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Summary

Our ever-growing amount of solid waste puts a burden on future generations and
the environment due to emissions of contaminants such as CO2, CH4, Cl

– and heavy-
metals for hundreds of years. It is therefore essential that landfill after-care meth-
ods are developed that reduce the emission potential of landfills to acceptable levels
within the time-span of one generation. Several treatment methods such as aer-
ation and leachate recirculation have shown promising results in reducing concen-
trations of problematic compounds in leachate and landfill gas emissions. However
for application as full-scale technologies, long term evidence of sustainable reduc-
tion in emission potential has yet to be provided in practice. It is not possible to
measure emission potential directly. Predictions of future emissions from landfills
require emission modeling where emission potential is a crucial parameter. The
aim of the research presented in this thesis is to present a conceptual modeling
approach which increases the confidence in such long term predictions by reducing
the parameter and model uncertainty in a systematic way. As such the approach
allows us to quantify the emission potential.

Chapter 2 and 3 of this thesis present an approach to develop and select bio-
chemical and physical process networks in a generic conceptual model that allows
us to optimally describe measured emissions from lysimeter experiments under
anaerobic and aerobic conditions. These networks give a detailed description of
the mass balances of contaminants and bacteria in the solid, liquid and gas phase.
As a consequence, main emission pathways and rate-limiting processes are identi-
fied. Our results give strong indications that only a relatively small amount of the
solid waste material present contributes to the measured emissions. The toolbox
developed for this thesis, integrates information from different databases with ap-
proaches to obtain and couple thermodynamic/kinetic parameters and processes in
order to efficiently evaluate a wide variety of networks via Bayesian inference using
quantitative criteria.

In chapter 4, the optimal biochemical and physical process networks calibrated
at the lysimeter and column scale, are applied to predict the emissions at landfill
scale. This is achieved by coupling the process networks to a water balance model
that calculates the leachate production using a stochastic residence time distribution
of water within the waste-body. The parameters of the stochastic residence time
model are obtained by optimization using daily leachate production, rainfall and
evaporation measurements. After calibration, the decrease in mass of different
contaminants present in the waste body, gives a quantitative estimate of the full
scale emission potential as a function of time. Results are shown for measured time
series of leachate quantity and leachate quality (e.g. Cl–, Na+ and NH4

+), but can
easily be extended to other parameters.

In chapter 5, the effectiveness of different aeration strategies is investigated

vii



viii Summary

based on modeled distributions of oxygen throughout a waste-body. The model is
based on Darcy’s law for two-phase flow with parameters measured in laboratory
experiments. Modeled gas extraction rates are in reasonable agreement with ex-
traction rates measured at landfills. The results present optimal well configurations
and aeration strategies for effective treatment.

The thesis concludes with a list of the most important research steps for reducing
the uncertainty in the approaches for quantification of full scale emission potential
in the near future.



Samenvatting

De alsmaar groeiende hoeveelheid afval legt een zware last op toekomstige genera-
ties en het milieu, door de lange termijn emissies van verontreinigingen zoals CO2,
CH4, Cl

– en zware metalen. Daarom is het van belang dat er nazorg methoden
voor stortplaatsen ontwikkeld worden die het emissie potentieel binnen de peri-
ode van één generatie verlagen naar acceptable niveaus. Behandelmethoden zo-
als beluchting en percolaat recirculatie hebben veelbelovende resultaten laten zien
waarbij concentraties van verontreinigende stoffen in percolaat en gas emissies zijn
verlaagd. Voordat deze technieken in de praktijk grootschalig kunnen worden toe-
gepast, moet wel worden aangetoond dat de verlaging van het emissiepotentieel
duurzaam is. Het is echter niet mogelijk om emissiepotentieel direct te meten. Wel
is het mogelijk om lange termijn emissies te voorspellen met modellen waarvoor
het emissiepotentieel een parameter is. Dit proefschrift beschrijft een conceptuele
rekenmethode waarbij het vertrouwen in lange termijn emissiepotentieel voorspel-
lingen wordt vergroot door parameter en model onzekerheid op een systematische
manier te reduceren.

Hoofdstuk 2 en 3, presenteren een methode voor het ontwikkelen en selecteren
van biochemische en fysische procesnetwerken in een generiek conceptueel mo-
del waarmee metingen uit aërobe en anaërobe lysimeter en kolomexperimenten
op een optimale manier worden beschreven. Deze benadering geeft gedetailleerd
inzicht in de massa balansen van verontreinigingen en micro-organismen in het af-
valpakket en daardoor ook inzicht in de belangrijkste emissie routes en snelheids
bepalende processen. Onze resultaten geven een sterke indicatie dat een relatief
klein deel van het afvalmateriaal in een stortlichaam bijdraagt aan het emissiepo-
tentieel. De toolbox die is ontwikkeld integreert informatie van meerdere databases
met methoden voor het schatten en koppelen van thermodynamische en kinetische
parameters met processen. Hiermee kan een grote verscheidenheid aan netwerken
via Bayesiaanse inferentie en kwantitatieve criteria worden geevalueerd.

In hoofdstuk 4 worden de optimale reactie en procesmodellen gecalibreerd op
kolom en lysimeter schaal, toegepast om emissies op stortplaats schaal te voor-
spellen. Dit wordt bereikt door de netwerken van processen te koppelen aan een
waterbalans model dat percolaat productie berekent op basis van de stochastische
verblijftijden van water in het stortlichaam. De parameters in dit stochastische
verblijftijden model worden bepaald door optimalisatie op basis van metingen aan
percolaatproductie, neerslag en verdamping. Eenmaal gecalibreerd, kan het emis-
sie potentieel worden gekwantificeerd op basis van de afname in berekende massa
van verontreinigingen in het model als functie van tijd. Resultaten worden gepre-
senteerd voor tijdseries van percolaat productie en percolaat kwaliteit zoals Cl–, Na+

and NH4
+. Deze kunnen eenvoudig worden uitgebreid naar andere parameters.

In hoofdstuk 5 is de effectiviteit van beluchtingsstrategieën onderzocht op basis
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x Samenvatting

van de gemodelleerde distributie van zuurstof door het stortlichaam. Het gebruikte
model is gebaseerd op de wet van Darcy voor twee-fase stroming waarbij de pa-
rameters zijn bepaald in laboratorium experimenten. Gemodelleerde gasextractie
snelheden komen overeen met gasextractie stromingen gemeten op stortplaatsen.
De resultaten presenteren optimale bronconfiguratie en beluchtingsstrategieën om
een effectieve behandeling te krijgen.

Dit proefschrift wordt afgerond met een opsomming van de belangrijkste on-
derzoeksstappen om de onzekerheid in het kwantificeren van emissiepotentieel op
stortplaats schaal op korte termijn te verminderen.



Contents

Summary vii

Samenvatting ix

1 Introduction 1
1.1 Landfill After-care & Emission Potential . . . . . . . . . . . . . . 2
1.2 Sustainable After-care . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A toolbox to find the best mechanistic model to predict the
behavior of environmental systems 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 The cycle of finding an optimal model structure . . . . . 7
2.2.2 Defining the model structure with mechanistic informa-

tion from different environmental frameworks. . . . . . . 8
2.2.3 Solving the model structure with a generic matrix cal-

culation method . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Evaluating model performance. . . . . . . . . . . . . . . . 13

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 The final four evaluated biogeochemical reaction net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Outcome of the Bayesian inference applied on the four

networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Discussion & Conclusions . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Performance of network 1 . . . . . . . . . . . . . . . . . . . 22
2.4.2 Performance of network 2 . . . . . . . . . . . . . . . . . . . 23
2.4.3 Performance of network 3 . . . . . . . . . . . . . . . . . . . 24
2.4.4 Performance of network 4 . . . . . . . . . . . . . . . . . . . 24
2.4.5 Selecting the optimal model structure for anaerobic di-

gestion of MSW . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Supporting Information . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Theoretical analysis of MSW treatment by recirculation under
anaerobic and aerobic conditions 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Material & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Types of lysimeter experiments and measured data . . . 29

xi



xii Contents

3.2.2 Biogeochemical reaction networks that optimally describe
measured data . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 A fundamental biogeochemical reaction network for leachate

recirculation under anaerobic conditions . . . . . . . . . 31
3.3.2 A fundamental biogeochemical reaction network for leachate

recirculation under aerobic conditions . . . . . . . . . . . 39
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Coupled model of water flow, mass transport and biogeochem-
istry to predict emission behavior of landfills 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 The conceptual framework of the coupled model . . . . . 45
4.2.2 Mathematics of the cover layer . . . . . . . . . . . . . . . . 46
4.2.3 Mathematics of the water retention time model . . . . . . 47
4.2.4 Mathematics of the biodegradation model . . . . . . . . . 48
4.2.5 Mathematics of mass transport within the waste-body . 48

4.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Model calibration . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Information on emission potential and its uncertainty. . 52

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Optimizing landfill aeration strategy with a 3-D multiphase
model 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Material & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Site characteristics, calibration, validation and scenar-
ios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Model implementation . . . . . . . . . . . . . . . . . . . . . 60
5.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Calibration & validation . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Optimal aeration strategy . . . . . . . . . . . . . . . . . . . 66
5.3.3 Optimal well spacing. . . . . . . . . . . . . . . . . . . . . . 66

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusions 75
6.1 Consequences of the insights obtained . . . . . . . . . . . . . . . 75

6.1.1 Analysis of emission potential on a lysimeter scale . . . . 75
6.1.2 Analysis of emission potential on a full scale . . . . . . . 76

6.2 Uncertainties leading to new research proposals . . . . . . . . . 77
6.2.1 Release mechanism of ammonium (proposal 1) . . . . . . 77
6.2.2 Development of DOM over time (proposal 2) . . . . . . . . 77
6.2.3 Full scale water retention times (proposal 3). . . . . . . . 77
6.2.4 Delay in biogas production . . . . . . . . . . . . . . . . . . 78



Contents xiii

Bibliography 79

Acknowledgments 87

A Steps towards quantifying transport limitation in biodegrada-
tion of MSW from emission measurements 89
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2.1 Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2.2 Forward models. . . . . . . . . . . . . . . . . . . . . . . . . 95

A.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.3.1 Hydrolysis of white cabbage and kale under non-limiting

environments . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.3.2 Acetogenesis/methanogenesis of VFA under non-limiting

environments . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3.3 Combined hydrolysis/fermentation/methanogenesis of

kale under a non-limiting environment. . . . . . . . . . . 100
A.3.4 Hydrolysis andmethanogenesis separated bymass trans-

port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4 Experimental Instrumentation & Protocols . . . . . . . . . . . . 106

A.4.1 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . 106
A.4.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Curriculum Vitæ 109

List of Publications 111





1
Introduction

1



1

2 1. Introduction

1.1. Landfill After-care & Emission Potential

F or centuries, we got rid of our municipal solid wastes (MSW) at waste dump sites.
Rather ignorantly, we cared little about the impact that our ever-growing pile of

solid waste has on the environment. It is only in the last decades that we have
moved towards sanitary landfilling where waste is stored in engineered facilities
where we prevent long term emissions in order to protect human health and the
environment (HHE). In addition large efforts have been undertaken to recycle and
burn most of our solid waste, so that only a small percentage is left to be landfilled.
Worldwide, however, most solid waste is still landfilled and even in Europe it will
remain to be an essential part of our waste management approach because it is the
only viable final solution for some waste streams. Modern landfills and the legacy
of old landfills and dump-sites require after-care in order to protect HHE from the
adverse effects occurring due to emissions (Hoornweg and Bhada-Tata, 2012).

Landfills lead to environmental threats via two main emission pathways: 1) wa-
ter in the form of precipitation infiltrates through the waste-body and gets polluted
forming leachate. This leachate, subsequently flows in to the soil and eventually
reaches groundwater and possibly surface water and 2) gasses, produced during
biochemical mineralization of the organic waste migrate to the surface of the land-
fill and enter the atmosphere. These emissions may contribute to severe environ-
mental problems such as contamination of groundwater and drinking water, global
warming and eutrophication of surface waters. In addition landfill gas emissions
can lead to nasty odours which is a nuisance to communities surrounding landfills
(Belevi and Baccini, 1989, Kjeldsen et al., 2002, Macklin et al., 2011).

Landfill after-care is a long-term effort and minimal required time periods men-
tioned in regulations in different countries vary from 30 years to eternity. However
all regulations state that after-care is required for as long as a threat to HHE re-
mains and in general a decision to release a landfill from after-care has to be made
by the competent authority (Laner et al., 2012). Releasing a landfill from after-care
implies that we are sure that in the future no adverse effects will occur. This re-
quires prediction of future emission behavior either by extrapolation of data series
or using models based on landfill processes. Such predictions, however, are ham-
pered because many of the mechanisms behind landfill processes and emissions
are not well known. Most modeling approaches view the waste-body as a black
box producing emissions.

The last decades, treatment methods were applied on landfills in order to reduce
methane emissions to the atmosphere by enhancing the degradation of organic
matter (Kumar et al., 2011). Initially, this led to increased storage capacity due to
settlements and increased commercial use of methane (Berge et al., 2009). How-
ever, it also became evident that accelerated degradation has a significant impact
on the long-term behavior of emissions. Two treatment methods have become pop-
ular. One is re-infiltration of leachate into the waste-body. It minimizes the amount
of leachate to be discharged to the water treatment plant and increases the water
content in the waste body. It is hypothesized that biodegradation is enhanced by
the increased water content (Khalid et al., 2011, McDougall, 2007, Meima et al.,
2008), but also by the induced water flow which improves mixing of bacteria and
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substrates through-out the waste-body (White et al., 2011). The other treatment
is aerating the landfill with air or pure oxygen. The aerobic conditions significantly
reduce methane emissions, decreasing the impact on global warming. In addition
aerobic biodegradation is in general faster than anaerobic degradation (Heijnen and
Kleerebezem, 1999). Aeration also decreases the levels of dissolved organic matter
in the leachate (Hrad et al., 2013, Ritzkowski et al., 2006) which leads to reduced
emissions of heavy metals (Dijkstra et al., 2006). Both treatment methods are suc-
cessful in reducing short-term emissions, however, it still needs to be confirmed if
they are effective in reducing long-term emissions.

1.2. Sustainable After-care
The Netherlands is the only country in the world where the landfill regulations ex-
plicitly state that after-care is eternal. After the operational period, landfills are
fitted with a water tight cover which has to be maintained for ever. Funds for the
after-care have to be accrued during the active period of landfilling and eventually
pass from the landfill operator to the competent authority (Scharff, 2014). Given
the high cost of the after-care and the fact that eternal after-care is not sustain-
able, Dutch landfill operators have started a program aiming to introduce so called
sustainable after-care approaches which no longer require the installation of an
impermeable cover. The idea of these approaches is to try to actively reduce the
emission potential of waste bodies by recirculation of leachate and aeration in order
to achieve a condition where long-term emissions no longer pose a threat to HHE.
In 2006 this led to an agreement with the national and local authorities which allows
the Dutch landfill operators to carry out three pilot projects to test the sustainable
after-care approaches in full scale landfills.

In order to demonstrate the impact of the sustainable approaches on the long
term emission potential, the mechanisms underlying emissions need to be under-
stood and modeled; the black box must be opened. A major challenge is to develop
approaches which allow to estimate emissions from full scale waste-bodies. Waste-
bodies which can have volumes of several 100 thousands cubic meters and contain
thousands of compounds which are part of a huge number of different materials.
Realizing this makes it obvious that no models can be created which include all
processes and heterogeneity required in full detail. It is also clear that simple pre-
diction models or sampling procedures will have high uncertainty due to significant
errors and reducing these errors by increasing the measurement effort is econom-
ically not realistic. This all leads then to the main question for this thesis: How to
quantify the emission potential of a landfill?

The research done for this PhD-thesis shows that the rates of processes in an
environment are generally controlled by a set of dominant processes which can be
characterized via modeling using relatively simple measurements and comparison
of results with known data from the literature. The insight obtained can then be
used to optimize treatment approaches for reducing long-term emissions and to
develop approaches to quantify the emission potential of a MSW landfill.
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1.3. Structure of this Thesis
In chapters 2 and 3, a numerical toolbox is presented which was developed to quan-
titatively characterize those processes which control the measured gas and leachate
emissions. The toolbox allows us to identify and quantify the set of dominant re-
action processes in MSW at the lysimeter scale under both anaerobic and aerobic
conditions. The numerical toolbox has been applied to data sets published in the
literature and implications for the efficiency of leachate recirculation and aeration
methods are discussed based on the obtained results. In chapter 4, the quanti-
tative description of reaction processes in MSW is used to describe the leachate
development of a full-scale landfill waste body.

Chapter 5 reports the findings of optimizing the aeration strategy in a full-scale
waste body with a 3D-model. Different aeration scenarios and well spacing dimen-
sions have been tested and the implications of distribution of water and gas on the
dominant biodegradation reactions and leaching processes are described. Chapter
6, gives a summary of the main consequences of the findings from this thesis in the
context of quantification of emission potential and the implementation of full-scale
treatment methods to reduce the impact of long-term emissions to HHE. Some
remaining knowledge gaps to quantify emission potential and suggestions how to
investigate them are indicated.



2
A toolbox to find the best

mechanistic model to predict
the behavior of

environmental systems

Reliable prediction of the long-term behavior of environmental systems such
as Municipal Solid Waste (MSW) landfills is challenging. While many driving
forces influence this behavior, characterization of them is limited by measure-
ment techniques. Therefore, a model structure for reliable prediction needs
to optimally combine all measured information with suitable mechanistic in-
formation from literature. How to get such an optimal model structure? This
study presents a toolbox to find and build the model structure that describes
an environmental system as close as possible. The toolbox combines envi-
ronmental frameworks to include all suitable mechanistic information; it fully
couples kinetic and equilibrium reactions and contains multiple resources
to obtain biogeochemical parameters. Several possible optimal model struc-
tures are quickly built and evaluated with objective statistical performance
criteria obtained via Bayesian inference. By applying the novel methodology,
we select the best model structure for anaerobic digestion of MSW in full scale
landfills.

This chapter has been published in Environmental Modelling & Software 344-355, 83 (2016) (van
Turnhout et al., 2016).
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2. A toolbox to find the best mechanistic model to predict the behavior of

environmental systems

2.1. Introduction

I t is challenging to make reliable predictions of the long-term behavior of environ-
mental systems such as Municipal Solid Waste (MSW) landfills. In such systems,

there are many driving forces influencing behavior, while current measurement
techniques are not sufficient to characterize them. Therefore, for reliable predic-
tions we require a mechanistic description with minimal uncertainty for extrapolation
of measured data.

Reliable prediction of long-term emissions is needed for landfill management.
Decisions about ending of landfill after care strongly depend on these predictions
because after care can only be stopped when emissions are below certain threshold
values. Furthermore, reliable predictions also improve estimations of energy recov-
ery from emissions such as methane. This energy is directly utilized in the facilities
at the landfill.

So far, prediction of emissions by any modeling strategy is highly uncertain. In
general, models have been developed according to two strategies. One strategy
extrapolates measured emissions using empirical relations. Some of these models
fit exponential equations to measured gas and leachate data (Fellner et al., 2009,
Gönüllü, 1994, Kamalan et al., 2011, Scharff et al., 2011). Others apply neural
networks on emission data (Karaca and Özkaya, 2006, Ozkaya et al., 2007). Al-
though the fit of these empirical models with measured data is very good, their
extrapolations are poor because these models are not constrained by mechanistic
principles. These models do not consider the impact of changes in environmental
conditions on the emissions while multiple studies have shown that e.g. pH and
mass transport limitation significantly influence the performance of waste water and
solid waste treatment(Angelidaki et al., 1999, Batstone et al., 2002, Siegrist et al.,
2002, Vavilin et al., 2003, Veeken and Hamelers, 2000).

The other modeling strategy to predict emissions is mechanistic (Garcia de Cor-
tazar and Monzon, 2007, Gawande et al., 2010, Kouzeli-Katsiri et al., 1999, Mc-
Dougall, 2007, Reichel et al., 2007, White et al., 2004). These models vary a lot in
complexity and the type of mechanistic information they include. Model concepts
range from single point to three dimensional implementation and from a single type
of framework such as biochemistry to frameworks coupling biochemistry, hydrology
and settlement. Although these models do restrict their predictions with mechanis-
tic principles and have given interesting insights, their prediction accuracy is often
also very poor. Prediction with these models is poor because the uncertainty in
mechanistic assumptions is very large, especially for very complex models. In addi-
tion it is difficult to reduce this uncertainty by model calibration because measured
data is limited. The large uncertainty in mechanistic correctness is reflected by the
wide spread of parameter values published in literature (Meima et al., 2008).

To improve prediction accuracy, the challenge is to select a model structure that
is constrained by mechanistic principles and has minimum uncertainty in assump-
tions. In order to find such a model, a more objective integrated assessment of
environmental systems is needed (Kelly et al., 2013, Vrugt, 2016) in which model
performance evaluation is generalized (Bennett et al., 2013). This type of assess-
ment requires several prerequisites for developing models. First, mechanisms from
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different environmental fields should be available to be combined in order to include
all suitable mechanistic information. Second, well established mechanistic param-
eters with relative low uncertainty should be readily obtainable from databases
or derivation methods. Third, model performance should be able to be analyzed
qualitatively and quantitatively. Statistical analysis of the remaining uncertainty in
parameters in light of the measured data should allow us to quantify the uncertainty
in model structure, calibrated parameter values and mechanistic correctness of the
model. Finally, multiple reaction networks should be able to be quickly built and
the results quickly assessed in order to find the optimal model. Current modeling
approaches do not fulfill all these prerequisites and therefore limit the possibility to
find optimal models for prediction purposes.

The aim of this study is to develop a methodology that includes all the prereq-
uisites previously mentioned in order to enable us to find an optimal mechanistic
model for anaerobic degradation of MSW. The toolbox allows us to quickly build
mechanistic biogeochemical reaction networks that may include kinetic reactions,
equilibrium reactions and environmental inhibitions in a multi-phase system. Pa-
rameter values are obtained from an extensive geochemical database (Meeussen,
2003), a derivation method based on thermodynamic principles (Kleerebezem and
van Loosdrecht, 2010) and calibration based on measured data. Performances of
these reaction networks are evaluated quantitatively with statistical criteria obtained
by applying Bayesian inference with the DREAM algorithm (Laloy and Vrugt, 2012,
Vrugt et al., 2003). We illustrate our generic approach by finding an optimal mech-
anistic model for describing a data set measured on a series of landfill lysimeters,
previously published by Valencia et al. (Valencia et al., 2009a,b,c, 2011, Valencia
Vazquez, 2008), by evaluating four possible reaction networks. Our aim is to find a
description which we can apply to full-scale anaerobic landfills.

2.2. Theory
2.2.1. The cycle of finding an optimal model structure

T he toolbox we present here is a novel combination of several approaches en-
abling us to find an optimal mechanistic model for describing measured data.

This method follows the scheme depicted in figure 2.1 and allows a generic evalua-
tion of model performance such as proposed by Bennett et al. (2013). We start by
defining a first possible mechanistic reaction network which should provide a good
fit to the measured data.

Subsequently, this reaction network is evaluated qualitatively by plotting the
modeled data against the measured data and quantitatively by using a range of
performance criteria which we obtain by applying Bayesian inference on the most
uncertain parameters. These criteria allow us to judge aspects such as mechanis-
tic correctness, parameter identifiability, model uncertainty, model sensitivity and
model complexity. Based on the results and the purpose of the model, we decide
if the model describes the measured data with sufficient (mechanistic) accuracy.
If the accuracy is not sufficient, a next iteration is started where an update to the
reaction network is evaluated until an optimal model is found. All prerequisites
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combined in the toolbox are discussed in detail below.

Figure 2.1: Scheme for finding an optimal mechanistic description for measured data with the toolbox

2.2.2. Defining the model structure with mechanistic informa-
tion from different environmental frameworks

Multiphase, multicomponent and multiprocess environment
Model structures can be built that contain biogeochemical reaction networks within
a multiphase environment with mass transport across the model domain and mass
transfer between the phases. A schematic example of such a structure is given
in figure 2.2. The model describes the fate of chemical compounds present in
the solid, gas and liquid phase. In each phase we track the change of the total
concentrations (𝐶ዞዶዩዪ) and derived concentrations (𝐶ዎ) as a function of time. Total
concentrations are calculated with the mass balances of building blocks of species
e.g. Hዄ and COኽዅኼ which are expressed in terms of one reference species. Using
chemical equilibrium approaches, we can calculate the derived concentrations from
the set of total concentrations (i.e. mass balances). Changes in total concentrations
with time are caused by kinetic processes which can be either biochemical redox
reactions, transfer of compounds between phases and transport in or out of the
model domain. Biochemical reactions are influenced by environmental inhibitions
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and limitations.
To support quick implementation of a model structure, it is completely defined

within a single spreadsheet and solved with a generic matrix calculation method.

Figure 2.2: Schematic example of a model structure that can be build with the toolbox

Fully coupled rate dependent and equilibrium processes
Rate dependent processes and equilibrium processes are fully coupled within the
model structure. This means that all derived concentrations are automatically recal-
culated when the total concentrations change because of biochemistry and trans-
port or transfer processes. For example, the total concentration of HኼCOኽ in a
standard water-carbonate system (i.e. 𝐶ዞዒᎴውዙᎵ , 𝐶

ዞ
ውዥᎼᎴ and 𝐶

ዞ
ዒᎼ) changes because

of gas production. The model updates the 𝐶ዞዒᎴውዙᎵ and as a result the pH and con-
centrations of COኽዅኼ, HCOኽዅ, HኼCOኽ and CaCOኽ are automatically updated. Full
coupling allows accurate calculation of derived concentrations and their influence
on the rate dependent processes in the system. Details on how to derive concen-
trations from mass balances according to equilibrium reactions are given in Bethke
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et al. (2008) .

Type of rate dependent processes
Biogeochemical reaction rates (𝑅ዕፂᏖᏥ ) are implemented as

𝑅ዕፂᏥᏖ = 𝜇
ዱዥዼ ⋅ 𝐶ዞ

ᖤ
⋅ 𝐼 ⋅ 𝑠ይ (2.1)

where 𝜇ዱዥዼ is the maximum rate, 𝐶ዞ
ᖤ
is the concentration that drives the reaction, 𝐼

is the total inhibition factor ranging from 0 to 1 and 𝑠ይ is the stoichiometry. This type
of reaction supports Monod kinetics when the inhibition factor is (partly) determined
by substrate limitation and the total concentration of bacteria is set as the driving
concentration.

The rates of change in the liquid phase (pደ) and the gas phase (pያ) due to the
presence of a mass transfer flux between phases are implemented as

𝐹዗ዐ
ፂᏖ,ᏬᏨᏥ

= 𝑘ደ𝑎 ⋅ (𝐶
ዴᏨᖤ
ይ − 𝐶ዴᏣ

ᖤ

ይ ⋅ 𝐾ዒ ⋅ 𝑅 ⋅ 𝑇) (2.2)

𝐹዗ዐ
ፂ
Ꮦ,ᏬᏣ
Ꮵ

= 𝐹዗ዐ
ፂ
Ꮦ,ᏬᏨ
Ꮵ

⋅ 𝑉ደ𝑉ያ
(2.3)

where 𝑘ደ𝑎 is the mass transfer constant, 𝐶ዴᏨ
ᖤ
and 𝐶ዴᏣᖤ are the driving concentrations

(total or derived) in the water phase and the gas phase, 𝐾ዒ is the Henry coefficient,
𝑇 is the temperature, 𝑅 is the universal gas constant, 𝑉ደ is the volume of the water
phase and 𝑉ያ is the volume of the gas phase.

The rate of change due to a mass transport flux (𝐹዗ዞፂᏖᏥ
) is implemented as

𝐹዗ዞፂᏖᏥ
= 𝜙 ⋅ 𝐶ዞይ

𝑉 (2.4)

where 𝜙 is the mass transport flow and 𝑉 is the volume of the phase.

Type of equilibrium processes
Two types of equilibrium processes can be implemented in a model structure. The
first type is a true equilibrium reaction relating concentrations of species according
to mass action law. The second type is an equilibrium between the gas and the
liquid phase. This equilibrium is implemented using mass transfer reactions (eq.
2.2) with high values for 𝑘ደ𝑎.

Environmental inhibitions and limitations
Rate inhibiting and limiting reaction terms are implemented using four mecha-
nisms of biochemical reactions taken from environmental studies (equations 2.5
to 2.8). These are substrate limitation (𝑓ዝዖ) (Monod, 1949), non-competitive in-
hibition (𝑓ዘው) (Haldane, 1930), inhibition of sulphate reduction by sulfide (𝑓ዝዝ)
and inhibition of sulphate reduction by protonated Volatile Fatty Acids (VFA) (𝑓ዝዋ)
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(Rzeczycka and Blaszczyk, 2005). In these equations, 𝐶ይዲዬ is the inhibiting con-
centration (either a total or derived concentration), 𝐾ይዲዬ is the inhibition or half
saturation constant and 𝑙 is a shape parameter. Each mechanism gives an inhibi-
tion factor 𝑓 ranging from 0 to 1. Multiplication of all inhibition factors acting on a
biochemical reaction gives its total inhibition factor 𝐼 (eq. 2.1).

𝑓ዝዖ(ፂᏥᏪᏤ) =
𝐶ይዲዬ

𝐶ይዲዬ + 𝐾ይዲዬ
(2.5)

𝑓ዘው(ፂᏥᏪᏤ) = (
𝐾ይዲዬ

𝐾ይዲዬ + 𝐶ይዲዬ
)
፥

(2.6)

𝑓ዝዝ(ፂᏥᏪᏤ) = (1 −
𝐶ይዲዬ
𝐾ይዲዬ

)
፥

(2.7)

𝑓ዝዋ(ፂᏥᏪᏤ) = (1 + (
𝐶ይዲዬ
𝐾ይዲዬ

)
፥
)
ዅኻ

(2.8)

Selectingmechanistic parameter values from databases and derivationmeth-
ods
Parameter values or bandwidths are entered into the spreadsheet where the model
structure is defined. The geochemical parameters for the equilibrium reactions are
automatically retrieved from an extensive geochemical database which is part of
the Orchestra chemical equilibrium model (Meeussen, 2003). A wide variety in
validated geochemical equilibria can be selected. As an option, activity correction
can be calculated with the Davies equation.

Stoichiometry and rate parameters of biochemical metabolic reactions can be
derived from thermodynamic principles with an additional spreadsheet. This deriva-
tion method is adapted from Kleerebezem and van Loosdrecht, (2010). It allows to
constrain the model with established mechanistic information.

As an example, we illustrate the method with the derivation of a metabolic
reaction for methanogenesis. Metabolism is a combination of catabolism (releasing
energy) and anabolism (biological growth) which are coupled using the yield factor,

𝑌ዼዷ =
CmolX
CmolS (2.9)

which specifies how much growth (X) occurs from substrate (S) given the amount
of energy generated by the catabolic reaction. CmolX is the number of moles of C
in the biomass and CmolS is the number of moles of C in the substrate. The redox
half reactions for catabolism can be written as

1CኼHኽOኼዅ + 2HኼO ⇌ 2COኼ + 7Hዄ + 8eዅ (2.10)

1CኼHኽOኼዅ + 9Hዄ + 8eዅ ⇌ 2CHኾ + 2HኼO (2.11)
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which combine to the following catabolic reaction:

1CኼHኽOኼዅ + 1Hዄ ⇌ 1COኼ + 1CHኾ. (2.12)

Following the same principle, the anabolic reaction is as follows,

0.5CኼHኽOኼዅ + 0.3Hዄ + 0.2NHኾዄ ⇌ 1CHኻ.ኾOኺ.ኾNኺ.ኼ + 0.6HኼO (2.13)

where we assume the generic molecular composition of bacteria (CHኻ.ኾOኺ.ኾNኺ.ኼ) to
be the same as used by Henze et al. (1995).

The growth yield is calculated with the method proposed by Kleerebezem and
van Loosdrecht, (2010). This is a partially empirical method based on the Gibbs
reaction energy of the catabolic and anabolic reaction (Heijnen and Kleerebezem,
1999). In this case, 𝑌ዼዷ = 0.04 which leads to the following total metabolic reaction:

12.9CኼHኽOኼዅ + 12.7Hዄ + 0.2NHኾዄ ⇌
1CHኻ.ኾOኺ.ኾNኺ.ኼ + 12.4COኼ + 12.4CHኾ + 0.6HኼO.

(2.14)

In addition to the stoichiometry, also the rate parameters for metabolic reactions
can be estimated from thermodynamic principles (Heijnen and Kleerebezem, 1999).

Estimated parameter values can be corrected for temperature using several
relations. Maximum rates, equilibrium constants and the solubility of Calcite are
corrected with equations 2.15-2.17 respectively (Plummer and Busenburg, 1982,
Veeken and Hamelers, 1999). In these equations, 𝑇ዩ is the temperature of the en-
vironment, 𝑇ዶ is the reference temperature of the parameter, △𝐻ኺ is the standard
enthalpy, 𝑘 is 64 ዯዔ

ዱዳደ , 𝑎 is -171.9065, 𝑏 is 0.077993, 𝑐 is 2893.319 and 𝑑 is 71.595.

ln (𝜇ዱዥዼዩ ) = ln (𝜇ዱዥዼዶ ) + ln ( 𝑘𝑅 ⋅ (
1
𝑇ዶ
− 1
𝑇ዩ
)) (2.15)

ln (𝐾ዩ) = ln (𝐾ዶ) + ln (
△𝐻ዳ
𝑅 ⋅ 𝑇ኼዶ

⋅ (𝑇ዩ − 𝑇ዶ)) (2.16)

logኻኺ (𝐾ዩድ(ውዥደዧይዸዩ)) = 𝑎 + 𝑏 ⋅ 𝑇ዩ +
𝑐
𝑇ዩ
+ 𝑑 ⋅ logኻኺ (𝑇ዩ) (2.17)

2.2.3. Solving the model structure with a generic matrix cal-
culation method

The model structure is automatically assembled in to a system of ordinary differen-
tial equations (ODE) with a generic matrix calculation method adapted from Reichel
et al. (2007). This system of ODEs is fully coupled with the equilibrium calculator
ORCHESTRA (Meeussen, 2003). The ODEs are solved in MATLAB and the equi-
librium calculator is part of the JAVA memory space of MATLAB. This makes the
algorithm very efficient since both solvers use the same memory space while in-
formation about the total and derived concentrations are exchanged via a JAVA
link.
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The set of ODEs for each phase can be written as

d𝐶ዞ,ዻዥዸዩዶ
d𝑡 − 𝐹ዞ,ዻዥዸዩዶ = 𝑅ዕ (2.18)

d𝐶ዞ,ያዥዷ
d𝑡 − 𝐹ዞ,፠ፚ፬ = 0 (2.19)

where 𝐹ዞ are the total fluxes into the respective phase and 𝑅ዕ are the total bio-
chemical rates. The total concentrations in the solid phase are included in the
ODEs of the water phase and are expressed per volume of water phase. The total
fluxes 𝐹ዞ,፰ፚ፭፞፫, 𝐹ዞ,፠ፚ፬ and the total biochemical rates 𝑅ዕ are calculated by vector
summation over the number of fluxes or reactions 𝑗 per process,

𝑅ዕ = 𝜇ዱዥዼ ∘ 𝐶ዞ
ᖤ
∘ 𝐼 ⋅ 𝑆 (2.20)

𝐹ዞ,ዻዥዸዩዶ =∑
፣
𝐹዗ዞ,ዻዥዸዩዶ −∑

፣
𝐹዗ዐ,ዻዥዸዩዶ (2.21)

𝐹ዞ,ያዥዷ =∑
፣
𝐹዗ዐ,ያዥዷ −∑

፣
𝐹዗ዞ,ያዥዷ − 𝑥 ⋅∑(∑

፣
𝐹዗ዐ,ያዥዷ −∑

፣
𝐹዗ዞ,ያዥዷ) (2.22)

where 𝜇ዱዥዼ, 𝐶ዞ
ᖤ
and 𝐼 have size 1 × 𝑗, ∘ is the symbol for element-wise multipli-

cation, 𝑆 are the stoichiometry with size 𝑗 × 𝑛ደ, 𝐹዗ዐ,ዻዥዸዩዶ and 𝐹዗ዞ,ዻዥዸዩዶ have size
𝑗 × 𝑛ደ, 𝐹዗ዐ,ያዥዷ and 𝐹዗ዞ,ያዥዷ have size 𝑗 × 𝑛ያ and 𝑥 are the molar fraction of the total
concentrations in the gas phase. The last term in 𝐹ዞ,ያዥዷ constrains the gas phase
with a constant volume and a constant total pressure.

2.2.4. Evaluating model performance
Qualitative evaluation
Model performance is evaluated visually by automatically generated plots combining
the model results with the measured data and plots of all modeled states. Because
of the strong human capacity for pattern detection, these plots may indicate ex-
treme, under- or non-modeled behavior. In addition, residuals are evaluated with
QQ plots and auto-correlation plots.

Applying Bayesian inference
In order to find a model structure which provides the best fit to the data, we also
evaluate the outcome of the simulation with several objective criteria. All these
criteria are evaluated using the results of Bayesian inference applied to the set of
most uncertain parameters (𝜃). The outcome of Bayesian inference,

𝑝 (𝜃|𝑦̂) ∝ 𝑝 (𝜃) ⋅ 𝐿 (𝜃|𝑦̂) , (2.23)
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is the joint posterior probability distribution (𝑝 (𝜃|𝑦̂)) of the set of parameters given
the measured data. This distribution reflects the uncertainty in the different pa-
rameters. The posterior distribution is calculated from the prior distribution of the
parameters (𝑝 (𝜃)) and the likelihood of the parameters in light of the measured
data (𝐿 (𝜃|𝑦̂)). The posterior distribution is obtained using an adapted version of the
DREAM(ZS) algorithm (Laloy and Vrugt, 2012, Vrugt et al., 2003) where algorithmic
settings and parameters are set to the recommended and default values.

The toolbox uses a Gaussian objective function, which includes the set of stan-
dard deviations of total error (𝜎) for each subset of data, to evaluate the likelihood,

ln (𝐿 (𝜃|𝑦̂)) = −𝑛2 ⋅ ln (2𝜋) −∑ln (𝜎) − 12 ⋅∑(𝑦̂ − 𝑦𝜎 )
ኼ

(2.24)

where 𝐲 is the modeled data and 𝜎 = [𝜎ዷዹዦዷዩዸኻ(፦×ኻ) ; 𝜎ዷዹዦዷዩዸኼ(፦×ኻ) ; ...] with 𝑚 being the size
of a subset of data and all entries in 𝜎(፦×ኻ) have the same value 𝜎ዷዹዦዷዩዸ for that
subset. Because it is often difficult to estimate the measurement error, and it is
more or less impossible to estimate the model error, we chose to expand the set of
uncertain parameters 𝜃 with the standard deviations 𝜎ዷዹዦዷዩዸ for each dataset.

Prior distributions of uncertain model parameters are assumed to be uniform
with an initial search range that is 100× wider to ensure global convergence. Prior
distributions of standard deviations are also uniform ranging from ኻ

኿ ⋅ 𝜎ዷዹዦዷዩዸ to
5 ⋅ 𝜎ዷዹዦዷዩዸ. Ranges in the prior distributions can be different for other problems.

Quantitative criteria
The result from the Bayesian inference allows us to quantitatively compare the per-
formance of different model structures. Since our modeling objective is to find
the model structure with minimal (mechanistic) uncertainty, we implemented cri-
teria that quantify aspects related to this. For other modeling objectives, other
criteria/metrics (Bennett et al., 2013, Vrugt, 2016) may be more suited which are
readily implemented.

One criterion is the difference in best fit or lowest total error (measurement
error & model error) between model structures. In addition, we can also assess the
probability distribution of total errors which is related to the combined probability
distributions in calibrated parameters. The latter directly reflects the uncertainty
of the complete model structure in light of the measured data. Even more, the
uncertainty of total error per subset of data can be compared between models with
the marginal probability distributions of the standard deviations.

A second criterion is the uncertainty in calibrated parameters for different model
structures. Parameter uncertainty is quantified by the width of its marginal posterior
distribution. A wider distribution indicates more uncertainty under the condition of
the same prior distribution. For a quantitative comparison, the gain of information
from marginal prior to marginal posterior for parameter 𝑖 can be quantified with the
Kullback-Leibler divergence (𝐷ዕዖ). This metric,

𝐷ዕዖ = ∫(𝑝 (𝜃።|𝑦̂) ⋅ ln (
𝑝 (𝜃።|𝑦̂)
𝑝 (𝜃።)

) ⋅ d𝜃። , (2.25)
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is a non-symmetric measure of the dissimilarity between two probability distribu-
tions. Higher values of 𝐷ዕዖ indicate a larger information gain and therefore less
uncertainty.

A third criterion is the presence of correlations between parameters in the model
structure which can be seen in the marginal posterior distributions. These correla-
tions point to possibilities for optimizing model structure by adding restrictions or
lumping of correlated parameters.

A fourth criterion is the mechanistic completeness of model structure. Mecha-
nistic completeness is evaluated by comparing the calibrated parameter bandwidths
(i.e. 5%-95% quantiles) with ’ideal’ parameter values measured under non-limiting
conditions. A close match between calibrated parameters and ’ideal’ values indi-
cates a mechanistically complete model structure. Parameters that strongly deviate
from ’ideal’ values indicate missing mechanistic processes.

A final criterion is the amount of information a model structure provides given
its complexity. More complex models with a large number of parameters can be
compared with simpler ones with the marginalized likelihood (𝐿ዱ) which is the prob-
ability of the measured data given the model structure, not assuming any particular
model parameters. It can be approximated with the harmonic mean of likelihoods
(Newton and Raftery, 1994),

𝐿ዱ = ( 1𝑁

ፍ

∑
።዆ኻ
𝐿 (𝜃|𝑦̂)ዅኻ)

ዅኻ

(2.26)

where𝑁 is the number of likelihoods. The model structure with the highest marginal
likelihood has the best balance between information content and model complexity.

2.3. Results
2.3.1. The final four evaluated biogeochemical reaction net-

works

T he dataset we used for testing our toolbox was obtained from Roberto Valen-
cia (Valencia et al., 2009b, Valencia Vazquez, 2008). We present the final four

model structures that were the outcome of our search for an optimal model with the
methodology provided by the toolbox. These four reaction networks are schemati-
cally depicted in Figure 2.3. In this figure, the most simple network 1 is presented
with black lines. Our hypothesis for this network is that four kinetic reactions con-
trol the measured emissions. The first one is hydrolysis lumped with acidogenesis.
It converts the available biodegradable Solid Organic Matter (SOM) into a mix of
Volatile Fatty Acids (VFAዱይዼ) with hydrolysis as rate limiting step. The second one
is methanogenesis which converts the VFAዱይዼ into methane and carbon dioxide.
The final two reactions are decay of the two types of bacteria involved in lumped
hydrolysis and methanogenesis with rates which are 5% of the maximum growth
rates (Angelidaki et al., 1999). Furthermore, only methanogenesis is influenced by
substrate limitation of VFAዱይዼ. The stoichiometry of the kinetic reactions is listed
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in table 3.2. We included the most common geochemical equilibrium reactions as-
suming a readily available excess of Calcite to represent the high alkalinity of MSW.
In addition, we assume that the exchange between concentrations in the gas and
liquid phases is instantaneous.

According to the experimental design, gas vents to the atmosphere and no
other transport flows are included. Because leachate was recirculated during the
experiment, we simplified the problem to ideally mixed batch conditions. Model
parameters which we considered to be well known are taken from literature. These
parameter values are listed in table 2.2 together with the initial experimental con-
ditions. The model parameters which we considered to be unknown or uncertain
are listed in table 2.3 together with the prior ranges found in literature. These
unknown parameters in the model’s reaction network are obtained via Bayesian
inference which fits the model outputs to the measurements.

For reaction network 2, we increased the complexity by adding the main environ-
mental inhibitions that are known to influence the kinetic reactions in wastewater
treatment. These inhibitions are non-competitive inhibition of hydrolysis by pH and
total concentration of VFAዱይዼ and non-competitive inhibition of methanogenesis by
pH and ammonia.

In reaction network 3, we further increased the complexity by adding a kinetic
ammonium oxidation reaction. We implemented this reaction to find an explanation
for the decreasing measured ammonium concentration in time which normally does
not occur under anaerobic conditions.

Finally, network 4 extends the reaction network further in order to include sul-
phate and sulfide. These compounds are usually present in anaerobic environ-
ments and are known to inhibit methanogenesis and oxidize available biodegradable
SOM. Adding mechanistic information about these processes may therefore optimize
model performance. The following is included: 1) a kinetic sulphate reduction re-
action, 2) corresponding equilibrium reactions, 3) inhibition of methanogenesis by
HኼS and 4) inhibition of sulphate reduction by HኼS and protonated VFAዱይዼ.
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Figure 2.3: Schematic representation of the final four reaction networks that were evaluated.

The most basic reaction network ኻ is presented with the black lines. Complexity is increased stepwise from network ኻ-ኾ which is indicated by the dashed
gray lines. Network ኼ includes inhibition of hydrolysis by pH and ውᏖᏘᏈᏃᏩᏥᏴ and inhibition of methanogenesis by pH and ammonia. In network ኽ, an ammonium
oxidation reaction is added. Network ኾ is extended with sulphate reduction for which total concentrations, derived concentrations and inhibitions are included
accordingly. X represents bacterial biomass. Compounds that are in equilibrium between the gas phase and the liquid phase have two colors.
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Table 2.1: Stoichiometry for the total concentrations in the biochemical reactions

SOMኽ ) VFAዱይዼ
ኽ) HኼCOኽ NHኽ HኼO CHኾ SOኾዅኼ HኼS Xዥዧይየ Xዱዩዸዬ Xዷዹደዴዬ Hዄ

Hydrolysisኻ) −1 0.3 0.01 0.024 −0.088 - - - 0.18 - - -
Methanogenesis - −6.67 7.23 −0.2 −8.76 9.37 - - - 1 - -
Decayኼ ) 0.92 - 0.08 0.14 −0.42 - - - (−1) (−1) (−1) -
Ammonium oxidation - - - −1 - - - - - - - −1
Sulphate reduction −10.6 27.1 −0.2 −27.1 −15.3 15.3 1 −30.5

The gray cells highlight the reaction driving concentrations. 1) In this reaction, the growth yield for acidogenesis on glucose is used: ፘᏚᏕ ዆ ኻ.ኺዃ. 2) Each
bacterial biomass (ፗ) decays individually. 3) The elemental compositions of SOM is ውዒᎳ.ᎹᎻዙᎲ.ᎸᎵዘᎲ.ᎲᎸ and ዠዐዋᏩᏥᏴ is ውᎴ.ᎸᎶዒᎷ.ᎴᎺዙᎴ which were derived from
the data measured in the lysimeter experiments.

Table 2.2: Model parameters and initial conditions

𝐾ይዲዬ 𝑙 Initial conditions

𝜇ዱዥዼዥዧይ 0.12 2) 𝑓ዘው(ዬዽየ,ፂᏆᏊᎼ )
1 × 10ዅ኿ 2 3) 𝐶ዞ

Ꮃ)
ዝዙ዗ 5.44 𝐶ዞውደᎽ 0.1

𝜇ዱዥዼየዩዧዥዽ 0.05 ⋅ 𝜇ዱዥዼያዶዳዻዸዬ 2) 𝑓ዘው(ዬዽየ,ፂᏖᏘᏈᏃ) 2.34 × 10ዅኼ 1 3) 𝐶ዞዝዙᎶᎽᎴ 0.16 Vያ 250
𝐾ዒ,ውዒᎶ 1.5 × 10ዅኽ 4) 𝑓ዘው(ዱዩዸዬ,ፂᏆᏊᎼ )

5 × 10ዅ዁ 2 3) 𝐶ዞዘዒᎵ 0.065 𝑝ዸዳዸ 1
𝐾ዒ,ዘዒᎵ 71.4 4) 𝑓ዘው(ዱዩዸዬ,ፂᏆᏐᏊᎵ )

1.5 × 10ዅኽ 1 3) 𝐶ዞዒᎴውዙᎵ 1.13 T 303
𝐾ዒ,ዒᎴዝ 0.11 4) 𝑓ዘው(ዱዩዸዬ,ፂᏆᏊᎴᏕ)

4.29 × 10ዅኼ 1 5) 𝐶ዞውዥᎼᎴ 1.16 pH 6.15
𝐾ዒ,ዒᎴዙ 2.3 × 10ኽ 4) 𝑓ዝዝ(ዷዹደዴዬ,ፂᏆᏊᎴᏕ)

1.61 × 10ዅኼ 0.401 6) 𝐶ዞዘዥᎼ 0.2 Vደ 325
𝐾ዒ,ውዙᎴ 0.03 4) 𝑓ዝዋ(ዷዹደዴዬ,ፂᏆᏊᏘᏈᏃ) 9 × 10ዅኾ 1.08 6)

1) Initial concentration of SOM is taken from the total amount of carbon produced as biogas in the experiment. 2) Angelidaki et al. (1999). 3) Siegrist et al.
(2002). 4) Atkins and de Paula (2011). 5) Paula Jr and Foresti (2009). 6) Rzeczycka and Blaszczyk (2005). Units of maximum rates, Henry constants,
inhibition constants, concentrations, temperatures, pressures and volumes are respectively የᎽᎳ, ᏩᏫᏨ

Ꮞ⋅ᏝᏰᏩ ,
ᏩᏫᏨ
Ꮞ , ᏩᏫᏨᏎ , ዥዸዱ, ዕ and ዖ. All parameter values are

corrected for 303ዕ except ፊᏥᏪᏤ,ᐺᏆᏊᎴᏕ
(ኼዃዂዕ).
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2.3.2. Outcome of the Bayesian inference applied on the four
networks

The result of the Bayesian inference allows us to evaluate the quality of perfor-
mance of our four model structures. We start with the most basic evaluation, visual
inspection of fit. Figure 2.4 presents the modeled data with the highest likelihood
(in red) and the related uncertainty bandwidths (in green) together with the mea-
sured data (in blue) for each network. Visual inspection clearly shows that some
networks perform better than others. The fit for the cumulative biogas is better in
networks 2−4 and the fit for ammonium concentration is better in networks 3−4.
In addition, the uncertainty is lower in networks 2−4 indicated by slightly narrower
green bandwidths.

Visual judgment, however, reveals very little about the mechanistic correctness
and parameter uncertainty in the models. The 𝐷ዕዖ values in table 2.3 indicate
the uncertainty of the calibrated parameters relative to the different model struc-
tures. Higher values mean lower uncertainty. The uncertainty in the calibration of
𝐾ዝዖ(ዱዩዸዬ)ይዲዬ,ፂᏖᏘᏈᏃ

, for example, is much lower for network 2 − 4 than network 1. Prefer-
ably, we select a model with a low uncertainty in all calibrated parameters. The
uncertainty in the total error for each subset of data is shown per network by the
𝐷ዕዖ values of the standard deviations. This shows for instance that the uncertainty
for the subset of ammonium is much lower in networks 3 − 4 than networks 1 − 2.

The posterior bandwidths (5% − 95% quantiles) in table 2.3 reveal how close
the calibrated parameters are to ’ideal’ values measured under non-limiting con-
ditions. Parameters that are close are indicated in bold. Ideally for mechanistic
completeness, all calibrated parameters should be close to ’ideal’ values. Network
2−4 are therefore more mechanistic correct than network 1 because the calibrated
bandwidths of 𝜇ዱዥዼዬዽየ and 𝜇ዱዥዼዱዩዸዬ are closer to ’ideal’ values.

Most parameters in the networks are not correlated except for the maximum rate
and the half saturation constant of methanogenesis in the less complex networks.
These correlations are presented in Figure 2.5. Interestingly, the correlation be-
comes weaker as the complexity and mechanistic information content of the model
structures increases.

The log-normal marginal likelihoods-values in figure 2.4 show the performance
of the networks with respect to the balance of information content (model complex-
ity) versus model uncertainty. They show that although network 4 is most complex,
the added information improves the maximum likelihood without increasing model
uncertainty too much.

When evaluating model uncertainty based on statistics, it is important to check if
the statistical assumptions applied are valid. This means that the probability of the
residuals should be normally distributed because we apply a Gaussian likelihood.
We check this with Q-Q plots and normalized autocorrelation functions (ACF) for the
residuals of the best fit results of network 4 which are presented in figure 2.6. The
Q-Q plots show residual quantiles (in blue) vs quantiles from the theoretical nor-
mal distribution. When the residual quantiles are normally distributed they should
coincide with the theoretical red line. Apparently, not all residuals are normally
distributed. Therefore, some error is present in the statistical evidence we apply to
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evaluate our models. The same violation of normal distribution is indicated by the
autocorrelation of the residuals. However, for the type of evaluations we apply this
statistical error has minimal impact. If one is interested in a more statistical correct
evaluation, we suggest to use the general likelihood function presented by Schoups
and Vrugt et al. (2010).

Table 2.3: The prior ranges, posterior ranges (኿%ዅዃ኿% quantiles) and information gain (ፃᏍᏎ) for the
inferred parameter per network

𝜇ዱዥዼዬዽየ (dዅኻ) 𝜇ዱዥዼዱዩዸዬ (dዅኻ) 𝐾ዝዖ(ዱዩዸዬ)ይዲዬ,ፂᏖᏘᏈᏃ
(mM) 𝐶ዞ(ይዲይ)ዢᏩᏡᏰᏤ (mM)

quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ
Prior 0.09-0.26ኻ ) 0.04-0.47ኼ ) 0.03-420ኼ ) 0.27-19ኽ )

Network 1 0.004-0.0045 10.6 0.013-0.029 7.72 330-1318 2.12 8.6-13.5 5.70
Network 2 0.052-0.060 7.84 0.127-0.199 6.24 60-152 4.54 8.8-12.6 5.97
Network 3 0.056-0.069 7.30 0.095-0.167 6.23 95.5-184 4.54 12.9-25.3 4.83
Network 4 0.050-0.061 7.55 0.095-0.145 6.63 152-259 4.24 14.5-25.8 4.93

𝜇ዱዥዼዘዒᎶ (d
ዅኻ) 𝜇ዱዥዼዷዹደዴዬ (dዅኻ) 𝐾ዝዖ(ዷዹደዴዬ)ይዲዬ,ፂᏖ

ᏕᏑᎶᎽᎴ
(mM) 𝐶ፓ(።፧።)ዢᏯᏱᏨᏬᏤ (mM)

quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ
Prior 0.001-1 0.024-2.4ኾ ) 0.178-0.26኿ ) 0.27-19ኽ )

Network 1
Network 2
Network 3 0.0044-0.0052 6.94
Network 4 0.0043-0.0052 6.84 16.47-210 0.26 952-25085 1.06 0.095-120 2.95

𝜎ዦይዳያዥዷ (mኽ) 𝜎ዠዐዋ (mM) 𝜎ዴዒ 𝜎ዘዒᎶᎼ (mM)
quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ

Prior 3.41-85.2 0.05-1.24 0.16-3.95 0.005-0.136
Network 1 4.19-5.14 8.86 0.13-0.19 7.47 0.24-0.28 8.82 0.12-0.15 5.93
Network 2 2.12-2.52 9.76 0.12-0.17 7.62 0.27-0.32 8.86 0.14-0.17 5.76
Network 3 2.19-2.62 8.68 0.12-0.17 7.65 0.27-0.32 8.18 0.029-0.036 7.24
Network 4 2.06-2.49 9.64 0.12-0.17 7.58 0.23-0.26 9.11 0.029-0.038 7.06

𝜎ዴውዙᎴ (atm) 𝜎ዴውዒᎶ (atm)
quantiles 𝐷ዕዖ quantiles 𝐷ዕዖ

Prior 0.04-1.01 0.04-1.05
Network 1 0.12-0.14 7.99 0.11-0.13 8.10
Network 2 0.13-0.16 7.89 0.13-0.16 7.91
Network 3 0.13-0.17 7.87 0.13-0.16 7.82
Network 4 0.13-0.17 7.82 0.13-0.16 7.79

Quantiles that are comparable with ’ideal’ values measured under non-limiting conditions are presented
in bold. 1) Veeken and Hamelers (1999). 2) Meima et al. (2008). 3) Nopharatana et al. (2007). 4)
Rzeczycka and Blaszczyk (2005). 5) Roychoudhury et al. (2003).
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Figure 2.4: Measured data and best fit model results for the four reaction networks
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Figure 2.5: Correlations between parameters per network

Figure 2.6: Q-Q plots and autocorrelation functions (ACF) per sub dataset of the best fit residuals of
reaction network ኾ

2.4. Discussion & Conclusions
The aim of the methods combined in the toolbox is to choose an optimal network
with which we can describe anaerobic digestion of MSW. We believe this novel
approach helps to reduce the ambiguity in model structure and calibrated param-
eter values reported in literature for a given environmental system. It strengthens
(qualitative) judgment of model performance by providing quantitative criteria for
evaluating (mechanistic) model uncertainty and it allows integrated environmental
assessment. As a result, we obtain model structures which allow us to make predic-
tions with a higher certainty because we have included more (objective) information
for selecting the reaction network.

2.4.1. Performance of network 1
The most basic reaction network 1 reasonably reproduced a significant portion of
the measured data (figure 2.4) with low uncertainty in total error (narrow green
bandwidths). The model captures the values and trends of measured VFAዱይዼ, pH,
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pCHኾ and pCOኼ in time. This good fit was achieved by selecting a set of reactions
with the correct stoichiometry and parameter values from well established anaerobic
reaction networks from literature, databases and derivation methods. The toolbox
optimizes the implementation of such networks.

The model based on reaction network 1, however, does not provide a nice fit to
all subsets of data. Using the results from the Bayesian inference, we modified the
model structure in order to improve the results. Figure 2.5 shows that 𝐾ዝዖ(ዱዩዸዬ)ይዲዬ,ፂᏖᏘᏈᏃ

is
strongly correlated with 𝜇ዱዥዼዱዩዸዬ. This suggests that both parameters can be lumped
together or that another process is being compensated for by the correlation of
these two parameters. The results also show that the optimized values of prob-
ability distributions of the maximum rates are low compared to ’ideal’ values. We
concluded that limitations or inhibitions are missing in the reaction network which
reduce prediction accuracy and cause the poor fit for cumulative biogas and am-
monium.

2.4.2. Performance of network 2
Network 2 is extended with reaction terms which include the main environmental
inhibitions acting on hydrolysis and methanogenesis. Assessing the results for this
network indicate that this extension significantly improves the model fit of the cu-
mulative biogas. In addition the calibrated maximum rates are in closer agreement
with ’ideal’ values. We conclude that the mechanistic description is more correct,
while all parameters are still identifiable within sharp bandwidths (although some
with slightly broader probability distributions than in network 1).

Adding the inhibition terms weakened the correlation between 𝐾ዝዖ(ዱዩዸዬ)ይዲዬ,ፂᏖᏘᏈᏃ
and

𝜇ዱዥዼዱዩዸዬ. The value of 𝐾
ዝዖ(ዱዩዸዬ)
ይዲዬ,ፂᏖᏘᏈᏃ

is still high compared to ’ideal’ values which indicates
that this parameter compensates for a missing mass transport limitation in the
model.

The difference in calibrated values between network 1 and network 2 nicely illus-
trates how easily ambiguity is created in published parameter values and outcomes
of models (Meima et al., 2008). By assuming a slightly different model structure,
different sets of calibrated values will be reported which in turn may be used in
yet again different model structures leading to wrong predictions. The only way to
reduce this ambiguity is to report calibrated parameters together with the reaction
networks and model structures from which they have been defined. Ideally the
reactions should be mechanistically correct and the resulting parameters should be
identifiable (i.e. possessing a narrow probability distribution without being corre-
lated to other parameters). For this, statistical evaluation of model outcome and
parameter distributions is necessary because basic evaluation by eye does not give
the information needed to judge mechanistic correctness and identifiability.

In the case of reaction network 2, the evaluation indicates a structure that is
nearly correct. However, the concentration of ammonium is still overestimated
by the model. This is to be expected since hydrolysis releases ammonium and the
anaerobic reaction network 2 does not include an ammonium removal process. The
experimental results clearly indicate that such a process occurs in the lysimeter.
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2.4.3. Performance of network 3
In network 3, a relatively simple ammonium oxidation process is added to the reac-
tion network. As a result, the model fit of the ammonium concentration improved
drastically, while the rest of the model performance stayed similar to that of network
2. The modeled pH and the calibrated parameter bandwidths are not significantly
influenced. The results indicate that in this lysimeter experiment an ammonium
oxidation rate of 0.0048 dዅኻ is likely. The ammonium oxidation in the experiment
was most likely caused by intrusion of oxygen when leachate was recirculated.

2.4.4. Performance of network 4
Although the results of network 3 are very good, we chose to do one more iteration.
The waste used in the lysimeter most probably contained a source of sulphate
(gypsum from building waste). This implies that sulphate reduction can occur which
may explain the delay in onset of biogas production observed in the measured data.
Although neither sulphate or sulphide were measured in this experiment, the results
indicate an improved fit because both the errors in the fit of cumulative biogas and
pH decreased. The final parameter distributions of the other parameters remained
the same as found for network 3. The calibrated parameter values for sulphate
reduction have a wide range and are high compared to ’ideal’ values so we have to
be careful in judging the mechanistic correctness of this approach. The improved
datafit can be explained by the mechanism of sulphate reduction but it just as well
can be attributed to the additional degrees of freedom added by the extra reaction.
Measurements of sulphate and sulphide species are necessary to make a conclusion
about how to improve the reaction network.

2.4.5. Selecting the optimal model structure for anaerobic di-
gestion of MSW

For lysimeter scale
Based on the evaluation of network performances, we choose reaction network
3 as the optimal model structure for anaerobic digestion of MSW on a lysimeter
scale. All parameters are either based on thermodynamic principles, taken from
well established geochemical databases or calibrated with bandwidths which are
in agreement with ’ideal’ values. This strong mechanistic character of the model
together with its low uncertainty in calibrated parameters increases confidence in
(long-term) prediction accuracy compared to other model structures.

For the value of 𝐾ዝዖ(ዱዩዸዬ)ይዲዬ,ፂᏖᏘᏈᏃ
, we suggest to either keep it as a parameter to be

calibrated as a ’material property’ for the system under investigation or to further
extend the model with a transport limitation mechanism such as diffusion with an
extra transport parameter which then needs to be calibrated.

Network 4 is not preferred over network 3 because the mechanism of sulphate
reduction can not be adequately calibrated with this dataset. The improved likeli-
hood is not guaranteed when applying this reaction network to other experiments
and conditions. Calibration of network 4 with an extended measured dataset in-
cluding sulphate or sulfide measurements would be very interesting.
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Another interesting option would be to include the measurement error in the
likelihood function. This was not possible for this dataset since the measurement
error was unknown. Nevertheless, when included a distinction between model and
measurement error could be made. A fully correct model would by necessity include
all measured data within the green uncertainty bandwidths in figure 2.4.

For full scale
For full scale application, we select network 2 as the optimal model structure. Net-
work 2 is preferred over network 3 because the ammonium oxidation in network
3 is modeled with a non-mechanistic first order decay function based on the ob-
servations only. In this experiment, air intrusion during recirculation of leachate is
causing this degradation. This is probably not representative for large scale anaer-
obic digestion of waste in landfills.
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T he toolbox is implemented in MATLAB(MATLAB Release 2015a, 2015) and the
algorithm is available at DOI: 10.4121/uuid:aefbaeb9-85be-4fa6-a29e-a9cb71d0fb3a.

Here, also a detailed manual is provided on how to use the toolbox. The toolbox
can be used without the requirement of special MATLAB toolboxes. Ordinary dif-
ferential equations are solved with ode15s. For the Bayesian inference, an efficient
submodule of DREAMፙፒ is used and provided by Jasper Vrugt. A single integra-
tion of a network takes approximately 2.5 seconds and a Bayesian inference run
with 250.000 iterations takes approximately 1 week. Inference run time can be
substantially decreased (ኻኽ ) when Markov chains are run in parallel.
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Theoretical analysis of MSW
treatment by recirculation

under anaerobic and aerobic
conditions

Long-term emissions of Municipal Solid Waste (MSW) landfills need to be
reduced to decrease the aftercare burden for future generations. Although
re-circulation of leachate through the waste body reduces emissions on a
lysimeter scale, effectiveness at the field scale as yet has to be demonstrated.
Theoretical understanding of how re-circulation leads to improved leachate
quality is important for optimizing the design of field scale applications. In
this study, we present novel theoretical insights in the fundamental pro-
cesses that control leachate quality of MSW in lysimeter scale experiments.
Biogeochemical reaction network models were identified that describe mea-
sured data under anaerobic and aerobic conditions. These networks indi-
cate that the major factor controlling treatment efficiency is the amount of
biodegradable carbon reached by the most important reactant (i.e. oxygen
or methanogenic bacteria). Biodegradable carbon removal is highest under
aerobic conditions, however, the hydrolysis rate constant is lower, indicating
that hydrolysis is not enhanced intrinsically in aerobic conditions. Further-
more, nitrogen removal via sequential nitrification and denitrification is plau-
sible under aerobic conditions as long as sufficient biodegradable carbon is
present in the MSW. Major removal pathways for nitrogen are N2 emission
and leachate drainage, while bacterial assimilation and ammonium stripping
have a minimal impact.

This chapter has been submitted to Waste Management.
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anaerobic and aerobic conditions

3.1. Introduction

Amajor challenge for this human generation, is to quickly reduce emissions from
Municipal Solid Waste (MSW) landfills in order to protect human health and

the environment and thereby reduce the burden of aftercare for future genera-
tions. Untreated, landfills can potentially emit gas and leachate for hundreds of
years (Belevi and Baccini, 1989) because degradation processes in waste bodies
are slow due to inhibitions and transport limitations (Kjeldsen et al., 2002, Laner
et al., 2011, Meima et al., 2008). An approach to minimize longterm emissions via
leachate and gas, is to actively treat the waste body with methods that accelerate
degradation and the release of carbon and nitrogen containing compounds (Scharff
et al., 2011). Accelerated release of landfill gas with a high content of methane
is also economically more attractive because this gas can be utilized as an energy
source.

Leachate recirculation and aeration are two treatment methods that have been
shown to accelerate emission rates in lysimeter scale experiments (Bilgili et al.,
2007, Brandstätter et al., 2015a,b, Erses et al., 2008, Kasam et al., 2013, Veeken
et al., 2000). Leachate recirculation stimulates the mixing of solutes and bacteria
within the waste body (partly) removing inhibitions and transport limitations (White
et al., 2011). The stimulated degradation leads to strictly anaerobic conditions due
to the fast consumption of readily available electron acceptors. It is possible to
remove dissolved compounds in the leachate by bleeding the leachate stream and
replacing with fresh water. Aeration by injection of air (Ritzkowski and Stegmann,
2012) has two main advantages, aerobic degradation is generally faster than anaer-
obic degradation (Heijnen and Kleerebezem, 1999) and ammonium can partly be
removed by oxidation to nitrogen gas (Bolyard and Reinhart, 2016).

Full-scale application with these treatment methods has not yet shown to be
successful in reducing longterm emissions through leachate (Benson et al., 2007,
Hrad et al., 2013). We believe that increasing the level of theoretical understanding
of the underlying processes is necessary for the design of successful application of
these methods at the full scale. Novel insights in the fundamental factors and
processes controlling treatment efficiency are essential. A good point to start is to
revisit data obtained in lysimeter experiments and to explain the measurements in
terms of fundamental biogeochemical reaction networks.

Fundamental modeling of environmental systems is an approach that can over-
come limitations often encountered during experiments such as a limited capacity
to measure certain parameters and extremely long experiment times due to slow
kinetics. A mechanistic model provides insight in any specific mass balance re-
quired in context of the processes, inhibitions and limitations which are not directly
measured. The challenge, however, is to identify a fundamental reaction network
that optimally describes the measured data with minimal model uncertainty. In this
study we use the toolbox developed by Van Turnhout et al. (2016). This toolbox
supports integration of several environmental frameworks and extensive qualitative
and quantitative evaluation of (fundamental) model uncertainty.

The aim of this study is to obtain novel fundamental insights into factors and pro-
cesses that control the effectiveness of leachate circulation and aeration in waste
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bodies. We present the biogeochemical reaction networks that give the optimal
description of the measured emission data from lysimeter experiments performed
by Brandstätter et al. (Brandstätter et al., 2015a,b). The results from our anal-
ysis allow us to identify the processes and factors controlling the effectiveness of
the treatment method as well as the removal pathways for carbon and nitrogen
compounds.

3.2. Material & Methods
3.2.1. Types of lysimeter experiments and measured data

F or this study we used the data measured in two lysimeter experiments of Brand-
stätter et al. (2015a,b). Both experiments were based on leachate recirculation,

one under anaerobic conditions and the other where recirculation is combined with
continuous air injection. The experiments were carried out in duplicate on MSW
(sieved to a grain size < 20 mm) taken from a 40 year old landfill. Leachate re-
moved during sampling was replaced with distilled water (Aqua dest) to maintain
the degree of water saturation. An illustration of both set-ups is presented in figure
3.1 and the initial and environmental conditions are listed in table A.1.

For each experiment, one set of time series measurements is used for model
calibration and the other for validation. Time series measured are cumulative pro-
duced biogas (CO2 and CH4), partial pressure of CO2, CH4 and O2, pH, Biological
Oxygen Demand (BOD), NH4+ and Cl

– concentrations. BOD is assumed to consist
of Volatile Fatty Acids (VFA) (i.e. Acetic Acid) and is referred from now on as VFA.

Figure 3.1: Illustration of experimental set-ups for leachate recirculation under anaerobic and aerobic
conditions.
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Table 3.1: Initial and environmental conditions in the duplicate experiments.

Initial conditions Environmental conditions

pውዙᎴ NH3 pH Cl
–

Vliquid 𝜙ይዲዻዥዸዩዶዪደዳዻ 𝜙ዳዹዸዷዥዱዴደዩዪደዳዻ 𝜙ይዲዥይዶዪደዳዻ Vgas pዸዳዸያዥዷ T

Type of experiment [atm] [M] [-] [M] [L] [L dዅኻ] [L dዅኻ] [L dዅኻ] [L] [atm] [K]

Anaerobic (calibration) 0.10 0.03 8 0.025 19.5 0.03 0.03 - 41.9 1 308.5
Anaerobic (validation) 0.10 0.03 8 0.025 19.5 0.03 0.03 - 41.9 1 308.5
Aerated (calibration) 0.41 0.025 7.25 0.025 21.24 0.0524 0.0483 56.67 38.8 1 308.5
Aerated (validation) 0.41 0.025 7.25 0.025 20.95 0.0526 0.0491 56.67 38.82 1 308.5

3.2.2. Biogeochemical reaction networks that optimally describe
measured data

Figure 3.2: Iterative procedure to find the biogeochemical reaction network that optimally describes
measured data.

The approach to select the optimal biogeochemical reaction network that describes
the measured data with the least error is shown in figure 3.2 (van Turnhout et al.,
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2016). The first step is to build a model structure with the relevant kinetic, equilib-
rium, transfer and transport reactions together with the environmental inhibitions
and limitations. The reactions occur within a multiphase environment. Fundamental
parameters are obtained from an extensive geochemical database and a method to
derive biochemical parameters from thermodynamic principles (Kleerebezem and
van Loosdrecht, 2010). The second step is to obtain the probability distribution
functions of the most uncertain parameters using a Bayesian statistical optimiza-
tion method which, together with the optimal parameter set, provides an extensive
set of qualitative and quantitative performance criteria which enable a detailed as-
sessment of model performance in the third step. The aim of this analysis is to
determine if the model uncertainty is small enough to be acceptable. If the result
is not satisfactory, a next iteration of these three steps can be done with an al-
ternative biogeochemical reaction network. Modifying this biogeochemical reaction
network is not automated and needs to be done by the user as it requires expert
knowledge.

We used the following qualitative and quantitative criteria to evaluate the (mech-
anistic) uncertainty of the different biogeochemical reaction networks. One criterion
is the visual fit between the modeled data and the measured data. The second cri-
terion is the practical identifiability of the calibrated parameters. This is indicated
by their 5%−95% quantile range of the posterior probability distribution. A smaller
range means a better identifiability. The third criterion is the agreement between
calibrated parameter ranges and the published values of these parameters mea-
sured under or estimated for non-limiting environmental conditions (e.g. perfectly
mixed batch experiments without limitations/inhibitions). If all individual parame-
ters agree with such optimal, intrinsic values this strongly indicates a fundamentally
correct model structure. The closer all these criteria are met, the lower (fundamen-
tal) model uncertainty of the biogeochemical network.

3.3. Results & Discussion
3.3.1. A fundamental biogeochemical reaction network for leachate

recirculation under anaerobic conditions

F igure 3.3 presents the best fit between modeled data (in red) and measured
data (in blue) for leachate recirculation under anaerobic conditions based on

a visual inspection. The uncertainty in the total model error is indicated with the
green bandwidth surrounding the modeled data. The model is able to describe
measurements for both the calibration and the validation dataset. Only the dy-
namics in measured NH4+ concentrations cannot be accurately described with this
model indicating that some processes are still missing in the model. Such a process
could be adsorption of NH4+ to the MSW which can control the measured concen-
tration of NH4+ significantly. However, the total mass balance in the measured and
modeled NH4+ are in agreement.
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Figure 3.3: Calibrated and validated model results and measured data for the anaerobic and aerobic recirculation experiments.
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The biogeochemical reaction network generating these modeled data is shown in
figure 3.4 with the corresponding stoichiometry listed in table 3.2. The reaction net-
work is based on five kinetic reactions: the first is a lumped hydrolysis/acidogenesis
reaction that converts the biodegradable solid organic matter (SOM) into acetic acid
and ammonium (with hydrolysis as rate limiting step); the second is a methano-
genesis reaction that converts the acetic acid into biogas (i.e. CH4 and CO2) and
methanogenic bacterial biomass; the third and fourth are reactions for decay of
bacterial biomass where 𝜇ዱዥዼየዩዧዥዽ = 0.05 ⋅ 𝜇ዱዥዼያዶዳዻዸዬ; and the fifth is a lumped nitrifica-
tion/denitrification reaction with nitrification as rate limiting step. The oxygen for
the nitrification reaction comes from a small leakage flow of air. Assuming this leak-
age enabled us to simulate both the observed loss in total nitrogen and decrease
in partial pressures of CH4 and CO2.

The stoichiometry of the kinetic reactions is derived from thermodynamic prin-
ciples (Kleerebezem and van Loosdrecht, 2010). Only the release of ammonium
in the hydrolysis reaction was estimated from the measured amounts of removed
organic carbon and organic nitrogen in the solid phase.

The reaction network also includes a set of equilibrium reactions (i.e. speciation,
complexation, precipitation and gas-liquid transfer reactions) controlling the con-
centrations of the species shown in the bottom part of figure 3.4. Changes in the
concentrations of equilibrium species are calculated from total concentrations which
change due to the kinetic reactions. The calculations are based on the mass action
laws and equilibrium constants from readily available thermodynamic databases.
Including these equilibrium reactions is essential for describing the measured pH.
The high alkalinity of leachate is included in the model assuming a sufficient amount
of readily available Calcite.

In order to fit the models to the measured data, we calibrate the parameters
with the highest uncertainty in the reaction network. The 5 − 95% quantiles of
the optimized posterior bandwidths of these parameters are presented in Table 4.1
together with the initial prior (search) ranges and (published) values which were
measured under or estimated for non-limiting environmental conditions. The small
range of all posterior quantiles indicate that all parameters are identifiable from the
information present in the measured data set. More interesting, however, is the
fact that although a relatively simple reaction network was used, most calibrated
bandwidths fall in the range of the reference values measured under non-limiting
conditions. We believe that this indicates that the reaction network includes most
fundamental reactions and processes controlling the emissions. Calibrated band-
widths of maximum rates are a bit lower than the reference values presumably due
to mass transport limitations in our experiments which have not been included in
the model. The network closely resembles the network identified for a similar type
of lysimeter experiment by van Turnhout et al. (2016). The main difference is
that we did not include environmental inhibition relations because concentrations
of potential inhibitors remained low.

An interesting parameter obtained from the calibration step is the amount of
organic carbon in the MSW (𝐶ይዲይዝዙ዗) that could be removed under the experimental
conditions. In the optimization procedure this parameter is only determined from
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Figure 3.4: Biogeochemical reaction networks for anaerobic (top) and aerobic (bottom) recirculation
treatment on a lysimeter scale.
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measured emissions leading to a mean value of 2.3 ውዱዳደዖ (= 0.018 ዯያዝዙ዗
ዯያየዶዽዻዥዷዸዩ ). This

value is comparable with the total carbon removed at the end of the experiment
measured by MSW sampling. This indicates that the amount of biodegradable or
potentially emitted carbon can be reasonably estimated from the emission data by
inverse modeling without sampling of MSW. For further study, it would be even
more interesting to predict the amount of carbon that is removed over longer time
periods or under different experimental conditions. However in order to extrapolate
the model, first processes have to be included that relate the amount of SOM that
is hydrolyzed with the total amount of organic matter present in the MSW.

The model results provide insight into the mass balances of carbon and nitro-
gen per phase during the experiment. Figure 3.5 presents the change with time in
mass percentage of organic carbon and nitrogen in MSW, solutes, bacteria, sam-
pled leachate, CO2(gas), CH4(gas), N2(gas) and NH3(gas) during the experiment.
Most of the organic carbon and nitrogen (85% − 83%) in the MSW is unaffected
by the treatment. The model outcome indicates that removal of carbon and ni-
trogen is mainly limited by the transport of important reactants (e.g. oxygen or
methanogenic bacteria) to the biodegradable fraction of MSW because the network
gives a good fundamental description and the optimal parameter values do not indi-
cate any severe biochemical rate limitations or inhibitions. The residual unaffected
carbon may not have been removed because of strong transport limitations and/or
because it was (partly) not biodegradable.

It seems that in order to optimize degradation, we need a treatment that allows
for a thorough mixing of electron acceptor or other important reactants (such as the
methanogenic bacteria) throughout the MSW. It is, however, questionable if an im-
proved distribution throughout the waste body at field scale can be achieved that is
comparable with the distribution achieved in the lysimeter experiments considering
that mixing in the latter case is already close to optimal due to recirculation. Opti-
mizing treatment approaches at full scale is an important and challenging research
topic.

Figure 3.5 furthermore shows that carbon is mainly removed via the gas phase
and nitrogen is mainly removed via leachate sampling. Bacterial assimilation and
ammonia stripping have a minimal impact on the decrease of total nitrogen. The
main removal pathways indicate the important fluxes to measure on a full scale in
order to successfully monitor the efficiency of the treatment methods. Inconclusive
field scale results so far, may be (partially) caused by incomplete monitoring.
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Table 3.2: Stoichiometry & kinetics of the biogeochemical reaction networks.

Stoichiometry for the recirculation experiment under anaerobic conditions [mol] Kineticsc)

SOMa) Acetic Acid CO2 NH3 CH4 H2O H+ Xዦ)ዱዩዸዬ X(የዩ)ዲይዸዶ O2 N2

Hydrolysis −1 0.5 0 0.036 0 −0.172 0 0 0 0 0 𝑘ዬዽየ ⋅ 𝐶ዞዝዙ዗

Methanogenesis 0 −12.91 12.41 −0.2 12.41 0.6 0 1 0 0 0 𝜇ዱዥዼዱዩዸዬ ⋅ 𝐶ዢ ⋅ 𝑓ዝዖፂᏖᏃᏟ ⋅ 𝑓
ዝዖ
ፂᏖᏐᏊᎵ

Bacterial decay d) 0 0.5 0 0.2 0 −0.6 0 (−1) 0 0 0 0.05 ⋅ 𝜇ዱዥዼዱዩዸዬ ⋅ 𝐶ዢ

(De)nitrification 0 −0.12 0.39 −0.54 0 1.5 0 0 1 −0.63 0.17 𝜇ዱዥዼ(የዩ)ዲይዸዶ ⋅ 𝐶ዢ ⋅ 𝑓ዝዖፂᏖᏑᎴ
⋅ 𝑓ዝዖፂᏖᏐᏊᎵ

Stoichiometry for the recirculation experiment under aerobic conditions [mol] Kinetics

SOM Glucose CO2 NH3 H2O H+ Xaer-denitr O2 SO4–2 NO3– Xnitr N2

Hydrolysis −1 0.167 0 0.032 −0.172 𝜈ዒᎼ 0 0 0.03 0 0 0 𝑘ዬዽየ ⋅ 𝐶ዞዝዙ዗

Aerobic respiration 0 −0.23 0.39 −0.2 0.99 0 1 −0.39 0 0 0 0 𝜇ዱዥዼዥዩዶ ⋅ 𝐶ዢ ⋅ 𝑓ዝዖፂᏖᏉᏨᏱ ⋅ 𝑓
ዝዖ
ፂᏖᏑᎴ

⋅ 𝑓ዝዖፂᏖᏐᏊᎵ

Nitrification 0 0 −1 −11.42 10.82 11.22 0 −21.44 0 11.22 1 0 𝜇ዱዥዼዲይዸዶ ⋅ 𝐶ዢ ⋅ 𝑓ዝዖፂᏖᏐᏊᎵ
⋅ 𝑓ዝዖፂᏖᏅᏑᎴ

Denitrification 0 −0.24 0.42 −0.2 2.62 −0.33 1 0 0 −0.33 0 0.17 𝜇ዱዥዼየዩዲይዸዶ ⋅ 𝐶ዢ ⋅ 𝑓ዝዖፂᏖᏉᏨᏱ ⋅ 𝑓
ዝዖ
ፂᏖᏐᏑᎵᎽ

⋅ 𝑓ዝዖፂᏖᏐᏊᎵ
⋅ 𝑓ዘውፂᏖᏑᎴ

Bacterial decay d) 0 0.17 0 0.2 −0.6 0 (−1) 0 0 0 (−1) 0 0.05 ⋅ 𝜇ዱዥዼ ⋅ 𝐶ዢ

a) SOM is the biodegradable fraction of Solid Organic Matter in MSW modeled as cellulose. Its value is different for anaerobic and aerobic conditions. b) X
are species of bacteria with the elemental composition CH1.4O0.4N0.2 taken from Henze et al. (1995) . c) Substrate limitation factors (፟ᏕᏎ) and inhibition
factors (፟ᏐᏅ) range between ኺ and ኻ (van Turnhout et al., 2016). Half saturation constants which are not optimized have relatively very low values, primarily
included as switch factors. They do not significantly influence the model outcome. d) Bacterial biomass decay is included as a separate process.
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Table 3.3: Prior ranges, ኿%ዅዃ኿% quantiles of posterior ranges and reference ranges measured under or estimated for non-limiting environmental conditions.

Anaerobic recirculation experiment

prior posterior reference prior posterior reference

𝑘ዬዽየ [d–1] 0.0005 − 0.15 0.0094 − 0.0104 0.09 − 0.261) 𝑋ዱዩዸዬ [mM] 0.005 − 15 0.59 − 11 0.27 − 193)

𝜇ዱዥዼዱዩዸዬ [d
–1] 0.01 − 3 0.04 − 0.12 0.82) 𝑋(የዩ)ዲይዸዶ [mM] 0.015 − 15 1.2 − 14 0.27 − 193)

𝜇ዱዥዼ(የዩ)ዲይዸዶ [d
–1] 0.001 − 1 0.11 − 0.96 1.42) 𝐾ዱዩዸዬዷ,ፂᏖᏃᏟ

[mM] 1 − 1000 5.5 − 16.7 0.03 − 4204)

𝜙ይዲ,ዥይዶ [Ld–1] 0.005 − 1.5 0.12 − 0.19 − 𝐶ይዲይዝዙ዗ [M] 2 − 3 2.27 − 2.33 −

Aerated recirculation experiment

prior posterior reference prior posterior reference

𝑘ዬዽየ [d–1] 0.00024 − 0.026 0.0021 − 0.0023 0.09 − 0.261) 𝑋ዲይዸዶ [mM] 0.09 − 110 1.1 − 2.7 0.27 − 193)

𝜇ዱዥዼዥዩዶ [d–1] 1.2 − 121 25.6 − 118 572) 𝑋ዥዩዶዅየዩዲይዸዶ [mM] 7 − 800 9.5 − 35.4 0.27 − 193)

𝜇ዱዥዼዲይዸዶ [d
–1] 0.003 − 0.31 0.01 − 0.02 1.42) 𝐾ዲይዸዶዷ,ፂᏖᏐᏊᎵ

[mM] 0.9 − 110 1.6 − 7.1 0.045)

𝜇ዱዥዼየዩዲይዸዶ [d
–1] 2 − 201 6.4 − 198 542) 𝐾የዩዲይዸዶይ,ፂᏖᏑᎴ

[mM] 0.005 − 0.6 0.047 − 0.093 −

𝐶ይዲይዝዙ዗ [M] 5 − 7 6.2 − 6.5 − 𝜈ዬዽየዒᎼ [mol] 0 − 0.06 0.037 − 0.041 −

1) Veeken and Hamelers (1999) 2) Kleerebezem and van Loosdrecht (2010) 3) Nopharatana et al. (2007) 4) Meima et al. (2008) 5) Kantartzi et al. (2006)
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Figure 3.5: Variation of mol percentage of carbon and nitrogen in the different phases during both experiments
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3.3.2. A fundamental biogeochemical reaction network for leachate
recirculation under aerobic conditions

Figure 3.3 also presents the best visual fit between modeled and measured data
for leachate recirculation under aerobic conditions. Again all model results are in
good agreement with the measured data for both the calibration dataset and the
validation dataset.

Six kinetic reactions are included in this reaction network (figure 3.4 and table
3.2). The first is hydrolysis of SOM to glucose, ammonium and sulphate. The sec-
ond is aerobic respiration of glucose into CO2 and bacterial biomass. The third and
fourth are nitrification and denitrification. The fifth and sixth are bacterial decay
reactions. The stoichiometry for nitrogen and sulfur release in hydrolysis is derived
from the measured ratio between total removed solid carbon and nitrogen/sulfur.
The sulfur/carbon ratio suggests that gypsum is co-dissolved during hydrolysis be-
cause it is too high to be explained solely by protein hydrolysis. The amount of
protons released per sulfate (𝜈ዒᎼ) is calibrated on the measured data. The mean
calibrated value (table 4.1) indicates mainly release of HSO4–.

The set of equilibrium reactions (figure 3.4) is identical to that used for modeling
the the anaerobic experiment except that sulphate speciation and gypsum precipi-
tation are included as well. Inclusion of the chemical equilibrium allowed the model
to reproduce the dynamics in measured pH and dissolved sulphate.

The consumption of ammonium by sequential nitrification and denitrification
suggests the presence of anaerobic pockets in the MSW during air injection. This
implies that air is transported through preferential flow paths which is reasonable
given the strong heterogeneity of the MSW. Figure 3.6 schematically explains how
nitrification and denitrification can occur simultaneously because of concentration
gradients between preferential flow paths and the bulk of the waste. With sufficient
biodegradable carbon available the oxygen is readily consumed near the channels.
The produced nitrate diffuses into the anaerobic bulk of the waste where it is used
as electron acceptor to oxidize carbon. However, when in time the concentration
of biodegradable carbon decreases, oxygen penetrates deeper into the waste out-
competing nitrate as electron acceptor for the oxidation of the remaining carbon. As
a consequence concentrations of nitrate/nitrite increase when SOM depletes which
is also observed in the measured data (figure 3.3). The inhibition of denitrification
by oxygen is included in the reaction network with the relation:

𝑓ዘውፂᏖᏑᎴ
= ( 𝐾ይዲዬ

𝐾ይዲዬ + 𝐶ዞዙᎴ
)
ዀ

(3.1)

where 𝐾ይዲዬ is the inhibition constant and 𝑓ዘውየዩዲይዸዶ,ፂᏖᏑᎴ
ranges from 0 to 1. This type of

ammonium removal mechanism has two main characteristics. First, nitrate removal
by denitrification is always slowed down by mass transport of nitrate from the aer-
obic to the anaerobic region. Second, denitrification fails when little biodegradable
carbon is left in the MSW leading to high concentrations of nitrate.

Our mechanism that facilitates denitrification generalizes the one proposed by
Brandstätter et al. (2015b) . They propose that denitrification mainly occurred at
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the bottom of the reactor where leachate remained anaerobic and had a long reten-
tion time. We believe that oxidation of carbon by nitrate that is transported to an
anaerobic region applies everywhere near aerobic preferential flowpaths. However,
the existence of the large anaerobic region at the bottom of the reactor could have
amplified the chances for denitrification.

The parameters in the aerobic reaction network with the highest initial uncer-
tainty were calibrated using the measured data (table 4.1). The quantiles of the
posterior distributions show that the identifiability of most calibrated parameters
is good. Only the maximum rates of aerobic respiration and denitrification have
a wide distribution with high values which is reasonable because these reactions
are limited by the rate of oxygen or nitrate supply. Therefore, any high value for
these maximum rates gives a satisfying model result. Most posterior ranges fall
close to the reference values, but similar to the findings for the anaerobic case,
slightly lower. As mass transport limitations in the experiments are not included in
the model these slightly lower values include these limitations. The high posterior
range of initial concentration of aerobic respirators seems to compensate for a high
initial growth rate which was not recorded due to too large measurement intervals.
Based on these results we conclude that the calibrated parameter ranges indicate
that fundamental model uncertainty is relatively small.

Figure 3.5 shows the mass percentages of organic carbon and nitrogen in MSW,
solutes, bacteria, sampled leachate, CO2(gas), CH4(gas), N2(gas) and NH3(gas)
during the aerobic experiment. The main removal pathway for carbon and nitrogen
is via the gas phase as CO2 and N2. Clearly, more carbon is removed in the aerobic
experiment (∼ 25%) than in the anaerobic one with only recirculation (∼ 14%).
Apparently, during aeration the electron acceptor (i.e. oxygen) was better mixed
throughout the waste and/or the fraction of biodegradable carbon was higher under
aerobic conditions. In addition, more nitrogen is removed under aeration i.e. ∼ 27%
against ∼ 17% for the anaerobic case. However, the amount of carbon and nitrogen
removed is still quite small compared with the total amount in MSW. Therefore,
we have the same conclusion for the aerobic recirculation treatment as for the
anaerobic one: optimal electron acceptor distribution throughout the waste-body
at field scale is a main issue to be tackled.

Interestingly, the hydrolysis constant (i.e. the rate constant of generally the
slowest step in biodegradation) is lower under aerobic conditions. Stripping of
water may have decreased the amount of water per surface area of MSW which
resulted in the lower hydrolysis constant. This indicates that aeration should not
always be the preferred option to enhance the intrinsic degradation mechanism. It
is, however, important to note that absolute rates of carbon removal can still be
high with a low hydrolysis constant as long as the fraction of biodegradable carbon
is high. An optimal treatment strategy could be to treat the waste body in a cyclic
fashion where a phase of anaerobic recirculation is followed by a drainage step
which then is followed by a subsequent aeration phase etc.

Adopting a different after-care perspective (and corresponding treatment goals)
for landfills also increases the efficiency of possible treatment methods. Rather than
aiming to completely remove all biodegradable carbon and nitrogen in the waste
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body, it may be sufficient to reduce the long-term emissions to low levels. Given
that gas and leachate are transported by preferential flow-paths throughout the
waste-body, acceptably low emissions may already be established by removing the
carbon and nitrogen in the proximity of the preferential pathways. In such a case,
slow diffusion from the bulk of the waste and the continuing degradation in the close
vicinity of the preferential pathways jointly contribute to maintaining low emission
levels. Follow up studies must however show that preferential flow-paths are stable
over long time periods.

Figure 3.6: Concentration gradients for carbon rich and carbon depleted scenarios.

3.4. Conclusions
This paper discusses factors and processes that control the effectiveness of leachate
recirculation treatment under anaerobic and aerobic conditions. Fundamental reac-
tion networks were found which closely reproduce the measured data from exper-
iments at the lysimeter scale (Brandstätter et al., 2015a,b). Using qualitative and
quantitative criteria (van Turnhout et al., 2016), we also indicate that the (funda-
mental) uncertainty in these models is small.

The model results indicate that efficiency of treatment is mainly controlled by
how much of the carbon and nitrogen is reached by the electron acceptor or dom-
inant reactant (i.e. oxygen or the methanogenic bacteria) and biodegradability.
A higher fraction of carbon and nitrogen is removed under aerobic conditions than
under anaerobic conditions, for carbon ∼ 25% vs ∼ 14% and for nitrogen ∼ 27% vs
∼ 17%. Surprisingly, the model results indicate that the intrinsic rate of biodegra-
dation is not enhanced under aerobic conditions because the rate constant for hy-
drolysis is lower than under anaerobic conditions. Nevertheless, the absolute rate
of hydrolysis is still higher because it also depends on the fraction of biodegradable
carbon reached.

To maximize degradation of organic matter in waste bodies at full-scale, a chal-
lenge is to maximize distribution of the electron acceptors and other reactants
throughout the waste-body. It is, however, doubtful if a higher removal rate than
established in the lysimeter experiments is achievable since distribution at full-scale
will always be less optimal. A more realistic goal is to remove biodegradable carbon
and nitrogen in the proximity of the preferential flow-paths to such extent that the
emissions from the rest of the bulk are limited by diffusion and degradation and
therefore low.
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The main removal pathways to be monitored for carbon and nitrogen under
anaerobic conditions are CO2/CH4 via the gas phase and NH4+ in the leachate, under
aerobic conditions these are CO2 and N2 in the gas phase. The N2 in the gas phase
is, however, difficult to monitor due to the very high background concentration in
the atmosphere. Removal of carbon and nitrogen by bacterial assimilation and NH3
stripping was minimal for the lysimeter experiments analyzed.

The reaction networks indicate that denitrification during aeration is possible
because air flows through preferential flow-paths which keeps the domains in the
waste-body without flow anaerobic. However, sufficient biodegradable carbon must
be available for nitrate to out-compete oxygen as oxidizer. Otherwise, the concen-
tration of nitrate increases in the leachate.

The amount of biodegradable carbon potentially released during the treatment is
inferred from the measured emissions and is comparable with solid sampling estima-
tions. Estimating the amount of biodegradable carbon from emission measurements
rather than solid samples substantially reduces measurement costs. However, the
models are not yet capable of predicting the amount of carbon that is removed
over longer time periods or under different experimental conditions. In order to ex-
trapolate, processes must be included that relate hydrolysis to the amount of total
biodegradable SOM present in the MSW. We believe this is the most important step
to take in further model development.
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Coupled model of water flow,

mass transport and
biogeochemistry to predict

emission behavior of landfills

Accurate predictions of long-term emissions from landfills are important to
estimate the investment and time required for (shortening) after-care; this
to limit the burden of after-care for future generations to protect the envi-
ronment. Available models do no provide accurate predictions. They are
mainly hampered by two limitations: 1) they only extract information from
one type of measured data and/or 2) the many assumptions made in the
more complex, coupled models are difficult to quantify. This paper presents
a model to predict long-term emissions from waste bodies which optimally
uses the measured data and the fundamental insights available, thereby
utilizing multiple data sources. Processes of water flow, mass exchange and
biodegradation are coupled within the framework. After calibration, the re-
sults show that themodeling approach is well-suited for reproducing leachate
discharge and the dynamics in concentration of chloride, sodium and ammo-
nium in the leachate. A major benefit of the presented approach is that after
calibration, the modeled states provide insight in the (reduction of) emission
behavior of the landfill. We illustrate this by showing the reduction in leach-
able masses of chloride, sodium, ammonium, solid organic matter and bio-
gas production rate. Modeled concentrations in addition indicate (emerging)
inhibition of biodegradation processes and therefore reduction of emission
potential. The main sources of model uncertainty and further developments
to minimize them are discussed.
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4.1. Introduction

L andfill operators need an accurate prediction of the amount of leached chemicals
and biogas generated by a landfill over time. This gives good indications on how

much investment and time is required for after-care of the landfill and how much
income can be generated from the produced biogas (i.e. the produced methane). It
also gives the regulators sufficient confidence to release the landfill from after-care
when emissions are low enough (Berge et al., 2009, Scharff, 2014). The intention is
to limit the burden of after-care for future generations to protect the environment
from emissions from our waste (Hoornweg and Bhada-Tata, 2012, Laner et al.,
2012).

Accurate prediction of emission behaviour from a landfill for long time periods
is not an easy task because of the highly heterogeneous nature of waste bod-
ies which also strongly limits the options for measurements. Collecting sufficient
samples from the solid waste for a statistically sound prediction is very costly. A
cheaper option is therefore to base prediction on the quality and quantity of pro-
duced leachate and gas. However, current models used for predictions of leachate
and gas emissions are mainly based on empirical relations which extrapolate mea-
sured data (Fellner et al., 2009, Gönüllü, 1994, Kamalan et al., 2011, Karaca and
Özkaya, 2006, Ozkaya et al., 2007, Scharff et al., 2011), leading to long term pre-
dictions with large uncertainties, an inherent property of empirical approaches.

The models available are mainly hampered by two limitations. The first is that
models are often focused on one particular process in the landfill such as leaching,
biodegradation or gas production. They only extract information about the landfill
behaviour from one type of often very limited data. Because it is well known that
all processes in landfills are coupled, a better approach would be to use a coupled
model that enables to extract information from all data available. Such models also
exist (Garcia de Cortazar and Monzon, 2007, Gawande et al., 2010, Kouzeli-Katsiri
et al., 1999, McDougall, 2007, Reichel et al., 2007, White et al., 2004), however,
the second limitation is that many of the assumptions made in these coupled mod-
els are difficult to quantify. Some processes in these models are based on well
understood fundamental concepts whereas other processes are based on simpli-
fied approximations. Finding the proper balance in where to apply fundamentals
and where approximations is crucial for the application of models based on cou-
pled processes. Too much complexity leads to large uncertainty because of over-
parametrization while over-simplification leads to loss of fundamental information
that can constrain the models (Bennett et al., 2013, Kelly et al., 2013).

Our aim is to present a model to predict long-term emissions from waste bodies
which optimally uses the measured data and the fundamental insights available.
This model couples the processes of water flow, mass exchange and biodegradation
and can, therefore, be calibrated on both leachate and gas measurements. We
choose to simulate water flow stochastically because of the large scale of a waste-
body and the associated complexity of calibrating a dual permeability Richards’
equation in order to describe preferential flow. The biodegradation reactions in
the model on the other hand are based on fundamental concepts, using previously
established knowledge on stoichiometry, kinetics and limitations can restrict the
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parameter ranges. Mass exchange between stagnant water and mobile water in
the waste body is simulated as a diffusion type of exchange.

We show the information that the model can provide about the emission behav-
ior of a landfill. Furthermore, model uncertainty is indicated and prediction accuracy
and future developments are discussed.

Figure 4.1: Concept of the coupled model.

4.2. Theory
4.2.1. The conceptual framework of the coupled model

F igure 4.1 presents the conceptual framework of the coupled model where we
consider three main processes, the flow of water, conversion of mass and the

exchange of mass within the waste body. Water enters the landfill as rain (𝑞ዶዥይዲ) at
the surface of the cover layer. The flux of water entering the waste-body (𝑞ይዲዪ) is
calculated from the mass balance between rainfall, evapo-transpiration, infiltration
and storage in the cover layer. Water flow and storage in the waste body is simulated
with a stochastic approach where the residence time of water is assumed to follow a
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bimodal log normal distribution. This stochastic residence time model is discretised
by assuming 𝑛ዶዩዷ ’cells’ which represent the time a certain water volume present
in the waste body will need to drain towards the pump pit in the landfill where it
will be extracted as leachate. Because a finite amount of ’cells’ is used, a base flow
is required to drain the water from the bulk of the wastebody (i.e. the 𝑛ዸዬዶዩዷ ’cell’
with immobile water) towards the flowing water present in the other ’cells’. The
pump pit is the boundary of the model and it is assumed that all water present in
the pump pit is immediately removed by the pump. Every time step, the simulation
proceeds by shifting all cells towards the pump pit, where the water volume in the
first cell corresponds with the daily produced leachate.

Changes to the composition of organic matter within the waste body are calcu-
lated assuming that reactive mass (Mይዱ) in contact with the water volume present
in the bulk of the waste body (or immobile water Vይዱ) undergoes transitions accord-
ing to the biodegradation processes. The model simulates the dissolution of mass
from the solid phase to the water phase, the conversion of mass in the water phase
and the production of gas (𝑞ያዥዷ). The reaction network, consisting of kinetic and
equilibrium reactions, inhibition and limitation mechanisms, transfer and transport
reactions, is described in van Turnhout et al. (2016). Inert mass such as chloride
is unaffected by the biodegradation model.

Transport of the dissolved mass from the immobile water volume to the water
volumes present in the mobile cells is based on a diffusion type of exchange between
a number of mobile cells (i.e. for 𝑛ዶዩዷ = 1 ∶ 𝑛ዩዼ) and the immobile bulk. Each time
step, this transport flux is proportional to the gradient between the concentration of
immobile mass and the concentration of mass in a respective mobile water volume
(Cይዱ and Cዱ) and an exchange rate constant. We assume a single value for the
exchange rate constants for all cells and it is therefore a transport related property of
the waste-body. In addition, mass is also advectively transported from the immobile
water to its adjacent mobile water volume with the base flow. The daily discharge
with leachate corresponds the amount of mass present in the first cell (𝑞዗,ደዩዥዧዬዥዸዩ).

4.2.2. Mathematics of the cover layer
The rate of change of the water content in the cover layer is based on the following
mass balance,

𝑑𝜃
𝑑𝑡 =

𝑞ዶዥይዲ − 𝑞ይዲዪ
Δ𝑧ዶዳዳዸ

−
𝑞ዩዺዥዴ
Δ𝑧ዶዳዳዸ

(4.1)

where the flux of rain (𝑞ዶዥይዲ) is taken from measurements as a boundary condition,
Δ𝑧ዶዳዳዸ is the depth of the root layer, 𝑞ይዲዪ is the infiltration flux into the waste-body
and 𝑞ዩዺዥዴ is the flux of evaporation calculated with:

𝑞ዩዺዥዴ = 𝐸𝑣ዴዳዸ ⋅ 𝑓ዧዶዳዴ (4.2)

where 𝐸𝑣ዴዳዸ is the potential evaporation flux taken from the Royal Dutch Metero-
logical Institute (KNMI) and 𝑓ዧዶዳዴ is the crop factor. The infiltration flux in to the
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waste body is estimated with a free drainage type relation:

𝑞ይዲዪ = −𝐾ይዲዪዷዥዸ ⋅ (
𝜃ዧዳዺዩዶ − 𝜃ዶ,ዧዳዺዩዶ
𝜃ዧዳዺዩዶ − 𝜃ዷ,ዧዳዺዩዶ

)
፦ᏥᏪᏢ

(4.3)

where 𝐾ይዲዪዷዥዸ is the hydraulic conductivity of the cover layer, 𝜃ዶ,ዧዳዺዩዶ is the residual
water content and 𝜃ዷ,ዧዳዺዩዶ is the saturated water content and 𝑚ይዲዪ is an empirical
shape parameter.

4.2.3. Mathematics of the water retention time model
Because of the very complex nature of water flow in the heterogeneous waste body
we chose to model the flow with a stochastic stream tube model where the residence
time of water in the stream tubes is described with a bimodal lognormal distribution
similar to Jury and Roth, (1990). The flux of produced leachate (𝑞ዠ,ደዩዥዧዬዥዸዩ) is
calculated from the probability distribution of retention times of the water inside
the waste-body with:

𝑞ዠ,ደዩዥዧዬዥዸዩ(𝑡) = 𝐴ደዪ ⋅ ∫
፭

ኺ
𝑞ይዲዪ(𝑡 − 𝜏) ⋅ 𝑓(𝜏)𝑑𝜏 (4.4)

were 𝐴ደዪ is the area of the landfill, 𝑡 is the time at a given moment and 𝜏 is the
retention time of the water in the waste-body. The probability distribution of reten-
tion times, 𝑓(𝜏) is a bimodal lognormal distribution describing how water is retained
in preferential fast flow paths and slow more immobile flow paths within the waste-
body:

𝑓(𝜏) = 𝛽
𝜏𝜎ዪዥዷዸ√2 ⋅ 𝜋

𝑒
Ꮍ(ᏨᏪᒙᎽᒑᏢᏝᏯᏰ)

Ꮄ

ᎴᒗᎴᏢᏝᏯᏰ + 1 − 𝛽
𝜏𝜎ዷደዳዻ√2𝜋

𝑒
Ꮍ(ᏨᏪᒙᎽᒑᏯᏨᏫᏳ)

Ꮄ

ᎴᒗᎴᏯᏨᏫᏳ (4.5)

where 𝛽 is the fraction between fast and slow moving water and 𝜇 and 𝜎 are the
mean and standard deviation of the fast moving or slow moving water residence
times.

The integral in equation 4.4 is solved by assuming 𝑛 discrete cells in the waste
body each containing a volume water that is 𝑛-days from draining in to the pump
pit. In other words, the index of each cell is the residence time in days for the
volume of water present in the cell. Each time step, the daily volume of water
infiltrating in to the waste body is distributed over all cells based on the distribution
given in 4.5. As there are a limited number of cells, all remaining water (obtained
from the cumulative distribution of 4.5) is added to the bulk waste:

𝑉፭ይዱ,ዥየየዩየ = 𝐴ደዪ 𝑞ይዲዪ(𝑡)∫
ጼ

Ꭱ
𝑓(𝜏)) (4.6)

where 𝑓(𝜏) is the pdf from 4.5. In order to maintain the water balance, water needs
to be able drain to the mobile cells. This base flow is described with a free drainage
type of relation:

𝑞ዻዥዸዩዶዦዥዷዩ = −𝐴ደዪ 𝐾ዦዥዷዩዷዥዸ (
𝜃ዦ − 𝜃ዦᏮዩዷ
𝜃ዦᏯዥዸ − 𝜃ዦᏮዩዷ

)
፦ᏞᏝᏯᏡ

(4.7)
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where 𝐾ዦዥዷዩዷዥዸ is a the saturated hydraulic conductivity in the bulk waste, 𝜃ዦ is the
volumetric water content of the bulk waste, 𝜃ዦᏯዥዸ and 𝜃ዦᏮዩዷ are the saturated and
residual water contents of the bulk waste respectively. Finally, 𝑚ዦዥዷዩ is an empirical
shape parameter. It is important to realise that addition of this base flow to the
model is a consequence of the discretization of the water residence times. If 𝑛
is a very large number, for instance >= 10.000 days, the accumulation would be
insignificant and the base flow could be neglected in the model.

4.2.4. Mathematics of the biodegradation model
We assume that the reactive mass in the bulk of the waste body degrades in time
according to a set of dominant fundamental reactions and processes which are
implemented in the biodegradation model. We implemented reaction network 2
from Turnhout et al. (2016), which is described in detail Chapter 2. In chapter
2 we showed that this reaction network gives an accurate description of anaero-
bic degradation of MSW in a waste-body at the landfill scale. To summarize, the
biodegradation model keeps track of all mass changes in solid, water and gas phases
with respect to kinetic and chemical equilibrium reactions, inhibition and limitation
mechanisms and transfer processes. Consequently, it also calculates the amount
of produced biogas in time. Inert mass such as chloride is not affected by the
biodegradation model.

4.2.5. Mathematics of mass transport within the waste-body
Each time step, mass is exchanged between the immobile water volume and each
mobile water volume cell 𝑖, assuming a first order exchange mechanism:

𝐹ዸዶዥዲዷዴዳዶዸዱ,። = −𝑘ዩዼ (𝐶ዱ,። − 𝐶ይዱ) (4.8)

and

𝐹ዸዶዥዲዷዴዳዶዸይዱ =
ዲዅኻ

∑
ይ−−ኻ

𝑘ዩዼ (𝐶ዱ,። − 𝐶ይዱ) (4.9)

where 𝑘ዩዼ is the exchange constant, 𝐶ዱ,። is the concentration in the mobile water
volume present in cell 𝑖 and 𝐶ይዱ is the concentration in the immobile water volume
present in the bulk of the waste body. In addition, mass is convected together with
the base flow of water from the immobile water volume to the cell 𝑛 − 1 according
to:

𝑞ዱዥዷዷዦዥዷዩ = 𝑞ዻዥዸዩዶዦዥዷዩ 𝐶ይዱ (4.10)

4.3. Results & Discussion
4.3.1. Model calibration

T he coupled model is calibrated in two steps. First, the parameters in the water
flow model and exchange processes for conservative compounds are found by

fitting the model results to measured time series of cumulative produced leachate
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and chloride concentration in the leachate. The parameter optimization is per-
formed using the Bayesian inference scheme implemented in the DREAM algorithm
(Vrugt, 2016). The best fit is determined with a sum of squares criterion weighted
by the standard deviation of the noise which is jointly optimized together with the
parameters (van Turnhout et al., 2016, Vrugt, 2016). As a further check for the
reliability of the optimized parameters, values obtained are compared with physical
realistic values although we are very aware of the fact that this model is a severe
simplification of reality and to a large extent empirical.

Figure 4.2 presents the measured data of cumulative produced leachate and
chloride concentrations in the leachate together with the simulated results obtained
with the optimal parameters. Figure 4.3 shows the measured and simulated data of
the leachate discharge rate which is calculated from the cumulative leachate produc-
tion. Both figures show that modelled and measured data agree well, the model
captures the dynamics in leachate discharge (rates) and chloride concentrations.
The 5%− 95% quantile ranges of the probability distributions of the optimized pa-
rameters are listed in table 4.1 together with the initial conditions. Most optimized
parameter ranges compare reasonably well with physical realistic values which can
be seen as an indication that the modelled processes make sense. Interestingly,
the optimized exchange rate values give physical realistic estimates of the diffusion
length (= 0.053−0.071m) when compared to the diffusion constant for chloride in
water (𝐷ውደᎽ = 1.73x10ዅኾ ዱ

Ꮄ
፝ ) following:

𝑑𝑥የይዪዪ = √
𝐷ውደᎽ
kዩዼ

. (4.11)

In the second calibration step, the initial sodium concentration in leachate and
three parameters of the biogeochemical reaction network are optimized by fitting
the simulated results to the measured data of sodium and ammonium concentra-
tions in the leachate. Also, four initial conditions are set differently than described in
van Turnhout et al (2016) in order to mimic the conditions in the landfill from which
the measured data were taken. The initial concentration of SOM is 0.02 ዯያ

ዯያ የዶዽዱዥዸዸዩዶ
and the initial concentrations of NHኽ, Acetate and methanogenic bacteria are low,
resembling newly landfilled waste.

Modelled and measured data are presented in figure 4.3. The results show that
the dynamics of ammonium concentration in the leachate can be described with this
coupled water/exchange and biodegradation model calibrated on lysimeter data by
re-fitting the hydrolysis constant and the stoichiometry of N (𝑠ዬዽየዘዒᎵ and 𝑠

ዬዽየ
ውᏚ ) in the

hydrolysis:

SOM + 0.13HኼO ⇌ 0.31VFAዱይዼ + 0.04COኼ + 𝑠ዘዒᎵNHኽ + 𝑠ውᏚCዢ (4.12)

A lower hydrolysis constant for the field scale case is reasonable since transport limi-
tations between regions of hydrolysis and methanogenesis become more prominent
than in the relatively well mixed lysimeter case. The influence of these transport
limitations on the processes of hydrolysis and methanogenesis may be estimated
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Table 4.1: ኿% ዅ ዃ኿% posterior quantiles or optimal values of the calibrated parameters and initial
conditions.

Water flow model & exchange model

Δ𝑧ዶዳዳዸ [m] 1.07 − 1.53 𝑓ዧዶዳዴ [−] 1.01 − 1.03 𝛽 [−] 0.53 − 0.60 𝐾ዦዥዷዩዷዥዸ [ዱየ ] 0.0001 − 61.03

𝜃ዶ,ዧዳዺዩዶ [−] 0.00001 − 0.0035 𝜃ዷ,ዧዳዺዩዶ [−] 0.29 − 0.36 𝑚ዦዥዷዩ [−] 0.18 − 4.90 𝜃ዶ,ይዱ [−] 0.18 − 0.47

𝐾ይዲዪዷዥዸ [ዱየ ] 0.016 − 0.048 𝑚ይዲዪ [−] 4.24 − 4.65 𝐴ደዪ [ha] 5.8 − 5.9 𝑘ዩዼ [dዅኻ] 0.034 − 0.062

𝜇ዪዥዷዸ [d] 2.77 − 2.97ኻ) 𝜎ዪዥዷዸ [d] 1.26 − 1.74 𝐶ውደ
Ꮍ

ይዱ [ ዯያዱᎵ ] 3.07 − 4.31 𝑓ይዲይዻ [ዯያ ዻዥዸዩዶዯያ የዻ ]ኼ) 0.30 − 0.47

𝜇ዷደዳዻ [d] 5.67 − 5.72ኻ) 𝜎ዷደዳዻ [d] 0.35 − 0.42 𝑛ዶዩዷ [−] 1250 𝑛ዩዼ [−] 365

Biodegradation model (with concentrations per volume of water)

𝐶ይዱዘዥᎼ [
ዯያ
ዱᎵ ] 2.47 𝑠ዬዽየዘዒᎵ [−] 0 𝑠ዬዽየውᏚ [−] 0.15 𝑘ዬዽየ [dዅኻ] 0.001

𝐾ዱዩዸዬዷ [M] 0.001

Initial conditions (with concentrations per volume of water)

𝑊ዻዩዸ
ደዪ [ton kg] 429 𝑉ደዪ [ton mኽ] 478 𝐶ይዱዝዙ዗ [ ዯያ

ዯያ የዱ ]ኼ) 0.02 𝐶ይዱዢዱዩዸዬ [ ዯያዱᎵ ] 0.023

𝐶ይዱዘዒᎶᎼ [
ዯያ
ዱᎵ ] 0 𝐶ይዱዋዧ [ ዯያዱᎵ ] 0

1) The optimized values of the bimodal water retention time distribution correspond to an average mean
residence time of 54 days for fast flowing water and 320 days for slow flowing water. 2) Abbreviations
dw and dm stand for dry waste and dry matter.

from gas and leachate emission measurements as described in Appendix A of this
thesis. The stoichiometry of NHኽ is very site-specific, depending on the composition
of (organic) waste deposited. For this waste-body, the optimization indicates that
the N content in SOM is lower than in the MSW used in the lysimeter experiments.
As a consequence, it also indicates that the yield of COኼ is higher and the SOM is
less reduced (= CHኻ.኿ዂOኺ.ዀኽNኺ.ኺኽ) after balancing of the oxidation states.

In addition the good fit of ammonium and the similarity between the dynamics
of ammonium, sodium and chloride, also indicate that the concentrations in the
leachate are dominated by dilution with water with a relatively short residence time
in the waste body. The concentrations are to a large extent controlled by the the
same slow exchange mechanism; the same rate constant as calibrated for chloride
works well. This especially holds for other non-reactive compounds such as sodium.
For ammonium, production by hydrolysis in the immobile water is another important
process dominating its concentration measured in the leachate. Optimized param-
eter values are listed in table 4.1. Estimates of the initial concentrations of chloride
and sodium are in agreement with measured values from solid waste samples.



4.3. Results & Discussion

4

51

Figure 4.2: Measured and modelled time series of cumulative leachate production and concentration of
chloride in the leachate used for calibration of the waterflow and exchange mechanism.

Figure 4.3: Measured and modelled time series of the leachate production rate and concentrations of
sodium and ammonium in the leachate.
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4.3.2. Information on emission potential and its uncertainty
A major benefit of this model is that after calibration, we can look at additional
modelled states to obtain insights in to the potential emission behaviour of the
landfill. Figure 4.4 shows a selection of masses and concentrations of compounds
in the immobile water volume. The concentrations fluctuate because of the change
in immobile water volume in time presented in figure 4.5. The masses indicate i.a.
the amount of chloride and sodium left that potentially will leach out because this
amount is in contact with water (the masses therefore do not represent the total
amount in the waste-body). Their amounts are also decreasing indicating reduction
of emission potential. The same reasoning holds for ammonium, except that it also
is produced by hydrolysis and decay of bacteria (Cዢ). Both leaching and production
of ammonium explains the relative less steep trend in ammonium concentration
observed in the leachate compared to the chloride and sodium concentration. The
decrease in emission potential of ammonium is less steep because it is also re-
leased from the solid phase. In conclusion, a first step towards quantification of
the emission potential of a landfill is made.

The concentrations in the immobile water volume furthermore can indicate (emer-
gence of) possible inhibition or limitations of the processes in the waste-body. For
instance, a low pH results in slower inhibited hydrolysis which has a major impact
on the reduction of emission potential of ammonium but also biogas (i.e. COኼ and
CHኾ); the rate of biogas production is directly related to the rate of SOM hydroly-
sis. Because these are directly related, the amount of emitted biogas and reversely
the emission potential of biogas in the form of organic carbon in SOM can also be
predicted. Figure 4.4 shows that the mass of SOM decreases in time. The related
modeled rate of biogas production in time is presented in figure 4.5 which is similar
to those commonly observed at landfills after the filling phase has been completed.

In future studies it is very interesting to also calibrate the coupled model to
other measured data. Biogas production on a field scale can reduce the uncer-
tainty in the model states of emission potential of SOM, biogas, ammonium and
likely also other states or parameters such as the hydrolysis constant and the half
saturation constant for methanogenesis (𝐾ዱዩዸዬዷ ). Other measured concentrations
in the leachate can also reduce uncertainty. In this model for instance, the value
of 𝐾ዱዩዸዬዷ was set a bit lower than in the original network in order to establish a low
acetate concentration which is common for mature leachates. In the same line of
reasoning, settlement measurement data can also provide input to reduce overall
model uncertainty when a proper mechanism of settlement in landfills is available.

Model calibration is now focused on the behavior of chloride and ammonium
which are the two main problematic emitted compounds in landfills. However, be-
cause the model also provides information about SOM degradation, pH and other
concentrations (e.g. HኼCOኽ, HCOኽዅ, COኽዅኼ and Calcite) the model can easily be
extended with mechanisms of e.g. dissolved organic matter (DOM) development,
metal complexation or degradation of organic micros.

A first step is made in developing a framework to estimate remaining emission
potential in landfills. However, some modeled states such as the immobile water
volume are still very uncertain and have a major impact on the model outcome. It is
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therefore needed to further develop this framework such that model error is further
reduced. Minimizing error can be facilitated in several ways. One is (stochastically)
simplifying or fundamentally intensifying the implemented processes to optimally
use the prior and measured information available without over-parametrization.
A second is adding processes to utilize more available measured data. A third
is intensifying or testing new measurement techniques to further investigate the
implemented processes. Another is to extend the modeling approach with data
assimilation methods such as particle filtering which minimizes error in modeled
states by correcting them with information in measured data.

4.4. Conclusions
This paper presents a model to predict long-term emissions from waste-bodies
which optimally uses the measured data and fundamental insights available. Re-
sults from the first calibration step showed that the simplified, stochastic approach
for modeling water flow is well-suited to reproduce measured data of leachate dis-
charge. They also showed that dynamics in chloride concentration in the leachate
can be explained with a diffusion type of compound exchange between mobile wa-
ter and the immobile water volume. Moreover, results from the second calibration
step showed that also the concentrations of sodium and ammonium in the leachate
can be reproduced with this exchange mechanism with the same rate constant. The
less steep trend in ammonium concentration compared with sodium and chloride
is explained by simultaneous production of ammonium in the immobile water by
hydrolysis and bacterial decay.

The major added value of this modeling approach is that after calibration, it also
provides information about the potential emission behavior of the landfill through
its modelled states. The amounts of all masses and their concentrations in contact
with the immobile water, representing the leachable amounts, are available. We
illustrated this by showing the reduction in emission potential of chloride, sodium
and ammonium, but also SOM and the biogas production rate. In addition, mod-
eled concentrations such as pH also indicate (emergence of) important inhibitions
of biogeochemical processes potentially leading to delayed reduction of emission
potential. Calibration of the model was focused on chloride and ammonium, how-
ever, the framework can easily be extended with mechanisms for other important
pollutants such as DOM, metals or organic micros. In conclusion, the modeling ap-
proach presented provides a first step towards quantifying the emission potential
of a landfill.

For further studies, it would be very interesting to reduce the uncertainty in
modeled states and certain parameters by also calibrating the model with other
measured data such as produced biogas. A modeled state with high uncertainty
and a major impact on the model outcome is the immobile water volume. Sugges-
tions for development to minimize uncertainty are o.a. simplifying or fundamentally
intensifying the modeled processes, adding more processes to utilize more mea-
sured data, intensifying or testing new measurement techniques or applying data
assimilation techniques such as particle filtering.
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4. Coupled model of water flow, mass transport and biogeochemistry to

predict emission behavior of landfills

Figure 4.4: Modeled masses and concentrations of compounds in (contact with) the immobile water
volume.
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Figure 4.5: Modelled state of immobile water volume and gas production rate.





5
Optimizing landfill aeration

strategy with a 3-D
multiphase model

In order to reduce the environmental and financial burden for future genera-
tions, approaches are needed to improve and shorten after-care of Municipal
Solid Waste (MSW) landfills. Aeration of the waste body is a promising ap-
proach, however, the poor understanding of gas and water through a waste-
body makes it difficult to design an effective aeration strategy. This study
presents a 3-D multiphase model to compare aeration strategies based on
the air distribution they generate. The implemented theory is based on pa-
rameter values obtained from (laboratory) experiments performed under con-
ditions which are similar to those in a full-scale landfill. Calibration with
field scale gas extraction data shows that the model gives a good description
of the average gas flow under extraction. Scenario analyses indicate that
injection strategies reach a larger volume fraction of waste with a higher air
flow comparedwith extraction strategies, especially at the bottom of the land-
fill. Extraction, however, supplies oxygen more homogeneously through-out
the waste. Another important design criteria is the separation of the wells.
Too large distances lead to ineffective treatment because too large volumes
of waste/leachate remain untreated. For our case study Wieringermeer, a
combination of (alternating) injection and extraction wells which are maxi-
mum 16.5 m apart seems to be the optimal strategy.
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5.1. Introduction

D utch operators and regulators seek approaches to shorten the aftercare of Mu-
nicipal Solid Waste (MSW) landfills in order to reduce the environmental and

financial burden of future generations. Essential to such an approach is a fast re-
moval of compounds from the waste-body to such extent that the concentrations in
remaining emissions are and remain acceptable (Laner et al., 2012, Scharff et al.,
2011). The main challenge in developing these approaches is to accelerate the
removal mechanisms in a waste-body which are severely inhibited and/or mass
transport limited due to heterogeneity (Kjeldsen et al., 2002, Laner et al., 2011,
Meima et al., 2008).

Aeration is an approach that showed promising results in lysimeter scale exper-
iments. Injection of air into the waste-body leads to accelerated release of carbon
and nitrogen to the leachate and gas phases (Brandstätter et al., 2015a,b, Erses
et al., 2008). In general, aeration causes oxidation of many problematic com-
pounds which are non-reactive under anaerobic conditions such as NHኾዄ (Bolyard
and Reinhart, 2016) and oxidation can lead to immobilization of compounds that
co-precipitate with oxidized dissolved organic matter (DOM). It has also been tested
on a field scale (Ritzkowski and Stegmann, 2012), however, it has yet to be proven
successful for reducing long-term emissions through leachate (Benson et al., 2007,
Hrad et al., 2013).

A key factor influencing the effectiveness of aeration at the lysimeter scale is
the amount of biodegradable carbon reached by the electron acceptor or main re-
actant (see chapter 3). Apparently, the most important factor for optimal aeration
on a field scale is the distribution of air throughout the waste-body. As a conse-
quence, knowing which aeration strategy yields the optimal distribution of air given
the available energy resources and infrastructure is crucial for designing full-scale
aeration projects.

Air flow through a waste-body at the field scale is not well understood. Field
scale measurements and experiments are very scarce which limits the develop-
ment of validated conceptual models (Hrad et al., 2013, Ritzkowski et al., 2006,
Ritzkowski and Stegmann, 2012). Also, extensive numerical models (Fytanidis and
Voudrias, 2014) are over-parametrized which results in poor calibration and there-
fore prediction. Although such models are interesting for fundamental insights, it is
questionable if they give very realistic simulations of field scale conditions. As a re-
sult, a thorough quantitative comparison of different aeration strategies is currently
missing in literature.

The aim of this paper is to compare different aeration strategies for the distribu-
tion of air they generate within a full scale waste-body. For this, we use a 3-D model
based on fundamental principles from multiphase flow theory in porous media in
which the liquid and gas phase pressures are coupled. The implemented theory
is kept as simple as possible to limit over-parametrization. Material properties are
obtained from literature data for lab scale experiments performed under conditions
similar to those found in full scale landfills (Powrie and Beaven, 1999, Stoltz et al.,
2010a,b, 2012). Data obtained from gas extraction measurements at the field scale
are used for calibration.
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Four common extraction/injection strategies with a relatively large well distance
are compared with each other: 1) extraction near the bottom with short filters; 2)
injection with long filters; 3) combined extraction (short filters) and injection (long
filters); and 4) combined extraction near the bottom and injection near the surface
with short filters (Hupe et al., 2003, Ritzkowski and Stegmann, 2012). In addition
to the above four scenarios, we also presents a comparison of four different well
separations. The criterion we chose to assess aeration effectiveness is the minimum
air flow rate achieved in a certain volume percentage of the waste-body.

5.2. Material & Methods
5.2.1. Site characteristics, calibration, validation and scenar-

ios

T o illustrate the comparison of aeration strategies, we focus on finding an opti-
mal aeration strategy for the Dutch pilot site Wieringermeer (Scharff and Jacobs,

2006). At this pilot site, one landfill cell has been selected to carry out a full-scale
aeration pilot. The cell has a height of 12 m and an area of 2.6 ha. Its waste-body
has an estimated wet density of 1.28 ዸዳዲዱᎵ and approximately 19 kg biodegradable
carbon left per mኽ of waste (van Vossen and Heyer, 2009). The landfill operator
aims to convert 80% of the remaining carbon within 8 years via aeration. Based on
the stochiometry this requires approximately 21.5 ዱᎵᏝᏥᏮ

ዱᎵᏳᏝᏯᏰᏡ⋅ ዽ
if we assume an oxygen

consumption of 80% and a conversion of 2.67 kg Oኼ per kg C. Considering the in-
evitable heterogeneous distribution of air throughout the waste-body, an additional
target is to achieve this 21.5 ዱᎵᏝᏥᏮ

ዱᎵᏳᏝᏯᏰᏡ⋅ ዽ
in at least 85% ፯

፯ of the waste-body. Especially,

the lower part of the waste-body must receive sufficient air because we assume that
the quality of leachate that can potentially infiltrate in to the sub-surface is mainly
determined by processes at this depth. Finally, an important operational restriction
for the implementation of the pilot is that pressure differences at the injection or
extraction wells should not exceed 50mbar.

The numerical model (described in detail in section 2.2) is calibrated using mea-
sured flow rates during a gas extraction experiment carried out at the pilot site.
Gas flow was measured through a single gas well during low pressure extraction.
Details of this experiment are listed in table 5.1. To fit the modelled data to the mea-
sured data, a value for the parameter 𝑚 of the water retention curve was selected
which falls within the range measured in the experiments performed by Stoltz et al.
(2012). All other parameters were obtained from experiments on MSW performed
under landfilled conditions. The calibrated model was validated by comparison of
simulations for other extraction experiment with measured data. For the validation
scenario, the well separation, the well radius and the length of the well screens
were smaller compared with the experiment used for calibration (table 5.1).

Aeration strategies are compared in two steps. In the first step, four injec-
tion/extraction strategies are compared based on the air distributions they gener-
ate. These strategies are: 1) air extraction with short, deep filters (inspired by the
CDM system), 2) air injection with long filters (inspired by the IFAS system), 3)
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Table 5.1: Specifications of the gas extraction experiments and modeled scenarios. ፑᏳᏡᏨᏨ: radius of
the well,ፋᏯ: filter screen length, ፳ᏞᏫᏰᏰᏫᏩᏳᏡᏨᏨ : bottom of well screen, ፃᏯᏬᏝᏟᏡ: well spacing

𝑅ዻዩደደ [m] 𝐿ዷ [m] 𝑧ዦዳዸዸዳዱዻዩደደ [m] typeኻ) 𝐷ዷዴዥዧዩ [m]
Calibration 0.5 7 −10 extracion 60
Validation 0.0315 0.9 −10 extraction 10
S1 ዎኻኺ 0.0315 0.9 −10 extraction 10
S2 ዎኻኺ 0.0315 5 −10 injection 10
S3 ዎኻኺ 0.0315 [2 x 0.9 2 x 6.4 ]ኼ) −10 extraction−injection 10
S4 ዎኻኺ 0.0315 0.9 [2x − 10 2x − 2.9]ኽ) extraction−injection 10
S3 ዎኻዀ.኿ 0.0315 [2 x 0.9 2 x 6.4 ]ኼ) −10 extraction−injection 16.5
S3 ዎኼኺ 0.0315 [2 x 0.9 2 x 6.4 ]ኼ) −10 extraction−injection 20
S3 ዎኽኺ 0.0315 [2 x 0.9 2 x 6.4 ]ኼ) −10 extraction−injection 30

1) for each type, a pressure difference is applied between either the extraction/injection well and the
environment or between the extraction and injection wells. 2) the long filters are used for injection, the
short filters for extraction. 3) the injection wells are shallow and the extraction wells deep.

combination of air injection with long filters and air extraction with short, deep fil-
ters and 4) combination of air injection with short, shallow filters and air extraction
with short, deep filters. In the second step, the best injection/extraction strategy
is evaluated with four well distances. Details of all scenarios are listed in table 5.1.

5.2.2. Model implementation
Governing equations
The implemented theory is based on Darcy’s law for two-phase flow coupled in a
3-dimensional porous media which gives the flux for a phase 𝛼:

𝑞ᎎ = −∇
𝜅𝑘፫ᎎ
𝜇ᎎ

(∇𝑝ᎎ + 𝜌ᎎ𝑔∇𝑧) , (5.1)

where 𝛼 denotes the phase (𝑤 for water and 𝑔 for the gas phase), 𝑞 is the flux [m/s],
𝜅 is the permeability of the porous medium [𝑚ኼ], 𝑘፫ᎎ is the relative permeability,
𝜇ᎎ is the viscosity [Pa s], 𝑝ᎎ is the pressure [Pa], 𝜌 the density, 𝑔 the gravitational
constant and 𝑧 the vertical spatial coordinate. The mass balance equations for both
phases are given by:

𝜕𝜃ᎎ𝜌ᎎ
𝜕𝑡 + ∇ ⋅ 𝜌ᎎ𝑞ᎎ + 𝑅ᎎ = 0, (5.2)

where 𝜃ᎎ is the volumetric fraction of phase 𝛼 [-], 𝑡 the time [s] and 𝑅ᎎ is the local
production term of phase 𝛼 [ ፤፠፦Ꮅ፬ ]. The mass balance equations for both phases can
be coupled using the capillary pressure which is defined as the difference between
the non-wetting and the wetting phase:

𝑝፜ = 𝑝፠ − 𝑝፰ . (5.3)
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If we then define the phase saturation as the ratio of the volumetric fraction of
phase 𝛼 to the porosity (𝜙 [-]):

𝑆ᎎ =
𝜃ᎎ
𝜙 , (5.4)

we can then relate the two phase saturations with:

𝑆፰ + 𝑆፠ = 1. (5.5)

We use the van Genuchten equation (van Genuchten, 1980) to calculate the effec-
tive water saturation (𝑆፞) from the capillary pressure:

𝑆፞ = (1 + (𝛼𝑝፜)
Ꮃ

ᎳᎽᑞ )
ዅ፦

for 𝑝፜ > 0, 𝑆፞ = 1 for 𝑝፜ =< 0, (5.6)

where

𝑆፞ =
𝑆፰ − 𝑆፰፫
1 − 𝑆፰፫

. (5.7)

Combining all above leads to two equations which describe the coupled rate of
change in the pressures in both the water and the gas phase:

𝜙𝜌፰ (𝑆፰𝛽፰ − 𝐶፩)
𝜕𝑝፰
𝜕𝑡 + ∇ ⋅ 𝜌፰𝑞፰ = −𝜙𝜌፰𝐶፩

𝜕𝑝፠
𝜕𝑡 − 𝑅፰ (5.8)

and

𝜙𝜌፠ (𝑆፠𝛽፠ − 𝐶፩)
𝜕𝑝፠
𝜕𝑡 + ∇ ⋅ 𝜌፠𝑞፠ = −𝜙𝜌፠𝐶፩

𝜕𝑝፰
𝜕𝑡 − 𝑅፠ , (5.9)

where 𝛽ᎎ is the compressibility for phase 𝛼 and 𝐶፩ is the specific moisture capacity
which is defined as:

𝐶፩(𝑝፜) =
𝜕𝑆፰(𝑝፜)
𝜕𝑝፜

= (1 − 𝑆፰)
𝜕𝑆፞(𝑝፜)
𝜕𝑝፜

(5.10)

Material properties
The properties of landfilled MSW are obtained from either data from lab scale ex-
periments performed under conditions similar to landfilled conditions found in the
literature or measurements performed at the field site under investigation. We
assume that the porosity in the waste body decreases with depth:

𝜙 = a + 𝑧
b − c𝑧 , (5.11)

where the range is taken from Stoltz et al. (2010a) and the curvature is taken from
White et al. (2014). The porosity along the depth (z) presented in figure 5.1 with
a = 0.6125, b = 133.84 and c = 5.258.

The van Genuchten parameters in equation 5.6 are obtained from measure-
ments performed by Stoltz et al. (2010, 2012). The water retention curve and the
specific moisture capacity are shown in figure 5.1.
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Figure 5.1: The porosity profile in depth (left), the water retention curve (middle) and the specific
moisture capacity (right)

The relative permeabilities for the water and gas phase are calculated with:

𝑘፫፰ = 𝑆ፋᑨ፞ (1 − (1 − 𝑆
Ꮃ
ᐾᑨ፞ )

ፆᑨ
)
ኼ

(5.12)

and

𝑘፫፠ = (1 − 𝑆፞)ፋᑘ (1 − 𝑆
Ꮃ
ᐾᑘ
፞ )

ኼፆᑘ ,

, (5.13)

where 𝐿፰ and 𝐺፰ are taken from White et al. (2014) and 𝐿፧ and 𝐺፧ are taken
from Stoltz et al. (2010b). Intrinsic permeability is derived from the porosity with
a power law fitted by Stoltz et al. (2010b) on measured data:

𝜅 = 3.82x10ዅዂ ⋅ 𝑛ኻዂ.ኻኽ. (5.14)

The permeability of the waste body is anisotropic (Powrie and Beaven, 1999). Its
value from equation 5.14 is therefore taken 2 x higher in the horizontal direction
and 2 x lower in the vertical direction. Profiles of 𝜅 along the depth and 𝑘𝑟፰ and
𝑘𝑟፧ with respect to 𝑆፞ are shown in figure 5.2.

Figure 5.2: The profiles for permeability (left), relative permeability of water (middle) and relative
permeability of the gas(right)

The density and compressibility of the gas phase are calculated from the ideal
gas law as:

𝜌፠ =
𝑝፠𝑀፠
𝑅𝑇 (5.15)
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and

𝛽፠ =
1
𝜌፠
𝜕𝜌፠
𝜕𝑝፠

=
𝑀፠
𝑅𝑇𝜌፠

(5.16)

where 𝑀፠ is the molar mass of the gas phase, 𝑅 is the universal gas constant and
𝑇 is the ambient temperature [K]. All parameters related to material properties are
listed in table 5.2. The gas production rate (𝑅፠) was measured at the landfill site
under investigation. We assumed that the water production rate within the waste
body was zero.

Table 5.2: Parameters related to material properties and environmental conditions

𝑇 298 K 𝑅 8.31 ዔ
ዱዳደ⋅ ዕ 𝑝ፚ፭፦ 1 bar 𝜌፰ 1000 ዯያ

ዱᎵ

𝑧፭፨፩ 12 m 𝑧፛፨፭ 0 m 𝜇፰ 0.001 Pa⋅ s 𝜇፠ 1.81 x 10ዅ኿ Pa⋅ s
𝛽፰ 4.55 x 10ዅኻኺ ኻ

ዚዥ 𝑀፠ 28.97 ያ
ዱዳደ 𝑧፰፭ 0.5 m 𝑆፰፫ 0.4 −

𝑚 0.26 − 𝛼 0.0025 ኻ
ዚዥ 𝐿፰ 0.5 − 𝐺፰ 0.7 −

𝐿፠ 5.2 − 𝐺፠ 0.3 − 𝑅፠ 0.292 ያ
ዱᎵ⋅ ዬ 𝐾፫፞፬ 0.01 m

𝐹፭፨፩፰ 0.001 ፦
፝

Geometry, boundary and initial conditions
The waste-body is modelled as a block with periodic, continuous boundary condi-
tions at its sides. The size of the block and the placing of the wells depend on
the type of aeration strategy. In Figure 5.3, two geometries for air extraction with
different well spacing and filter lengths are shown together with the mesh.

Figure 5.3: Conceptualization of the block of a waste-body for 2 types of model domains/meshes. The
left domain represents a single well extraction strategy, whereas the right domain represents extrac-
tion/injection with an evenly spaced grid of wells throughout the waste-body.

The top boundary condition for the water phase is given by an infiltration flux
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(𝐹፭፨፩፰ ) and for the gas phase by a Dirichlet condition:

𝑝፭፨፩፠ = 𝑝ፚ፭፦𝑒
ᑄᑘᑘ(ᑫᑨᑥᎽᑫᑥᑠᑡ)

ᑉᑋ (5.17)

where 𝑝ፚ፭፦ is the atmospheric pressure, 𝑧፰፭ is the height of the water table and
𝑧፭፨፩ is the height of the waste-body. The bottom boundary condition for the water
phase is a drainage flux given by:

𝐹፛፨፭፰ = 𝜌፰
𝑘፫፰𝐾𝑠
𝜇፰

(𝑝ፚ፭፦ + (𝑧
፰፭ − 𝑧፛፨፭) 𝜌፰𝑔
𝐾፫፞፬

) (5.18)

where 𝑧፛፨፭ is the height of the bottom of the landfill and 𝐾፫፞፬ is the resistance in
the drainage layer. For the gas phase the bottom boundary condition is a Dirichlet
condition:

𝑝፛፨፭፭፨፦፧ = 𝑝ፚ፭፦𝑒
ᑄᑘᑘ(ᑫᑨᑥᎽᑫᑓᑠᑥ)

ᑉ⋅ᑋ . (5.19)

The boundary conditions at the filters for the gas phase are Dirichlet conditions
which impose pressure differences in relation to the atmosphere. The wells are
assumed to be impermeable for water.

The initial water and gas pressure distribution in the model domain are assumed
to be controlled by hydrostatic conditions:

𝑝።፧።፰ = 𝑝ፚ፭፦ + 𝜌፰𝑔 ⋅ (𝑧፰፭ − 𝑧) (5.20)

and

𝑝።፧።፠ = 𝑝ፚ፭፦𝑒
ᑄᑟᑘ(ᑫᑨᑥᎽᑫ)

ᑉᑋ , (5.21)

where we assume water to be incompressible.

Model resolution
The model is implemented in COMSOL 5.2 using two Coefficient Form PDE coupled
modules. The mesh size is automatically generated with the option size fine. An
example of the mesh size is given in figure 5.3. Equations are solved with the
stationary solver (standard settings). A parametric sweep is used to investigate the
steady state of the wetting phase and the gas phase pressures for a given series of
gas pressure differences at the well boundaries.

5.3. Results & Discussion

T he aim of is to find the best aeration strategy to generate an optimal air dis-
tribution throughout the waste-body for the Wieringermeer case. An optimal

scenario was defined to have a minimum flow rate of 21.5 mኽ air per mኽ MSW per
year in at least 85%(𝑣/𝑣) of the waste-body while the gas pressure differences in
the injection and/or extraction filters are less than 50mbar. In addition, the aim is
to have good aeration in the lower parts of the waste body.
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5.3.1. Calibration & validation
The agreement between simulated and measured flow rates at the extraction well
for calibration data-set are shown in black in figure 5.4. The results show that the
model is capable of reproducing the average behaviour of gas extraction through a
single well at field scale using parameter values which are all retrieved from (lab-
oratory) measurements under landfilled conditions. The fitted value of the van
Genuchten parameter (𝑚 = 0.26) also falls in the range measured by Stoltz et al.
(2012). The wide spread in measured flows per well, however, indicates that het-
erogeneity still has a significant impact on the gas extraction. Because we assume
a homogeneous model domain we can only estimate the average flow behaviour.
However, we believe that this model can be used to compare the performance of
the aeration strategies because we want to do an overall, averaged comparison
between scenarios.

In order to validate our model, we applied the calibrated model to simulate a
second type of field scale experiment where completely different types of filters
were used. Figure 5.4 presents also the modelled and measured data for this
extraction experiment (in red) in which well dimensions and distances were smaller
compared with the first experiment. In the left graph, extraction flow through a
single well is presented. In the right graph, the pressure drop in filters nearby the
extraction filter are presented. The fact that there is an agreement between the
modelled and measured pressure drops in nearby wells gives us confidence in the
plausibility of the modelled gas permeability throughout the waste-body.

Figure 5.4: Results of model calibration (in black) & validation (in red) on gas extraction data at
different wells (W). The left graph shows the agreement between modelled and measured extraction
flows through single wells. The right graph shows the agreement between modelled and measured
pressures measured at wells surrounding the well from which air is extracted.
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5.3.2. Optimal aeration strategy
Four different aeration scenarios were compared with each other using the cali-
brated model. Figures 5.5 and 5.6 present the air distribution generated by these
four strategies through-out the block of waste at a pressure difference of 50mbar.
Volumes with high flow rates are red and volumes with low flow rates are blue.
Clearly, the injection strategy (S2) generates the highest flow rates in the largest
volume of the waste block. It therefore produces the most optimal air distribution
at a set pressure difference compared with the other strategies. Even more, the S2
strategy also produces the highest flow rates near the bottom of the landfill where
most oxygen is needed because leachate accumulates here.

However, a strategy based on the extraction of gas may have a benefit compared
with injection only because of how oxygen depletes as air travels through the waste.
With injection, most of the oxygen is depleted near the filters where flow rates are
also highest. As a result, the treatment of waste which is positioned further away
from the filters may be poor because it receives little air with limited amounts of
oxygen. In the extraction scenario air flow converges towards the filters thereby
balancing oxygen depletion in the air by concentrating the air flow. Therefore,
extraction scenarios provide both low flow regimes (near the surface) and high
flow regimes (near the filters) with an approximately equal amount of oxygen.

A combined strategy of injection and extraction as in strategy S3, may therefore
optimally distribute oxygen through-out the waste. While the distribution of air is
best because of injection, the oxygen supply throughout the waste is more homo-
geneous because of extraction. However, it matters how both are combined as
shown by the performance of strategy S4. The type of combination applied in this
strategy is definitely not preferred because a large volume of the waste bottom is
poorly aerated. For further study, we recommend to add convection of compounds
in the non-wetting phase to the implemented model theory.

5.3.3. Optimal well spacing
Another important aspect that influences air distribution is the distance between
the filters. We investigated the impact of four well spacings on the air distribution
for aeration strategy S3 which performed best. Figures 5.7 and 5.8 present the air
flow with well spacings of 10m, 16.5m, 20m and 30m. It shows that well distances
must be small enough to treat a significant volume of waste with a significant flow
of air. This means that the effectiveness of aeration treatment is highly dependent
on the well distance applied. A too large distance may result in large volumes of
untreated waste which after treatment still significantly contribute to the emitted
concentrations via leachate.

To find the optimal well distance for aeration at Wieringermeer, we investigated
the volume fraction reached by an air flow rate larger than 21.5 ዱᎵᏝᏥᏮ

ዱᎵᏳ⋅ ዽ
under differ-

ent applied pressures for each distance. The results are presented in figure 5.9.
In order to treat at least 85% (፯፯ ) of the waste-body, the maximum well spacing
can be approximately 20m. A smaller well spacing is not preferred because invest-
ment costs are higher. Interestingly, in all four scenarios there is also some air flow
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generated without applied pressure difference (indicated by the intersection of the
results with the y-axis at 0 dp, figure 5.9). Apparently, natural convection is stim-
ulated by perforation of the waste-body and enhances with smaller well distances.

In general, care must be taken with estimating optimal values for well distances
with this homogeneous modeling approach. Although relatively a well distance may
be optimal, in practice, heterogeneity has a significant impact on gas permeability.
Therefore, modeled minimal flows achieved in a specific volume fraction may be
overestimated as well as the effectiveness of the aeration strategy. For further
model development, the addition of a simplistic mechanism for heterogeneity in
permeability may already significantly improve prediction accuracy.
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Figure 5.5: Airflow (ᏩᏤ ) through the domains for strategy S1-S2 at 50 mbar pressure difference and a
well distance of ኻኺ m. Volumes with high flow rates are red and volumes with low flow rates are blue.



5.3. Results & Discussion

5

69

Figure 5.6: Airflow (ᏩᏤ ) through the domains for strategy S3-S4 at 50 mbar pressure difference and a
well distance of ኻኺ m. Volumes with high flow rates are red and volumes with low flow rates are blue.
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Figure 5.7: Airflow (ᏩᏤ ) through the domains for strategy S3 with well spacings D10-D16.5 at 50 mbar.
Volumes with high flow rates are red and volumes with low flow rates are blue.
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Figure 5.8: Airflow (ᏩᏤ ) through the domains for strategy S3 with well spacings D20-D30 at 50 mbar.
Volumes with high flow rates are red and volumes with low flow rates are blue.
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Figure 5.9: Percentage ( ᑧᑧ ) of waste that receives an air flow rate larger than ኼኻ.኿ ᏩᎵ
ᏝᏥᏮ

ᏩᎵᏳ⋅ᑪ
vs applied

pressure difference for the well distances ኻኺ, ኻዀ.዁, ኼኺ and ኽኺ m and aeration strategy S3.

5.4. Conclusions

A 3-D multiphase model was developed to compare the effectiveness of different
aeration strategies at the field scale. Model calibration & validation resulted

in good agreement between modelled and measured field scale extraction data.
The fundamental nature of the model which is based on material properties ob-
tained from laboratory experiment under landfilled conditions gives confidence in
the plausibility of the modelled scenarios and comparison of aeration strategies.

Four aeration strategies are compared based on the distribution of air they gen-
erate through out the waste-body. Injection generates the highest air flow in the
largest volume of the waste-body. It also distributes most air towards the bottom of
the waste-body. Extraction, however, provides a more homogeneous distribution
of oxygen throughout the waste because oxygen depletion in the transported air is
balanced by convergence of flow towards the wells. A combination of (alternating)
extraction and injection wells may be most efficient.

A comparison of scenarios with different well spacings indicates that the distance
between injection/extraction wells must be small enough for effective treatment.
The risk of using a too large well distance is that a large volume of the waste-body
and leachate will remain untreated. Interestingly, small well distances stimulate
natural convection of air through out the waste-body because of perforation.

The optimal aeration strategy for our case study, Wieringermeer, is a combina-
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tion of injection and extraction with a well distance of 20m. However, these design
criteria must be interpreted with care because heterogeneity of the waste body is
not included in the model. Most likely, the model overestimates the effectiveness
of all aeration strategies.





6
Conclusions

The long-term emissions of leachate and gas from landfills pose a long time threat
to human health and the environment. To understand which mechanisms control
these emissions, many properties of and processes in landfills have been inves-
tigated through modeling and experiments. However, an important question re-
mains unanswered. Which properties and processes dominate the emitted gas and
leachate flows observed from the black box, the landfill? Or in other words, what
defines the emission potential of a landfill? This thesis presents a quantifiable con-
cept of emission potential by characterizing those processes within a landfill that
control emissions and at the same time giving insight in to which processes are best
to manipulate with treatment methods. The consequences and major uncertainties
related to this novel concept of emission potential are now discussed.

6.1. Consequences of the insights obtained
6.1.1. Analysis of emission potential on a lysimeter scale
With the toolbox developed in chapter 2, we characterized the set of fundamental
biogeochemical processes that controlled a.o. emission of biogas (i.e. COኼ and
CHኾ), ammonium and pH at the lysimeter scale. This showed that, although the
processes were not limited or inhibited, less than 25% of organic carbon and ni-
trogen is emitted under conditions of anaerobic leachate recirculation or aeration.
This implies that most organic material left was not degradable or not reached by
the main reactants needed for degradation such as Oኼ, methanogenic bacteria or
water. This is very significant for how we define emission potential. It means that
not all material within a waste-body poses a threat to the environment, but only
that amount of the material that is able to react and is emitted/transported out at
a sufficiently high enough rate. On a full scale, this amount is likely to be even
smaller because environmental conditions are less ideal than in lysimeters.

But then, which processes control the release of compounds? For the lysimeter
scale, we can simulate emissions that can reproduce measurements from initial
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conditions with a small set of fundamental dominant kinetic biochemical reactions,
equilibrium reactions and inhibitions/limitations. This set of processes enables us
therefore to predict the emission potential within the boundaries of these processes.
As example, the pH is correctly modeled by fundamental processes which provides
insight in important potential inhibitions of biodegradation and also the leaching
potential of metals in relation with Dissolved Organic Matter (DOM). Even more,
via inverse modeling we can estimate the emission potential left in the waste-body
from measured gas and leachate emissions. The set of processes also allows us to
predict the impact of treatment methods applied to accelerate emissions.

6.1.2. Analysis of emission potential on a full scale

We extrapolated these findings to a data set obtained from full-scale waste bodies
in chapter 4 and 5. Chapter 4 presented an approach in which the distribution
of retention times of water within the waste-body is the main scale factor. It is
modeled stochastically with a probability distribution. In water with long residence
times in the landfill, organic matter is considered to be degraded according to the
set of fundamental processes found at the lysimeter scale. The model assumes that
dissolved compounds are transported from immobile water in the bulk of the waste
to more mobile water (with lower residence times) according to a diffusional ex-
change mechanism. Water with the lowest residence time represents the leachate
discharged from the landfill. This approach enabled us to reproduce full scale emis-
sions of organic and inorganic compounds. Even more, the modeled states give us
a first insight in to the quantifiable emission potential at the full scale: an estimate
of the mass of biodegradable and leachable compounds present in the waste-body.
Rather than total amounts present in the waste-body, these states represent the
total amounts degradable or leachable under the prevailing environmental condi-
tions.

Chapter 5 fundamentally investigated the distribution of water and gas at the
full scale in order to study the impact of treatment methods on these distribu-
tions. Fundamental processes and material properties were taken from laboratory
experiments performed under conditions found in full-scale waste bodies and bio-
geochemical processes were not considered. Comparison with gas extraction data
measured in full-scale waste bodies showed that the material properties measured
in the lab can explain the flow of gas at a full scale. Results furthermore showed
that leachate recirculation with higher rates than precipitation rates do not cause
ponding. The wettest regions of the waste-body are located near the bottom. The
area of influence of aeration wells is likely overestimated in the model because
preferential flow is missing. However, the scenarios show that wells have to be
placed close enough together and near the bottom in order to achieve a sufficient
distribution of oxygen for effective leachate treatment.
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6.2. Uncertainties leading to new research propos-
als

6.2.1. Release mechanism of ammonium (proposal 1)
Some major uncertainties remain in the presented quantifiable concept of emission
potential which when resolved can substantially improve model performance. One
uncertainty is the release mechanism of ammonium under anaerobic conditions,
especially the mechanism for the sink of ammonium observed in the experiments.
Multiple fundamental mechanisms may be responsible for the ammonium removal.
One is oxidation of ammonium into nitrogen by some oxidator present or leak-
ing into the waste-body. Other plausible mechanisms are adsorption, inclusion of
ammonium into DOM or slow transport of ammonium from a bulk of hydrolyzed am-
monium to the leached water. As ammonium is one of the most important emitted
compounds to be reduced, further investigation into its dominant release mecha-
nism is very important. Several measurements can be used to falsify or confirm pro-
posed mechanisms. For instance, the ratio of stable isotopes in leached ammonium
could indicate the occurrence of oxidation of ammonium within the waste-body.

6.2.2. Development of DOM over time (proposal 2)
Another remaining uncertainty in the model is the development of DOM over time.
In our approach, the amount of DOM is the fraction of carbon which remains in
solution, not converted into biogas or bacterial biomass. Although this allows to
estimate the total amount of DOM produced over time, it does not characterize the
(change in) functional properties of DOM over time. Whereas, it are the functional
properties of DOM which determine its adsorption, complexation and precipitation
capacity with e.g. metals and organic micro pollutants. Recently, it has been pro-
posed that the change in composition and functionality of DOM is caused by the
change in its micro-constituents. In further research, it would be very interesting to
include this fundamental principle of aging of DOM in the model and link this with
the major knowledge base on DOM functionality developed over the past decade.
A better understanding of DOM behavior would lead to improved estimation of o.a.
metal and organic micro pollutant emissions.

6.2.3. Full scale water retention times (proposal 3)
A major uncertainty in the upscaled modeling approach is the volume of immobile
water present in a landfill. This uncertainty dominates the uncertainty in modeled
states of biodegradable, leachable masses in contact with the immobile water, i.e.
the modeled emission potential. The key for further research is to develop newmea-
surement techniques for landfills to obtain more insight in uncertain modeled states
such as the residence times of water. A first suggestion is to apply a range of tracer
tests on a waste-body. This can directly give information about residence times of
water and to what extent mass and water travels through preferential flowpaths
and is exchanged with immobile water. Another suggestion is time-lapse electrical
resistivity tomography (ERT) which correlates to differences in water distribution
via Archie’s law. The information obtained from ERT can be translated into water
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retention probabilities when also the in and outflow of water at the landfill is closely
monitored. Improved calibration of water retention times may also be achieved
by obtaining more information about biochemical activity because activity occurs
only at sufficiently wet locations. Biochemical activity can be further investigated
with distributed temperature sensing which allows to monitor temperature changes
within the waste-body correlated with enthalpy production. Even settlement mea-
surements can be very valuable once a mechanism is included in the model which
relates settlement with biodegradation and indirectly measured gas emissions.

6.2.4. Delay in biogas production
Another uncertainty is the mechanism responsible for the delay in biodegradation or
biogas production on a full scale. The prevailing hypothesis is that delay is caused by
diffusional transport of Volatile Fatty Acids produced during hydrolysis/fermentation
to methanogenic bacteria which results in pH inhibited hydrolysis and substrate
limited methanogenesis. Interestingly if correct, the degree of delay should be
correlated to the diffusion length of the transport and therefore directly characteri-
zable from measured gas and leachate production. Appendix A describes first steps
towards identification of the diffusion length responsible for delay in biogas pro-
duction from emission measurements. Characterization of typical diffusion lengths
for landfills can significantly enhance gas prediction models by identifying the main
limiting step.

Overall, a first quantifiable concept of emission potential has been presented
which when the main uncertainties are reduced can become a powerful tool to
grasp the emission potential of MSW landfills.
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A. Steps towards quantifying transport limitation in biodegradation of
MSW from emission measurements

A.1. Introduction

M any studies have investigated the rate limiting steps of biodegradation of Mu-
nicipal Solid Waste (MSW) into biogas (COኼ and CHኾ). Insight in these steps

such as hydrolysis is crucial for understanding the emission behavior from waste-
bodies. As was discussed in chapter 3, the rate of hydrolysis is much lower in
landfills than in more ’ideally mixed’ environments such as lysimeter or lab scale
experiments. Characterization (and quantification) of the influence of these rate
limiting steps can directly reduce uncertainty in models for prediction of emission
potential.

The general consensus is that there are three common slow steps in biodegra-
dation of MSW: 1) hydrolysis/fermentation, 2) methanogenesis and 3) mass trans-
port of nutrients such as Volatile Fatty Acids (VFA) between regions of hydroly-
sis/fermentation and methanogenesis. These steps are schematically presented in
figure A.1. The kinetics of the first two steps are related to fundamental charac-
teristics of the bacteria/enzymes that perform these reactions. These have been
intensively studied and therefore a lot of information is already available about their
maximum rates and inhibitions as was also discussed in chapter 1 and 2.

Figure A.1: Sketch of the slow steps in biodegradation.

The impact of transport limitation, however, is very system dependent and
should therefore be seen more as a system characteristic than a fundamental prop-
erty. Slow mass transport between regions can cause pH inhibition of hydrolysis
by building up of VFA concentration or substrate (VFA) limited methanogenesis. So
far, it has been suggested that on a field scale mass transport is the main process
limiting biodegradation but it has not yet been characterized or quantified from
measured data.

Our aim is to demonstrate that mass transport limitation can be quantified from
gas and leachate emission measurements. Given that both regions behave like ’ide-
ally mixed’ batch reactor following fundamental kinetics, inhibitions and stoichiome-
try, the delay in biodegradation and gas production should be directly correlated to
the mass transport between both regions. We further hypothesize that this trans-
port is diffusional and is therefore characterized by the length of the diffusional
path (𝑥የይዪዪ) since diffusion constants in water are relatively well known. Connect-
ing both region together with a diffusional transport in a forward model therefore
allows to infer the diffusion length from measured gas and leachate data. Insight
in this system property reduces uncertainty in the forward prediction models such
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as described in chapter 3.
As a first step, we demonstrate quantification of diffusion length in laboratory

scale experiments with an idealized MSW: white cabbage and kale. First, rates
of hydrolysis and methanogenesis are identified for a non-limiting environment to
calibrate the reaction networks for both regions separately. Then, both regions
are connected via diffusional transport with a known diffusion length. Finally, this
diffusion length is inferred from the measured gas and water concentrations via
modeling and compared to the actual diffusion length applied.

A.2. Theory
A.2.1. Experiments
Rates under a non-limiting environment

F our types of experimental setups were used to identify rates of hydrolysis and
methanogenesis under a non-limiting environment. These four setups are schemat-

ically represented in figure A.2. The principle of all four setups is the same, only the
initial conditions and the type of measurements of gas and water quality, quantity
are different. The broth containing nutrients and bacteria are placed into either a
2 L (a,b) or 0.25 L (c,d) glass (Duran) bottle. The broth is stirred with a magnetic
stirrer throughout the experiment and changes in solid, water and gas compositions
are measured.

Gas production is measured by pressure increase with a manometer (i.a. Ox-
itop), collection in a gas bag, volume ticks in a gas clock or produced volume in
a eudiometer. Figure A.3 presents a schematic representation of the eudiometer.
Produced gas pushes the water in the left column upwards which results in trans-
portation of some water from the left to the right column. The increase in mass in
the right column is continuously measured with a scale. pH is either continuously
measured with a sensor or by discrete sampling of the broth volume.

Additional measurements were performed on the samples of the water and gas
phases: Gas chromatography (i.e. COኼ, CHኾ, Nኼ and Oኼ), fotospectroscopy (i.e.
VFA and NHኾዄ), HPLC (i.e. Succinate, Lactate, Formate, Glycerol, Acetate, Butyrate,
Ethanol, Valerate), Dry weight (water content), LOI (organic carbon content) and
ICP-MS (i.e. Caዄኼ, Mgዄኼ, POኾዅኽ, Naዄ and Kዄ).

The initial conditions for all type of experiments are listed in table A.1. Several
experiments were performed. Hydrolysis of white cabbage and kale were investi-
gated under relative non-limiting environments. Methanogenesis with a mix of VFA
or Acetate as substrate were investigated. And also the overall rate of hydrolysis
and methanogenesis of kale without an imposed mass transport limitation was in-
vestigated. Prior to the start of all experiments, the reactors were sparged with
nitrogen gas to create an anaerobic environment.

Emission under the influence of mass transport limitation
Three types of experiments were performed to investigate the influence of mass
transport limitation on the rate of biodegradation. In the first type, a region with
hydrolytic products (VFAs) is separated from a region with methanogenic bacteria
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Table A.1: Initial conditions of experiments under a non-limiting environment.

Setup Substrate Nutrients Trace elements Buffer Temperature Bacteria 𝑉ዦዶዳዸዬ
Hydrolysis of white cabbage a White cabbage, 35 [g] - - - 295 [K] - 0.12 L

Hydrolysis of kale c, d Kale, 5, 10, 20 [g] 0.15 [L] 50 𝜇L HኼPOኾ, 15 [mM] 295 [K] - 0.15 L

Methanogenesis of VFAኻ)ዱይዼ b VFAዸዳዸዥደዱይዼ , 7.53 [mM] and 28.04 [mM] - - - 295 [K] 0.08 L (Biothane) 0.5 L

Methanogenesis of NaAcetate c NaAcetate, 12.5 [mM] x x - 295 [K] 50 g (Attero) 0.16 L

Hyd & meth of kale c Kale, 20 [g] 0.05 [L] 50 𝜇L HኼPOኾ, 15 [mM] 295 [K] 50 [g] (Attero) 0.11 L

1) This experiment was performed with a low and high substrate concentration. For both, a mix of
Succinate, Lactate, Formate, Acetate, Propionate and Butyrate was used with respectively the ratios:
0.013:0.0013:0.27:0.21:0.086:0.42 and 0.0039:0.0014:0.14:0.37:0.037:0.45. Both mixtures are ob-
tained from the hydrolysis of white cabbage experiment after respectively 13 and 20 days.

Table A.2: Initial conditions of experiments with imposed mass transport limitation.

Setup Substrate Nutrients Trace elements Buffer Temperature Bacteria 𝑉ዦዶዳዸዬ
VFAዱይዼ & Meth b VFAዱይዼ

ዸዳዸዥደ,ኻ), 0.7 [M] - - HኼPOኾ, 10 [mM] 295 [K] High concentration (Attero) -

1) NaAc & Methኼ) a NaAc, 0.1 [M] x x - 295 [K] 50 [g] (Attero) 0.10 L (both)

2) NaAc & Meth a NaAc, 0.1 [M] x x - 295 [K] 50 [g]ኽ) (Attero) 0.10, 0.17 L (left,right)

3) NaAc & Methኾ) a NaAc, 0.1 [M] x x HኼPOኾ, 5 [mM] 295 [K] 50 [g] (Attero) 0.1 L (both)

Hyd & Meth a Kale, 20 g x x HኼPOኾ, 10 [mM] 295 [K] 50 [g]኿) (Attero) 0.1 L (both)

1) The ዠዐዋᏩᏥᏴ has the ratio 0.29 Acetate, 0.29 Propionate and 0.42 Butyrate. 2) Methanogenic region
was pre-seeded with ኺ.ኻኼያ NaAc, pump was started after 2 days. 3) The methanogenic reactor of
previous experiments was used here which meant that the bacteria were activated but probably diluted
compared to ኿ኺ ያ. 4) Methanogenic region was pre-seeded with ኺ.ኺዂኼያ and nutrients, trace elements
accordingly. 5) Sludge was washed with 6 L demi-water and sieved with a ኺ.ኻኼ኿ዱዱ filter.

by a diffusion barrier (agar gel) of a specified thickness as sketched in figure A.4
(bottom part). Several layer thicknesses were studied. In the second and third
type, regions are separated in different bottles and the broth from the left region
is pumped into the right region (figure A.4, top). The left region is diluted with
the same pumping rate. Different pumping rates represent different ’diffusion dis-
tances’. In the second type, the left region is filled with NaAcetate and in the third
type it is filled with kale, so therefore a real hydrolyzing region. The same type
of measurements were performed on these types of experiments as during the
non-limiting experiments.

The initial conditions for the three type of experiments are listed in table A.2.
The column used in setup b is a cylinder with a length of 18 cm and a diameter
of 6.8 cm. The layers are approximately for ኼ

ኽ
ዸዬ
filled with solution or gel. The

length of the methanogenic region was 4 cm for all diffusion barrier thicknesses.
The investigated diffusion thicknesses were 0, 1.5, 3.5 and 6 cm. The length of the
region filled with VFA was changed accordingly. The pumping rate applied in the
second and third type of experiment was 0.01 ዱደ

ዱይዲ .
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Figure A.2: Sketch of the four experimental setups used for identification of rates under non-limiting
environmental conditions.
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Figure A.4: Sketch of the experimental setups used to investigate biodegradation influenced by mass transport limitation.
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A.2.2. Forward models
The forward models to simulate the experiments are build with the toolbox de-
scribed in detail in chapter 1. Per reactor in an experiment, a reaction network
was build including all dominant processes such as kinetics, inhibitions and lim-
itations influencing the experiment as described in chapter 1. We extended the
toolbox such that it is possible to connect two reaction networks together via mass
transport following a diffusion or a convection (pumping) type of mechanism.

A.3. Results & Discussion
A.3.1. Hydrolysis of white cabbage and kale under non-limiting

environments

F igure A.5 shows the mixture of VFAs released during hydrolysis of white cab-
bage. It displays a typical hydrolysis with fermentation pattern. At the start of

the experiment glucose is produced. Later on, it is converted into VFAs and COኼ.
The main VFAs released are Lactate, Butyrate, and Acetate. The high concentra-
tion of Succinate is very likely a measurement error since it is not expected to be
produced. Also, a significant amount of ethanol is produced during the final days
of the experiment. This indicates that some oxygen was present in the reactor at
the beginning of the experiment.

Figure A.5 also presents the cumulative released amount of carbon which is the
sum of the carbon in Glucose, VFAs and COኼ. The trend in released carbon follows
nicely the expected first order kinetics indicating that hydrolysis is the rate limiting
step. The total amount of released carbon agrees with the estimation of the maxi-
mum amount of carbon in the solid phase to be released indicated with the dashed
blue line). The maximum hydrolysis constant with the best fit is 0.24dዅኻ which is
a high but reasonable value given the relative ideal environmental conditions and
the fact that the cabbage was shredded into small particles.

The co-release of nitrogen in the form of NHኾዄ is also presented in figure A.5.
The ratio of released C:N measured at the end of the experiment is approximately
0.01. Interestingly, not all solid N is dissolved during the hydrolysis while all solid C
was. It seems that N is retained into solid form by some other mechanism.

Also the hydrolysis of kale was investigated under relative non-limiting envi-
ronmental conditions with two different setups. In one setup, produced gas was
measured with the eudiometer and the other with a manometer (Oxitop). The pro-
duction of gas and pH was measured for three kale concentrations (fig. A.6). All
solutions were buffered with 15 mM phosphate buffer.

The results from both setups are mostly similar although the Oxitop setup pro-
duces slightly lower pHs and higher gas production peaks for all three substrate
concentrations. Also in the Oxitop setups, it seems that there was a leak in the gas
phase because gas pressures drop gradually at the end of the experiment. That
this effect was caused by dissolution of gas seems unlikely because the pH is quite
stable and the effect was also not observed in the experiments with the other setup.

Based on loss of ignition, we expect that a release of approximately 5.5mmol
carbon per 5g of kale. The total amount of C measured in gas and solution (VFA) at
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Figure A.5: Carbon and nitrogen produced during hydrolysis of white cabbage under a non-limiting
environment.
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Figure A.6: Results hydrolysis of kale under non-limiting environment.
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a substrate concentration of 5g is 6.3mmol which is in reasonable agreement given
the accuracy of the measurements. In this case, the hydrolysis was not inhibited by
the pH which did not drop below 6.2. The hydrolysis for the two higher substrate
concentrations seems, however, inhibited by pH. For both cases, a much higher
release of carbon was expected. Interestingly, hydrolysis suddenly stops at a pH
of around 5.6 for 10 g and 20 g kale in both setups. Below this value hydrolysis is
highly inhibited which is in agreement with previous observations in literature.

The non-inhibited hydrolysis rate constant for 5g is approximately 1.5dዅኻ. This
value is higher than the rate constant for white cabbage. The main reason is likely
the higher liquid to solid ratio in the experiment with kale. Other reasons may be
the lack of added nutrients in the experiments with white cabbage or that kale more
easily disintegrates.

A.3.2. Acetogenesis/methanogenesis of VFA under non-limiting
environments

The maximum rate of VFA degradation into biogas was investigated under a non-
limiting environment for both types of anaerobic sludges (Biothane and Attero).
The concentration of bacteria in the sludge was considered very high and therefore
not limiting the degradation rate. The left, top graph in figure A.7 presents the
cumulative produced volume of gas with substrate concentrations of 20.2mM and
78.8mM carbon. Both experiments produced a bit more biogas than expected on
the basis of carbon in the substrate. Reasons may be endogenous biogas production
of the sludge and release of COኼ from dissolving CaCOኽ because of addition of acids
to the broth, lowering pH. The maximum rates are 460 and 110 ዱደ

የ . Clearly, the
maximum rate of biogas production is influenced by the substrate concentration.
Nevertheless, at a VFA concentration of 7.53mM still a degradation rate of 4.5ዱዱዳደየ
is achieved.

The activity of the sludge from Attero was also investigated. The results (figure
A.7 top, right) show a maximum rate of 80ዱደየ at an acetate concentration of 12.5mM
(=25mM C). The actual biogas production rate is roughly two times higher, 160ዱደየ ,
because NaAc is used as substrate and therefore most produced COኼ is retained
in solution to serve as a counter ion for Naዄ. During methanogenesis, the ratio of
produced COኼ and CHኾ is roughly 1:1. Overall, the activity of both sludges appears
to be similar.
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Figure A.7: Results ዠዐዋᏩᏥᏴ (left) and NaAc (right) degradation into biogas under a non-limiting envi-
ronment.
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A.3.3. Combined hydrolysis/fermentation/methanogenesis of
kale under a non-limiting environment

To investigate the overall rate of biodegradation with minimal mass transport lim-
itation, kale (20g) and anaerobic sludge was added together in a perfectly mixed
broth. Measured gas production and pH are presented in figure A.8. The drop in
pH at the beginning of the experiments indicates an almost immediate onset of hy-
drolysis while the delay in biogas production (∼ 1 day) indicates a short lag phase
of the methanogenic bacteria. After this lag phase, methanogenic activity is high
enough to prevent the pH from decreasing to inhibiting levels for hydrolysis and
methanogenesis. The pH continues to increase because of the removal of VFA by
methanogenesis and the release of cat ions such as Naዄ, Kዄ and NHኾዄ (measured
with ICP-MS). The total amount of carbon in produced gas at day 15 is approxi-
mately 20.7 mmol which is in agreement with the expected release of carbon from
20g kale (=22mmol, measured with LOI). Most likely, some COኼ has also remained
in solution to counter balance released cat ions.

The results show that the addition of sludge prevented the pH to decrease to
inhibiting levels for hydrolysis and therefore all organic carbon in the kale could
be degraded. This in contrast with the inhibited hydrolysis of kale without sludge
which was presented in figure A.6. Also, the first order rate constant of the over-
all biodegradation is approximately 0.25dዅኻ. This is lower than the rate constant
estimated for the hydrolysis of 5g kale, however, is similar to the rate constant es-
timated for white cabbage experiment in which the liquid to solid ratio was similar
as in this experiment. The value indicates that hydrolysis was the rate limiting step
in the overall biodegradation and hydrolysis and overall biodegradation were not
inhibited or limited by mass transport limitation as expected. The decrease in gas
volume at the end of the experiment may have been the result of leakage or the
release of additional cat ions which caused part of the COኼ to re-dissolve.

A.3.4. Hydrolysis andmethanogenesis separated bymass trans-
port

The influence of mass transport on the processes of hydrolysis and methanogenesis
was investigated. First, the influence of mass transport on methanogenesis was
investigated of which the results are presented in figure A.9. In three very similar
experiments, NaAc was supplied to a reactor with anaerobic sludge. Solution was
pumped from a reactor with 0.1M NaAc at a pumping rate of 0.01 ዱደ

ዱይዲ . The initial
biogas production rate in the methanogenic reactor was therefore expected to be
around 70ዱደየ when all COኼ goes to the gas phase. This agrees very well with the
measured rates of biogas production during the first day. The variation in rates
between the experiments are likely caused by slightly different actual pumping rate
during the experiments.

The decrease in production rate observed in all three experiments over time
nicely displays the impact of dilution of NaAc in the supplying reactor and dilu-
tion of substrate and bacteria in the reactor with sludge due to pumping. NaAc
dilution in the supply reactor is caused by inflow of water at the same pumping
rate. Methanogenic activity decreases with lower substrate concentrations as also
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observed in the experiments under non-limiting environments (fig. A.7).
The early inactivity in experiment 2 is probably because the sludge used in this

experiment was already washed and centrifuged multiple times which may have
damaged and diluted the bacteria. The sudden jump in biogas production after day
1 in experiment 1 is caused by an short increase in the pumping rate. The additional
supply of substrate was quickly converted indicating that the activity of the bacteria
was mainly limited by substrate supply. The pH of all three experiments follows a
slight decreasing trend caused by the increasing partial pressure of COኼ and dilution
of the broth. The value of the initial pH is mostly influenced by the time length of
Nኼ sparging prior to the experiment. Sparging time was longer for experiment 2
resulting in a higher initial pH because more COኼ was stripped.

In a second type of experiment, the influence of supply of a mix of VFA to the
methanogenic region through a diffusion barrier was investigated. Four diffusion
distances were investigated: ∼ 0, 1.5, 3.5 and 6 cm. The measured produced bio-
gas for all four cases is presented in figure A.10 with markers. Surprisingly, the
experiment with the largest diffusion distance had the highest biogas production
rate and the experiment with the smallest distance showed the one to lowest pro-
duction rate. Clearly, more than only diffusional transport was playing a role in the
overall conversion rate of VFA such as inhibitions.

For comparison, also the results from modeling the experiment are included
in figure A.10. In this model, the maximum rates were used as identified in the
previous experiments and diffusional transport was included with parameters from
literature. No inhibition mechanisms were however included yet. The comparison
shows that the experiments with xየይዪዪ ∼ 0cm and xየይዪዪ = 1.5cm have lower gas
production rates than expected and those with larger distances have higher rates
than expected. The higher observed rates may be explained by some leakage along
the side walls of the diffusional barrier which resulted in partly convective transport
of VFA, therefore a higher supply rate. The lower observed rates are likely caused
by pH inhibition of the methanogens because of too fast supply of VFA, especially
when leakage along the side walls occurred. The experiments with larger distances
were probably protected from pH inhibition because the transport distances were
still large enough.

In further studies, it would be interesting to repeat the experiments without
leakage and compare the results with results from a model that includes pH inhibi-
tion of methanogenesis. If experimental and model results then agree, it strongly
indicates that the delay in biogas production observed in waste-bodies for instance
can be explained with well known mechanisms such as maximum rates, inhibitions
and diffusion limitation. Characterizing the diffusion length through inverse mod-
eling of field scale data, then strongly reduces uncertainty in field scale emission
models by identifying the main rate limiting step.



A
102

A. Steps towards quantifying transport limitation in biodegradation of
MSW from emission measurements

Figure A.8: Results combined hydrolysis and methanogenesis of kale under non-limiting environment.

Figure A.9: Results pump limited methanogenesis of NaAc.
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Figure A.10: Results diffusional barrier between hydrolytic products (VFAs) and methanogenesis.
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A. Steps towards quantifying transport limitation in biodegradation of
MSW from emission measurements

In a similar fashion, the impact of mass transport limitation on both hydroly-
sis and methanogenesis was investigated. Only this time transport limitation was
imposed by pumping broth from the reactor with hydrolysis (Rዬዽየ) to the reactor
with sludge (Rዱዩዸዬ) instead of placing a diffusion barrier. To still mimic diffusional
transport, water is also added to the reactor with hydrolysis with the same pumping
rate diluting the hydrolyzing broth. Measured biogas production, pH and reactor
volume are presented in figure A.11.

In first instance, the hydrolyzing region behaves the same as in the experi-
ment under a non-limiting environment. Within 2 days, pH decreases to around
5.5 and the biogas production rate is similar with also a delayed onset. However,
because of transport and dilution of VFA concentration (as would occur with diffu-
sional transport) the pH did not decrease further and slightly increased allowing the
hydrolysis to continue. A balance between the hydrolysis rate and transport rate
was established such that allowed the overall biodegradation to continue.

Unfortunately, the measurements of the methanogenic region are heavily influ-
enced by problems faced during the experiment with the setup such as clogged
filters. Replacement of this filters, temporarily stopped the transport of substrate
to the methanogenic region but also required to open the gas phase to the atmo-
sphere. Both explain the frequent jumps and irregularities observed in the mea-
sured pH and produced biogas. Nevertheless, the general trends observed tell a
story.

The pH slowly decreases as the partial pressure of COኼ increases in the reactor
which was also observed in previous experiments (fig. A.7). Dilution of the broth
may also have played a role in the decrease of pH. The gas production in the
methanogenic region is low because the supply of VFAs to the methanogenic region
is small because of the combination of a low pumping rate and a low concentration
of VFAs in the hydrolyzing region. The gas production seems to display periods of
biogas production alternated with periods without activity. An explanation is that
the concentration in the methanogenic reactor first needs to sufficiently increase
(via pumping) to a high enough concentration which (re-)activates the bacteria to
produce biogas. After consuming most VFAs during such a biogas production phase,
another build up phase starts.

The total amount of produced biogas so far is reasonable. A maximum of around
500ml is expected but only around 300ml has been produced. The increasing trend
in biogas production in the hydrolyzing reactor suggest that biodegradation could
have continued if the experiment did not had to be stopped because of clogged
filters.

The results also show that the overall biodegradation and biogas production
rate is significantly decreased compared to the ideal case (fig. A.8) because of the
imposed mass transport limitation. This is a first indication that the mechanisms
and dominant processes proposed are indeed those responsible for the limited rates
observed in waste-bodies. In further studies, it would be very interesting to repeat
this experiments with an improved setup (without filter clogging problems) and infer
the imposed transport limitation back from the measured data with a model and
compare both. This would indicate that the combination of dominant processes
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can be responsible for the delay in biodegradation in waste-bodies and gives a
method to characterize diffusion lengths/degree of transport limitation from field
scale measurements.

Figure A.11: Results hydrolysis and methanogenesis separated by pump limited mass transport.
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A. Steps towards quantifying transport limitation in biodegradation of
MSW from emission measurements

A.4. Experimental Instrumentation & Protocols
A.4.1. Instrumentation
1. VWR IKA Magnetic stirrers 442-0174 RH basic 2; Plate dimension: 125mm⊘
Speed range: 100-2000rpm; Heating power: 320 ዳC with setting accuracy of
ዄ
ዅ10K.

2. Gas sampling collection bags; SKC Standard FlexFoil; Total capacity of 3L;
Polypropylene septum fitting; Contained gas is stored at atmospheric pres-
sure.

3. Vacuum vials; Vacuette (9ml) from Greiner Bio-one.

4. Consort Multimeter C3010; Two channel machine for measurements of pH -
mV - Conductivity - Resistivity - Salinity - TDS - Temperature; pH and EC elec-
trodes, both integrated with temperature probe, were used; Specifications:
pH: -2...+16 pH; Conductivity: 0...2000 mS/cm; Temperature: -5...+105 ዳC;
Resolution: 0.001 pH, 0.1 mV, 0.001 𝜇𝑆/𝑐𝑚, 0.1 ዳC.

5. Endress-Hauser, Deltabar S PMD 234; Differential Pressure Transmitter Spec-
ifications: Measuring rage: -100...+100 mbar; Resolution: 0.1 mbar.

6. Agilent 7697A Gas chromatography; Run time for samples 10 min.

7. High-Performance Liquid Chromatograph (HPLC); BioRad Aminex HPX-87H
column and a UV/RI detector (Waters 2489); As a mobile phase 1.5 mM
H3PO4 in Milli-Q water was used with a flow rate of 0.6 mL/min and a tem-
perature of 60 ዳC; Before analysis samples were filtered at 0.45 𝜇m; Injection
volume was 100 𝜇L. Each test was run for 30 min.

8. Hach-Lange DR 2800 VIS Spectrophotometer; Used with LCK303 cuvettes for
ammonium test. Resolution 0.01 mg/L.

9. Hach-Lange LCK303 Ammonium cuvette test; Cuvette with pre-dosed reagents
for photometric evaluation; Colorimetric method used: indophenol blue; Op-
erating range: 2.0-47.0 mg/L NH 4 -N or 2.5-60 mg/L NH 4

10. Hach-Lange LCK365 Organic acid cuvette test; Cuvette with pre-dosed reagents
for photometric evaluation; Operating range: 50-2500 mg/L Acetic acid or 75-
3600 mg/L Butyric acid.

11. Milligas Counter Ritter; Display resolution 0.01mL; Full scale: 100 L; Resolu-
tion 19.3 mL.

12. Agilent 3000A micro GC; Columns: Molsieve 5A and PLOT U; Calibration exe-
cuted with universal gas calibration standard.

13. Scale Sartorius Entris 6202I-1S; maximum 6200 g, d = 0.01 g.

14. Piston pump Gilson 305; type of piston is 25.SC.
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15. OxiTop

16. Gelatine (agar) Dr. Oetker (standard)

17. Kale, Hollandse boerenkool (Albert Heijn); 450 g, frozen, sieved to size >
0.125 mm.

18. White cabbage, Jumbo, shredded with blender; sieved to size 0.6-1.2 mm.

19. Methanogenic sludge Biothane - VeoliaWaters, in Delft (NL).

20. Methanogenic sludge UASB inoculum, Attero Venlo.

21. Blender Tomado.

22. Syringe filter, 0.45𝜇m nylon, Whatman.

A.4.2. Protocols
The agar for the diffusion layer is prepared by adding 1 sheet of gelatine per 40 ml
of water. This solution is heated in a microwave for approximately 30 s and poured
into the diffusion layer chamber.

The kale is prepared by defrosting it, sieving it with a grid > 0.125 mm and
washing it with approximately 6 L water.

The nutrients used in the growth medium and the trace element solution are
specified in table A.3.

Table A.3: Specification of growth medium and trace element solution.

Growth medium for ኺ.ኻ M ዘዥዋዧዩዸዥዸዩ
ያ
ዖ

ያ
ዖ

ያ
ዖ

ያ
ዖ

KHኼPOኾ 0.021 NaኼHPOኾ 0.022 NHኾCl 0.0975 NaCl 0.021

MgClኼ 0.0044 NaኼS−9HኼO 0.019

Trace element solution for ኻኺኺ M ዘዥዋዧዩዸዥዸዩ
ያ
ዖ

ያ
ዖ

ያ
ዖ

ያ
ዖ

HኽBOኽ 0.076 ZnClኼ 0.289 CuClኼ 0.072 CoClኼ−6HኼO 0.102

NiClኼ−6HኼO 0.153 MnClኼ 0.0148 NaኼMoOኾ−2HኼO 0.037 FeClኽ 1.72

CaClኼ−2HኼO 0.045





Curriculum Vitæ

André Gerard van Turnhout

20-03-1985 Born in s’Gravenhage, The Netherlands.

Education
1997–2003 Dalton Gymnasium, s’Gravenhage

2003–2011 Bachelor & Master in Life Science & Technology
+ minor in marketing, management & finances
Universiteit Leiden & Technische Universiteit Delft

2017 PhD. Geo-Engineering
Technische Universiteit Delft
Thesis: Characterizing Dominant Processes in Landfills to

Quantify the Emission Potential
Promotor: Prof. dr. ir. T.J. Heimovaara
Co-promotor: Dr. ir. R. Kleerebezem

109





List of Publications

Journal papers
8. A.G. van Turnhout, T.J. Heimovaara, Coupled model of water flow, mass transport

and biogeochemistry to predict emission behavior of landfills, ready to submit.

7. A.G. van Turnhout, H. Oonk, H. Scharff, T.J. Heimovaara, Optimizing landfill aeration
strategy with a 3-D multiphase model, ready to submit.

6. O. Ilie, A.G. van Turnhout, M.C.M. van Loosdrecht, C. Picioreanu, Two-dimensional
mathematical modelling of dental enamel subsurface lesion formation induced by den-
tal plaque, ready to submit.

5. A.G. van Turnhout, C. Brandstaeter, R. Kleerebezem, J. Fellner, T.J. Heimovaara,
Theoretical Analysis of Municipal Solid Waste Treatment by Leachate Recirculation un-
der anaerobic and aerobic Conditions, Waste Management (under review).

4. A.G. van Turnhout, R. Kleerebezem, T.J. Heimovaara, A toolbox to find the best
mechanistic model to predict the behavior of environmental systems, Environmental
Modelling & Software 83, 344 (2016).

3. S.S. Salek, O.D. Bozkurt, A.G. van Turnhout, R. Kleerebezem, M.C.M. van Loos-
drecht, Kinetics of ፂፚፂፎᎵ precipitation in an anaerobic digestion process integrated
with silicate minerals, Ecological Engineering 86, 105 (2016).

2. S.S. Salek, A.G. van Turnhout, R. Kleerebezem, M.C.M. van Loosdrecht, pH Control in
Biological Systems Using Calcium Carbonate, Biotechnology and bioengineering 112,
905 (2015).

1. O. Ilie, A.G. van Turnhout, M.C.M. van Loosdrecht, C. Picioreanu, Numerical Mod-
elling of Tooth Enamel Subsurface Lesion Formation Induced by Dental Plaque, Caries
Research 48, 73 (2013).

Conference Proceedings (oral presentation)
11. A.G. van Turnhout, H. Oonk, H. Scharff, T.J. Heimovaara, Optimizing landfill aeration

strategy with a 3-D multiphase model, Proceedings of the 16th international waste
management and landfill symposium, (2017), Italy.

10. A.G. van Turnhout, T.J. Heimovaara, Improving insight into the full scale emission
potential of landfills with high resolution in-situ measurements, Proceedings of the
16th international waste management and landfill symposium, (2017), Italy.

9. A.G. van Turnhout, T.J. Heimovaara, Coupled modeling of water flow, mass transport
and biogeochemical activity to predict emission behavior of landfills, Proceedings of
the 16th international waste management and landfill symposium, (2017), Italy.

111

http://dx.doi.org/10.1016/j.envsoft.2016.05.002
http://dx.doi.org/10.1016/j.envsoft.2016.05.002
http://dx.doi.org/10.1016/j.ecoleng.2015.10.025
http://dx.doi.org/10.1002/bit.25506
http://dx.doi.org/10.1002/bit.25506
http://dx.doi.org/10.1159/000354123
http://dx.doi.org/10.1159/000354123


112 List of Publications

8. A.G. van Turnhout, T. Carducci, T.J. Heimovaara, Steps towards quantifying the
slowest step in production of biogas in Municipal Solid Waste landfills, Proceedings
of the International Conference on Advances in Civil and Environmental Engineering,
(2017), India.

7. A.G. van Turnhout, T.J. Heimovaara, Quantification of the Emission Potential of
a Waste Body, Proceedings of the 9th intercontinental landfill research symposium,
(2016), Japan.

6. A.G. van Turnhout, C. Brandstaeter, R. Kleerebezem, T.J. Heimovaara, Investigating
the impact of process parameters on aeration of MSW via a mechanistic biogeochem-
ical reaction model, Proceedings of the 6th International Workshop ”Hydro-Physico-
Mechanics of Landfill”, (2015), The Netherlands.

5. A.G. van Turnhout, R. Kleerebezem, T.J. Heimovaara, Building a mechanistic biogeo-
chemical reaction network for upscaling: Characterization of mass transport limitation
between regions of hydrolysis and methanogenesis, Proceedings of the 6th Interna-
tional Workshop ”Hydro-Physico-Mechanics of Landfill”, (2015), The Netherlands.

4. A.G. van Turnhout, R. Kleerebezem, T.J. Heimovaara, Can we extract transport lim-
itation parameters from emission data to improve predictions on emission potential?,
Proceedings of the 8th intercontinental landfill research symposium, (2014), Florida.

3. A.G. van Turnhout, R. Kleerebezem, T.J. Heimovaara, Grey box modelling of MSW
degradation, Proceedings of the 5th International Workshop ”Hydro-Physico-Mechanics
of Landfill”, (2013), Scotland.

2. A.G. van Turnhout, R. Kleerebezem, T.J. Heimovaara, Gray box modeling of MSW
degradation: Revealing its dominant (bio)chemical mechanism, Proceedings of the
14th international waste management and landfill symposium, (2013), Italy.

1. A.G. van Turnhout, R. Kleerebezem, T.J. Heimovaara, Quantification of biogeochem-
ical heterogeneous activity in full-scale landfills, Proceedings of the NUPUS workshop
on flow and deformation in porous media modeling, analysis, simulation, (2012), Ger-
many.

Conference Proceedings
9. T.J. Heimovaara, A.G. van Turnhout, A particle filter approach to quantify the mass

balance of a MSW landfill, Proceedings of the 16th international waste management
and landfill symposium, (2017), Italy.

8. M. Afanasyev, J. Zhou, A.G. van Turnhout, L.A. van Paassen, T.J. Heimovaara, A
generic transport-reactive model for simulating microbially influenced mineral precipi-
tation in porous medium, Proceedings of the 9th International Conference on Porous
Media, (2017), The Netherlands.

7. A.G. van Turnhout, T.J. Heimovaara, H. Oonk, H. Scharff, Modeling Landfill Aeration:
A parametric study in order to define the optimal aeration, Proceedings of the 9th
intercontinental landfill research symposium, (2016), Japan.



List of Publications 113

6. T.J. Heimovaara, A. Bun, A.G. van Turnhout, Water balance modeling and estima-
tion of emission potential using a data-assimilation approach, Proceedings of the 15th
international waste management and landfill symposium, (2015), Italy.

5. T.J. Heimovaara, A. Bun, A.G. van Turnhout, Water balance modeling for estimation
of residence time of water in a full scale landfill using a data-assimilation approach,
Proceedings of the 6th International Workshop ”Hydro-Physico-Mechanics of Landfill”,
(2015), The Netherlands.

4. J. Zhou, A.G. van Turnhout, T.J. Heimovaara, M. Afanasyev, A generic transport-
reactive model for simulating microbially influence mineral precipitation in porous
medium, Proceedings of the 6th International Workshop ”Hydro-Physico-Mechanics
of Landfill”, (2015), The Netherlands.

3. A.G. van Turnhout, R. Kleerebezem, T.J. Heimovaara, Quantification of (bio)geochemical
heterogeneous activity in full-scale landfills, Proceedings of the 7th intercontinental
landfill research symposium, 124 (2012), Sweden.

2. A. Bun, T.J. Heimovaara, S.M. Baviskar, A.G. van Turnhout, L.A. Konstantaki Inte-
grated modeling and up-scaling of landfill processes and heterogeneity using stochas-
tic approach, Proceedings of the 7th intercontinental landfill research symposium, 55
(2012), Sweden.

1. T.J. Heimovaara, A. Bun, A.G. van Turnhout, L.A. Konstantaki, S.M. Baviskar Is it
possible to quantify emission potential from high resolution monitoring of leachate
dynamics?, Proceedings of the 7th intercontinental landfill research symposium, 77
(2012), Sweden.


	Summary
	Samenvatting
	Introduction
	Landfill After-care & Emission Potential
	Sustainable After-care
	Structure of this Thesis

	A toolbox to find the best mechanistic model to predict the behavior of environmental systems
	Introduction
	Theory
	The cycle of finding an optimal model structure
	Defining the model structure with mechanistic information from different environmental frameworks
	Solving the model structure with a generic matrix calculation method
	Evaluating model performance

	Results
	The final four evaluated biogeochemical reaction networks
	Outcome of the Bayesian inference applied on the four networks

	Discussion & Conclusions
	Performance of network 1
	Performance of network 2
	Performance of network 3
	Performance of network 4
	Selecting the optimal model structure for anaerobic digestion of MSW

	Acknowledgments
	Supporting Information

	Theoretical analysis of MSW treatment by recirculation under anaerobic and aerobic conditions
	Introduction
	Material & Methods
	Types of lysimeter experiments and measured data
	Biogeochemical reaction networks that optimally describe measured data

	Results & Discussion
	A fundamental biogeochemical reaction network for leachate recirculation under anaerobic conditions
	A fundamental biogeochemical reaction network for leachate recirculation under aerobic conditions

	Conclusions
	Acknowledgments

	Coupled model of water flow, mass transport and biogeochemistry to predict emission behavior of landfills
	Introduction
	Theory
	The conceptual framework of the coupled model
	Mathematics of the cover layer
	Mathematics of the water retention time model
	Mathematics of the biodegradation model
	Mathematics of mass transport within the waste-body

	Results & Discussion
	Model calibration
	Information on emission potential and its uncertainty

	Conclusions

	Optimizing landfill aeration strategy with a 3-D multiphase model
	Introduction
	Material & Methods
	Site characteristics, calibration, validation and scenarios
	Model implementation

	Results & Discussion
	Calibration & validation
	Optimal aeration strategy
	Optimal well spacing

	Conclusions

	Conclusions
	Consequences of the insights obtained
	Analysis of emission potential on a lysimeter scale
	Analysis of emission potential on a full scale

	Uncertainties leading to new research proposals
	Release mechanism of ammonium (proposal 1)
	Development of DOM over time (proposal 2)
	Full scale water retention times (proposal 3)
	Delay in biogas production


	Bibliography
	title

	Acknowledgments
	Steps towards quantifying transport limitation in biodegradation of MSW from emission measurements
	Introduction
	Theory
	Experiments
	Forward models

	Results & Discussion
	Hydrolysis of white cabbage and kale under non-limiting environments
	Acetogenesis/methanogenesis of VFA under non-limiting environments
	Combined hydrolysis/fermentation/methanogenesis of kale under a non-limiting environment
	Hydrolysis and methanogenesis separated by mass transport

	Experimental Instrumentation & Protocols
	Instrumentation
	Protocols


	Curriculum Vitæ
	List of Publications

