
Optimal Decision Trees for The Algorithm Selection Problem
Balancing Performance and Interpretability

Daniël Poolman

Supervisors: Emir Demirović, Jacobus G. M. van der Linden

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Daniël Poolman Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Jacobus G. M. van der Linden, David Tax

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The Algorithm Selection Problem (ASP) presents
a significant challenge in numerous industries, re-
quiring optimal solutions for complex computa-
tional problems. Traditional approaches to solv-
ing ASP often rely on complex, black-box models
like random forests, which are effective but lack
transparency, and they often fail to balance per-
formance with interpretability. This paper investi-
gates the performance-interpretability trade-off for
the ASP, specifically focused on Optimal Decision
Trees (ODTs) as recent innovations have made the
use of ODTs more viable. We compare ODTs
against 4 other tree-based models, using 11 differ-
ent datasets. We show there is no apparent trade-
off between performance and interpretability for
ODTs which have been trained using an instance
cost-sensitive approach, as they achieve compa-
rable performance to a Random Forest Regressor
while maintaining interpretability through multiple
orders of magnitude fewer leaf nodes.

1 Introduction
There exist multiple complexity classes that contain computa-
tionally hard problems frequently encountered in various in-
dustries, including finance, healthcare, logistics, and telecom-
munications.

Solving the problems in these complexity classes optimally
has been a major area of study in computer science, and most
problems have seen many different approaches to solve them
over the years. An interesting observation when comparing
the performance of different approaches for the same problem
is that the performance of different algorithms can vary sig-
nificantly per instance, and typically no single algorithm out-
performs all others [1]. This phenomenon has been observed
in various NP-hard problems, such as the constraint satisfac-
tion problem (CSP) [2], the satisfiability problem (SAT) [3],
planning and scheduling algorithms [4], and the quantified
Boolean formula problem (QBF) [5].

Finding the best-performing algorithm per instance of such
a problem is defined as the per-instance Algorithm Selec-
tion Problem [1]. The Algorithm Selection Problem has been
studied widely, and many different approaches have been sug-
gested, often making use of machine learning models. While
these approaches provide good performance, such as ran-
dom regression forests [6], the studies frequently make use
of black-box models, which are not interpretable and conse-
quently do not provide insight into the algorithmic problems.

Interpretability has fundamental importance in contexts
where sensitive decisions are made, such as the healthcare in-
dustry, criminal justice, public safety, and fairness in a social
context. In these contexts, we need machine learning models
that can be understood by humans, since interpretable mod-
els are crucial for safety, fairness, and reliability [7]. This,
in contrast with black-box models, which are hard to under-
stand and difficult to troubleshoot, underlines the need for
transparency.

Fa
lse

F
al

se

T
rue

True

F
al

se

T
rue

nvarsOrig < 13687.0

nclausesOrig < 334260.0

Open.WBO.ms.pre MaxHS

nclausesOrig < 31219.0

UWrMaxSAT MaxHS

Figure 1: An optimal decision tree of depth 2 for the MAXSAT19-
UCMS-ALGO dataset. As the tree is shallow, it is possible to
understand the model. A quick analysis of the tree shows, based
on the number of variables (nvarsOrig) and clauses (nclausesOrig):
Open.WBO.ms.pre is optimal for large problems, MaxHS is pre-
ferred for medium-sized problems, and UWrMaxSAT is ideal for
smaller problems with many clauses.

An example of an interpretable model is a Decision Tree
model, which is widely used for supervised learning [8], and
they have been used since the 1960s [9]. An example of such
a decision tree is shown in figure 1. Their popularity is partly
due to their interpretability, as shallow trees can be easily
visualized [10]. The most commonly used decision tree al-
gorithm is the Classification and Regression Trees (CART),
which employs heuristics to construct the trees [11]. These
heuristics optimize a local objective function to quickly build
a tree that fits the training data. When these trees are ensem-
bled, they form a Random Forest [12]. These models have
achieved state-of-the-art performance across various classes
of machine learning problems [13] and are implemented in
popular machine learning frameworks, such as scikit-learn
[14].

Decision trees

K-nearest neighbors

Random forests

XGBoost

Deep learning

Performance

Interpretability

Figure 2: The interpretability - performance trade-off as presented
by Sheykhmousa and Mahdianpari [15]

Despite their popularity, heuristic tree-based models have
two major drawbacks. First, a downside of heuristic tree-
based models is related to their optimization of a local objec-



tive function, which does not ensure a globally optimal tree.
Consequently, heuristic trees might not represent the data ac-
curately, implying that they do not generalize well to out-of-
sample data [16]. Second, a downside of a more interpretable
model is the relation between performance and interpretabil-
ity, which is usually visualized as shown in figure 2, showing
that more interpretable models sacrifice performance. While
this is the general consensus in the literature, Rudin et al. [7]
argue that less complicated models can still achieve high per-
formance.

Optimal decision trees aim to address these drawbacks by
providing a relatively small tree, which is interpretable. The
provided tree is also globally optimal on the training data, ac-
cording to a specified objective function and tree depth, which
has been shown to perform better on out-of-sample data than
heuristics [17], [18].

One downside is that computing optimal decision trees is
in itself an NP-hard problem [19]; however, recent advance-
ments in computational power and algorithmic techniques
have made their computation more feasible on real-world
datasets. Previous approaches include the use of mixed in-
teger programming [18] and constraint programming [20],
but these approaches suffer from poor scalability on large
datasets. An alternative method involving dynamic program-
ming has been presented by Demirović et al., which com-
putes optimal classification trees. This approach has been
demonstrated to outperform other methods by orders of mag-
nitude, enhancing the feasibility of computing these optimal
trees [21]. Van Der Linden et al. introduced a framework
to extend this approach to all separable optimization tasks
[22], referred to as Optimal Decision Trees with Dynamic
Programming (ODT with DP).

Multiple studies have used optimal decision trees to solve
the Algorithm Selection Problem. One approach used a
Mixed Integer Programming approach [23], which did not
scale well, and one used the ODT with DP approach [24].
However, none of these studies considered a wide range of
datasets to validate the out-of-sample performance and the
relation with interpretability.

Therefore, we consider the following research question:
What is the trade-off between performance and interpretabil-
ity when solving the Algorithm Selection Problem (ASP)
with optimal decision trees compared to other tree-based
methods such as heuristic trees and random forests? In our
experiments, we show the possibility of optimal decision
trees for the ASP, which are orders of magnitude smaller and
thus more interpretable than other tree-based methods while
sacrificing little performance or even gaining performance.

Our main contributions are: 1) showcasing the novel uses
of Optimal Decision Trees in the Algorithm Selection Prob-
lem; 2) extensive experiments with 11 datasets and 6 models
to show the trade-off between performance and interpretabil-
ity.

2 Related Work
The Algorithm Selection Problem has evolved significantly
since its formalization by Rice [1], who introduced the idea
of selecting the best algorithm for each instance from a set

of problem instances, algorithms, and performance measures.
Early work in ASP primarily focused on single-domain appli-
cations, such as SAT (propositional satisfiability). The in-
ternational SAT competitions highlighted the variability in
solver performance across different instances, underscoring
the need for algorithm portfolios [25].

Systems like SATzilla [26], introduced in 2008, pioneered
the use of machine learning to predict the best solver for a
given instance based on features extracted from the problem
instance. SATzilla won several gold medals in SAT competi-
tions and a new version was introduced in 2012 [27], improv-
ing the previous version using a weighted Random Forests
and winning the 2012 SAT Challenge. Another well-known
approach for SAT problems is 3S [28], relying on k-Nearest
Neighbours (k-NN), which was amongst the best performing
solvers in the 2011 International SAT competition.

Subsequent research expanded ASP techniques to other do-
mains, including Constraint Satisfaction Problems (CSP) [2],
[29], planning [4], [30], and Answer Set Programming [31].
Notable systems include SUNNY [29], which solves the ASP
for CSP and is based on k-NN, and Claspfolio [32], which
solves the ASP for Answer Set Programming and uses several
mechanisms such as k-NN, Random Forests and regression.
Another interesting system is ME-ASP [33], which uses sev-
eral classifiers, such as k-NN, Support Vector Machines and
Random Forests to solve the ASP for Answer Set Program-
ming.

The introduction of ASlib [6] in 2016 marked a signifi-
cant advancement by providing a standardized benchmark li-
brary for cross-domain evaluation of algorithm selection tech-
niques.

More recent approaches include the use of local optima
networks [34], Graph Convolutional Network-Based Genera-
tive Adversarial Networks [35], and Graph Neural Networks,
which have been applied to the TSP [36]. An interesting
trend we identify is the use of more complex machine learn-
ing models and the use of multiple black box models in recent
years.

A significant approach to solving ASP is through the use
of tree-based models such as Random Forests or XGBoost,
which have consistently demonstrated outstanding perfor-
mance for the ASP, rivaling the performance of state-of-the-
art neural networks [37]. Random Forests have been used nu-
merous times, such as in the aforementioned solver SATzilla
[27], Planzilla [30], MachSMT [38] which solves the ASP
for Satisfiability Modulo Theories problems, and ASAP (Al-
gorithm Selector And Prescheduler system) [39] which com-
bines Random Forests and k-NN.

Recently, Vilas et al. demonstrated that optimal decision
trees provide accurate results and do not overfit on data,
although their study was limited to 500 instances [23]. In
another study, Segalini et al. [24] showed that by using the
STreeD approach, optimal decision trees can be computed
much more scalably (by orders of magnitude). However,
this study was limited to MaxSAT data, and no detailed
analysis on out-of-sample performance and interpretability
was conducted. Visentin et al. [40] proposed a framework
for explainabling multi-class classification specifically for
the Capacitated Lot Sizing Problem (CLSP); however, they



do not study the performance of the model alongside its
explainability.

The performance-interpretability tradeoff has been
widely studied in machine learning in recent years, as the
recognition for the necessity of interpretability is growing.
Cayamcela et al. (2019) [41], Luo et al. (2019) [42], Arrieta
et al. (2020) [43], Ciatto et al. (2020) [44], Kumar et al.
(2021) [45], and Ali et al. (2023) [46] all use some version
of figure 2 to depict interpretability as inversely proportional
to performance. Lipton (2018) [47] and Rudin (2019) [7] are
among the few studies that call this relation into question.

(Optimal) Decision Trees The construction of optimal de-
cision trees is proven to be NP-Complete by Hyafil et al. [19],
indicating the complexity and computational challenges in-
volved in finding the best decision tree.

Bennet et al. [48] proposed constructing globally optimal
decision trees by first fixing the tree’s structure and then solv-
ing linear inequalities using existing optimizers. This method
introduced a structured approach to manage the complexity
of tree construction. Constraint programming and Mixed In-
teger Programming (MIP) have been employed by Bertsimas
et al. [17], [49] and Verwer et al. [20] to refine decision tree
optimization.

Recent innovations include the development of methods
for building optimal decision trees by Hu et al. [50] and
DL8.5 by Aglin et al. [51], which significantly outperforms
previous methods by using a Branch-and-Bound search,
caching, pruning, and heuristics. Demirović et al. [21]
introduced MurTree, employing many specialized techniques
tailored to classification trees’ unique properties. This
approach, along with STreeD [22], which generalizes the
methodology to any separable optimization task, shows
a trend towards scalable solutions that maintain optimal
performance across various tasks.

Summary While the ASP has been addressed with nu-
merous approaches, showing outstanding performance with
the use of (multiple) black-box models, such as Random
Forests, none have thoroughly studied the trade-off between
interpretability and performance across multiple problems
and datasets for optimal decision trees. Generally speaking,
the consensus about the interpretability-performance trade-
off currently leans more toward the idea that less complex
models are more interpretable but usually sacrifice perfor-
mance. However, this may not be the case. As recent in-
novations have made the use of optimal decision trees more
viable, we will study this relation for the ASP in the next sec-
tions.

3 Preliminaries
This section details the formalization of the Algorithm Selec-
tion Problem, the different Algorithm Selection approaches
considered and the evaluation metrics used:

The Algorithm Selection Problem can be formalized as
follows [1]:

• Problem Instance Space (X ): The set of problem in-
stances x ∈ X drawn from a distribution D

• Algorithm Space (A): The set of candidate algorithms
a ∈ A which are available for solving the problems

• Performance Metric (M): A function m : X ×A → R
that measures the performance of algorithm a on in-
stance x. The goal is to minimize (or maximize) this
metric.

• Cost Function (C): A function C : X × A → R rep-
resenting the cost of selecting algorithm a for instance
x.

• Feature Space (F): The set of all features f ∈ F that
describe the problem instances.

• Feature Value Function (ϕ): A function ϕ : F × X →
R that maps each feature and instance to a real-valued
number representing the value of that feature for the
given instance.

The goal is to find a mapping s : X → A such that the overall
performance is minimized:

argmin
∑
x∈X

M(x, s(x)))

Algorithm Selection Approaches vary based on the
kinds of decisions which have to be made in the selection
process. To minimize the mapping s : X → A, one can
simply try to select the best algorithm using a classification
model. Another widely used approach is regression, which
first predicts the performance for each algorithm and then
selects the best-performing algorithm. The last approach
we consider is instance cost-sensitive classification, which
considers different misclassification costs for each label and
each instance. This is particularly relevant in applications
where the cost of a misclassification varies significantly
across instances, such as in the ASP.

Evaluation metrics in the context of the ASP are atypi-
cal. As we are interested in the speed up in runtime with
respect to the available algorithms, typical evaluation metrics
in machine learning such as accuracy, F1 score and precision
cannot be used as they don’t provide information about the
runtimes. Choosing an appropriate evaluation metric is not
straightforward, as a timeout T is defined per Algorithm Se-
lection scenario, because some instances are too difficult to
solve in a reasonable amount of time. For this reason, we
evaluate the performance of different models using the Pe-
nalized Average Runtime with an included penalty factor of
ten for timeouts (PAR10), a widely used metric to evaluate
performance [6]. PAR10 is defined as follows:

PAR10(s) =

∑
x∈X M′(x, s)

|X |

M′(x, s) =

{M(x, s(x))) if M(x, s(x))) ≤ T

10 · T else

where



• x is a specific problem instance

• s is a mapping provided by the algorithm selector

• M(x, s(x))) is the function which calculates the actual
runtime based on x and s

• T is the timeout value

• X is the set of problem instances

To bring the PAR10 score in perspective, we compare the
PAR10 scores to the virtual best solver (VBS), and the sin-
gle best solver (SBS). The VBS selects the best algorithm for
each instance and the SBS is the best solver on average. To
compare the PAR10 scores over scenarios, we normalize the
PAR10 with respect to the VBS and SBS, i.e., the VBS cor-
responds to a 1 and the SBS corresponds to a 0:

Normalized PAR10(s) =
PAR10(s)− SBS

V BS − SBS

We evaluate the interpretability of different models using
the number of leaf nodes. This metric is a proxy for the com-
plexity of each model and gives insight into the interpretabil-
ity of the model as a whole.

4 Methodology
Our methodology consists of the selection and preparation of
the datasets we use, the machine learning models we use and
how they are trained and selected.

4.1 Data Source
We use 11 datasets from the Algorithm Selection Library
(ASlib) [6]. ASlib offers a variety of datasets with distinct
problem domains such as Answer Set Programming, Con-
straint Satisfaction Problems (CSP), and Maximum Satisfi-
ability (MAXSAT). This variety allows for testing the effi-
cacy of the different machine learning models under differ-
ent feature space conditions. Table 1 gives an overview of
the scenarios, number of algorithms, instances, and features
we use in our evaluation. Other studies, which make use of
ASlib, use a comparable amount of datasets. Liu et al. uses 12
datasets [52], Pulatov et al. uses 9 datasets [53] and Hanselle
et al uses 6 datasets [54].

The data in ASlib is provided in a standardized data format
which comes with precomputed features and their respective
costs to compute the features and predefined cross-validation
setups. This cross-validation setup is used in most papers that
use ASlib [6], [52]–[54]. We use this setup in this study. This
allows us to focus on the analysis without the need for pre-
computing the features ourselves and it additionally provides
the opportunity for other researchers to perform comparative
performance assessments with respect to this study.

The selection of the datasets we use in this study is driven
by several factors. We only consider datasets that include the
data for computing feature costs as this information is needed
to assess whether using algorithm selection is more efficient
than using the best solver on average. Certain datasets are
duplicated, for which we choose the dataset that includes
the most data points, e.g., more problem instances or more
features, as datasets containing a larger number of features

are preferable. For MAXSAT and SAT we include multi-
ple datasets, two and three respectively, since ASlib contains
many datasets related to MAXSAT and SAT. The datasets we
select for MAXSAT and SAT vary significantly in either the
number of instances, algorithms, or instance features.

Scenario Instances Algorithms Instance Features
ASP-POTASSCO 1294 11 138

BNSL-2016 1179 8 86
CSP-Minizinc-Time-2016 100 20 95
MAXSAT-WPMS-2016 630 18 37

MAXSAT19-UCMS-ALGO 572 7 129
MIP-2016 218 5 143

PROTEUS-2014 4021 22 198
QBF-2016 825 24 46

SAT11-HAND-ALGO 296 11 190
SAT12-ALL 1614 31 115

SAT16-MAIN 274 25 55

Table 1: Number of algorithms, instances, and instance features for
scenarios used in this study

4.2 Data preparation
We remove instances with missing feature or algorithm val-
ues and we remove features that are either constant valued
or duplicated since both are irrelevant. To prepare the data
for STreeD, we apply a binarization step, which is detailed
below:

1. Feature Selection: Choose a continuous feature from
the feature space.

2. Sorting: Arrange all the observed values of this feature
in ascending order.

3. Category Definition: Divide these sorted values into a
specified number of equally sized categories, called bins.

4. Threshold Determination: Identify the thresholds that
separate these bins. The thresholds are determined based
on the position of the values in the sorted list.

5. Transformation: Convert each value of the feature into
a binary vector. For each threshold, if the value is less
than the threshold, it is assigned a 1 in the binary vector;
otherwise, it is assigned a 0. This process is repeated for
each threshold, resulting in a binary representation for
each feature value.

We use the Java implementation of Segalini et al.1 and adapt
it to our specific case.

4.3 Model Training and Model Selection
We employ various tree-based machine learning models with
varying complexities and approaches to the ASP in this study.
The specific models and parameter ranges are detailed in Ta-
ble 2. These parameter ranges are broader than earlier works
such as the original ASlib paper [6] and a specific study about
the ASP for the Travelling Salesman Problem [55]. Since we
are interested in the relation between performance and inter-
pretability, we use models with varying degrees of complexity
as this relates directly to interpretability [56]. To this end, we
use Decision Trees, which is a ”simple” model, and Random

1https://github.com/gsegalini/decision-trees-asp

https://github.com/gsegalini/decision-trees-asp


Forests, which is a more complex model. For both models,
we use a classification and regression approach. The model
complexity of the regression approach scales with the number
of algorithms to choose from in each scenario, because each
model needs to have a separately trained regression model for
each algorithm.

Earlier studies have shown random regression forests to be
superior to other machine learning models, such as Decision
Trees, XGBoost, and neural networks for the Algorithm Se-
lection Problem [6], [37], however, it would be interesting to
analyze the trade-off between performance and interpretabil-
ity for varying model complexities and compare this to opti-
mal decision trees.

To use Decision Trees and Random Forests for the ASP, we
use the Python scikit-learn implementation2, a widely used
machine learning library in both academia and industry. The
Decision Tree Classifier and the Decision Tree Regressor are
implemented in Scikit-learn using Classification and Regres-
sion Trees (CART) [11]. To use ODT with DP for the ASP
we use the Python implementation of STreeD, pystreed3.

We use feature selection to decrease the needed compu-
tational resources by training a random regression forest for
each scenario and utilizing the resulting feature importance
values to select the top n ∈ 5, 10, 20, 30 features for training
and selecting the models.

To train the models we tune the hyperparameters of all
six models, using the provided parameter ranges, with grid
search and a nested cross-validation setup (with ten internal
folds as specified by ASlib) for each scenario. This is done
to ensure both unbiased performance results and to select the
best model within the parameter ranges for each scenario.

All experiments are run on the DelftBlue supercomputer
[57], which is equipped with Intel XEON E5-6448Y 32C
2.1GHz CPUs. Each experiment is configured with 8 CPU
cores and 16 GB of RAM from such a CPU.

Machine learning model Parameter ranges
Classification
ODT with DP (STreeD) max depth ∈ {2, 3, 4, 5, 6},

max num nodes ∈ {3, 5, 10, 15, 20, 25, 31, 35, 40, 45, 50, 55, 60, 63},
bin size ∈ {2, 5, 7, 10}

Decision Tree Classifier max depth ∈ {3, 4, 5, 6, 10, 20,None},
max features ∈ {√ , log2},
min samples split ∈ {2, 5},
min samples leaf ∈ {1, 2},
max leaf nodes ∈ {None, 5, 10, 20, 50, 100}

Random Forest Classifier n estimators ∈ {100, 200, 300},
max depth ∈ {None, 3, 4, 5, 6, 10, 20, 50},
min samples split ∈ {2, 5},
min samples leaf ∈ {1, 2}

Regression
Decision Tree Regressor max depth ∈ {None, 3, 4, 5, 6, 10, 20, 30, 50},

max features ∈ {None,
√ },

min samples split ∈ {2, 5, 10, 15},
min samples leaf ∈ {1, 2, 4, 6}

Random Forest Regressor n estimators ∈ {100, 200, 300},
max depth ∈ {None, 3, 4, 5, 6, 10, 20, 50},
min samples split ∈ {2, 5},
min samples leaf ∈ {1, 2}

Instance cost sensitive
ODT with DP (STreeD In-
stance Cost Sensitive)

max depth ∈ {2, 3, 4, 5, 6},
max num nodes ∈ {3, 5, 10, 15, 20, 25, 31, 35, 40, 45, 50, 55, 60, 63},
bin size ∈ {2, 5, 7, 10}

Table 2: Machine learning algorithms and their parameter ranges
used

2https://scikit-learn.org/
3https://github.com/AlgTUDelft/pystreed

5 Experimental Setup and Results
To study the trade-off between performance and interpretabil-
ity, we carry out multiple experiments. Experiment 5.1
focuses on evaluating the performance of different models
across various scenarios. Experiment 5.2 examines the re-
lationship between the aggregates of model performance and
the number of leaf nodes to understand the high-level rela-
tion between performance and interpretability. Experiment
5.3 investigates performance versus the number of nodes per
scenario to down drill in the data to understand the dynamics
of the performance-interpretability tradeoff. Experiment 5.4
goes more in-depth about the trade-off between performance
and interpretability specifically for the STreeD ICSC (STreeD
ICSC).

5.1 Performance of all models and scenarios
To understand the overall performance of models, we select
the best model, based on the lowest PAR10 score, for each
scenario. The PAR10 score is based on the average of the
PAR10 score for each of the ten test folds. We normalize the
PAR10 to be able to compare performance against scenarios
and models. The results are given in table 3, which outlines
the summary statistics per model, and figure 3, which outlines
the best normalized PAR10 per scenario for each model.

From the results, we can draw several conclusions. First,
we conclude that the Random Forest Regressor and STreeD
ICSC models show very similar performance. Both mod-
els consistently achieve higher performance scores than other
models, and for all scenarios, either the Random Forest Re-
gressor (6/11) or the STreeD ICSC (5/11) performed the best.
While the Random Forest Regressor has a higher median,
STreeD Instance Cost Sensitive has a higher mean because
STreeD Instance Cost Sensitive is more consistent, as shown
by the lower σ and the smaller spread between min/max and
quartile 1 and quartile 3.

Secondly, when we compare the separate approaches to
solving the ASP, the regression approach for the Random For-
est outperforms the classification approach by a significant
margin, with a µ difference of 0.18. There is no difference in
µ and median when comparing the regression and classifica-
tion for the Decision Tree.

The Instance Cost Sensitive Approach shows an even
larger difference between the classification approach of
STreeD with a µ difference of 0.43. Interestingly, the De-
cision Tree and Random Forest with both a classification and
regression approach outperform the classification approach of
STreeD by a large margin.

5.2 Performance vs. Number of leaf nodes for all
models and scenarios

To understand the high-level relation between performance
and interpretability, we compute the total number of leaf
nodes per model and normalized PAR10 for each scenario
and take the average of these metrics.

The results, as presented in table 4, show an interesting
pattern. Increasing model complexity increases the perfor-
mance but reduces interpretability when comparing the Deci-
sion Tree Classifier and Decision Tree Regressor to the Ran-

https://scikit-learn.org/
https://github.com/AlgTUDelft/pystreed


Model µ σ Median Min Max Q1 Q3

Decision Tree Classifier 0.49 0.26 0.58 -0.12 0.74 0.39 0.65
Decision Tree Regressor 0.49 0.20 0.58 0.22 0.82 0.29 0.62
RandomForestClassifier 0.51 0.28 0.55 -0.11 0.82 0.45 0.72
RandomForestRegressor 0.69 0.16 0.74 0.39 0.86 0.58 0.81
STreeD 0.27 0.38 0.41 -0.55 0.66 0.08 0.55
STreeD Instance Cost Sensitive 0.70 0.13 0.72 0.41 0.84 0.62 0.79

Table 3: Summary statistics of the normalized PAR10 for each
model, aggregated over all scenarios. The normalized PAR10 in-
dicates how much a model closes the gap between the Single Best
Solver (sbs), the best solver on average which is set at 0, and the
Virtual Best Solver (vbs), the best possible solver for each instance,
which is set at 1. The mean is represented by µ and the standard
deviation is represented by σ.

De
cis
io
nT
re
eC
las
sif
ier

De
cis
io
nT
re
eR
eg
re
ss
or

Ra
nd
om
Fo
re
stC
las
sif
ier

Ra
nd
om
Fo
re
stR
eg
re
ss
or

ST
re
eD

ST
re
eD
In
sta
nc
eC
os
tS
en
sit
iv
e

Model

ASP-POTASSCO

BNSL-2016

CSP-Minizinc-Time-2016

MAXSAT-WPMS-2016

MAXSAT19-UCMS-ALGO

MIP-2016

PROTEUS-2014

QBF-2016

SAT11-HAND-ALGO

SAT12-ALL

SAT16-MAIN

Sc
en
ar
io

0.56 0.67 0.55 0.79 0.45 0.84∗

0.68 0.82 0.77 0.86∗ 0.66 0.81

0.74 0.69 0.58 0.56 0.22 0.84∗

0.58 0.60 0.56 0.83∗ 0.22 0.72

0.46 0.58 0.41 0.70∗ 0.41 0.59

0.72 0.47 0.50 0.38 0.60 0.72∗

−0.12 0.31 −0.11 0.59 −0.55 0.59∗

0.31 0.32 0.49 0.74∗ −0.13 0.64

0.63 0.62 0.72 0.79∗ 0.60 0.74

0.58 0.57 0.82 0.84∗ 0.49 0.77

0.23 0.25 0.13 0.39 −0.05 0.41∗

Figure 3: The best achieved normalized PAR10 for all models and
for each scenario. The best model for each scenario is marked with
an asterisk (*). Values close to 1 indicate a good performance, high-
lighted in green. Values close to 0 indicate the model did not achieve
better results than selecting the sbs, indicated by white and negative
values indicate a bad performance, highlighted in red.

Model µ Normalized PAR10 µ # Leaf Nodes σ # Leaf Nodes

Decision Tree Classifier 0.49 111.00 123.62
Decision Tree Regressor 0.49 704.36 526.89
RandomForestClassifier 0.51 19168.00 22288.12
RandomForestRegressor 0.69 490705.09 510816.79
STreeD 0.27 14.18 9.85
STreeD Instance Cost Sensitive 0.70 19.64 13.46

Table 4: Summary statistics of normalized PAR10 vs. number of
leaf nodes

dom Forest Regressor, as the average normalized PAR10 in-
creases by roughly 40% and the average number of leaf nodes
increases by two to three orders of magnitude. However, this
is not the case when comparing the Random Forest Regres-
sor to the STreeD ICSC, since the performance for the Ran-
dom Forest Regressor and the STreeD ICSC is very similar,

while the interpretability of the STreeD ICSC is much better,
as the average number of leaf nodes is four orders of mag-
nitude larger for the Random Forest Regressor. The STreeD
classifier also uses orders of magnitude fewer leaf nodes on
average, but the performance is worse than the other models.

From this discussion, we draw one main conclusion.
While, on average, the Decision Tree and Random Forest ad-
here to the general consensus of sacrificing performance for
interpretability, the STreeD ICSC does not and instead per-
forms similarly to the Random Forest Regressor while still
maintaining interpretability.

5.3 Performance vs. number of leaf nodes per
scenario

To better understand the relation between performance and
interpretability, we use all data points obtained by the grid
search procedure for each scenario and scatter the normalized
PAR10 against the number of leaf nodes. Figure 4 illustrates
this relationship for ASP-POTASSCO and BNSL-2016.

When analyzing the scatterplot for ASP-POTASSCO, we
make a few observations. First, the STreeD ICSC outper-
forms the Decision Tree Classifier and STreeD Classifier
for every number of leaf nodes, e.g., the worst performing
STreeD classifier for ten leaf nodes still outperforms the best
Decision Tree and STreeD Classifier for the same number
of leaf nodes. Second, in the case of fewer leaf nodes, the
STreeD ICSC still outperforms all of the other models, e.g.,
the best performing STreeD Classifier for ten leaf nodes still
outperforms all other models.

When analyzing the scatterplot for BNSL-2016, we make
some more observations. While the STreeD ICSC performs
worse than the Random Forest Regressor, it still shows good
performance while using approximately four orders of mag-
nitude fewer leaf nodes.

Other scatterplots show a similar pattern; STreeD Instance
Cost Sensitive performs better or sacrifices relatively minimal
performance while using significantly fewer leaf nodes.

Based on this analysis, we solidify our conclusion from
experiment 5.2.

5.4 Experiment 4: Performance vs. number of leaf
nodes for STreeD Instance Cost Sensitive

In this experiment, we explore the relationship between per-
formance and interpretability by analyzing how the perfor-
mance of the STreeD ICSC changes with varying numbers of
leaf nodes. Figure 5 illustrates this for PROTEUS-2014 and
ASP-POTASSCO.

For some scenarios, there is potential to significantly re-
duce the number of leaf nodes while accepting a moderate
decrease in performance. For example, for PROTEUS-2014,
the number of leaf nodes can be reduced from 32 to 16, re-
sulting in a performance drop from a normalized PAR10 of
59.5 to 53.1. For ASP-POTASSCO, the number of leaf nodes
can be reduced from 51 to 11, resulting in a performance drop
from a normalized PAR10 of 84.1 to 82.8.

In other cases, the classifier already utilizes a relatively
small number of leaf nodes, but there is still room for further
reduction. For instance, CSP-Minizinc-Time-2016 shows
that the number of leaf nodes can be decreased from 16 to



10
1

10
2

10
3

10
4

10
5

10
6

Number of Leaf Nodes

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
A

R
10 0.56

0.67

0.55

0.79

0.45

0.84

ASP-POTASSCO

10
1

10
2

10
3

10
4

10
5

10
6

Number of Leaf Nodes

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
A

R
10

0.68

0.82
0.77

0.86

0.66

0.81

BNSL-2016

Model

DecisionTreeClassifier

DecisionTreeRegressor

RandomForestClassifier

RandomForestRegressor

STreeDClassifier

STreeDInstanceCostSensitiveClassifier

Figure 4: Scatterplot of all normalized PAR10 scores vs. number
of leaf nodes, resulting from the grid search procedure, for different
scenarios. The best achieved normalized PAR10 is highlighted for
each model in white. Note the logarithmic scale on the x-axis.

6, with the performance metric dropping from 84.2 to 71.1.
Such scenarios indicate that even models with initially low
complexity can be simplified further.

Finally, there are scenarios where the number of leaf nodes
is already minimal, leaving little to no room for reduc-
tion without significant performance degradation. For in-
stance, datasets such as MIP-2016, MAXSAT-WPMS-2016,
and SAT-12 all exhibit a baseline of 11 leaf nodes, indicat-
ing simplicity in the model structure. Attempts to reduce the
number of leaf nodes further in these cases are likely to result
in substantial performance losses.

Based on this analysis, we conclude that the STreeD ICSC
uses a relatively small number of nodes and in cases where it
uses more than average, usually a simpler model with signifi-
cantly fewer leaf nodes can be used instead which still offers
comparable performance.

6 Conclusions and Future Work
We show that the instance cost-sensitive STreeD classifier
performs comparable or better to models requiring orders of
magnitude more nodes, which improves interpretability with-
out sacrificing performance. The STreeD ICSC’s ability to
maintain high performance with fewer nodes shows its poten-
tial as a more interpretable alternative to traditional tree-based
models and random forests.

The empirical results indicate that the instance cost-
sensitive STreeD classifier consistently achieves high perfor-

5 10 15 20 25 30
Number of leaf nodes

0.4

0.5

0.6

N
or

m
al

iz
ed

P
A

R
10

PROTEUS-2014

10 20 30 40 50 60
Number of leaf nodes

0.81

0.82

0.83

0.84

N
or

m
al

iz
ed

P
A

R
10

ASP-POTASSCO

Figure 5: Plot of the relation between normalized PAR10 and Num-
ber of leaf nodes for PROTEUS-2014 and ASP-POTASSCO. The
data is a result of the grid search procedure.

mance across various scenarios, often matching or surpassing
the performance of more complex models like the Random
Forest Regressor. This finding is significant as it suggests that
optimal decision trees can be effectively utilized for the Algo-
rithm Selection Problem (ASP) while maintaining a balance
between performance and interpretability.

As this research does not define interpretability beyond the
number of leaf nodes, future research should delve deeper
into the concept of interpretability in the context of deci-
sion trees and machine learning models. A comprehensive
user study would be beneficial to understand how different
stakeholders perceive the interpretability of Optimal Decision
Trees, compared to other machine learning models. Addi-
tionally, expanding the research to include a broader range of
datasets and problem domains will help validate the general-
izability of the Optimal Decision Tree approach.

Responsible Research
The research adheres to the FAIR principles to ensure that the
data and code used in the experiments are:

• Findable: All metadata and content related to the re-
search are available on the TUD (Technical University
of Delft) repository, making it easy for researchers to lo-
cate and access.

• Accessible: The code will be stored in a public repos-
itory. This ensures transparency and allows others to
replicate the study. The ASlib datasets are also stored
in a public repository 4.

• Interoperable: The code is designed to run on both
Windows and Unix systems, ensuring compatibility
across different operating environments and facilitating
broader use by the research community.

4https://github.com/coseal/aslib data/tree/master

https://github.com/coseal/aslib_data/tree/master


• Reusable: The repository includes all necessary infor-
mation to execute and rerun the experiments, including
detailed documentation and instructions. This promotes
reuse and facilitates further research based on the current
study.

References
[1] J. R. Rice, “The algorithm selection problem,” in

M. Rubinoff and M. C. Yovits, Eds., Elsevier, 1976,
pp. 65–118. DOI: https : / / doi . org / 10 . 1016 / S0065 -
2458(08)60520-3.

[2] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and
B. O’Sullivan, “Using case-based reasoning in an algo-
rithm portfolio for constraint solving,” in Proceedings
of the Nineteenth Irish Conference on Artificial Intelli-
gence and Cognitive Science, 2008.

[3] L. Xu, F. Hutter, H. Hoos, and K. Leyton-
Brown, “Evaluating component solver contributions
to portfolio-based algorithm selectors,” Jun. 2012,
pp. 228–241. DOI: 10.1007/978-3-642-31612-8 18.

[4] M. Helmert, G. Röger, and E. Karpas, “Fast down-
ward stone soup: A baseline for building planner port-
folios,” in Proceedings of the Workshop on Planning
and Learning at the Twenty-First International Con-
ference on Automated Planning and Scheduling, 2011,
pp. 28–35.

[5] L. Pulina and A. Tacchella, “A self-adaptive multi-
engine solver for quantified boolean formulas,” Con-
straints, pp. 80–116, Mar. 2009. DOI: 10.1007/s10601-
008-9051-2.

[6] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y.
Malitsky, A. Fréchette, H. Hoos, F. Hutter, K. Leyton-
Brown, K. Tierney, and J. Vanschoren, “Aslib: A
benchmark library for algorithm selection,” Artificial
Intelligence, pp. 41–58, 2016. DOI: https://doi.org/10.
1016/j.artint.2016.04.003.

[7] C. Rudin, “Stop explaining black box machine learn-
ing models for high stakes decisions and use inter-
pretable models instead,” Nature Machine Intelligence,
pp. 206–215, May 2019. DOI: 10.1038/s42256-019-
0048-x.

[8] A. Agarwal, Y. S. Tan, O. Ronen, C. Singh, and B.
Yu, “Hierarchical shrinkage: Improving the accuracy
and interpretability of tree-based models.,” in Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, K. Chaudhuri, S. Jegelka, L. Song, C.
Szepesvari, G. Niu, and S. Sabato, Eds., PMLR, 2022,
pp. 111–135.

[9] J. N. Morgan and J. A. Sonquist, “Problems in the anal-
ysis of survey data, and a proposal,” Journal of the
American Statistical Association, pp. 415–434, 1963.

[10] R. Piltaver, M. Luštrek, M. Gams, and S. Martinčić-
Ipšić, “What makes classification trees comprehensi-
ble?” Expert Systems with Applications, pp. 333–346,
2016.

[11] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone,
Classification and regression trees. Chapman and
Hall/CRC, 1984. DOI: 10.1201/9781315139470.

[12] L. Breiman, “Random forests,” Machine Learning,
pp. 5–32, Oct. 2001. DOI: 10.1023/A:1010933404324.

[13] G. Hooker and L. Mentch, “Bridging breiman’s brook:
From algorithmic modeling to statistical learning,” Ob-
servational Studies, pp. 107–125, 2021.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and Duchesnay,
“Scikit-learn: Machine learning in python,” Journal of
machine Learning research, pp. 2825–2830, 2011.

[15] M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F.
Mohammadimanesh, P. Ghamisi, and S. Homayouni,
“Support vector machine versus random forest for re-
mote sensing image classification: A meta-analysis
and systematic review,” IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sens-
ing, pp. 6308–6325, 2020. DOI: 10 . 1109 / JSTARS .
2020.3026724.

[16] H. Blockeel, L. Devos, B. Frénay, G. Nanfack, and
S. Nijssen, “Decision trees: From efficient prediction
to responsible ai,” Frontiers in Artificial Intelligence,
2023. DOI: 10.3389/frai.2023.1124553.

[17] D. Bertsimas and J. Dunn, “Optimal classification
trees,” Machine Learning, pp. 1039–1082, 2017.

[18] S. Verwer and Y. Zhang, “Learning decision trees with
flexible constraints and objectives using integer opti-
mization,” in Integration of AI and OR Techniques in
Constraint Programming, D. Salvagnin and M. Lom-
bardi, Eds., Cham: Springer International Publishing,
2017, pp. 94–103.

[19] L. Hyafil and R. L. Rivest, “Constructing optimal bi-
nary decision trees is np-complete,” Information Pro-
cessing Letters, pp. 15–17, 1976. DOI: https://doi.org/
10.1016/0020-0190(76)90095-8.

[20] S. Verwer and Y. Zhang, “Learning optimal classifica-
tion trees using a binary linear program formulation,”
Proceedings of the AAAI Conference on Artificial In-
telligence, pp. 1625–1632, 2019. DOI: 10.1609/aaai.
v33i01.33011624.

[21] E. Demirovic, A. Lukina, E. Hebrard, J. Chan, J.
Bailey, C. Leckie, K. Ramamohanarao, and P. J.
Stuckey, “Murtree: Optimal decision trees via dynamic
programming and search,” in J. Mach. Learn. Res.,
JMLR.org, 2022, p. 26.

[22] J. van der Linden, M. de Weerdt, and E. Demirović,
“Necessary and sufficient conditions for optimal de-
cision trees using dynamic programming,” English, in
Advances in Neural Information Processing Systems
36 (NeurIPS 2023), A. Oh, T. Neumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine, Eds., Curran
Associates, Inc., 2023, pp. 9173–9212.

https://doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1007/s10601-008-9051-2
https://doi.org/10.1007/s10601-008-9051-2
https://doi.org/https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1201/9781315139470
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/JSTARS.2020.3026724
https://doi.org/10.1109/JSTARS.2020.3026724
https://doi.org/10.3389/frai.2023.1124553
https://doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1609/aaai.v33i01.33011624
https://doi.org/10.1609/aaai.v33i01.33011624


[23] M. G. Vilas Boas, H. G. Santos, L. H. d. C. Mer-
schmann, and G. Vanden Berghe, “Optimal decision
trees for the algorithm selection problem: Integer pro-
gramming based approaches,” International Transac-
tions in Operational Research, pp. 2759–2781, 2021.

[24] G. Segalini, “Optimal decision trees for the algo-
rithm selection problem: A dynamic programming ap-
proach,” Bachelor Thesis, Delft University of Technol-
ogy, 2023.

[25] A. Biere, “Yet another local search solver and lingeling
and friends entering the sat competition 2014,” in Pro-
ceedings of SAT Competition 2014: Solver and Bench-
mark Descriptions, 2014, pp. 39–40.

[26] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown,
“Satzilla: Portfolio-based algorithm selection for sat,”
Journal of Artificial Intelligence Research, pp. 565–
606, 2008.

[27] L. Xu, F. Hutter, H. Hoos, and K. Leyton-
Brown, “Evaluating component solver contributions
to portfolio-based algorithm selectors,” Jun. 2012,
pp. 228–241. DOI: 10.1007/978-3-642-31612-8 18.

[28] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samu-
lowitz, and M. Sellmann, “Algorithm selection and
scheduling,” in Principles and Practice of Constraint
Programming – CP 2011, J. Lee, Ed., Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011, pp. 454–469.

[29] R. Amadini, M. Gabbrielli, and J. Mauro, “Sunny: A
lazy portfolio approach for constraint solving,” The-
ory and Practice of Logic Programming, pp. 509–524,
2014.

[30] M. Rizzini, C. Fawcett, M. Vallati, A. E. Gerevini,
and H. Hoos, “Static and dynamic portfolio meth-
ods for optimal planning: An empirical analy-
sis,” International Journal on Artificial Intelligence
Tools, p. 1 760 006, Feb. 2017. DOI: 10 . 1142 /
S0218213017600065.

[31] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub,
M. T. Schneider, and S. Ziller, “A portfolio solver
for answer set programming: Preliminary report,” in
Eleventh International Conference on Logic Program-
ming and Nonmonotonic Reasoning, Springer, 2011,
pp. 352–357.

[32] H. H. Hoos, M. Lindauer, and T. Schaub, “Claspfolio
2: Advances in algorithm selection for answer set pro-
gramming,” Theory and Practice of Logic Program-
ming, pp. 569–585, 2014.

[33] M. Maratea, L. Pulina, and F. Ricca, “A multi-engine
approach to answer set programming,” CoRR, 2013.

[34] W. Bożejko, A. Gnatowski, T. Niżyński, M. Affen-
zeller, and A. Beham, “Local optima networks in solv-
ing algorithm selection problem for tsp,” Advances in
Intelligent Systems and Computing, 83 – 93, 2019.
DOI: 10.1007/978-3-319-91446-6 9.

[35] G. Drozdov, A. Zabashta, and A. Filchenkov, “Graph
convolutional network based generative adversarial
networks for the algorithm selection problem in clas-

sification,” 2020, 88 – 92. DOI: 10 . 1145 / 3437802 .
3437818.

[36] Y. Song, L. Bliek, and Y. Zhang, Revisit the algorithm
selection problem for tsp with spatial information en-
hanced graph neural networks, 2023.

[37] A. Kostovska, A. Jankovic, D. Vermetten, S. Džeroski,
T. Eftimov, and C. Doerr, “Comparing algorithm selec-
tion approaches on black-box optimization problems,”
in Proceedings of the Companion Conference on Ge-
netic and Evolutionary Computation, Lisbon, Por-
tugal: Association for Computing Machinery, 2023,
495–498. DOI: 10.1145/3583133.3590697.

[38] J. Scott, A. Niemetz, M. Preiner, S. Nejati, and
V. Ganesh, “Algorithm selection for smt: Machsmt:
Machine learning driven algorithm selection for smt
solvers,” Int. J. Softw. Tools Technol. Transf., 219–239,
2023. DOI: 10.1007/s10009-023-00696-0.

[39] F. Gonard, M. Schoenauer, and M. Sebag, “Algorithm
selector and prescheduler in the icon challenge,” in Jan.
2019, pp. 203–219. DOI: 10.1007/978-3-319-95104-
1 13.

[40] A. Visentin, A. Ó. Gallchóir, J. Kärcher, and H.
Meyr, “Explainable algorithm selection for the ca-
pacitated lot sizing problem,” in Integration of Con-
straint Programming, Artificial Intelligence, and Oper-
ations Research, B. Dilkina, Ed., Cham: Springer Na-
ture Switzerland, 2024, pp. 243–252.

[41] M. E. Morocho-Cayamcela, H. Lee, and W. Lim, “Ma-
chine learning for 5g/b5g mobile and wireless commu-
nications: Potential, limitations, and future directions,”
IEEE Access, pp. 137 184–137 206, Sep. 2019. DOI:
10.1109/ACCESS.2019.2942390.

[42] Y. Luo, H.-H. Tseng, S. Cui, L. Wei, R. K. Ten Haken,
and I. El Naqa, “Balancing accuracy and interpretabil-
ity of machine learning approaches for radiation treat-
ment outcomes modeling,” BJR Open, p. 20 190 021,
2019. DOI: 10.1259/bjro.20190021.

[43] A. Barredo Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser,
A. Bennetot, S. Tabik, A. Barbado, S. Garcia, S. Gil-
Lopez, D. Molina, R. Benjamins, R. Chatila, and F.
Herrera, “Explainable artificial intelligence (xai): Con-
cepts, taxonomies, opportunities and challenges to-
ward responsible ai,” Information Fusion, pp. 82–115,
2020. DOI: https://doi.org/10.1016/j.inffus.2019.12.
012.

[44] G. Ciatto, M. Schumacher, A. Omicini, and D. Cal-
varesi, “Agent-based explanations in ai: Towards an
abstract framework,” in Jul. 2020, pp. 3–20. DOI: 10.
1007/978-3-030-51924-7 1.

[45] A. Kumar, S. Dikshit, V. H. C. Albuquerque, and M. R.
Khosravi, “Explainable artificial intelligence for sar-
casm detection in dialogues,” Wirel. Commun. Mob.
Comput., 2021. DOI: 10.1155/2021/2939334.

[46] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad,
J. M. Alonso-Moral, R. Confalonieri, R. Guidotti, J.
Del Ser, N. Dı́az-Rodrı́guez, and F. Herrera, “Explain-
able artificial intelligence (xai): What we know and

https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1142/S0218213017600065
https://doi.org/10.1142/S0218213017600065
https://doi.org/10.1007/978-3-319-91446-6_9
https://doi.org/10.1145/3437802.3437818
https://doi.org/10.1145/3437802.3437818
https://doi.org/10.1145/3583133.3590697
https://doi.org/10.1007/s10009-023-00696-0
https://doi.org/10.1007/978-3-319-95104-1_13
https://doi.org/10.1007/978-3-319-95104-1_13
https://doi.org/10.1109/ACCESS.2019.2942390
https://doi.org/10.1259/bjro.20190021
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1007/978-3-030-51924-7_1
https://doi.org/10.1007/978-3-030-51924-7_1
https://doi.org/10.1155/2021/2939334


what is left to attain trustworthy artificial intelligence,”
Information Fusion, p. 101 805, 2023. DOI: https://doi.
org/10.1016/j.inffus.2023.101805.

[47] Z. C. Lipton, “The mythos of model interpretability,”
Commun. ACM, 36–43, 2018. DOI: 10.1145/3233231.

[48] K. P. Bennett and J. L. Blue, “Optimal decision trees,”
Pattern Recognition, pp. 1311–1322, 1996. DOI: 10 .
1016/0031-3203(95)00135-7.

[49] D. Bertsimas and R. Shioda, “Classification and re-
gression via integer optimization,” Operations Re-
search, pp. 252–271, 2007. DOI: 10.1287/opre.1060.
0355.

[50] Y. Hu, C. Rudin, and M. Seltzer, “Optimal sparse de-
cision trees,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems
(NIPS 2019), 2019, pp. 7265–7273.

[51] G. Aglin, S. Nijssen, and P. Schaus, “Learning opti-
mal decision trees using a boosted branch-and-bound
search,” in Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 2020, pp. 3146–3153.

[52] T. Liu, R. Amadini, M. Gabbrielli, and J. Mauro,
“Sunny-as2: Enhancing sunny for algorithm selec-
tion,” English, Journal of Artificial Intelligence Re-
search, pp. 329–376, 2021. DOI: 10 . 1613 / JAIR . 1 .
13116.

[53] D. Pulatov, M. Anastacio, L. Kotthoff, and H. Hoos,
“Opening the black box: Automated software analysis
for algorithm selection,” in Proceedings of the First In-
ternational Conference on Automated Machine Learn-
ing, I. Guyon, M. Lindauer, M. van der Schaar, F. Hut-
ter, and R. Garnett, Eds., PMLR, 2022, pp. 6/1–18.

[54] J. Hanselle, A. Tornede, M. Wever, and E. Hüllermeier,
“Hybrid ranking and regression for algorithm selec-
tion,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 59 – 72, 2020. DOI:
10.1007/978-3-030-58285-2 5.

[55] M. Seiler, J. Pohl, J. Bossek, P. Kerschke, and H. Traut-
mann, “Deep learning as a competitive feature-free ap-
proach for automated algorithm selection on the travel-
ing salesperson problem,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 48
– 64, 2020. DOI: 10.1007/978-3-030-58112-1 4.

[56] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis,
“Explainable ai: A review of machine learning inter-
pretability methods,” eng, Entropy (Basel), p. 18, 2020.
DOI: 10.3390/e23010018.

[57] Delft High Performance Computing Centre (DHPC),
DelftBlue Supercomputer (Phase 2), 2024.

https://doi.org/https://doi.org/10.1016/j.inffus.2023.101805
https://doi.org/https://doi.org/10.1016/j.inffus.2023.101805
https://doi.org/10.1145/3233231
https://doi.org/10.1016/0031-3203(95)00135-7
https://doi.org/10.1016/0031-3203(95)00135-7
https://doi.org/10.1287/opre.1060.0355
https://doi.org/10.1287/opre.1060.0355
https://doi.org/10.1613/JAIR.1.13116
https://doi.org/10.1613/JAIR.1.13116
https://doi.org/10.1007/978-3-030-58285-2_5
https://doi.org/10.1007/978-3-030-58112-1_4
https://doi.org/10.3390/e23010018


A Performance vs. number of leaf nodes
(other scenarios)

10
1

10
2

10
3

10
4

10
5

10
6

Number of Leaf Nodes

−1.5

−1.0

−0.5

0.0

0.5

N
or

m
al

iz
ed

P
A

R
10

0.58 0.60 0.56

0.83

0.22

0.72

MAXSAT-WPMS-2016

Model

DecisionTreeClassifier

DecisionTreeRegressor

RandomForestClassifier

RandomForestRegressor

STreeDClassifier

STreeDInstanceCostSensitiveClassifier

10
1

10
2

10
3

10
4

10
5

Number of Leaf Nodes

−1.5

−1.0

−0.5

0.0

0.5

N
or

m
al

iz
ed

P
A

R
10

0.74 0.69 0.72
0.56

0.22

0.84

CSP-Minizinc-Time-2016

10
0

10
1

10
2

10
3

10
4

10
5

Number of Leaf Nodes

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

P
A

R
10 0.46

0.58

0.41

0.70

0.41

0.59

MAXSAT19-UCMS-ALGO

Model

DecisionTreeClassifier

DecisionTreeRegressor

RandomForestClassifier

RandomForestRegressor

STreeDClassifier

STreeDInstanceCostSensitiveClassifier

10
1

10
2

10
3

10
4

10
5

Number of Leaf Nodes

−2.0

−1.5

−1.0

−0.5

0.0

0.5

N
or

m
al

iz
ed

P
A

R
10

0.72

0.47 0.510.50
0.60

0.72

MIP-2016

Figure 6: Scatterplot of all normalized PAR10 scores vs. number
of leaf nodes, resulting from the grid search procedure, for different
scenarios. The best achieved normalized PAR10 is highlighted for
each model in white. Note the logarithmic x-axis. TBD: fix plots

10
1

10
2

10
3

10
4

10
5

10
6

Number of Leaf Nodes

−2.0

−1.5

−1.0

−0.5

0.0

0.5

N
or

m
al

iz
ed

P
A

R
10

-0.12

0.31

-0.11

0.59

-0.55

0.59

PROTEUS-2014

Model

DecisionTreeClassifier

DecisionTreeRegressor

RandomForestClassifier

RandomForestRegressor

STreeDClassifier

STreeDInstanceCostSensitiveClassifier

10
1

10
2

10
3

10
4

10
5

10
6

Number of Leaf Nodes

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
A

R
10

0.31 0.32

0.49

0.74

-0.13

0.64

QBF-2016

10
1

10
2

10
3

10
4

10
5

Number of Leaf Nodes

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
A

R
10

0.63 0.62

0.72

0.80

0.60

0.74

SAT11-HAND-ALGO

Model

DecisionTreeClassifier

DecisionTreeRegressor

RandomForestClassifier

RandomForestRegressor

STreeDClassifier

STreeDInstanceCostSensitiveClassifier

10
1

10
2

10
3

10
4

10
5

10
6

Number of Leaf Nodes

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

P
A

R
10

0.58 0.57

0.82 0.84

0.49

0.77

SAT12-ALL

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of Leaf Nodes

−0.6

−0.4

−0.2

0.0

0.2

0.4

N
or

m
al

iz
ed

P
A

R
10

0.23 0.25

0.13

0.39

-0.05

0.41

SAT16-MAIN

Model

DecisionTreeClassifier

DecisionTreeRegressor

RandomForestClassifier

RandomForestRegressor

STreeDClassifier

STreeDInstanceCostSensitiveClassifier



B Performance vs. number of leaf nodes for
STreeD Instance Cost Sensitive (other
scenarios)

10 20 30 40 50 60
Number of leaf nodes

0.725

0.750

0.775

0.800

N
or

m
al

iz
ed

P
A

R
10

BNSL-2016

4 6 8 10 12 14 16
Number of leaf nodes

0.6

0.7

0.8

N
or

m
al

iz
ed

P
A

R
10

CSP-Minizinc-Time-2016

5 10 15 20 25 30
Number of leaf nodes

0.4

0.5

0.6

N
or

m
al

iz
ed

P
A

R
10

MAXSAT19-UCMS-ALGO

10 20 30 40 50 60
Number of leaf nodes

0.60

0.65

0.70

N
or

m
al

iz
ed

P
A

R
10

MAXSAT-WPMS-2016

5 10 15 20 25 30
Number of leaf nodes

0.4

0.5

0.6

0.7

N
or

m
al

iz
ed

P
A

R
10

MIP-2016

5 10 15 20 25 30
Number of leaf nodes

0.4

0.5

0.6

N
or

m
al

iz
ed

P
A

R
10

QBF-2016

5 10 15 20 25 30
Number of leaf nodes

0.55

0.60

0.65

0.70

N
or

m
al

iz
ed

P
A

R
10

SAT11-HAND-ALGO

10 20 30 40 50
Number of leaf nodes

0.675

0.700

0.725

0.750

0.775

N
or

m
al

iz
ed

P
A

R
10

SAT12-ALL

10 20 30 40 50 60
Number of leaf nodes

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

P
A

R
10

SAT16-MAIN


	Introduction
	Related Work
	Preliminaries
	Methodology
	Data Source
	Data preparation
	Model Training and Model Selection

	Experimental Setup and Results
	Performance of all models and scenarios
	Performance vs. Number of leaf nodes for all models and scenarios
	Performance vs. number of leaf nodes per scenario
	Experiment 4: Performance vs. number of leaf nodes for STreeD Instance Cost Sensitive

	Conclusions and Future Work
	Performance vs. number of leaf nodes (other scenarios)
	Performance vs. number of leaf nodes for STreeD Instance Cost Sensitive (other scenarios)

