

Delft University of Technology

Evolutionary Reinforcement Learning
Hybrid Approach for Safety-Informed Fault-Tolerant Flight Control
Gavra, Vlad; van Kampen, Erik Jan

DOI
10.2514/1.G008112
Publication date
2024
Document Version
Final published version
Published in
Journal of Guidance, Control, and Dynamics

Citation (APA)
Gavra, V., & van Kampen, E. J. (2024). Evolutionary Reinforcement Learning: Hybrid Approach for Safety-
Informed Fault-Tolerant Flight Control. Journal of Guidance, Control, and Dynamics, 47(5), 887-900.
https://doi.org/10.2514/1.G008112

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/1.G008112
https://doi.org/10.2514/1.G008112

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Evolutionary Reinforcement Learning: Hybrid Approach
for Safety-Informed Fault-Tolerant Flight Control

Vlad Gavra∗ and Erik-Jan van Kampen†

Delft University of Technology, 2600 GB Delft, The Netherlands

https://doi.org/10.2514/1.G008112

Recent research in artificial intelligence potentially provides solutions to the challenging problem of fault-tolerant

and robust flight control. This paper proposes a novel Safety-Informed Evolutionary Reinforcement Learning

algorithm (SERL), which combines Deep Reinforcement Learning (DRL) and neuroevolution to optimize a

population of nonlinear control policies. Using SERL, the work has trained agents to provide attitude tracking on

a high-fidelity nonlinear fixed-wing aircraft model. Compared to a state-of-the-art DRL solution, SERL achieves

better tracking performance in nine out of ten cases, remaining robust against faults and changes in flight conditions,

while providing smoother action signals.

Nomenclature

A;S = sets of all possible actions, states
B = batch of transition tuples
B = memory buffer of previous experiences
Dx = domain in which variable x resides
E = policy evaluations per epoch/generation
F = fitness function value
H;Vtas = altitude, true airspeed, m/s
L = loss function
N = population size
p; q; r = roll, pitch, and yaw rates, rad/s
Qϕ; μθ = critic function parameterized by ϕ, deterministic

actor parameterized by θ
~r; R = reward, future return value
Sm = smoothness value of action signal, rad/s
T = duration of simulation trail, s
fs = sampling frequency, Hz
T t = transition tuple experienced by agent at time t
a; s; x = vectors for agent’s action, state, and aircraft state
α; β;ϕ; θ;ψ = angle of attack, side slip, roll, pitch, and yaw, rad
αa:;c:; γ = learning rate of actor, critic learning, and tempo-

ral discount rate of future rewards
δe; δa; δr = elevator, aileron, and rudder deflection, rad
ϵ = random variable with Gaussian distribution
λ = policy loss regularization coefficient
σ = standard deviation of Gaussian distribution

I. Introduction

AVIATION has recently experienced an unprecedented safety
record, its ever-lowering rate of accidents making it the safest

means of long-distance transportation in terms of human casualties.
Despite this, the number of accidents involving loss of control in
flight is not decreasing at a comparable rate [1]. Improving the
autonomy capabilities of aerospace systems, in general, and of air-
craft controllers, in particular, will further reduce the number of air
crashes.
Modern techniques in intelligent control incorporate artificial

intelligence, aiming to enhance the safety, durability, autonomy,

and performance of aerospace vehicles. A milestone along the way
concerns improving the way simulation-based flight control systems
could remain robust to real-life conditions such as faults, unmodeled
dynamics, and external disturbances [2–4].
Reinforcement Learning (RL) uses repeated rewarded interactions

between an intelligent agent and its environment to optimize a control
policy [5,6]. Its extension, Deep Reinforcement Learning (DRL)
harvests the potential of deep neural networks (NNs) as data-driven
models that approximate high-dimensional and nonlinear dynamics
[7–9]. These algorithms belong to the class gradient-based optimi-
zation as the neural networks are trained via gradient descent [7].
Applied to flying systems, DRL has recently obtained state-of-the-

art performance in complex tasks. These include flight guidance [10],
low-level attitude control in the presence of faults [11] or external
disturbances [12], identification of worst-case maneuvers causing air-
craft departures [13], and agile drone racing [14]. Offline model-free
DRL methods prioritize performance which can lead to policies com-
manding actions with unconstrained noise. This aggravates the gap
between simulation and reality, increasing the already-challenging
deployment on flight hardware [15]. Whereas regularization methods
are developed to inhibit the action noise [14,15], the root cause of the
noise has yet to be extensively discussed.
Evolutionary algorithms (EAs) are metaheuristics that optimize a

repertoire of control strategies, or population, by selecting the best-
performing individuals in each generation, combining and varying
them [16,17]. Genetic Algorithms (GAs), the earliest, most popular,
and versatile EAs mimic natural selection to solve optimization
problems [18]. Neural evolution (NE) specifically trains nonlinear
mappings parameterized as neural networks by using an EA to
iteratively update their weights [19]. In optimal control, NE is an
episode-based alternative to DRL [20,21].
When evolving randomly initialized nonlinear policies, the intrin-

sic difference in the parameters of individuals translates into novel
behaviors [22]. Throughout this work, novelty always describes the
difference in the current individual’s behavior (i.e., set of actions)
with respect to the previous one or in comparison to the behaviors of
other actors. Qualitatively, diversity denotes a population with an
arbitrarily large number of novel individuals.
The achievable action-space diversity makes NE attractive for

high-dimensional nonlinear control tasks, such as fault-tolerant leg-
ged robots [22,23] and robot-arm manipulation [24]. Within flight
control, GAs have been tasked to derive symbolic control laws
directly [25] or schedule the gains of linear controllers such as
Proportional Integral Derivative (PID) [26]. Nevertheless, the appli-
cations of NE in flight control are, until now, limited as reviewed by
the authors of [27].
Despite their achievements, both the aforementioned biologically-

inspired frameworks have their drawbacks. Hybrid algorithms, incor-
porating evolutionary loops and reinforcement learning updates, show
more stable learning and increased performance in complex learning
environments [28–30]. Evolutionary Reinforcement Learning (ERL),

Received 24 March 2023; accepted for publication 14 December 2023;
published online 14 February 2024. Copyright © 2024 by Delft University of
Technology. Published by the American Institute of Aeronautics and Astro-
nautics, Inc., with permission. All requests for copying and permission to
reprint should be submitted to CCC at www.copyright.com; employ the ISSN
1533-3884 to initiate your request. See also AIAA Rights and Permissions
www.aiaa.org/randp.

*M.Sc. Graduate, Control and Simulation Section, Faculty of Aerospace
Engineering, P.O. Box 5058; vladgavra98@gmail.com (Corresponding Author).

†Assistant Professor, Control andSimulationSection, Faculty ofAerospace
Engineering, P.O. Box 5058; E.vanKampen@tudelft.nl. Member AIAA.

887

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 47, No. 5, May 2024

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

https://orcid.org/0000-0002-5593-4471
https://doi.org/10.2514/1.G008112
www.copyright.com
www.aiaa.org/randp
http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.G008112&domain=pdf&date_stamp=2024-02-21

proposed by Khadka and Turner [31], trains a population of con-
trol policies in a GA loop, periodically infusing it with policies
optimized by actor/critic learning from the population’s sharedmemo-
ries.Whereas the algorithm aims at the best of bothworlds, the average
population performance remains unstable due to spontaneous cata-
strophic forgetting and is sensitive to the chosen hyperparameters
[28,30]. Frameworks such as Proximal Distilled ERL (PDERL) incor-
porate numerically stable policy mutations [28,32] to counteract cata-
strophic forgetting and distillation crossover to enhance sample
efficiency [30], thus achieving state-of-the-art performance in continu-
ous control [28].
This paper has a threefold contribution. First, we develop a novel

fixed-wing aircraft attitude controller by extending a state-of-the-art
ERL algorithm. Second, the paper shows that optimizing a popula-
tion of controllers via DRL andGA provides significantly better fault
tolerance and robustness to unseen flight conditions compared to a
state-of-the-art DRL-only approach. Lastly, we demonstrate that the
evolutionary mechanisms can remove the root causes of the noise
phenomena and thus hybrid frameworks can balance the controller
performance and smoothness.‡

The paper outlines in Sec. II the theoretical background of ERL
algorithms and then describes in Sec. III the design of SERL as a
flight controller. Section IV compares the performance of the trained
agents and discusses the effect of the SERLmechanismon the control
policy smoothness. Finally, the paper concludes by summarizing the
achievements in Sec. V.

II. Background

This section highlights the mathematical formalism of intelligent
control using ERL. It introduces the sequential decision making for
control and then summarizes actor/critic RL, population-based pol-
icy search concepts, and the hybrid algorithm combining the two.

A. Sequential Decision Making

The learning agent encapsulates a control policy that sequentially
takes rewarded decisions within the environment. This is formal-
ized by a Markov Decision Process (MDP), which states that
Pfst�1; ~rt�1 ∣ st;at; : : : ; s0;a0g � Pfst�1; ~rt�1 ∣ st;atg, with state
space S ⊂ Rn, action space A ⊂ Rm, reward signal ~r∶S ×A → R,
and probability distribution of the stochastic state transition func-
tion P∶S ×A → S.
The MDP therefore assumes collapsed state-action history, as the

current state and action solely determines the next state and received
reward [6,33]. It will form the basis for the flight control task
presented in Sec. III.

B. Deep Reinforcement Learning

In DRL, the policy of a deterministic agent commands at each time
step an actionat ∈ A according to a deterministic function of its state
μ∶S → A and retrieves from its observation the transition tuple
T t � hst;at; ~rt; st�1i. Off-policy learning methods employ a form
ofmemory bufferB to store the transition data for subsequent updates
of the agent. In episodic tasks, the sequence of transitions continues
until the agent has reached a terminal state or a maximum number of

steps. The return, defined as Rt � limn→∞
n
k�0 γ

k ~rt�k, represents

the accumulated future reward expected from time t and discounted
by γ ∈ �0; 1�. The action-value functionQ�s;a� predicts the value of
the return from the given state s when the agent selects action a
thereafter following policy μ [6].
Actor/critic methods combine policy and value function learning

[6]. Whereas the first category frames the goal of maximizing return
as the minimization of a control policy loss functionL�θ�, the value-
based frameworks approximate the state-action value function as
Q�s;a� ≈Qϕ�s;a� with ϕ ∈ Dϕ, iteratively updating it. The para-

metric policy μθ�s� (with θ ∈ Dθ) subsequently trains on the esti-
mated Q values, moving toward the optimal function μ��s�.

A state-of-the-art method, Deep Deterministic Policy Gradient
(DDPG) employs NNs as function approximators for both the critic
and deterministic actor due to their intrinsic ability to learn complex
nonlinear dynamics [7]. The Twin-DelayedDDPG (TD3), developed
by Fujimoto et al. [34], improves the sample-complexity and learning
stability of DDPG in offline continuous control tasks [35]. Adding to
its relatively uncomplicated structure, these made TD3 the candidate
for the DRL part of the SERL flight control framework.
During training, the networks learn from data batches B randomly

sampled from the memory buffer B. The critic part trains using
recursive temporal difference updates, minimizing the mean squared
Bellman error (MSBE) from Eq. (1). TD3 updates two Q functions
(hence its name), and it takes the minimum of the two Q values as
targets in the MSBE loss, the dual critics trick. By taking the less
optimistic Q value as the optimization target, TD3 is less prone to the
overestimation biasofQ learning [36] and thus has stable learning [34],

LQ�ϕ; B� ≔
1

jBj
T t∈B

Qϕ�st;at� − � ~rt � γmin
i�1;2

Qϕi;targ
�st;atargt

�� 2
;

ϕ ∈ Dϕ; θ ∈ Dθ (1)

Concurrently, the actor learning translates into the minimization of
policy loss, defined byEq. (2) as the negative of thevalue estimate over
one batch of states,

Lμ�θ; B� ≔ −
1

jBj
st∈B

min
i�1;2

Qϕ;i�st; μθ�st��; θ ∈ Dθ (2)

The target networks are separate copies of the actor and critic networks,
parameterized within the same Dϕ;Dθ spaces. To ensure stability

during learning, they are synchronized using a Polyakmoving average
of the current network’s parameters [8,37].
Sustained exploration within the state-action space is a necessary

condition for convergence toward the optimal policy. The TD3 agent
explores during training by corrupting the actor’s actions with off-
policy noise sampled from an unbiased Gaussian distribution [8], as
shown by Eq. (3). Additionally, to train the target critic, TD3 clips the
noise added to the action of the target policy as a form of regulari-
zation. For both the behavioral policy and the target one, the resulting
actions are clipped to lie within the interval admissible by the
environment �alow;ahigh�,

at � clip�μθ�st� � ϵ;alow;ahigh�; ϵ ∼N �0; σI� (3)

Lastly, the target policy network updates less frequently than the
target critic network. Adding to the smoothening effect of the Polyak
average, delaying the update of the target policy further reduces the
risk of divergence.
DRL employs a form of stochastic gradient descent (SGD) to

optimize the actor and critic, which requires the backpropagation
of the loss functions’ gradients with respect to the networks’ param-
eters [7]. By doing so, the batch SGD updates drive sample-efficient
experience-based training. As a downside, local optima and saddle
points in the policy loss landscape alongside noisy gradient estimates
impede long-term parameter-space exploration and therefore hinder
learning [38].

C. Evolutionary Algorithms for Control

EA is a biologically-inspired alternative which, as a local stochas-
tic heuristic, iteratively improves a population of individuals target-
ing a higher fitness value [19]. Opposing gradient-based methods, an
EA is not bound to the neighborhood of a local optimum but it
searches over amulti-dimensional space for the global optimal fitness
[18].
In an optimal control framework, the evolving individuals are

parameterized control policies. Their fitness function values, defined
as Fμi∶Dμi → R, are based on the control objective(s) computation
over one or multiple trials on metrics in both the parameter and
phenotype spaces.

‡The source code used for training and evaluation is available at https://
github.com/VladGavra98/SERL [retrieved 10 March 2023].

888 GAVRA AND VAN KAMPEN

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

https://github.com/VladGavra98/SERL
https://github.com/VladGavra98/SERL

All EAs are characterized by a standard underlying architecture.
First, the individuals are initialized, usually sampling from a random
distribution. Then, the EA loops over multiple generations until a
termination criterion has been reached. Such criteria are based on
fitness convergence, number of generations, or a specific fitness
value being reached.During each generation, it evaluates the episodic
performance of each individual, selects the best-behaving or fittest
individuals, applies variational and recombination operators, and
discards a sub-set of the under-performers. Because of the genera-
tional updates happening on an episode basis, an EA optimizes
controllers without a mandatory Markovian property. Despite this,
when the evolving policies act according to an MDP setting, the
fitness value of a policy can be amapping of the rewards accumulated
during its evaluation [31].
The broad spectrum of EA paradigms inherits the basic bare-bone

structure and comprises algorithms like Evolution Strategies [29],
GA [39,40], and Genetic Programming (GP). In contrast to the first
two, the search space of a GP spans both the encoded policy structure
and its parameters [18]. Whereas all classes can offer derivative-free
optimization of real-valued genomes, due to their wide-scale popu-
larity and early adoption in ERL, the genetic algorithm subclass
remains the focus for the rest of this section.
Benefiting from a modular architecture, GAs can be described by

their inner operators: selection, mutation, and recombination or
crossover. During selection, solutions with higher fitness values have
a higher probability of being maintained in the population. The
possible implementations of it are stochastic universal sampling,
overselection, rank based (simple or linear), and tournament
[17,18]. The latter possesses the advantage of computational effi-
ciency over universal sampling and overselection, while its selective
pressure scales proportionally to the fitness values and not to indi-
vidual rank. Thus, tournament selection is attractive for ERL meth-
ods, especially when dealing with a large populations of policies.
Overmultiple generations, selective pressure filters out the least fit

individuals, perpetuating the behaviors associated with high fitness.
The discarded policies are replaced with the new generation of off-
springs generated by the two variational operators: mutation and
crossover.
A GA explores the solution space via mutation, which stochasti-

cally alters the individual’s genome and ultimately translates into the
introduction of new behaviors. Possible implementations of the
mutation consider sampling the parameters from a uniform or a
Gaussian distribution, centered around the parent’s genome or at
another, problem-specific, location. In parallel, the crossover oper-
ator combines a randomly selected fraction of genes of two or more
individuals, resulting in one or multiple offsprings. Different types of
crossover traditionally used for GAs and applicable to the NE setting
are single point,M point (withM ≥ 2), segment, uniform, and multi-
parent [17]. The effect of the two operators can also be combined by,
for example, mutating the crossover offsprings. Lastly, in spite of the
variations taking place on the genome level, they can be biased by
providing information from the phenotypic space of behaviors and
their fitness values. Section III will detail the current design’s imple-
mentation of such biased operators.
Whereas crossover andmutation can be applied to any subset of the

population, elitism practices may be considered for enhanced sample
efficiency [17]. The percentile of policies with the highest fitness, the
elites, contains an objectively better pool of genes for recombination.
At the same time, mutating the nonelites would pose a lower risk of
negatively impacting the average achievable fitness.

D. Hybrid Frameworks

Learning emerges from the tradeoff between exploitation (or
quality seeking) and exploration (or novelty seeking) [22,41]. ERL,
introduced by [31], implements this tradeoff as a combination of off-
policy DRL and GA.
First, the genetic individual’s genome is the flattened array of the

agent’s policy NN. ERL creates new individuals, or offsprings,
through the M-point crossover of the genomes of two elites (i.e.,
within the fittest percentile) [31]. In ERL, the mutation operator

samples the vector of policy weights from an isotropic Gaussian
distribution centered at the parent’s weights. The original algorithm
and its future adaptions use a form of theGaussianmutation due to its
simplicity and flexibility [30,32].
The hybrid agent evaluates all actors sequentially and stores the

experienced transition tuples in a shared memory buffer B�N� ≔
T �i�

t ∣ i � 1; N . The superscript (N) refers to the size of the genetic

population and will be later dropped for brevity.
Parallel to the genetic population, an actor/critic DDPG agent

learns via gradient updates by randomly sampling batches from the
common memory buffer. Training is performed off policy, as the
actor and critic are updated with information gathered by all the other
policies. At a given number of generations, the RL actor is injected
into the population by cloning its weights in place of the least-fit
genetic actor. Thus, ERL establishes a bidirectional transfer of infor-
mation [28,31]. Whereas the shared memory buffer enables off-
policy exploration, the actor synchronization aims to decrease the
sample complexity of the neural evolution as the newly injected NN
has been updated more often via backpropagated gradients [30,31].
Whereas the DDPG actor uses zero-mean additive Gaussian noise

to explore in the S ×A space, ERL combines this with indirect time-
independent exploration in the parameter space Dθ of the policy
[38,42]. Crucially, the distribution of the weight magnitude is not
uniform across the network; hence, the output of each layer is
normalized to evenly scale the effect of mutation [42].
PDERL developed by Bodnar et al. [28] uses the same structure as

ERL and a DDPG agent, but it proposes two novel genetic operators,
distillation crossover and proximal mutation, which sample experi-
ences from individual buffers of the genetic actors [28]. They aim to
counteract catastrophic forgetting caused by Gaussian mutation and
M-point crossover applied to a direct encoding of the network, a
problem of the off-policy hybrid methods [28,30,32]. The current
framework adapts both the crossover and mutation using dedicated
memory buffers, mechanisms described in the next section.

III. Methodology

To show how SERL can improve the autonomy and safety of flight
controllers, the work employs an offline attitude-tracking task intro-
duced in this section. Then, it presents the learning framework
centered around SERL and its specific crossover and mutation oper-
ators. Lastly, the training and evaluation scenarios are described.

A. Attitude Tracking

The simulation environment uses the model of a fixed-wing air-
craft and considers continuous attitude control split into episodes of
maximumdurationT andwith sampling ratefs � 100 Hz. The high-
fidelity six-degrees-of-freedommodel combines the nonlinear trans-
lational and rotational equations ofmotion for the rigid-body aircraft,
trimmed for specific altitude, airspeed, and climb angle (kept at zero
in this work) [43,44]. It has been validated through system identi-
fication on flight-test data recorded onboard a Cessna Citation II.§

Equation (4) depicts the complete modeled aircraft state with the
longitudinal and lateral coordinatesXe and Ye measured with respect
to the trim location. To build the MDP formulation, the agent state

vector s ∈ R7, defined by Eq. (6), retrieves observed information
from the aircraft state augmenting it with the current tracking error.
Given that the agent state is a subset of the modeled state, the
Markovian assumption shall be relaxed to a partially observable

MDP (POMDP). The actions at � μ�st� ∈ R3 output by the behav-
ioral policy are fed as the input vector at the same frequency fs.
Defined by Eq. (5), the actor’s action corresponds to the deflection of
the elevator, aileron, and rudder. The thrust control is delegated to an
inner auto-throttle [11,43] while the trim tab and flap deflection stay
zero. The control diagram from Fig. 1 shows the feedback loop
between the nonlinear intelligent agent and the controlled plant:

§The PH-LAB research aircraft jointly owned between the Delft University
of Technology Faculty of Aerospace Engineering andNetherlands Aerospace
Centre (NLR) (https://cs.lr.tudelft.nl/citation/) [retrieved 11 January 2023].

GAVRA AND VAN KAMPEN 889

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

https://cs.lr.tudelft.nl/citation/

x � �p; q; r; Vtas; α; β; θ;ϕ;ψ ; H; Xe; Ye�⊤ (4)

a ≔ �δe; δa; δr�⊤ ∈ A (5)

s ≔ �θe;ϕe; βe; p; q; r; α�⊤ ∈ S (6)

To account for realistic physical limits of the actuators, the spaceA
is restricted for each channel bounded to �alow � −10 deg;
ahigh � 10 deg�. The ranges are within the admissible deflections

of the modeled control surfaces [45].
The goal of the attitude controller is to track reference signals.

Following from [11] and [46], the θr and ϕr references are sequences

of cosine-smoothed step signals with amplitudes uniformly sampled

from the ranges: �−25 deg; 25 deg� for pitch and �−45 deg; 45 deg�
for roll angle. The latter ismotivated by thevalues specified in theCS-

25 regulations [47]. The range for pitch is based on the previous work

of [11,46,48]. The side-slip reference remains at zero.
Completing the POMDP formulation of optimal control, Eq. (7)

defines the reward signal, and Eq. (8) defines the fitness valueF�T�
i as

the total reward the ith policy accumulates during one episode. It

penalizes the L1 norm of the clipped and scaled attitude tracking

error, similar to the reward implemented by [11]. The scaling factor

cr � 6
π �1; 1; 4�⊤ accounts for the smaller magnitude of side-slip error.

At the end of the trial, a sparse negative reward ~rT penalizes early

crashes proportionally to the time left before the maximum episode

length Tmax. Empirically, a value of CP � 20 is deemed appropriate

for the proportionally constant,

~rt ≔
− 1

3
clip cr⊙et;−1; 0 1

t ∈ �0; T�
− CP

Δt �Tmax − T� t � T
(7)

F�T�
i ≔

T

t�0

~rt; i � 1; N (8)

B. Learning Framework

The Safety-Informed Evolutionary Reinforcement Learning

referred to as SERL, extends PDERL from [28] by replacing the

DDPG actor/critic with TD3 and the proximalmutation operator with

the safety-informed mutation operator.

1. Architecture Overview

SERL(N) trains N � 1 controllers (a TD3 actor and the genetic

population of N) with the same shape and size. Figure 2 depicts the

components of SERLand the interaction between theRL agent (blue)

and the GA operators (green). The environment (gray) simulates the

repeated rewarded evaluations of the policies. Overall, the architec-

ture boasts a modular design, where each component can be devel-

oped separately with overall potential gains.
The shared buffer trains the RL agent in an off-policy manner. The

two critics are feedforward neural networks with different shapes and

sizes than the genetic actors and TD3 policy, which have the same

footprint.
Inheriting from ERL and PDERL, selection is done via repeated

tournaments of size 3. The method is seen as appropriate due to its

Fig. 1 Control diagram for the attitude control task using TD3/SERL.

Fig. 2 High-level overview of the data flows through the SERL(N) framework. Inspired from similar diagrams shown in [28,31,32].

890 GAVRA AND VAN KAMPEN

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

relatively low computational time and performance for small pop-
ulations [18]. Genetic operators act once per generation, so the
number of agent-environment interactions (steps) was chosen as
the smallest common unit of training progress, and the termination
criterion is based on the accumulated number of steps. In the begin-
ning, episodes end prematurely, and so the number of steps per
generation cannot be constant, but it is upper-bounded by the maxi-
mum episode length multiplied by the population size.

2. Set of Genetic Memory Buffers

To integrate both operators, SERL uses a set of memory buffers
with each actor possessing genetic memory BG. The individual
buffers store the κmost recent experiences of each actor. Each genetic
buffer can then store experiences that span multiple generations
which are used by the distillation crossover and safety-informed
mutation operators. The common buffer B shares experience with
the individual genetic memories, but it does not equal their union.

3. Q-Filtered Distillation Crossover

The operator selectively merges the behaviors of two elite policies
based on their estimated Q values such that offsprings inherit opti-
mized behaviors from their parents and not just the weights of the
networks [28]. In contrast to M-point crossover, it acts on the phe-
notypical space and not on the genomes.
Consider two distinct parent policies μx and μy. An offspring

policy μo is created, and its buffer Bo is filled with equal amounts
of transitions from both parents. Its parameters θo are initialized
based on one of the parents. Then, the offspring actor is optimized
to selectively imitate (or distill) its parents’ actions for the sampled
states.
Genetic crossover combines two networks instead of one. This

introduces the problematic possibility of the offspring’s behavior
diverging from both parents. To account for it, the authors of [28]
introduce a cloning loss L�C� which trains the offspring μo to mini-
mize the L2 loss from the parents’ behaviors over a batch B:

L�C�
μ �θo;B�≔

1

jBj
jBj

i

μo�si� 2 � μo�si�− μp�si� 2;

μp �
μx if Q�si;μx�si��>Q�si;μy�si��
μy else

and B∼Bo

(9)

The operator uses gradient updates to bias the offspring’s phenotype

toward the estimated best-performing parent. The term kμo�si�k2
simply ensures that the backpropagated gradients of the policy loss
will not saturate the nonlinear activation functions [28].
Lastly, the pairing metric from Eq. (10) decides which elites are

going to be crossed. It uses the Euclidean distance between the
average actions taken by the agents [28]. It samples a batch of states
from each parent genetic memory with Px;y the corresponding state-
visitation probability,

d�μx; μy� ≔ Es∼Px
kμx�s� − μy�s�k2 � Es∼Py

kμx�s� − μy�s�k2
(10)

The probability of selecting a pair increases with the distance
d�μx; μy� between them. Distance-based selection strategy incenti-

vizes the introduction of new behaviors, developing a phenotypically
diverse population.

4. Safety-Informed Proximal Mutation

SERL retrieves the Gaussian mutation operator from the original
ERL, but it adapts it for the flight control task. Let one consider the
parent to be mutated μp, parameterized by θp with genetic memory
Bp. The genome of the offspring μo is sampled from an isotropic

Gaussian distribution with the mean μp and variance σmut (mutation

intensity).

Then, the mutation operator samples a batch of transitions BM

and sums the policy gradient with respect to its parameters over
the states withinBM. Equation (11) computes the policy sensitivity
sμp as the root of the squared gradient summed over the action

space:

θo ∼N θp;
σmut

s
I with s ≔

jAj

k

jBM j

i

∇θμθ�si�
2

k

;

BM ∼ Bp (11)

The higher the magnitude of the policy gradient concerning a
parameter, the smaller the mutation step becomes. Essentially,
sensitive NN parameters are perturbed less by the scaled update.
The offspring policy has its parameters within the proximity of its
predecessor, thus limiting behavioral divergence, which was
shown to lead to catastrophic forgetting [32,49].
However, for the flight control applications, to take into account

existing safety-related domain knowledge, a safety-informed muta-
tion operator is adapted from [32]. Subsequently, the gradients are
estimated on batches BC sampled from its parent critical buffer
BC ⊂ B. This buffer contains the transition tuples associated with a
high value of a cost function, directly related to safety knowledge on
the maneuver.
Equation (12) defines the SERL critical buffer as a subset of

transitions that cause the next state to enter a nonsafe region of the
flight envelope. These aremarked by entering prestall dynamics at an
angle of attack higher than 11 deg or by having the absolute value of
the roll angle larger than 60 deg. The latter was empirically observed
to degenerate in an unstable spiral motion,

BC ≔ fhst;at; ~rt; st�1i ∈ Bj αt�1 ≥ 11 deg jj ϕt�1 ≥ 60 degg
(12)

The safety-informed mutation hijacks the effect of the proximal
operator and directs exploration toward the less-sensitive regions of
the parameters space. Essentially, the offspring’s genomewill evolve
less in the directions that could result in critical transitions, in other
words, unsafe behaviors. Nevertheless, because the operator scales
the additive parameter noise, unsafe exploration is only discouraged
and not prohibited; hence, the offspring does not benefit from safety
guarantees.

C. Optimization for Policy Smoothness

To combat policy noise, the Conditioning for Action Policy
Smoothness (CAPS) regularizes the policy loss function according
to Eq. (13). Whereas the term LT aims for Lipschitz temporal
continuity by minimizing the L2 norm between the current action
and the next action, the spatial term LS penalizes noise in system
dynamics by ensuring a locally consistent policy [15]. The regu-
larization weights, λT , and λS, control the strength of the corre-
sponding terms and can be tuned. During training, CAPS adds their
weighted sum to the policy loss function from Eq. (2) for SGD to
propagate their effect and direct the RL updates toward smoother
control actions,

L�CAPS�
μ ≔ λS ⋅ kμθ�s� − μθ� ~s�k2

LS

� λT ⋅ kμθ�s� − μθ�st�1�k2
LT

;

~s ∼N �s; σI� (13)

Because of their inherent nonlinearity, multilayer NN policies out-
put action signals with spectral components in which the input
information is not readily visible. To measure and compare the
smoothness of different policies following the same references,
the Sm metric from Eq. (14) takes the frequency-weighted sum of
the spectral amplitudes of all actuating signals. The metric is
inspired by the smoothness defined in [15] but with two key
differences. Dividing by the episode duration T penalizes shorter

GAVRA AND VAN KAMPEN 891

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

trails, and the square root scales down the value, making the unit of
the Smmetric equal to rad∕s. Lastly, the negative sign ensures that
higher Sm corresponds to smoother actuating signals and the pos-
itive scaling constantCSm (set to 10)makes themetric comparable to

the reward-based fitness term from Eq. (7),

Sm ≔ −
CSm

T
⋅

2

n

jAj

a�1

n∕2

k�1

1

n
A�k� 2 ⋅ fk

a

; n � T

fs
(14)

The metric uses the spectral amplitude estimate of the Fourier-
transformed actuating signal A�k� calculated via a fast Fourier trans-
form. The spectral components are summed up to the discrete
Nyquist frequency index, fs∕2, sampled at fs.
While CAPS indirectly optimizes spatial and temporal continuity,

it is more difficult to objectively quantify action smoothness in
multidimensional spaces. In contrast, any contentious policy can be
evaluated and optimized using the above-defined smoothness value.
For the training scenario described by Sec. III.D, the fitness is defined

according to Eq. (8). Additionally, an ablation study investigates the
effect of CAPS regularization in comparison to Sm optimization. The
latter is obtained by adding the Sm term from Eq. (14) to the fitness
function. Spectral components of the tracked reference signals are also

present in the actuating signal, but simply subtracting their effect from

the computed Sm value is not readily possible. Thus, using the same set

of references for all agents enables a valid comparison.

D. Training Task

For the training environment, the aircraft model is trimmed

for steady straight symmetric flight at V tas � 90 m∕s and H �
2;000 m. The learning phase concerns repeated training epochs

alternated with testing epochs. During learning, the maximum dura-

tion of one training episode is Tmax � 20 s, corresponding to at most

200 agent-environment interactions. One training epoch represents

one generation during which all policies are evaluated over E epi-

sodes. Thegenetic operators act once per generation,while TD3 takes

E × T gradient steps to compensate for the transitions accumulated

over the epoch. At the end of the generation, the actor synchroniza-

tion replaces the policy with the lowest fitness.

The training routine of both TD3 and SERL considers five distinct

initializations, each with its own random seed used to randomly

initialize the actors, critics, and reference signals.
For SERL, choosing the episode length is a tradeoff between actors

receiving enough samples to explore and the training computational

complexity. Longer episodes would increase the time required for the

neuroevolutionary loop. TD3 or SERL(10) learns from 106 steps (i.e.,
interactions) which require approximately 200min on eight CPU cores,

Intel Xeon E5-1620 3.50 GHz.¶ SERL(50) trains for 5 × 106 steps,

proportionally higher to account for the additional learning actors. The

wall-clock time also scales linearly with the genetic population size due

to the larger numberof evaluations.Tournament selection,mutation, and

crossover add a small overhead relative to smaller population sizes,

while the time needed for gradient backpropagation does not increase.

The first group of hyperparameters from Table 1 configures the

TD3 agent, whereas the second sets the GA loop. Among them, the

mutation magnitude σmut has the highest impact on exploration as it

directly regulates the amount of noise added to the genome. The last

group controls the interaction between the two optimizationmethods.

The synchronization rate equals the generational frequency of copy-

ing the TD3 policy weights.

E. Evaluation Tests

The policies optimized by each agent are tested on multiple

scenarios, listed in Table 2. They are selected from the surveyed

Table 1 Hyperparameters of the DRL (first group), GA (second), and their
interaction (third), used training the TD3, SERL(10) and SERL(50)

Parameter Name Symbol TD3 SERL(10) SERL (50)

Learning rate (actor and critics) αa;c 4.33 × 10−4 4.82 × 10−5 1.86 × 10−5

Discount factor γ 0.99 0.99 0.99

Batch size jBj 64 86 256

Memory buffer size jBj 100,000 800,000 2,000,000

Actor hidden layers –– 3 3 3
Actor hidden sizes –– (96, 96,96) (72,72,72) (72,72,72)
Critics hidden layers –– 2 2 2
Critics hidden size –– (200,300) (200,300) (200,300)
Nonlinear activation –– ReLU tanh tanh
Exploratory noise magnitude σ 0.33 0.29 0.23

Population size N N.A. 10 50
Mutation magnitude σmut N.A. 2.47 × 10−2 6.27 × 10−2

Elite fraction e N.A. 0.3 0.2

Genetic memory size κ N.A. 8,000 8,000

Actor synchronization rate –– N.A. 1 1
Policy evaluations per epoch E 10 10 5

Steps for training –– 106 106 5 × 106

ReLU, Rectified Linear Unit.

Table 2 Evaluation cases for fault-tolerance (F) and robustness (R)

Case Title Description

- Nominal Unchanged from training: H � 2;000 m,
Vtas � 90 m∕s

F1 Iced wings Maximum angle of attack reduced by 30%
and the drag coefficient increased with 0.06

F2 Shifted center of
gravity

Aircraft center of gravity shifted aft by
0.25 m

F3 Saturated aileron Aileron deflection clipped at	1 deg

F4 Saturated elevator Elevator deflection clipped at	2.5 deg

F5 Broken elevator Elevator effectiveness coefficients
multiplied by 0.3

F6 Jammed actuator Rudder stuck at a deflection of 15 deg

R1 High dynamic
pressure

Trim setting at H � 2;000 m,
V tas � 150 m∕s

R2 Low Dynamic
Pressure

Trim setting at H � 10;000 m,
V tas � 90 m∕s

R3 Disturbance and
biased cesensor noise

Additive sensor noise and vertical wind gust
of 15 ft/s acting for 3 s

¶GPU parallelization was tested, but due to relative small NN and batch
sizes, it did not speed up the training.

892 GAVRA AND VAN KAMPEN

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

literature based on their relevance to flight systems, expected
difficulty, and possibility to be modeled within the DASMAT frame-
work with the described attitude control architecture.
The cosine-smoothed step references follow similar coordinated

pitch-roll maneuvers, but the evaluation episodes are longer, last-
ing Tmax � 80 s. Each test case loops through the same list of
pseudorandom references generated using three different seeds.
Thus, each intelligent controller is evaluated on the same tasks to
enable a fair comparison between their tracking performance and
smoothness.
In Table 2, the nominal scenario considers the same flight con-

ditions as the training task, and it serves as the benchmark for the
other cases to be compared against. The next six fault cases are based
on the work of [11]. Simulating the agent’s response with the con-
trolled plant altered according to each of these cases investigates their
fault-tolerant capabilities.
Cases R1 and R2 consider two flight conditions with different

dynamic pressures by changing the airspeed and altitude from the
trim setting used during training. Because the actuators and aircraft
dynamics are affected by the dynamic pressure, these tests bench-
mark the agent’s robustness to unseen flight regimes.We test the new
TD3 and SERL agent’s robustness on two more extreme cases than
the ones previously investigated in [11,48].
The last case tests the capacity to reject an external disturbance in

the presence of realistic zero-mean noise (modeled from [50]) added
to the sensor observation. The simplified disturbance is a vertical gust
of wind whose velocity is specified by the MIL-F-8785C specifica-
tion [51].
The normalized mean absolute error (NMAE) evaluates the

tracking performance by averaging pitch, roll, and side slip. The
normalization interval is �−25 deg; 25 deg� for the pitch and yaw
channels and �−1 deg; 1 deg� for side slip, as its response is expected
to remain in the neighborhood of 0.

IV. Results and Discussion

This section presents the results of learning, fault tolerance, and
initial condition robustness for three distinct agents: SERL(10),
SERL(50), and TD3. It also discusses the effects of involving direct
Sm optimization. If not specified otherwise, the sample average and
standard deviation are computed over 30 random evaluations gen-
erated from three seeds. To verify whether the NMAE averages
differed significantly, the t test is used under the assumption of
normally distributed samples.

A. Learning Curves

The training curves fromFig. 3 depict learning progress by plotting
the average episodic reward obtained by each policy alongside the
total number of time steps the policies expired interacting with the
environment. All agents converge toward returns, comparable to
values reported by [11,46,48]. After training, none of the polices
ends the episode prematurely.

TD3 shows an initial advantage but suffers from unstable learning
progress marked by spikes in standard deviation followed by sudden
drops in the return, referred to as catastrophic forgetting. In contrast,
both SERL agents are less sample efficient, whereas their training
progresses less erratically than TD3, and with a lower and monoton-
ically decreasing deviation.
SERL(50) requires five times more samples to reach a similar

return, a direct drawback of the poorer sample efficiency of genetic
algorithms. SERL(10) learns with sample-complexity comparable
to the TD3 method, as its gradient-updated actor is more often
selected among the elites. Thus, within SERL, TD3 learning drives
early-stage learning, its elitism rate increasing up to 25% after 5 ×
105 frames. Then, the rate of selecting TD3 slowly decreases,
marking the switch to genetic mechanisms that allow for long-
term performance.
Empirically, it has been observed that N is the hyperparameter

with the highest impact on training, directly altering the balances
between the GA and TD3 learning. A larger population increases
the number of frames experienced between RL updates, and it
reduces the number of transitions corrupted with exploratory noise.
Thus, increasing the genetic population limits the RL effort. At the
same time, both the crossover and mutation operators become more
effective at developing novel behaviors once the genetic pool
increases.

B. Fault-Tolerancy Analysis

Despite validating the effect of training, learning curves do not
paint a full picture of the control capabilities. Figure 4 shows the
fault-case evaluation performance of the champion policy of
SERL(10) and SERL(50) alongside the TD3-only agents trained
in parallel to the population by the hybrid loop and the separately
trained TD3. The best-behaving SERL(50) actor significantly out-
performs (p < 0.05) both the SERL(10) champion and the TD3-
only actor for all cases apart from the last two fault cases. Looking at
case F5, SERL(50) scores lower by 6.4% with p � 0.1 > 0.05,
whereas for F6, the TD3-only actor tracks the references better than

the best of SERL(10) and SERL(50) by 16.5% (p � 2 × 10−35) and

by 6.1% (p � 8 × 10−13), respectively. The F6 NMAE scores are
significantly higher than the rest, so Sec. IV.B.2 will further detail
this case.
For both SERL configurations, the identified champion for

each case obtains an average tracking error at least as good as
the TD3 actor trained alongside it. In the case of a small popula-
tion, the RL part drives the policy optimization so the TD3 actor is
more often selected among the elites. This happens for the nominal
scenario and the faults F3, F4, and F6. One can argue that, in the
context of the current control tasks, training multiple randomly
initialized nonlinear controllers benefits from the emerging diver-
sity and thus achieves higher tracking performance in all but
one case.
Next, F3 and F6 are discussed, signifying the opposite ends on the

spectrum of relative tracking performance.

Fig. 3 Learning curves of the average champion reward (solid) and its standard deviation (shading) for TD3, SERL(10), and SERL(50). Statistics are
computed over five evaluations.

GAVRA AND VAN KAMPEN 893

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

Fig. 4 Tracking NMAE and its standard deviation for each fault case. The hatched bars denote the SERL champion and the solid-colored bars the TD3
actors trained alone or within SERL (CG, Centre of gravity).

Fig. 5 Evaluation time traces of the SERL(50) champion (top) and TD3 policy (bottom) for the damaged aileron (F3). The interrupted line shows the
aileron saturation limit.

894 GAVRA AND VAN KAMPEN

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

1. Saturated Aileron (F3): Downside of Aggressive Actions

Figure 5 depicts the responses of the SERL(50) champion and the

TD3 actor when tasked to control a plant with a clipped actuator.

Large actuating bounds during training allow the policies

to exploit them and behave aggressively. In Fig. 5, comparing the

responses computed by the two actors, the δa commanded by the

SERL(50) champion remains within the saturation bounds. With a

relatively calm response (i.e., low frequency and magnitude), the

champion follows the roll and side-slip references with the same

accuracy as in the nominal case. It obtains an NMAE tracking error

lower by 45% (p � 4 × 10−10) than its TD3-only counterpart.

The TD3 actor behaves more aggressively across all actuating

channels, with high-frequency commands and large deflections.

At t � 20 s, the roll angle reference shifts from 3 to −3 deg,
prompting the TD3 actor to command a high aileron deflection.

TD3 actor tries to push further the actuator bound, unaware of the

fault. Thus, the commanded δa spikes nearly to its limit at

δalow � −10 deg. Arguably, this unnecessary and suboptimal

behavior stems from a preference for aggressive actions learned

by the TD3 agent.

2. Jammed Rudder (F6): Lost Achievable Novelty

When the rudder is stuck at δr � 15 deg, a large and relatively

constant side-slip error raises the NMAE, and the genetic champions

cannot match the error of the TD3-only agent. Figure 6 shows the

responses of the aircraft when controlled by the SERL(50) champion

(top) and the TD3 actor (bottom). One can argue that, when one

control channel is completely blocked, a significant amount of the

behavioral diversity, encoded by the evolved population, has been

lost. Here, training multiple controllers is less advantageous than

concentrating the frame-based learning updates on one single policy,

as done by the TD3-only agent.

Also,while the SERL(50) champion tries to correct for the induced

side-slip deviation, the TD3 actor does not. The explanation stems

from the stronger coupling between the rudder and aileron channel of

the TD3-only policy.

Fig. 6 Evaluation time traces of the SERL(50) champion (top) andTD3 policy (bottom) for the jammed rudder fault (F6). The interrupted line shows the
real rudder deflection.

GAVRA AND VAN KAMPEN 895

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

C. Robustness Analysis

Previous works have shown robustness to the flight condition of a
stochastic policy trained within a hierarchical architecture on one trim
condition [11]. Despite this, their outer loop controller observed the
altitude which offers partial information with respect to the dynamic
pressure which is missing from the current attitude tracking task. The
bar chart fromFig. 7 shows the control performance in the last four cases
from Table 2, corresponding to previously unencountered conditions.
High dynamic pressures would increase the effectiveness of all

three control surfaces considered. This benefits both of the SERL
controllers, with the SERL(50) error deviation decreasing and the
SERL(10) tracking the reference slightly better (14.2% lower error
with p � 0.06 > 0.05). The TD3 actor experiences the opposite, its

R1 NMAE being higher by 35.4% (p � 1 × 10−7 < 0.05) than the
nominal case. Again, the TD3 policy is more aggressive, a subopti-
mal trait when the controlled actuators become more effective.
Flying in low dynamic pressure makes the responses sluggish.

Reacting to it proves problematic for all controllers and translates into
a higher average tracking error and standard deviation. The
SERL(50) champion sees an increase of 60.1% which is lower than
the one reported by [48] for a comparable but less difficult task. In this
case, theRL-only agent provesmore robust as itsNMAE increases by
31.4%, the least among all three.
Lastly, adding biased noise does not significantly influence

tracking performance. It contrasts with the effect it has on online
RLmethods that use locally identified dynamicsmodels which suffer
from poor robustness against [45].Moreover, the policies can reject a
15 ft/s vertical wind gust. The SERL champion policy remains the
same for the nominal case, hinting that, in contrast to the faulty
scenarios, phenotypic diversity is not necessary to achieve superior
robustness to atmospheric disturbance.
Overall, both SERL agents achieve relatively small changes in

NMAE, comparable to the ones previously reported in the literature.
Thus, they remain robust to the change in initial flight conditions and
external disturbances. The TD3 agent is less capable of reproducing
its nominal performance once the conditions change.

D. Smoothness of Control Action Signals

In the time traces shown by the previous subsections, a key differ-
ence surfaceswhen comparing the SERL and theRL-only actors. The
control policy smoothness is always lower for the TD3-trained con-
trollers by at least one order of magnitude. This is not only visible via
the printed Sm metric but also from the high-frequency components
present in the actuating signals.

1. Causes for Lack of Action Smoothness

To explain the control noise phenomena, the current work presents
the following three factors, which have been inferred from the
aforementioned study on robustness and the surveyed literature:

1) Using (deep) neural networks as optimal policy function
approximators: Multilayered NNs have a significant number of
degrees of freedom, justifying their popularity in learning complex
nonlinear dynamics [7]. Thus, NNs can learn any frequency com-
ponent within the training signal. Without being biased toward
them, this also includes the high-frequency components. Never-
theless, the frequency-domain analysis of neural network control-
lers is not yet a well-researched field.
2) Exploiting environmental dynamics: The high-frequency com-

ponents in the actuating signals are damped out and saturated by the
simulated aircraft dynamics [43]. Hence, they are not present in the
tracked states. Meanwhile, a real-life system with unideal actuators
and friction would further reduce the high-frequency comments. By
not modeling such phenomena or penalizing the noise via reward or
fitness signals, the agent could optimize the policy toward containing
it for small increments in the loss landscape. In turn, this would
eventually aggravate the already-present gap between offline training
and deployment on real hardware.
3) Exploratory strategy: As an off-policy learning framework,

TD3 explores during training by adding zero-mean Gaussian noise
to the selected actions. Thus, the sampled transitions used by the
SGDupdates are already corrupted by noise. TheNNs could learn to
overfit these noisy dynamics. Empirical evidence suggests that the
absence or damping of additive state-action exploratory noise can
benefit action smoothness. The analysis presented by [15] has
empirically shown that on-policy methods or stochastic policy
algorithms are less prone to training noisy control policies. So far,
methods using the NE mechanism have not been assessed in the
field literature.
The presence or absence of one ormore of these factors dictates the

noise phenomenon. Subsequently, one can hypothesize that NN
policies optimized via GAs output smoother control actions com-
pared to their counterparts, trained via off-policy DRL.
Whereas the first two factors do not directly generate action

noise, they enable it. Moreover, both SERL and TD3 could be
affected by either of them; the only difference comes from their
exploratory strategies. Nevertheless, the TD3 information is con-
stantly copied into the genetic population, and individuals are
therefore trained with its exploratory strategy. If tournament selec-
tion places it among the elites, its noise behavior would spread
through the population.
Previous works in DRL-based flight control have circumvented

the noise problem by diminishing the impact of the first two factors.
To reduce noise, one can use simpler control architectures, such as a
PID, regularizing theNNwith, for example, CAPS [15], or rewarding
smooth actions (a method used by the authors of [14]). Similarly,
incremental control such as the methods from [11,48], low-pass
filtering, or discretizing the output signals obtains the smoothing
effect [13]. These methods change the learning to partially remove
the second factor.

Fig. 7 Average NMAE and standard deviation for SERL(10), SERL(50), and TD3 controller. Hatching denotes each of the evaluation cases.

896 GAVRA AND VAN KAMPEN

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

2. Training for Smoothness Versus Performance

The noisy-behavior hypothesis is investigated through an ablation

study on the fitness and policy objective functions. Because the

learning environment cannot be changedwithout modifying the task,

one shall look at ways to adjust the first and third factors.
By design, SERL has two options to optimize for a smooth control

policy, namely, using CAPS for the TD3 actors and adding the

smoothness objective to the fitness function. The same three agents

are considered: TD3, SERL(10), and SERL(50). Each learns with

and without CAPS regularization and smoothness terms added to the

objective and fitness function, resulting in ten training configura-

tions. For SERL(50), we can omit the CAPS configuration as, in the

large population scenario, the TD3 actor is mostly discarded during

selection.
The study compares the average smoothest of the population in

each training scenario to identify and isolate the effect of the NE

mechanism on smoothest and performance. Figure 8 summarizes the

gathered results as a scatter plot of the episodic return of the cham-

pion versus the population average smoothness.
Increasing the population size affects performance and control

smoothness at different scales. The SERL(50) agent obtains a reward

comparable with the CAPS-regularized TD3 and SERL(10), but it

maintains a higher and almost constant policy smoothness at

Sm � −5 	 1 rad ⋅ Hz. With the highest performance at R �
−78.9 	 21.3, TD3 suffers from the high-frequency action noise

already visible in the time traces shown in Sec. IV.B, with an

Sm � −1500 	 123 rad ⋅ Hz. The effect of both CAPS and smooth

fitness is visible, significantly shifting the Smmetric toward the right.
Adding the Sm term to the fitness function improves control

smoothness, but it also reduces the selective pressure for perfor-

mance. Hence, when the TD3 actor is not regularized, it rarely wins

tournaments against other policies. In practice, this results in a

significantly higher spread of the SERL(10)-SF compared to the

SERL(10)-CAPS + SF. The smoothness of SERL(50) is not

improved by either CAPS or smoothness-oriented fitness, hinting

that the population already learns smooth behaviors via the NE

mechanisms and benefits from TD3 injection only in the incipient

part of the training. For SERL(10)-SF, the loss caused in performance

by adding the smoothness term can only be partially mitigated by

CAPS, the size of the population being too small for sample-efficient

mutation and crossover.
Thus, based on the ablation study, one can argue that the developed

TD3 controller learns noisier policies in comparison to the SERL as a

direct consequence of combining the three factors.Meanwhile, theNE

optimizationmitigates the impact of the third factor.While state-action

noise is required for off-policy exploration of theTD3agent, SERLcan
explore the policy parameter space, decoupling learning from the noisy
transitions. The resulting behaviors propagate through the genetic
population via distillation crossover. Thus, SERL trains performant
controllers (controllers with high tracking permanence) in the large-
population configuration without deteriorating the average smooth-
ness, validating the hypothesis.
The standard deviation is an imperfect estimator of the popula-

tion distribution. The Sm distribution shows skewness toward large
smoothness, indicating that, at the end of the training, only a few
noisy outliers remain. These outliers can be traced back to TD3-
trained weights copied during recent actor synchronizations. The
performance metric distribution is more symmetrically spread
through the population.

3. Applications of Smoothness-Performance Tradeoff

Understating the tradeoff between performance and action
smoothness is relevant for bridging the gap between simulation
training and the hardware. Low-pass filtering the commends of
pretrained policies can mitigate the effects of noise, but it might
unpredictably degrade the performance of nonlinear controllers.
Subsequently, such filters will require extensive tuning for multiple
operating conditions via real-life testing [15]. Similarly, changing the
training task to incremental control achieves a filtering effect.
Unfortunately, it also inherently increases the dimensionality of the
learning space, hindering convergence and increasing the rate of
failed trials [11,46].
Looking back at Fig. 8, two distinct regions emerge. Applications

such as drone racing prioritize short-term performance so they will
benefit more from controllers trained within the top-left configura-
tions, accepting a higher degree of action noise. In contrast, when the
aircraft carries sensitive payloads, such as scientific instruments or
passengers, performance might be sacrificed to ensure that smooth
commands are followed. The right-hand training regimewould there-
fore be preferred for these applications.
In both cases, the designer should have the opportunity to decide.

Meanwhile, at the cost of proportionally longer training time,
SERL(50) achieves the best of both worlds.

V. Conclusions

SERL, a safety-informed Evolutionary Reinforcement Learning
method, combines DRL and neuroevolution via GA to train flight
controllers on a nonlinear fixed-wing aircraft model.
The current work empirically proved that, by adjusting the pop-

ulation size, SERL can balance performance and control smoothness.

Fig. 8 Champion return vs average smoothness for three agents trained with and without CAPS regularization and a smoothness optimization term.

GAVRA AND VAN KAMPEN 897

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

Following previous research, off-policy state-space exploration using
unregularizedmultilayer neural networkswas shown to aggravate the
control action noise. This happens in simulation environments that
only prioritize tracking performance but can be completely alleviated
via parameter-space exploration through neuroevolutionary oper-
ations.
Training a large controller population required proportionally

more samples but achieved significantly higher fault tolerance than
a comparable state-of-the-art TD3 agent in five out of six evaluation
cases. SERL’s performance also remained robust to changes in flight
conditions and external disturbances in the presence of realistic
observation noise. This demonstrated the generalization benefit of
evolving a phenotypically diverse population of controllers through
NEcombinedwithRL.Nevertheless,when system faults collapse the
offline-obtained diversity, TD3 remains marginally superior.
To build on top of the current research, it is recommended to orient

toward real-world applicability. As a first step, a heuristic should be
designed to adapt or select online the behavioral policy from the
SERL-trained pool of actors. The discrete decision problem can be
formulated as short-term receding horizon optimization. Then, online
system identification can model the local dynamics (e.g., an incre-
mental model such as the one used in [52] to predict the one-step-
ahead state or the agent’s behavior such as done in [23]) and estimate
each actor’s performance over the receding horizon.A new champion
policy is selected based on performance ranking or tournament
selection, and the behavioral policy is shifted toward it. Ultimately,
this represents a step in validating artificial intelligence within
autonomous fault-tolerant controllers, making them a safety net
applicable to safety-critical systems in general and to aircraft in
particular.

Appendix: Effect of Mutation on Learning

This section’s comparative study investigates the relative perfor-
mance contribution of the safety-informed mutation. Three
SERL(10) agents have trained on the same task and with the same
hyperparameters described in Sec. III, each incorporating one of the
operators: safety informed (ours), proximal mutation from [28], and
the simple Gaussian mutation used by original ERL [31].
The performance variation across the population correlates with its

robustness. In the left-hand side of Fig. A1, the learning history is
compared for the three operators. Mutating via the safety-informed
operator ultimately obtains a converged performance better than both
proximal andGaussianmutations (p � 10−4). Its learning progress is
more stable learning, with a lower chance of catastrophic forgetting
due to less abrupt random parameter disturbances. A more
performance-robust operator positively affects the maximum perfor-
mance of the champion, as visible in the right-hand side plot where
the safety-informed mutation outscores significantly the proximal

one (p � 3.6 ⋅ 10−4). Safety-informed exploration directs learning
away from hard-to-learn experiences, developing policies with
smoother loss landscapes. These policies benefit from enhanced
sample efficiency and converging toward better controllers.

References

[1] ICAO, “Safety Report,” TR, International Civil Aviation Organization,
2020, https://www.icao.int/safety/iStars/Pages/Accident-Statistics.aspx
[retrieved 5 March 2023].

[2] Lu, P., van Kampen, E.-J., De Visser, C., and Chu, Q., “Aircraft Fault-
Tolerant TrajectoryControlUsing IncrementalNonlinearDynamic Inver-
sion,” Control Engineering Practice, Vol. 57, Dec. 2016, pp. 126–141.
https://doi.org/10.1016/j.conengprac.2016.09.010

[3] Edwards, C., Lombaerts, T., and Smaili, H., Fault Tolerant Flight
Control, Lecture Notes in Control and Information Sciences, Vol. 399,
Springer–Verlag, Berlin, April 2010, pp. 1–560.
https://doi.org/10.1007/978-3-642-11690-2

[4] Lavretsky, E., andWise, K. A., “Robust Adaptive Control,” Robust and
Adaptive Control: With Aerospace Applications, Springer–Verlag,
Berlin, 2012, pp. 317–353.
https://doi.org/10.1007/978-1-4471-4396-3

[5] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., et al., “Mastering the Game of Go with Deep Neural
Networks and Tree Search,” Nature, Vol. 529, No. 7587, 2016,
pp. 484–489.
https://doi.org/10.1038/nature16961

[6] Sutton, R. S., and Barto, A. G., Reinforcement Learning: An Introduc-
tion, MIT Press, Cambridge, MA, 2018.

[7] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT
Press, Cambridge, MA, 2016, http://www.deeplearningbook.org
[retrieved 5 March 2023].

[8] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y.,
Silver, D., andWierstra, D., “Continuous Control with Deep Reinforce-
ment Learning,” 2019, https://arxiv.org/abs/1509.02971 [retrieved 5
March 2023].

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al., “Human-Level Control Through Deep Reinforce-
ment Learning,” Nature, Vol. 518, No. 7540, 2015, pp. 529–533.
https://doi.org/10.1038/nature14236

[10] Choi, M., Filter, M., Alcedo, K., Walker, T. T., Rosenbluth, D., and Ide,
J. S., “Soft Actor-Critic with Inhibitory Networks for Retraining UAV
Controllers Faster,” 2022 International Conference on Unmanned Air-
craft Systems (ICUAS), Inst. of Electrical and Electronics Engineers,
New York, 2022, pp. 1561–1570.
https://doi.org/10.1109/ICUAS54217.2022.9836052

[11] Dally, K., and Van Kampen, E.-J., “Soft Actor-Critic Deep Reinforce-
ment Learning for Fault Tolerant Flight Control,” AIAA Scitech 2022

Forum, AIAA Paper 2022-2078, 2022.
https://doi.org/10.2514/6.2022-2078

[12] Bøhn, E., Coates, E.M.,Moe, S., and Johansen, T. A., “DeepReinforce-
ment Learning Attitude Control of Fixed-Wing UAVs Using Proximal
Policy Optimization,” 2019 International Conference on Unmanned

Aircraft Systems (ICUAS), Inst. of Electrical and Electronics Engineers,
New York, 2019, pp. 523–533.
https://doi.org/10.1109/ICUAS46274.2019

[13] Braun, D., Marb, M. M., Angelov, J., Wechner, M., and Holzapfel, F.,
“Worst-Case Analysis of Complex Nonlinear Flight Control Designs
Using Deep Q-Learning,” Journal of Guidance, Control, and Dynam-

ics, Vol. 46, No. 7, 2023, pp. 1–13.
https://doi.org/10.2514/1.G007335

[14] Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M., Koltun, V.,
and Scaramuzza, D., “Champion-Level Drone Racing Using Deep

Fig. A1 Learning curves of the average over the actor population (left) and champion (right) trained with each of the three mutation operators. The
reward statistics are calculated over 30 evaluation runs at each training step.

898 GAVRA AND VAN KAMPEN

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

https://www.icao.int/safety/iStars/Pages/Accident-Statistics.aspx
https://doi.org/10.1016/j.conengprac.2016.09.010
https://doi.org/10.1007/978-3-642-11690-2
https://doi.org/10.1007/978-1-4471-4396-3
https://doi.org/10.1038/nature16961
http://www.deeplearningbook.org
https://arxiv.org/abs/1509.02971
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/ICUAS54217.2022.9836052
https://doi.org/10.2514/6.2022-2078
https://doi.org/10.1109/ICUAS46274.2019
https://doi.org/10.2514/1.G007335

Reinforcement Learning,” Nature, Vol. 620, No. 7976, 2023,
pp. 982–987.
https://doi.org/10.1038/s41586-023-06419-4

[15] Mysore, S., Mabsout, B., Mancuso, R., and Saenko, K., “Regularizing
Action Policies for Smooth Control with Reinforcement Learning,”
2021 IEEE International Conference on Robotics and Automation

(ICRA), Inst. of Electrical and Electronics Engineers, New York,
2021, pp. 1810–1816.
https://doi.org/10.1109/ICRA48506.2021.9561138

[16] Doncieux, S., Bredeche, N., Mouret, J.-B., and Eiben, A. E. G., “Evolu-
tionary Robotics:What,Why, andWhere to,” Frontiers in Robotics and
AI, Vol. 2, March 2015, p. 4.
https://doi.org/10.3389/frobt.2015.00004

[17] Simon, D., Evolutionary Optimization Algorithms, Wiley, Hoboken,
NJ, 2013.

[18] Koza, J. R., and Poli, R., “Genetic Programming,” Search Method-

ologies, Springer–Verlag, Berlin, 2005, pp. 127–164.
[19] Zhang,B.-T., andMuhlenbein, H., “EvolvingOptimalNeural Networks

Using Genetic Algorithms with Occam’s Razor,” Complex Systems,
Vol. 7, No. 3, 1993, pp. 199–220.

[20] Papavasileiou, E., Cornelis, J., and Jansen, B., “A Systematic
Literature Review of the Successors of ‘Neuro Evolution of Aug-
menting Topologies’,” Evolutionary Computation, Vol. 29, No. 1,
2021, pp. 1–73.
https://doi.org/10.1162/evco_a_00282

[21] Stanley, K. O., and Miikkulainen, R., “Evolving Neural Networks
ThroughAugmenting Topologies,”Evolutionary Computation, Vol. 10,
No. 2, 2002, pp. 99–127.
https://doi.org/10.1162/106365602320169811

[22] Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B., “Robots That
Can Adapt Like Animals,” Nature, Vol. 521, No. 7553, 2015,
pp. 503–507.
https://doi.org/10.1038/nature14422

[23] Allard, M., Smith, S. C., Chatzilygeroudis, K., Lim, B., and Cully, A.,
“Online Damage Recovery for Physical Robots with Hierarchical Qual-
ity-Diversity,” ACM Transactions on Evolutionary Learning, Vol. 3,
No. 2, 2023, pp. 1–23.
https://doi.org/10.1145/3596912

[24] Fontaine,M.C., Togelius, J., Nikolaidis, S., andHoover,A.K., “Covari-
ance Matrix Adaptation for the Rapid Illumination of Behavior
Space,” Proceedings of the 2020 Genetic and Evolutionary Computa-

tion Conference, Assoc. for Computing Machinery, New York, 2020,
pp. 94–102.
https://doi.org/10.1145/3377930

[25] Krishnakumar, K., and Goldberg, D. E., “Control System Optimization
UsingGenetic Algorithms,” Journal of Guidance, Control, andDynam-
ics, Vol. 15, No. 3, 1992, pp. 735–740.
https://doi.org/10.2514/3.20898

[26] Ghiglino, P., Forshaw, J. L., and Lappas, V. J., “Online Evolutionary
Swarm Algorithm for Self-Tuning Unmanned Flight Control Laws,”
Journal of Guidance, Control, and Dynamics, Vol. 38, No. 4, 2015,
pp. 772–782.
https://doi.org/10.2514/1.G000376

[27] Emami, S. A., Castaldi, P., and Banazadeh, A., “Neural Network-Based
Flight Control Systems: Present and Future,” Annual Reviews in Con-

trol, Vol. 53, Jan. 2022, pp. 97–137.
https://doi.org/10.1016/j.arcontrol.2022.04.006

[28] Bodnar, C., Day, B., and Lió, P., “Proximal Distilled Evolutionary
Reinforcement Learning,” Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 34, No. 4, April 2020, pp. 3283–
3290, https://ojs.aaai.org/index.php/AAAI/article/view/5728.
https://doi.org/10.1609/aaai.v34i04.5728

[29] Pourchot, A., and Sigaud, O., “CEM-RL: Combining Evolutionary and
Gradient-Based Methods for Policy Search,” 2019.
https://doi.org/10.48550/arXiv.1810.01222

[30] Sigaud, O., “Combining Evolution and Deep Reinforcement Learning
for Policy Search: A Survey,” ACM Transactions on Evolutionary

Learning, Vol. 3, No. 3, 2022, pp. 1–20.
https://doi.org/10.1145/3569096

[31] Khadka, S., and Tumer, K., “Evolution-Guided Policy Gradient in
Reinforcement Learning,” Advances in Neural Information Process-

ing Systems, edited by S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett, Vol. 31, Curran Assoc.,
2018.
https://doi.org/10.48550/arXiv.1805.07917

[32] Marchesini, E., Corsi, D., and Farinelli, A., “Exploring Safer Behaviors
for Deep Reinforcement Learning,” Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 36, No. 7, June 2022, pp. 7701–7709,

https://ojs.aaai.org/index.php/AAAI/article/view/20737.
https://doi.org/10.1609/aaai.v36i7.20737

[33] Bertsekas, D., Reinforcement Learning and Optimal Control, Athena
Scientific Optimization and Computation Series, Athena Scientific,
Belmont, MA, 2019, http://www.mit.edu/∼dimitrib/RLbook.html
[retrieved 5 March 2023].

[34] Fujimoto, S., Hoof, H., and Meger, D., “Addressing Function Approxi-
mation Error in Actor-Critic Methods,” International Conference on

Machine Learning, PMLR, 2018, pp. 1587–1596.
https://doi.org/10.48550/arXiv.1802.09477

[35] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S., “Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor,” International Conference On Machine Learning,
PMLR, 2018, pp. 1861–1870.
https://doi.org/10.48550/arXiv.1801.01290

[36] Thrun, S., and Schwartz, A., “Issues in Using Function Approximation
for Reinforcement Learning,” Proceedings of the 1993 Connectionist

Models Summer School, Vol. 6, Lawrence Erlbaum,Hillsdale, NJ, 1993,
p. 263.

[37] Polyak, B. T., “Some Methods of Speeding Up the Convergence of
IterationMethods,”USSRComputationalMathematics andMathemati-

cal Physics, Vol. 4, No. 5, 1964, pp. 1–17.
https://doi.org/10.1016/0041-5553(64)90137-5

[38] Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I., “Evolution
Strategies as a Scalable Alternative to Reinforcement Learning,” arXiv
preprint arXiv:1703.03864, 2017.
https://doi.org/10.48550/arXiv.1703.03864

[39] Stanley, K. O., Clune, J., Lehman, J., andMiikkulainen, R., “Designing
Neural Networks Through Neuroevolution,” Nature Machine Intelli-

gence, Vol. 1, No. 1, 2019, pp. 24–35.
https://doi.org/10.1038/s42256-018-0006-z

[40] Stanley, K., and Miikkulainen, R., “Efficient Evolution of Neural
Network Topologies,” Proceedings of the 2002 Congress on Evolu-

tionary Computation, CEC’02 (Cat. No. 02TH8600), Vol. 2, Inst. of
Electrical and Electronics Engineers, New York, 2002, pp. 1757–
1762.
https://doi.org/10.1109/CEC.2002.1004508

[41] Pugh, J. K., Soros, L. B., and Stanley, K. O., “Quality Diversity: A New
Frontier for Evolutionary Computation,” Frontiers in Robotics and AI,
Vol. 3, July 2016, p. 40.
https://doi.org/10.3389/frobt.2016.00040

[42] Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen,
X., Asfour, T., Abbeel, P., and Andrychowicz, M., “Parameter Space
Noise for Exploration,” 2018.
https://doi.org/10.48550/arXiv.1706.01905

[43] Linden, V. D., “DASMAT-Delft University Aircraft Simulation
Model andAnalysis Tool: AMatlab/Simulink Environment for Flight
Dynamics and Control Analysis,” Series 03: Control and Simulation
03, TR, Delft Univ. of Technology, 1998, http://resolver.tudelft.nl/
uuid:9bfb1f68-2f7c-4f32-91b4-79297d295f84

[44] Van den Hoek, M., de Visser, C., and Pool, D., “Identification of a
Cessna Citation II Model Based on Flight Test Data,” Advances in

AerospaceGuidance,NavigationandControl, Springer–Verlag, Berlin,
2018, pp. 259–277, http://resolver.tudelft.nl/uuid:c0a57513-38b7-4d
3a-898c-fa57c3e7ac2e [retrieved 5 March 2023].

[45] Konatala, R., Van Kampen, E.-J., and Looye, G., “Reinforcement
Learning Based Online Adaptive Flight Control for the Cessna Citation
II (PH-LAB) Aircraft,” AIAA Scitech 2021 Forum, AIAA Paper 2021-
0883, 2021, http://resolver.tudelft.nl/uuid:b37cefbf-e353-43cf-8d9d-
98f2653216c6

[46] Seres, P., Liu, C., and vanKampen, E.-J., “Risk-Sensitive Distributional
Reinforcement Learning for Flight Control,” International Federation
of Automatic Control, Vol. 56, No. 2, 2023, pp. 2013–2018.
https://doi.org/10.1016/j.ifacol.2023.10.1097

[47] EASA, “Certification Specifications and Acceptable Means of Com-
pliance for Large Aeroplanes (CS-25),” TR, European Union, June
2021, https://www.easa.europa.eu/en/document-library/certification-
specifications/cs-25-amendment-27 [retrieved 5 March 2023].

[48] Teirlinck, C., and Van Kampen, E.-J., “Reinforcement Learning for
Flight Control: Hybrid Offline-Online Learning for Robust and
Adaptive Fault-Tolerance,” TR, Delft Univ. of Technology, The
Netherlands, 2022, http://resolver.tudelft.nl/uuid:dae2fdae-50a5-4941-
a49f-41c25bea8a85 [retrieved 5 March 2023].

[49] Lehman, J., Chen, J., Clune, J., and Stanley, K. O., “Safe Mutations for
Deep and Recurrent Neural Networks Through Output Gradients,”
Proceedings of the Genetic and Evolutionary Computation Conference,
2018, pp. 117–124.
https://doi.org/10.1145/3205455

GAVRA AND VAN KAMPEN 899

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1109/ICRA48506.2021.9561138
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.1162/evco_a_00282
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1038/nature14422
https://doi.org/10.1145/3596912
https://doi.org/10.1145/3377930
https://doi.org/10.2514/3.20898
https://doi.org/10.2514/1.G000376
https://doi.org/10.1016/j.arcontrol.2022.04.006
https://ojs.aaai.org/index.php/AAAI/article/view/5728
https://doi.org/10.1609/aaai.v34i04.5728
https://doi.org/10.48550/arXiv.1810.01222
https://doi.org/10.1145/3569096
https://doi.org/10.48550/arXiv.1805.07917
https://ojs.aaai.org/index.php/AAAI/article/view/20737
https://doi.org/10.1609/aaai.v36i7.20737
http://www.mit.edu/dimitrib/RLbook.html
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.48550/arXiv.1703.03864
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1109/CEC.2002.1004508
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.48550/arXiv.1706.01905
http://resolver.tudelft.nl/uuid:9bfb1f68-2f7c-4f32-91b4-79297d295f84
http://resolver.tudelft.nl/uuid:9bfb1f68-2f7c-4f32-91b4-79297d295f84
http://resolver.tudelft.nl/uuid:c0a57513-38b7-4d3a-898c-fa57c3e7ac2e
http://resolver.tudelft.nl/uuid:c0a57513-38b7-4d3a-898c-fa57c3e7ac2e
http://resolver.tudelft.nl/uuid:b37cefbf-e353-43cf-8d9d-98f2653216c6
http://resolver.tudelft.nl/uuid:b37cefbf-e353-43cf-8d9d-98f2653216c6
https://doi.org/10.1016/j.ifacol.2023.10.1097
https://www.easa.europa.eu/en/document-library/certification-specifications/cs-25-amendment-27
https://www.easa.europa.eu/en/document-library/certification-specifications/cs-25-amendment-27
http://resolver.tudelft.nl/uuid:dae2fdae-50a5-4941-a49f-41c25bea8a85
http://resolver.tudelft.nl/uuid:dae2fdae-50a5-4941-a49f-41c25bea8a85
https://doi.org/10.1145/3205455

[50] Grondman, F., Looye, G., Kuchar, R. O., Chu, Q. P., and Van
Kampen, E.-J., “Design and Flight Testing of Incremental Nonlinear
Dynamic Inversion-Based Control Laws for a Passenger Aircraft,”
2018 AIAA Guidance, Navigation, and Control Conference, AIAA
Paper 2018-0385, 2018.
https://doi.org/10.2514/6.2018-0385

[51] Moorhouse, D. J., and Woodcock, R. J., Background Information and
User Guide for MIL-F-8785C, Military Specification-Flying Qualities

of Piloted Airplanes,” Air Force Wright Aeronautical Lab., TR-
ADA119421, Wright–Patterson AFB, 1982.

[52] Zhou, Y., Kampen, E.-J. V, and Chu, Q., “Nonlinear Adaptive Flight
Control Using Incremental Approximate Dynamic Programming and
Output Feedback,” Journal of Guidance, Control, and Dynamics,
Vol. 40, No. 2, 2016, pp. 493–496.
https://doi.org/10.2514/1.G001762

900 GAVRA AND VAN KAMPEN

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

M
ay

 1
3,

 2
02

4
| h

ttp
://

ar
c.

ai
aa

.o
rg

 |
D

O
I:

 1
0.

25
14

/1
.G

00
81

12

https://doi.org/10.2514/6.2018-0385
https://doi.org/10.2514/1.G001762

