [89] as follows:

 Zero-order basis function (𝑘 = 0):

𝐵𝑖,0(𝑥) =

{

1, if 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1,
0, otherwise.

(B.21)

 Recursive definition for higher orders (𝑘 > 0):

𝐵𝑖,𝑘(𝑥) =
𝑥 − 𝑡𝑖
𝑡𝑖+𝑘 − 𝑡𝑖

𝐵𝑖,𝑘−1(𝑥) +
𝑡𝑖+𝑘+1 − 𝑥
𝑡𝑖+𝑘+1 − 𝑡𝑖+1

𝐵𝑖+1,𝑘−1(𝑥). (B.22)

For the special case of a uniform B-spline, the knots are equally spaced, i.e.,
𝑡𝑖+2 − 𝑡𝑖+1 = 𝑡𝑖+1 − 𝑡𝑖, ∀ 𝑖 ∈ [1, 𝑚𝑏 − 2]. (B.23)

For a KAN to be input-convex, i.e. for a KAN to be an ICKAN, we require that the weights 𝑤𝑠 are positive and that the splines are 
convex and monotonically non-decreasing [6]. This is satisfied so long as the control points satisfy the following condition:

𝑐𝑖+2 − 𝑐𝑖+1 ≥ 𝑐𝑖+1 − 𝑐𝑖 ≥ 0, ∀ 𝑖 ∈ [1, 𝑛𝑏 − 2]. (B.24)

Appendix C.  Data generation and NCM training

When training all NCMs used in this work, we follow the EUCLID paradigm for unsupervised discovery of material behavior. More 
specifically, we use the NN-EUCLID framework of Thakolkaran et al. [6,21]. In brief, this allows for the training of NCMs using full-
field displacements and global reaction forces, both of which are physically obtainable from real experiments by using a combination 
of digital image correlation (DIC) and a load cell, i.e. stress measurements are not required. Given the known displacements and 
reaction forces 𝑅𝛽,𝑡 on 𝛽 = 1,… , 𝑛𝛽 constrained boundaries at 𝑡 = 1,… , 𝑛𝑡 time steps, the parameters  for a given NCM are obtained 
using

 = argmin
𝑛𝑡
∑

𝑡=1

⎡

⎢

⎢

⎢

⎣

∑

(𝐼,𝑖)∈𝐷free

(

𝑟𝐼,𝑡𝑖
)2

+
𝑛𝛽
∑

𝛽=1

⎛

⎜

⎜

⎜

⎝

𝑅𝛽,𝑡 −
∑

(𝐼,𝑖)∈𝐷fix𝛽

𝑟𝐼,𝑡𝑖

⎞

⎟

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

(C.1)

where 𝐷free is the set of tuples of nodes that are unconstrained in given direction and 𝐷fix𝛽  is the set of nodes that are constrained in 
a given direction on boundary 𝛽. Readers are referred to [6,21] for the derivation of Eq.  (C.1), however, in essence the sum over 
𝐷free enforces that the discovered values for  result in the balance of linear momentum being satisfied for the given data and the 
sum over the boundaries 𝛽 = 1,… , 𝑛𝛽 enforces that the discovered values for  results in the observed reaction forces.
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For the purposes of this work, and without loss of generality, we generate synthetic data using a FE simulation. We choose a 
Gent-Thomas material model [90], defined by

Ψ(F ) = 0.5(𝐼1 − 3) + log
(

𝐼2∕3
)

+ (𝐽 − 1)2, (C.2)

and specimen geometry and boundary conditions illustrated in Fig. C.14. The specimen consists of a 1 × 1 square with of hole of 
radius 0.1 in the bottom left corner that has been extruded by 0.1. Slider boundary conditions are applied on the left, bottom, and 
back of the specimen, while a unit of upwards displacement is applied to the top of the specimen.

All NCMs made use of a kinematic layer that maps the deformation gradient to polyconvex terms as follows:

(F ) =
[

𝐼1 − 3 𝐼2
3∕2 − 33∕2 (𝐽 − 1)2

]

. (C.3)

The hyperparameters for the inner networks are provided in Table C.1 and are comparable to those found in literature, e.g. 
[5,6,21]. 

The accuracy of the trained NCMs is evaluated by comparing the predicted strain energy density against that of the ground truth 
for six different loading paths, namely uniaxial tension (UT), uniaxial compression (UC), biaxial tension (BT), biaxial compression 

Table C.1 
Hyperparameters used in NCMs.
 Parameter  Value
 MICNN [9,21,58,59]: 
 Number of hidden layers  3
 Number of neurons in each hidden layer  16
 Total number of learnable parameters  675
 CANN [5,8,38,60]: 
 Exponents used in power layer {1, 2}
 Terms used in function layer {𝑓 (𝑥) = 𝑥, 𝑓 (𝑥) = exp 𝑥}
 Total number of learnable parameters  33
 ICKAN [6,61]:
 Number of hidden layers  2
 Order of splines  4
 Number of grid points  30
 Total number of learnable parameters  508

Fig. C.14. Specimen used for NCM training data generation. Both reference and deformed configurations are shown.
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Fig. C.15. Comparison of trained NCM behavior with ground truth. The NCMs are able to discover the ground truth behavior accurately in all 
cases apart from biaxial tension.

(BC), simple shear (SS), and pure shear (PS), defined, respectively, as follows:

F UT(𝛾) =
⎡

⎢

⎢

⎣

1 + 𝛾 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, F UC(𝛾) =

⎡

⎢

⎢

⎢

⎣

1
1+𝛾 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎥

⎦

, F BT(𝛾) =
⎡

⎢

⎢

⎣

1 + 𝛾 0 0
0 1 + 𝛾 0
0 0 1

⎤

⎥

⎥

⎦

,

F BC(𝛾) =

⎡

⎢

⎢

⎢

⎣

1
1+𝛾 0 0
0 1

1+𝛾 0
0 0 1

⎤

⎥

⎥

⎥

⎦

, F SS(𝛾) =
⎡

⎢

⎢

⎣

1 𝛾 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, F PS(𝛾) =

⎡

⎢

⎢

⎢

⎣

1 + 𝛾 0 0
0 1

1+𝛾 0
0 0 1

⎤

⎥

⎥

⎥

⎦

.

(C.4)

We note that these loading paths do not produce e.g. uniaxial tension in the typical sense as the 𝜏22 and 𝜏33 components of the 
resulting stress tensor will not in general be zero. However, this is immaterial as the purpose is simply to compare the behavior of the 
trained NCMs to the ground truth for a small number of interpretable loading paths. The resulting behavior for these loading paths 
is presented in Fig. C.15.

The NCMs are able to discover the ground truth behavior accurately in all cases apart from biaxial tension, the loading for which 
is outside of the training data.

Appendix D.  Machine details

For completeness, we provide the details of the CPUs used in the computational experiments conducted in this work. The details 
of the CPU in the workstation and on the HPC nodes are provided in Table D.2.
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Table D.2 
Details of CPUs used in computational experiments.

 Workstation  HPC node
 Model name  AMD Ryzen 9 7950X  Intel(R) Xeon(R) Gold 6248R
 Core(s) per socket  16  24
 Socket(s)  1  2
 CPU max MHz  5881  4000
 CPU min MHz  400  1200
 L1d cache  512 KiB (16 instances)  32 KiB (48 instances)
 L1i cache  512 KiB (16 instances)  32 KiB (48 instances)
 L2 cache  16 MiB (16 instances)  1 MiB (48 instances)
 L3 cache  64 MiB (2 instances)  35.75 MiB (2 instances)

Appendix E.  The effect of model size

The hyperparameter choices and model sizes considered in this work are comparable to those commonly reported in the litera-
ture [5,6,21]. However, applications may require models with significantly more or fewer parameters than are typically employed. 
Consequently, it is also of interest to assess how the performance gains arising from vectorization, batching, and CGO depend on the 
size of the NCM.

To this end, we repeat the material point benchmarks presented in Section 4.1.2 for MICNNs with varying numbers of hidden 
layers and layer widths, thereby spanning a wide range of model sizes. In particular, MICNNs are constructed with 2, 3, and 4, hidden 
layers and layer widths of 2, 4, 8, 16, 32, and 64. In addition, to evaluate whether similar performance gains can be achieved for 
traditional constitutive laws, we repeat the material point benchmarks for a Gent–Thomas material model.

The resulting speed-ups are shown in Fig. E.16 as a function of batch size for different NCM sizes. Overall, speed-ups due to 
vectorization, batching, and CGO are larger for smaller NCMs. We speculate that this is because the parameters for the NCM are held 
in cache during these computations. Hence, for bigger NCMs there is less cache memory available for the data on which the NCM 
operates. However, since the contents of the CPU cache cannot be directly inspected, this hypothesis cannot be conclusively verified. 
Unsurprisingly, the speed-up for the Gent-Thomas model is similar to that observed for NCMs with a small number of parameters, 
i.e. over three orders of magnitude. Hence, batching and vectorization also leads to significant performance gains for traditional 
constitutive models.

Despite the observed decrease in speed-up with increasing model size, the performance gains remain substantial. In particular, for 
NCMs with approximately 13,000 parameters, speed-ups exceeding two orders of magnitude are still obtained. This is notable given 
that typical NCMs reported in the literature contain on the order of 1,000 parameters [21].

In addition to computational performance, memory requirements are an important practical consideration. The RAM usage as a 
function of batch size and NCM size is therefore shown in Fig. E.17. For the largest NCM considered, containing approximately 13,000 
parameters, the total RAM usage remains below 1 GB for batch sizes smaller than 104. Notably, this range also encompasses the batch 
sizes that yield near-optimal speed-ups (Fig. E.16). Such memory requirements are well within the capabilities of modern computing 

Fig. E.16. Effect of NCM size on speed-up due to batching, vectorization, and CGO: (left) combined speed-ups from CGO and vectorization 
relative to a non-vectorized, non-CGO baseline; (middle) speed-ups due to vectorization only; and (right) additional speed-ups due to CGO only at 
different batch sizes. While increasing model size reduces the attainable speed-up, improvements of more than two orders of magnitude are still 
achieved for models substantially larger than those typically reported in the literature.
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Fig. E.17. Effect of NCM size on RAM usage: RAM consumption (left) with CGO and (right) without CGO, shown (a) as a function of the number 
of parameters and (b) as a function of batch size.

hardware. Furthermore, a comparison of the left and right columns of Fig. E.17 clearly indicates that the use of CGO reduces overall 
RAM consumption.
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