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1
INTRODUCTION

This chapter presents the concept of radar networks and existing unresolved challenges
for their efficient exploitation. State-of-the-art methods developed for radar networks
performance analysis and topology optimization are reviewed. The research objective and
suggested approaches are then formulated. Finally, the structure and a short summary of
the thesis chapters are presented.

1
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2 1. INTRODUCTION

1.1. NEED FOR A NEW SENSING TECHNIQUE

P RESENTLY, conventional standalone radars are widely used in both military and civil
domains [1], [2]. Their applications range from small-scale devices for medical

imaging to bulky, electronically scanned array radars for space observations [3], [4].
Although a single radar is capable of performing important functions (detection,

estimation, classification, and tracking), it can not meet a number of new requirements,
posed by modern society. Among such requirements are:

1. 3D (2D) kinematic target data extraction and tracking;

2. coverage of extended areas, including low-level airspace;

3. 24/7 area surveillance with high system robustness.

These challenges have become a triggering force for rediscovery of multistatic systems,
which arose in the 1970s [5]. According to [5], multistatic configuration consists of
many radar units at separate locations, which cooperate with each other. The units may
be stationary or moving, although the misleading term "multistatic" is used instead of
multistation or multisite. The replacement of a single complex radar with a network of
simple radar units that enclose the observation area enables [6], [7], [8]

1. higher target detection performance;

2. higher estimation accuracy of the target position and velocity vectors;

3. lower minimum detectable velocity;

4. better classification capability.

Moreover, it has been shown that distributed radars play the role of gap filler of the
low-level airspace, allowing for detection of an unmanned aerial vehicles (UAV) and
hazardous weather phenomena, which occur on altitudes below 3 km [9]. Another
benefit of multistatic radar system over a single radar is its feature of graceful
degradation, which implies only a minor effect on the overall system performance from
a single radar node failure [10].

1.2. TAXONOMY OF MULTISTATIC RADARS
The term "multistatic radar" covers a wide range of systems, which differ from each other
by [6], [11], [12]:

1. the radar architecture

(a) monostatic, when transmit and receive antennas are collocated;

(b) bistatic, when transmit and receive antennas are separated by a distance,
comparable to the expected target distance;

2. the type of radar transmitter

(a) cooperative (dedicated), which is specially designed for bistatic operation;
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(b) non-cooperative (hitchhiker, when transmitter of opportunity is from a
bistatic radar; passive bistatic radar, when transmitter of opportunity is not a
radar), which is designed for other purposes;

3. the manner of radar interaction with the target of interest

(a) active, when the target, equipped with a radar transponder that replies
to signals from the radar interrogator (such as the aircraft target, which
cooperates with secondary surveillance radar);

(b) passive, when a target does not cooperate with a radar;

4. the level of autonomy in the signal reception and processing

(a) autonomous, when each receiver receives signals only from the dedicated
transmitter;

(b) cooperative, when each receiver receive signals from all transmitters in the
network;

5. the level of the spatial coherency that is defined as ability to maintain phase
stability of the radio frequency signals and interference between separated
stations:

(a) coherent networks where inter-node phase shifts are known and can be
maintained for a long period of time (several hours or days);

(b) short term coherent networks where the phase stability is maintained for a
short period of time (less than a second);

(c) incoherent networks where neither inter-node phase shifts nor their changes
with time are not known;

6. the method of information fusion from individual radar nodes

(a) centralized: fusion of radio frequency signals, video signals;

(b) decentralized: individual target detections, plots, and tracks.

In this thesis, I focus on radar networks with widely separated antennas, which are
also referred to as statistical multi-input multi-output (MIMO) systems in scientific
literature [7]. According to [7], in statistical MIMO systems, the transmit and receive
array elements are broadly spaced, which provides independent scattering responses
for each antenna pairing. In contrast to statistical MIMO, coherent MIMO implies
close spacing between elements in transmit and receive arrays. It was shown in [13]
that statistical MIMO provides higher accuracy of the target parameters estimation
compared to coherent MIMO. Such superiority in statistical MIMO is achieved due to
diversity gain, e.g. spatial diversity of the nodes that allows improved measurement
performance with the same number of channels.

A diagram of a radar network that consists of both monostatic and bistatic
radars with cooperative reception and a passive target in the scene is shown in
Fig.1.1. Signals received from cooperative transmitters are indicated with dashed
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arrows. The cooperative transmission-reception mode provides an opportunity to
increase the number of measurements and thus, to enhance the system performance.
A passive target of interest implies a lower signal-to-noise ratio (SNR) of the
received signals, compared to active targets, due to the two-way signal propagation
(transmitter-target-receiver). From this it follows that network features and parameters
of a single radar define system performance [14].

Tx-Rx
4131

23

WD L

Tx

Tx-Rx Rx

MS BS

Figure 1.1: A combined monostatic and bistatic radar network with cooperative transmission-reception mode
(indicated with dashed arrows).

Although the idea of the simultaneous exploitation of data from multiple radar
nodes was already being discussed several decades ago, radar networks have been
experimentally studied a great deal over the last few years due to advances in high
data rate communication and signal processing capabilities, which made it possible at
low cost to synchronize radar nodes and process their outputs simultaneously (and in
real time) [15]. When compared to a single radar, data from spatially separated radar
nodes enables 3D target localization and tracking (see Table 1.1). This poses additional
challenges to the data processing algorithms in the sense that they should provide
accurate estimation in scenarios when 1) the number of unknowns is much less than
the number of measurements; 2) the measurements are corrupted by noise. Moreover,
the price for these advanced functionalities is an additional processing step called data
association (or deghosting).

Table 1.1: Single radar versus radar network

Functionalities Single radar Radar network
Detection lower higher
Estimation 1D 3D
Tracking 1D 3D

Data association is an inherent part of data processing of 3D targets localization in a
radar network. It aims to identify the measurements from the radar nodes to the targets
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in the scene. Incorrect identification results in a so-called ghost phenomena, that is,
estimation of the target’s position from a set of measurements that characterize different
targets. As a result, the system performance deteriorates due to an increase of the false
alarm probability. A geometrical interpretation of this phenomenon is shown in Fig. 1.2.

Radar 3

Ghost 
target

Target 1

Radar 2

Radar 1

Target 2

Figure 1.2: Ghost target phenomena

The deghosting problem is often considered in the framework of multiple target
tracking. In this case, information of a target’s state vector from the previous moment
of time is used for data association as well [16]. The availability of such information
helps to reduce the number of unresolved ghost targets substantially, compared to the
case where there is no available prior knowledge of a target. A number of studies have
been dedicated to the development of deghosting algorithms, based only on bearing
measurements, both for localization and tracking purposes [17], [18], [19], [20]. Bearing
measurements imply a limited observation area of a single radar, which is related to its
antenna beamwidth. Despite that a target’s range might be unknown, the number of
potential ghosts will be lower than in the case of deghosting with range measurements
from omnidirectional radars. An algorithm of multiple target coordinate estimation in
bistatic MIMO radar, based on estimation of the 3D angles: azimuth transmit, transmit
elevation, and receive cone angles is presented in [21].

Operational scenarios can impose limitations on a single radar observation area and
thus, will limit the number of potentially detected targets. An example is an automotive
radar scenario, where each radar sensor has a limited observation area of about 180
degrees due to its location behind the car’s bumper [22]. Doppler measurements can
be used for deghosting as well. The ordinary least squares (OLS) approach for target
localization, based on the Doppler measurements, was proposed in [23] and modified
to the weighted least squares (WLS) approach in [24], where Doppler measurements are
further used in data association algorithms.
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The type of radar network defines particular features of the deghosting procedure
as well. A data association algorithm for MIMO radars that explores signals from
transmitters of opportunity was developed in [25]. Since the transmitted signals are
not under the user’s control, time and/or frequency orthogonality of the signal cannot
be provided, thus the authors propose first to perform a measurement-to-transmitter
association prior to the measurement-to-object association.

1.3. METHODS OF TARGET POSITION AND VELOCITY

ESTIMATION IN RADAR NETWORKS
The estimation of a target parameters in a multistatic radar network consists of two
steps. The first step is the estimation of the signal parameters, such as time delay,
difference in time delay (known in the communication field as time difference of arrival
[TDOA]), Doppler shift, signal amplitude, azimuth and elevation angles. Depending on
the sensor type, some of these signal parameters are further used for target state vector
estimation in the second processing step.

Existing position estimation techniques can be divided into two classes [26]:

• Deterministic, which explore geometric relationships between measurements and
target position.

Deterministic methods are: lateration, angulation or a combination of both
(triangulateration). In order to evaluate a three-dimentional target position from
range measurements in a monostatic autonomous radar network, the minimum
number of radars in the network is three. In this case, the direct target position
calculation method can be used for target position estimation, which corresponds
to the intersection of three spheres (see Appendix C). In scenarios, when there
are more measurements than unknowns or they are corrupted by noise, statistical
positioning techniques are used.

• Statistical parametric and non-parametric techniques.

Bayesian and maximum likelihood estimators (MLE) are parametric methods that
imply some prior statistical knowledge of the parameter vector to be provided.

Non-parametric methods are least squares estimator (LSE), Taylor series estimator
and spherical interpolation [27], [28], [29]. These methods do not require any prior
statistical knowledge of the parameter vector.

The availability of low-cost, highly accurate Doppler sensors triggered the
development of Doppler-based localization techniques. Weighted least squares
method and polynomial optimization approach for target localization from
Doppler shift measurements in the radar network were proposed in [30] and [24],
respectively.

1.4. PROBLEM FORMULATION
Both data association and estimation performance of the network is highly affected by
the number of radar nodes and their spatial geometry. In the context of data association,
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Figure 1.3: Classification of localization techniques

a condensed geometry of radar nodes with respect to surveillance areas leads to a
number of incorrect data associations larger than in a geometry with widely separated
radars [31]. Therefore, the selection of spatial positions of radar nodes is one of the
key tasks in radar network resource allocation. The aim is to achieve optimal system
performance with minimum cost. This task can be considered either as a real-time
or off-line design task, depending on the particular application. For example, the
target localization accuracy of the radar network is determined by ranging errors of
each single radar and topology of the nodes [32]. In Global Positioning Systems, this
phenomenon is often described with the geometric dilution of precision (GDOP) factor,
which is defined as a ratio of the localization error to the ranging error, assumed to be
the same for all satellites [33]. In a network of radars, such ranging errors differ from
one radar to another due to different target-radar distances and single radar operational
characteristics, and therefore, GDOP is not an efficient measure. This effect is captured
with Cramér-Rao lower bound (CRLB), which incorporates both a single radar node and
system parameters. Moreover, CRLB is a good approximation of the maximum likelihood
estimator performance in the high SNR region (asymptotic region). This is not the case
for the low SNR region (non-asymptotic region), where the estimator’s performance
departs from CRLB [34]. These two regions are separated by a threshold SNR as shown
in Figure 1.4. Since high system estimation accuracy is the focus of this thesis, we are
working with high SNR values from the asymptotic region. Furthermore, a shift of the
threshold point (point that separates two regions) to the lower SNR values was observed
by increasing the number of transmit and receive antennas [35].

Various techniques for spatial radar (sensor) placement are presented in scientific
literature [36], [37], [38], [39], [40]. In general, for a given set of potential radar nodes
positions, topology optimization problems are formulated in two ways:

1. Selection of the subset of radar nodes positions with the minimal cardinality
that meets fixed requirements to the system performance in detection, estimation
accuracy, classification or tracking quality.

2. Selection of the subset of radar nodes positions that provide the best possible
system performance with fixed cardinality.

Depending on the mission, different performance metrics are used for the system
design. Previous studies have mostly focused on the selection of radar network
configurations that ensure only accurate target localization. However, a number of
radar applications require knowledge of the full target state vector, which includes not
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only the location, but also the target velocity at each instant of time [41]. Additionally,
the use of the Doppler shift provides a higher detection probability in strong clutter
[42]. Topology optimization for the joint position and velocity vector estimation of
a ground moving target (GMT) using pulse Doppler radars aboard unmanned aerial
vehicles was considered in [43], [41]. The assumption made in [43], is however related
to the constant accuracy of the UAV measurements and does not allow for an optimal
solution in terms of signal-to-noise ratio. Both approaches from [43] and [41], explore
the sensors’ mobility, which require real-time optimization.

In this research, I focus on the off-line problem of selecting radar node positions
to satisfy prescribed accuracy requirements of the target state vector estimation. The
estimation accuracy measures are often chosen to be scalar functions of the error
covariance matrix, such as 1) the maximum eigenvalue (E-optimality); 2) the trace
(A-optimality); and 3) the log-determinant (D-optimality). Other measures, like mutual
information, entropy, and cross-entropy are frequently used as well [44], [45]. The
sensor selection problem is combinatorial in nature. Therefore, different optimization
techniques are used to solve it in polynomial time. For example, convex optimization
methods, which are based on the relaxation of the Boolean constraint {0,1}N on the
selection coefficients, were shown to perform well in terms of mean squared error (MSE).
At the same time, these methods imply a high computational cost. In contrast to convex
methods, greedy algorithms have a linear complexity. While the first class of methods
requires the cost function to be convex, the second one requires its submodularity.
In particular, the log-determinant, the mutual information, and the entropy were
shown to be submodular functions. Another submodular function, namely the frame
potential (FP), which is a measure for the orthogonality of the rows of the measurement
matrix, was introduced in [38] as a proxy for the mean squared error. Together with
a low computational complexity, the FP-based greedy algorithm sometimes shows a
competitive performance with convex optimization.
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1.5. RESEARCH OBJECTIVE AND APPROACHES
Since the idea of multistatic radar is to provide a cost-effective solution, low-cost radars
with wide-beam omnidirectional antennas are considered to be the most applicable for
this purpose. In addition to range estimation, such radars, i.e. frequency-modulated
continuous wave (FMCW), can provide Doppler frequency measurements as well. Both
types of these measurements or their combination (as will be shown further in this
thesis) can be used for target localization. An FMCW radar type with linear frequency
modulated (LFM) waveform is considered in this thesis. A major focus of this thesis is a
combination of two tasks:

1. development of a radar network performance assessment tool;

2. development of a generic framework for radar network topology optimization.

The first task has been tackled with development of the CRLB-based tool that allows
evaluation of the potential accuracy of the target position and velocity vectors estimation
in the radar networks. The main idea is to evaluate accuracy of the target range
and radial velocity estimation of a single radar (1D). Thereafter, these quantities are
used for evaluation of the potential accuracy of 3D target position and velocity vectors
estimation, taking into account parameters of the system.

To tackle the second task, I developed two algorithms for radar network topology
optimization, which are based on convex and greedy techniques. The optimization
problem can be tackled in two ways, i.e. as the selection of the minimum number of
radar nodes that meet some prescribed accuracy requirements or the selection of a fixed
number of radar nodes that provide maximal estimation accuracy. A generic framework
for topology optimization based on non-linear measurement models was developed for
this purpose. The maximum eigenvalue, the frame potential and the log-determinant
(LD) of the error covariance matrix are used as performance metrics. The LD and
FP costs were shown to be submodular, which allows one to use greedy optimization
algorithms, ensuring a near-optimal performance and a low computational complexity
[38], [46]. The considered costs were redesigned to a specific non-linear model,
where the parameter vector can take any value from the known parameter space and
can be represented by entries of different modalities (e.g., range and velocity). The
developed theoretical framework has been applied for performance assessment as well
as for topology optimization of FMCW radar network, dedicated only to the target
position estimation or to simultaneous estimation of the target position and velocity.
Closed-form expressions of CRLB, FP and LD for an FMCW radar network were derived.
As the data association task is very important for radar network operation, I paid some
attention to it as well. Appendix C presents the developed data association algorithm for
target localization based on time delay measurements in a monostatic radar network.
The research, presented in this thesis, was supported by the RAEBELL (Feasibility Study
of Low-level Airspace Surveillance) project.

1.6. THE OUTLINE OF THE THESIS
The thesis is organized as follows:
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Chapter 2 introduces the developed theory for evaluation of the potential estimation
accuracy of target parameters, namely position and velocity vectors, in radar
networks. The developed performance estimation framework is based on
Cramér-Rao lower bound inequality. The approach for incorporation of the
antenna pattern into the CRLB-based model is presented.

Chapter 3 provides comprehensive analysis of the multistatic radar networks
estimation performance. This analysis incorporates investigation of the
influence of a single radar node (radar architecture, power budget and waveform
parameters) and system (signal reception mode, transmitter type) parameters
on the estimation performance. Moreover, the effect of a measurement type on
target localization accuracy is studied as well.

Chapter 4 presents an accuracy-driven topology optimization framework. Three
cost functions, namely the minimum eigenvalue, the frame potential, and the
log-determinant are developed for a generic, non-linear measurement model. The
closed-form expressions for direct evaluation of FP and LD costs for a FMCW radar
network are derived. An extension of the framework to the case of multi-modal
parameter vector estimation as well as to selection-dependent models is provided.

Chapter 5 demonstrates a range of applications of the developed framework for radar
network topology optimization. Both greedy and convex optimization algorithms
have been validated. In parallel, a comparison of the cost functions as well as
optimization algorithms is performed.

Chapter 6 presents the conclusions of the thesis and gives recommendations for future
work.
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2
POTENTIAL ACCURACY OF TARGET

POSITION AND VELOCITY VECTOR

ESTIMATION IN MULTISTATIC

RADAR

This chapter aims to provide closed-form expressions for evaluation of the target position
and velocity vectors estimation accuracy in radar networks. Two types of signal
waveforms, namely WiFi and LFM, will be considered for passive and active radars
respectively. First, the lower bounds on target range and Doppler frequency estimation
accuracy of a single radar will be derived. Impact of the antenna patterns will be
considered for the first time. Finally, these bounds will be used to evaluate potential
estimation accuracy of the target position and velocity vector in the network of radars.

Parts of this chapter have been published in [1], [2].
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2. POTENTIAL ACCURACY OF TARGET POSITION AND VELOCITY VECTOR ESTIMATION IN

MULTISTATIC RADAR

2.1. SYSTEM MODEL
Without loss of generality, a bistatic radar network with cooperative signal reception,
defined in Chapter 1, is considered in this chapter (Fig. 2.1). The radar networks
with monostatic radar architecture and/or an autonomous mode of signal reception are
special cases. A general non-linear measurement model for a set of N possible radar
positions is considered

y = f (α)+ξ, (2.1)

where y ∈ RNQ is the vector of accumulated measurements with Q being the number of
accumulated signal samples per integration time in a single radar, α ∈ RK is the vector
of parameters to be estimated, f is the non-linear vector function, and ξ ∈ RNQ is the
measurement noise.

Tx

4131

23

WD L

Rx 2

Rx 1

Figure 2.1: Bistatic radar network with cooperative mode of signal transmission-reception

Following the model (2.1), we define the signal reflected from the moving target as

y (n)(t ) = f (n)(t ;α)+ξ(n)(t ), (2.2)

where α = [x, y, z, υx , υy , υz ]T is the parameter vector to be estimated; ξ(t )(n) is a
zero-mean i.i.d. Gaussian noise with variance σ2 and

f (n)(t ;α) = A(n) exp(− j (t −τ(n))ω(n)
d )x(n)(t −τ(n)) (2.3)

with x(n)(t −τ(n)) as time-delayed transmit signal, reflected from the target;
A(n) = |A(n)|exp( jϕ(n)) is the non-fluctuating amplitude of the received signal; τ(n) is the
signal time delay related to bistatic target-radar distance R(n) as

τ(n) = R(n)

c
= R(nt )

t +R(nr )
r

c
, (2.4)

where R(nt )
t and R(nr )

r are distances from the nt th transmitter and nr th receiver to the
target; nt = 1, . . . , Nt , and nr = 1, . . . , Nr with Nt and Nr being the number of transmitting
and receiving radar nodes respectively.

R(nt )
t =

√
(x −x(nt )

t )2 + (y − y (nt )
t )2 + (z − z(nt )

t )2, (2.5)
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R(nr )
r =

√
(x −x(nr )

r )2 + (y − y (nr )
r )2 + (z − z(nr )

r )2, (2.6)

c is the speed of light;
(
x, y, z

)
,

(
x(nt )

t , y (nt )
t , z(nt )

t

)
,

(
x(nr )

r , y (nr )
r , z(nr )

r

)
are coordinate

vectors of the target, nt th Tx and nr th Rx nodes. The measured Doppler frequency
f (n)

d =ω(n)
d /2π in the nth Tx-Rx channel is defined by the radial components of the target

velocity towards nt th Tx and nr th Rx radar nodes

f (n)
d = f (nt )

c

c

(
∂R(nt )

t

∂t
+ ∂R(nr )

r

∂t

)
, (2.7)

where ∂R(nt )
t /∂t = (

υx (x−x(nt )
t )+υy (y−y (nt )

t )+υz (z−z(nt )
t )

)
/R(nt )

t and ∂R(nr )
r /∂t = (

υx (x−
x(nr )

r )+υy (y − y (nr )
r )+υz (z − z(nr )

r )
)
/R(nr )

r with υx , υy , υz being projections of the target
velocity υ on coordinate axes x, y , and z.

Interferences between different radars are excluded, assuming signal orthogonality
in frequency or time domain are realized. It is assumed that target detection and
consequent signal parameters estimation is performed locally in a single radar node.
These estimates are forwarded to the central processing unit afterwords, where the
estimation of the target parameters in 3D space takes place. It is assumed that each
of Nt totally available transmitters forms a bistatic sensing pair with each of Nr available
receivers, which results in N = Nt Nr bistatic pairs.

A single target case is considered throughout the chapter. It is assumed that
measurements from multiple targets in the scene are associated by using an appropriate
algorithm, like the one presented in Appendix C. Effects of the target rotations are
not incorporated in this model. Radar cross-section (RCS) is assumed to be constant
during dwell time and follows Swerling I target model. Multipath effects are neglected,
assuming that the multipath is suppressed during detection and estimation in a single
radar. The signal attenuation that occurs due to the finite target-radar distance is taken
into account, following the classic radar equation

Pr = Pt Gt Gr RCSλ2

(4π)3R2
t R2

r Ls y st
Gpr oc , (2.8)

where Pt is the transmitted power, Gt is the Tx antenna gain, Gr is the Rx antenna gain,
λ is the signal wavelength, Ls y st is the system loss, Gpr oc is the processing gain.

2.2. THE CRAMÉR-RAO LOWER BOUND

T HE Cramér-Rao lower bound defines the lower bound on the variance of any
unbiased estimator [3, 4]. For the unbiased estimator α̂ of the parameter vector

α = [α1, α2, . . . , αK ] with K components, the CRLB allows one to evaluate a bound on
the variance of each element from the parameter vector α [4]

Var(α̂i ) ≥ [I−1(α)]i i , (2.9)

where I is the K ×K Fisher information matrix (FIM) with elements

[I(α)]i j =−
〈∂2 ln g (y ;α)

∂αi∂α j

〉
, (2.10)
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where y is the vector of sampled measurements from (2.1); g (y ;α) is the probability
density function parameterized by the unknown parameter α; sign 〈·〉 means statistical
average of the quantity in the brackets; i = 1, . . .K ; j = 1, . . .K .

The accuracy of the estimation of the target parameters in the radar networks
depends on the type of the radar network, topology of the radar nodes, waveform
parameters and power budget of each radar. All of these parameters can be incorporated
into the CRLB. For example, by analyzing the contour plots of the localization CRLB,
impact of different waveform parameters on the overall system performance can be
analyzed. Another example is the selection of the most favorable geometry of the radar
nodes given the CRLB distribution over the area of interest, like area of potential target
location. Therefore, the CRLB can be used as a cost function in the task of radar network
resource allocation. It will be shown in Chapter 4, that scalar functions of CRLB can
efficiently be used for radar network topology optimization.

2.3. RANGING ACCURACY OF PASSIVE BISTATIC RADAR WITH

WIFI TRANSMISSIONS
Exploitation of WiFi signals for short-range surveillance applications has demonstrated
reasonable performance in terms of the localization accuracy [5]. Moreover, wide
accessibility of free WiFi transmitters increases the interest of passive radar network
applications. This type of passive surveillance can be used solely or can be integrated
with existing surveillance systems in order to increase their performance. The three
most commonly used WiFi standards for signal transmission are: 802.11a, 802.11b, and
802.11g. An 802.11 access point periodically transmits a beacon signal, broadcasting its
presence and channel information.

The beacon signal consists of two parts, modulated with the direct sequence spread
spectrum (DSSS) modulation. One part uses differential binary phase shift keying
(DBPSK), and the other exploits quadrature phase shift keying (DQPSK). The 11-chip
Barker code is used

c = [1, −1, 1, 1, −1, 1, 1, 1, −1 ,−1 ,−1] . (2.11)

The DSSS signal is

sDSSS (t ) =
N−1∑
n=0

dnb(t −nTs ), (2.12)

where dn is the nth complex symbol in the modulation scheme (BPSK, QPSK); Ts = 1µs
is the symbol duration; b(t ) is the pulse shape function

b(t ) =
10∑

k=0
c [k] w(t −kTc ), (2.13)

where c [k] is the kth element in the Barker code; w(t ) is the chip time-window; Tc =
Ts /11 = 0.0909µs is the chip duration. The chip time-window is assumed such that

w(t ) =
{

exp(iωc t ), t ∈ [0,Tc ]

0, otherwise
(2.14)
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with the carrier frequency of the transmitted signal fc . The received radar signal,
reflected from the target, is represented with the measurement model for a single radar
given by (2.1) with N = 1:

y(t ) = A sDSSS (t +τ)+ξ(t ) = f (t ;α)+ξ(t ), (2.15)

where α= [
x, y, z

]
is the target position parameter vector. According to [6], elements of

the FIM can be derived from the ambiguity function χ(τ,ωd ) as well:

Iαiα j =−|A|2
N0

∂2|χ(τ,ωd )|2
∂αi∂α j

. (2.16)

For zero Doppler shift, the ambiguity function is reduced to the auto-correlation
function (ACF):

χ(τ) =

+∞∫
−∞

sDSSS (t )s∗DSSS (t +τ)d t

+∞∫
−∞

sDSSS (t )s∗DSSS (t )d t

. (2.17)

Function w(t −nTs −kTc ) is defined as

w(t −nTs −kTc ) =
exp

(
i wc (t −nTs −kTc )

)
, t ∈ [nTs +kTc , nTs + (k +1)Tc ]

0, otherwise

Similarly,

w∗(t −nTs −qTc ) =
exp

(
−i wc (t −nTs −qTc )

)
, t ∈ [

nTs +qTc , nTs + (q +1)Tc
]

0, otherwise

Then the denominator will be simplified to

N Ts∫
0

sDSSS (t )s∗DSSS (t )d t =
N−1∑
n=0

|dn |2
N Ts∫
0

|b(t −nTs )|2d t =

N−1∑
n=0

|dn |2
k=0∑
10

c2 [k]

nTs+(k+1)Tc∫
nTs+kTc

1d t = 11N Tc = N Ts .

(2.18)

The numerator is

N Ts∫
0

sDSSS (t )s∗DSSS (t +τ)d t =
N−1∑
n=0

dn

N−1∑
m=0

d∗
m

N ts∫
0

b(t −nTs )b∗(t +τ−mTs )d t . (2.19)

Functions b(t −nTs ) and b∗(t + τ−mTs ) overlap at n = m and n = m − 1. Let us
consider these two cases separately.
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1. n = m = 0

N ts∫
0

b(t )b∗(t +τ)d t =
10∑

q=0
c
[
q
] 10∑

k=0
c [k]

N Ts∫
0

w(t −qTc )w∗(t +τ−kTc )d t ; (2.20)

Functions w(t −qTc ) and w∗(t +τ−kTc ) overlap at k = q = 0 and k = q +1. These
two cases will be considered separately.

(a) k = q = 0

N Ts∫
0

w(t −qTc )w∗(t +τ−kTc )d t =
N Ts∫
0

w(t )w∗(t +τ)d t . (2.21)

The domain of function w(t ) has been defined in (2.14). Similarly, for
function w∗(t +τ)

w∗(t +τ) =
{

exp
(−i wc (t +τ)

)
, t ∈ [−τ,τ+Tc ]

0, otherwise

Consequently, the overlapping interval of these two functions is t ∈ [0,Tc −τ].
The integral (2.21) will be

N Ts∫
0

w(t )w∗(t +τ)d t =
∫ Tc−τ

0
e i wc t e−i wc (t+τ) = e−i wcτ [Tc −τ] . (2.22)

(b) k = q +1 (q = 0, k = 1)

N Ts∫
0

w(t −qTc )w∗(t +τ−kTc )d t =
N Ts∫
0

w(t )w∗(t +τ−Tc )d t (2.23)

Again, function w(t ) is non-zero on the interval t ∈ [0,Tc ]; and function
w∗(t +τ−Tc ) is defined as

w∗(t +τ−Tc ) =
{

exp
(−i wc (t +τ−Tc )

)
, t ∈ [Tc −τ,2Tc −τ]

0, otherwise

The overlapping interval of these two functions is t ∈ [Tc −τ,Tc ]. Then
integral (2.23) becomes

N Ts∫
0

w(t )w∗(t +τ−Tc )d t = e−i wc (τ−Tc )τ. (2.24)
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Let us introduce the following notation:

Bq,k =
N Ts∫
0

w(t −qTc )w∗(t +τ−kTc )d t .

Consequently, Bq,q = (Tc −τ)e−i wcτ, Bq,q+1 = τe−i wc (τ−Tc ) and we will get

10∑
q=0

c
[
q
] 10∑

k=0
c [k]Bq,k =

10∑
q=0

c2 [
q
]

Bq,q +
9∑

q=0
c
[
q
]

c
[
q +1

]
Bq,q+1 =

11[Tc −τ]e−i wcτ.

(2.25)

Finally, for n = m

N ts∫
0

b(t −nTs )b∗(t +τ−mTs)d t = 11[Tc −τ]e−i wcτ; (2.26)

2. n = m −1 (n = 0, m = 1)

N ts∫
0

b(t )b∗(t +τ−Ts )d t =

10∑
q=0

c
[
q
] 10∑

k=0
c [k]

N Ts∫
0

w(t −qTc )w∗(t +τ−kTc −Ts )d t ;

(2.27)

Functions w(t −qTc ) and w∗(t +τ−kTc −Ts ) will overlap only at k = q −10.

(a) k = q −10 (k = 0, q = 10)

N Ts∫
0

w(t−qTc )w∗(t+τ−kTc −Ts )d t =
N Ts∫
0

w(t−10Tc )w∗(t+τ−Ts )d t (2.28)

Function w(t −10Tc ) is defined such that

w(t −10Tc ) =
{

exp
(
i wc (t −10Tc )

)
, t ∈ [10Tc , 11Tc ]

0, otherwise
.

And function w∗(t +τ−Ts ) is defined as

w∗(t +τ−Ts ) =
{

exp
(−i wc (t +τ−Ts )

)
, t ∈ [Ts −τ, Ts +Tc −τ]

0, otherwise
.
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These two functions overlap on the interval t ∈ [Ts −τ, Ts ]. Consequently,
(2.28) is simplified to

N Ts∫
0

w(t −10Tc )w∗(t +τ−Ts )d t = τe−i wc (τ−Tc ). (2.29)

Let us introduce a new notation:

Cq,k =
N Ts∫
0

w(t −qTc )w∗(t +τ−kTc −Ts )d t .

Consequently, Cq,q = 0, Cq,q−10 = e−i wc (τ−Tc )τ and we will get

10∑
q=0

c
[
q
] 10∑

k=0
c [k]Cq,k =

10∑
q=10

c
[
q
]

c
[
q −10

]
Cq,q−10 =−τe−i wc (τ−Tc ). (2.30)

Finally, at n = m −1:

N ts∫
0

b(t −nTs )b∗(t +τ−mTs)d t =−τe−i wc (τ−Tc ). (2.31)

In order to find a closed-form expression of the numerator (2.19), let us introduce

the following notation: Gn,m =
N Ts∫
0

b(t −nTs )b∗(t +τ−mTs )d t . Then, we will get Gn,n =
11[Tc −τ]e−i wcτ, Gn,n−1 =−τe−i wc (τ−Tc ).
The numerator is simplified to

N Ts∫
0

sDSSS (t )s∗DSSS (t +τ)d t =
N−1∑
n=0

dn

N−1∑
m=0

d∗
mGn,m =

N−1∑
n=0

|dn |2Gn,n +
N−1∑
n=1

dnd∗
n−1Gn,n−1 =

11N [Tc −τ]e−i wcτ+ (−τ)e−i wc (τ−Tc )
N−1∑
n=1

dnd∗
n−1.

(2.32)

The auto-correlation function is then given by

χ(τ) = 1

N Ts
e−i wcτ

[
11N [Tc −τ]+ (−τ)e i wc Tc

[N−1∑
n=1

dnd∗
n−1

]]
. (2.33)

Substituting (2.33) into (2.16), we get

(I−1)ττ =
T 2

c

2SNR
. (2.34)
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2.4. RANGE AND DOPPLER FREQUENCY ESTIMATION

ACCURACY IN FMCW RADAR
Each FMCW radar transmits a burst of linear frequency-modulated pulses that can be
represented by

x(n)(t ) = A0 exp
(

j t
[
ωc + frac

( t

Ts

)
∆ω

])
, (2.35)

where A0 = |A0|exp( jϕ0) is the transmit signal amplitude, ωc = 2π fc with fc the signal
centre frequency, ∆ω = 2π∆ f with ∆ f the signal bandwidth, n = 1, . . . , N , and Ts is the
sweep time; 0 < t < DTs with D integrated number of pulses. The received radar signal,
shifted in time and Doppler, is given by (2.1) with N = 1.

Except for the time delay and Doppler frequency, the complex signal amplitude A(n)

of the received signal is estimated as well. Consequently, the parameter vector in this
stage of the signal parameters estimation is equal to four K = 4: ψ = [τ, ωd , |A|, ϕ].
Neither absolute value |A| nor phase ϕ is used to estimate target position and velocity.
Therefore, complex signal amplitude plays the role of nuisance parameter in the
considered model.

Since the measured signal samples are complex parameters, equation (2.10) can be
rewritten as [4]

Ii j = 1

σ2 Re
Q∑

q=1

(∂ f ∗
q

∂αi

)( ∂ fq

∂α j

)
, Q >> K (2.36)

The received noiseless signal resulting from the reflection of one target is shifted in time
and frequency and is given by (2.3).

As was discussed before, the complex signal amplitude is one of the parameters in
the estimation. The FIM is

I =


Iττ Iτωd Iτϕ Iτ|A|

Iωdτ Iωdωd Iωdϕ Iωd |A|
Iϕτ Iϕωd Iϕϕ Iωd |A|
I|A|τ I|A|ωd I|A|ϕ I|A||A|

 . (2.37)

From equation (2.36), the elements of the FIM are

Iττ = |A|2
σ2Q2

Q∑
q=1

[ωc + frac
( tq −τ

Ts

)
∆ω−ωd ]2;

Iωdωd = |A|2
σ2Q2

Q∑
q=1

(tq −τ)2;

I|A||A| = 1

σ2Q
;

Iϕϕ = |A|2
σ2Q

;
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Iτωd = |A|2
σ2Q2

Q∑
q=1

(tq −τ)[ωc + frac
( tq −τ

Ts

)
∆ω−ωd ];

Iτ|A| = 0;

Iτϕ =− |A|2
σ2Q2

Q∑
q=1

[ωc + frac
( tq −τ

Ts

)
∆ω−ωd ];

Iωd |A| = 0;

Iωdϕ =− |A|2
σ2Q2

Q∑
q=1

(tq −τ);

Iϕ|A| = 0;

Consequently, the FIM becomes a block matrix

I =
(

G 0
0 I|A||A|

)
; (2.38)

where the matrix G is

G =
 Iττ Iτωd Iτϕ

Iωdτ Iωdωd Iωdϕ

Iϕτ Iϕωd Iϕϕ;

 . (2.39)

The inverted FIM is

I−1 =
(

G−1 0
0 I−1

|A||A|

)
, (2.40)

that follows from

II−1 =
(

GG−1 0
0 I|A||A|I−1

|A||A|

)
=

(
1 0
0 1

)
(2.41)

The variances of the time delay and Doppler frequency measurement errors are

σ2
ττ = [I−1]ττ = [G−1]ττ = 1

det(G)

[
Iωdωd Iϕϕ− I 2

ϕωd

]
; (2.42)

σ2
ωdωd

= [I−1]ωdωd = [G−1]ωdωd = 1

det(G)

[
IττIϕϕ− I 2

ϕτ

]
. (2.43)

Using the Taylor series expansion, the closed-form expressions of the error variances of
estimation of the time delay and Doppler frequency are

σ2
ττ ≈

3

2

1

∆ω2SN R
(2.44)

σ2
ωdωd

≈ 6

T 2
s D2SN R

(2.45)

Here SN R is defined as SN R = |A|2
2σ2 .
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2.5. THE TARGET LOCALIZATION AND VELOCITY VECTOR

ESTIMATION ACCURACY IN A RADAR NETWORK
The accuracy of the target data estimation based on target range and radial velocity,
estimated locally in a single radar, will be analyzed in subsequent chapters. Three major
measurement models are analyzed: 1) target localization, based on time delays; 2) target
position and/or velocity vector estimation, based on Doppler frequency shifts; 3) target
position and/or velocity vector estimation, based on time delays and Doppler frequency
shifts (Doppler shifts are used both for target localization and velocity estimation). All
three models imply a two-step estimation procedure. The first step is the estimation of
the target range and/or radial velocity in a single radar. The second step is the estimation
of the target position and/or velocity vectors. Consequently, we use the chain rule for
evaluation of the FIM on the target position and velocity vectors [4]

I(α) = HT I(ψ)H, (2.46)

where

H = ∂ψ(α)

∂α
(2.47)

is N × K Jacobian matrix with K being the number of estimation parameters. In
particular, for three measurement models we will have:

1. α= [x, y, z], ψ= τ, and

H =


∂τ(1)

∂x
∂τ(1)

∂y
∂τ(1)

∂z
...

...
...

∂τ(n)

∂x
∂τ(n)

∂y
∂τ(n)

∂z

 ; (2.48)

2. α= [x, y, z, υx , υy , υz ], ψ=ωd , and

H =


∂ω(1)

d
∂x

∂ω(1)
d

∂y
∂ω(1)

d
∂z

∂ω(1)
d

∂υx

∂ω(1)
d

∂υy

∂ω(1)
d

∂υz

...
...

...
...

...
...

∂ω(n)
d

∂x
∂ω(n)

d
∂y

∂ω(n)
d
∂z

∂ω(n)
d

∂υx

∂ω(n)
d

∂υy

∂ω(n)
d

∂υz

 ; (2.49)

3. α= [x, y, z, υx , υy , υz ], ψ= [τ, ωd ], and

H =



∂τ(1)

∂x
∂τ(1)

∂y
∂τ(1)

∂z
∂τ(1)

∂υx

∂τ(1)

∂υy

∂τ(1)

∂υz

...
...

...
...

...
...

∂τ(n)

∂x
∂τ(n)

∂y
∂τ(n)

∂z
∂τ(n)

∂υx

∂τ(n)

∂υy

∂τ(n)

∂υz

∂ω(1)
d

∂x
∂ω(1)

d
∂y

∂ω(1)
d

∂z
∂ω(1)

d
∂υx

∂ω(1)
d

∂υy

∂ω(1)
d

∂υz

...
...

...
...

...
...

∂ω(n)
d

∂x
∂ω(n)

d
∂y

∂ω(n)
d
∂z

∂ω(n)
d

∂υx

∂ω(n)
d

∂υy

∂ω(n)
d

∂υz


; (2.50)
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The derivatives of the time delay and Doppler frequency with respect to the target
coordinates and velocities are:

∂τ(n)

∂x
= 1

c

( (x −x(nt )
t )

R(nt )
t

+ (x −x(nr )
r )

R(nr )
r

)
;

∂τ(n)

∂y
= 1

c

( (y − y (nt )
t )

R(nt )
t

+ (y − y (nr )
r )

R(nr )
r

)
;

∂τ(n)

∂z
= 1

c

( (z − z(nt )
t )

R(nt )
t

+ (z − z(nr )
r )

R(nr )
r

)
;

∂τ(n)

∂υx
= 0;

∂τ(n)

∂υy
= 0;

∂τ(n)

∂υz
= 0.

(2.51)

∂ω(n)
d

∂x
= ωc

c

( (R(nt )
t )2υx −b(nt )

t (x −x(nt )
t )

(R(nt )
t )3

+ (R(nr )
r )2υx −b(nr )

r (x −x(nr )
r )

(R(nr )
r )3

)
;

∂ω(n)
d

∂y
= ωc

c

( (R(nt )
t )2υy −b(nt )

t (y − y (nt )
t )

(R(nt )
t )3

+ (R(nr )
r )2υy −b(nr )

r (y − y (nr )
r )

(R(nr )
r )3

)
;

∂ω(n)
d

∂z
= ωc

c

( (R(nt )
t )2υz −b(nt )

t (z − z(nt )
t )

(R(nt )
t )3

+ (R(nr )
r )2υz −b(nr )

r (z − z(nr )
r )

(R(nr )
r )3

)
;

∂ω(n)
d

∂υx
= ωc

c

( (x −x(nt )
t )

R(nt )
t

+ (x −x(nr )
r )

R(nr )
r

)
;

∂ω(n)
d

∂υy
= ωc

c

( (y − y (nt )
t )

R(nt )
t

+ (y − y (nr )
r )

R(nr )
r

)
;

∂ω(n)
d

∂υz
= ωc

c

( (z − z(nt )
t )

R(nt )
t

+ (z − z(nr )
r )

R(nr )
r

)
;

(2.52)

where

b(nt )
t = υx (x −x(nt )

t )+υy (y − y (nt )
t )+υz (z − z(nt )

t ).

The lower bounds on target position and velocity estimation can be used to
evaluate potential accuracy of the radar network depending on its type and the
measurement model. For example, the use of time delay and Doppler frequency (the
third measurement model) for target localization will provide higher accuracy then the
use of only Doppler frequency (the second measurement model) due to two times higher
number of measurements. This can be seen from construction of the Jacobian matrix
((2.49) and (2.50)). Consequently, in order to reach the same localization accuracy with
two measurement models, the number of (Doppler) sensors in the second measurement
model should be higher than the number of sensors in the third model. The impact of the
measurement model on the target localization accuracy for different number of the radar
nodes will be analyzed in the next chapter. For further convenience, two new notations
are introduced:

σp =
√
σ2

x +σ2
y +σ2

z , (2.53)
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συ =
√
σ2
υx

+σ2
υy

+σ2
υz

, (2.54)

where (σ2
x , σ2

y , σ2
z ) and (σ2

υx
, σ2

υy
, σ2

υz
) are variances of the target position and velocity

vectors estimation, evaluated from CRLB. In subsequent chapters, parameters σp and
συ are used as measures of the target position and velocity vectors estimation accuracy
in multistatic radars.

2.6. INCORPORATION OF THE ANTENNA PATTERN INTO THE

CRLB
The antenna pattern determines the spatial distribution of the radiated power and thus
the signal-to-noise ratio of the signals received from different directions [7], as shown in
Figure 2.2. The antenna pattern is incorporated into the CRLB as a spatial dependence
of the signal-to-noise ratio upon the target range R, elevation α and azimuth φ.
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Figure 2.2: SNR distribution for directional antenna pattern: (a) vertical plane; (b) Y-X plane (target height
ht = 3000 m)
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We rewrite equation (2.8) as

SN R(α,φ,R) = Pt G2(α,φ)RC Sλ2

(4π)3R4Ls y st Nr ec
Gpr oc , (2.55)

where Nr ec is the receiver noise power. The antenna radiation pattern is represented as
the dependence of the SNR upon the target coordinates (R, α, φ) in the equations (2.42)
and (2.43) for variance of time delay and radial velocity estimation: σ2

ττ = σ2
ττ(α,φ,R);

σ2
ωdωd

= σ2
ωdωd

(α,φ,R). Spherical coordinates can be transformed into the Cartesian
coordinates as: x = R sinαsinφ; y = R sinαcosφ; z = R cosα.

2.7. CONCLUSION
Theoretical bounds on the target localization and velocity estimation accuracy in a
multistatic radar network were derived. Since these bounds depend on a single radar
estimation performance, closed-form expressions for direct evaluation of the target
range and radial velocity estimation accuracy for WiFi and LFM signals have been
provided. The ranging accuracy of the single radar is shown to be inversely proportional
to the signal bandwidth, while the radial velocity estimation accuracy is inversely
proportional to the integration time. The developed framework allows for radar network
localization accuracy evaluation for thee types of measurements: time delay, Doppler
frequency shift and a combination of both. Moreover, an approach for incorporating
antenna pattern into the CRLB has been proposed for the first time. This allows
for explicit representation of the error distribution across the area of potential target
location, depending on the antenna pattern of each radar. Additionally, the scalar
functions of the covariance matrix can be used for selection of the radar network
geometry that provides minimum error of the target parameters estimation. This will
be shown in Chapter 4.
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3
ESTIMATION ACCURACY ANALYSIS

IN MULTISTATIC RADAR

In this chapter the potential estimation accuracy of the target kinematic parameters in
multisite radar networks will be analyzed using Cramér-Rao lower bound, developed in
Chapter 2. The system performance depending on a single radar architecture and signal
processing mode will be analyzed in Section 3.1. Impact of the waveform parameters and
power budget on the system performance will be investigated in Section 3.2. The impact
of the types of measurements on the target localization accuracy will be investigated in
Section 3.3. The possibility of improving system estimation performance by using signals
from the Tx of opportunity will be discussed in Section 3.4. Concluding remarks will be
given in Section 3.5.

Parts of this chapter have been published in [1], [2], [3].
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3.1. IMPACT OF THE RADAR ARCHITECTURE AND

COOPERATION MODE

P ERFORMANCE of multistatic radar network is determined by the unique features
of the system (such as radar node architecture, signal reception mode, type of

measurements used for target localization) and highly affected by the number of radar
nodes and their topology. Therefore, potential accuracy of target localization in different
systems is compared using statistical averaging of localization error, σp , over 103

randomly simulated topologies of radar nodes for nineteen numbers of transmit-receive
channels N = 2, · · · ,20. In this chapter, scenarios with short-range FMCW/WiFi radar
networks are considered. Parameters of the single radar node are given in Table 3.1.
Different numbers of radar nodes positions and 300 target positions are randomly
simulated over the area of 500 m×500 m from a uniform distribution.

Table 3.1: Single radar simulation parameters

Parameter WiFi radar FMCW radar
Transmitted power, Pt 20 dBm (EIRP) 10 dBm (EIRP)
Antenna gain, G 8 dB 10 dB
Carrier frequency, fc 2.4 GHz 25 GHz
Waveform bandwidth, ∆ f 11 MHz 300 MHz
Noise figure, Fn 10 dB 8 dB
System losses, Fs y st 4 dB 15 dB
Pulse/symbol duration, Ts 1µs 0.8µs
No. of integrated pulses 512 512

Fig. 3.1 presents the dependence of the averaged error of target localization
(σp ) on the number of monostatic and bistatic radars for two modes of the signal
transmission-reception: autonomous and cooperative. The target localization error has
been evaluated assuming target position estimation based on time delay measurements,
using theory developed in Chapter 2. The results demonstrate the following. First, the
estimation performance of the monostatic and bistatic radar networks can be further
enhanced by using the cooperative mode of signal transmission-reception. The reason
is that cooperative mode allows for larger number of measurements, leading to higher
SNR and thus, higher estimation accuracy. Second, in the networks with autonomous
reception mode, spatial separation of Tx and Rx nodes does not lead to better estimation
accuracy, compared to the collocated Tx-Rx radar architecture. This is explained by the
fact that an overly long or overly short baseline, compared to expected target distance,
disrupts contours of constant SNR or leads to quasi-monostatic architecture. This effect
can be illustrated with Cassini ovals [4]. Third, bistatic and monostatic radar networks
show equivalent estimation accuracy, when cooperative mode of the signal reception is
used. To summarize, the length of the baseline, the transmitter-target-receiver distance,
and the transmitter-target-receiver angle form basic geometrical characteristics of
bistatic radars that have to be selected properly for their efficient exploitation.
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Next, target localization accuracy in bistatic radar networks with different lengths of
baseline l = 0, 10, 20, . . . ,100 m will be evaluated. Both Tx and Rx nodes positions have
been simulated randomly. Once location of Tx node has been selected, location of the
dedicated Rx node is selected as such that lies on the circle with radius l and center in
Tx position. Fig. 3.2 shows histogram of the averaged target localization error in bistatic
radar network with autonomous signal transmission-reception and different baseline
values. As one can see, localization accuracy of bistatic radar networks with different
baselines does not differ significantly from one to another. Moreover, these results are
equivalent to the results of estimation accuracy of monostatic radar network (l = 0 m).
The results, presented in Fig. 3.2 have been averaged over nineteen numbers of Tx-Rx
channels (from two to twenty) for different values of baselines and presented in the form
of histogram in Fig. 3.3. The estimation accuracy of netted bistatic radars with zero
baselines, which correspond to a quasi-bistatic radar architecture, is equivalent to the
performance of bistatic radars with baselines of 10 m, 50 m, and 70 m. Fig. 3.4 shows
the distribution of a target localization error for three types of networks, depending
on a single radar node architecture: bistatic radars with arbitrary selected length of
baseline, bistatic radars with baseline of 50 m, and monostatic radars. Large separation
of transmit and receive radar nodes, i.e. with baselines in the order of 200 m (Fig.3.4a),
plays a destructive role leading to poor system performance in the area of interest. At
the same time, separation of the bistatic nodes by a 50m baseline provides slightly better
estimation performance. To summarize, the spatial diversity of Tx and Rx nodes in the
systems with autonomous transmission-reception does not lead to enhancement of the
overall system performance.
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Figure 3.1: Error of the target localization versus number of Tx-Rx channels. No restriction on the length of
baseline of bistatic radars.
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Figure 3.3: Histogram of the target localization error depending on the length of baseline. Values of the target
localization error were averaged over 19 numbers of Tx-Rx channels (N = 2, 3, . . . ,20) with randomly selected
nodes positions in 103 trials. Each bistatic radar operates in autonomous signal reception mode.

3.2. IMPACT OF THE WAVEFORM PARAMETERS AND THE

POWER BUDGET

In the previous section, it has been shown that the radar network system performance
depends on the number of radar nodes, their positions, architecture, and cooperation.
In general, the more nodes constituting the network, the better the estimation accuracy
of the whole system. However, the lower and upper limits of the achievable system
performance are determined by the parameters of a single radar node, such as power
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Figure 3.4: Contour plots of the target localization error (σp , m) in radar networks with autonomous mode of
the signal transmission-reception.

budget and waveform characteristics [1]. The analysis of this dependence of the radar
network estimation performance upon the parameters of a single radar forms the focus
of this section.

The monostatic radar network with autonomous signal transmission-reception and
parameters of the single radar from Table 3.1 has been taken as a benchmark. Results
of the target localization accuracy for this type of the network and networks with
waveform bandwidth of ∆ f = [200, 400, 500]MHz are shown in Fig. 3.5. One can see
that an equivalent estimation accuracy to the radar network with ten nodes having
300 MHz bandwidth can be achieved in the radar network with five nodes that use
500 MHz bandwidth. The reason is that in both cases, total bandwidth of the network is
approximately the same, 3 GHz and 2.5 GHz. Despite the fact that a single radar ranging
accuracy is determined by operational signal bandwidth, the estimation accuracy of the
system is directly proportional to the product of Tx-Rx channels number and signal
bandwidth, as will be demonstrated. Similarly, the higher estimation accuracy of the
system can be achieved with longer integration time, leading to a smaller number of
radars being required to satisfy the same accuracy constraint (Fig.3.6). This is due to SNR
enhancement, achieved with averaging a larger number of measurements. However,
for moving target observation, an overly long integration time will deteriorate ranging
accuracy, causing a range migration effect.
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Figure 3.6: Error of the target localization depending on the number of monostatic radars (autonomous
reception mode) for different numbers of integrated pulses.

Increasing the transmit power of a single radar results in fewer radar nodes being
required to achieve high system localization accuracy (less than 1 m) as shown in Fig.
3.7. This is an intuitive result, since higher transmit power is inversely proportional to
the estimation error of the received signal parameters.

In the preceding results of the numerical analysis, an assumption with respect to
the signals’ orthogonality has been made. The three most common ways to obtain
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Figure 3.7: Error of the target localization versus number of monostatic radars (autonomous reception mode)
for different values of effective radiated power (ERP).

orthogonal waveforms are [5]: 1) time division; 2) frequency division; 3) code division.
Some implementations of the signals’ orthogonality for FMCW MIMO are proposed in
[6], [7]. Since frequency orthogonality requires no overlap in frequencies of the transmit
signal, the widening of the frequency band of a large number of transmitters as in
Fig. 3.5 does not allow for implementation of this type of signal separation. However,
frequency division is an attractive technique due to its simplicity in realization. Thus,
in the subsequent analysis the radar network system performance is analyzed versus
the number of radar nodes and the occupied bandwidth. The entire bandwidth of the
network is 1 GHz. The signal bandwidth of a single radar transmitter depends on the
number of nodes and is set according to Table 3.2.

Table 3.2: Bandwidth allocation

No. of Tx 2 4 6 8 10 12 14 16 18 20
∆ f , MHz 500 250 160 125 100 80 70 60 55 50

Fig. 3.8 shows an averaged error of the target localization for different numbers
of monostatic radars and allocated frequency bandwidth. As one can see, the impact
of these two parameters on the system estimation performance is different for two
reception modes. First, increasing signal bandwidth by two times requires half as
many radar nodes to achieve the same estimation accuracy. For radar network with
cooperative mode this relation holds for pairs of radar nodes numbers N = 4 and N = 8;
N = 10 and N = 20. For radar network with autonomous mode this relation holds
only for N = 10 and N = 20 number of nodes. Second, in a network with cooperative
reception, target localization error is approximately the same starting from N = 4 radars
with ∆ f = 250 MHz bandwidth, which means that allocation of wider bandwidth to a
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smaller number of radars can significantly reduce this number. Third, in a network with
autonomous reception, variations of the values of average target localization error are
negligible starting from N = 10 radars with ∆ f = 100 MHz bandwidth.
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Figure 3.8: Average error of the target localization for different numbers of monostatic radars and allocated
frequency bandwidth

To summarize, proper selection of parameters of a single radar node enhances
system estimation accuracy and thus can reduce the number of radar nodes and overall
system costs. For example, to achieve estimation accuracy in the order of 1 m with
five radars, signal bandwidth should be increased to 500 MHz or ERP should be 5 dBm
higher. The latter is preferable as frequency orthogonality might be required for signal
separation. Another option is to increase integration time, which is not preferable for
maneuvering targets, as has been discussed previously. For a limited number of radars,
N = 5 for example, a system estimation accuracy that is equivalent to the estimation
accuracy of the network with N = 10 radars (that provide a two times lower estimation
error) can be achieved by increasing the signal bandwidth to 400 MHz or by increasing
the effective radiated power to 20 dBm. The noise figure reduction is another way to
improve measurement accuracy of a single radar.
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3.3. IMPACT OF THE MEASUREMENT MODEL ON TARGET

LOCALIZATION ACCURACY
Although an FMCW radar provides measurements of Doppler frequency shifts, target
localization based on range measurements has so far been assumed. This section
focuses on investigation of the impact of the measurement model on target localization
accuracy in the network of radars. In particular, three measurement models that are
used for target localization are compared: 1) only time delay estimation of the received
signal; 2) only Doppler shift estimation; 3) time delay and Doppler shift estimation of the
received signal. For considered parameters of a single radar node (Table 3.1), range and
velocity resolutions are 0.5 m and 0.03 m/s.

The curves of the average error of the target localization versus the number of
monostatic radars for the first and third measurement models are shown in Fig. 3.10.
As apparent from the results, although the estimation accuracy of the second model
increases with increase of the target speed, the range-based localization outperforms
the (radial) velocity-based localization for networks with high- or low-resolution radars.
Since the system performance degrades with decrease of the radar resolution (Figs. 3.5
and 3.9), competitive performance with Doppler measurements can be achieved in
localization of fast-moving targets with narrow band radars, i.e. with range resolution
less than or equal to 50 MHz. Even so, the achieved estimation error is in the order of
102 m, which is very high for short-range applications. An average error of the target
localization versus number of monostatic radars for the first and second measurement
models is shown in Fig. 3.9. The effect of the target velocity in the third measurement
model (time delay together with Doppler shift measurements) is not so evident as in
the second one (only Doppler) as illustrated in Fig. 3.10. Moreover, the usefulness
of the Doppler information is ambiguous and depends on the radar range resolution:
for low-resolution radars the use of the Doppler measurements along with the range
measurements leads to better estimation accuracy of the system, which is equivalent
to the performance of high-resolution radars. At the same time, use of the Doppler
measurements in wide band radars does not enhance the localization performance of
the system and thus is not practical.

To summarize, Doppler measurements and range measurements lead to an
equivalent localization accuracy of fast moving targets in narrow band radars. Provided
accuracy, in general, is not high. However, use of Doppler measurements along with
range measurements in such narrow band radars provides significant improvement in
system estimation accuracy.

3.4. ANALYSIS OF COMBINED ACTIVE AND WIFI-BASED

PASSIVE RADAR NETWORK
The distributed active radar system performance can be further enhanced by using the
signals from transmitters of opportunity that form bistatic pairs with widely distributed
Rx nodes of the existing active radar networks. In particular, the exploitation of
transmissions from WiFi access points is assumed.

Passive listening of the signals from Tx of opportunity, reflected from the targets of
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Figure 3.9: Error of the target localization depending on the number of monostatic radars in the first and
second measurement models.

interest forms the concept of passive coherent location (PCL). Fig. 3.11 demonstrates
the basic principle of the passive bistatic radar (PBR). Two antennas are used for
target parameters estimation. The reference antenna is pointed in the direction of the
transmitter of opportunity. The signal, reflected from the target, is received in the
surveillance antenna. This signal is matched with the signal from the reference antenna
in the processing unit.

There are three types of PBR depending on their operational range: 1) PBR for long
range surveillance (Tx of opportunity: HF broadcast emitters, FM broadcast emitter,
DAB broadcast emitter, TV analogue waveform, DVB-T OFDM digital waveform, DVB-H
OFDM digital waveform, GSM) [8], [9], [10]; 2) medium-short range PBR (WiMAX-based
transmissions) [11]; 3) short range/indoor PBR (WiFi access points serve as transmitters
of opportunity) [12].

Fig. 3.12a shows distribution of the localization error at three FMCW radars of the
network depicted in Fig. 3.4c. The estimation performance with three radar nodes
is substantially worse, compared to the one with five radars. Enhancement of the
estimation accuracy and increase of the coverage area can be achieved with use of the
signals from Tx of opportunity, as shown in Fig. 3.12b, where WiFi bistatic radar is
integrated into the existing FMCW network. The observed improvement is a decrease
of the estimation error of about 20% in the areas around the bistatic WiFi radar.

Averaged errors of the target localization for one, two, and three active FMCW radars
versus number of integrated bistatic radars (with one transmit node and varying receive
nodes) are plotted in Fig. 3.13. The position of each radar node was generated randomly
over the area of 500 m× 500 m. The target localization error is averaged over 103 MC
trials for each different number of the receiving nodes of WiFi signal. The third receiver
added to the network leads to a significant decrease of the estimation error, especially
with the system with using one active FMCW radar. An addition of bistatic radars leads
to a decrease of the target localization error, but after adding the ninth PBR, further
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Figure 3.12: Contour plots of the target localization error (σp , m).

improvement of the estimation accuracy is not observed.

The same effect from adding the ninth WiFi receiver is observed for different values
of the signal bandwidth in active radars. As shown in Fig. 3.14, the effect of signal
bandwidth of the active radars on the overall system performance is meaningful up
until the ninth bistatic channel is added into the system: until that point, the wider the
bandwidth, the better the system estimation accuracy. This is demonstrated in Fig. 3.5
as well, where regardless of the number of nodes, a clear relation between a single radar
bandwidth and the system accuracy is observed.

To summarize, the use of signals from Tx of opportunity is another alternative
for extending the coverage area and enhancing performance of the radar network.
Moreover, the number of bistatic receivers will not be significantly large and, as was
shown for the considered scenario, and can be in the range of six to nine nodes,
depending on the number of active radars and their range resolution.
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3.5. CONCLUSION
In this chapter the potential estimation accuracy of the target kinematic parameters in
multisite radar networks for different radar node parameters and system operational
modes has been analyzed using the Cramér-Rao lower bound. Specifically, impact
of the following parameters on the system estimation accuracy has been investigated:
1) radar architecture: monostatic and bistatic; 2) signal reception mode: autonomous
and cooperative; 3) waveform parameters (bandwidth and integration time) and power
budget; 4) type of the measurements for target localization: time delay, Doppler shift,
time delay together with Doppler shift; 5) use of signals from transmitters of opportunity.

The analysis has shown that the cooperative mode of signal reception allows for an
increase of the estimation accuracy by up to 40% as compared to the autonomous mode.
It has been found that a monostatic radar networks and a bistatic radar networks with
cooperative mode of signal reception provide an equivalent target localization accuracy.
This means that for given parameters of the system, there is no need for the spatial
separation of transmit and receive radar nodes that reduces the system complexity
as well as acquisition and maintenance costs. The waveform bandwidth, integration
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time, and transmit power are additional resources that can be used for improvement of
the system estimation accuracy. Thus, if waveform and power budget parameters can
be considered as variables in the radar network topology optimization algorithm, the
limitations in one resource (number of nodes, for example) can be compensated for by
use of another (integration time, for instance).

It has been shown that use of only Doppler shift measurements for target
localization provides a lower estimation accuracy than both high and low resolution
range measurements. An equivalent performance with Doppler measurements can
be achieved with a larger number of nodes that allows increase of the total time on
target, without increasing the integration time of a single radar. At the same time, use
of the Doppler shift measurements in addition to the range measurements (the third
measurement model) in narrow-band radars yields a significant improvement in the
system estimation accuracy. This is not the case for wide-band radars, where the use
of the target velocity does not provide any further improvement.

The possibility of extending the coverage of the active radar network by exploiting
the signals from transmitters of opportunity was investigated. It has been shown that
addition of the measurements from passive radars results in higher system estimation
accuracy, especially in the areas not covered with active radars. However, for parameters
of active and passive radars, used in this chapter, addition of more than seven bistatic
radars into the network does not lead to a further decrease of the localization error,
which does not go below 1 m.
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4
ACCURACY-DRIVEN TOPOLOGY

OPTIMIZATION: GENERIC

FRAMEWORK

In this chapter, a generic framework for radar network topology selection will be developed
and presented. The developed theory relies on a non-linear measurement model.
Performance metrics of the system estimation accuracy will be presented in Section 4.2.
Section 4.3 will provide an extension to multi-modal parameter vector estimation. Convex
and greedy optimization algorithms, with an extension to selection-dependent models,
will be presented in Section 4.4. Finally, Section 4.5 will conclude this chapter.

Parts of this chapter have been published in [1], [2].
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4.1. INTRODUCTION

W HILE power budget and waveform parameters determine performance of a single
radar node [3], network parameters (radar architecture, coherency, transmitter

type), the number of radar nodes and their spatial locations determine the overall
performance of radar networks [4]. Along with the single radar node characteristics,
network parameters define the total coverage area in terms of predefined detection
and accuracy of the target parameter estimates, as well as the overall robustness of
the system. Therefore, an efficient exploitation of the radar network requires optimal
node allocation. The latter can be considered either as a real-time or off-line design
task, depending on the particular application. The selection of spatial positions of radar
nodes is one of the key tasks in radar network resource allocation. It aims to achieve
optimal performance with the minimum system cost. As has been mentioned in Chapter
1, topology optimization problems can be formulated in two ways:

min |I|
s.t. f (I) ≥λg ;

(4.1)

min f (I);

s.t. |I| = L;
(4.2)

where N (|N | = N ) is a set of potential radar node positions and L= {i1, . . . , iL} (|L| = L)
is the set of the most informative radar node positions, such that L⊆N and thus L ≤ N ,
I ; is a set of selected positions of radars and λg is a threshold value on the cost function.

In this chapter, the focus is on the problem of radar sensor selection for accurate
estimation of the target state vector. The measures of the estimation accuracy are often
chosen to be scalar functions of the error covariance matrix, such as 1) the maximum
eigenvalue (E-optimality); 2) the trace (A-optimality); and 3) the log-determinant
(D-optimality). Other measures, like mutual information, entropy, and cross-entropy
are frequently used as well [5], [6]. The sensor selection problem is combinatorial in
nature. Therefore, different optimization techniques are used to solve it in polynomial
time. For example, convex optimization methods, which are based on the relaxation of
the Boolean constraint {0,1}N on the selection coefficients, were shown to perform well
in terms of mean squared error.

4.1.1. CONVEXITY CONDITION
If X is a convex set in a real vector space and f (·) is a function X → R. f (·) is convex if

f (t x1 + (1− t )x2) ≤ t f (x1)+ (1− t ) f (x2), ∀x1, x2 ∈ X, 0 ≤ t ≤ 1. (4.3)

Examples of convex functions include norms, geometric mean, and log-determinant
(concave) [7]. The convex optimization methods imply a high computational cost,
i.e. cubic in the size of the problem. On the other hand, greedy algorithms have a
linear complexity. While convex methods require the cost function to be convex, greedy
algorithms require it to be submodular.
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4.1.2. SUBMODULARITY CONDITION
The submodularity of the function is related to the concept of diminishing returns in
economics and means the following: for two sets X and Y such that X ⊂ Y ⊂ N and
element j ∈N \Y , the function f (·) is submodular if

f (X + j )− f (X ) ≥ f (Y + j )− f (Y). (4.4)

This property allows one to reach a near-optimal solution with greedy algorithms
[8]. Moreover, greedy algorithms have a linear complexity in the size of the problem
and, therefore, are of particular interest for large-scale problems. In particular,
the log-determinant, the mutual information, and the entropy were shown to be
submodular functions. Another submodular function, namely the frame potential
(FP), which is a measure for the orthogonality of the rows of the measurement
matrix, was introduced in [9] as a proxy for the mean squared error. Together with
a low computational complexity, the FP-based greedy algorithm sometimes shows a
competitive performance compared to convex optimization [9].

4.2. PERFORMANCE METRICS
The general non-linear measurement model defined in (2.1) is considered here. Since
the error covariance matrix for a non-linear measurement model depends on the
parameter vector α, the covariance-based cost functions depend on α as well [1].
Therefore, we grid the parameter space and perform the optimization considering the
complete set of M grid points {α1, α2, . . . ,αM }. Furthermore, we linearize the model
(2.1) around every grid pointαm applying a first-order Taylor series expansion,

y ≈ f (αm)+G (N )
m (α−αm)+ξ, (4.5)

where the entries of the matrix G (N )
m ∈ RNQ×K are

[
G (N )

m ](n−1)Q+q,k = ∂ f(n−1)Q+q (α)
∂αk

∣∣∣
α=αm

;

q = 1, . . . ,Q; n = 1, . . . , N ; k = 1, . . . ,K ; and m = 1, . . . , M .

4.2.1. MEAN-SQUARED ERROR

In the presence of zero-mean i.i.d. Gaussian noise with variance σ2, the mean squared
error, which is equal to the Cramér-Rao lower bound, of the estimate of αm based on a
set L of selected radars is given by:

MSE = E(||αm − α̂m ||22) =σ2
K∑

k=1

1

λm,k
, (4.6)

where λm,k is the kth eigenvalue of the matrix T (L)
m = G†(L)

m G (L)
m ∈ RK×K , with matrix

G (L)
m ∈RLQ×K such that

[
G (L)

m
]

(l−1)Q+q,k = [
G (N )

m
]

(il−1)Q+q,k .
The MSE has many local minima in the optimal selection vector and, therefore,

is rarely used in practice. Alternative cost functions to the MSE are the maximum
eigenvalue and the log-determinant of the error covariance matrix, as well as the frame
potential. Moreover, FP and LD costs were shown to be monotonic and submodular
functions that gives possibility to optimize them using greedy algorithms [9], [10].
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4.2.2. FRAME POTENTIAL
In frame theory, frame is defined as a generalization of a basis of a vector space to sets
that may be linearly dependent. Frame potential is a scalar property of the frame that
measures orthogonality between vectors. According to [9], FP for linear measurement
model is given by:

FP(L) = ∑
i , j∈L

|ψi ·ψ j |2, (4.7)

where ψ j is the j th row of matrix Ψ ∈ RL×K that represents known linear model. We
modify this definition to the non-linear model with Q measurements accumulated per
integration time in each of the radars from the set L:

FPm(L) = ∑
i , j∈L

∣∣∣tr
{
G (i )

m G ( j )†
m

}∣∣∣2
, (4.8)

where G (i )
m ∈ RQ×K is the submatrix of G (N )

m given by
[
G (i )

m
]

q,k = [
G (N )

m
]

(i−1)Q+q,k . The
minimization of the FP is equivalent to the minimization of the mean squared error.
While the MSE function has many local minima, the use of the FP allows for a near
optimal solution in terms of the minimum MSE. Since FPm from (4.8) will be different
for every grid point αm from the parameter space, minimization of the joint (weighted)
frame potential is considered:

FP(L) =
M∑

m=1
pmFPm(L), (4.9)

where pm > 0 is the weight that represents the probability that the true α lies on the
grid point αm ;

∑M
m=1 pm = 1. If target parameters are uniformly distributed in the

space, then pm = 1/M . Higher weights, assigned to specific FPm , will bias the network
topology selection towards better estimates of corresponding αm . An example scenario
is parameter space that represents an area of potential target location and higher weights
are assigned to the grid points that lie on the border of this area. A straightforward
application of such scenario is a radar network topology optimization for border control.

Related to the weighted FP, the following monotonic submodular cost function is
maximized

F (S) = FP(N )−FP(N \S), (4.10)

where S =N \L.

4.2.3. LOG-DETERMINANT
The log-determinant of the error covariance matrix, which indicates the log-volume of
the confidence ellipsoid is given by

LDm(L) = logdet
[∑

i∈L
tr

{
G (i )

m G (i )†
m

}]−1
. (4.11)

Similar to the weighted FP, the weighted log-determinant over the set of grid points from
the parameter space is given by

LD(L) =
M∑

m=1
pm logdet

[∑
i∈L

tr
{
G (i )

m G (i )†
m

}]−1
. (4.12)
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In order to apply greedy optimization, the LD-based cost has to be monotonic and
submodular and is given by [11]

F(L) =−
M∑

m=1
pm

(
logdet

[∑
i∈L

tr
{
G (i )

m G (i )†
m

}+εIK

]−1
+K logε

)
, (4.13)

where ε > 0 is a small positive number, IK is the unit matrix of size K , and the term
(K logε) ensures that the function (4.13) is zero for an empty set L.

4.2.4. THE MAXIMUM EIGENVALUE OF THE ERROR COVARIANCE MATRIX
The maximum eigenvalue of the error covariance matrix corresponds to the minimum
eigenvalue of the information matrix λmin(FIM), which indicates the length of the major
semi-axis of the error ellipsoid and is a function of the maximum estimation error. The
detailed derivation of the FIM can be found in Chapter 2.

In the convex optimization algorithm, we use the minimum eigenvalue of the FIM
λmin(FIM) as a performance measure and constraint it with the threshold λg . In this way
we constrain the maximum value of the estimation (localization error) errorσpos = θ̃−θ,
which has to be within an origin-centered ellipsoid (in case of a parameter vector with
three components, e.g. 3D target localization) with the longest axis Re and probability
higher than Pe : Pr(

∣∣∣∣σpos
∣∣∣∣

2 ≤ Re ) ≥ Pe [12].
The probability Pe is given by[13]:

Pe (q) = K

2K /2Γ(K /2+1)

∫ p
q

0
ρK−1 exp

(
−ρ

2

2

)
dρ, (4.14)

where K is the number of parameters under estimation; Γ( ) is the Gamma function; q
is the constant that defines the size of the K -dimensional region enclosed by the surface
(in two dimensions, the surface is an ellipse; in three dimensions, it is an ellipsoid; in the
general case of K dimensions it may be considered a hyperellipsoid).

For 3D target position and velocity estimation K = 6, for 2D: K = 4; for 3D and 2D
target positioning only K = 3 and K = 2. The simplified terms of corresponding integrals
are:

Pe (q) = 1−exp(−q/2), K = 2 (4.15)

Pe (q) = erf(
p

q/2)−
√

2q

π
exp(−q/2), K = 3 (4.16)

Pe (q) = 1−exp(−q/2)
( q

2
+1

)
, K = 4 (4.17)

Pe (q) = 1−exp(−q/2)
( q2

8
+ q

2
+1

)
, K = 6 (4.18)

where the error function is:

erf(x) = 2p
π

∫ x

0
exp(−t 2)d t . (4.19)

The minimum eigenvalue λmin(FIM) is related to the semi-major axis as R2
e =

qλmin(FIM).
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4.3. MULTI-MODAL PARAMETER VECTOR
Without loss of generality, let us consider a model where the parameter vector consists
of multi-modal parameters. Examples of such a model are combinations of the
simultaneous estimation of target range, radial velocity, and bearing in a single radar.
Basically, the parameter vector for each grid point from the parameter space is a
combination of two vectors with different measurement unitsαm = [αm,1,αm,2]T , where
αm,1 ∈RK1 and αm,2 ∈RK2 , with the total number of parameters under estimation given

by K = K1 + K2. This also results in splitting of the system matrix G (N )
m as G (N )

m =[
G (N )

m,1 , G (N )
m,2

]
with G (N )

m,1 ∈RQN×K1 and G (N )
m,2 ∈RQN×K2 .

The MSE is then expressed as:

MSE = E(
∣∣∣∣αm,1 − α̂m,1

∣∣∣∣2
2)+E(

∣∣∣∣αm,2 − α̂m,2
∣∣∣∣2

2). (4.20)

However, since αm,1 and αm,2 represent different modalities, their errors should be
treated differently. Therefore, we would like to introduce the weighting coefficients wm,1

and wm,2 in the MSE, which allow us to put a different emphasis on each term:

MSE = wm,1E(
∣∣∣∣αm,1 − α̂m,1

∣∣∣∣2
2)+wm,2E(

∣∣∣∣αm,2 − α̂m,2
∣∣∣∣2

2). (4.21)

This can be implicitly realized by rewriting the model in (4.5) as

y ≈ f (αm)+G̃
(N )
m (α̃− α̃m)+ξ, (4.22)

where G̃
(N )
m is the modified weighted matrix:

G̃
(N )
m =

[
1p

wm,1
G (N )

m,1 , 1p
wm,2

G (N )
m,2

]
, (4.23)

and where α̃m = [p
wm,1αm,1,

p
wm,2αm,2

]T is the weighted parameter vector. Using
the model (4.22) in the submodular costs (4.10) and (4.13) will implicitly relate these
costs to the weighted MSE (4.21). The possibility to operate with the weights pm , wm,1,
and wm,2, expands the set of application scenarios for topology optimization of radar
networks. For example, the radar network topology for parameter vector estimation can
be optimized for scenarios, in which some grid points are uni-modal, while others are
multi-modal.

4.4. OPTIMIZATION ALGORITHMS
For the sake of simplicity, we assume that all radars in the network have the same
operating parameters, although this assumption can easily be relaxed.

4.4.1. CONVEX OPTIMIZATION
The convex optimization problem of radar network topology selection is formulated as
the selection of the minimum number of the most informative radar positions from the
N available ones, such that prescribed estimation accuracy of the parameter vector will
be satisfied for each αm , m = 1, . . . , M . This forms the first type of the optimization
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problem defined in (4.1). The minimum eigenvalue of the FIM, λmin, is used as a
performance metric.

The cardinality minimization problem (4.1) can be represented as the minimization
of the l1-norm of the selection vector w ∈ RN with entries 0 ≤ w (n) ≤ 1 that is a relaxed
Boolean constraint {0,1}, which represents when the nth radar position is selected or
not. As has been shown in Chapter 2, the FIM on the estimation accuracy of the 2D/3D
target parameters in the radar network is a function of the estimation accuracy of the
target radar signal parameters in a single radar ψ(n)

m = [τ(n)
m , ω(n)

dm
, |A(n)

m |,ϕ(n)
m ]. Moreover

it has an additive character and can be given as

I(αm) =
N∑

n=1
I(n)(αm), (4.24)

where I(n)(αm) is the FIM evaluated from the measurements of the nth radar.
Consequently, the contribution of each single radar to the overall system estimation
accuracy can be interpreted as the exploitation of the measurements from that specific
radar for the parameter vector estimation and can be given as

I(α) =
N∑

n=1
wn I(n)(α), (4.25)

where each w (n) specifies whenever nth position of the radar is selected or not,
that is whenever the measurements from this radar are used or not for target radar
signal parameters estimation. Additionally, in order to provide the sparse solution,
we introduce another (re-)weighting vector u = [u(1), . . . ,u(N )]T and explore re-weighed
l1-norm minimization [14]. Consequently, we can re-write the generic optimization
problem of the first type (4.1) as

wk = argmin
(
uT

k w
)
, w ∈ RN

s.t .
N∑

n=1
w (n)I(n)(αm)−λg 13 º 0, m = 1, . . . , M ;[

W w
wT 1

]
º 0;

diag(W) = w;

(4.26)

where W = wwT ; the constraint

[
W w

wT 1

]
º 0 is equivalent to W ≥ wwT and it is called

the semidefinite programming (SDP) relaxation of the original non-convex quadratically
constrained quadratic programs (QCQP), which in our case is represented by equality
constraint W = wwT . The pseudocode of the convex optimization is presented in
Algorithm 1 with ε being a small number that prevents division by zero.

The randomization technique can be further used in order to compute good
approximate solutions [15]. The main idea behind this technique is the following:
to model the vector of the weighting coefficients w as a Gaussian variable with w ∼
N (w,W − wwT ), solve a problem (4.26) for sufficient number of sampled w from this



4

54 4. ACCURACY-DRIVEN TOPOLOGY OPTIMIZATION: GENERIC FRAMEWORK

Algorithm 1: Convex optimization algorithm

Input : M matrices G (N )
m , the set of available radar positions N , performance

metric function, e.g λmin(I(αm)), and the constaint on the estimation
error λg .

Output : Coordinates of the minimum number of selected radar positions.
Initialize: The iteration counter k = 0 and the (re-)weight vector u = 1N .
Repeat : Until k attains a specified maximum number of iterations kmax .
Solve the weighted l1-norm minimization problem (4.26) for the optimum W in
the kth iteration.
Update the weight vector u(n)

k = 1/
[
ε+w (n)

k

]
for each n = 1, . . . , N .

distribution and keep the best feasible point. This procedure guarantees that the
feasible point will be at most 2/π≈ 64% suboptimal [15].

4.4.2. GREEDY OPTIMIZATION
We formulate the topology optimization problem, based on greedy optimization, as the
selection of the L most informative radar positions from the N available ones, where L
is known a priori. This is the second type of optimization problem defined in (4.2). Both
(submodular) functions, namely the frame potential and the log-determinant are used
as performance metrics.

The maximization of the function F (·) from (4.10) corresponds to removing rows

from the matrix G (N )
m , while the maximization of F (·) from (4.13) corresponds to

accumulating rows in order to form the matrix G (L)
m . The pseudocode for the

maximization of these two cost functions is given in Algorithm 2.

4.5. BISTATIC RADAR ARCHITECTURE - STRUCTURED

SELECTION
To represent the measurement model of bistatic radar network, we use the model (4.5)

y ≈ f (αm)+G (N )
m (α−αm)+ξ, (4.27)

where N is the set of all available radar node positions N = Nt ∪Nr with the set of
available positions for transmit nodes Nt and the set of available positions for receive
nodes Nr ; N is the number of Tx-Rx channels defined as N = Nt Nr . The sets of the
most informative Tx and Rx node positions are Lt = {

s1, . . . , sLt

}
and Lr = {

j1, . . . , jLr

}
with L = Lt Lr the most informative measurements from corresponding Tx-Rx channels,
where Lt and Lr are the number of selected Tx and Rx nodes.

Bistatic radar architecture poses the following challenges for radar networks
topology optimization:

1. Selection-dependent optimization, that imposes a structured selection of
measurements from the measurement matrix in contrast to monostatic radar
networks (Table 4.1).
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Algorithm 2: Greedy algorithm for monostatic radar network topology
optimization

Input : M matrices G (N )
m , the set of available radar positions N , the number of

radar positions to be selected L, and function F (·) (from (4.10) or (4.13)).
Output : Positions of L radars.
Initialize: The radar set, I .

1. For (weighted) FP cost function:

I = argmini , j∈N
∑M

m=1 pm

∣∣∣tr
{
G (i )

m G ( j )†
m

}∣∣∣2
.

2. For (weighted) LD cost function:
I = argmaxi∈N F (G (i )

m ).

Repeat : Until L positions are found

1. Find the radar i = argmaxi∉I F (I∪ i ).

2. Update I : I = I∪ i .

3. For (weighted) FP cost function:

(a) If |I| = N −L, stop.

(b) Assign the set of selected positions L=N \I .

4. For (weighted) LD cost function:

(a) If |I| = L, stop.

(b) Assign the set of selected positions L= I .

2. The selection of Tx and Rx node positions from one set of available locations,
i.e. Nt = Nr = N . This raises the problem of a trade-off of dedicating available
locations either to transmission or reception, avoiding selection of collocated

radar architecture. The measurement matrix has size G ∈ R(N 2−N )×K . Further in
this thesis, we refer to this problem as model with overlapping Tx and Rx grids.

The topology optimization problem of bistatic radar network can be treated as
a design of the sparse sampling matrix W ∈ RNt×Nr with specific structure, which is
defined by the cooperation mode between transmitters and receivers (cooperative or
autonomous). Matrix W is defined as

W = wt wT
r , (4.28)

where wt ∈ RNt and wr ∈ RNr are the selection vectors for Tx and Rx radar nodes, which
indicate when the available positions for Tx and Rx radar nodes are selected (1) or not
(0).
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Table 4.1: Monostatic versus bistatic radar network topology optimization.

Radar
architecture

Measurement
matrix

Remark

MS G ∈RN×K Measurements from cooperative pairs
can not be selected separately.

BS G ∈R(Nt ·Nr )×K Selection process involves
measurements from cooperative pairs
that have to be incorporated into
the cost function evaluation (only
cooperative mode) and excluded
from the measurement matrix (both
cooperative and autonomous modes).

Then we can rewrite the measurement model (4.5) as

y ≈ f (αm)+diag(W)G (N )
m (α−αm)+ξ (4.29)

We can formulate general optimization problem as

max
W∈{0,1}Nt ×Nr

f (I)

s.t.W = wt wT
r

‖wt‖0 = Lt

‖wr ‖0 = Lr

(4.30)

4.5.1. CONVEX OPTIMIZATION ALGORITHM

In this section, we consider a bistatic radar network with a cooperative mode of signal
transmission-reception, i.e. signals scattered from the target due to illumination by all of
the transmit radar nodes are received in all of the receiving radar nodes. Then the Fisher
information matrix that characterizes the system performance can be represented as

I(wt ,wr ,αm) =
Nt∑

n=1

Nr∑
s=1

w (n)
t w (s)

r I(αm)(ns). (4.31)

In order to choose the favorable geometry of bistatic radars, the positions of
transmitting Nt and receiving nodes Nr has to be optimized simultaneously. The
minimization function is then a sum of two (re-weighted) l1-norms, and the problem
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of the multistatic radar network geometry optimization is formulated as

min
wt∈RNt , wr ∈RNr

(
uT

t wt +uT
r wr

)
s.t .

Nt∑
n=1

Nr∑
s=1

w (n)
t w (s)

r I(αm)(nm) −λg 13 º 0, m = 1, . . . , M

w (n)
t ∈ {0,1} , n = 1, . . . , Nt

w (s)
r ∈ {0,1} , s = 1, . . . , Nr

(4.32)

where ut , ur are weight vectors for the number of Tx and Rx radar units with the elements
[u(n)

t ]k = 1
ε+[w (n)

t ]k
and [u(s)

r ]k = 1
ε+[w (s)

r ]k
respectively. The notation I º 1means that matrix

(I− 1) is semi-positive definite (I and 1 are symmetrical matrices).
Constraint in (4.32) implies the bilinear matrix inequality (BMI) problem. BMI

problems are NP-hard and include all quadratic problems. There are local and global
methods for the solution of BMI optimization problems. The local method implies
an alternate optimization over the parameters wt and wr . In the global method
(branch-and-bound type) the solution can be found by relaxing the BMI problem to the
linear matrix inequality (LMI) problem. We apply semidefinite relaxation to solve the
problem of the geometry optimization of multistatic radar networks.

SEMIDEFINITE RELAXATION IN BMI PROBLEM OF MULTISTATIC RADAR NETWORK

GEOMETRY OPTIMIZATION

First, we substitute the bilinear terms w (n)
t , w (s)

r in (4.32) with new variable

γ = [w (1)
t , . . . , w (Nt )

t , w (1)
r , . . . , w (Nr )

r ]T and introduce the bound on the γ j [16].
Consequently, the optimization problem (4.32) will be

min
wt∈RNt , wr ∈RNr

(
uT

t wt +uT
r wr

)
s.t .

Nt∑
n=1

Nr∑
s=1

gnm I(αm)(ns) −λ12 º 0, m = 1, . . . , M

g (ns) = w (n)
t w (s)

r , n = 1, . . . , Nt ; s = 1, . . . , Nr

(4.33)

Then we relax the constraint on g (ns) as LMI

min
wt∈RNt , wr ∈RNr

(
uT

t wt +uT
r wr

)
s.t .

Nt∑
n=1

Nr∑
s=1

g (ns)I(αm)(ns) −λg 13 º 0, m = 1, . . . , M[
Y γ

γT 1

]
º 0

(4.34)

where Y = γγT .
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The problem (4.34) is a semidefinite programming (SDP) problem in the variables
G and γ. Similar to the monostatic radar network optimization, the algorithm for the
selection of the multistatic radar network topology is

1. Initialize the iteration counter k = 0 and the weight vectors ut = 1Nt , ur = 1Nr .

2. Solve the weighted l1-norm minimization problem (4.34) for the optimum γk in
the k-th iteration.

3. Update the weight vectors: [u(n)
t ]k = 1

ε+[w (n)
t ]k

and [u(s)
r ]k = 1

ε+[w (s)
r ]k

for each n =
1, . . . , Nt and s = 1, . . . , Nr .

4. Stop on convergence or when k attains a specified maximum number of iterations
kmax , otherwise, increment k and go to step 2.

4.5.2. GREEDY OPTIMIZATION
Pseudocode of the greedy optimization algorithm is presented in Algorithm 3. This
algorithm takes into account the scenario when two sets for potential Tx and Rx radar
node positions do overlap, iteratively excluding positions of the nodes, collocated to the
optimal ones.

4.6. COMPUTATIONAL COMPLEXITY
Both the FP and the LD cost functions explore the greedy Algorithm 2. The complexity
of the greedy Algorithm 2 for the weighted log-det cost function is linear with respect to
the number of potential radar nodes positions N , O(N ), since N matrices are evaluated
in Algorithm 2. For the weighted frame potential the complexity of the same algorithm
is cubic with respect to N , O(N 3). This is related to the fact that for each of the N −L
steps, there are (N −S)2 terms (S = 3, . . . , (N −L)). The complexity of the algorithm can be
further reduced to O(N 2) by exploiting the recursive property of the FP function. Based
on this, for large-scale problems with L ¿ N and K ¿ N , the LD cost function allows for
a lower computational complexity, compared to the FP cost. At the same time, Algorithm
2 for the LD cost is cubic in number of parameters under estimation K , O(K 3), while for
the FP it is linear in K , O(K ). Therefore, exploiting the LD cost for problems where K is
in the order of N would entail a higher complexity, compared to the FP.

4.7. CONCLUSION
In this chapter, a generic framework of radar network topology optimization, based on
convex and greedy algorithms, has been proposed. Three cost functions were analyzed:
the frame potential, the log-determinant and the minimum eigenvalue, with the last two
being scalar functions of the error covariance matrix. The theory is developed based
on the non-linear measurement model with an extension to the case of multi-modal
parameter vector estimation. Moreover, a so-called problem of structural selection
has been tackled. Such a structural selection is presented in the radar networks with
a cooperative mode of signal reception. The formulation of the cost function, which
allows off-grid radar selection, has been presented as well. The developed approach is
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Algorithm 3: Greedy algorithm for bistatic radar network topology optimization

Input : Matrix G , two sets of potential radar nodes positions Nt and Nr , the
number of Tx nodes Lt and Rx nodes Lr positions to be selected.

Output : Positions of Lt Tx nodes and Lr Rx nodes.
Initialize: The radar Tx and Rx sets, S and J .
S∪J = argmaxs∈S , j∈J F (g (s, j )).
The sets of cooperative Tx/Rx nodes: At = {} (|At | = 0) and Ar = {} (|Ar | = 0).
For : t = 1 to Lt

For : r = 1 to Lr

1. Find the optimal measurement from corresponding Tx-Rx channel

(a) for cooperative reception mode:{
s, j

}= argmaxs∉S , j∉J F (S∪ s,J ∪ j ,At ∪ j ,Ar ∪ s);

(b) for autonomous reception mode:
{

s, j
}= argmaxs∉S , j∉J F (S∪ s,J ∪ j ).

2. Update
S : S =S∪ s;
J : J =J ∪ j ;
At : At =At ∪ j ;
Ar : Ar =Ar ∪ s;

(a) for overlapping Tx and Rx radar nodes grids Nt =Nr =N :
Nt : Nt =Nt \

{
s ∪ j

}
;

Nr : Nr =Nr \
{

s ∪ j
}
.

(b) for different Tx and Rx radar nodes grids Nt 6=Nr :
Nt : Nt =Nt \s;
Nr : Nr =Nr \ j .
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not limited to the spatial selection of the radar nodes and can be applied for scenarios
of temporal (the selection of the most informative measurements in a single radar) as
well as spatio-temporal (the selection of the most informative measurements within
a network of radars, with centralized data processing, i.e. on the level of sampled
measurements) data selection.
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5
ACCURACY-DRIVEN TOPOLOGY

OPTIMIZATION: NUMERICAL

ANALYSIS

In this chapter, the developed optimization framework will be applied for the best radar
network topology selection in different scenarios within three case studies. The goal of
this chapter is to demonstrate the versatility of the developed tool as well as to compare
optimization algorithms and cost functions. In particular, the optimization algorithm
will be applied for short- and middle-range radar networks that consist of monostatic
(Section 5.2) and bistatic (Section 5.3) radars or a combination of both (Section 5.4).
Different signal reception modes will be considered as well. Finally, three cost functions,
LD, FP, and maximum eigenvalue of the covariance matrix, will be compared in Section
5.5.

Parts of this chapter have been published in [1], [2], [3].
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5.1. SIMULATION SCENARIOS

I N this chapter, three case studies will be considered:

1. low airspace observation in the city of The Hague, represented by 161 candidate
positions of medium-range FMCW radars that correspond to 7 locations of C2000
and 154 locations of existing GSM masts coordinates and which can be found in
[4];

2. the area of the TU Delft university campus, represented by 117 non-uniformly
distributed candidate positions of short-range FMCW radars;

3. passenger surveillance in the airport terminal area with low airspace surveillance
in 42 candidate positions of short-range FMCW radars.

Parameters of a single radar node for three scenarios are listed in Table 5.1. For
simplicity, throughout this chapter, we refer to these scenarios as The Hague, TU Delft,
and airport area. Table 5.2 gives an overview of the scenarios of potential radar positions,
type of the network, and optimization algorithms used for radar network topology
selection in corresponding scenarios. It is assumed that target position is estimated from
range measurements, unless otherwise stated.

Table 5.1: Single sensor simulation parameters for three scenarios

Parameter WiFi radar FMCW radar
(short-range)

FMCW radar
(medium-range)

Transmitted power, Pt 20dBm
(EIRP)

10dBm
(EIRP)

25 W

Antenna gain, G 8 dB 10 dB 3.8 dB
Carrier frequency, fc 2.4 GHz 25 GHz 1.36 GHz
Sweep time, Ts 1µs 0.8µs 0.5 ms
Number of integrated
pulses, Npuls.

512 512 512

Waveform bandwidth, ∆ f 11 MHz 300 MHz 5 MHz
Noise figure, Fn 10 dB 8 dB 10 dB
System losses Fs y st 4 dB 15 dB 6 dB

5.2. MONOSTATIC RADAR NETWORK
In this simulation, the first scenario of potential radar nodes positions depicted in Fig.
5.1a is considered. As has been demonstrated with Fig. 3.1 and Fig. 3.8 in Chapter 3, the
radar network with cooperative mode of signal transmission-reception provides higher
system estimation accuracy than the radar network with autonomous mode. These two
cooperation modes have been integrated into the radar network topology optimization
algorithm as well. Fig. 5.2 shows contour plots of the target localization error for selected
topologies of two types of the radar networks: one with autonomous and another
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(a) City of The Hague with 161 candidate radar
positions: coordinates of C200 and GSM masts.
The area dimension is approx. 10 km×12 km.

(b) The TU Delft campus with 117 candidate
radar positions. The area dimension is
approx. 800 m×800 m.

(c) The airport terminal area with 42 candidate
radar positions. The area dimension is approx.
300 m×150 m.

Figure 5.1: Scenarios of candidate radars positions

one with cooperative reception modes. The results were obtained by selection of the
minimum number of radar nodes required to satisfy the constraint on the maximum
value of the localization error Re = 3m (with probability Pe = 95%), which is expressed in
the form of a constraint on the maximum eigenvalue of the Fisher information matrix,
using convex Algorithm 1, provided in Chapter 4. As apparent from the results, the
number of radar nodes is three times smaller in the system with cooperative mode (L = 5)
than in one with autonomous mode (L = 15). At the same time, as a result of cooperative
reception, the number of Tx-Rx channels is higher by ten (almost two times higher) than
with autonomous reception. Nevertheless, the contour line on localization error that
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Table 5.2: Connection between three considered scenarios of potential radar positions (Fig.5.1), type of the
network, and optimization algorithm

Radar
architecture
and
cooperation
mode

Convex
(minimum
eigenvalue of
covariance
matrix)

Greedy
(log-determinant
of covariance
matrix)

Section Remarks

MS aut.
TU Delft TU Delft 5.5 FP cost

minimization is
performed as well

The Hague 5.2
Airport area 5.6 signal blockage is

accounted for
MS coop. The Hague 5.2
BS aut. TU Delft 5.3
BS coop. TU Delft TU Delft 5.3, 5.5
BPR Airport area 5.4

encloses the target area in a cooperative network corresponds to higher localization error
(Fig. 5.2b) than the one in an autonomous network (Fig. 5.2a). The reason is the lower
spatial diversity gain, achieved with five sensing locations.

5.3. BISTATIC RADAR NETWORK

In this analysis, the scenario around the area of the TU Delft campus with 117 potential
radar nodes locations is considered (Fig. 5.1b). The greedy algorithm with LD cost
minimization is used for optimal topology selection of bistatic radar nodes.

5.3.1. PRESELECTED GRIDS FOR TRANSMIT AND RECEIVE RADAR NODES

Candidate positions for Tx and Rx radar nodes have been randomly preselected from
available N = 117 locations, such that 58 positions have been selected on transmit
and 59 on receipt (see Fig. 5.5, where locations of potential Tx and Rx radar node
positions are marked together with the optimal ones). Indexes of the selected and
selected together with cooperative Tx-Rx pairs in the network with cooperative mode
for Lt = 15 and Lr = 20 are shown in Figs. 5.3a and 5.3b, respectively. As one
can see, 15 Tx-Rx channels are selected such that each transmitter has a dedicated
receiver. This is an expected behavior of the algorithm, which aims to select the maximal
number of so-called independent Tx-Rx channels, such that the maximal number of
total (cooperative) channels will be provided. Note that an additional (cooperative) five
Rx nodes are selected only in pairs with the first optimal receiver. This is due to the
system cooperative mode, which means that selected Rx nodes form cooperative pairs
with other selected transmitters as well. Indexes of the N = 20 selected Tx-Rx channels
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(b) L = 5 cooperative radars

Figure 5.2: Contour plots of the target localization error (σp , m) in the network of L monostatic FMCW radars,
which have been selected from N = 161 candidate positions using convex optimization (Algorithm 1, Chapter
4).

in the radar network with autonomous transmission-reception mode are shown in Fig.
5.4. As one can observe, the indexes of selected pairs differ considerably from the ones in
the system with cooperative mode (Fig.5.3a), although two topologies may look similar
at first glance, which is shown in Fig. 5.5 (the selected cooperative and autonomous
Tx-Rx pairs have the same color code). Although the total number of Tx and Rx nodes
is higher in the network with autonomous mode (amounting to 40), than in the network
with cooperative mode (amounting to 35), the estimation accuracy of the latter is about
three times higher.
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(b) optimal and cooperative Tx-Rx channels

Figure 5.3: Selected Tx-Rx channels of bistatic cooperative radar network from preselected Tx/Rx grids (Lt =
15, Lr = 20; Nt = 58, Nr = 59).
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Figure 5.4: Selected Tx-Rx channels in bistatic autonomous radar network from preselected Tx/Rx grids (Lt =
Lr = 20; Nt = 58, Nr = 59).

5.3.2. SCENARIO WITH COINCIDENTAL TRANSMIT AND RECEIVE RADAR

GRIDS
In the previous scenario with preselected Tx-Rx grids, sets Nt and Nr of the potential
radar node positions have been defined such that they are not equal to each other. This
simplifies the selection task, because the trade-off of devoting a particular position either
to transmission or reception does not have to be made. However, in some scenarios,
the decision to devote a particular location either to transmission or reception has to
be made, avoiding selection of monostatic radar architecture. In this scenario, we have
Nt =Nr =N and |Nt | = |Nr | = |N | = 117 (Fig. 5.1b). Although both convex and greedy
optimization algorithms can be used for bistatic radar network topology optimization,
the convex algorithm does not provide a desired topology selection, resulting in a
collocated radar architecture as shown in Fig. 5.6a, where 15 collocated radars are
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(a) cooperative mode, Lt = 15 and Lr = 20.
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(b) autonomous mode, Lt = Lr = 20

Figure 5.5: Contour plots of the target localization error (σp , m) in bistatic radar networks, where potential
positions of the nodes have been preselected.

selected.

In contrast to the convex algorithm, the greedy algorithm allows for bistatic radar
selection with widely separated transmit and receive radar nodes from the same sets
of Tx/Rx grids (Fig. 5.6b). This is realized by iterative removal of corresponding
measurements from the measurement matrix. As was shown in Chapter 3, such a
network with widely separated Tx and Rx radar nodes results in higher system estimation
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accuracy than the network with collocated radars, like the one selected with the convex
algorithm. For the considered scenario, this is demonstrated as well in Fig. 5.6.
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Figure 5.6: Contour plots of the target localization error (σp , m) in bistatic radar networks with positions,
selected from overlapping grids (Lt = Lr = 15).

Next, we compare performance of convex and greedy topology optimization
algorithms for a bistatic radar network at a different number of Tx-Rx channels.
Performance of these algorithms are compared for coincidental transmit and receive
radar grids, which are shown in Fig. 5.1b. Both convex and greedy optimization
algorithms for bistatic radar network topology optimization can be found in Chapter 4.
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Averaged error of target localization over M = 171 points of potential target locations for
topology of bistatic radar networks selected with two algorithms is shown in Fig. 5.7. As
one can see, the greedy optimization algorithm outperforms the convex one, resulting in
lower localization error.
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Figure 5.7: Target localization error in bistatic radar networks (cooperative mode) with positions, selected by
greedy and convex optimization algorithms with LD and λmax cost functions respectively.

5.4. RECEIVERS TOPOLOGY SELECTION IN PASSIVE BISTATIC

RADAR NETWORK
As has been demonstrated in Chapter 2, the use of the signals from transmitters of
opportunity (by integrating dedicated receivers) leads to higher estimation accuracy
of the system without increasing the number of active radars. In this section, the
applicability of optimization algorithm for receiver topology optimization in a passive
bistatic and a passive combined with active radar network is demonstrated. The scenario
of the airport terminal area with 42 candidate radar node positions is considered in this
section (5.1c). Note: signal blockage in the considered indoor scenario is not considered
in this model.

The distribution of position estimation error for two types of networks with fixed
positions of WiFi transmitters, FMCW radars and selected positions of WiFi receivers is
shown in Fig. 5.8. An optimization was performed with the convex algorithm based on
λmax minimization. When comparing two plots, Fig. 5.8a and Fig. 5.8b, one can see that
four additional receiving nodes are enough to achieve the same accuracy as with two
active radars in the system.

5.5. COMPARISON OF THE COST FUNCTIONS AND

OPTIMIZATION ALGORITHMS
In this section, we compare convex and greedy optimization algorithms in terms of
error of target localization. The scenario of the TU Delft campus, represented by
a non-uniform radar grid with N = 117 potential positions of the radar nodes, is
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Figure 5.8: Distribution of the target localization error (σp , m).

considered here (Fig. 5.1b). Equal values of the weights on the grid points from the
parameter space, i.e., pm = 1/M , are used here.

Three performance metrics are compared: the frame potential, the log-determinant,
and the maximum eigenvalue of the error covariance matrix (λmax). While the first
two costs are optimized using a greedy approach, the third one, λmax, is exploited in
the convex optimization algorithm. The dependence of the average target localization
error on the number of selected radars L for the three costs is shown in Fig. 5.9. The
LD cost function leads to more favorable radar network geometries in terms of average
target localization error, compared to the FP. Moreover, it allows for better or equivalent
estimation accuracy, compared to the λmax-driven optimization. Additionally, the linear
complexity of the greedy algorithms in terms of N signifies the advantage of the LD over
other cost functions. The overlap of the curves for a large L is caused by the high density
of the radar grid relative to the size of the target area.
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Figure 5.9: Average error of the target localization for different numbers of optimally placed radars L from
the N = 117 available ones for the K = 2 parameters under estimation and the M = 171 grid points for the
parameter space.

5.6. TOPOLOGY OPTIMIZATION TAKING INTO ACCOUNT

SIGNAL BLOCKAGE
In this section, we consider the scenario of the indoor target localization in the airport
terminal area with 42 potential positions of radar nodes (Fig. 5.1c). Antenna radiation
patterns of the radars are assumed to be omnidirectional. The optimal radar node
positions were selected by convex minimization of λmax cost with and without taking
into account signal blockage in the indoor scenario. In order to take into account signal
blockage, the same approach that has been proposed in Chapter 2 for antenna pattern
incorporation, was used here. Optimization has been performed for the maximum value
of the localization error Re = 0,5 m with probability Pe = 95%. The distribution of the
error of target localization is shown in Fig. 5.10. Apparently, when signal blockage is not
taken into account in the optimization procedure, the selected radar network geometry
would not provide full coverage of the area of interest as shown in Fig. 5.10a. In contrast
to this, optimization taking into account signal blockage naturally results in the radar
network geometry that provides full coverage of the target areas in indoor scenarios (Fig.
5.10b).

5.7. CONCLUSION
In this chapter, the developed optimization framework hes been applied for the best
radar network topology selection in different scenarios. The scenarios mainly differ in
radar operational range, architecture, reception mode and model of candidate radar
positions. In particular, it has been shown that taking into account the cooperative
mode of signal transmission-reception allows a smaller number of nodes to be selected
in order to satisfy the same accuracy constraints.

It was shown that taking into account signal blockage in the indoor scenario results
in a network topology that provides full coverage of the surveillance area in terms of
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Figure 5.10: Distribution of the error of target localization (σp , m).

required system estimation accuracy. And vice versa, without taking signal blockage
into account, the selected radar network geometry will not fully cover the target area
due to signal blockage effects inherent to indoor scenarios. It has been demonstrated
that greedy optimization outperforms the convex one in the bistatic radar topology
selection with coinciding grids. This is reflected in the fact that convex optimization
results in a monostatic (quasi-bistatic) radar architecture, instead of a bistatic one.
This leads to the lower estimation accuracy, compared to the bistatic radar network
topology selected with the greedy algorithm. Moreover, the greedy algorithm with
log-determinant minimization provides the network topology that results in the lowest
estimation error, compared to the greedy minimization of frame potential and convex
minimization of maximum eigenvalue of the covariance matrix. Taking into account that
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greedy algorithms scale linearly in the dimension of the problem, it is recommended to
use them for topology optimization, considering the advantages mentioned above.
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6
CONCLUSIONS AND FUTURE WORK

This chapter summarizes the main results and novelties of the thesis followed by
recommendations for future work.
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6.1. MAJOR RESULTS AND NOVELTIES

R ECENT experimental and theoretical results justify a wide spectrum of applications,
where data from widely separated radar nodes are used in order to provide reliable

and cost-effective surveillance solutions over extended areas. Regardless of the type of
the radar network, its performance is drastically affected by the number of nodes and
their topology. Standard and intuitive solutions that imply symmetrical and balanced
topology of the nodes often cannot be applied to real operational environments, which
are encumbered with objects of different origin. Thus, the development of a generic
resource allocation tool that provide a user-oriented solutions in the system design stage
became the goal of this thesis.

The major focus of this thesis covers two mutually connected areas:

1. the development of the tool for assessment of potential accuracy of target
parameters estimation in radar networks;

2. the development of the generic framework for accuracy-driven radar network
topology optimization.

In addition, the question of data association in radar networks has been studied. The
following results have been achieved within the framework of this thesis:

1. Lower bounds on the target position and velocity estimation accuracy in radar
networks. Closed-form expressions of the errors of target position and velocity
estimation in active (LFM waveform) and passive (WiFi waveform) radars were
derived using Cramér-Rao lower bound. Beside waveform parameters, a power
budget, including antenna radiation patterns of a single radar, was incorporated
into the CRLB. The ranging accuracy of the single radar was shown to be inversely
proportional to the signal bandwidth, while the radial velocity estimation accuracy
is inversely proportional to the integration time. The radar antenna pattern has
been incorporated into the CRLB analysis for the first time. It has been shown that
areas of high and low estimation accuracy are mainly determined by the antenna
pattern of each radar node. It has been demonstrated that a similar approach
can be used effectively for taking into account effects of radar beam blockage
and consequently can be used for radar management during the deployment
and run-time phases. Incorporation of the antenna pattern significantly improve
qualitative analysis of the potential estimation accuracy that can be achieved in
radar network, allowing for representation of the areas of (common) illumination
as well as non-illuminated areas. Moreover, possibility to incorporate type of
a single radar architecture, its waveform and power budget parameters, as well
as mode of the signal reception forms versatile analysis tool that can be further
upgraded.

2. Analysis of the estimation accuracy of kinematic target data in radar networks
of different types. CRLB-based analysis of the radar networks versus a single
radar node (waveform, power budget, architecture) and network parameters
(transmitter type, cooperation mode, measurement model) was done. It has been
shown that the cooperative mode of signal reception increases the estimation
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accuracy by up to 40% compared to the autonomous mode. It has been found
that both bistatic and monostatic radar networks with an autonomous mode of
signal reception provide equivalent accuracy of the target parameters estimation.
Comparison of the target localization accuracy achieved with different types of
measurements has been made for the first time. It was shown that given the same
number of radars, target localization accuracy achieved with range measurements
(both high and low resolution) is higher than with Doppler shift measurements. At
the same time, usage of Doppler information together with range information, in
narrow band radars (with waveform bandwidth in the other of 50 MHz), allows for
20−25% improvement in the localization accuracy. Presented results of numerical
analysis show impact of different parameters of radar network on its estimation
accuracy. The results demonstrate possibility to enhance estimation accuracy of
the network with fixed number of nodes by exploiting resources of a single radar
node or by using another type of measurements.

3. Methodology for radar network topology optimization. Novel convex and greedy
algorithms were developed for radar network topology optimization. Three
cost functions were derived: the frame potential, the log-determinant and the
minimum eigenvalue, with the last two being scalar functions of the error
covariance matrix. The developed theoretical framework incorporates single
radar parameters and network type. In particular, a solution for the structural
selection problem that arises in bistatic radar networks has been developed. It has
been shown that greedy minimization of LD cost allows for better performance
than the convex minimization of λmax in terms of error of target parameters
estimation. Moreover, greedy optimization outperforms the convex one for
the task of bistatic radar topology selection, allowing selection of bistatic radar
architecture. This is not the case for convex optimization that results in a
monostatic radar architecture. The developed tools can be used for large-scale
radar network topology optimization during the deployment phase, including
selecting the number of radar nodes required to achieve the required operational
performance. This potential has been illustrated in three case studies: low
airspace surveillance in The Hague, low airspace surveillance at the TU Delft
campus, and passenger surveillance in an airport terminal.

4. Data association algorithm. A novel data association algorithm for multiple target
localization, based on range measurements in a single moment of time was
developed. The algorithm performance has been tested for different topologies
of the radar networks, different values of a single radar node resolution, number
of targets, and their locations with respect to the radars. For scenarios when
targets are located far away from each other, the number of incorrect associations
is approximately 40% less, compared to the scenarios when targets are located
closely together. It has been shown that system performance can be improved
by increasing a single radar node resolution: a two times higher resolution leads
to 50% fewer ghosts. Thus, the results obtained provide extra information in the
form of potential constraints for the radar network topology selection.
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6.2. RECOMMENDATIONS FOR FUTURE WORK
The research presented in this thesis triggers new research questions and identifies
directions for further investigation. The detailed recommendations for future work as
a continuation of this study are as follows:

1. Localization accuracy enhancement by adding more measurements. In Chapter 3,
it has been demonstrated that use of the Doppler shift measurements together
with time delay measurements in the network of narrow band radars provides
higher localization accuracy than each type of measurement alone. An interesting
direction for further investigation would be to analyze radar network localization
performance by adding other types of measurements, like angle of arrival or
time integration (integration of several measurements obtained from the target
at different times), if available. It was shown that addition of these types of
measurements to the standard time difference of arrival measurements improves
localization accuracy of mode S distributed sensor networks [1].

2. Radar network topology optimization using other cost functions. The developed
optimization framework in Chapter 4, aims to select radar network topology that
ensures prescribed estimation accuracy requirements. Other system performance
measures like probability of detection, ambiguity function, and accurate target
tracking can be considered as well [2], [3], [4].

3. Waveform bandwidth constraint in the optimization algorithm. In Chapter 3,
it has been discussed that in order to filter out or separate signals from (non)
cooperative transmitters, frequency orthogonality can be applied. Therefore, it
would be useful to introduce constraint on the signal bandwidth of a single radar
node that depends on the number of selected radars.

4. Data association algorithm with target detection probability. The developed data
association algorithm for multiple targets localization, presented in Appendix B,
assumes that all targets in the scene are detected in each of the radar nodes. The
incorporation of the target detection probability will affect the performance of
the data association algorithm and may lead to a twofold outcome and therefore,
would be interesting to investigate. On one hand, the number of measurements
from one target will decrease, which may deteriorate the algorithm performance
as has been demonstrated for different numbers of the radar nodes. On the other
hand, computational complexity of the algorithm may decrease due to a smaller
number of measurement combinations.

5. Data association algorithm for wide-beam directional radar antennas. The
efficiency of the the developed data association algorithm has been demonstrated
for networks of radars that employ omnidirectional antennas. This assumption
implies more misleading data associations, i.e. ghost targets, due to multiple
intersection points of the ranging spheres. The incorporation of the radar antenna
directivity will lead to a smaller number of intersection points, and thus to a
smaller number of unresolved measurements. At the same time, some targets



REFERENCES

6

81

might not be covered by all the radars of the network, which will deteriorate the
algorithm performance.
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A
THE EVALUATION OF FRAME

POTENTIAL AND

LOG-DETERMINANT COSTS

In this appendix, the closed-form expressions for the evaluation of frame potential and
log-determinant cost functions are provided. First, the estimation performance of the
target range and radial velocity of a single FMCW radar is evaluated. Next, the guidelines
for FP and LD evaluation based on a single radar performance is provided.
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A.1. THE PERFORMANCE OF A SINGLE FMCW RADAR

A SSUMING a fixed sampling frequency that results in Q accumulated signal samples
per integration time DTs in each radar, the measurement model for a single radar is

then given by (2.1) for N = 1 (N = {1}). We linearize the noiseless signal f (αm) around
the parameter vector βm = [βm,1, βm,2]T with J = 2 components, βm,1 = τm and βm,2 =
ωdm . The matrix G (1)

m ∈RQ×J is then given by
[
G (1)

m
]

q, j =
∂ fq (αm )
∂βm, j

1p
wm, j

( j = 1, . . . , J ) with

∂ fq (αm)

∂βm,1
=− j |A(1)

m |
[
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( tq −τ(1)
m

Ts

)
∆ω−ω(1)

dm
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×e
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m )
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m
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dm
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m
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∂ fq (αm)
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m |
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m

)
e

j (tq−τ(1)
m )

[
ωc+frac

(
tq−τ(1)

m
Ts

)
∆ω−ω(1)

dm

]
+ jϕ(1)

m
.

We define the performance of a single radar that characterizes the estimation accuracy of
the time delay and Doppler frequency of the signal, reflected from the target represented
by the mth grid point from the parameter space, as

P (1)
m = tr

{
G (1)

m G (1)†
m

}= P (1)
m (τ)+P (1)

m (ωd )+2P (1)
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with wm,1 and wm,2 being the weighting coefficients.

A.1.1. THE FP AND THE LD COST FUNCTIONS FOR AN FMCW RADAR

NETWORK
The measurement model for the radar network is given by (2.1). The parameter vector is
the target state vector that contains two different modalities: target position and velocity.

Thus, we define α̃m = [p
w1,mαm,1,

p
w2,mαm,2

]T , where αm,1 = [xm , ym , zm]T and
αm,2 = [υxm , υym , υzm ]T with K1 = 3 and K2 = 3 components, respectively. The weighted

linear system matrix G̃
(N )
m ∈ RNQ×(K1+K2) consists of two submatrices G (N )

m,1 and G (N )
m,2 ,

which are defined as

[
G (N )

m,1

]
(n−1)Q+q,d = ∂ f(n−1)Q+q (α̃m)
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[
G (N )

m,2

]
(n−1)Q+q,b = ∂ f(n−1)Q+q (α̃m)

∂βm,2

∂βm,2

∂[αm,2]b

1p
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;

with d = 1, . . . ,K1 and b = 1, . . . ,K2.
The LD and the FP for the FMCW radar network can then be evaluated as

LD(L) =
M∑

m=1
pm

(
logdet
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i∈L

T (i )
m +εIK

)−1 +K logε
)
, (A.3)
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n,l . The closed-form expressions for

the entries of the matrix T (i )
m are provided in the following section.

A.2. THE EVALUATION OF THE FP AND LD IN (A.4) AND (A.3)
The matrix T (i )
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m G̃

(i )
m with G̃

(i )
m =

[
1p

wm,1
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m,1, 1p
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]
is the weighted

linear system matrix in the scenario of (multi-modal) target state vector estimation.
The matrices G (i )

m,1 ∈ RQ×K1 and G (i )
m,2 ∈ RQ×K2 are defined as

[
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d = 1, . . . ,K1 and b = 1, . . . ,K2. The parameter vector is α̃m = [p
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p
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]T
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dm

∂zm

+P (i )
m (τ,ωd )

∂τ(i )
m

∂zm

∂ω(i )
dm

∂xm
+P (i )

m (ωd )
∂ω(i )

dm

∂xm

∂ω(i )
dm

∂zm
;

[
T (i )

m

]
14 =

[
T (i )

m

]
41 = P (i )

m (τ,ωd )
∂τ(i )

m

∂xm

∂ω(i )
dm

∂υxm

+P (i )
m (ωd )

∂ω(i )
dm

∂xm

∂ω(i )
dm

∂υxm

;
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[
T (i )

m

]
15 =

[
T (i )

m

]
51 = P (i )

m (τ,ωd )
∂τ(i )

m

∂xm

∂ω(i )
dm

∂υym

+P (i )
m (ωd )

∂ω(i )
dm

∂xm

∂ω(i )
dm

∂υym

;

[
T (i )

m

]
16 =

[
T (i )

m

]
61 = P (i )

m (τ,ωd )
∂τ(i )

m

∂xm

∂ω(i )
dm

∂υzm

+P (i )
m (ωd )

∂ω(i )
dm

∂xm

∂ω(i )
dm

∂υzm

;

[
T (i )

m

]
22 = P (i )

m (τ)
(∂τ(i )

m

∂ym

)2
+2P (i )

m (τ,ωd )
∂τ(i )

m

∂ym

∂ω(i )
dm

∂ym
+P (i )

m (ωd )
(∂ω(i )

dm

∂ym

)2
;

[
T (i )

m

]
23 =

[
T (i )

m

]
32 = P (i )

m (τ)
∂τ(i )

m

∂ym

∂τ(i )
m

∂zm
+P (i )

m (τ,ωd )
∂τ(i )

m

∂ym

∂ω(i )
dm

∂zm

+P (i )
m (τ,ωd )

∂τ(i )
m

∂zm

∂ω(i )
dm

∂ym
+P (i )

m (ωd )
∂ω(i )

dm

∂ym

∂ω(i )
dm

∂zm
;

[
T (i )

m

]
24 =

[
T (i )

m

]
42 = P (i )

m (τ,ωd )
∂τ(i )

m

∂ym

∂ω(i )
dm

∂υxm

+P (i )
m (ωd )

∂ω(i )
dm

∂ym

∂ω(i )
dm

∂υxm

;

[
T (i )

m

]
25 =

[
T (i )

m

]
52 = P (i )

m (τ,ωd )
∂τ(i )

m

∂ym

∂ω(i )
dm

∂υym

+P (i )
m (ωd )

∂ω(i )
dm

∂ym

∂ω(i )
dm

∂υym

;

[
T (i )

m

]
26 =

[
T (i )

m

]
62 = P (i )

m (τ,ωd )
∂τ(i )

m

∂ym

∂ω(i )
dm

∂υzm

+P (i )
m (ωd )

∂ω(i )
dm

∂ym

∂ω(i )
dm

∂υzm

;

[
T (i )

m

]
33 = P (i )

m (τ)
(∂τ(i )

m

∂zm

)2
+2P (i )

m (τ,ωd )
∂τ(i )

m

∂zm

∂ω(i )
dm

∂zm
+P (i )

m (ωd )
(∂ω(i )

dm

∂zm

)2
;

[
T (i )

m

]
34 =

[
T (i )

m

]
43 = P (i )

m (τ,ωd )
∂τ(i )

m

∂zm

∂ω(i )
dm

∂υxm

+P (i )
m (ωd )

∂ω(i )
dm

∂zm

∂ω(i )
dm

∂υxm

;

[
T (i )

m

]
35 =

[
T (i )

m

]
53 = P (i )

m (τ,ωd )
∂τ(i )

m

∂zm

∂ω(i )
dm

∂υym

+P (i )
m (ωd )

∂ω(i )
dm

∂zm

∂ω(i )
dm

∂υym

;

[
T (i )

m

]
36 =

[
T (i )

m

]
63 = P (i )

m (τ,ωd )
∂τ(i )

m

∂zm

∂ω(i )
dm

∂υzm

+P (i )
m (ωd )

∂ω(i )
dm

∂zm

∂ω(i )
dm

∂υzm

;
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[
T (i )

m

]
44 = P (i )

m (ωd )
(∂ω(i )

dm

∂υxm

)2
;

[
T (i )

m

]
45 =

[
T (i )

m

]
54 = P (i )

m (ωd )
∂ω(i )

dm

∂υxm

∂ω(i )
dm

∂υym

;

[
T (i )

m

]
46 =

[
T (i )

m

]
64 = P (i )

m (ωd )
∂ω(i )

dm

∂υxm

∂ω(i )
dm

∂υzm

;

[
T (i )

m

]
55 = P (i )

m (ωd )
(∂ω(i )

dm

∂υym

)2
;

[
T (i )

m

]
56 =

[
T (i )

m

]
65 = P (i )

m (ωd )
∂ω(i )

dm

∂υym

∂ω(i )
dm

∂υzm

;

[
T (i )

m

]
66 = P (i )

m (ωd )
(∂ω(i )

dm

∂υzm

)2
.

The derivatives of the time delay and the Doppler frequency with respect to target
coordinate and velocity vectors are given in (2.51) and (2.52). The matrix T (i )

m can be
easily truncated for the scenarios, where only target position or velocity is estimated.
For example, for 3D target localization based on trilateration technique, the parameter
vector is αm = [xm , ym , zm]T . The entries of the measurement matrix G (i )

m,1 ∈ RQ×K1 are

then given by
[
G (i )

m,1

]
q,d = ∂ fq (αm )

∂βm,1

∂βm,1
∂[αm ]d

. The matrix T (i )
m ∈ RK1×K1 can be evaluated at

wm,2 = 0.





B
THE OFF-GRID RADAR SELECTION

Conventional topology optimization approaches are based on gridding of the areas of
potential radar positions. This affects the quality of the solution, as it allows the radar
nodes to be placed only on the points of the available set. In order to mitigate the effect of
gridding, we use the first-order Taylor series approximation of the cost function around
the radar grid points. It results in a representation of the radar area as a set of bins
allowing one radar position per bin to be selected. This appendix presents an extension
of the off-grid sensor selection technique to the 2D radar topology selection problem that
is represented with a non-linear measurement model. Numerical results that prove the
efficiency of this technique are presented thereafter. The conclusion section outlines this
appendix.

Parts of this chapter have been published in [1].
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B.1. INTRODUCTION

A Common feature of most of the allocation techniques is the representation of the
areas of potential radar locations with the set of grid points N . Consequently,

the optimality of the solution depends on how properly the set of potential radar
positions N is defined. As was demonstrated in [2], a fine gridding does not lead to
an optimal solution in terms of spatial diversity, as it aims to select all sensor locations
from one informative bin. Moreover, the computational complexity of the optimization
algorithms is mainly determined by the total number of radars N (N = |N | with |N |
being cardinality of the set N ).

In this chapter, we present an extension to the continuous sensor placement (CSP)
approach presented in [2] to the radar network non-linear measurement model, where
optimal radar topology has to be selected in a 2D space. In order to mitigate the effect of
gridding, we use the first-order Taylor series approximation of the parameter function.
The CSP approach does not require fine gridding, but allows for off-grid radar selection
leading to an improved solution in terms of the mean squared error.

B.1.1. GENERAL FRAMEWORK

For the non-linear measurement model (2.1), the MSE of the least-squares estimate is
equal to the Cramér-Rao lower bound and is given by

MSE(αm) = tr

{( N∑
n=1

1(
σ(n)

)2

∂ f (n)

∂αm

(∂ f (n)

∂αm

)†
)−1}

, (B.1)

where tr(·) is the trace operator.

Using the first-order Taylor series expansion, we linearize terms
(
∂ f (n)/∂αm

)
around

every point (x(n), y (n)) from the set of potential radar nodes locations

f ′(n)
αm

≈ f ′(n)
αm

+∆x(n) f ′(n)
αm x(n) +∆y (n) f ′(n)

αm y (n) , (B.2)

where f ′(n)
αm

= ∂ f (n)

∂αm
, f ′(n)

αm x(n) = ∂
∂x(n)

(
∂ f (n)

∂αm

)
, and f ′(n)

αm y (n) = ∂
∂y (n)

(
∂ f (n)

∂αm

)
. With the

interpolation the local shifts of the function f (α) can be represented. This results in a
representation of the areas of potential radar locations with bins instead of grid points.
The second-order interpolation (polar) can be used as an alternative technique [2], [3].
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Then the MSE from (B.1) will be:

MSE(αm) = tr
{( N∑

n=1

1(
σ(n)

)2

[
f ′(n)
αm

+∆x(n) f ′(n)
αm x(n) +∆y (n) f ′(n)

αm y (n)

]
×

[
f ′(n)
αm

+∆x(n) f ′(n)
αm x(n) +∆y (n) f ′(n)

αm y (n)

]†)−1}
= tr

{( N∑
n=1

1(
σ(n)

)2

(
f ′(n)
αm

( f ′(n)
αm

)† +∆x(n)
[

f ′(n)
α

(
f ′(n)
αm x(n)

)†
+

(
f ′(n)
αm

)†
f ′(n)
αm x(n)

]
+∆y (n)

[
f ′(n)
αm

(
f ′(n)
αm y (n)

)†
+

(
f ′(n)
αm

)†
f ′(n)
αm y (n)

]
+ (
∆x(n))2

[(
f ′(n)
αm x(n)

)†
f ′(n)
αm x(n)

]
+ (
∆y (n))2

[(
f ′(n)
αm y (n)

)†
f ′(n)
αm y (n)

]
+∆x(n)∆y (n)

[
f ′(n)
αm x(n)

(
f ′(n)
αm y (n)

)†
+ f ′(n)

αm y (n)

(
f ′(n)
αm x(n)

)†]))−1}
,

(B.3)

where the derivatives f ′(n)
αm

, f ′(n)
αm x(n) , and f ′(n)

αm y (n) are given by

f ′(n)
xm

= 2

c

xm −x(n)

R(n)
; (B.4)

f ′(n)
ym

= 2

c

ym − y (n)

R(n)
; (B.5)

f ′(n)
xm x(n) =

2

c

1(
R(n)

m
)3

(
(xm −x(n))2 − (

R(n)
m

)2
)
; (B.6)

f ′(n)
ym y (n) =

2

c

1(
R(n)

m
)3

(
(ym − y (n))2 − (

R(n)
m

)2
)
; (B.7)

f ′(n)
ym x(n) =

2

c

1(
R(n)

m
)3 (xm −x(n))(ym − y (n)); (B.8)

f ′(n)
xm y (n) =

2

c

1(
R(n)

m
)3 (xm −x(n))(ym − y (n)). (B.9)

Such an approximation is used in order to eliminate the effect of gridding and allow for
off-grid radar selection within the bin size ∆x(n) ×∆y (n).

Introducing the optimization variables: w, vx , vy , ux , uy , and g, the performance
function will be given by

fp (w) = tr
{( N∑

n=1

1(
σ(n)

)2

(
w (n) f ′(n)

αm
( f ′(n)
αm

)†

+ v (n)
x

[
f ′(n)
αm

(
f ′(n)
αm x(n)

)†
+ ( f ′(n)

αm
)† f ′(n)

αm x(n)

]
+ v (n)

y

[
f ′(n)
αm

(
f ′(n)
αm y (n)

)†
+ ( f ′(n)

αm
)† f ′(n)

αm y (n)

]
(B.10)

+u(n)
x

[(
f ′(n)
αm x(n)

)†
f ′(n)
αm x(n)

]
+u(n)

y

[(
f ′(n)
αm y (n)

)†
f ′(n)
αm y (n)

]
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+ g (n)
[

f ′(n)
αm x(n)

(
f ′(n)
αm y (n)

)†
+ f ′(n)

αm y (n)

(
f ′(n)
αm x(n)

)†]))−1}
,

where w = [w (1), . . . , w (N )]T ∈ {0,1}N is a Boolean selection vector that has to be
designed; vx = [v (1)

x , . . . , v (N )
x ]T with v (n)

x = w (n)∆x(n); vy = [v (1)
y , . . . , v (N )

y ]T with v (n)
y =

w (n)∆y (n); ux = [u(1)
x , . . . ,u(N )

x ]T with u(n)
x = w (n)

(
∆x(n)

)2; uy = [u(1)
y , . . . ,u(N )

y ]T with u(n)
y =

w (n)
(
∆y (n)

)2; and g = [g (1), . . . , g (N )]T with g (n) = w (n)∆x(n)∆y (n).
Following [2] , the continuous sensor placement problem in a 2D space can be

formulated as minimization of l2/l1- norm of the matrix Z = [w,vx ,vy ,ux ,uy ,g] ∈RN×6:

min
Z,Ux ,Uy

‖Z‖2,1

s.t. fp (w,vx ,vy ,ux ,uy ,g) ≤ ηmax ∀αm ∈M
Z = [w,vx ,vy ,ux ,uy ,g],[

Ux vx

vT
x 1

]
º 0, diag(Ux ) = ux ,[

Uy vy

vT
y 1

]
º 0, diag(Uy ) = uy ,

0 ≤ w (n) ≤ 1, n = 1, . . . , N ,

−0.5δ≤ v (m)
x ≤ 0.5δ, n = 1, . . . , N ,

−0.5δ≤ v (m)
y ≤ 0.5δ, n = 1, . . . , N ,

0 ≤ u(m)
x ≤ 0.25δ2, n = 1, . . . , N ,

0 ≤ u(m)
y ≤ 0.25δ2, n = 1, . . . , N ,

−0.25δ2 ≤ g (n) ≤ 0.25δ2, n = 1, . . . , N ,

(B.11)

where δ is a bin size, which is assumed to be same for both x and y dimensions, ηmax is
the threshold on the maximum value of the localization error, and l2/l1-norm is defined
as

‖Z‖2,1 =
N∑

n=1

√(
w (n)

)2 + (
v (n)

x
)2 + (

v (n)
y

)2 + (
u(n)

x
)2 + (

u(n)
y

)2 + (
g (n)

)2. (B.12)

Note that the optimization problem (B.11) can be solved with one iteration or by using a
re-weighted minimization algorithm similar to Algorithm 1, where the weighting vector
u is introduced in order to provide a sparse solution.

B.2. NUMERICAL RESULTS
We apply the developed approach to a short-range FMCW radar network topology
optimization. Each radar transmits a sequence of linear frequency modulated pulses
that is given by:

x(n)(t ) = A0 exp
(

j t
[
ωc + frac

( t

Ts

)
∆ω

])
, (B.13)

where A0 = |A0|exp( jϕ0) is the transmit signal amplitude, ωc = 2π fc with fc the signal
center frequency, ∆ω = 2π∆ f with ∆ f the signal bandwidth, n = 1, . . . , N , and Ts is the
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sweep time. The signal reflected from the moving target related to the mth grid point is
shifted in time and frequency:

y (n)
m (t ) = A(n)

m x(n)(t −τ(n)
m )e− j (t−τ)ω(n)

dm +ξ(t )(n), (B.14)

where A(n)
m = |A(n)

m |e jϕ(n)
m is the non-fluctuating amplitude of the received signal; τ(n)

m is
the signal time delay; ω(n)

dm
= 2π f (n)

dm
with f (n)

dm
the Doppler frequency of the received

signal; ξ(t ) is a zero-mean i.i.d. Gaussian noise with variance σ2. For the parameters
of a single radar node the reader is referred to Chapter 5, Table 5.1.

Positions of the radar nodes are optimized in order to provide the required
localization accuracy of the target within the surveillance area (shown with blue points in
Figure B.1). We compare the results of two convex optimization algorithms, namely the
sparsity-promoting algorithm for on-grid radar selection and the algorithm, presented
in this chapter, for off-grid radar selection. The bin size for off-grid radar placement
was selected to be the same for x- and y-coordinates and is δ = 200 m that allows
for the selection of the radar nodes in the corridor with a width of 200 m. For the
on-grid radar selection we set the threshold on the maximum value of the localization
error as equal to 3 m, while the threshold on the maximum MSE was set to 1 m2. This
results in the selection of six radar positions. Figure B.1 shows topologies of two radar
networks. The average errors of target localization over the area of target potential
location σp ≈ 1.10 [m] and σp ≈ 0.83 [m] for on- and off-grid radar selection algorithms.
The distribution of the target localization error in the areas enclosed by two selected
radar topologies is shown in Figure B.2. As one can see, the shift of the radar units
towards the target area results in lower localization errors in the second topology (Figure
B.2b), as compared to the first one (Figure B.2a).
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Figure B.1: The selected positions of the monostatic radars using discrete (on-grid) and continuous (off-grid)
optimization approaches

B.3. CONCLUSION
The radar network topology optimization algorithm that allows for continuous radar
sensor placement was tackled in this chapter. The optimization algorithm that supports
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(a) radar positions, selected from grid points of the radar grid
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Figure B.2: Contour plots of the target localization error (σp , m) in the network of six monostatic radars that
explore the autonomous mode of signal transmission-reception

a general, non-linear measurement model, was presented. The mean squared error was
used as performance measure of the radar network. The MSE has been linearized around
radar positions, resulting in an optimal off-grid radar network topology selection.
Numerical analysis has shown that such a selection provides lower MSE of target
localization, compared to the radar geometry selected on-grid.



REFERENCES

B

95

REFERENCES
[1] I. M. Ivashko and A. G. Yarovoy, Off-grid radar node placement for target localization

in radar networks, in 2016 CIE International Conference on Radar (Radar 2016) (2016)
pp. 1–4.

[2] S. P. Chepuri and G. Leus, Continuous sensor placement, IEEE Signal Processing
Letters 22, 544 (2015).

[3] C. Ekanadham, D. Tranchina, and E. P. Simoncelli, Recovery of sparse
translation-invariant signals with continuous basis pursuit, IEEE Transactions
on Signal Processing 59, 4735 (2011).

http://dx.doi.org/10.1109/LSP.2014.2363731
http://dx.doi.org/10.1109/LSP.2014.2363731
http://dx.doi.org/10.1109/TSP.2011.2160058
http://dx.doi.org/10.1109/TSP.2011.2160058




C
DATA ASSOCIATION ALGORITHM

FOR MULTIPLE TARGETS

LOCALIZATION IN THE NETWORKS

OF MONOSTATIC RADARS

This appendix addresses the data association problem in a monostatic radar network
using the measurements from a single moment of time, e.g. without a priori knowledge of
the target’s state vector. It is assumed that the target position is estimated from the set of
time delay measurements, done locally in each of the omnidirectional radars.

Parts of this appendix have been published in [1].
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C. DATA ASSOCIATION ALGORITHM FOR MULTIPLE TARGETS LOCALIZATION IN THE

NETWORKS OF MONOSTATIC RADARS

C.1. SYSTEM MODEL AND PROBLEM FORMULATION

T HE network of N monostatic omnidirectional radars with coordinates
(x(n), y (n), z(n)), (n = 1, . . . , N ) is considered. It is assumed that target detection

is performed locally in each of the radar nodes and corresponding time delay
measurements, related to the targets’ ranges, are forwarded to the central processing
unit (CPU), where the target localization is performed. It is assumed that detection
probability is equal to one Pd = 1. Therefore, the number of detections in each of the
radars is the same as the number of targets in the scene and is equal to M . Targets are
assumed to be point scatterers.

Following the general measurement model given in (2.1), the vector of accumulated
measurements from mth target is ym ∈RN , where y (n)

m = τ(n)
m c/2+ξ(n)

m (m = 1, . . . , M with
M number of targets). For convenience, we introduce notation R̃(n)

m for the measured
target range.

In the noiseless measurement model with no signal attenuation, the accuracy of
target range estimation is limited by the radar range resolution ∆R(n) [2]. Consequently,
the true target range R(n)

m will be within the interval

R̃(n)
m − ∆R(n)

2
≤ R(n)

m ≤ R̃(n)
m + ∆R(n)

2
. (C.1)

When there is more than one target in the scene (M > 1), the correct association of
the set of the M measurements from N radars has to made in order to form N -tuple of
measurements that constitute each of mth target. In the noiseless measurement model,
true target position corresponds to the point of the intersection of the ranging spheres
with centres (x(n), y (n), z(n)) of the radar nodes locations. If the measurement accuracy
is subject to the radar range resolution, the true target ranges will be bounded by

(R̃(1)
m −∆R2)2 ≤ (R(1)

m )2 ≤ (R̃(1)
m +∆R2)2;

(R̃(2)
m −∆R2)2 ≤ (R(2)

m )2 ≤ (R̃(2)
m +∆R2)2;

...

(R̃(N )
m −∆R2)2 ≤ (R(N )

m )2 ≤ (R̃(N )
m +∆R2)2;

(C.2)

In contrast, the ghost target position is the one that results in the intersection of ranging
spheres from different targets (Fig.1.2).

The three-stage deghosting algorithm, which is aimed at mitigating incorrect
data associations, is presented in the following sections. The first stage is the
target localization via a trilateration algorithm, based on a direct calculation method.
The second stage is the analysis of the localized targets by means of geometrical
interpretation of their location with respect to radar nodes. The third stage is the analysis

of Ñ -tuples, which is a set of measurement indexes from each radar
{

q (1)
m , q (2)

m , . . . , q (N )
m

}
,

where q (n)
m = 1, . . . , M is the measurement index in nth radar.

C.2. STAGE 1 - TARGET LOCALIZATION
For the sake of simplicity, one N -tuple of measurements

{
R̃(1), R̃(2), R̃(3), R̃(4)

}
and a radar

network of four radars are considered. Assuming infinite radar resolution, inequalities
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from (C.2) are reduced to
(x −x(1))2 + (y − y (1))2 + (z − z(1))2 = (R̃(1))2;

(x −x(2))2 + (y − y (2))2 + (z − z(2))2 = (R̃(2))2;

(x −x(3))2 + (y − y (3))2 + (z − z(3))2 = (R̃(3))2;

(x −x(4))2 + (y − y (4))2 + (z − z(4))2 = (R̃(4))2;

(C.3)

where (x, y, z) are target coordinates.
Subtracting the second equation from the first, the third equation from the first

and leaving the third equation as it is, we get a system of three equations with three
unknowns x, y and z (the fourth measurement R̃(4) is not used here)

(2x −x(1) −x(2))(x(2) −x(1))+ (2y − y (1) − y (2))(y (2) − y (1))+
+ (2z − z(1) − z(2))(z(2) − z(1)) = (R̃(1))2 − (R̃(2))2;

(2x −x(1) −x(3))(x(3) −x(1))+ (2y − y (1) − y (3))(y (3) − y (1))+
+ (2z − z(1) − z(3))(z(3) − z(1)) = (R̃(1))2 − (R̃(3))2;

(x −x(3))2 + (y − y (3))2 + (z − z(3))2 = (R̃(3))2;

(C.4)

These equations (C.4) are reduced to quadratic form
x = a1 y +a2z +b1;

y = a3z +b2;

Az2 +B z +C = 0;

(C.5)

with the following coefficients

A = (a1a3 +a2)2 +a2
3 +1;

B = 2(a1a3 +a2)(a1b2 +b1)−2x(3)(a1a3 +a2)+a3b2 −2y (3)a3 −2z(3);

C = (a1b2 +b1)2 −x(3)(2a1b2 +2b1 −x(3))+b2
2 + y (3)(y (3) −2b2)+ (z(3))2 − (R(3))2;

where

a1 =−∆y (2,1)

∆x(2,1)
; a2 =−∆z(2,1)

∆x(2,1)
; a3 =−∆x(3,1)a2 +∆z(3,1)

∆x(3,1)a1 +∆y (3,1)
;

b1 = ∆y (2,1) y (2,1)

2∆x(2,1)
+ ∆z(2,1)z(2,1)

2∆x(2,1)
+ (R(1))2 − (R(2))2

2∆x(2,1)
+ x(2,1)

2
;

b2 =− 1

2(∆x(3,1)a1 +∆y (3,1))
(C.6)
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×
[

2∆x(3,1)b1 −∆x(3,1)x31 − y (3,1)∆y (3,1) − z(3,1)∆z(3,1) − (R(1))2 + (R(3))2
]

;

where ∆x(n,m) = x(n) −x(m), x(n,m) = x(n) +x(m); ∆y (n,m) = y (n) − y (m), y (n,m) = y (n) + y (m);
∆z(n,m) = z(n) − z(m), z(n,m) = z(n) + z(m). The quadratic equation (C.5) has one or two
solutions s̃1 = (x̃1, ỹ1, z̃1) and/or s̃2 = (x̃2, ỹ2, z̃2), which are potential locations of the true

target. We evaluate ranges R
′(q)
1 and R

′(q)
2 from these locations to N − 3 radar nodes

(q = 1, . . . , N − 3), measurements from which were not used for estimation of positions
s̃1 and s̃2. In the considered scenario, it is the fourth radar. In case of a true target,
the evaluated ranges shall match the measured ones with a certain accuracy, which we
define as δR (Algorithm 4). In the case of noiseless measurements, the threshold value
can be selected as one that is equal to the radar range resolution δR = ∆R, whereas for
noisy measurements, the threshold δR shall be accurately selected in order to minimize
the number of true targets that can be removed. For example, this value of threshold
accuracy can be selected as δR = ∆R +σ(n), where σ(n) is the standard deviation of the
measurement noise.

Algorithm 4: Target localization algorithm based on N -tuple of measurements,
associated with one target

input : N -tuple of measurements
{

R̃(1)
m , . . . , R̃(N )

m

}
output: Coordinate vector of (potentially) true target
for i ← 1 to number of combinations of three measurements C N

3 = N !/(3!(N −3)!)
do

if B 2 −4AC ≥ 0 from (C.5) then
evaluate

R
′(q)
m,1 =

√
(x̃1 −x(q))2 + (ỹ1 − y (q))2 + (z̃1 − z(q))2 ;

R
′(q)
m,2 =

√
(x̃2 −x(q))2 + (ỹ2 − y (q))2 + (z̃2 − z(q))2;

if
∣∣∣R ′(q)

m,1 − R̃(q)
m

∣∣∣≤ δR or
∣∣∣R ′(q)

m,2 − R̃(q)
m

∣∣∣≤ δR then
analyzed N -tuple of measurements is associated with (potentially)
true target position and will be further analyzed;

else
analyzed N -tuple is formed with the measurements from different
targets and is classified as ghost

end
end

end

C.3. STAGE 2 - ANALYSIS OF THE TARGET-NETWORK

GEOMETRY
This stage of deghosting is based on the analysis of C measurement combinations,
used for target localization in the preceding stage. The basic idea of this procedure
is to find out if the spheres from N radar nodes with radiuses R̃(1), . . . R̃(N ) intersect
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or not. If they do intersect, then the intersection point corresponds to the true target
position. If not, then this combination of measurements defines the ghost target. Not
all of the range measurements that form the combination R̃(1), R̃(2), R̃(2), . . . R̃(N ) are
analyzed simultaneously. This set is randomly divided into the combinations of three
measurements and each of them is analyzed separately.

Without loss of generality, we consider the 2D spatial model of the target and three
radars. In the noiseless measurement model, there will be one point of intersection of
three circles O that corresponds to the target position (in 3D model - two points). Within
the following algorithm we check whenever the range circles from three radars marked
with points A, C , F intersect (Fig. C.1). Points B and D are the intersection points of
target ranges from radars located at A and C , O is the point of intersection of the range
circle from radar F with the line BD . In case of the intersection of three range circles, O
has to be on the line BD .

A (1) C (2)

F (3)

B

H
O

D

G

1R
2R

1ρ

2ρ

Figure C.1: Schematic illustration of the target localization

First, the distances rD = F D and rB = F B from radar F to the points of intersection
of two range circles of radars A and C are evaluated.
Solution:
BO =OD ; AB = R(1); BC = R(2); R(1) and R(2) are distances from the target to the first and
the second radars respectively;
AC = d12; AF = d13; FC = d23 are distances between the radars;
1
2 BO ·d12 = S ABC ,
where S ABC is the area of the triangle ∆ABC , evaluated from Heron’s formula

S ABC = 1

4

√
4(R(1))2(R(2))2 − ((R(1))2 + (R(2))2 −d 2

12)2.

Consequently, BO = 2S ABC
d12

.

Similarly, F H =GO = 2S AFC
d12

, where S AFC is the area of the triangle ∆AC F .

From the Pythagorean theorem C H 2 = FC 2 −F H 2 = d 2
23 −F H 2;
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OC 2 = BC 2 −BO2 = (R(2))2 −BO2;
Then, OH = OC −C H (C H - from triangle ∆FC H , where FC is known, F H has been
found); and GF =OH .
Similarly GD =GO −OD = F H −BO.
Then we get r 2

D = F D2 =GF 2 +GD2; and r 2
B = F B 2 =GF 2 + (F H +BO)2.

The distances rD and rB depend on the measured ranges R̃(1) and R̃(2): rD =
f (R̃(1), R̃(2),d12,d13,d23); rB = f (R̃(1), R̃(2),d12,d13,d23). In the noiseless measurement
model, the measured values R̃(1) and R̃(2) depend on the radar resolution ∆R and
can take values from intervals [R(1) −∆R/2,R(1) +∆R/2] and [R(2) −∆R/2,R(2) +∆R/2],
respectively. Taking this into account, the distances rD and rB can take values

ρ1 =


ρ11

ρ12

ρ13

ρ14

=


f (R(1) + ∆R

2 ,R(2) + ∆R
2 ,d12,d13,d23)

f (R(1) − ∆R
2 ,R(2) − ∆R

2 ,d12,d13,d23)
f (R(1) + ∆R

2 ,R(2) − ∆R
2 ,d12,d13,d23)

f (R(1) − ∆R
2 ,R(2) + ∆R

2 ,d12,d13,d23)



ρ2 =


ρ21

ρ22

ρ23

ρ24

=


f (R(1) + ∆R

2 ,R(2) + ∆R
2 ,d12,d13,d23)

f (R(1) − ∆R
2 ,R(2) − ∆R

2 ,d12,d13,d23)
f (R(1) + ∆R

2 ,R(2) − ∆R
2 ,d12,d13,d23)

f (R(1) − ∆R
2 ,R(2) + ∆R

2 ,d12,d13,d23)


; (C.7)

According to (C.1), the measured noiseless target range from the third radar is
bounded by the interval of values

[
R(3) −∆R/2,R(3) +∆R/2

]
. If the true target is located

in close proximity to point D or B , then at least one of the following inequalities has to
be satisfied

min(ρ1) < R̃(3) + ∆R

2
< max(ρ1) (C.8)

min(ρ1) < R̃(3) − ∆R

2
< max(ρ1) (C.9)

min(ρ2) < R̃(3) + ∆R

2
< max(ρ2) (C.10)

min(ρ2) < R̃(3) − ∆R

2
< max(ρ2), (C.11)

where R̃(3) is the measured target range from the third radar F to the target. A graphical
representation of this condition is shown in Fig. C.2, where the true target is located in
close proximity to point D .

If the set of measurements determines true target position, at least one of the
conditions from (C.11) has to be satisfied for each C N

3 = N !
3!(N−3)! possible combination

of three measurements.
For example, in case of four radars and the measurement combination{

R̃(1), R̃(2), R̃(3), R̃(4)
}

at least one of the following combinations of three measurements
has to satisfy at least one of the constraints from (C.11)

R̃(1), R̃(2), R̃(3);
R̃(1), R̃(3), R̃(4);
R̃(2), R̃(3), R̃(4);
R̃(1), R̃(2), R̃(4).

(C.12)
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A (1)

3R

C (2)

F (3)

23

R
R

∆+

23

R
R

∆−

min1ρmax1ρ

D

Figure C.2: Schematic illustration of condition (C.11)

C.4. STAGE 3 - DEGHOSTING, BASED ON THE MEASUREMENT

TUPLE ANALYSIS

According to the model considered with Pd = 1 and P f a = 0, the number of
measurements in the nth radar form M-tuple, an ordered list of M measurements.
Consequently, each target is represented by measurement N -tuple, where each
observation belongs to a different radar. Another type of tuple, Ñ -tuple, is
introduced, where the measurement sequence of each radar that constitutes the target
is stored. Intuitively, Ñ -tuples that define M true targets can not be identical, i.e.
(q (1)

m , q (2)
m , . . . , q (N )

m ) 6= (q (1)
l , q (2)

l , . . . , q (N )
l ) (l 6= m, l = 1, . . . , M). We refer to the entries

of Ñ -tuple as radar marks as well.

Each combination of range measurements that constitutes the target is described

with Ñ -tuple. For example, for the Ñ -tuple measurement indexes
{

3(1)
m ,1(2)

m ,5(3)
m ,10(4)

m

}
,

it means that the third, the first, the fifth, and the tenth measurements were used from
the first, the second, the third, and the fourth radars to estimate position of the mth
target. With analysis of Ñ -tuples of measurement indexes, we count repetition value
rm of the measurement index from the nth radar for each target. If the repetition value
is higher than one, the decision is made to estimate target position based on the range
measurements that belong to different targets (Algorithm 5).

Table C.1 shows a scenario, in which first elements in two tuples from the the third
and the ninth targets are the same. For the rest of the targets, there is no repetition in the
elements from Ñ -tuple. Therefore, these targets are identified as the true targets. Then
the second entries of the tuples that constitute the 3rd and the 9th targets are analysed.

As one can see, the second entry in the tuple that constitutes the ninth target has
already been used for localization in the fourth target, which was previously defined as
the true one. At the same time, the second element from the measurement tuple of the
third radar is not repeated in any of the considered measurement tuples. Based on this,
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Algorithm 5: Ananlysis of the measurement tuples

input : N -tuples of measurement indexes for all potential targets locations.
output: N -tuples that correspond to ghost targets
for n ← 1 to N do

if rm > 2 then
mth N -tuple constitute ghost target

else
mth N -tuple constitute true target

end
end

we conclude that the third target is the true target and the ninth target is the ghost and
should be eliminated (Table C.2).

An example, in which the analysis of the measurement tuples cannot assure ghost
mitigation is shown in Table C.3. The fourth element from the first unresolved
measurement combination has been used for localization of the true target. Therefore,
this measurement combination is referred to as one that corresponds to the ghost
target. The sixth and the eight elements from the measurement tuple of the
first radar have not been used for constitution of the true targets. Consequently,
corresponding measurement combinations have to be further analyzed. The analysis of
the measurements tuples from the succeeding radars does not allow one to discriminate
between the true and the ghost targets.

Radar
No.

1 2 3 4 Real/False

R
ad

ar
m

ar
ks

N
o.

1 3 3 3 R
2 2 2 2 R
3 1 2 4 ?
2 2 1 2 R
4 4 4 1 R
5 6 5 6 R
6 7 7 5 R
7 5 6 7 R
3 4 1 5 ?

Table C.1: Analysis of the measurements from the first radar

C.5. CASE STUDY
In this section, the proposed three-stage deghosting algorithm is applied for 3D
localization of multiple targets from the set of range measurements in the radar network.
The radar network consists of four omnidirectional monostatic radar nodes with the
following coordinates: I1 = [−1000, 1000, 5], I1 = [1000, 1000, 30], I1 = [1000, −1000, 10],
I1 = [−1000, −1000, 15].
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Radar
No.

1 2 3 4 Real/False
R

ad
ar

m
ar

ks
N

o.

1 3 3 3 R
2 2 2 2 R
3 1 2 4 R
2 2 1 2 R
4 4 4 1 R
5 6 5 6 R
6 7 7 5 R
7 5 6 7 R
3 4 1 5 F

Table C.2: Analysis of the measurements from the second radar

Radar
No.

1 2 3 4 Real/False

R
ad

ar
m

ar
ks

N
o.

1 1 1 1 R
2 2 2 2 R
3 3 3 3 R
4 4 4 4 R
5 5 5 5 R
7 7 7 7 R
4 7 8 3 ?
6 6 6 6 ?
6 8 8 8 ?
8 6 6 6 ?
8 8 8 8 ?

Table C.3: Additional filtration of potential ghosts

Figure C.3 presents the results of the deghosting algorithm depending on the radar
range resolution ∆R for different numbers of targets on the scene M . The radar range
resolution ∆R is assumed to be the same for all radars in the network. Targets’ positions
were generated randomly within the volume 1000 m × 1000 m × 1000 m. The results
of the deghosting algorithm were averaged for 103 Monte Carlo runs. As apparent
from the results, the number of ghost targets increases with decreasing radar range
resolution. Two times worse resolution leads to approximately two times more ghost
targets. Moreover, a larger number of targets results in a larger number of ghosts due to
the increase in the number of measurement combinations. It can be clearly observed
that for M > 6 targets, the number of ghosts increases drastically. The effect of each step
of the deghosting procedure for M = 10 targets is shown in Fig. C.4a. As one can see, each
of the steps of the deghosting procedure leads to a subsequent decrease in the number
ghosts.

Improved performance of the deghosting algorithm is observed for a scenario with
target area dimensions of 1000 m×1000 m×100 m (Fig.C.4b). In the previous scenario
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(Fig.C.4b), the radars’ altitudes were significantly smaller then those of the targets
(around 1000 m). That resulted in less spatial diversity, and thus worse performance
of the ghost target elimination. For a scenario with target altitudes of about 100 m, the
vertical diversity of the radar nodes and targets is higher and leads to more efficient ghost
mitigation.
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Figure C.3: Number of ghost targets depending on the radar range resolution for noiseless measurement model
(target is located within the volume 1000 m×1000 m×1000 m).
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Figure C.4: Number of ghosts target depending on the radar range resolution ∆R for M = 10 targets



C.6. CONCLUSION

C

107

Figure C.5 reports the results of the deghosting algorithm for the noisy measurement
model. The noise is modelled as a normally distributed random value with zero-mean
and variance (σ(n))2, N (0, (σ(n))2). Rayleigh or Rician distributions can be used to
represent a multipath signal propagation model. Meanwhile, it is assumed that noisy
measurements do not affect target detection performance. The results demonstrate a
substantial increase of the number of ghost targets with increase of the noise variance
value, both for high and low radar range resolution.
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Figure C.5: Number of ghosts for different noise variances (σ(n))2 (number of targets M = 10; target is located
within the volume 1000 m×1000 m×1000 m)

C.6. CONCLUSION
The three-stage deghosting algorithm for multiple target localization in a distributed
radar network with omnidirectional antennas has been developed. It has been shown
that efficiency of the deghosting procedure itself depends on the number of targets,
their constellation in the scene, radar range resolution and noise variance. The more
targets have to be resolved in the scene, the higher the radar range resolution required
to minimize the ghosts number. In particular, for 3D localization of M = 10 targets with
N = 4 radars, two times fewer ghosts are observed at the range resolution ∆R = 2 m than
at the range resolution ∆R = 2 m.
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SUMMARY

The ultimate goal of any sensing system is to build situation awareness. Existing
solutions for a single radar node that have to assure extended areas of coverage with
high resolution measurements (in range, cross-range, and Doppler) are physically
cumbersome (large antenna size) and typically require large operational resources (high
transmit power, wide bandwidth and long integration time).

Combining data from multiple spatially separated nodes located at several locations
offers a possibility to use radars with low-cost omnidirectional antennas to cover wide
areas and overcome operational limitations such as sector blockage due to landscape or
high-rise buildings. Thus, performance of the complete system becomes dependent not
only on the parameters of a single radar node, but on the number of nodes and their
location (system topology) as well. A proper selection of both node-related (transmit
power, operational frequency and bandwidth, integration time, etc.) and system-related
(node location, node cooperation) resources is an important design task, which forms
the major focus of this thesis.

The first part of this dissertation is dedicated to the development of the radar
network performance assessment tool, while the second part provides the framework for
radar network topology optimization. The potential accuracy of the target parameters
estimation has been used for radar network performance assessment. The developed
tool incorporates parameters of a single radar node as well as system parameters
(positions of the nodes and their cooperation), evaluated using Cramér-Rao lower
bound. Using the tools developed, performance of different types of radar networks have
been studied and compared in this thesis. For the radar network topology optimization
several convex and greedy algorithms have been used, making the optimization
approach versatile. Validation and performance comparison of the optimization
algorithms have been performed in this thesis.

The results obtained in this research can be used to evaluate the potential
performance of radar networks for different applications and provide a solution to key
problems of their topology design.
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SAMENVATTING

Het einddoel van elk waarneming systeem is om bij te dragen aan de totstandkoming van
een beter inzicht. Bestaande oplossingen voor een enkele radar node om een uitgebreid
dekkingsgebied met hoge resolutiemetingen te garanderen (in bereik, cross-range, en
Doppler), zijn fysiek omslachtig (grote antenne afmetingen) en vergen doorgaans grote
operationele middelen (hoog zendvermogen, grote bandbreedte en lange integratie
tijd).

Het combineren van data van meerdere ruimtelijk gescheiden nodes op
verschillende locaties, biedt de mogelijkheid, om radars met goedkope omnidirectionele
antennes om grote gebieden te bestrijken en operationele beperkingen zoals sector
blokkade vanwege landscape of hoogbouw, te overwinnen. De prestaties van het gehele
systeem wordt niet alleen afhankelijk van de parameters van een radar node, maar het
aantal nodes en hun locatie (systeemtopologie). Een juiste selectie van zowel node-
gerelateerde (zendvermogen, operationele frequentie en bandbreedte, integratie tijd,
enz.) en systeem gerelateerde (node locatie, node samenwerking) middelen, is een
belangrijke ontwerpopgave, welke de belangrijkste focus van dit proefschrift vormt.

Het eerste deel van dit proefschrift is gewijd aan de ontwikkeling van de radar
netwerk prestatiebeoordelingsinstrument, terwijl het tweede deel het kader voor
radar netwerktopologie optimalisatie vormt. De mogelijke nauwkeurigheid van de
doelparameters schatting is gebruikt voor radar netwerk prestatiebeoordeling. Het
ontwikkelde instrument integreert parameters van een enkele radar node alsmede
systeemparameters (posities van de nodes en hun samenwerking), bepaald met behulp
van de Cramér-Rao ondergrens. Gebruikmakend van de ontwikkelde instrumenten zijn
de prestaties van de verschillende typen radar netwerken bestudeerd en vergeleken
in dit proefschrift. Voor de radar netwerk topologieoptimalisatie zijn verscheidene
convex en greedy algoritmen gebruikt, waardoor de optimalisatiebenadering veelzijdig
is geworden. Validatie en prestatievergelijking van de optimalisatie algoritmen zijn
uitgevoerd in dit proefschrift.

De verkregen resultaten in dit onderzoek kunnen worden gebruikt om de haalbare
prestatie van radar netwerken voor verschillende toepassingen te evalueren en bieden
een oplossing voor hoofdproblemen van hun topologie ontwerp.
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