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Summary

The main objective considers a situation with a prestressed concrete bridge with T-
girders and in between a thin deck cast in-situ. The main girder of the system is loaded
directly until failure in shear is reached. At a certain load point, the main beam is
assumed to fall out, leaving only the slab to carry the load. It is questioned whether the
slab is able to carry the load, and to which extent compressive membrane action in the
slab plays a role in that occuring mechanism.

The first step is understanding compressive membrane action. It is a mechanism
occurring in laterally restraint (un)reinforced and prestressed concrete, and increases the
slab bending and punching capacity. Methods exist that calculate membrane action in
concrete slabs. Certain conditions have to be met in order to use them. Of importance is
the slenderness ratio that has to be met, and the considered span and slab have to meet
certain criteria of their own as well.

Returning to the main situation, in the first method, the bridge system is presented as
a disconnected system of key elements: main beam, slab, and neighbor beams. For each,
the capacity can be calculated. For the main beam it is the shear capacity (tensile
splitting or flexural shear, depending on factors such as load location and the amount of
shear reinforcement). For the slab the three considered methods (CAN, UK, RK) are
used to determine the bending capacity with arching.

The load determined for the girder capacity only is considered a lower bound limit for
the total load of the bridge system. For the upper bound limit a higher bridge load is
possible. When the critical deflection condition--the relative girder deflection exceeding
the slab midspan deflection--is met, the slab bending capacity can be added to the girder
capacity. In this case, girder and slab are assumed to work together.

The second method determines the linear load distribution with a numerical plate
model with the T-girders modelled as ribs. The numerical model determines the relative
girder displacement and compares it with the slab midspan displacement also determined
numerically. With this, a part of the span can be determined that is activated when the
main girder reaches its maximum deflection. And once the activated span is known the
deck capacity can be determined, summating the capacities (determined with one of the
three methods) of the slab strips, with a pre-determined effective width, dividing the
total activated area.

The load-displacement behavior of the slab itself is important. To understand the
whole system, the slab ductility needs to be known, the deflection at its peak lead and
the ultimate deflection. More research on laterally restraint slabs is done to gain more
insight into this. It shows that when the lateral restraint is high enough, capacities can
be reached, about four to six times higher than for simply supported slabs. Moreover,
the slab seems to show higher deflections when failing in bending, compared to punching.



Which is favorable for when loading the girder directly, since bending is assumed to be
the governing failure mechanism.

The bridge ‘De Vecht’ was tested with two different test load locations: 4 and 2.25 m
from the end. The material and geometrical parameters were taken into account, and
used for a numerical plate model and the calculation of the slab and girder capacity.

For the calculation of the total bridge load, the numerical model is combined with
assumed deflections derived from the research done on the laterally restraint slabs.
Furthermore, the linear load distribution limits the redistribution possibility.

Afterwards, the test results were compared with the calculations. The calculations
overall show to be a safe underestimate of the reality. This holds for the calculated
bearing capacity of the whole bridge system and the slab bending capacity.

The assumed failure mechanism bending for the slab seemed to be correct, since
punching did not occur, meaning that more capacity of the slab due to arching was
activated, and the slab deflected more than usual for slabs failing in punching.

However, the assumed deflections deviated from the actual ones, this probably was
due to the used research, which only took into account a certain slenderness ratio
deviating from the one from ‘De Vecht’.

The test results and numerical model showed that multiple girders take part in carrying
the load, which is also shown in the deflections of the girders. From the total of fifteen
considered beams of a field, five or seven girders are activated. This is caused by the
unique situation of ‘De Vecht’, with four crossbeams and a short c.t.c distance between
girders. The crossbeam probably behaved so stiff that it, as it is loaded and as it deflects,
activated more girders.

Finally, it was the question whether compressive membrane action was present in ‘De
Vecht’” bridge. Analytically, the slab meets all the criteria to assume it was. However,
numerically it is uncertain whether this is the case. The relative displacements were too
low, even with a seven-girder model, meaning it is uncertain whether cracking occurs in
the slab. And this cracking is essential in order to determine if compressive membrane
action develops in the slab.

Ultimately, for the initial main problem of loading the bridge system, a set of methods,
and solutions, and simple components are provided, for which various insights are given.
The slab and girder seem to be the key to this complex situation, and they need to be
investigated and modelled more in depth, since they showed nonlinear behavior in the
test results, and this project only dealt with linear assumptions. Moreover, the slab
seemed to be critical concerning the bearing capacity and ductility of the system as a
whole. So more research needs to be done on laterally restraint slabs, with different
concrete strengths and slenderness ratios, to determine the deflections, at peak load and
failure.
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Part 1 Objectives of the research on compressive

membrane action
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Chapter 1 Main Objective Thesis

Introduction

The first chapter discusses the main objective of this research on compressive
membrane action. The subject, sub-objectives and an outline of the thesis are described

too.
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Background

Rijkswaterstaat (RWS) is part of the Dutch Ministry of Infrastructure and
Environment. The main functions of RWS are: design, construction, and maintenance of
the infrastructural works of the Netherlands. A very important part of these
infrastructural works are the widely considered concrete bridges. And especially the
research on their residual strength is of concern for the main subject of this thesis.

In the Netherlands, there are about seventy prestressed concrete bridges designed
between the sixties and seventies. These bridges are made of prefab prestressed concrete
T-girders with in-situ concrete in between the girders to connect them (Figure 1).
Because the deck slabs are transversely prestressed, they have a low reinforcement ratio,
and the slenderness, the span/depth ratio, is very high.

Over time a lot has changed: traffic situations changed and extra lanes were
implemented on top of the bridges. Back then the bridges were designed for lower traffic
loads and the Dutch code has been altered as well. All leading to the question whether
the bridges are still structurally safe. A large part of the research concerning the strength
of these old bridges has been done at University of Technology Delft as requested by
RWS.

A great deal of these bridges are being recalculated according to the current norms to
ensure structural safety. Several recalculated bridges do not comply with the norms
regarding the shear capacity. This is partly because the current code is stricter. The
newer norms, changed traffic situations and higher traffic loads create the impression
that there might be issues with the old concrete bridges regarding structural safety and
durability.

Figure 1 In-site concrete cast in between girder
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A significant note: the current Dutch norms do not take into account the full
theoretical capacity of concrete deck slabs. There is known to be an extra, hidden
capacity left in the deck slab, due to the mechanism compressive membrane action
(CMA). CMA increases the slab bending and punching shear capacity. The workings of
CMA and its benefits, regarding the bearing capacity, is the focus of this thesis. CMA
could provide residual capacity in concrete deck slabs of most bridges, which might be
overlooked during recalculations.

CMA has been recognized by the engineering community and mentioned in past
research. This is especially apparent in foreign codes of Canada, New Zealand and the
UK. However CMA has yet to be included in the Dutch codes, even though a lot of
research has been done at the University of Technology Delft. This is why it is the hope
of the author that this project combined with the other past researches will provide a
nudge in using CMA in the Dutch codes.
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Approach of the research on compressive membrane action

Past research on compressive membrane action

Past research (Chapter 2 till 4) focuses on a situation where the traffic is modelled
with a point load on the slab between girders. The slenderness was found to be an
important factor (Figure 2 and Figure 3). The past research focuses mainly on directly
loaded slabs.

Figure 3 front view of loading situation past research with certain slenderness
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Figure 4 enlarges the loaded slab and shows the development of membrane action for
a laterally restraint situation (chapter 2). As the load increases, the slab wants to move
outwards, but this movement is hindered by the restraints. And because of this restraint,
in-plane compressive membrane forces (CMF) develop in the cracked slab. The
compressive membrane forces result in a compressive arch that increases the slab moment
bending and punching capacity, compared to past flexural theories (Figure 5).

Load

\v4 0]
AN o V
Beam Beam

Figure 4 activation of membrane action in a laterally restraint slab

Arching

Applied load

First Bending

cracking ¢

Midspan deflection »

A

Figure 5 increase of slab capacity with CMA compared to flexural theory
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Focus of this research on compressive membrane action

This research focuses on a similar situation, only with the load placed directly on a
beam (Figure 6 and Figure 7). In this case, it is assumed that punching of the slab will
not occur, since the beam is loaded directly. The higher bending with arching capacity

is assumed to be governing.

Figure 6 isometric view loading situation of this research: beam load directly

F

Figure 7 front view loading situation
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It is assumed that at one point the loaded beam fails. When this occurs the loaded
bridge system is assumed to change to a recognizable slab situation (Figure 8), similar
to the past (chapter 5).

For this situation, the slab bending capacity with arching can be determined. It is
questioned whether the load of the beam can be carried by the slab (Figure 9), if there
is enough capacity to carry and redistribute to the neighbor beams (chapter 5). This
redistribution is possible through membrane action.

F
¥

Figure 8 slab situation with main beam not present

F

’ Membrane action

Figure 9 redistribution of the loads
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Considered load-displacement graphs for beam and slab

Two important components of this research is the behavior of the beam and slab.
Figure 10 till Figure 13 give a rough sketch of their possible behaviors. The numbers are
arbitrary and only to give an impression of the behavior, the size order of the
displacement and load. In this research, the beam is assumed to have linear elastic
behavior with brittle failure and bilinear plastic behavior (Chapter 5). For the slab only
bilinear behavior is considered (Chapter 5). These behaviors are used throughout the
research and will be discussed more in depth later.

Possible beam behavior
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Figure 10 possible beam behaviors

Chosen beam behavior
3500
3000
2500

2000

1500 bilinear - plastic

Load [mm]

1000 linear elastic

500

0 5 10 15 20 25 30 35 40

displacement [mm]

Figure 11 chosen beam behavior
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Possible slab behavior
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Figure 12 possible slab behaviors
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Figure 13 chosen slab behavior
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Main Objective Thesis

Investigate to which extent compressive membrane action provides additional capacity
during the loading of a T-beam integrated in a prestressed concrete deck slab.

Former research has shown that a positive effect of compressive membrane action on
the bearing capacity of a bridge system is present. This project uses this past research
to understand the mechanism that occurs in the deck slab when one T-beam is loaded
till failure. It is questioned whether a secondary load path occurs to the neighbor beam,
through the slab when the T-beam is being loaded till failure.

If load redistribution takes place, the load will carried by the slab with the compressive
membrane forces. Moreover, if the main beam and slab work together, their respective
capacities can be added to create an upper bound value of the total bridge load.
Ultimately, if membrane action is present, the slab helps the main beam in carrying the
load to the neighbor beams, and their supports and foundation.

Method One

Two methods are discussed to investigate the mechanism mentioned above. The first
one disconnects the bridge system into two components: slab and main beam. This is
done to understand the role of the components in the main problem.

In the first method three loading phases of the bridge system are studied. Phase one
describes the main girder being loaded till its shear capacity. The girder capacity is used
for scenario 1, the lower bound limit of the total bridge load.

Then Phase two begins, and this is the elasto-plastic phase. Compressive membrane
action is assumed to be activated after first cracking, causing the load to be carried
through the slab and to the neighbor beams. The main beam behaves plastically and
carries the orginal load, while the slab carries the additional load through compressive
membrane action. For scenario 2, the upper bound limit, a higher total bridge load is
possible.

Finally, the load is distributed to the neighbor beams and then their supports and the
foundation. The details of this methods is discussed more in depth in Chapter 5.
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During the study of the role of membrane action and the hidden capacity that it
provides, analytical methods are created for thin prestressed concrete deck slabs made of
T-beams with in-situ cast concrete in between.

The calculative methods deal with the slab behavior when a T-beam fails and
membrane action activates in the slab, describing the secondary load path that brings
the load through the slab and neighbor beams to the supports. It is also investigated
during which part of the loading the bridge system, membrane action activates. This can
for example be in the linear phase of loading the girder or after. And after knowing when
the membrane action activates, the activated part of the slab is determined, the part
which provides the residual strength through membrane action. And the slab bending
capacity is determined.

Method Two

The second method is based on numerical modelling. The second method follows from
the first and they show a lot of similarities. However the second method uses different
assumptions, and the numerical model is used heavily. And the second method actually
takes into account the questions raised in the first method.

To determine the total slab capacity, the activated slab area has to be determined
with use of the numerical model (Figure 14 and Figure 15).

Fmax

Figure 14 activated part of the deck
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Figure 15 activated slab area (details discussed more in depth in Chapter 5)

After identifying the activated part, it is divided in laterally restraint concrete slab
strips, with a certain effective width, and with a certain capacity, which is determined
using calculative methods of past research. Finally, the total slab capacity is determined
by summing up the capacities of individual slab strips.

The guidelines of the two methods provide practical tools, which can be used when
facing a comparable situation and bridge. Ultimately, these tools are used on ‘De Vecht’
bridge to predict the total failure load with a range, bounded by an upper and lower
value limit.
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Overall Research Objectives

The main objective loads a bridge system with a T-beam integrated in the slab. And to
understand the main objective, it is broken down into smaller objectives that are
considered during the research:

1. What is the total load of the bridge systems sketched in the main problem?

Discussed in part 2, chapter 5.

2. What roles do slab and beam have in the main problem?

a. How do they behave?

Part 1 focuses on slab research and the failure mechanism in the main problem. In
part 2 the beam behavior is discussed. Additional research on laterally restraint slabs is
done in part 2, chapter 8.

b. What are their respective capacities?

In part 1, chapter 3 discusses methods that calculate slab bending capacity with
arching.
In part 2 the linear beam capacity is determined.

3. When do slab and beam work together and can their respective capacities

summed?

a. And does CMA activate?

Mentioned in chapter 2. It discusses when CMA is present in a slab. Chapter 3
discusses when enough restraint is present in a system and when one can calculate with
CMA. Part 2, chapter 5 discusses the critical deflection condition.

4. How does linear load distribution influence the situation?

Discussed in part 2, chapter 5 till 7.
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Chapter Outline

The thesis is comprised of four parts. The first part deals with past research on
compressive membrane action and how to calculate it.

Chapter 2 and 3 describe the mechanism and its presence in reinforced concrete deck
slabs. Chapter 4 describes the assumptions and conditions for calculating with
compressive membrane action in prestressed concrete. The ‘Brienenoord’ bridge and its
prototype are used as examples.

Part 2 describes two methods to investigate the mechanism.

Chapter 5 gives the first method: disconnected bridge system. This simplifies the main
problem and mechanism. It explains the secondary load path that occurs when a T-beam
integrated in the bridge is loaded. Possible bridge failure scenarios are discussed, which
occur during loading of the main beam, and the total slab capacity is calculated.

Chapter 6 discusses a numerical linear model to determine the slab deflections, using
them as reference points for the second method discussed in Chapter 7. The load
spreading is also determined. Chapter 8 deals with additional research on laterally
restraint slabs and their deflections.

Part 3 discusses ‘De Vecht’ bridge in Muiden.

Chapter 9 describes the material and geometrical properties of the bridge, which is
modelled using the information from part 1 and 2. And the capacity of the bridge, main
beam and slab is estimated. Chapter 10 discusses the results of the tested bridge, and
compares them with the determined calculations.

And ultimately in Part 4, it is discussed whether CMA activates in the slab of ‘De
Vecht’ bridge, closing off with conclusions and recommendations.
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Chapter 2 Introduction Compressive Membrane Action

Introduction

This chapter discusses the concept of compressive membrane action (CMA). This part
discloses what kind of mechanism it is and gives a short chronology of relevant research

done on the subject, which is used for the remainder of this thesis.
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Compressive membrane action

Every concrete deck slab has the potential for residual bearing capacity through
compressive membrane action (CMA), if it is well restrained, laterally. Which gives the
slab an extra, hidden capacity for moment- and punching shear capacity.

(Liebenberg, 1966) described compressive membrane action, and how and when it takes
place. Compressive membrane action is a mechanism occurring in a laterally restrained,
hardly able to displace laterally, concrete slab. As the vertical load increases, the
deflection of the slab does also, causing the edges of the slab want to move to the outside.
And this movement is hindered, and when the slab is hindered, compressive membrane
action with in-plane compressive membrane forces (CMF) occur. The membrane action
increases the slab’s moment and punching shear capacity. Compressive membrane action
is found in reinforced and unreinforced slabs. Later research such as (Amir, 2014)

indicates its presence in prestressed concrete.

ii) Horizontal bending stiffness of edge beam

Compressive membrane forces
Edge beam

Diaphragm
Diaphragm

: ) - 111) Position of load
i) Axial stiffness of surrounding slab area

Figure 16 Contributions to lateral restraint stiffness. (Hon, Taplin, & Al-Mahaidi, 2005)

—
v O Compressive membrane force JAY
A o V
Beam Beam

Figure 17 CMA in a reinforced concrete bridge deck slab. (Hon, Taplin, & Al-Mahaidi, 2005)
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Taking a closer look at the restraints, (Hon, Taplin, & Al-Mahaidi, 2005) explained
that the extent of compressive membrane action developed in a system depends on the
level of horizontal translational restraint stiffness (Figure 16 and Figure 17), the effect
of lateral restraint. This lateral restraint depends on:

Axial stiffness of the surrounding slab area
Horizontal bending stiffness of edge beams

¢ Position of the load regarding cross-beams. The restraint stiffness increases if the
loaded area moves toward the ends of the specimen, closer to the end-beams.

Compressive membrane action can only develop after cracking occurs in a slab (shown
at the bottom and top of the slab in Figure 17), and gives net in-plane forces at the slab
boundaries. This phenomenon cannot occur in slabs with the same strength in tension

and compression. Moreover the presence of reinforcement is not necessary ( (Amir, 2014)
and (Taylor & Tharmarajah, 2014)).

-

drukmel
werking

uitwendige belasting

trekmembraan-
werking

buigwierking

|
doorbuiging

Figure 18 typical load deflection curve showcasing CMA and flexural working (Van der Veen, Gijsbers, & de
Boer, 2012)

Hidden capacity of thin prestressed concrete deck slabs with T-beams 24



Chronology of research on compressive membrane action

A lot of research has been done on the mechanism compressive membrane action in
the past. It was first reported by (Ockleston, 1955) during tests on a three-storey building
in South Africa. Subsequent research in bending strength area was done by (Wood, 1961)
and (Park, 1964). Further research conducted at Queen’s University, Canada, in the late
sixties has led to compressive membrane action being incorporated in the current
CHBDC, Canada Highway Bridge Design Code (CAN/CSA-S6-06, 2006) and the Transit
Code (new zealand transport agency, 2014) Finally, research of CMA has been done in
the UK Highway Agency standard (81/02, 2002). This method is simplified, as one
assumes the concrete decks as rigidly restrained (Rankin & Long, 1997).

During test and experiments the moment and punching capacity was significantly
higher due to membrane action. And the test slabs all failed in brittle punching failure.
Meaning punching shear failure was decisive when the deck slab was loaded with a
concentrated load in these experiments. This is due to fact that membrane action
increases the moment capacity that much, causing it to be larger than the punching
shear capacity. This will be noticed especially in Chapter 3.
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Chapter 3 Calculative Methods On Determining

Compressive Membrane Action

Introduction

Chapter 3 discusses methods that deal with compressive membrane action in reinforced
concrete deck slabs only: the CHBDC (‘Canadian Highway bridge design code’), the New
Zealand’s ‘Transit Bridge manual’, and the UK Highway agency BD 81/02. The first two
foreign codes are comparable and apply the ‘empirical method’, while the second uses
the ‘simplified method’. Finally, the Rankin method is discussed, which is used in many
researches regarding laterally restraint slab strips to calculate the bearing capacity.
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Canadian Highway Bridge Design Code and the ‘Empirical method’

Canada has registered compressive membrane action in their code (CAN/CSA-S6-06,
2006). Moreover, the Transit Manual (new zealand transport agency, 2014) is similar to
the CHBDC in certain relevant aspects. Similar graphs such as the one in Figure 141 are
used in both codes to determine the allowable axle load.

Research done by (Dorton & Csagoly, 1977) functioned as the base for the CHBDC
and studied the most important parameters with the largest influence on the effect of
CMA:

¢ Slenderness A (span/depth ratio of the slab between the girders)
¢ Cylindrical Compressive concrete strength f,

¢ Reinforcement ratio p (plays a smaller part)

The experiments concern a reinforced concrete deck slab, which was modeled with
scale 1:8. From the experiments one found that when the slab was loaded, the failure
mechanism was always explosive and with no warning, in the form of brittle punching
shear. Parameters such as load location and stresses due to sustained loading were not
as significantly important regarding the total fail load compared to the stated ones above.

From the tests one concludes concrete slabs have a considerable amount of hidden
strength left. This applies even for unreinforced deck slabs. Also slabs with reinforcements
at mid-depth of the slab (isotropic) behaved similarly to slabs designed with top and
bottom mesh reinforcement. Meaning that in traditional calculation methods, the
concrete deck slabs are being underestimated regarding strength. In the Canadian
research, fatigue was also considered, but was finally deemed not decisive.

In the British design code, to use the positive effect of membrane action in the design
of a concrete bridge, a certain degree of restraint must be applicable to the bridge. The
continuous concrete deck needs to be restrained laterally by the stiffness of the deck and
transverse end beam. And an edge zone needs to be present, for example provided by
reinforced edge beams. The effect of lateral restraint was stressed earlier in Chapter 2.

The total restraint effect is incorporated in an empirical restraint factor n (Hewitt &
Batchelor, 1975). In theory n =1 means the slab is completely enclosed and fully
restraint. And 7 = 0 means the slab is statically determined with free supports loaded
under bending. In practice the restraint factor is usually somewhere in between (Table

1).
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In accordance with the theory the restraint factor was determined for a number of

bridge types:

Steel girders with reinforced concrete deck, non-compositely
Steel girders with reinforced concrete deck, compositely

Reinforced concrete girders with reinforced concrete deck slab, compositely

* & o o

Prestressed prefab concrete girders with reinforced deck, compositely

From the test results a safe lower bound value n = 0.5 for type 2, 3 and 4 was
determined. The restraint factor was determined with model lab experiments, where the
compressive membrane forces was a function of the restraint factor.

Significant is the fourth type, prestressed girders with reinforced deck, showing two
values higher than n = 0.5: n = 0.66 and n = 1.0 with an average of n = 0.83 (Table 1).
Most of the factors are around 0.8 and many were 1.0 (Figure 19). And for the last three
types almost all tests had a factor higher than 0.5, meaning most slabs are between fully
enclosed and simply supported.

Table 1 Restraint factors in tested bridge slabs. (Van der Veen, Gijsbers, & de Boer, 2012)

niet-composiete composiete betonnen balken en voorgespannen ligger en
staalbetonligger staalbetonligger plaat betonnen plaat

brug n-waarde brug n-waarde brug n-waarde brug n-waarde
1 023,025 10 10 19 10 27 0,66

2 021;033 11 10, 10,10 20 0,48;05;071;075 28 10

3 031;033 12 0810 21 075,075,075

B 071 13 07508310 |22 0,63;0,75;1,0

5 061;063 14 096 23 1,0

5] 024 15 075 24 04

7 034,055 16 10 25 08210

8 10 17 0,98 26 10,10

9 0.21;025 18 094

gemiddelde 0,41 0,93 0,78 0,83
n-waarde
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number of tests

Figure 19 restraint factors of test slabs from Table 1

In order to calculate the bridge’s capacity, according to (Dorton & Csagoly, 1977),
using the safe lower bound restraint factor n = 0.5, certain conditions must be met:

¢ Minimum reinforcement ratio p = 0.3% in two directions, top and bottom, is

advised.

¢ Concrete deck is part of a beam-deck system working together.

(This is nearly always the case in the Netherlands.)

¢ Concrete deck, massive with a constant thickness of h = 200mm
Changed later in Transit Bridge manual to a minimum thickness of h = 150 mm

(new zealand transport agency, 2014)

¢ The span of the slab between the girders Ly < 3.7 m
It is noted that in the tests CMA was activated until a girder c.t.c distance of
4.0 m. Later this condition changed to Ly < 4.5 m (new zealand transport

agency, 2014)

For a concrete deck with haunches monolithically connected to the webs of girders,
the span Lg is defined as the distance between the midpoints of the haunches (new
zealand transport agency, 2014).
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Figure 20 definition span Ls between haunches with loading location

¢ The slenderness A = % <15

CMA has been found with a slenderness of 20. And this is now the current
demand (new zealand transport agency, 2014), and will be used later again in
Chapter 4.

¢ The distance between cross girders not larger than 24.0 m
¢ Distance between the reinforcement bars not larger than 300 mm

¢ The edge stiffness for the concrete deck slab should be provided with a system

consisting of:

o Extra reinforcement in the deck or
o A reinforcement edge beam (usually the case in the Netherlands) or

o A reinforcement thickening (edge zone) of the concrete deck

If all the conditions above are met, then enough lateral restraint is available to
guarantee a restraint factor n = 0.5. Generally the Dutch bridges comply with these
conditions, but there are exceptions. When this is the case, compressive membrane action
may be taken in to account, if the necessary restraint factor can be validated. It is also
possible that the criteria of slenderness or span length is not met. This fact will be of
importance later in the modelling phase in Part 2.
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The method described in the Transit Manual and the Canadian HBD code is often
called the ‘Empirical method’ because of its base in test results and experiments on
bridges where membrane action occurred. The allowable axle load is:

¢ * 0.6 x R;
YL x40 %]

Paxle - 100

* 8200

[kN] 1)

¢ = variable strength reduction factor = ¢4 * 1 = 0.5 (assumed low cracking)
y; = partial load factor for normal loading = 1.9
[ = 1.0 (impactfactor)

Factors taking into account dynamic effects have already been taken into account in
the characteristic values of the vertical load. Shown in table 4.2 (NEN-EN 1991-2, 2005).
The value for R; can be determined by using Figure 141 in Appendix A, Ry, F, F; and

using the formula:
Ri=Rq*Fy +F, [kN] 2)

F, and F; are correction factors for concrete strength and reinforcement ratio
respectively. Ry is determined with Figure 141 for a certain deck thickness. The factor
F. is determined for concrete strengths between 20 and 40 MPa, outside that range, one
needs to extrapolate, leading to less accurate results. This is significant when dealing
with Dutch bridges, as ‘De Vecht,” that usually apply a concrete strength higher than 40
MPa.

_ Asl Ast)
q_so*(b*dl+b*dt

02% <q<1%

Ag = longitudinal bottom steel areas

Ag; = transverse bottom steel areas

b = width

d; = longitudinal effective depth of the deck slab
d; = transverse effective depth of the deck slab

The total axle load in Equation (1) is given in kg and converted to kN with factor 100.
Furthermore in Equation (1) the reduction factor ¢ depends on the properties of the
deck slab. It tells if the slab is in good condition, cracked or severely cracked (Table 23,
Appendix A). The code is for a load surface area of 250%250 mm.
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UK code and the ‘Simplified method’

Background

The background of this code is also experimental. (Kirkpatrick, Long, & Thompson,
1982) performed tests with a scale of 1:3. The results contain information about deck
slabs with a centrically placed reinforcement (at 0.5*d) only. Some comparisons can be
made with prestressed concrete deck slabs where a continuous centrically placed prestress
runs through the slab and connects the in-situ concrete with the T-girders.

Also (Taylor, Rankin, & D.J., 2001) found that when lateral restraint was provided,
the slabs could be efficiently reinforced with the bars located centrally due to the benefits
of arching action, and it avoided the need for two reinforcement layers, when looking at
the bearing capacity. However top and bottom reinforcement seem to have merit, since
it influences the slab’s ductility in a positive manner.

The UK code deals with reinforced concrete only and assumes a fully restrained slab
with a factor n = 1. This simplifies the expressions that calculate the influence of
compressive membrane action very much.

When a slab is fully restrained, the effect of the reinforcement on the failure load will
be small (Van der Veen & Gijsbers, 2014). The effect of laterally restraining slabs and
inducing compressive membrane forces, is so significant that fully restrained unreinforced
concrete slabs show a higher capacity than statically determined reinforced concrete slabs
with free supports.

It seems an underestimation of the slab strength is apparent. This gives the conclusion
that compressive membrane action and its effect is usually governing for the slab bearing
capacity. And the influence of the traditional bending capacity on the total capacity is
less significant.
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Perfect plastic behaviour

When a perfect plastic material is present, the maximum arch capacity according to
(Christiansen, 1963) gives:

2

h
A@r=035*ﬁ*<§)::021*ﬁ*h2 (4)

f/ = cylindrical compressive concrete strength
h = thickness slab

It is assumed that the internal lever arm is equal to half of the height of the slab
(Equation (4)). This applies only for perfect plastic material, since it reduces in concrete

which deforms.
Elastic plastic behaviour

(Rankin G. , 1982) established a relation between maximum arch capacity and
slenderness of a slab for an ideally elastic-plastic concrete behavior. (McDowell, McKee,
& Sevin, 1956), and then derived the deformation in relation to the bearing capacity used
in the UK method. With this a new arching capacity M, is calculated.

L2
h2 [_]

(5)

R=¢.%

L = span of slab

L, = 0.5 % L
h = slab thickness
0<R<0.26

The considered span Lg is defined as the clear span for slabs monolithically connected
with beams, according to BD (81/02, 2002). Noted that the UK method defines the span
differently than the ‘empirical method’.

Figure 21 span Ls defined as the clear span between girders
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Figure 22 k-values for maximum arching moments (Kirkpatrick, Long, & Thompson, 1982). The red line indicates
the earlier defined maximum slenderness of A = 20

g = (=400 + 60 * f, — 033 f/)«107¢ [—] (6)

Figure 22 shows that concrete strengths up till 60 MPa can be used for the ‘simplified
method.’

Finally, the theoretical maximum arching capacity through compressive membrane
action is given again:

Mg, =k = f! x h? [kNm/m] (7)
0.21
k = 4 * Mr
M, = 43 —16.1%+/3.3%10% 4+ 0.1243 *R) [—] (8)
M, = 4 for rigid plastic behavior

The relations above apply for concrete with elasto-plastic behavior. In Equation (8)
the k-factor acts as a reduction factor and reduces the maximum arching capacity of a
perfect plastic situation for an elasto-plastic situation. When M, = 4 the relation returns
to the original one. Once the moment capacity is known, the moment [kNm/m] can be
converted to a comparable force [kN] using Figure 23, in this specific situation:

P, = 5 ;; [kN] (restrained at both sides) 9)
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Figure 23 influence surfaces for a plate with two restrained edges (Pucher, 1964)

As mentioned before concrete deck slabs usually fail in brittle punching shear. This is
shown in experiments. The reason why is that the bending capacity increases
considerably more than the punching shear capacity due to occurring arching action
( (Hewitt & Batchelor, 1975), (McDowell, McKee, & Sevin, 1956)).

Which means usually punching shear failure is governing. To calculate the punching
capacity a formula is derived by (Long, 1975). Where a circular shape load is used instead
of a square load of a wheel print, which is converted with use of an equivalent punching
diameter ¢. A circular shaped load surface is assumed to have a 15% higher shear
capacity because it is assumed free of stress concentrations.

P, =152 (¢ +d) = d = /f] = (100 = p,)°?° [kN] (10)

¢ = equivalent punching diameter
d = average effective height tensile reinforcement
f¢ = cyllindrical compressive concrete strength

The reinforcement ratio in Equation (10) is an equivalent reinforcement ratio p,:

k*fc'*hz
Pe =T dnz =

z = internal leverarm = 0.75 * d
fye = 320 MPa
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The internal lever arm z is assumed as 75% of the effective depth, common for heavily
reinforced concrete cross sections with a fully restrained concrete slab (Van der Veen &
Gijsbers, 2014).

In the test results of BD (81/02, 2002) the reinforcement yield stress was 320 MPa and
remained constant. When dealing with a concrete deck where only a centrical prestress
is placed as the main reinforcement, the effective depth d is taken up till the center of
the centrical prestress. An example is given in Chapter 4.

Punching shear

Punching shear is also called two-way shear, and is generally a brittle punching failure
(Figure 24) with no warning in advance; where some warning is shown, the case is
classified as flexural punching. Flexural punching was observed in some cases when the
transverse prestressing level was too low or when the single loads were applied above a
duct at midspan (Amir, 2014). Flexural punching gives a ductile load-deflection behavior,
which is more desired than the behavior for brittle punching. Also for (Hwang, 2010),
the level of prestressing influences the mode of failure, with low prestressing levels giving
flexural punching as the failure mode.

Wheel load

|

[ateral l'ﬁlminin g force [ateral rentﬁ‘ﬁling force

Slab ) Slab

-
= ‘*- -

—— --h-"'

Punching cone

Beam Beam

Figure 24 brittle punching shear in lateral restrain slabs (Kirkpatrick, Long, & Thompson, 1982)
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Side notes and summary

First, according to the test results the amount of available bending reinforcement has
no influence on the punching capacity of the concrete slab. Since the CMA is more
decisive in delivering the strength. Second, the increase in bending capacity is given by
the equivalent reinforcement ratio. Moreover, the critical cross section is placed at d/2
from the perimeter (Figure 25) of the loaded surface (contrary to (NEN-EN 1992-1-1,
2005) where the distance is 2d) (81/02, 2002).

The UK method described here and the calculated arching capacity lean heavily on
the parameters concrete strength f and the slenderness, span/depth ratio. Which were
mentioned in Chapter 2 as important factors for the bearing capacity.

Figure 25 loaded critical perimeter
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Rankin method

Background

The UK method in BD (81/02, 2002) calculates an arching capacity Mg,. Which is
based on theory described by (Rankin & Long, 1997). Here Rankin determines the
capacity of laterally restrained concrete slab strips, which in turn is essential to determine
the total deck capacity. This method splits the arching and bending action components.

Effective width

Taylor devised a method to estimate the effective width of an activated slab strip
(Figure 27). This method takes into account the loading area and range which is loaded.
The previously discussed methods make no mention of an effective width.

berf =cy+2xLe+2%h (12)

¢y, = length of load area in y — direction

L, = effective span of the slab subjected to arching force
LS Cx
L,=——=

2 2
¢, = length of load area in x — direction

Ls = clear span of considered slab

r

‘_—_,.-—'"F\_-L:

[T 7]

E— supparling edge

iI beam width

Figure 26 Restraint model (Taylor, Rankin, & Cleland, 2002)

declk slab
b, = effective width ™~ external restraint /
o‘%]oadcd slab > |~ \ _

loaded are

=]
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Figure 27 Calculation for effective width (Taylor, Rankin, & Cleland, 2002)

1. Stiffness parameters

L 4

2. Flexural capacity

L 4

3. Arching section

4. Arching parameters

v

5. Deformation

Iterate until d stays
constant

v

6. Contact depth, g

7. Arching capacity

4

9. Ultimate capacity

Figure 28 flow diagram for calculating ultimate capacity of laterally restraint slabs (Taylor & Mullin, 2006)

A procedure for assessing the strength of laterally restrained slabs is followed. It is
outlined by the flow diagram (Taylor & Mullin, 2006) in Figure 28. Some of the
expressions or parameters might seem familiar, since the UK method is influenced by

Rankin.
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The method uses a model restraint system (Figure 26) where the supporting edge
beams, end diaphragms and surrounding area of unloaded slab are equated to a spring
of an equivalent stiffness (Taylor, Rankin, & Cleland, 2002).

Stiffness parameters

The value for the elastic modulus is based on (Hognestad, Hanson, & McHenry, 1955),
and has given good estimations for the measured elastic modulus in experiments (Taylor,
Rankin, & D.J., 2001).

E, = 4.23 % f23° (13)
E.*xb,sr*h
= c eff (14)
L,

The area outside the effective width acts parallel to the end diaphragms in resisting
the outward arching thrust. The areas are cumulative and can be summed to give a total
area Agz. Which consists of the total area diaphragms and the slab area outside of the
effective width.

Ad * EC
K, = L (15)
A, * E
Kb — p *L¢
L, (16)
{xly* Lo
A, = 17
b beff ( )
¢ =114.5 (SS)
{ =985 (FE)

{ = 550 (SS/FE)

SS stands for simply supported, FE for fixed ended, and for most bridges { is
somewhere in between those two. A comparison can be made with BD (81/02, 2002),
where a restraint factor n = 0 means the bridge can be considered simply supported (SS).
For restraint factor n = 1 the bridge can be considered fixed ended (FE). So SS/FE with
¢ = 550 corresponds with the factor of about n = 0.5.
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Stiffness of the edge beams act in parallel to the end diaphragms as opposed to

additionally. Which accumulate to an overall lesser restraint than each component given
by:

1

Ky = 1 (18)

1
& +x;)

Figure 29 Stiffness parameters of bridge

fixed ended

simply supported
1} 200 400 600 BOD 1000 1200 1400
stiffness Kr [kN,/mm]

Figure 30 stiffness vs restraint factor
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An in-plane stiffness K, of 855 kN/mm is equivalent to 70% of the rigid restraint
stiffness described by ( (Rankin & Long, 1997) and (Taylor, Rankin, & D.J., 2001)). This
becomes important when calculating the stiffness parameters of slabs. A slab’s lateral
restraint can be determined:

N
For K, = 855 p— 70% of rigid restraint, meaning n = 0.7

This gives:

K_855
70

kN
* 100 = 1221 p— 100% rigid restraint,withn = 1.0 ((Figure 30))

This means that for a stiffness of at least K, 1221 kN/mm means the slab can be
considered rigidly restraint, equivalent to restraint factor n = 1.0 (Figure 30).
Flexural Capacity

This capacity is determined using the standard flexural theory but with a modified
stress block which accounts for high stress concrete, between 35 and 115 MPa ( (Taylor,
Rankin, & D.J., 2001)).

Flexural parameters
Depth of stress block

p=1-0.003xf,<09 (19)

Depth of neutral axis

_ fy *As
X = (20)
0.67 * fcd * ﬁ * beff
Lever arm
z=d—-05%f*x (21)
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Figure 31 proposed stress block Rankin method for normal reinforced concrete (Taylor, Rankin, & Cleland, 2002)

Flexural moment capacity
My=f,*xAs*z (22)
Load capacity attributed to flexure

Pb=kb*Mb (23)

Arching section

The arching section can be described as the depth available for arching and depends
upon the depth of the compression zone due to flexure. Depth available for arching:

2xdy=h—-2xxx*f (24)

d, from the previous iteration is used. The contact area due to arching is then given
by:

A=ax*bysr*dy

a = 1 for the first iteration (25)

Rankin uses a three-hinged analogy (Figure 32) and takes into account the less than
rigid restraint an “equivalent” rigidly restrained arch length Lg is used:
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(26)

b) equivalent rigidly restrained arch
Figure 32 analogy of three-hinged arch (Rankin G. | 1982)

Arching parameters

The theory uses an idealized elasto-plastic concrete with concrete ultimate and plastic

strains, given as:

£, = 0.0043 — [(foq — 60) * 2.5 * 1075] < 0.0043
ge=2xgx(1-p) (27)
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Figure 33 elastic plastic strain relationship (Taylor, Rankin, & Cleland, 2002)

Deformation

The similarity between material properties of masonry and concrete provided a
justifiable base for Rankin’s extension of McDowell’s theory to restrained reinforced
concrete slab strips. He described the lateral thrust and arching moments in terms of two
non-dimensional parameters, R, a measure of the elastic deformation and, u, a non-
dimensional measure of the deflection of the slab strip ( (Taylor & Mulin, 2005)).

g * Ly ?
R=—— [-

g U (28)
0<R<026 u=-015+0.36+v0.18 + 5.6 xR (29)
R > 0.26; u = 0.31 (constant) (30)

Contact Depth

1 4 31
a = 2 ( )

a * d; is used for refined arching section above until value remains constant (iterative
process).
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Arching Capacity

0<R<026; M, =43—16.1%+/33%10~*+0.1243 *R) [—]

(32)
R> 026 M _ 0.3615 -]
TR (33)
2 Le
Mgy = 0.168 * besp * f¢ * df * M, = I [kNm/m] (34)
T
Maximum arching for L, = L,
Then converting the moment to a load:
Py = Mgy * kg (35)

ko and kj, in Equation (35) and Equation (23) differ for different slab restraints, for
example when both sides are restrained (Pucher, 1964) gives:

Mar
0.23

P, =

Flexural punching capacity

The ultimate capacity is the sum of the flexural and arching capacity:

pr:Pb+Pa (36)

However it is possible that punching shear is governing, with the critical perimeter
located at 0.5d from the face of the loaded area (Figure 25):

0.43
=Vl @+ dmed s (00

17 = 1.0 (circular wheel load) (37)
17 = 1.15 (rectangular wheel load)

By
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Ultimate capacity

It needs to be checked whether: Pyr > B, or Ppr < By,

Meaning whether the flexural shear capacity exceeds the punching shear capacity or
not. Usually punching shear is governing, then: B, = B,,
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Summary

First, the methods differ in the conditions that must be met, in order to use their
respective methods. Table 2 shows an overview of the differences in conditions. These
experimental conditions are very important to consider in order to take compressive
membrane action into account. The further one goes away from the theory and results
from the experiments, the harder it is to know if membrane action is present in the deck.
Which is shown in the second part when the extra total deck capacity is determined with
the numerical model.

Second, each method determines the bearing capacity according to their own
assumptions and conditions. But generally the span/depth ratio, concrete strength, deck
thickness, and lateral restraint are four significant factors to consider when determining
the bearing capacity of a slab. Of the three methods, the CAN method is applicable with
a certain accuracy between concrete strengths 20 and 40 MPa, and the other two methods
can be used for higher strength concretes.

The simplified method is one of the quickest to use. It mainly depends on the
slenderness, span/depth ratio, and the concrete strength. The empirical method does not
calculate a flexural shear capacity, compared to the other two. And the Rankin method
takes into account a lot of different factors, modeling the surrounding bridge as a spring
system to determine the stiffness, and it also mentions an effective width for single slab
strips to calculate with, which the other methods do not.

Finally, all the methods calculate a punching capacity. But the UK and Rankin method
calculate a bending capacity, and the CAN method does not. It is important to keep
these two failure modes in mind when dealing with other cases of slab failure discussed

later.

Table 2 certain differences in stated conditions of the foreign codes

CHBDC (CAN) BD 81/02 (UK) Rankin
method
Span Distance between midpoints Defined as clear N/A
of haunches: Ly < 4.5m span: Ly < 3.7m
Slenderness 1<20 A<15 N/A
Concrete strength 20-40 MPa 10-60 MPa 35-115 MPa

Hidden capacity of thin prestressed concrete deck slabs with T-beams 48



Chapter 4 Compressive Membrane Action In Prestressed

Concrete

Introduction

Previous studies on compressive membrane action was for reinforced concrete only, so
chapter 4 deals with research concerning compressive membrane action, its role and
application in prestressed concrete.

It is assumed that the methods described in Chapter 3 can be applied to prestressed
concrete as well. Prestressed concrete generally meets the aforementioned criteria in order
for compressive membrane action to be present in the slab: low reinforcement ratio
(which is favorable for cracking, and consequently CMA), sufficient lateral restraint
(Chapter 3 discussed research where restraint factor was around n = 0.8), and cross and
edge beams are present.
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Background

The previously discussed methods are for reinforced concrete deck slabs only. And it
is expected that transverse prestressing will not only improve the bearing capacity, but
also compensate for the high slenderness ratio, making thinner deck slabs possible with
no problems of serviceability and structural safety (Amir, 2014). The use of prestressing
is economical and improves durability as slab deformations and cracking are reduced.

A linear correlation exists between the punching load and the transverse prestressing
level (Figure 34), a conclusion which is also drawn in (Amir, 2014). The higher the
transverse prestressing level is, the higher the punching load. The cracking load varied
between 23% to 38% of the failure load and increases with the transverse prestressing
level (TPL). This further showed that transverse prestressing acts as an effective crack
controller.

However subtracting the initial prestress from the overall in-plane force corresponding
to that particular TPL gives a constant value of the compressive membrane force (CMF =
370 N/mm for the example of (Amir, 2014)). This shows that compressive membrane
action is independent of the transverse prestress level.

This implies that for a particular deck slab having a certain lateral stiffness, the
compressive membrane action developed remains constant if all other parameters (e.g.
concrete strength, type of loading) remain the same. A certain level of default
compressive membrane force is developed in the plane of the deck slab due to the built-
in restraint available in the form of edge supports (girders), diaphragms and surrounding
slab area (Amir, 2014).

100 -
90 3
+
80 - b4
— 70 -
z . .
% 60 9 Projected punching strength for
g 11011_131'35‘[1'355@(1 deck # Experimental results
= 50 - i .
40 1 ot Linear regression of
~--7 test results (R=0.94
0 ( )
20 T T T 1 1 T T T 1
0 0.5 1 L5 2 25 3 35 4 4.5

Transverse Prestress Level [MPa]

Figure 34 Relationship between TPL and ultimate punching load He et al. (1992)
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This agrees well with the concept of compressive membrane action given in literature
that the level of the compressive membrane action depends on the level of the external
restraint available. And this is further proven numerically, showing the relationship
between the transverse prestressing and the in-plane force (sum of the transverse
prestressing force and the compressive membrane force) developed in the bridge deck.

It can be concluded that a linear relationship exists between the punching shear
capacity and the in-plane forces arising from the transverse prestressing and compressive
membrane action, where the prestressing is an external action, and compressive
membrane force is an inherent, internal structural property (Amir, 2014).

400 - —o—CMF
—>—In-plane= CMF + TPL
Linear (In-plane= CMF + TPL)

375 1 ~370 N/mm

N
w
4
(=)

L

=325 R2 = 0.9995 828 N/mm
4.5 MPa

615 N/mm

2.5MPa

501 N/mm

2
- 423 Nignm, 125 MPa
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200 T T T T T 1
300 400 500 600 700 800 900
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Figure 35 independence of CMA to transverse prestress level.
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Figure 36 Built-in restraint, and compressive membrane forces (CMF) in the deck slab (Amir, 2014)
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Calculation Brienenoord bridge

The discussed calculation methods are used on the approach bridge of the
‘Brienenoord’ bridge and its prototype. First, the ‘empirical method’ is considered, then
the ‘simplified method’ and finally the Rankin method. Usually the methods are used for
reinforced concrete only.

It is noted that the conditions that must be met to use the respective codes. The
methods differ slightly, for example the conditions of the slenderness and length span
differ, or the considered span differs.

Empirical method (NZ/CAN)

Checking the prescribed conditions, according to (new zealand transport agency, 2014),
to see if the ‘empirical method’ is applicable (Van der Veen & Gijsbers, 2014):

¢ Continuous end cross beams present cast between outer girders. Agreed.

¢ Slenderness (span to depth ratio): 4 = Lh—s = % = 16.1 < 20. Agreed.

The old condition stated 1 < 15 (Dorton & Csagoly, 1977). This condition
would not be met.

¢ Concrete strength not lower than 20 MPa. C40/50 applied. Agreed.

¢ Slab span 3.21 m (Figure 37) < 4.5 m. Agreed.
The condition used to be Ly < 3.7 (Dorton & Csagoly, 1977). This condition is
met as well.

¢ Minimal deck thickness h = 150 mm. 200 mm is present. Agreed.

¢ There needs to be a minimum distance of 0.8 m at the edge. A guiding rail at 1.41

m from the edge is present, so the condition is met.

A local check is sufficient and all the conditions are met, so the method can be used.
The rest of the calculation, as described in Chapter 3, is found in Appendix A.
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Figure 37 considered span Lg real live bridge Brienenoord for the CAN method (Van der Veen & Gijsbers, 2014)

Figure 38 span defined as the clear span UK and Rankin method

Simplified method (UK)

Conditions to be met (Van der Veen & Gijsbers, 2014):

¢ Slab clear span 3.4 m (Figure 38) < 3.7m. Agreed.
¢ A small overhang of concrete of 1.0 m is present. Agreed.

¢ Slenderness: % = 17 > 15. Not agreed.

Compressive membrane action has been experimentally proven to be present for

up to slenderness 20 though, shown in (Dorton & Csagoly, 1977).

¢ Continuous end cross beams present. Agreed.

L 4

Edge beams integrally cast with deck. Agreed.

With exception of one, all the conditions are met again, which means the method can
be used. And the rest of the calculation, as described in Chapter 3, is found in Appendix
A.
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Rankin Method

For this method no specific conditions need to be met in order to use it or to justify a
certain restraint (simply supported, or fixed ended). The stiffness of the slab and
surrounding concrete, for example end beams, is calculated and represent the
aforementioned restraint, as discussed in Chapter 3. Punching shear capacity was
governing in this case, probably due to the high slenderness. The rest of the calculation
is found in Appendix A.

The results of all the calculations are gathered and presented in Table 3. And the
bending capacities (with full arching action through membrane action) are added in the
last column for future reference. It is noted that for the Rankin method the bending
capacity is almost four times larger than the punching capacity. And the UK method
shows bending is governing, giving a lower capacity than punching.

Summary

Table 3 calculated results fail load with methods of foreign codes

Method Punching Capacity [kN] Bending Capacity [kN]
Empirical (NZ/CAN) 369 N/A
Simplified (UK) 762 675
Rankin 501 1775
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Calculation Brienenoord Prototype

Empirical method (NZ/CAN)
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Figure 39 overview of test setup and geometrical data of girders and slab (Stevin Report No. 25.5.13-06, 2013)

In order to use the method certain conditions must be met (new zealand transport
agency, 2014):

¢ End cross beam present. Agreed.
¢ End cross beams are continuously cast across the girders. Agreed

¢ The slenderness (span/depth ratio) must be smaller than 20:

Ly Lere—2%dyep — 2% 0.5 % dypye 1800 — (2% 75 — 2 * 240)

h h 100

=11.7<20
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Figure 40 defining span Lg between the haunches

¢ Compressive concrete strength not lower than 20 MPa. f = 38 N/mm?. Check.

¢ Deck thickness not smaller than 150 mm. Not agreed.
It is noted that the prototype deck thickness of 100 mm is smaller than the norm.
It is assumed that the thin concrete slab has sufficient strength due to the
transverse prestressing and the calculation will be done using the same method as
before.

¢ Again a local check is done where dead load and other sustaining loads are
neglected. It is difficult to assess combined effects of both local and global loads.
Thereforee the two effects are mostly treated independently. In design and
assessment of a beam-and-slab type bridge the local effects dominate (Taylor,
Rankin, & Cleland, 2002).

The rest of the calculation is found in Appendix A.
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Simplified Method (UK)

Figure 41 clear span defined as Lg

Concerning conditions:

¢ Slab span (Figure 41) 1.65 m < 3.7m. Agreed.
¢ A small overhang of concrete of 1.0 m is present. Agreed.

¢ Slenderness: %500 = 16.5 > 15. Not Agreed.

CMA has been proven to be present for up to slenderness 20 though.
¢ Continuous end cross beams present. Agreed.

¢ Edge beams integrally cast with deck. Agreed.

The rest of the calculation is found in Appendix A.

Rankin Method

The same procedure is followed again as described in Chapter 3, and the full
calculation is found in Appendix A, assuming a fixed ended (FE) slab.
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Conclusions of CMA in prestressed concrete

Table 6 shows tests done at midspan of a concrete slab, containing details about the
total punching load capacity (Amir, 2014). Comparing the calculated punching load with
the punching test results, with an average capacity of 333 kN--derived by averaging the
four brittle punching with a transverse prestress level (TPL) of 2.5 MPa, indicated with
red in Table 6--shows that the calculated values underestimate the actual punching load
(Table 4).

The lowest value of Table 6 gives 257 kN, with a maximum capacity of 359 kN and
an average capacity of 306 kN. Ultimately concluding that the discussed methods provide
a safe but underestimated value for the failure load regarding punching shear capacity.
Table 6 makes a distinction between the two possible failure modes brittle punching
(indicated with red), and flexural punching/bending (indicated with blue).

The difference between the test and calculated capacity for the empirical method could
be due to the fact that the method is not intended to be used for thin deck slabs below
150 mm, and 100 mm was applied. The simplified method, probably the quickest method
to use, shows the best comparison with the test result. Rankin shows a severe

underestimation for the punching capacity, as was shown for the real size bridge too.

Table 4 comparing calculated punching capacity with tests results

Method Calculated Punching Average test Punching Ratio
Capacity P, [kN] Capacity P [kN] for P./P, [-]
TPL=2.5 MPa
Empirical(NZ)/(CAN) 200 333 1.6
Simplified (UK) 268 333 1.2
Rankin (F/E) 140 333 2.3

Table 5 comparing calculated bending capacity with test results

Method Calculated Bending  Average Test Bending Ratio P,/
Capacity P, [kN] Capacity Py [kN] for P, [-]
TPL=1.25 MPa
Empirical(NZ)/(CAN) N/A N/A N/A
Simplified (UK) 328 341 1.04
Rankin (F/E) 320 341 1.07
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The average failure load, 341 kN, for flexural punching (FP)--averaging the two
flexural punching capacities for a TPL of 1.25 MPa, indicated with blue in Table 6--is
used to compare the calculated bending capacity with (Table 5). The empirical method
does not calculate the bending capacity. Both the UK and the Rankin method
underestimate the actual capacity, where the bending capacity of the test is 1.04 times
the calculated UK capacity. Here, too, the UK method shows a good comparison for the
bending capacity with the test, and with a quick calculation, compared to the slower,
more detailed Rankin method. One might expect the more nuanced method of Rankin
to be more similar to the test results, seeing how it takes into account more parameters,
but ultimately the most important factors, used in the UK method, are the concrete
strength, the considered span, and the deck thickness.

Moreover, it is noted that the considered methods only take into account reinforced
concrete slabs. The results derived from these methods were then compared with the
tested prestressed concrete slabs. The results from this comparison could imply that the
slabs are always an underestimation of the slab’s strength, which is not always the case,
since the prestressing was not taken into account. But if prestressing is taken into
account, it can lead to higher calculated slab strengths, possibly higher than the ones
from the test results.

Overall for punching, and bending, capacity, all three methods prove to be safe, and
underestimate the slab’s true capacity. With one important note, that the test capacities
decrease as the TPL decreases too, so for example with a lower TPL of 1.25 MPa, lower
slab capacities are found.

Table 6 Fail load and deflections at midspan of deck slab, indicated in red and blue are the capacities used for
Table 4 and Table 5 respectively

# | Test |Designation | TPL | Pegir | Pegorr (0.1 mm) | 57
[EN] [mm]
1. |BB1 |C-PIM-ST 150 58
2. |BB2 | A-PIM-SK 150 492
i. |BB7 | C-PIM-ST 125 377
4. |BB1% | B-PIM-SK 125 415
5. | BBE | C-PIM-5T 100 5.25
6. | BB® | A-PIM-SK 100 5.00 )
7. | BB13 | C-P1M-5T 73 13 88) 3119 EF
2. | BB15 | A-PIM-SK 125 13968 3597 [ FP
o | BB21 | B-PIM-SK 100 946 | 2438 | FP
10. | BE22 | B-PIM-SK 73 009 | 2575 | EP
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Part 2 Methods on determining CMA and the total
load of the bridge system
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Chapter 5 Method 1: Disconnected Bridge System

Introduction

This chapter discusses the first method, which disconnects the bridge in more
understandable components to simplify the main problem. The first method is an
analytical method.

Moreover, this chapter deals with the failure mechanism and to what extent
compressive membrane action plays a role in that. Furthermore, this chapter explains
the important components of the bridge and the loading phases. Finally, an upper and
lower bound limit of the bridge’s capacity is determined.
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Main problem

The main problem investigates the failure mechanism of a directly loaded T-beam of
a prestressed concrete bridge (Figure 42). This is contrary to past experiments where the
slab between beams was loaded, usually failing in punching (Chapter 1, Approach of
research on CMA). Eventually, the loaded main beam reaches its governing shear load
and fails. Then the slab redistributes the beam load and possibly the additional load to
the neighbor beams and supports. The redistribution of this load is the mechanism that
is discussed. The governing failure mode of the slab in between the flanges of the neighbor
beams (Figure 43) is assumed to be bending, instead of punching. This means one can

calculate the slab bending capacity with arching, as done with the methods from part 1
(Chapter 3 and 4).

Figure 42 load directly on main girder

Load

|
oV Slab

I .Ifh

Beam A% E

Beam

Figure 43 loading the main beam, showing membrane action and lateral restraint
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Disconnecting into key components

In order to simplify the failure mechanism, the first method disconnects the bridge in
two components, with each their respective capacities, to understand their role in the
failure of the whole bridge system. Considered are:

1. Main beam (Figure 44, red) => Shear capacity (Appendix A)
2. Slab (Figure 44, blue) => Bending capacity (Chapter 3)

It is noted that the span length of the slab increases, because the loaded beam failed.
Only the top flange is assumed to behave as a part of the slab (Figure 44 and Figure 45).

F

~

Figure 44 three disconnected components

F i |
T 1

beam slab

Figure 45 two distinct situations considered: slab and main beam
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Basically, the method disconnects the first loading situation of the main problem into
two other distinct situations, where slab and beam are taken into account and for which
their respective capacities can be calculated (Figure 45).

The slab situation--without the main beam present--indicated on the right in Figure
45, has a bending capacity with arching which can be determined as shown in part 1,
with one of the calculative methods (Chapter 3 and 4).

But first the main beam is considered more in depth, to understand its assumed load-
deflection behavior and to determine its shear capacity.

And after that the two new distinct situations will be discussed more in depth, since
they occur during the loading phases of the bridge system.
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Beam behavior

Test result single beam load-displacement graph

In order to understand the beam behavior a single prototype beam was tested. And
Figure 46 shows its load displacement graph. It shows a ductile behavior, which is desired
when loading a similar beam, one that is integrated into a bridge system, as is the case
for the main problem.

The single beam shows a peak load of around 3000 kN, with a displacement of 37 mm,
and an ultimate displacement of 45 mm.

Point A till B shows linear elastic behavior and the corresponding girder load is reached
around 1500 kN. At point B the linear cracking moment is reached, and from then on
the beam shows non-linearity.

From point B till C, the beam and slab crack, part of the load is taken up by the steel,
and elastic-plastic behavior sets in. Finally at point C, the peak load is reached. The
same peak load is desired to be reached when loading a beam integrated in a bridge.

However, it is assumed that, due to load distribution through the slab to the neighbor
beams, the main beam will not reach its maximum girder load, which is discussed later.

Single girder e

3000

2500} - - - . - . PR O P :

2000 ; . Ry

T

Load [kN]
g

,,,,,,,,,,,,,,,,

0 1 | [ 1 B I i 1 1
0 5 10 15 20 25 30 35 40 45

Displacement [mm]

Figure 46 load displacement graph of a single T-beam
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Overall, the beam shows non-brittle behavior and large deflections take place. The
steel stirrups and reinforcement have the opportunity to yield and warn for failure,
showing plastic behavior. Ultimately, the large girder deflections are favorable and
necessary for membrane action to activate when loading a similar beam integrated in a
bridge system. This has to do with the critical deflection condition mentioned earlier,
which will be discussed later. It is noted that the tested single girder is heavily reinforced
with shear stirrups, more than old bridges, causing it to behave more ductile.

And it is noted that usually one does not have test results of the single beam behavior,

before actually testing a bridge system. So, one does not know how the nonlinear branch
of the load-displacement curve looks like.

Girder shear capacity

But one can calculate the linear beam capacity. The calculation is given in Appendix
A. The beam is calculated to have either its tensile splitting shear capacity or flexural
shear, depending on the load location and amount of shear reinforcement.

For the ‘Brienenoord’ prototype beam, the linear capacity gives a girder load Fyirger =
1550 kN. This is a safe underestimate of the actual total beam load (Figure 47). It is in
the same order as the linear load shown in the load-displacement graph with a certain
margin of error. It is reached around a deflection of 7 mm.

Single girder

2007 —Actual load
3000 - ' :

Load [kN]
0
(=

1000 =
F girder — Analytical load

500

| | | L 1 e ——
"B 10 15 20 25 ) 35 40 45
Displacement [mm)]

Figure 47 linear girder capacity, an safe underestimate
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Failure scenarios 1 and 2: lower and upper bound limit

Scenario 1: the lower bound limit

In the linear loading phase, as the load on the bridge system increases, it is assumed
that the linear capacity of the main beam is reached at the girder load Fgirqer. At the
girder load first cracking occurs (shown for beam 1 in Figure 49). The instant of cracking
is important and is discussed in depth later. The main beam reaches its shear capacity
(Appendix A).

Moreover, it is noted that the linear elastic distribution is not taken into account for
now in order to simplify the problem. To determine the distribution of the load a
numerical model is needed, which is discussed later with method 2 (Chapter 6 and 7).
For now it is assumed that the main beam takes 100% of the effect of the external load

(Figure 48).
F

/

1
20% 100% 20%

Figure 48 linear elastic distribution is not taken into account yet (one is referred to Chapter 6)

ngrder

Figure 49 Top: main beam loaded till shear capacity. Bottom: sideview of beam reaching tensile splitting shear
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For the bridge system, two failure scenarios are assumed. Now the first failure scenario
is introduced, it occurs in the linear loading phase.

After the linear capacity at the girder load Fgirger is reached, it is assumed that the
slab and beam do not work together. Therefore, the beam capacity and the slab bending
capacity are not allowed to be summed up together. Consequently, the girder load is the
lower bound limit of the total bridge load (Figure 50).

Furthermore, the it is assumed that the main beam does not have more capacity left
after reaching its linear capacity. The beam fails brittle (Figure 50 and Figure 51). If the
main beam fails brittle, the bridge system fails as well. And it is assumed that the slab
is able to carry and redistribute the load to the neighbor beams. It is the question whether
the slab bending capacity is sufficient to hold the beam load (this is discussed later in
the chapter).

It is noted that the total bridge capacity only has the capacity of the two neighbor
beams. This is because the main beam falls out. Each neighbor beam is assumed to have

the same capacity as the main beam (Figure 51).
3000
2500
2000

15330
1500 Lower bound limit bridge system

load[ki]

1000

500

displacement [mm]

—a—linear loading phase beam 1

Figure 50 first failure scenario: lower bound limit of the bearing capacity of the bridge system
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Figure 51 the beam load is distributed through the slab to the neighbor beams

Usually test results are not available before actually testing a bridge. Therefore, by
assuming a lower bound, safety regarding the beam capacity is created. Because actually
the beam has a certain plasticity, which can be a bilinear-like behavior or another
nonlinear behavior. And the load distribution is not taken into account yet which would
reduce the effect of the external load on the main beam. All of this means the beam has
potential capacity left.

However, now considering the second failure scenario, the bridge is assumed to have a
hidden capacity of the slab through membrane action. Where the bridge has a hidden
capacity and load redistribution is possible. And this capacity is the slab bending
capacity with arching, which can be calculated. Which will now be considered more in
depth.

For this research, linear elastic behavior with brittle failure is assumed for the beam
(Scenario 1: lower bound limit). And bilinear behavior is assumed too. By assuming
these two behaviors, it was shown that a lower bound of the beam capacity is assumed,
compared to the other possible beam behaviors (Chapter 1, Approach of research on
CMA). This is why the lower bound limit of the bridge system can be considered a
lower bound. Since Fyjrqer might be higher in practice.
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Comparison slab bending capacity and girder load

If the main beam fails, the slab instantly needs to carry the load that was originally
on the loaded beam. It is questioned whether the slab has enough capacity. For the
parameters of the Brienenoord prototype, the slab bending capacity with CMA is
determined (with Rankin in Appendix A): 178 kN. This is the bending capacity for the
determined effective width (Appendix A).

Assuming that the membrane action activates after the linear girder load of 1550 kN
is reached, it is concluded that the slab bending capacity is not sufficient and cannot
redistribute the load.

This is a logical conclusion. Since it was determined earlier that is unlikely that
membrane action is activated or has a significant strength contribution, because of the
high slenderness. Even when the slenderness is reduced to 15 (Appendix C), the slab
capacity is not sufficient.

-

Membrane action

\Y

Fslab = ngrder

Figure 52 Slab bending capacity needs to be higher than the girder load
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Scenario 2: the upper bound limit

The second failure scenario of the bridge system is introduced.

In this scenario it is assumed that after the linear capacity of the main beam is reached
and first cracking occurs, membrane action in the slab is activated. The slab is able to
carry and redistributes the additional load to the neighbor beams.

This is the elasto-plastic loading phase of the bridge system (Figure 53), where both
the beam and slab are assumed to behave plastically, bilinear-like, till failure. The beam
behaves plastically meaning it is assumed to carry the original load that was on it.

Basically, the situation goes from a beam situation to a slab situation, where the beam
capacity stays constant (this is an underestimation of its actual capacity as discussed
earlier). The main beam can be shown as a weak spring that keeps deflecting till failure.
This is possible because of the assumed plastic behavior.

The new slab situation has a span length that has approximately doubled (Figure 53)
where the top flange of the loaded beam behaves as a part of the slab. The slab has a
bending capacity with arching that can be calculated (e.g. Rankin from Chapter 3).

irder Elah

_ Membrane action
cracking |

=>

g

Figure 53 elasto-plastic loading phase: redistribution of additional load due to membrane action
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The slab is assumed to reach its maximum arching capacity at the instant at which
first cracking occurs (Figure 54). After that the slab is assumed to deform plastically till
the total bridge load and failure is reached.

It is noted that membrane action can only be activated if the relative beam
displacement--which is the displacement difference between the main beam and neighbor
beams--is large enough (this is discussed in depth later). For now it is assumed in the
first method that this is the case after the linear capacity is reached and first cracking
occurs. At this instant, membrane action is activated and slab and beam are assumed to
work together. This means that their respective capacities can be added together: Fiyq =
ngrder + Fslab (Figure 55)'

The upper bound scenario assumes that the total bridge capacity is the capacity of all
three beams together. It is noted that membrane action might activate earlier than the
point of the linear girder load, this is discussed later. And a final note, it is assumed that
only three beams will take the total external load.
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Figure 54 After linear capacity is reached, and cracking occurs, is the instant at which membrane action activates
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Figure 55 Slab and beam capacities are added together

Ftatal = ngrder + Fslah

ng rder

Fslah

Hidden capacity of thin prestressed concrete deck slabs with T-beams

73



Span/depth ratio criteria,

The considered clear span results in a high span/depth ratio. The effect of a high
span/depth ratio is shown at the end during the calculation of the total deck capacity.
The slenderness condition (mentioned in Chapter 3) must be met for membrane action
to activate. To clarify the importance of the slenderness, the Brienenoord prototype is
used as an example (Figure 56). This gives the following:

_ Ly 3450

o= T00 " 34,5 > 20

The slenderness condition is not met for both the British and Canadian method. It
was stated earlier that some conditions may not be met, such as the slenderness. And in
this case membrane action may then be taken in to account if the necessary restraint
factor can be validated. The stiffness parameters can also be validated when using
Rankin’s method of Rankin instead. And it is noted that the method of Rankin does not
state a certain slenderness condition. However, the calculation of the effective width does
take into account the clear span.

Figure 56 determining the span/depth ratio
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A safe choice for the slenderness conform the criteria (of Chapter 3) is the maximum
of 20. This gives the following:

L =h=20=2000mm
h =100

This means that up to a maximum clear span (‘dagmaat’) of 2000 mm for a thickness
of 100 mm membrane action can be activated. When adding the web thickness of the
Brienenoord prototype for example, this gives the following c.t.c. distance:

Lot = Lejear + dwep = 2150 mm
dyep = 150 mm

Furthermore, two examples are given with more calculations (in Appendix C). One
where the point load is placed at halfway the length of the beam (also a case where CMA
contribution is negligible), and one with a safer span/depth ratio of 15. A slenderness of
15 gives the following:

L =h=x15= 1500 mm

h =100

Lot = Lejear + dwep = 1650 mm
dyep = 150 mm

Conclusion activation membrane action

Ultimately, it seems that the slenderness is a very important criteria for membrane
action activation. It is advised that it needs to be lower than 20. A slenderness of 15 is
safer.

However, it is hard to guarantee the restraint of the bridge system. Meeting the stated
criteria is an indication of the restraint. Therefore, it is safer not to calculate with
membrane action when one of the criteria is not met. This will be discussed later.

With the discussed slenderness larger than 20, it is assumed that it is unlikely that
membrane action activates or that its contribution is not very high for the prototype.
The following calculation is done to verify this.
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Slab bending capacity

The following combines past and new research to determine the slab bending capacity
with arching. Most of it is explained without actual calculations with numbers. This is
done in order for others to use it for similar bridge situations. Some calculations are made
to enforce some points. For more details and calculations one is referred to Appendix A.

It was clear that an important part is the elasto-plastic loading phase. Here, membrane
action activates and helps the main beam carry the load. It is important to understand
to which extent membrane action plays a role. And it is important to give a quantity to
the slab bending capacity with membrane action.

A simplified approach is made to understand which parts of the slab provide which
part of the total deck capacity due to membrane action. Simply said, some parts of the
slab provide strength and some parts do not play a role. To study the slab the following
is determined:

1. Activated slab area => determined with critical deflections
2. Concrete slab strip bending capacity => determined with Rankin method
3. Total capacity of activated area => determined with (1) and (2)

First, the activated slab area is determined by using the linear girder deflection field
and the critical deflection condition.

Then, the slab area is assumed to be made up of laterally restraint concrete strips. The
strips are used to determine the total deck capacity. The capacity of a single strip is
determined with the Rankin method. So, the total activated slab area has a capacity of
100% and each concrete strip is part of the total capacity.
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Activated slab area

First, it is determined which part of the total slab area is activated. Two situations
are considered: a lower and upper bound situation.

Lower bound situation

This situation activates an effective width of the slab. (Taylor, Rankin, & Cleland,
2002) devised a method to estimate the effective width of a laterally restraint slab strip
(Figure 57). For the actual calculation of the effective width see Appendix A. This
method takes into account the loading area over which the load is spread, activating a
certain width for membrane action. So, the lower bound is the slab bending capacity that
can be calculated for this width. It takes into account the considered clear span.
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Figure 57 effective width (Taylor, Rankin, & Cleland, 2002)
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Lower bound slab bending capacity

When loading the beam, a linear elastic deflection field is assumed to be present over
the length of the beam. A plastic hinge forms at the loading point. The rest of the beam
is modeled as rigid bodies (Figure 58). Basically, both slab and beam are assumed to
behave plastically. This means that they will display plastic deformations. This is
favorable for activation of membrane action.

After the main beam shows first cracking, the slab is assumed to be activated and
takes over the additional load. Membrane action might activate earlier or later than the
point of the linear girder load, this is discussed more with the numerical method.

|
% rigid body IR

)

linear deflection field i/

plastic hinge

Figure 58 displacement model
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The instant at which membrane action is activated is for the deflection 8. (Figure
59). Here the relative deflection, the deflection difference between the loaded beam and
the neighboring beams, is large enough. The deflection .. is important for the
activation of membrane action.

At the deflection 6.4, an effective width is activated with the lower bound slab
bending capacity (Figure 59). At this instant, the critical condition for membrane action
to activate is reached.

In the second method, a numerical model is used instead to determine the critical
deflection and the instant at which membrane action activates. An example calculation
of the lower bound slab bending capacity of a laterally restraint concrete strip is given
in Appendix A. Figure 60 shows the linear beam capacity with the lower bound slab

bending capacity, adding membrane action.
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Figure 59 instant at which membrane action activates according to first method
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Figure 60 lower bound slab bending capacity added to beam capacity (not on scale)
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Upper bound slab bending capacity

Returning to the slab capacity, if it is assumed that there is still more capacity possible:
the upper bound of the slab bending capacity. In this case it is assumed that after the
first lower bound slab bending capacity is reached, the slab capacity increases as the slab
keeps on deflecting up till failure for an ultimate deflection &y, (Figure 61).

This is more realistic instead of keeping the slab capacity constant as shown in the
lower bound slab situation. The maximum deflection can be derived empirically or
numerically.

For the calculation in Appendix A, &yt is derived from the single beam test results
and is the deflection of the beam at peak load. With the maximum deflection, the

activated beam span is determined (Figure 62).
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Figure 61 upper bound slab bending capacity (not on scale)
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Figure 62 upper bound: activated beam span (not on scale)
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Figure 63 lower and upper bound of activated beam span

The slab bending capacity is determined for a certain span. This means that when a
part of the beam is activated, in fact a part of the total slab area is activated. Figure
62 and Figure 63 display this activated slab area.

Summarizing, the capacity of the slab strip with the effective width (Figure 59) is
considered a lower bound value and the whole activated span is considered to result in
an upper bound value (Figure 63). Reality falls somewhere in between.
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Total slab capacity of activated slab area

Now the total slab capacity is determined. Earlier parts discussed what area of the
slab is activated for compressive membrane action, and how to determine the capacity
of a single laterally restrained concrete slab strip. Now the full capacity of the total
activated slab area is determined by combining these two informations.

The capacity of a single laterally restrained concrete strip with an effective width b,y
was determined. And if one were to visualize shifting the load over the activated slab
area along the span of the girder and constantly loading a ‘new’ b,rs zone, the total
activated slab area can be divided in smaller strips with known widths and capacities
(Figure 64). So, the slab is assumed to be made of parts, some of which not as wide as
befss, providing a lower capacity, and some of which provide the full capacity of a single

slab strip. The total capacity given by the total activated slab area is given by:

Ftot,a = Z Fx,a (38)

The ratios of Bess in Figure 64 are an example of the slab calculation (Appendix A).

8crit

8ultm

Figure 64 total activated slab area divided by strips of effective widths (not on scale)
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Total slab capacity

Now the total slab capacity of the total slab area is determined. The calculation is
shown in Appendix A.

activated slab span [m]

nl=l= effective width slab strip [m]
total slab capacity [kN] = n * bending capacity slab strip

Fslab,upper =nx* Fslab,lower

The linear girder load is added to give the total load, since it is assumed that slab and
beam work together:

Ftotal = ngrder + l:‘slab,upper
The same calculations are done again, for Rankin (SS/FE), (FE) and the UK method.

For the last method the same effective width is assumed to be present. The CAN method
does not calculate a bending capacity. Results are summarized (Table 24, Appendix A).
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Conclusions slab bending capacity

A fixed ended slab gives a higher slab bending capacity than a simply supported one
(Appendix A). The lateral restraint influences the slab bending capacity.

Moreover, the slab capacity depends on the total activated slab area, the activated
beam span and the slab strip bending capacity.

Furthermore, the slab bending capacity is determined with the Rankin method for a
certain effective width. The effective width plays an important part in determining the
capacity. When the considered clear span becomes longer, the effective width becomes
longer (Appendix A).

Finally, the calculation in Appendix A demonstrated that the contribution of the slab
bending capacity is not very high for the Brienenoord prototype. For the experiment
described in Appendix C, this was also the case. In that experiment, the slenderness was
also higher than 20, which led to a slab bending capacity that was not very high.

Furthermore, a parameter study was done for a shorter span. The following was
assumed: a slenderness of 15, a c.t.c distance of 1650 mm and a deck thickness of 100
mm (Appendix C). And there it is demonstrated as well that the slab contribution due
to bending is not that high.
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Activation membrane action in the slab

Compressive membrane action can only develop if enough lateral restraint is present
in the system. Also, it can only occur in a slab after cracking occurs and gives net in-
plane forces at the slab boundaries. The mechanism cannot occur in slabs with the same
linear elastic behavior strength in tension and compression. Cracking in the slab is
essential in order for compressive membrane action to develop in the slab. Membrane
action develops at the critical deflection. Therefore, in order to identify whether the
mechanism develops in the slab, it needs to be verified if the critical deflection is reached.

Arching

Applied load

cracking  Rending

'

O crit Midspan deflection
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Figure 65 Critical deflection reached at first cracking of the slab
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Figure 66 cracking in the slab and CMA develops
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This means that the condition for which compressive membrane action develops, is
that the main beam needs to displace more than the neighbor beams and slab at midspan.
In other words, the relative deflection of the main beam needs to be larger than the slab
deflection in order to develop membrane action (Figure 67). Basically, the relative girder
deflection is the deflection difference between the main beam and the neighbor beams.

6rel,girder = 5slab (39)

So only if the relative deflection of the main beam is large enough, exceeding past the
critical slab deflection (where cracking occurs), then and only then plastic behavior is
initiated, causing activation of membrane action and providing the additional slab
capacity. This condition must be met in order for slab and beam to work together and
add their respective capacities.

In the method discussed in this chapter, it was assumed that membrane action was
activated after cracking when the linear beam capacity was reached. But it is possible
that membrane action could be activated earlier in the linear loading phase, this feature
is discussed in later chapters.

|

v I U
VJ Orel girder

Figure 67 critical deflection condition: relative girder deflection needs to be larger than slab deflection at midspan
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Summary Chapter 5

Summary of loading phases

Summarizing, from the linear till the final loading phase, the load is distributed from
the initial load point and eventually to the neighbor beam supports and foundation, and
during this load period membrane action is activated in the slab, helping the main beam
to redistribute the load to the neighbor beams. It is noted that for a linear system the
neighbor beams are assumed to have the same capacity as the main beam. This is
discussed later more in depth.

All three load phases are shown in Figure 68.

T
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cracking |
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Figure 68 summary of all three loading phases
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Summary of failure scenarios

Two possible failure scenarios are introduced that can occur when loading the bridge
system of the main problem.

Scenario 1 Lower bound limit

Scenario 1 assumes a lower bound limit of the total bridge load. This is the girder load
Fgirger that is reached for the linear capacity of the main beam. The lower bound limit
is considered a safe underestimate of the bridge system bearing capacity (Figure 50).

Moreover, slab and beam are assumed not to work together, and their respective
capacities are not summed up. The main beam is assumed to reach its brittle capacity,
and the slab carries the load to the neighbor beams.

Sidenote: the linear elastic load distribution of the slab is not taken into account yet,
which reduces the load on the main beam. To determine this distribution, a numerical
model is needed, which is considered later.

Scenario 2 Upper bound limit

On the other hand, when the critical deflection is reached, main beam and slab work
together. When slab and beam work together, a favorable upper bound limit of the bridge
capacity is reached, their respective capacities can be added together: Fiorq; = Fyirder +
Fgap (Error! Reference source not found.). In reality the failure load of bridge system
will be somewhere in between the two failure scenarios, between the lower and upper
bound limit.
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Overall conclusions and further objectives

The following questions are raised in using the first method, and combined with their
answers they provide the conclusions. Some questions do not have direct answers and
are considered more in depth in following sections.

1. How much slab capacity is available?

This is calculated with one of the slab bending methods of part 1 (e.g. Rankin)

2. When is membrane action activated?

At the instant linear beam capacity is reached and cracking occurs (Figure 53 and
Figure 54). This leads to question 3.

3. Can membrane action be activated earlier in the linear loading phase before the

linear capacity Fyirger is reached (Figure 69)?

To determine this, more details are needed about when membrane action is activated.
And also a numerical model is needed to determine at what load and deflection this
occurs, indicated with the question marks in Figure 69.

load[kM]

0 *5 10 15 20 25 30

L
]
]

dizplacement [mm]

—a—main beam —a—skb

Figure 69 instant at which membrane activates, needs more investigation
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4. How does linear load distribution influence the situation?

For this a numerical model is needed. But it is expected with an assumed load
distribution (unknown for now, Figure 70) that the main beam is loaded less and spreads
the load through the slab to the neighbor beams. And to carry this load a certain slab
capacity is required. Basically, it is questioned whether the slab bending capacity is

sufficient to carry the load.

— load distribution

Load[kM]
[
il
]
A

—a— bridge system

1000 —a— Main beam
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Displacement [mm]

Figure 70 expected behavior of system with load distribution
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5. How does the slab behave (Figure 71)7

a. Does it behave plastically?

For now the slab is assumed to behave bilinearly. More research on laterally restraint
slabs is done later to verify (chapter 8).

b. How long is its plastic branch during which redistribution can take place?

Assumed to begin when maximum slab bending capacity is reached, at first cracking,
up till failure of the bridge system. More research on laterally restraint slabs is done later
to give a number to this plastic plateau (chapter 8).

c. At which deflection does the slab reach its full membrane/arching action?

More research on laterally restraint slabs is done later to give a number to this (chapter
8).
And a numerical model determines the midspan slab deflection for its bending capacity.

d. At which ultimate deflection does the slab fail?

More research on laterally restraint slabs is done later to give a number to this (chapter
8).

load[kM]

(=)
Ln

i

[

A [
) — &

0 5 ? 10 15 20 25 30

u

displacement [mm]
—g—main beam —e—skh

Figure 71 questions regarding the slabs actual behavior
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Important elements from the first method

¢ Lower bound limit: girder shear capacity (tensile splitting or flexural shear)
¢ Total slab capacity
o Critical deflections
o Activated beam span and slab area
o Slab strip bending capacity (effected by slenderness) Fgjap1ower
Upper bound limit: beam plus slab capacity

Slenderness, span/depth ratio

o Considered span

o Slab thickness
Effective width of a single slab strip (dependent on considered span)
Location of the point load

Concrete strength of beam and slab

Summary of the first method

¢ Determine Scenario 1: Fgjrger
¢ Determine activated slab area

o Determine maximum deflection (empirically)

o Determine critical deflection (empirically)

o Determine activated beam span
¢ Determine effective width

o Influenced by span/depth ratio

Determine bending capacity of single slab strip Fgap jower
Determine if slab can hold the beam load: Fgjap = Fgirer

Determine total slab capacity

* & o o

Determine Scenario 2: Fyotal = Fgirder + Fslab,upper

Important points for the second method

¢ Linear elastic distribution with numerical model (Chapter 6 and 7)

¢ Slab deflections at midspan with numerical model (Chapter 6 and 7)
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Chapter 6 Numerical Plate Model

Introduction

To study the linear elastic load distribution of the deck slab, a numerical plate model
of the Brienenoord prototype is made with SCIA Engineering. It is modeled as an
orthotropic plate with inverted T-beams as ribs, using plate-elements of the type
Mindlin/Reissner. Numerical models with crossbeams are also considered.

Moreover, the questions raised in the first method are discussed. It is investigated
whether compressive membrane action is not activated earlier when the main beam is
still in the linear loading phase. And the critical deflections are determined numerically.
At these deflections, membrane action is assumed to activate.
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Material and geometrical parameters

Slab and crossbeams

For the slab and crossbeams of the numerical model, the mean concrete compressive
cylinder strength f,, was taken as 65 MPa, the mean tensile strength f.;,, was taken as
5.41 MPa and the mean modulus of elasticity E., was calculated as 39 GPa.

T-beams

For the beams as ribs integrated in the slab in the numerical model, the concrete
compressive cylinder strength f.,, was taken as 75 MPa, f.mas 6.30 MPa and E,,, as 41
GPa, (Amir, 2014).

Degrees of freedom

The freedom of movements of the supports of the prototype were used in the numerical
model. On the south side, all beams are restricted in the x-direction. Except for support
two, which is restricted both ways. On the north side all supports are free to move in x-
and y-direction, except for support two, which has movement only in the x-direction. All
supports have rotational movement about the x- and y-axes but not the z-axis, and are
implemented as spring supports (Figure 72). The numerical model models the spring
action of the actual rubber bearings, and a displacement of 1 mm is assumed to take
place under permanent loading of the self-weight. After the geometrical and material
data was put in the numerical model, the resultant force of the self-weight of the
construction was determined and divided over the number of supports. And using the
divided force and an assumed displacement of 1 mm the spring stiffness of a bearing was
determined. The spring stiffness of the supports is given in Appendix B.
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Figure 72 overview of test setup and geometrical data of girders and slab (Stevin Report No. 25.5.13-06, 2013)
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Load distribution

Different models

First, five numerical models where made to study the load distribution. Ranging from
a linear elastic plate, to a model with four T-beams as ribs and two crossbeams, similar
to the lab prototype. It is noted that the loading point stayed at the same location, where
the main beam was expected to fail in shear. Since, if the loading point changes location,
the linear load distribution changes too. More information of the numerical models is
found in Appendix B.

To study the displacements Model 2, a plate with three girders, is used. This simplified
model determines the relative girder displacements relatively easy because of its
symmetrical nature. The neighbor girders are loaded the same and displace the same.
Furthermore, Model 2 is favored above Model 1 due to the implementation of the ribs
beneath the plate, which is more realistic. And Model 3, with crossbeams, causes a high
load spreading, resulting in very low girder displacements, complicating the calculation
of the deck capacity. However, for bridge systems with multiple girders, such as ‘De
Vecht’, the high load distribution indicates that it is possible that more girders outside
of the main three participate in carrying the load, which means that a three-girder
numerical model no longer would be sufficient and then the step must be made to a five-
or seven-girder model. This will be discussed later.

Figure 73 the chosen plate model type with five sub regions of the deck
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Load distribution

To further refine the model the deck was divided in five subregions assigned with their
respective material properties. Basically, the plate parts above the girders were modeled
as the flanges of the girders. Resulting in a more realistic representation of the lab
prototype (Figure 73). The linear distribution was calculated: 14% 72% 14%. The main
beam is loaded with 72 percent. With this, redistribution is possible up to a hundred
percent (Figure 74). The reason why is the long span with high loading of the main beam.
Later it is found that for shorter spans the load distribution is higher and the main beam
is loaded with less than fifty percent, resulting in redistributions less than hundred.

Midspan displacements

Membrane action is only activated if the relative girder displacement is larger than the
slab midspan displacement. To determine the midspan displacements, another numerical
model is made withhout the main beam present (Figure 75). They are determined
numerically in the next section. A clear span of 3450 mm is considered (Figure 74).

Y

450 l
linear elastic 14% 72% 14% =
36% 0% 36%
redistribution 50% 50% =

Figure 74 linear elastic redistribution
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Comparing displacements

Determining slab midspan displacement

First, the slab bending capacity is determined with Rankin. The bending capacities
with arching are between 133 and 178 kN (Table 7).

And then the numerical slab model is used to determine the midspan slab displacement
Figure 75 shows that for a slab bending capacity of 133 kN, a displacement of 7.8 mm is
found numerically. The rest of the displacements are determined in the same way (Table
7). In fact the slab midspan displacements are the critical displacements and the relative

girder displacement needs to exceed these values.

Sitat = Surip="7.8mm ~=J1”

Figure 75 midspan slab displacement determined for the slab bending capacity according to Rankin (SS)

Table 7 overview of results of bending capacities and slab midspan displacements

Method Slab Bending Capacity Slab midspan/critical displacement
l:Islalb,lower [I\N] 8slab = 8crit [IHIH]

Rankin (SS) 133 7.8

Rankin(SS/FE) 172 10.1

Rankin (FE) 178 10.5

Simplified (UK) 75 4.5
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Determining the critical girder load

The critical girder load is defined as the load for which the relative girder displacement
exceeds the slab midspan displacement (Figure 76). At the critical girder load membrane
action is assumed to activate.

The slab midspan displacements were already determined. And the numerical model
is used to determine the critical girder load (Figure 76 on the left, and Figure 77).

Feritical girder load Fbending capacity
| | I 5 e
-,j’( 6re£,gilrder > ™ stab -~
‘-\‘f \\kaﬂ/,/

05 =

Figure 76 numerically determining relative girder displacement

Feritical girder load — 870 kN

Ocrit= 7.8 mm

St'el,girder =

Figure 77 determining the critical girder load, for which membrane action activates
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Figure 77 and Table 8 show that for a slab midspan/critical displacement of 7.8 mm,
the critical girder load is 870 kN. After the critical girder load is reached and membrane
action is activated, the slab is assumed to behave plastically up till failure. It is the
question whether the slab can deflect that much. This is discussed later.

It was also questioned whether membrane action could be activated before the linear
capacity was reached. The critical girder loads are smaller than the earlier determined
linear beam load, 1550 kN (Table 8). Therefore, it is suggested numerically that
membrane action could activate earlier. This is possible as soon as 870 kN is reached
(Table 8). The load distribution causes the main beam to be loaded with 72 percent of
the effect of the external load. This gives the following calculation:

870 % 0.72 = 626 kN
When taking into account the load distribution, membrane action could be activated
at a load of 626 kN, according to the numerical calculations (Figure 78).

Table 8 overview of results of slab midspan displacements and critical girder loads

Method Slab midspan displacement [mm] Critical girder load [kN]
Rankin (SS) 7.8 870
Rankin(SS/FE) 10.1 1117
Rankin (FE) 10.5 1160
Simplified (UK) 4.5 444

i;:: Foivder —load distribution

load [kM]

Pr_'ritic'al
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(5]
Ln
.

displacement [mm]

relative girder skab

relative girder with load distribution

Figure 78 membrane action activated at the instant the relative girder deflects more than the slab
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Summary

Summary of the numerical model

The questions from chapter 5 were partly answered. The load distribution of the bridge
system was determined. And the behavior of the main beam and slab were modelled: the
slabs displacements and relative girder displacements were determined.

The numerical model is used to see what the effect of the load distribution was on the
main beam.

For a span of 3450 mm, 72 percent of the load was determined to be present on the
main beam. This means the spreading is not high. However, it means that for a linear
system, and for a long span, 3450 mm, redistribution till 100% is theoretically possible.

Finally, the main beam displaces more than the neighbor beams. This is favorable for
the activation of membrane action. This is for a long span, later the situation for a short
span is considered. And the numerical model is used to investigate if membrane action
could be activated earlier in the linear loading phase.
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Chapter 7 Method 2: Numerical Model

Introduction

The second method is similar to the first, but uses different assumptions and the
numerical model. In order to determine the total slab capacity provided, the activated
slab area is calculated again, but with the numerical plate model. And after identifying
the activated part, the same method from Chapter 5 is used to determine the total slab
capacity. And finally slab and beam capacity are added together to give the total bridge

capacity.
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Activated slab area

Lower bound limit

First, the earlier determined 8girqermax = 37 mm is used. It is assumed the slab
behaves plastically and has sufficient capacity and ductility to deflect this much. This is
discussed later.

The numerical model is used to check if the maximum girder displacement, 37 mm, is
reached and this occurs at a load of Fpriggemax = 2780 kN (Figure 79).

Fbridge,max = 2870kN

Sgirder = 37 mm

Figure 79 maximum girder displacement of 37 mm
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With 72 percent of the effect of the external load on the main girder, this gives:
ngrder,max = Fbridge,max *0.72 = 2067 kN

The lower bound limit is the girder load Fgirger, 1550 kN.

However, the load distribution is used to determine the equivalent load for the bridge:

Lgirder _ 1550 _ 153 kN (Figure 80).
0.72 0.72

The lower bound limit is given in Figure 81. Redistribution is assumed to be possible
up to a 100%. And the girder is assumed to have a capacity between 1550 and 2067 kN,
this is a safe underestimate (Figure 81).

Fbridge -

Fhridge = 2153 kN
Fgirder = 1550 kN

14% 72% 14% 14% 72% 14%

Figure 80 converting load on single girder, top, to equivalent bridge load, bottom
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Figure 81 lower bound limit of the bridge capacity of the numerical model
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Critical deflection

The next step is to numerically determine the critical deflections. The slab midspan
displacements are in fact the critical deflections: 845 = 8¢pie (Table 9).

First, the slab bending capacity Fg,p is determined. And then numerically the slab
midspan displacement is determined. For a slab bending capacity of 133 kN, the critical
deflection is 7.8 mm. This is the instant at which the relative girder deflections exceed
the critical deflections and membrane action is activated. For a critical deflection of 7.8
mm, the critical girder load is 870 kN (Figure 82).

Feritical girder load — 870 kN

8slab = Ocrit = 7.8 mm Srelgirder = Ocrit = 7.8 mm

Figure 82 determining critical deflection and critical girder load

Table 9 critical displacement for which CMA is activated

Method Slab Bending Capacity Critical deflection Activated beam span
[kN] [mm)] [m]

Rankin (SS) 133 7.8 8.9

Rankin(SS/FE) 172 10.1 8.2

Rankin (FE) 178 10.5 8

Simplified (UK) 75 4.5 10
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Activated beam span

After that, the activated beam span and slab area is determined with the maximum
displacement of 37 mm and the critical deflection of 7.8 mm. Figure 83 shows the
activated beam span, and Figure 84 the activated slab area, as part of the whole deck of

the prototype, to display how much of the total slab area is activated.

And for the rest of the bending capacities, the same process is followed, the results are

given in Table 10.
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Measurements in mm

Figure 83 activated beam span (not on scale)

Measurements In mm 7 . 8

37

Figure 84 effective width and activated length (not on scale)
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Total slab capacity

The span of 8.9 m is activated (Figure 83 and Figure 84). Therefore an effective width
of 3.65 m (shown in Figure 57 of Chapter 5) and a bending capacity of 133 kN per
activated slab strip gives the following total slab capacity:

activated slab span[m]

nl=l= effective width slab strip[m]
total slab capacity [kKN] = n * slab bending capacity strip[kN] (40)
Fstabupper = 1 * Fslap lower

8.9

=365 2.45

n
Folabupper = 2-45 * 133 = 325 kN

The numerically determined maximum load for a maximum displacement of 37 mm is
2870 kN. The linear beam capacity, 2153 kN, after calculating the equivalent bridge load,
can be contributed to the total capacity, since it is assumed that slab and beam work
together.

This leads to the total bridge capacity of 2543 kN when the beam capacity, 2153 kN,

and total slab capacity are summed up:
Ftotal = ngrder + Fslab,upper = 2153 + 325 = 24‘78 kN
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The same calculations were done again for Rankin (SS/FE), (FE), and the UK method,
for which the same effective width is assumed to be present. The results are summarized
in Table 10. And it is shown that none of the results reach the numerically determined
maximum load, 2870 kN.

The lower and upper bound limit of the bridge load is given in Figure 85. With the
load distribution it is checked how much the main beam is loaded for the lower and
upper bound limit:

0.72 * 2153 = 1550 kN and 0.72 * 2543 = 1830 kN
Which means the beam load is estimated to be between 1550 and 1830 kN. This seems
a safe underestimate (Figure 86).

The discussed methods that calculated the slab bending capacity do not take into

account the transverse prestressing of the slab (as mentioned at the end of Chapter 4).

Table 10 results total deck capacity

Method Slab Bending Activated Total slab Total bridge

capacity Fgaplower beam span capacity load

[kN] [m] Fs1ab,upper [kN]

[kN]

Rankin (SS) 133 8.9 325 2478
Rankin(SS/FE) 172 8.2 386 2539
Rankin (FE) 178 8 390 2543
Simplified (UK) 75 10 205 2358
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Figure 85 range of the bridge’s bearing capacity: lower, and upper bound limit using the numerical model
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Figure 86 load on the single girder after load distribution for the lower and upper bound limit values
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Conclusions

First, the load distribution plays a significant role in the calculation of the total slab
capacity. Moreover, for different models with different load distributions the calculations
and corresponding results would differ significantly.

Second, Table 10 shows that the resulting hidden slab capacity is 390 kN at most,
which seems to be insufficient to achieve the maximum possible failure load determined
numerically. And it is also insufficient to carry the girder load, as was shown in Chapter
5.

The slab has a too high span/depth ratio with a considered clear span, 3450 mm, and
thin deck, 100 mm. This long clear span also influences the effective width, causing it to
be long too, which means that the activated beam span is divided by long wide strips,
ultimately causing a low calculated total slab capacity (Equation (40)).

In the second method, the maximum deflection for the maximum load
Frotar, 2543 kN, is 33 mm. This implies that the slab needs to deflect this much as well.

So assuming a slab defection of 10 mm at maximum bending capacity (Table 9) up to
33 mm, the slab needs to deflect for 23 mm more after reaching its maximum arching
capacity, 178 kN, assuming a bilinear type of deflection behavior, where the slab’s
capacity is assumed constant (Figure 87). If this is possible, is researched more in Chapter
8.

And 100% redistribution was possible, but the slab has a limited bending capacity and
limits the total bridge load. And finally, it is implied numerically that membrane action
is activated before the girder load Fgjyrqer is reached (Figure 87).

Overall method 2 seems to give a safe approach.
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Figure 87 possible deflection range of the slab
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Comparison method 1 and 2

Method 1 and 2 are compared. Method 1 is the disconnected system approach, without
load distribution. Method 2 is with the numerical model that determines the load
distribution. Their maximum loads of the bridge system, the upper bound limits, are
compared. And the upper bound slab bending capacities are compared (determined with
Rankin F/E).

It shows that method 1 assumed that membrane action activated earlier at 7mm (Table
11). However, this was without load distribution, and the main beam took more load,
reaching the critical deflection earlier than for method 2.

When the critical deflection is smaller, a longer span is activated with membrane
action. This is also shown in (Table 11).

A longer activated span gives a higher total slab capacity Fgqp upper-

However, the main beam contribution to the total load on the bridge system is higher
for method 2. This is because of the load distribution. In method 1, Fyirger = 1550 kN
was used. But in method 2 the load distribution was taken into account, with this the

load on the bridge gives: Fprigge = % = 2153 kN.

This is an increase of 2153 — 1550 = 603 kN. This gives the higher total bridge load
for method 2. Both methods however are safe underestimates of the reality, because of
the assumptions taken into account.

One final note, the slab capacity does not exceed 500 kN. The reason for this might be
the location of the load or the high slenderness ratio of the slab. This is considered more

in depth in chapter 8.

Table 11 comparison method 1 and 2

1 Disconnected 7 9.2 445 1995

2 Numerical 10 8 390 2543
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Summary

Summary of the second method

¢ Determine the linear load distribution (numerically)
¢ [Establish 8yirgermax (empirically)
¢ Determine Fyirger,max of the model for 8girgermax
o Determine equivalent Fy;q4e with load distribution
¢ Determine bending capacity of single slab strip Fsap jower
¢ Determine the critical girder load
¢ Determine the total activated slab area
o Determine the critical deflection (numerically)
o Determine the activated beam span
o Determine the effective width of a single slab strip
¢ Determine the total slab capacity Fgapupper
¢ Determine lower bound limit of the bridge capacity: beam capacity
¢ Determine upper bound limit of the bridge capacity: beam capacity plus total slab

capacity

Important points for further study

¢ Influence of load location (Appendix C)
¢ Influence of slenderness on the methods (Appendix C)
¢ Deflection behavior of laterally restraint slabs (Chapter 8)
o Redistribution possibility
o Slab deflection at peak load
o Slab ultimate deflection
o Material parameters: e.g. concrete strength, reinforcement, etc.

o Geometrical parameters: e.g. span/depth ratio
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Chapter 8 Research on compressive membrane action in

concrete deck slabs

Introduction

This chapter investigates more research on the behavior of deck slabs. Extra attention
is given to failure mode, failure load, thickness of the slab and the slenderness ratio. The
research is meant to give insight about possible trend behaviors of the concrete deck

slabs, especially laterally restraint ones.
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Background

In the next part the bridge ‘De Vecht’ is discussed. There the total theoretical failure
load will be determined using the methods discussed in previous parts. An important
part of that calculation will be the deck slab. Therefore, to make a good judgment of the
failure load, more insight of the slabs is needed. That is why this chapter deals with more
research on decks slabs.

Attention is given especially to research where the tested slabs are comparable with or
give insight into the possible behavior of the slab of ‘De Vecht’. This concerns laterally
restraint slabs with thicknesses larger than 100 mm and where bending, and not punching
shear, is the main failure mechanism, the expected failure mechanism of the slab of ‘De
Vecht’. All of the research mentioned in this chapter can be found in Appendix D.
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Laterally restraint reinforced concrete slabs

The tested slabs of (Taylor, Rankin, & D.J., 2001) are laterally restraint, thicker than
100 mm, have a slenderness of 9.5 and show bending as the prominent failure mechanism.
The shown test results deal with full scale one-way spanning reinforced concrete slabs.
The following observations are made.

Compressive strength

First, a higher compressive strength does not necessarily mean a higher ultimate
deflection or a higher deflection at peak load (shown in Figure 88 and Figure 89, where
S1 till S5 are the laterally restraint slab strips tested in the study). The ultimate
deflection follows a trend that a higher concrete strength could result in a higher ultimate
deflection (Figure 88). The trend is less pronounced for the deflection at peak load (Figure
89).

It is important to know how far the test slabs deflect. The deflection of the slab of ‘De
Vecht” can be predicted later with the test slab information. The ultimate deflections
range between 30 and 45 mm. And the found deflections at peak load range between 21

and 36 mm.

Laterally restraint reinforced concrete slabs
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Figure 88 concrete cube strength vs ultimate deflection, A = 9.5 (Taylor, Rankin, & D.J., 2001)
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Laterally restraint reinforced concrete slabs
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Figure 89 concrete cube strength vs deflection at peak load, A = 9.5 (Taylor, Rankin, & D.J., 2001)

Table 12 range 8, /h ratio

Deflection 8,/h ratio [-]
Lower bound | Upper bound @ Average
Ultimate 0.2 0.3 0.25

Peak load 0.14 0.24 0.19

The thickness of the five tested slabs is 150 mm, meaning that the &8, /h ratio (Table
12) ranges between: 0.2-0.3, with an average of about 0.25, with &, as the ultimate
deflection. For the deflection at the peak load this gives a ratio between: 0.14-0.24, with
an average of 0.19.

Moreover, slabs with a higher compressive strength behave stiffer in the linear phase
(Figure 196 of Appendix D). Higher compressive strength also means a higher failure
load (Figure 90, and Figure 197 in Appendix D). (Muthu, 2006) and (Taylor & Mulin,
2005) agree with this trend. Generally, a higher concrete strength means a higher failure
load (Table 45 and Table 48 of Appendix D).
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Laterally restraint reinforced concrete slabs
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Figure 90 concrete strength vs failure load displaying lateral restraint effect, A = 9.5 (Taylor, Rankin, & D.J., 2001)

Effect of lateral restraint

In the tests some simply supported slabs were tested for comparison, too. These slabs
have a much lower failure load than the laterally restraint ones. The difference in fail
load between the two types of slabs is almost a factor 4 to 6 (Taylor, Rankin, & D.J.,
2001) and (Taylor & Mulin, 2005). Here it is found again that the effect of laterally
restraining the slabs has a positive influence on increasing the failure load (Figure 90).

This lateral external restraint effect, expressed as the stiffness factor K, calculated by
the Rankin method, influences the failure load. The failure load increases when the
restraint effect does too. (Taylor, Rankin, & D.J., 2001) ran two phases of tests, and the
second had a higher restraint than the first (Table 46 and Figure 197 of Appendix C).
Which indicated an increase in the arching action with increased external lateral restraint
and suggested that any theory for the prediction of the ultimate capacity of laterally
restrained slabs must take into account both the concrete strength and the degree of
external restraint (Taylor, Rankin, & D.J., 2001).

It is noted that slabs with high deflections were fixed ended (Table 47 of Appendix D).
The end restraint was provided by a self-straining stiff steel frame. And to ensure a fully
encased support, provision was made for bolting through the depth of the slab at each
end with a stiffness factor K, = 197 kN /mm (Taylor, Rankin, & D.J., 2001).
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Failure load and failure mode

Failure load

In (Taylor, Rankin, & D.J., 2001) the predicted failure loads were compared to the
actual failure loads. The Rankin method was used to calculate the slab capacity, again
showing a lower bound underestimate of the actual slab capacity (as was seen in Chapter
4). The ratio between the actual and the predicted load was on average 1.16 (Table 46
of Appendix D). This means that the Rankin method is a conservative method with a
safety margin of about 16 percent (this conservative feature was also noticed in Chapter

4).
Failure mode

In (Taylor, Rankin, & D.J.,; 2001) the main failure mode was bending, and ultimately
crushing (Figure 91). The crushing in the compression zone became more pronounced in
the slabs with higher concrete strengths, exhibiting behavior similar to an over-reinforced
slab. The increase in capacity with increasing concrete strength and the evidence of high
compressive forces characterized by concrete crushing between the end plates and the
ends of the slab, in addition to the compression zones below the load point, indicated the
development of membrane action (Taylor, Rankin, & D.J., 2001). And none of the slabs
failed in punching shear. It is stressed again that reinforced concrete slabs were tested.

Figure 91 bending, and ultimately crushing, as failure mode for a laterally restrained reinforced concrete slabs

(Taylor, Rankin, & D.J., 2001)
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The results of all the different researches (Appendix D) are compared in Figure 92
and Figure 93. It is found that the ultimate slab deflections of (Taylor, Rankin, & D.J.,
2001) are higher than the rest of the slab deflections of the other researches. The
Taylor slabs are laterally reinforced concrete slabs, where bending seemed to be the
failure mode. The other tests showed other failure mechanisms, where punching shear
was common (Table 43 of Appendix D).

For the prestressed concrete models punching shear seemed to be the governing failure
mechanism ( (Poston, 1988), (Marshe, 1997), and (Amir, 2014), shown in Figure 92 and
Figure 93).

It is possible that slabs failing in bending provide higher ultimate deflections (Figure
93). The ultimate deflections for punching shear are lower, giving a good lower bound
threshold, whereas the slab deflections for bending can be considered as an upper bound.
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Reinforced Concrete vs. Prestressed Concrete
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Figure 94 comparison of reinforced and prestressed concrete

In Figure 94 reinforced concrete is compared with prestressed concrete. The
reinforced concrete slabs have higher ultimate deflections than was found for the
prestressed concrete models. The reinforced concrete slabs failed in bending, and the
prestressed concrete models failed in punching shear (Figure 93 and Figure 94).
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Of all the researches discussed in this chapter, only (Taylor, Rankin, & Cleland, 2002)
mentions bending as the main failure mechanism for the tested slabs. And in the past
research discussed in Chapter 1 till 4, only (Amir, 2014) mentions bending as an occurring
mechanism in the bridge deck slab. Therefore, a closer look is given to the respective
results of these two researches. They are displayed again in Figure 95.

It is noted that the results of Taylor are valid for reinforced concrete and the results
of Amir are valid for prestressed concrete. The Taylor slabs have a slenderness of 9.5,
and the ones from Amir 16.5 (shown in Chapter 4). Overall, it is found that the lower
the slenderness of the slab is, the higher the ultimate deflections are.

(Amir, 2014) also shows that when the transverse prestress level (TPL) of the slab is
higher, the ultimate slab deflections are lower (Figure 96).
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Deflection plateau

In the load deflection graphs of (Taylor, Rankin, & D.J., 2001), only, a deflection
plateau was present. Meaning that the defection at peak load increased during loading
and stopped at the ultimate deflection, showing a behavior which can be modeled as
bilinear (Figure 97 and Figure 98). These tests were done on reinforced concrete.

The net panel load-deflection curves of (Marshe, 1997) were also bilinear. However,
these tests were done on prestressed concrete.

The described plastic behavior leads to higher ultimate deflections. And if this plateau
is present when loading other comparable slabs, such as from ‘De Vecht’, it provides an
opportunity for redistribution of loads. When dealing with a directly loaded girder
integrated in the deck this redistribution is beneficial for the total bearing capacity of
the whole bridge deck.

Earlier the slab’s ductility was questioned (Chapter 7). Therefore, this part gives more
details regarding the slab’s deflection behavior. For example, slab S5 showed a deflection
of 25 mm at peak load and an ultimate deflection of 40 mm at failure, providing a range
of 15 mm (Figure 98), during which redistribution can take place. Earlier (Chapter 7) it
was stated that the slab needed to be able to displace 16 mm, which seems to be possible
under the right conditions.
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Figure 97 plastic plateau possibly due to top and bottom reinforcment, A = 9.5 (Taylor, Rankin, & D.J., 2001)
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D.J., 2001)

Reinforcement

High yield 12 mm diameter bars with a strength of 500 MPa were used. And top and
bottom steel reinforcement was applied with a ratio of 0.68%. In other slabs different
FRP reinforcement types were used, or reinforcement was only placed in the center (
(Taylor & Mulin, 2005) and (Taylor & Tharmarajah, 2014), shown in Appendix D). The
effect of the reinforcement placing is also noticeable in Appendix D. Slabs S8 and S11
(Table 47, Figure 195, and Figure 196 of Appendix D) show a less ductile behavior than
the rest of the slabs; S8 has only bottom reinforcement, and S11 only in the center. All
the before mentioned aspects influenced the slab’s ductility and need to be considered
carefully when dealing with similar slabs.
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Summary

For the laterally restraint reinforced concrete slabs (Taylor, Rankin, & D.J., 2001),
there is a strong correlation between failure load and concrete compressive strength: the
higher the concrete strength, the higher the failure load (Figure 90). But a higher concrete
strength does not necessarily mean a higher ultimate deflection (Figure 88 and Figure
89). And the failure load of the slabs never exceeded 500 kN, not even one designed with
100 MPa concrete compressive strength, but the considered span/depth ratio stayed
constant.

Moreover, the effect of laterally restraining the slabs increased the bearing capacity
with a factor 4 to 6 compared to simply supported slabs (Figure 196 and Figure 198 of
Appendix D). And the more restraint the slabs were, the higher the failure load (Figure
197 of Appendix D).

Furthermore, the research showed that the Ranking method provides a conservative
underestimate of the actual slab strip capacity with a safety margin of about 16 percent.

An observation was made that reinforced concrete slabs failing in bending showed
higher deflections, ranging from 20 mm at peak load to 40 mm as ultimate deflection.
The prestressed concrete slabs failing in punching shear had lower deflections around 10
mm (Figure 92 and Figure 93). Generally, according to the considered research, slabs
failing in bending give higher deflections than slabs failing in punching. The tested slabs
failing in bending were reinforced concrete slabs.

Finally, the fixed ended laterally restrained reinforced concrete slabs showed plastic
behavior (Figure 97 and Figure 98) during which redistribution of loads can occur.
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Part 3 Calculating CMA In ‘De Vecht’ Bridge
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Chapter 9 Calculations ‘De Vecht’ Bridge

Introduction

A series of tests are performed on ‘De Vecht’ bridge in Muiden. This is done in order
to determine what the total bridge load is and how compressive membrane action in the
slab plays a role in reaching that total load. It is the question whether the slab develops
CMA and whether it is able to carry the load after the main beam fails, redistributing
the load to the neighbor beams. This is the focus point of this chapter.

First, the geometrical and material parameters of ‘De Vecht’ bridge are discussed. The
considered clear span and cross section of the deck is given. Other important factors such
as slenderness, the span/depth ratio, lateral restraint and compressive strength are
mentioned too.

All the before mentioned parameters are modeled with use of a numerical plate model,
similar to the models shown before. The numerical model is used to determine the linear
bearing capacity of the bridge (Appendix G), which is compared in Chapter 10 with the
measured results.

But more importantly, the relative displacement is determined to determine whether
the critical deflection is reached and compressive membrane action is developed.

Moreover, the slab capacity is determined using the considered methods. Punching as
well as bending capacity is calculated where applicable. After that, the girder shear
capacity is determined (Appendix F).

Finally, it is noted that the calculations in this chapter were made before the test
results were available (given in Chapter 10).
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Geometrical and Material parameters

Span/depth ratio

The center-to-center distance between two beams is 1225 mm (Figure 99). For the
considered clear span 2270 mm is taken, after subtracting the thickness of the web, which
is 180 mm (Figure 100).

Li =2%L.c— byep = 2 * 1225 — 180 = 2270 mm

A low slenderness ratio of about 12.6 is present, which is favorable for activating
compressive membrane action, since the fact that the girders are close to each other
increases the lateral restraint effect and positively influences the bearing capacity and
arching action.
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Figure 100 cross section girder "de Vecht"

The deck thickness is taken as 180 mm, which already includes the thickness of the
girder top flange (Figure 100). The rest of the girder properties, such as the second
moment of inertia, which is used for the calculation of the shear capacity, is found in
Appendix E.

Crossbeams and considered field

There are four crossbeams, two located at 150 mm from the ends of the bridge (Figure
101), and two at one-third and two-third--at 8 and 16 m--of the considered length of the
bridge. The end crossbeams are 400 mm wide, and the other two are 500 mm. The total
considered field length of the bridge is 24 m (Figure 103). These elements are modeled

later.
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ends.
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Concrete parameters

The deck and crossbeams are assumed to be C35/45, and the girders beneath the deck
C55/67 (Table 13 and Table 14). The concrete strength could be higher than these
values, because of the ongoing hydration over time

Reinforcement steel

6 mm steel bars are applied in the deck (Figure 104), estimated with a low yield
strength of an average 280 MPa. Also, very low reinforcement is applied, 0.23% (0.44%
for transverse prestressing, and 0.03% for the longitudinal reinforcement). The low
reinforcement ratio is favorable for the development of cracking.

In Chapter 8, it seemed favorable for ductile behavior if 12 mm bars, top and bottom
mesh, with 500 MPa yield strength were present. This is not the case for ‘De Vecht’.

Table 13 deck material properties Table 14 girder properties
C35/45 Girder C55/67

fem | 43 [MPa] fem | 63 [MPa]
fee |35 [MPa] fex |55 [MPa]
fck,cube 45 [MP&] fck,cube 67 [MP&]
fee |36 [MPa] fee |536 [MPa]

Ye 15 [] Ye |15 ]
fea |233 [MPa] fea |36,7 [MPa]
Ecm | 34077 | [MPa] Ecm | 38214 | [MPa]
feem |35 [MPa] ferm | 4,21 [MPa]
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Figure 104 reinforcement in deck
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Prestressing steel

‘De Vecht’ was built in 1965. For the prestressing in both the girder, and deck,
Freyssinet 12¢7 is assumed. Prestressting steel with a surface area: A, = 462 mm? is
assumed with a steel quality QP170. This steel quality is has a tensile strength of 1700

MPa.

Test location

Two tests are performed on ‘De Vecht’ bridge, at 4 and 2.25 m from the end (Figure
105 and Figure 106). The test load surface is 400400 mm. And the girder is loaded
directly (Figure 109), where the slab is more likely to fail in bending than punching
because the slab is integrated with the girder in the bridge (as discussed in Chapter 5).

Table 15 prestressing information (Rijkswaterstaat, 2013)

Systesm Toegepast |Groepering Staalopp. |Staal- Max. blijvende voor- |Max. aanvangsveor- |(Opmerking
wanaf [mm2] kwaliteit  |spankracht (= 55% ) lspankracht (= 65%)
IFreyssinet 1960 Kabeal: 1205 (d) 236 QPLS0 190 kM (19,4 tf) Ma 1965 = P 150 hiervoor niet

meer veel toegepast.

950 [Rabel: 1207 (@) 902 ]

QPLT0

216 kN (22,0 tF)

QP150

374 kN (38,1 tf)
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24000

Figure 105 location test load (1), distances in mm

24000

Figure 106 location of the load (2), distances in mm
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Analytically determining CMA in ‘De Vecht’ bridge

Lateral restraint

According to (Dorton & Csagoly, 1977), one can calculate the bridge’s capacity using
a safe lower bound restraint factor n = 0.5, if the beforementioned conditions are met.
Then, also the empircal and simplfied method are allowed to be used to determine the
slab’s bending and punching capacity.

‘De Vecht’ slab agrees with all mentioned conditions. A restraint factor of at least n =
0.5 is present, and the methods are allowed to be used. This is expected since earlier a
stiffness factor K, larger dan 1221 kN/mm was determined, meaning the slab is
considered fixed ended with an equivalent restraint factor of n = 1.0. Finally, the slab
bending and punching capacities are determined (Table 16). The slab calculations are
found in Appendix F.

Empirical method (CAN)

End cross beams present. Agreed.

Continuous end cross beams present cast between outer girders. Agreed.
Edge beams integrally cast with deck. Agreed.

Concrete strength not lower than 20 MPa. C35/45 present. Agreed.
Minimal deck thickness h = 150 mm. 180 mm present. Agreed.
Considered slab span 2.239 m < 4.5 m. Agreed.

A small overhang of concrete of 0.75 m is present. Agreed.

Ls _ 2239

== 12.4 < 20. Agreed.

® & & O 6 o o o

Slenderness: 1 =

|

ﬁ

Figure 107 considered clear span ”"De Vecht” empirical method
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Simplified method (UK)

¢ Slab clear span 2.27 m (Figure 109) < 3.7 m. Agreed.

¢ A small overhang of concrete of 0.75 m is present. Agreed.

¢ Slenderness: 4 = % = % = 12.6 < 15. Agreed.

L 4

Continuous end cross beams present. Agreed.

¢ Edge beams integrally cast with deck. Agreed.

Rankin method

The effective width and considered clear span are given, and the rest of the calculation
is found in Appendix F. The effective width stays the same when the point load changes
location, from test load at 4 to 2.25 m. The test load surface is 400¥400 mm.

berr = 2630 mm (Figure 108 and Figure 110)
Ls = 2270 mm (Figure 109)

[ | t
: qb;
C, =400 L
>y . . 2
3 A=
T &
o
180 935 400 535 180

b= 2630

Figure 108 effective width slab ‘De Vecht’ (measurements in mm, and not on scale)
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Figure 109 considered clear span ‘De Vecht’ for UK and RK method

Figure 110 calculated effective width represented on the bridge system

SCIA

The lower bound estimate deflection--10 mm for punching was used in combination
with a numerical slab model to determine at which load the slab’s punching capacity is
reached (Appendix G). The load for the 10 mm deflection was 455 kN.

The same was done for the estimated deflection 25 mm at peak load (Appendix G), to
determine the slab’s bending capacity, according to SCIA a bending capacity of 1136 kN
was found, it is assumed that during the deflection plateau of 10 mm up till 35 mm
(Appendix G) this capacity remains unchanged, assuming a bilinear slab behavior where
the slab’s peak load remains unchanged during deflection.
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Conclusions analytically determining CMA in the slab

The slab of ‘De Vecht” meets all the criteria of the calculative methods. So analytically,
it seems that the signs indicate that compressive membrane action might develop in the
slab. Table 16 shows an overview of the calculated slab capacities for punching as well
as bending.

The slab punching capacities of Rankin and UK method are comparable. The CAN
method only calculates the punching capacity. The punching capacity was estimated
with linear extrapolation for a load surface of 400*400 mm (Appendix F).

The highest value, 1200 kN, is determined with Rankin (Appendix F). The UK method
has a higher punching capacity than bending. However it is expected that the system
does not fail in punching and that bending is the governing failure method.

The methods calculating the slab capacity do not take prestressing into account (as
mentioned before in Chapter 4 of Part 1) and are considered an underestimation. And
also according to (Taylor, Rankin, & D.J., 2001), the slab bending capacity calculated
with Rankin is considered to be an underestimation of the actual strength (with an
average difference in strength of 16% (Appendix D)).

Table 16 results slab capacity for load at 4m from the end

SCIA 455 1136
Empirical (NZ/CAN) | 467 N/A
Simplified (UK) 635 558

Rankin (FE) 509 1200
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Numerically determining CMA in ‘De Vecht’ bridge

Three-girder plate model

First a portion of the bridge deck is modeled (Figure 111 and Figure 112), and is made
of an orthotropic plate with three beams as ribs. Generally, the material parameters as
discussed earlier in this chapter is used for the numerical model (more information is
found in Appendix E and H).

The main girder is loaded with a point load where it is expected the main girder fails
in shear. There are two test locations; the point loads are located 4 and 2.25 m from the
end of the girder (Figure 113 till Figure 115). A slab model with the main girder left out
is used as well to determine the deflections at midspan (in a similar way as described in
Chapter 6 and 7).

The supports are modeled as springs. The spring action of the real life rubber bearings
is determined by assuming a deflection of 1 mm under loading of the self-weight. The
cross section (Figure 100) is used to model the ribs underneath the plate model (Figure
115).

BRI

Three girders modeled

Figure 111 portion of the deck modeled: three girders
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Figure 112 portion of the deck modeled, top view, three-girders modeled

Figure 113 side view numerical model 'De Vecht" with test load at 4 m from the end

Figure 114 3D view of 'De Vecht’ plate model with ribs, and the load placed at 4 m
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Load distribution over three girders

The linear load distribution is determined, giving over the three girders: 30% 40% 30%.
This means only 20% of the load can be redistributed, 10% to each neighbor beam. This
means that the neighbor beams can take only 80% of the total load (Figure 115). If the
main beam is assumed to fail brittle, the bridge capacity is only the capacity of the two
neighbor beams (the lower bound). But if the main beam behaves plastically, then the
capacity of the bridge is three times the beam capacity, the upper bound.

This high load spread, which is without the presence of the crossbeams, suggests that
a three-girder model might not be sufficient enough to cover the actual spreading. A five-
or seven-girder numerical model might be more suited in this case, which is discussed
later. One reason for the high load spread is the low slenderness ratio.

Y

linear elastic: 30% 40% 30% = 100%
redistribution: 20% 0% 20%

H0%% 5%
failure: 40% 40% = 80%

Figure 115 cross section of plate model with girders with load distribution for load at 4m
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Three-girder model with crossbeams

The load distribution is determined again but this time with crossbeams implemented
in the plate model: 33.3% 33.3% 33.3% (Figure 115). No redistribution is assumed
possible.

Moreover, the high spreading suggests that a three-girder model might not be sufficient
enough to represent the actual spreading of the real bridge. A five- or seven-girder might
be more suited in this case, which is discussed later (Figure 117).

The implementation of the crossbeams is another reason for the high load spread (as

was noted already in Appendix B).

Figure 116 bridge with crossbeams, and the load at 4 m

\ 4 \ {

-~

Figure 117 numerical model with five-girders showing the possible deflections of the outer girders
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Test load at 2.25 m

The same was done for the test load at 2.25 m, only the location of the load changed.
The same calculation was done as shown in Figure 115, giving a linear load distribution
of: 26.5% 47% 26.5%. This means 41% of the total load can be redistributed, 20.5% to
each neighbor beam.

Linear load distribution of the numerical model with the test load at 2.25 m, with four
crosshbeams gives: 33% 34% 33%. No redistribution is assumed possible. It is clear that
the presence of the crossbeams has a significant effect on the load distribution.

Figure 118 bridge with crossheams, and with the load at 2.25 m
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Conclusions development CMA in slab

Numerically, for both the test load at 4 and 2.25 m, a high load spread is apparent
and the three girders are loaded almost the same (Figure 119). The high load spread
leads to a low relative displacement. And when the relative displacement is too low, it is
uncertain whether the critical deflection is reached, cracking develops in the slab, and
compressive membrane action is developed in the slab.

This is another indication that multiple girders need to be modelled for further research
of the load distribution. So by using the numerical method described in Chapter 7, it is
uncertain whether CMA activates during load and whether the slab can contribute to
the upper bound value of the bridge load.

T

Linear Elastic: 33% 33% 33% = 100%

¥ ¥ ¥

Figure 119 high load spread leads to low relative girder displacement
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Chapter 10 Test Results ‘De Vecht’ Bridge

Introduction

This chapter discusses the test results from ‘De Vecht’. Two point load locations are
considered, at 4 and 2.25 m from the end. First, the load displacement graphs of the
whole bridge system are discussed. Then single girder tests are discussed with their own
load displacement graphs.

Moreover, a numerical modelling is done with five-girders and seven-girders in order

to determine whether CMA developed in the concrete slab.
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Comparison between predicted and actual total bridge load

The load displacement graphs of the tests on the full bridge systems, with loads at 4
and 2.25 m, are given in Figure 237 and Figure 238 respectively (Appendix H). For both
tests the total load, estimated linear loads, the ultimate deflection, and deflection at peak
load are given in Table 17.

The bridge with the load at 2.25 m shows the higher external total capacity, compared
to when loaded at 4 m from the end (Table 17). This is possibly due to the load location
itself, when the load is closer to the end beam, which causes an increase in strength and
stiffness of the whole bridge system. This was also noticed in numerical modelling. The
fact that the load location influences the total bridge load was noticed earlier in Part 1.

However, the ultimate deflection of for the load at 4 m is higher than the load at 2.25
m (Table 17). This might be due to the ductility of the two key elements: the single
girder or the slab. This is discussed later. And the linear capacity for the load at 2.25 m
is the higher one, probably due to the higher single girder capacity, which is noticed
later.

Table 17 results of both tests, with the load at 4 and 2.25 m: bearing capacity and deflections

4 3000 19 22 1500 9.5
2.25 3400 10.5 13 1900 3.5
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Table 18 comparison actual and predicted total capacity with margin of errors for the loads at 4 and 2.25 m

load location  actual total load [kN] predicted total load [kN] margin of
[m] error [%)]
4 3000 RK(nonlinear) 3960 32
SCIA(linear) 2564 15
UK(linear) 1635 45
2.25 3400 RK (nonlinear) 5640 65
SCIA (nonlinear) 5422 60
UK (nonlinear) 2692 21

Table 19 comparison actual and predicted ultimate deflections for the loads at 4 and 2.25 m

load location actual ultimate deflection  predicted ultimate deflection Margin of error

[m] [mm)] [mm] (%]
4 22 35 60

2.25 13 35 170

The comparison between the actual and predicted bridge load (determined in Appendix
G) is shown in Table 18. All methods considered failing in bending, since punching was
not governing. And linear/nonlinear in the parantheses concern the assumed load
distribution (Appendix G). And it is noted that the predicted capacities are determined
for a set of assumed ultimate deflections, which is also discussed and compared with the
actual ones (Table 19).

Two methods in Table 18 are considered a safe understimate. All of the other results
overestimate the total bridge load. That being said, all the predicted bearing capacities
were determined for assumed deflections, derived with the Taylor tests (Appendix G),
deviating from the ones in reality (Table 19). The assumed deflections seemes to be a
significant overestimation. Therefore, if the assumed deflections were closer to reality,
the numerical model would have provided a safe understimate (Figure 241), regardless

of the chosen calculative method for the slab bending capacity.

Deflections

The actual deflections of ‘De Vecht’ differ from the ones estimated with Taylor (Table
19). Which could be because the tested slabs had a slenderness of 9.5, while the slab of

‘De Vecht’ has a slenderness of 12.6. Also, as mentioned in Chapter 8, the tested laterally
restraint strips show more ductility than the one applied in ‘De Vecht’ bridge.
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Figure 120 hypothetical trendline for slenderness 12.6 compared with the trendline for slenderness 9.5 from the
tests.

With that known, Figure 120 shows a hypothetical trendline of a slab with slenderness
12.6, which would have been used to determine the actual ultimate deflection of ‘De
Vecht’. But in fact no real test data is available for such a trendline. So more research
needs to be done on laterally restraint slabs with different slenderness ratios, with which
one can create more trendlines which would be applicable for different situations with
different concrete strengths and slenderness ratios.

Failure mode

The slab did not fail in punching, and the ultimate deflections, which are larger than
the estimated 10 mm for punching, seemed to agree with this conclusion. On the other
hand, it also means that the assumption of using the slab bending capacity is plausible.
If one calculates with the bending capacity, it will result in a higher capacity of the slab,
as long as the right conditions are met (e.g. slenderness ratio).
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Comparison between predicted and actual girder loads

Besides the tests on the bridge system, individual girders were tested, again with the
test load location being at 2.25 or 4 m from the end. For the load at 2.25 m, three tests
were done, and for 4 m only one. And the results are given in Table 20. The actual load-
displacement graphs are found in Appendix H.

Moreover, the single girder test shows that, for the load at 4 m, the ultimate deflection
is the higher one (Table 20). This might be the reason why the whole bridge system fails
at a higher ultimate deflection when loading at 4 m compared to the test load at 2.25 m.
The ductility of the single girder influences the ductility of the bridge system as whole.
In Table 21 the actual girder loads from the test results are compared with the predicted
girder loads (determined in Appendix G).

Table 20 results of single girder tests, with the load at 4 and 2.25 m: capacity and deflections

load total displacement ultimate linear load  displacement at
location load at peak load displacement [kN] linear load

[m] [kN] [mm] [mm] [mm]

2.25 (1) 1600 70 75 900 7
2.25 (2) 1700 60 65 1000 7
2.25 (3) 1750 65 70 1000 7

4 1000 120 130 600 18

Table 21 comparison actual and predicted capacities of a single girder

load location [m] actual girder load [kN] predicted girder load margin of error [%]

[kN]
4 1000 1197 20%
2.25 1700 1097 35%
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Load distribution determined with measured test results

A more nuanced calculation for the load distribution is made using both the load-
displacement graph of the bridge system and single girders. For example, for the test
load at 4 m, the peak bridge load is 3000 kN, at this load, the deflection is 19 mm (Figure
237). And then the load-displacement graph of the single girder is used to determine at
what load the girder displaces 19 mm, this gives: 625 kN (Figure 121).

And knowing how much the main beam is loaded, gives the load percentage of the
25 4 100% = 20.8 %.

3000
Using the same process, the load percentage of the neighbor beams can be determined

main beam:

too. First, the ultimate deflections of the neighbor beams are determined (Figure 122),
and then the same girder load-displacement graph as before is used to determine at what
load the neighbor deflections are reached, this gives: 350 and 475 kN (Figure 123). This
gives a load percentage of 15.8 and 11.7 %. An average deflection, of 7.5 and 10.5 mm,
for the neighbor beams is assumed to maintain symmetry of deflections of the neighbor
beams (Figure 122).

I s 5o B R B

Testloadat4m

Load [kM]

0 i i i i i i

& [mm
ﬁ

Figure 121 determining at what load the ultimate deflection of the bridge system is reached, for the load at 4m
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Figure 122 ultimate deflections of the neighbor beams, for the load at 4 m

Load [kN]

i i i
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Dn 75105 = 40 120

beam2

Figure 123 determining at what load the ultimate deflection of the neighbor beams is reached
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As clarification, the determined deflections are given in Figure 124. And the load
distribution is presented in Figure 125, with the determined girder load for each beam.
The same process is done for the load at 2.25 m (shown in Appendix H, with Figure 244
and Figure 248), and all the results are given in Table 22.

ggmmqg

Figure 124 displacements of the main beam and neighbor beams at the peak load 3000 kN, for the load placed at 4 m.

475 kN 625 kN 475 kN

350 kN 350kN

JADI /Y

11.7% 15.8% 20.8% 15.8% 11.7% =758%

Figure 125 load distribution determined with the tests results, over five girders with the girder load on each beam

Table 22 results of the comparison between the load distribution determined numerically and through the test

results
4 75.8 20.8 18.5 2.3
2.25 100 34 22

Hidden capacity of thin prestressed concrete deck slabs with T-beams 150



Numerical modelling with multiple girders to determine CMA

Moreover, as suspected in Chapter 9, the short span of ‘De Vecht’ causes a high
spreading of the load (Figure 237 and Figure 238). According to the measurements from
the test (Figure 126), it appears that at least five girders take up a part of the load. This
was what predicted before the test was done on the bridge. So in order to research the
load distribution over the five girders, a five-girder numerical model was created (Figure
127). This is done in order to determine the relative girder displacement, to determine
what the differnces are compared to the three-girder model.

Testload at4m

o L 1 i 'l ' i Il 'l 'l '
] E 1 T L KT IF 14 " W o1 = 7]

4 [mam)
@—umm _Tﬂ"l —— a3 —D

Figure 126 five-girders take up a part of the load

Figure 127 five-girder numerical model with four crossheams of ‘De Vecht’, with the load at 4 m from the end
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Load distribution and deflections of the five-girder model

Figure 128 displays that the outer beams take a significant part of external load
(roughly 2 %19 =40 %). So modelling with a three-girder model leads to a certain
margin of error, compared to modelling with a five-girder model.

But even with a five-girder model the relative displacement is still too low (the
difference between the neighbor and main beam is 1%). And a low relative girder
displacement means that one is not certain whether the critical deflection is reached and
membrane action is developed. That is why now a seven-girder model is considered as
well, to determine the load distribution and corresponding deflection.

F =500 kN

19% 20% 21% 20% 19%

Figure 128 load distribution of a five-girder model
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Load distribution seven-girder model

The load distribution of the seven-girder numerical model was determined. Beams 1
and 7 carry 18.6% of the load, and beam 2 and 6, 27.8% (Figure 130). Which gives a
summation of 46.4%. So it is shown that modelling with three-girders is not sufficient,
since almost half of the load is distributed to the outer girders. The same calculation is
done for the load at 2.25 m in Appendix H (Figure 243).

Figure 129 seven-girder numerical model with four crossbeams of ‘De Vecht’, with the load at 4 m from the end

F=500kN

9.3% 13.9%  17.55% 18.5% 17.95%  13.9% 9.3%

Figure 130 load distribution over the seven girders determined numerically
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Furthermore, using the deflections (Figure 131), the margin of error of the three-girder
model is determined, comparing it to the seven-girder one. For beam 1 and 7 this gives

(using the deflections in Figure 131):

2.3

2 100% = 249
"2 23+2+272512+29134) 100% o

The same calculation is done but for beam 2 and 6:

2.5

2 100% = 279
"2 23+2+2+2512+29134) 100% o

This means that the three-girder numerical model displayed a total margin of error of
51% for the deflections.

The loaded main beam and its neighbor beams were assumed to take more of the
external load than they actually did. While in fact the outer beams (beam 1,2,6,7 in
Figure 131), shown with a seven-girder model, should take up a significant part of the
load (46.4%), and their deflections are 51% of the summation of the deflections.

Information regarding the material properties of the numerical models can be
found in Appendix H. Basically, the same numerical model was used as the one described
in Chapter 9, only the amount of girders that were used as ribs under the plate increased.

F=500kN

D e

/ £\ / .E.I\ 'R / s | \
L - = Zhay = A

Al
"
i
-+
oF

Figure 131 deflections determined numerically of the seven girders with a load of 500 kN, placed at 4 m from the end
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Nonlinear modelling of the main beam

The tests indicate that the bridge showed nonlinear behavior. In order to model the
nonlinearity the same numerical plate model with seven girders and four crossbeams is
used, only this time the main beam is modelled with a lower stiffness, lower than the
neighbor beams. The main beam has an elasticity modulus E2, and the neighbors E1
(Figure 132). The stiffness is determined with the test results. The load-displacement

relations are converted to stress-strain relations:

c=E=xe

_f MP

Ay

EZEZL_S[_]

E = Z[MPa]
€

For the main beam, the secant modulus is determined. The peak load and its ultimate
deflection are used. For the neighbor beam the tangent up to the linear load is determined
(Figure 133).

E1 E2 E1

Figure 132 different stiffness of main and neighbor beams
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Figure 133 determining the stiffness for the main and neighbor beams

For the load at 4 m this gives:
Fpear = 3000 * 103N

F
o=7= 18.75 MPa
A = 400 * 400 mm (test load surface)

J 7.9%10°*
=—=79x
€ I
Speax = 19 mm = 19 * 107> m (from Figure 133)
Ly = 24 m (beam span)
o

E, =—=23.7 x 103 MPa

m |

The same was done for the neighbor beam, giving: E; = 40.9 * 103 MPa
The difference between E1 and E2: % =1.7

2
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And then with the numerical model the load distribution was determined again. The
new situation with the main beam with the lower stiffness shows a slightly higher load
spread. The three center beams take 1.4% less of the load and distribute it to the outher
four beams (Figure 134).

The method of decreasing the stiffness of the main beam has some effect but is not
very large. The same is true for the test load at 2.25 m. E2 and E1 are also determined
for the test load at 2.25 m: E, = 48.6 * 103 MPa; E; = 81.4 * 103 MPa;i—i =1.7

And the load distribution is determined again with the lower stiffness for the main
beam. And here it is shown that the effect is not large. The three center beams take 0.6%
less of the load and spreads it to the outer four beams (Figure 135).

9.3% 13.9%  17.55% 18.5% 17.55% 13.9% 9.3% same stiffness

9.7% 14.2% 17.4% 17.4% 17.4% 14.2% 9.7% main beam lower stiffness

+04% +0.3% -0.15% -1.1% -0.15% +0.3%  +0.4% difference

. |

+0.7% spread 1.4% spread +0.7%

Figure 134 effect of lower stiffness of main beam on load spread: load at 4 m

6.6% 132% 193% 21.7% 193% 13.2% 6.6% samestiffness
6.9% 13.2% 192% 21.3% 19.2% 13.2% 6.9% mainbeamlower stiffness

+0.3% 0% -01% -04% -0.1% 0% +0.3% difference

spread -06% spread |

Figure 135 effect of lower stiffness of main beam on load spread: load at 2.25 m
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Conclusions nonlinear numerical modelling of the main beam

Even when the loaded beam was modelled less stiff than the neighboring ones, the load
is still almost spread equally over the three middle beams. This means that the relative
displacement is still to low to determine whether the critical displacement is reached and
whether compressive membrane action is developed in the slab.
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Conclusions on CMA in ‘De Vecht’ bridge

First, the bridge reached a high capacity in the order of 3000 kN (Figure 251). It is
hard to comprehend how the bridge would reach such a maximum load without
compressive membrane action. The girders themselves only have a maximum capacity of
1000 or 1700 kN (Appendix H). Calculating with normal flexural theories that do not
include membrane action, lead to a slab capacity of around 200-300 kN (mentioned in
part 1). This would have resulted in capacities between roughly 1200-2000 kN.

Furthermore, the load distribution determined with the test results gives a relative
deflection of 19 — 10.5 = 8.5 mm (Figure 136). It is possible that this deflection is high
enough to reach the critical deflection, and to develop cracking and membrane action,
but this is not certain.

3000 kN

ISRER

7.5 mm 105 mm ——0Emm MM

el zirder — membrane action activated ?

Figure 136 possible activation of membrane action according to deflections derived from the test results (Appendix

H)
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However, the numerically determined load distribution showed that the three center
beams were loaded similarily (Figure 137). This means that the relative girder
displacement of the main beam is too low. Therefore, it is uncertain whether cracking
occurs and membrane action is activated (Figure 137). So when one uses the numerical
method (discussed in Chapter 6 and 7), it is uncertain whether compressive membrane
action develops in the slab.

9.3% 13.9% 5.55% 18.9% 1?‘55% 13.9% 9.3%
]

el mirder too small —membrane action not activated

Figure 137 using the method: CMA not activated due to to low relative displacements
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Sufficient slab bending capacity

Even with a seven-girder numerical model the relative girder displacement is too low.
This low relative displacement means that numerically it is uncertain whether cracking
occurs in the slab. Ultimately, it is uncertain if cracking occurs and consequently if
compressive membrane action develops in the slab.

But the fact that compressive membrane action did not develop during loading, does
not necessarily mean that the mechanism will not develop in the slab after the maximum
loading point is reached.

The mechanism and its corresponding slab bending capacity can still play a part after
the bridge system reaches a certain maximum capacity. It is assumed that this happens
when the loaded beam reaches its maximum capacity. The maximum beam capacity was
derived from the test done on an individual beam loaded at 4 m from the end (Figure):
Fiaxgirder = 1000 kN.

After the loaded beam fails, it is the question whether the slab has sufficient bending
capacity with use of compressive membrane action to carry the load that was on the
beam. Therefore, the slab bending capacity Fg,, has to be determined to check if:
Fsiab = Fraxgirder (Figure 138). This kind of check with use of the slab bending capacity

was also mentioned in Chapter 1 and Chapter 5.

Fmax,girder = 1000 kN

T ==

Figure 138 loaded beam reaches its maximum capacity; slab needs to carry the load
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The slab bending capacities were determined (Appendix G) and mentioned earlier
(Chapter 9). For the UK method 560 kN was determined and for the RK method 1200
kN.

This gives the following check:

Fstabuk = 560 < Frjaxgirder = 1000 kN (Not sufficient)
Fslab,rk = 1200 > Fpaxgirder = 1000 kN (Not sufficient)

It is concluded that the UK method determines an insufficient slab bending capacity.
However, the RK method gives a sufficient slab bending. So according to Rankin, the
slab is able to carry the maximum load and redistribute it to the neighbor beams.

It is noted that the UK method is a safe but conservative method (mentioned already
in Chapter 4). Moreover, prestressing of the concrete slabs is not taken into account in
determining the slab’s capacity. And the prestressing effect might influence the capacity
in a positive manner, which is recommended to be studied more in depth in further
research. However, for the test load at 2.25, Fraxgirder = 1700 KN (Appendix H). Both

calculated slab capacities will not be able to carry this load.
Neighbor beam failure

Assuming that the slab is able to redistribute the load to the neighbor beams, leads to
to the question whether the neighbor beams can carry the load.

First, the loaded beam is modelled with 10% of its original stiffness (Appendix H) to
take into account its behavior after reaching maximum girder capacity. In Figure 139 it
is found numerically that the neighbor beam is loaded more than the main beam. Since
it is assumed that all beams have the same capacity, the neighbor beam cannot be loaded
more than the main one, causing it to fail as well. The failure of one neighbor beams sets
in motion a chain reaction of failures of the other beams. This mechanism is
recommended for further research.

l:"max,gil‘der = 1000 kN

T K L TN NN

1M1% 15% 17% 15% 17% 15% 11%

Figure 139 linear load distribution after loaded beam reaches its maximum girder capacity
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Distributed load

All the calculations and modelling were done with use of a point load. The point load
assumes that all of the load is concentrated on a very small surface area. In reality, the
traffic load is more spread out through axle loads.

Finally, after the main beam fails, the load is spread more to the neighbor beams
(bottom picture in Figure 140). The point load then should be modelled more as a
distributed load (Figure 140). The width over which the load is spread might be
determined with the effective width method of Taylor mentioned in Chapter 3.

Figure 140 load changes from point to distributred load after failure of the loaded beam
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General recommendations from the other parts

Recommendations from part 1

Explore other methods, beside the ones discussed, to calculate the slab bending
capacity due to CMA, for example: method of Park.

Recommendations from part 2

Use a FEM numerical model (e.g. Diana, Athena), with multiple girders and
crossbeams to take into account the spreading, to understand the bridge system non-
linear behavior. Use a FEM model for the individual girders to gain more insight in their
behavior, capacity, deflection, at what deflection when does peak load occur, and failure.
Use a FEM for slab behavior, peak arching action, deflection range, and failure.

Recommendations from part 3

More research on laterally restraint slabs with different slenderness ratios and concrete
strengths, to create more trend lines. And also the influence of the load location needs
to be tested more, since the load at 2.25 m displayed a higher deflection at peak load
and ultimate deflection.

Also more research and tests needs to be done on real size bridges. For example when
another test is done on a bridge, cut off the main beam and test the slab to get the
midspan slab displacement.

Redo all the calculations but with the actual concrete strength obtained from drilled

concrete cores from the bridge for more accurate results.
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Appendix A

2200

T t=250mm
2000 ™

T t=225mm

1500 +— =200 mm

1 \ \ T~
T t=175mm \
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B mm \\ —
+ Correction factors \
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Span, m

Figure 141 Rd (kN) values for composite concrete deck slabs (new zealand transport agency, 2014)

CRR total length visible cracks 100 "
= *
total length bottom reinforcement both directions (41)

Table 23 Strength reduction factors (new zealand transport agency, 2014)

Slab section properties based on:

construction drawings and measured dimensions or
assessed sound material verified as-built drawings, and
measured sound material

Superstructure condition

Good or fair (CRR <40%) 090¢, 1006,
Deteriorated (CRR = 70%) 0.60¢,, 070¢,
Seriously deteriorated (CRR=100%)  0.30¢p 0.40¢,,
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Calculation real size Brienenoord
Empirical method (NZ/CAN)

Graphs from the Transit Bridge manual (new zealand transport agency, 2014) are used
to determine R; since they are comparable with the ones in the CHBDC. Using
interpolation, and reading the “composite” graph Figure 141, where reinforcement
percentage is 0.23% (0.33% prestress streel in transverse direction, and 0.125 %

reinforcement steel in longitudinal direction). This gives the following:

R; = 1140 kN
For:

fi =40 MPa
h =200 mm,
Ly =321m

Calculated capacity:

% « 8200
Poyie = 100 =369 kN
¢=10%¢; =1.0x05=0.5
CRR < 40%, deck in good conditon, mostly the case in the Netherlands
y, =19
[=1.0

The code is for a load surface area of 250%250 mm and does not give a solution for
other wheel prints, such as the one used on ‘De Vecht’ (400*400 mm).

So using linear extrapolation the capacity is estimated: % * Pyyie = 590 KN

A characteristic load of 300 kN is present in LM1 (NEN-EN 1991-2, 2005).
So the unity check gives:

300_051
590 =]

The check is in order.
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Simplified method (UK)

Input parameters:

, f
£ =0.8*%=26.7

mm?

h=200mm
d=05*xh=0.5%200=100mm

It is noted that the effective depth d is defined as up till the halfway point of the

main centrical reinforcement.
L.=05%L;=0.5%3400 = 1700 mm

Deformation:
g, = (=400 + 60 % 26.7 — 0.33 * 26.7) * 107% = 0.965 * 1073

L2 (1700)2

—— = 0.965 *— = 0.070 <0.26
* 7 * (2002 <

R =¢,

k = 0.0525 * (4.3 —16.1%+/3.3%10* + 0.1243 0.070) = 0.145

Arch moment capacity:

kNm
M, =k * f/ * h2 = (0.145 * 26.7 * 2002) = 155 [T

MCLT’
P, = = 675 kN
b7 0.23

Equivalent reinforcement ratio:

My 155e10°
Pe = Ferdrz 320%0.75+1002 0
z=0.75%d

d=05%*h=0.5%200 =100 mm

Punching capacity:

P, =152 (¢ +d) =d *[f » (100 * p,)°2°
¢ = 509 mm (load surface 400 * 400)
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b, = (1.52 * (340 4+ 100) * 100 * v26.7 * (100 * 0.0645)0'25) * 1073 = 762 kN

When two wheelloads are applied together:

Pyq = 0.65 * P, = 495 kN

Unity check:

30

]
(@)

) =0.6

15

S5

The check is in order. (NEN-EN 1991-2, 2005) prescribes a load of 150 kN (for a load
surface of 400400 mm), and the loadfactor 1.5 comes from BD (81/02, 2002).

Conclusions and important notes

The slenderness is an issue, and a very low reinforcement ratio is applied as well,
whereas 0.3% is recommended. The slenderness issue will be addressed in the second
part. It is possible that the present centrical prestress compensates for these issues.
Finally, the “tussenstort” is cast later than the girders and is not part of the deck as
whole and induces joints/interfaces. These joints might have been an issue, but they have
been tested (Amir, 2014), and have been proven not to be decisive in failure.
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Rankin Method

The same clear span is considered (Figure 38). Which gives the following effective

width:

besr =cy+2xL,+2+h=3800mm
¢y = 400 mm
¢, =400 mm

L c
L, =———==1500 mm

2 2
h =200mm
Lg = 3400 mm

Stiffness parameters

os kN
E,=423%f% =218

mm?2
fou = 26.7 MPa
E.*b,sr*h kN
s=——— 10375 —
L, mm

A+ FE kN
L mm

e

Ag =2 (700 % 1620) = 2.3 * 10 mm?

A, x E kN
Kp=—2""¢=517%10*—
L, mm
* [p x L
A, = $*hhrle 279,108 mm?
besy
= 985 (FE)

I, = 1.32 * 102 mm*

Ky = ———— =738+ 10° kN/mm

%t %

Flexural Capacity

Flexural parameters

B =1-0.003*f.4 =0.92 > 0.9.
SoB =09
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fy * 4s
= =13
x 0.67 * feq * B * besy mm

f, = 320 MPa

2
As = 660 % (For transverse reinforcement percentage of 0.33%)

z=d—-05*«f*x=94mm
d =100 mm

M, = f, * A xz =75 kNm/m

For fixed ended:

P —8*LS—177kN
b Mb

Arching section

2¥d;=h—=2x*xxx*f
d, =88 mm

d, from the previous iteration is used. The contact area due to arching is then given
by:

A= a*bger*d; =310619mm?

a = 1 for the first iteration, after 2 iterations a = 0.927
ExA
K * L,

LR=L93< )+1=1528mm

Arching parameters

£, = 0.0043 — [(fog — 60) * 2.5 % 10~5] = 5.1 % 10~3 > 0.0043.50 &, = 0.0043
g,=2*g,x(1—p)=86+10"*

Deformation

g * Ly 2
R=——" =0.073
4 x df

0<R<0.26;u=-0.15+0.36*v0.18+ 5.6 *x R = 0.127
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Contact Depth
=1 g 0.936
a= > =0

a * dq is used for refined arching section above until value remains constant (iterative

process).

Arching Capacity

0<R<026; M, = 43 —16.1%+/3.3%10~*+ 0.1243 xR ) = 2.73
L
Mg, = 0.168 * bysf * f! * d? * M, * L—e = 367 kNm/m

r

When both sides are restrained (Pucher, 1964) gives:

P, = Mar _ 1597 kN
a7 0.23

Flexural punching capacity

The ultimate capacity is the sum of the flexural and arching capacity:

P

=Py + P, = 1775 kN

However punching shear is governing, which is calculated with:

0.43
Py === *fea = (@ + ) e d = (p)° = 501 kN

77 = 1.15 (rectangular wheel load)

Ultimate capacity

Ppr > By

Punching shear is governing, then: B, = P,
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Prototype Brienenoord
Empirical method (NZ/CAN)

The concrete deck was in good condition, as is common practice in the Netherlands.
So CRR < 40%, ¢ = 1.00 * ¢p = 1.00 = 0.5 * 0.5.

Al Ast
=50 ( J
1= \o%d, " bra,

) ~ 0.5%

Ay = 141 mm?/m (reinforcement steel)
Ay = 442 mm? /m (prestress steel)

b = 1000 mm
d; =91 mm
d; =50 mm

Using extrapolation and the graph from Figure 141 the following parameters are

determined:

E, =096, F. = 1.29
Ry = 500 kN, so R; = 0.96 * 1.29 = 500 = 619 kN

(Amir, 2014) suggested extrapolation of the correction factors might create unsafe
impressions of strength. In the conclusion of this chapter, the calculated strength and
test results will be compared.

Finally, the calculated strength is:

0.5 0.6 *x 619

x 8200
Paxie = L.9 x 40125 = 200 kN

¢ = ¢pq*1 = 0.5 (low cracking)
YL = 1.9
=10
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Simplified method (UK)

Input parameters:

;L feu
fe _O'S*E_SSmmz
h =100 mm

d=05«h=50mm

Again the effective depth d is defined as up till the halfway point of the main

reinforcement.
L-=05%L; =0.5%1650 =825 mm

Deformation:

g, = (=400 + 60 * 26.7 — 0.33 % 26.7) * 106 = 1.4 » 1073

2
r

* 9z = 0.096 < 0.26

R =¢,

k = 0.0525 * (4.3 —16.1%+/3.3%10* + 0.1243 0.096) =0.198

Arch moment capacity:

kNm

M, =k * f! x h? = (0.198 = 38 «x 100%) = 75 [T

Equivalent reinforcement ratio:

M 75105
Pe = Fexdrz 525%0.75%502
z=0.75*d

d=05*xh=0.5%100 =50mm

Punching capacity:

P, =152 (¢ +d) =d *[f » (100 * p,)°2°
P, = (1.52 * (255 + 50) * 50 * V38 * (100 * 0.076)*%5) + 10~3 = 237 kN
¢ = 255mm
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Rankin method

The same clear span is considered (Figure 41). Which gives the following effective

width:

besf =cy+ 2% Lo+ 2+h=1850mm
¢y = 200 mm
¢, =200 mm

Ly ¢
Le=?s—?x=725mm
h =100 mm
Ly, = 1650 mm

Stiffness parameters

05 kN
E. =423 f_; =26mm2
feu = 38 MPa
E.*berrxh kN
= — 6653 —
L, mm

A+ FE kN
Kd:Z ¢ —57%103 —
L mm

e

Ag =2 (700 % 1620) = 5.7 * 10°> mm?

A, x E kN
Kp=—2""C=284x10*—
L, mm
* [, x L
A, = Sl le 554108 mm?
besy
¢ = 985 (FE)

I, = 70.2 * 10° mm*

Ky =——F— =474~ 103 kN/mm

%t R
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Flexural Capacity

Flexural parameters

f =1-0.003+*f,; =0.886 < 0.9.

fy * As

= =10
067 % fea * B *berr

X

fy =525 MPa

A = 442.5mm?/m
z=d—05**x =45mm
d =50 mm

M, = f, * As xz = 20 kNm/m

For fixed ended:

8 * Lg

M, =95 kN

Pb=

Arching section

2xdy=h—2xxxf
di =41 mm

d, from the previous iteration is used. The contact area due to arching is then given

by:

A= a*bypr*d; =704 %10° mm?

a = 1 for the first iteration, after 2 iterations a = 0.932

ExA
K * L,

3
Lp =1L, ( )+1=737mm
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Arching parameters

gy = 0.0043 — [(f.q — 60) 2.5 x 107°] = 0.00485 > 0.0043
So &, = 0.0043
g,=2xg,x(1—p)=9x107*

Deformation

g * Ly 2
R=——T"-=8x1072
4 x df

0<R<026 u=-015+0.36«v0.18 + 5.6 *x R = 0.13

Contact Depth
=1 gl 0.932
a= > =0

a * dq is used for refined arching section above until value remains constant (iterative
process).

Arching Capacity

0<R<026; M, = 43 —16.1%+/3.3%10*+0.1243 %R ) = 2.7
L
Mgy = 0.168 * byf * foq * d7 * M, L—e =52 kNm/m

r
When both sides are restrained (Pucher, 1964) gives:

Mar

P, =
¢ 0.23

= 225 kN

Flexural punching capacity

The ultimate capacity is the sum of the flexural and arching capacity:

P,; = P, + P, = 320 kN

p

However punching shear is governing, which is calculated with:

0.43
= " */ fea * (p+d)m*d = (pe)O.ZS = 140 kN
f
77 = 1.15 (rectangular wheel load)
Pyr > Py, then: B, = By,

pv
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Girder Shear Capacity

First the critical T-girder is considered, which is loaded close the supports. Depending
on the location of the point load, the girder can fail in different ways, with different shear
capacities. At least two fail mechanisms are possible: tensile splitting and flexural shear.
Tensile splitting failure is more common when the girder is not reinforced heavily with
shear braces. Here the principle tensile stress exceeds the concrete tensile strength, failure
occurs in the web of the girder without warning, failing brittle.

(Vugts, 2012) determines the zone where tensile splitting shear failure could occur,
using the design flexural cracking moment M., and Mgy (Figure 142 and Figure 143). In
the uncracked zones, for ULS, the design value for the shear resistance of the concrete is
calculated. The mean tensile concrete strength f,;,, is used for the lab experiment instead
of the lower f.q4, giving the linear tensile splitting shear capacity:

I * b, 5
VRd,c = T* fctd +a; *x ogp * feta

I 70.2295 % 102 * 150
Ra.c — 70.9 * 106
Veae = 1229 kN

4162 + 1.0 0.85 * 4951 % 103 416 (42)
342900

-

=
I

E —— T
7 ' T .
. areaa | _ area b | areaa |
| I =T il D =1
Figure 142 cracking prestressed beam
uncracked cracked uncracked

s &

3050 3050

— - — -

Figure 143 crack zones
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Figure 144 locations where failure modes occur
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Figure 146 Shear force distribution
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If the girder is loaded at a point near the supports within the uncracked zone, it is
possible failure due to tensile splitting shear occurs. Comparing Figure 143 with Figure
145, one sees that the point of loading is 2350 mm from the end, this falls in the marked
uncracked zone of 3050 mm. Here, it is possible the girder fails in tensile shear splitting.
However, because of the presence of high shear reinforcement in the girder, the other fail
mode flexural shear is more likely. The flexural shear capacity with shear reinforcement
for this loading situation is assumed to be Vg max = 1189 kN (Vugts, 2012). And usually
this capacity is higher than the tensile splitting capacity, which is usually calculated with
feta instead of fo. The highest capacity between tensile splitting and flexural shear,
though, can be taken when loading in the uncracked zone (Figure 144).

Therefore with equilibrium of forces and the load position, the support reactions are
known. Using that the maximum design shear force equals the tensile splitting strength,
this gives:

11.3
Frax = 39t *F. =126 % Vg; = 1.26 * 1229 =~ 1550 kN
Fpax = 1.26 ¥ 1189
Via = Vra . (tensile splitting shear)

O (43)

Vea = Vramax (flexural shear)
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Example calculation slab bending capacity for prototype Brienenoord
Determine effective width

The considered clear span is 3450 mm. This gives an effective width of 3650 mm.
befr=c¢y,+2xL,+2xh=200+2x1625+ 2100 = 3650 mm (44)

¢y, = length of load area in y — direction

L. = effective span of the slab subjected to arching force

| _Ls_c_3450 200
eT T2 2 mm

¢, = length of load area in x — direction
L¢ = clear span of considered slab
Li=2%Leic—2%dyep =2+1800—2 %75 =3450mm

Lower bound slab bending capacity

The linear girder load, 1500 kN, is reached around 7 mm, derived from the single beam
prototype test result. For now, at this instant, membrane action is assumed to activate
for a determined effective width with a bending capacity that can be calculated (Figure
58). This is the lower bound slab bending capacity of a laterally restraint concrete strip.
For a simply supported slab Rankin gives a bending capacity of 133 kN, and the effective
width is 3650 mm.

Upper bound slab bending capacity

The assumed maximum deflection &4y, Which is 37 mm, is derived from the single
beam test results. And at the maximum deflection, the activated beam span is about 9.2
m (Figure 62).
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Measurements in mm 37

Figure 147 Activated slab area, top view with measurements (not on scale)

Total slab capacity

The calculation is done for the activated span length of 9.2 m. An effective width of
3.65 m and an assumed slab bending capacity of 133 kN per activated slab strip, gives
the following total slab capacity:

activated slab span [m]

n[-]

~ effective width slab strip [m]
total slab capacity [kN] = n * bending capacity slab strip

Fstabupper = 1 * Flap lower

9.2

=365 2°

n
Folabupper = 25 * 133 = 333 kN

The linear girder load of 1550 kN can be added to give the total load, since it is
assumed that slab and beam work together

Fiotal = Fgirder + Fstabupper = 1550 + 333 = 1883 kN
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The same calculations are done again, for Rankin (SS/FE), (FE) and the UK method.
For the last method the same effective width is assumed to be present. The CAN method

does not calculate a bending capacity. Results are summarized (Table 24).

Table 24 results total slab capacity and total bridge capacity

Method Slab Bending  Activated Total slab Total
capacity beam span capacity bridge load
Fslab,lower [Hl] Fslab,upper [kN] [kN]
[kN]
Rankin (SS) 133 9.2 333 1883
Rankin(SS/FE) 172 9.2 430 1980
Rankin (FE) 178 9.2 445 1995
Simplified (UK) 75 9.2 188 1738
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Appendix B

Numerical model 1 Elastic plate
General information plate

Concrete class: C45/55.
Concrete density: 2500 kg/m?.
E-modulus: 36300 MPa.
G-modulus: 15125 MPa.
Poisson ratio: 0.2 [-]
FEM-model: orthotropic plate.
Linear numerical model.
Thickness: 100 mm.

Spring supports.

Spring stiffness: 17.7 MN/m.
Crossbeams: 0

Amount of girders: 0.

Size 2D-plate element: 0.25 m.
Plate theory: Mindlin-reissner.
Type solver: direct.

Figure 148 linear elastic plate model
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Load distribution

The key element involved in the distribution of the load is the deck, modeled as a
plate. So first, a linear elastic plate was modeled with three supports at each end.

A load distribution of 20.5% 59% 20.5% over the supports was found, for a load of 500
kN. A rough estimation beforehand expects the load to divide over the three supports
with a ratio of 25:50:25, the model corresponds with that notion.

Figure 149 load distribution over the three supports
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Numerical model 2 Elastic plate with three girders

General information plate

Concrete class: C45/55.
Concrete density: 2500 kg/m?.
E-modulus: 36300 MPa.
G-modulus: 15125 MPa.
Poisson ratio: 0.2 [-]
FEM-model: orthotropic plate.
Linear numerical model.
Thickness: 100 mm.

Spring supports.

Spring stiffness: 59.5 MN/m.
Crossbeams: 0.

Amount of girders: 3.

Size 2D-plate element: 0.25 m.
Plate theory: Mindlin-reissner.
Type solver: direct.

General information girder

Concrete class: C55/67
Concrete density: 2500 kg/m®.
E-modulus: 38400 MPa.
G-modulus: 15917 MPa.
Poisson ratio: 0.2 [-]

A: 0.2634 m?.

I,: 4.42%102 m?,

Wepy: 7.33%107% m?.
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Load distribution

After the basic model, T-girders were implemented as ribs to consider their effect on
the spreading of the load. The load distribution became 11.5 % 77% 11.5%, for a load of
500 kN. The critical girder takes up more of the load. This change is explained by the
increased bending stiffness of the plate due to implementing the T-girders as a ribs under
the loaded area. This stiffer part takes up more of the load and directly transfers it via
the heavily loaded T-girder to its supports, and thus distributes it less laterally via the
slab and to the other girders.

V4

Figure 150 cross section beam

Figure 151 plate with three girders
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Numerical Model 3 Elastic plate with three girders and two crossbeams

General information plate

Concrete class: C45/55.
Concrete density: 2500 kg/m?.
E-modulus: 36300 MPa.
G-modulus: 15125 MPa.
Poisson ratio: 0.2 [-]
FEM-model: orthotropic plate.
Linear numerical model.
Thickness: 100 mm.

Spring supports.

Spring stiffness: 69.3 MN/m.
Crossbeams: 2.

Amount of girders: 3.

Size 2D-plate element: 0.25 m.
Plate theory: Mindlin-reissner.
Type solver: direct.

General information girder

Concrete class: C55/67
Concrete density: 2500 kg/m?.
E-modulus: 38400 MPa.
G-modulus: 15917 MPa.
Poisson ratio: 0.2 [-]

A: 0.2634 m>.

I,: 4.42%102 m*.

Wey: 7.33%1072 m?.

General information crossbeam

Concrete class: C45/55
Concrete density: 2500 kg/m?.
E-modulus: 38400 MPa.
G-modulus: 15917 MPa.
Poisson ratio: 0.2 [-]

Cross section: 810*350 mm.
A: 2.84%10" m?.
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I,: 1.55%102 m™.
Weyy: 3.83%1072 m?.

H#10

B 350

Figure 152 cross section cross beam

A
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Load distribution

The next step was to build on the previous model by adding crossbeams which are
present in the lab prototype (Figure 153). The load distribution now becomes 32.5 % 35
% 32.5 %, for a load of 500 kN. The spreading of the load has increased, causing the
critical girder to be loaded with almost a third of the total load (of one side of the deck).
This significant increase in spreading is caused by the inserted concrete crossbeam.

Figure 153 plate with three girders and two crossheams

Hidden capacity of thin prestressed concrete deck slabs with T-beams 189



Numerical model 4 Elastic Plate with four girders
General information plate

Concrete class: C45/55.
Concrete density: 2500 kg/m?.
E-modulus: 36300 MPa.
G-modulus: 15125 MPa.
Poisson ratio: 0.2 [-]
FEM-model: orthotropic plate.
Linear numerical model.
Thickness: 100 mm.

Spring supports.

Spring stiffness: 60.9 MN/m.
Crossbeams: 0.

Amount of girders: 4.

Size 2D-plate element: 0.25 m.
Plate theory: Mindlin-reissner.
Type solver: direct.

General information girder

Concrete class: C55/67
Concrete density: 2500 kg/m?.
E-modulus: 38400 MPa.
G-modulus: 15917 MPa.
Poisson ratio: 0.2 [-]

A: 0.2634 m>.

I,: 4.42%102 m’.

Way: 7.33%102 m?,
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Load distribution

In the lab prototype four girders are present in the bridge. Model 4 takes a look at a
plate with four girders. The load distribution is 11 % 73% 9% 7%, for a load of 500 kN.
The extra girder and deck surface area causes an increase in spreading relative to model
2. The effect on load spreading of this added girder is not as strong as by addition of the
crossheam as shown in Model 3.

Figure 154 plate with four girders
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Numerical model 5 Elastic plate with four girders and two crossbeams

General information plate

Concrete class: C45/55.
Concrete density: 2500 kg/m?.
E-modulus: 36300 MPa.
G-modulus: 15125 MPa.
Poisson ratio: 0.2 [-]
FEM-model: orthotropic plate.
Linear numerical model.
Thickness: 100 mm.

Spring supports.

Spring stiffness: 71.37 MN/m.
Crossbeams: 2.

Amount of girders: 4.

Size 2D-plate element: 0.25 m.
Plate theory: Mindlin-reissner.
Type solver: direct.

General information girder

Concrete class: C55/67
Concrete density: 2500 kg/m?.
E-modulus: 38400 MPa.
G-modulus: 15917 MPa.
Poisson ratio: 0.2 [-]
A:0.2634 m*.

I,: 4.42%102 m?,

Wey: 7.33%107% m?®.
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General information crossbeam

Concrete class: C45/55
Concrete density: 2500 kg/m?.
E-modulus: 38400 MPa.
G-modulus: 15917 MPa.
Poisson ratio: 0.2 [-]

Cross section: 810*350 mm.
A: 2.84*%10" m>

I,: 1.55%102 m*,

Weyy: 3.83%1072 m?.

Load distribution

The final model takes into account the whole the lab prototype: four girders and two
crossbeams. The load distribution is 31% 32% 25% 12%, for a load of 500 kN. It is clear
that adding crossbeams has a significant effect on the load distribution. Causing the
support of the critical girder to be loaded with roughly a third of the load. The added
fourth girder, compared to Model 3, causes the small difference in loading of 3%.

Figure 155 plate with four girders and two crossbeams
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Figure 156 eccentricity of crossbeam in numerical model

The effect of the eccentricity of the crossbeam is also relevant. The eccentricity relative
to the top of the deck is 190 mm as stated by (Amir, 2014). If one were to increase this
eccentricity the spreading of the load increases.

The differences in spring stiffness is caused by the difference in self-weight of each
model.
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Conclusions Linear distribution

Every single one of the models display a significant load distribution under linear
conditions. Meaning that the critical loaded girder, the girder expected to fail in shear,
can take up more load than it would have, if loaded solely. In reality the critical girder
is never loaded with a full hundred percentage of the load since it spreads and distributes
the load to the neighbor girders via the plate

350mm,,_ 350 mm

T~ 'S Cd
A !
190 mm :
A - )
3 k i
" |
1
810 mm 'l‘ra_gsvex‘se. !
bearm | 1
’ |
i
|
i
i
A4 ;
AN »
300 mm Girder [
4 !

Figure 157 eccentricity crossheam in prototype

Table 25 overview input and output of the five models

1 0 3 17.7 59
2 3 3 59.5 77
3 3 3 X 69.3 36
4 4 4 60.9 73
b) 4 4 X 71.4 32
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Appendix C

Neighbor beam experiment

Introduction

It was questioned what the influence of the load location is in chapter 7. So an
experiment on the prototype ‘Brienenoord is discussed where the loading point changes

location. The same numerical plate model is used again. The comparison is made to
verify the model and see how the results obtained from the model hold up to reality.
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Background experiment

The tests were done on the lab prototype of the ‘Brienenoord’. The goal of the
experiment was to see how the loads distribute over the neighbor beams before and after
cracking of the loaded main beam (Ensink, 2014). The experiment was executed on the
middle of the second bottom beam, between prestressing point FP15 and FP16 (Figure
158).
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Figure 158 loading point of experiment (Ensink, 2014)
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The first test loaded the beam up to 1700 kN, but then the test was stopped, because
diagonal cracks appeared in the web of the girder and insufficient shear capacity was
possible. With analysis of the test results and use of hand calculations, it was assumed
that the load could be increased up to 2200 kN, while maintaining a certain safety margin
However, the machine, that was used, could only go to a load of 1950 kN. Figure 159

shows the load displacement curve from the test.
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1000

Load [kN]

800

800

of i i i i i i i i i i i i i
2 4 8 B 10 12 14 16 18 20 22 24 28
Displacement [mm]
Meighbouring beam (#1)

Meighbouring beam (#3)|

Figure 159 load-displacement graph bottom three girders during the test (Ensink, 2014)

Loaded beam (#2)
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Activation of membrane action

In Chapter 5 and 7 it was discussed that membrane action could activate earlier in the
linear loading phase of the main beam, before it reaches its linear capacity. Chapter 7
suggest numerically that this assumption is plausible. However, the test results in this
chapter do not show a significant increase of capacity and seem to reach a plateau in the
loading graph (Figure 159).

And redistribution of the loads does not seem to be taken place. A reasonable
conclusion is that membrane action is possibly not activated, or not to its full extent.
This means that the slab strength contribution is also not present, or not very large
(Figure 159). There are a few possible reasons why membrane action is not activated:

¢ Too high slenderness ratio 4

o Long clear span
o Thin deck

¢ Critical deflection criteria &yey girdaer > Omiaspan NOt met

For the first reason, concerning the slenderness, the criteria from Part 1 are
reconsidered. These criteria need to be met for membrane action to activate, and the
slenderness condition in particular is important. Again, the considered clear span is 3450

mm (Figure 158).

1=33%_1345 > 20

100
¢ h=100mm < 150 mm

Since the slenderness criteria is not met, the system does not have a restraint factor of
1n = 0.5 or higher. This means that the deck is not laterally restraint enough according
to the criteria. This is a possible reason why membrane action does not activate. And it
is added, that when one of the criteria is not met, membrane action cannot be assumed
to be present in the system, and is not allowed to be calculate with, according to the

research from part 1.
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The other reason is the critical deflection condition: the relative girder deflection needs
to exceed the slab midspan deflection. It is possible that this condition was not met. This
is required to be met to activate membrane action. This was checked numerically.

The considered clear span was 3450 mm. For a slab bending capacity Fsqp = 172 kN,
a slab midspan deflection 84, = 6crip = 10 mm was determined (Figure 159). This
bending capacity has not changed and was already determined (Table 9).

In the test results, at a load of 1500 kN, a displacement of 12.5 mm is reached with a
relative girder displacement of, after rounding, 10 mm (after subtracting the average
deflection from the neighbor girders of 2.5 mm). And it is shown that the critical

deflection condition is met (Figure 161). Syelgirder = 8crit = 10 mm

- i.::‘—""; = . \ o
Bslab = Smt 10 mm ST

A o P ST P P P P P

180D - ene i e

2

| 1 1
225 4 L] 8 10 1212.5 14 16 18 20 2 24 28
Displacement [mm)]
Loaded beam (#2) ——— Mesghbouring beamn (#1)

Meighbouring beam (#3)

Figure 161 critical displacement and critical girder load in load displacement graph
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Conclusions

Ultimately, the numerical model and Figure 161 show that the relative girder
displacement does exceed the midspan displacement. This means that membrane action
would activate. So the more likely reason why it does not activate, is because the deck
is too slender.

The lateral restraint also depends on the position of the load relative to the end cross-
beams. And the restraint stiffness increases if the load area moves toward the ends of
the bridge, closer to the diaphragms. Therefore, by loading the deck exactly in the middle
(Figure 158), the loading point is placed the furthest away from the end cross-beams and
is at its least stiff point.
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Neighbor experiment numerical model

A comparison between load displacement graphs is made to determine a range wherein
a linear numerical model is applicable to this experiment, and where it is safe to work
with a linear model. The same three-girder numerical model from the previous chapters
is used, only now the loading point is relocated to the middle of the main beam (Ensink,
2014).First, the experiment behaves stiffer than the three-girder numerical model in the
linear phase (Figure 162). And generally the numerical model shows a safe underestimate
of the the test (Figure 164). This is apparent up till the maximum load of the test around
1950 kN, here the numerical model starts to deviate around 24 mm (Table 26).

Furthermore, end beams were added (Figure 163) and the deflections were determined
again, and plotted in the same graph (Figure 164). Now it is shown that the numerical
model seems more similar to the test. With end beams the numerical model starts to
deviate at 1600 kN. So the presence of the end beams influences the load-displacement
behavior significantly, this is mentioned and taken into account in later chapters.

Figure 162 three-girder numerical model: neighbor test with point load in the middle of the main beam

Figure 163 three-girder numerical model with endbeams: neighbor test with point load in the middle of the main beam
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e FOUL girders with endbeams

i Three girders with endbeams

E_T__h_ree girders: '

1 1 1 1 1 1 ] 1 1 1

ol
2 4 a B 10 12 14 18 18 20 22 24 28
Displacement [mm]
|- -+ Loaded baam (#2) Mg hineuring Bear (81 Neighbouring beam (#3)]

Figure 164 comparison main loaded girder load displacement graph experiment vs linear plate model

Table 26 comparison main girder displacements Table 27 comparison neighbor girder displacements
experiment vs model experiment vs model
Load Displacement [mm)] Load [kN] Displacement [mm]|
[kN]
‘ Experiment Experiment
200 1.5 2.5 200 0,5 0,7
400 2.5 5.1 400 0,7 14
600 4 7.6 600 1,2 2.9
800 5.5 10.2 800 1,8 2,9
1000 7 12.7 1000 2 3,6
1200 8.5 15.3 1200 2,2 43
1400 11 17.8 1400 3 o)
1600 15 20.4 1600 3,2 2,8
1800 19.5 22.9 1800 3,8 6,5
1950 26 24.8 1950 4 7
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Finally, the neighbor beams of the numerical model behave less stiff than the ones of
the experiment (Figure 165). The comparison between the neighbor girder displacements
is given in Table 27, where the experimental displacements are estimated with use of the
load displacement graphs in Figure 164.

Conclusions
Overall, all numerical models show a safe underestimate up to a certain point. The

three-girder model with end beams deviates at 1600 kN from the experiment, and the
four-girder model with endbeams at 1500 kN.
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Figure 165 comparison neighbor girder load displacement graph experiment vs linear plate model

Hidden capacity of thin prestressed concrete deck slabs with T-beams 204



Calculation neighbor experiment

A calculation is given where it is assumed that membrane action is activated. This is
done to see what the potential capacity of the slab is (using the same method from
Chapter 7). A numerical three-girder model is considered, for its symmetry, to determine
the relative girder deflections.

¢ Build a numerical linear plate model

Only three beams are modeled to simplify the calculation and easily determine the
load distribution, relative girder and slab midspan displacements.

Figure 166 load distribution of the model
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¢ Determine the linear load distribution of the model

At a load of 200 kN, the linear elastic distribution of the plate was determined (Figure
166): 15.5% 69% 15.5%. Meaning that, after replacing the loading point in the middle of
the critical girder, the load distribution changed slightly. The main beam takes 69 percent
of the load, previously this was 72 percent. So, the loading point does indeed have an
influence on the linear load distribution as stated in Chapter 6.

Using the reaction forces from the experiment (Ensink, 2014), the linear load
distribution can be determined roughly as well. Here it is shown that for the three bottom
girders, the middle one is loaded with about 54% of the load. This differs from the model
and might explain differences regarding the critical girder load determined with the model
and the one found in Figure 159. Ultimately this difference in load distribution causes
differences in the calculated total slab capacity (Equation (45)).

¢ Establish 8girdermax

In the experiment the girder reached a maximum load of 1950 kN with a maximum
displacement 8girger,max = 26 mm (Figure 159).

¢ Determine capacity of single slab strip

The Rankin method is used with simply supported conditions (SS), fixed ended (FE),
and (SS/FE) (Table 28).
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¢ Determine the slab midspan displacement

A section is made to determine the slab midspan displacement (Figure 167). First, the
slab bending capacity for Rankin (SS), where the slab is assumed to be simply supported,
was determined: Fg,, = 133.

The midspan displacement for which the slab bending capacity was reached, was
determined with the model (Figure 167).

The same was done for Rankin (SS/FE) and (FE), and the midspan displacements are
given in Table 28. The considered clear span for this method is 3450 mm.

The slab midspan displacements are considered as the critical deflections: 6514 = Ocrit-
The relative girder deflection need to exceed the critical deflections for membrane action
to activate.

Figure 167 midspan displacement for Rankin (SS) for loading point at middle of the girder

Table 28 overview of midspan displacements and critical girder loads

Method Slab Bending capacity Slab Midspan/Critical

Fstab 1ower [KN] displacements 8gjap = 8¢pig[mm]
Rankin (SS) 133 7.6
Rankin(SS/FE) 172 9.8
Rankin (FE) 178 10.1
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¢ Determine the critical girder load

The loading point has changed location, meaning that the midspan displacements are
different, and this means that the relative girder displacements are different. Moreover
the loads at which these girder displacements are reached, the critical girder loads, are
also different.

Fcritical girderload — 850 kN

B

Fo, = 133kN

8qab = Ocpit = 7.6 mm 8 elgirder = Ocyit = 7.6 mm

Figure 168 determining critical girder load

Table 29 slab displacement, critical displacement, and critical girder load

B
Rankin (SS) 133 7.6 850
Rankin(SS/FE) 172 9.8 1075
Rankin (FE) 178 10.1 1113
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¢ Determine the activated beam span

The activated beam span and slab area is determined with &gy giraer = 26 mm and
the critical displacement of 7.6 mm. A length of 8 m is activated (Figure 169).

¢ Determine the effective width of a single slab strip

The effective width b,rr = 3650 mm (Figure 170), the same as calculated in Chapter
7, since bridge parameters such as the considered span have not changed. Only the

load point changed locations.

Measurements In mm

Figure 169 activated beam span (not on scale)

36|50 Effective width

Measurements in mm

7.6

Figure 170 effective width (not on scale)
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¢ Determine the total slab capacity

A length of 8 m is activated. And with an effective width of 3.65 m and an assumed
bending capacity of 133 kN per activated slab strip, this gives the following total slab
capacity:

activated slab span[m]

n[-]

~ effective width slab strip[m]

total slab capacity Fgjap upper[KN] = n * bending capacity slab strip

Fslab,upper =nx* Fslab,lower

_ 8 4
=365~

Folabupper = 2-2 * 133 = 292 kN
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¢ Determine the girder load and total bridge load

Since the girder is loaded in the middle, the flexural shear capacity Vyq max = 1189 kN

(Vugts, 2012). First, converting this load with equilibrium of forces gives: Fpq, = 2 *
Vyamax = 2378 kN.

Figure 171 displacement neighbor test

Fmax
350 5650 | 5650 350
= 5 . e __'_____‘ - = __f’:.
5
Fy

Figure 172 shear distribution neighbor test

Hidden capacity of thin prestressed concrete deck slabs with T-beams 211



And then the girder load is converted to an equivalent bridge load using the load

distribution:
Fsingle
Fbridge == W == 3446 kN

The linear girder load, 3446 kN, after calculating the equivalent bridge load, is added
to the slab capacity, since it is assumed that slab and girder work together, as soon as
the relative girder displacement exceeds the midspan displacement, already shown before.
The results are given in Table 30. A visual representation of the lower and upper bound
limit is given (Figure 174).

As a quick check the lower and upper bound failure load is converted for a single

girder, using the load distribution:
0.69 * 3446 = 2378 kN and 0.69 * 3783 = 2610 kN

This means the girder failure load is calculated to be between 2378 and 2610 kN (Figure
175), which is plausible since the single beam test indicated a possible strength of about
3000 kN.

load distribution Firidee = 3446 kN
F, ,dr, ~2378 kN '

Figure 173 converting girder load to bridge load

Table 30 results total deck capacity

Rankin (SS) 133 8 292 3738
Rankin(SS/FE) 172 7 330 3776
Rankin (FE) 178 6.9 337 3783
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Figure 174 range of the bridge’s total load: lower, and upper bound limit using the numerical model
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Figure 175 load on the single girder after load distribution for the lower and upper bound limit values
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Conclusions

Up to 24 mm, the linear plate model with three girders is a safe underestimate of
reality. After the maximum test load of 1950 kN, the test was stopped, so the deflections
after that are not know. But the rest of the nonlinear behavior is estimated and compared
with the numerical model.

It is shown that the numerical model overestimates the total load after 24 mm. For
the part between 24 and 48 mm, a nonlinear numerical model is needed or one can
calculate with a lower stiffness for the main beam in the numerical model.

Comparing the results from Chapter 8 with Chapter 7 shows a few differences. First,
for the load point in the middle of the deck, the activated span is shorter (Table 30).

Second, the difference in activated span in turn gives a difference in total deck capacity,
the difference in strength is about 40 to 50 kN. So the contribution of the slab for the
failure load is less when loaded in the middle. The contribution of the beam, though, is
higher in this case.

But ultimately, the strength contributed by slab membrane action, considering both
situations, never exceeds an average strength of 450 kN. The reason why is because the
effective width is long, 3.65 m, shown in Equation (45). And the effective width is
dependent on the considered clear span, which is 3.45 m, long as well. Both resulting in
a low total slab capacity that can be calculated.

So, further research is done by placing the beams closer to each other, reducing the
considered span and making the slab less slender. And the total slab capacity will be

determined again and compared.

4000 3783~

-total load overestimation

load(kM]

nonlinear model needed

(=]
=
L]
[
(=]

30

displacement [mm]

— numerical mode — neizhbor experiment plausible d eflection

Figure 176 overestimation of the total bridge load
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Parameter study of deflection field and slenderness

Introduction

In this chapter the deflection field of the neighbor beams is researched with use of the
numerical model. Furthermore the slenderness issue is addressed: the neighbor beams are
placed closer together to study the effect of the slab’s considered span and the span/depth
ratio. And then the comparison is made between two situations, for a long span and a
shorter span. Finally a calculation is done to compare the slab’s contributed strength in

both situations.
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Deflection field neighbor beams

A few points are taken as starting points: the loads and deflections of the neighbor
girders are determined there (Figure 177). Then these deflections and loads are compared
with the ones from the numerical model, for two spans, 1650 and 3450 mm (Table 31).

Table 31 shows similarities between the displacements of the experiment and the
model: the difference in displacement never exceeds 0.5 mm and increases as the load
increases (Table 31).

When the shorter span, 1650 mm, is considered, differences in displacements are
noticed. The displacements of the neighbor girders increased, almost twice as much
(Table 31). This is because the girders are now placed closer to the load, meaning that
the load path is shortened, and the load gets distributed faster to the neighbor girders,
causing them to be loaded more and displace more. Finally this means that the main
girder displaces less for the shorter situation, since it distributes more of the load to the
neighbor girders (Table 32).

Displacement [mm)]

Loaded beam (#2) ——— Meighbouring beam (#1)

Figure 177 displacements and loads from the experiment to compare with the numerical model (for c.t.c 1650 and
3450 mm)

Neighbouring beam (£3)]
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Table 31 comparison relative displacement neighbor girders considering two clear spans

6rel,experiment [lnln] 6rel,model [HHH] arel,model [IIIIII]
L=3450 mm L=3450 mm L=1650 mm
500 1 1.1 2
1000 2 2.3 3.9
1500 3 3.4 5.9
1950 4 4.5 7.6

Table 32 comparison relative displacement critical girders considering two clear spans

Load Orelexperiment [mm] Orelmoder [Mm] Orelmodel M|
[kN] L=3450 mm L=3450 mm L=1650 mm
500 2 3.5 2.8

1000 5) 7 5.6

1500 9 10.4 8.4

1950 22 13.6 11

The displacements of the experiment in Table 32 are determined by using the load
displacement graph in Figure 177. In Table 32 for the load 500 till 1500 kN, the numerical
model shows a higher displacement than the experiment, this has to do with differences
between the load distribution. In the numerical model the loaded beam takes more of the
load than in the experiment. The difference in displacement is not that large, in the order
of 1 to 2 mm. But for the maximum load of 1950 kN a significant difference is noted.
Probably due to the fact that the beam in the experiment behaved nonlinear, displacing
more as the load increased, whereas the model is linear. This was already mentioned in
Chapter 8, and any calculations done above 1950 kN should be considered with caution,
since the numerical model deviates there.

For simplification of the calculation in Chapter 5 till 8 the deflection was assumed to
be linear with a plastic hinge located at maximum deflection, and the rest of the girder
acted as rigid bodies. In reality the deflections of the girders display a more parabolic

nature (Figure 178).

Hidden capacity of thin prestressed concrete deck slabs with T-beams 217



|z

Figure 178 relative deflection fields girders

Figure 179 displacement of neighbor girder at the middle of the girder
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Calculation for shortened situation (1)

To study the parameter of the span/depth ratio, the calculative process is done again,
but this time the considered clear span is 1650 mm, creating a less slender situation. A
new model uses the shorter clear span, placing the girders closer together, with the point
load still in the middle. Other geometrical and material properties stayed the same.

Figure 180 loading point in the middle of the critical girder for a shortened situation

Figure 181 load distribution of the model
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The linear load distribution was determined (Figure 181). This gave the following load
distribution: 30% 40% 30%. Meaning that after placing the neighbor girders closer, the
load distribution changed, the critical girder now takes 40 percent of the load. This result
is expected since the load gets distributed faster over the shorter span to the neighbor
girders, increasing the spreading. Again this is an indication that for a situation with
more than three girders, such as ‘De Vecht’, it is wise to consider a numerical model with
at least five girders, because of the high load spreading and possible participation of
multiple girders, outside of the main three.

Placing the girders closer together results in a higher spreading, but also means that
less of the load can be redistributed if the main girder fails, and assuming the girder
properties stay the same. For the short span, 1650 mm, redistribution is possible up to
80%. If this occurs, the two neighbor beams are assumed to fail. This means the neighbor
beams and their respective capacities are governing for the bridge.Simply put, the bridge
capacity is two times the neighbor beam capacity.

For the long span, 3450 mm, 100% redistribution was possible. This is important when
modelling and calculating with the deck of ‘De Vecht’.

T N <

1650
Linear distribution  30% 40% 30% =100%
Redistribution 20% 0% 20%
50% 50%
Failure 40% 40% = 80%

Figure 182 linear load distribution for numerical model for shorter span
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The Rankin method is used, where simply supported (SS), fixed ended (FE), and the
situation between these two (SS/FE) were considered (Table 33). The slab strip bending
capacity increased, because the span was shortened.

First the midspan displacements are determined: a section in the numerical model is
made to determine the midspan displacement (Figure 183). Then the midspan
displacement, for which the slab strip bending capacity was reached, was determined
with the numerical model (Figure 181). The shorter span is also the reason why the
midspan displacements are smaller (Table 28), the slab acts stiffer, displacing less. An
overview of the midspan displacements is given in Table 33.

The midspan displacements are the criteria that the relative girder displacements need
to exceed in order for membrane action to activate in the slab. Now the numerical model
(Figure 181) is used to determine at which loads these midspan displacements are
exceeded, the critical girder loads (Table 33). Here it is found that the critical girder
loads are larger than for the longer situation (L = 3450 mm). The reason why is because
the shortened slab acts stiffer, meaning that the critical girder load is reached later.

Figure 183 midspan displacement for Rankin (SS) for loading point at middle of the girder

Table 33 overview of midspan displacements and critical girder loads

Rankin (SS) 226 4.6 1763
Rankin(SS/FE) 239 A7 1800
Rankin (FE) 233 47 1800
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The new effective width berr = 1850 mm (Figure 184). Previously the effective width
was 3650 mm, for clear span L = 3450 mm. The effective width has changed and reduced
significantly, since the considered clear span is reduced as well. The change in effective
width eventually effects the total deck capacity.

befr=cy+2xLe+2%h=200+2%725+ 2100 = 1850 mm
¢y = length of load area in y — direction

L, = effective span of the slab subjected to arching force

 _Ls_c_1650 200
eT T2 p  fedmm

¢, = length of load area in x — direction
L¢ = clear span of considered slab = 1650 mm
Ly = 1650 mm (assumed shorter span)

W
L
= 200 mm
_ﬁ
[ ]
i
725
L= L2-C/2

1650

100 725 200 725 100

Figure 184 effective width

1850 effective width

46

Measurements In mm

46

Figure 185 effective width and activated span for L=1650 mm
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9300

Fmax

Measurements In mm

Figure 186 activated girder length (not on scale)

Now the activated girder span and slab area can be determined with the maximum of
26 mm and the critical displacement of 13.8 mm. A length of 5.3 m is activated (Figure
169), and an effective width of 1.85 m and an assumed capacity of 226 kN per activated

slab strip, gives the following total provided deck capacity:

activated slab span

n= effective width slab strip

total capacity activated slab area = n * capacity slab strip

5226 = 1136 kN

Hidden capacity of thin prestressed concrete deck slabs with T-beams

223



Table 34 results total deck capacity L=1650 mm for neighbor test model

Method Slab Activated Total
strip girder deck
bending  span [m]  capacity
capacity [kN]
[kN]

Rankin (SS) 226 9.3 1136
Rankin(SS/FE) 232 9.2 1154
Rankin (FE) 233 9.2 1158

Table 35 results total deck capacity L=3450 mm for neighbor test model

Method Slab Activated Total
strip girder deck
bending span [m]  capacity
capacity [kN]
[kN]

Rankin (SS) 133 8 292
Rankin(SS/FE) 172 7 330
Rankin (FE) 178 6.9 337
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Conclusions shortened span neighbor test

There is a difference in total deck capacity. Partly, this has to do with the fact that in
Equation (45) the effective width is very large, 3650 mm, this is for the long span, 3450
mm. When the span is reduced to 1650, the effective width also is reduced, to 1850 mm,
meaning the total activated span will be divided by slab strips with a smaller effective
width. Leading to a total deck capacity that is more than three times than that was
found previously (comparing Table 34 and Table 35). The larger total deck capacity
seems plausible, since the deck was shortened, making it act stiffer and more restraint,

which would lead to more membrane action and a higher capacity.
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Calculation for shortened situation (2)

A shorter clear span is also considered for the earlier test situation, with the point load
located near the supports. The same clear span is used, 1650 mm, and the same
calculative process is followed. Results are shown in Table 36 and Table 37. Table 36
shows the results of the shortened situation, L = 1650 mm. And Table 37 shows the
results from Chapter 7 for L = 3450 mm.

Comparing Table 36 and Table 37 shows that the shortened situation gives a higher
deck capacity compared to the longer situation. This is caused by a smaller effective
width, causing the deck to be divided in smaller strips of concrete with a higher capacity
of their own, resulting in a total deck capacity almost three times larger than found

previously.

Table 36 results total capacity for L=1650 mm

Method

Slab
strip
bending
capacity

[kN]

Activated

girder

span [m]

Total
deck

capacity

[kN]

Rankin (SS) 226 10.59 1294
Rankin(SS/FE) 232 10.37 1302
Rankin (FE) 233 10.37 1307

Table 37 results total capacity for L=3450 mm

Method Slab strip Activated Total

bending  girder deck

capacity  span [m] capacity

[kN]

[kN]

Rankin (SS) 133 8.9 325
Rankin(SS/FE) 172 8.2 386
Rankin (FE) 178 8 390
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Summary

Conclusions

Comparing the results from the neighbor and shear test models from Table 34 to Table
37 gives a few conclusions, and a clear overview of the tables are given in Appendix C.

First, the location of the load is significant, it influences the whole calculative process
and causes differences when comparing different loading situations, for example loading
in the middle of the girder (Chapter 8), or near the supports (Chapter 7). In general
when the point load is in the middle of the girder, the total deck capacity, theoretically
activated with membrane action, is lower than when loading the girder near the supports.
But, when loading the middle of the girder, the girder shear capacity is higher. Ultimately
resulting in a higher total theoretical capacity when the load is in the middle of the
girder.

Second, the less slender the bridge deck is, shorter or thicker, the more capacity it has.
The shorter situations result in slab strips with each a smaller effective width and higher
capacities. Which leads to a higher total deck capacity, and a higher total bearing
capacity.

Ultimately the capacity of the deck due to membrane action can be calculated with
certain methods. But slenderness issues need to be taken into account, and one must be
aware of the consequences following the change of the loading location.

List of important parameters

Slenderness, the ratio between clear span and deck thickness
Effective width of a single slab strip (dependent on clear span)
Location of the point load

Capacity of the girder (changes for different loading locations)
Capacity of a single slab strip (effected by the slenderness)
Total deck capacity (dependent on strip capacity)

® & & 6 o o o

Total capacity (influenced by capacity of girder and deck)
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Short overview results parameter study

Neighbor experiment

Table 38 results total deck capacity L=1650 mm for neighbor test model

Method Slab Activated Total
strip girder deck
bending span [m]  capacity
capacity [kN]

[kN]
Rankin (SS) 226 9.3 1136
Rankin(SS/FE) 232 9.2 1154
Rankin (FE) 233 9.2 1158

Table 39 results total deck capacity L=3450 mm for neighbor test model

Method Slab Activated Total
strip girder deck
bending span [m]  capacity
capacity [kN]
[kN]

Rankin (SS) 133 8 292
Rankin(SS/FE) 172 7 330
Rankin (FE) 178 6.9 337

Shear experiment

Table 40 results total capacity for L=1650 mm for shear test

Method Slab Activated Total
strip girder deck
bending  span [m] capacity
capacity [kN]
[kN]

Rankin (SS) 226 10.59 1294

Rankin(SS/FE) 232 10.37 1302
Rankin (FE) 233 10.37 1307
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Table 41 results total capacity for L=3450 mm for shear test

Method Slab strip Activated Total
bending  girder deck
capacity  span [m] capacity
[kN] [kN]

Rankin (SS) 133 8.9 325
Rankin(SS/FE) 172 8.2 386
Rankin (FE) 178 8 390
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Appendix D

Overview research deck slabs

Table 42 and Table 43 show an overview of the research on the load displacement
behavior of concrete slabs. Because of the many differences between the researches, the
following is roughly divided in the first three that discusses restrained slab strips, and
the last two that discusses prototype models on scale.

Table 44 shows test results from different researches for restrained reinforced concrete
slabs. Here a value %” of 0.5 with span to depth ratios in the range 20 to 40, seems to be
conservative estimate. Where §,, is the central deflection for the ultimate load. For

smaller span to depth ratios, the ultimate load is reached for significantly smaller % than

0.5.

These tests are commonly done on thinner deck slabs of about 40 to 50 mm, which is
used to create Figure 188, where the deflection is given in mm. Here it is estimated that
in the slenderness range 10 to 20, a deflection from 15 to 20 mm occurs, and for
slenderness 20 to 40, a deflection from 20 to 25, if the linear trend is followed. It is noted
that the graph is comprised of the data from Table 44, where most of the slabs are
square, meaning they are supported on four sides, and behave more like two-way
supported slabs than one-way. This is an important note when using the information
from Figure 187 and Figure 188.
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Table 42 overview research load displacement for laterally restrained reinforced concrete slab strips

Research ~ Failure mode Ultimate  Concrete  Reinforcement — Thickness  Slen-
deflection  Strength [mm] derness
[mm] [MPa] []
(Muthu, Snapping 14.2- | 8.3-16.9 34-54 Reinforced steel | 50 and 65 | 8.5 and
2006) reinforcement | 64 11
(Taylor, Crushing 46- 30-50 30-100 Reinforced steel | 150 9.5
Rankin, 500
& D.J.,
2001)
(Taylor & | Crushing/ben- | 33- 20-30 40-80 GFRP (glass 150 9.5
Mulin, ding 210 fibre reinforced
2005) polymer)
reinforcement
(Taylor & | Crushing 295.1- | 11.4-194 | 66.3-72.6 | GFRP 150 9.5
Tharmara 343.5 reinforcement
jah, 2010)
(Taylor & | Crushing 295.1- | 14.6-19.4 | 65.7-69.3 | BFRP (basalt) | 150 9.5
Tharmara -343.5 and GFRP
jah, 2014) reinforcement

Table 43 overview research load displacement for scale prototypes

Research Failure Ultimate Scale  Concrete Reinforcement Thickness Slender-

mode deflection Strength [mm] ness [-]

[mm] [MPa]

(Poston, Punching | 224 | 5.6 half - Prestressed 210 5.7
1988) Shear scale steel tendons

(expected)
(Marshe, Punching | 72- | 7.3-10.1 | 1/4.04 | 40 Prestressed 43 13.2
1997) Shear 95 CFRP

tendons

(Amir, Punching | 257- | 4.15- half 65 Prestressed 100 16.5
2014) shear 359 | 13.96 scale steel tendons
(Batchelor, | Punching | 12- | 3-8 1/8 - Reinforced 178 17.2
1987) shear 24 steel
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Table 44 measured central deflection/slab thickness at ultimate load of uniformly loaded laterelly restrained slabs

Number L [ B, o,
Investigator of Slabs I h h I,
Powell'>4 15 1.75 16 0.33-0.44 0.021-0.028
Wood'?3 3 1.0 30 0.5 0.017
Park'28 5 1.5 20 0.39-0.50 0.020-0.025
1 1.5 27 0.48 0.018
3 13 40 0.37-0.50 0.009-0.013
Brotchie and Holley'*" 4 1.0 20  0.36-0.57 0.018-0.029
3 1.0 10 0.10-0.11 0.010-0.011
Keenan'*'® 4 1.0 24 0.33-0.51 0.014-0.021
1 1.0 15 0.20 0.013
| 1.0 12 0.18 0.018
Hung and Nawy T 1.0 24 0.81-0.89 0.034-0.038
5 1.43 17 0.62-0.74 0.037-0.044
Black!??! 4 1.0 33 0.34-0.71 0.010-0.022
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(Muthu, 2006)

Table 45 details restrained slab stripa and summary test data (Muthu, 2006)

Slab  Edge beam Thickness Spacing of Cube Experimental Deflection at Ratio Edge rigidity
no dimension of slab rinforcement (mm) strength ultimate load ultimate load {Bye/ D) factor
(mm) (mm) fek (MPa) {Que) (kN) (e ) (mm) (A}
Shorter Longer
direction direction
(5y) {8x)
M1 150 = 300 50 150 150 435 19.6 12.81 0.26 0.03
M2 150 = 275 50 125 150 434 8.8 11.10 0.22 0.04
M3 150 = 250 50 95 150 50.57 35.2 16.81 034 004
M4 150 = 225 50 75 150 51.30 39.2 16.92 034 0.05
M5 150 = 200 50 63 150 5440 14.2 16.08 0.3z 0.06
Me 1530 = 300 (] 167 200 3473 21.0 8.25 013 0.07
M7 150 = 275 65 125 200 40.50 44 10.24 0.16 0.08
ME& 150 = 250 65 a5 200 45.30 416 10.82 0.17 0.11
M9 150 = 225 (] 75 200 53.60 4.8 12,71 0.20 o
MI0 150 = 200 65 63 200 54.36 64.0 13.89 0.21 0.13
e
17.5
251
15
=z 125 = 201
¥ ¥
E_ 10 ‘ng 15
-4 75 = o
= 104
5 =)
25 51 g
0 ol
1] 25 5 75 10 125 15 2.5 5 7.5 10 125
Central Deflection, mm Central Deflaction, mm
Figure 189 load deflection plot of partially restrained slabs M1 and M2 (Muthu, 2006)
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Figure 190 load deflection plot of partially restrained slabs M3 and M4 (Muthu, 2006)
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Figure 191 load deflection plot of partially restrained slabs M5 and M6 (Muthu, 2006)
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Figure 193 load deflection plot of partially restrained slabs M9 and M10 (Muthu, 2006)
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(Taylor, Rankin, & D.J., 2001)

Load, P (kN)

Rastraint, K,

H

150 mm

b =475 mm 1425 mm clear span I
h =150 mm . -
d =104 mm (Phasa 1 tesis)

Figure 194 model test load arrangement for F/E and L/R boundary conditions (Taylor, Rankin, & D.J., 2001)

Table 46 test variables (Taylor, Rankin, & D.J., 2001)

Phase Slab Slab Reinforcement Boundary fas [ Ratio Ratio
No. No. No. condition N Jmm? N fmm? ffe? K, JK.
I Sl I 068%T &B FIE+L/R 312 30 0-54 0-12
s2 2 0-68%T &B FIE+L/R 40-8 33 0-52 011
S3 3 0-68%T &B FIE+L/R 64-5 4-3 0-54 0-09
S4 4 0-68% T &B FIE+L/R 822 67 0-74 0-08
S5 5 068% T &B FIE+L/R 1011 49 0-49 0-08
S6 6 0-68% B S/S 34-8 23 0-39 nja
s7 7 0-68% B SIS 91-0 6l 0-64 nja
S8 8 0-68% B SS+L/R 1001 66 0-66 0-08
2 S9 9 0-68% T &B FIE+L/R 89-3 56 0-5%9 0-18
SI10 10 none FIE+L/R 90-5 53 0-56 0-18
SH I (0-68% centre FIE+L/R 968 6l 0-62 0-17
S|2* 12 0-68%T &B FIE+L/R 1010 64 0-64 0-17
SI3 13 fibres only FIE+L/R 104-9 68 0-66 0-17
Sl4 14 0-68% T &B FIE+L/R 39-5 30 0-48 0-29
SIS 15 0-68% T &B FIE+L/R 609 37 0-47 0-22
F/E =fixed end
L/R =lateral restraint
§/S=simple support
* guarter span load points

Table 47 comparison failure loads to predicted strengths (Taylor, Rankin, & D.J., 2001)

Phase Slab Failure BS 5400 Ratio QuUB Ratio Park Ratio
No. No. Load: F. Load: Actual / F. Load: Actual | F. Load: Actual [

kN kN BS 5400 kN QuB kN Park

Sl 135 91-5 [-48 125 [-08 |46-0 0-92

S2 145 93-4 [-55 138 105 162-3 0-89

S3 175 94-7 1-85 157 [l 190-0 0-92

54 |87 94-7 [-97 168 [l 2102 0-89

S5 192 94-7 203 178 |08 2319 0-83

56 46 462 |-00 462 [-00 46-2 |-00

S7 50 48-4 1-03 48-4 103 48-4 1-03

S8 183 646 2-83 153 120 2290 0-80

2 59 252 94-7 2-66 214 [-18 263-9 0-95

SI0 200 0-0 — 144 [-39 212-4 0-94

St 223 68-3 327 194 [15 222-5 |-00

512 500 194-2 2-57 453 [-10 569-6 0-88

SI3 225 0-0 — 158 |-42 2352 0-96

Sl4 195 93-3 2-09 153 |27 182-6 I-07

SIS 211 94-7 2:23 182 [-16 220-2 0-96

Average 2-04 [-16 0-94

Standard Deviation 0-65 0-12 0-07

Coeff. variation 31-9% 10-3% 7-8%
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Figure 195 load plotted against displaement slab S11 (Taylor, Rankin, & D.J., 2001)
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Figure 196 comparison of test phase 1 results—-load plotted against deflection under load point (Taylor, Rankin, &
D.J., 2001)
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Figure 197 summary of failure load vs concrete compressive strength (Taylor, Rankin, & D.J., 2001)
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(Taylor & Mulin, 2005)

250
200 A,
= 150
< —m—S5-40-SS
= —®—S-40-LR
3 —&—S-70-LR
-1 100 -0 G-40-SS
O G-40-LR
-y G-70-LR
50
-
0
0 5 10 15 20 25 30 35
Deflection (mm)
Figure 198 load vs vertical deflection at midspan (Taylor & Mulin, 2005)
Table 48 test results (Taylor & Mulin, 2005)
Slab no. feu {N/mmz} T [N/mmz} Failure load (kN) Deflection (@ failure (mm) Failure mode
S-40-SS 39.7 2.9 37.4 22 Steel yielding
S-40-LR 41.0 3.1 129.8 22 Crushing/bending
S-70-LR 85.0 29 210 30 Crushing/bending
G-40-8S 309 3.7 33 28 Crushing
G-40-LR 38.6 33 145 20 Crushing/bending
G-70-LR 67.9 3.3 200 21 Crushing/bending
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(Taylor & Tharmarajah, 2010)

. Load vs Deflection behaviour

350

| 300

Load kN

| 200

=== LR5-0.6%-12mm-125 T&E

o \ =a=No reinforcement
—#—LR5-1.2%-16mm-125T&B

Deflection mm

v 5 10 15 0 25 1]

Figure 199 load deflection behavior of three GFRP reinforced laterally restraint slabs (Taylor & Tharmarajah,
2010)

Table 49 test results of slabs (Taylor & Tharmarajah, 2010)

Test slab | Concrete | Effective | Fatlure Deflection
strength | depth load at failure
(N/mm™) | (mm) (kN) (mim)

SLAB1 63.1 119 3435 194

SLAB?2 726 N/A 2067 114

SLAB 3 66.3 117 2951 13.6
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(Taylor & Tharmarajah, 2014)
400 -

350 4

300 4

230 -

kM

200 4

Load;

150 4 == GFRP-0-6%-12 mm-125 T&E

== GFRP-0-6%~16 mm-300 T&E
100 4

== BFRP-0-6%-12 mm-125 T&B

50 - =#= BFRP-0-6%-~16 mm-300 T&E

0 5 10 15 20 25
Deflection: mm
Figure 200 load against deflection of the test slabs

Table 50 summary of the tests

Maximum strain at Crack width

Concrete Deflection at 150 kN: % of ultimate at 150 kN: Deflection at Failure
Test slab strength: MPa 150 kN strain mm failure: mm load: kN
GFRP-0-6%-12-125 T&B 681 /407 20% 0-33 19-4 3435
GFRP-0-6%-16-300 T&B 657 /445 17% 0-31 15-4 364-9
BFRP-0-6%-12-125 T&B 693 /385 10% 0-33 14-6 300-4
BFRP-0-6%-16-300 T&B 661 /356 16% 0-28 16-0 2951
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(Poston, 1988)
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Figure 201 load deflection curve for tested slabs (Poston, 1988)

Scale deflection: from 0.5 to 5.6 mm, with steps of about 1 mm. Scale load: 0 to 224
kN, steps of 45kN.
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(Marshe, 1997)
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Figure 202 net panel deflections with different TPL, loaded between tendons (Marshe, 1997)
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Figure 203 net panel deflections with different TPL, loaded above tendons (Marshe, 1997)
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Table 51 summary of test results (Marshe, 1997)

CFRP deck
Prototype
Ultimate Model punching
panel Cracking  punching  load Safety
TPL deflection load load (5) = 4.04°  factor
Panel (MPa) &, (mm) PookMN)y Py (kN) (kN) (6)/140
(1) (2) (3) (4) (5) (6) (7)
CwW 2.15 9.3 38 79 1283 9.2
CE 215 8.9 44 82 1343 9.6
NW 2.50 9.4 38 78 1276 9.1
NE 2.50 10.1 5 72 1178 8.4
SW 3.32 7.3 60 92 1503 10.7
SE 332 8.4 o 93 1551 11.1
(Batchelor, 1987)
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Figure 204 typical load-deflection curves for slabs of four beam bridge model (Batchelor, 1987)
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Appendix E

Breedte: 800 mm

Cross section
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Figure 205 cross section properties girder "de Vecht"

Breedte: 800 + 425 = 1225 mm

(incl. meewerkende breedte tussenstort)
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Figure 206 cross section properties girder "de Vecht'
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A, =398878.9536 mm”
z, =664.20 mm
z, = 485.80 mm

1, =6.0478e+10 mm?
W, = 9.1054e+07 mm?
W, = 1.2449e+08 mm’

A_ = 475378.9536 mm?2
z = 727.89 mm
zb =422.11 mm

| =7.0741e+10 mm*
Yy
W_ = 9.7186e+07 mm?>

W, = 1.6759e+08 mm?>
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Table 52 load distributions for the three-girder model, for the point loads at 4 and 2.25 m, with and without

crossbeams

Load location

[m]

Crossbeams

Load

percentage on

main beam [%)]

Percentage of
load after
redistribution

(7]

4 33.3 67
2.25 47 94
2.25 34 68
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Appendix F

Slab bending capacity calculations ‘De Vecht’
Empirical method (NZ/CAN)

Graphs from the Transit Bridge manual (new zealand transport agency, 2014) are used
to determine R;. Using interpolation, and reading the “composite” graph Figure 141,
where reinforcement percentage is 0.45% (0.44% prestress streel in transverse direction,
and 0.027 % reinforcement steel in longitudinal direction). This gives the following:

R; =903 kN
For:

f! = 23.3 MPa
h =180 mm,
Ly =2.239m

Calculated capacity:

% « 8200
Poyie = 100 =292 kN
¢=10%¢; =1.0x05=0.5
CRR < 40%, deck in good conditon, mostly the case in the Netherlands
y, =19
[=1.0

The code is for a load surface area of 250*250 mm and does not give a solution for
other wheel prints, such as the one used on ‘De Vecht’ (400400 mm).

So using linear extrapolation the capacity is estimated: % * Piyie = 467 KN

A characteristic load of 300 kN is present in LM1 (NEN-EN 1991-2, 2005).
So the unity check gives:

300_064
467 =]

The unity check is OK.
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Simplified method (UK)

Input:

, f
f. =0.8*%=23.3

mm?

h =180 mm
d=05«h=90mm

L, =05%*L; = 0.5 %2270 = 1135 mm

Deformation:

g, = (=400 + 60 % 26.7 — 0.33 % f/) * 1076 = 8 x 10™*

2
r

*
d2

R=c¢ =0.03<0.26

k = 0.0525 * (4.3 —16.1%4/3.3 % 10~* + 0.1243 R) =0.17

Arch moment capacity:

kNm
MaT:k*fc,*hz =128 [T

Bending Capacity:

Mar

P, =
b= 0.23

= 558 kN

Equivalent reinforcement ratio:

ar
=——=0.079
pe fye * d %7 A)
fye = 525 MPa
z=0.75*d

d=05+«*h=05%180 =90 mm

Punching capacity:

P, = 1.52% (¢ +d) = d *[f * (100 x p,)°2°
¢ =509 mm
P, = 635 kN
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When two wheelloads are applied together:

P,y = 0.65 % P, = 237 kN

Unity check:

300

2 _
237 = 09
1.5

The check is in order. (NEN-EN 1991-2, 2005) prescribes a load of 150 kN, and the

loadfactor 1.5 comes from BD (81/02, 2002).

For the UK method the bending capacity is governing for slab failure: B, = 635 kN >

P, = 558 kN

Rankin Method

The considered clear span is 2270 mm (Figure 109). Which gives the following

effective width:

befr=cy+2xLe+2%h=2630mm
¢y = 200 mm
¢, = 200 mm

LS Cx
Le —?—?— 1035mm
h =180 mm
Ls = 2270 mm

Stiffness parameters

kN
E, = 4.23 % f05 = 20.4

mm?
fou = 23.3 MPa
E. * bef]c * h kN .
. = —————— =9345 — (Fixed ended,n = 1)

L, mm
A; x E kN
K, = 4 € —10.5%103 —
L, mm

Ag = 2 = (500 * 820) + 2 * (400 * 820) = 1.5 = 10° mm?
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Ab * EC kN

K, = = 66 * 10* —
b L, i mm
* [y x L
A, _Srhrle o 106 mm?
besy
¢ = 985 (FE)
I, = 6.0478 % 101 mm*
1
Ky =——F— =41+« 103 kN/mm
& * %

Flexural Capacity

Flexural parameters

B =1-0.003*f,=093>0.9. So,f = 0.9

_ Fs
x_067*fcd*ﬁ*beff
A *bff*10_3

Fs:Fcable*<p :

Ap,cable
Fcable = 4‘00 kN

mm?

= 0.07mm

A, = 1155 (1 cable per 400 mm)

Ay caple = 462 mm? (Prestress Freyssinet 12¢7)
z=d—-05*«F*x =90mm
d =91 mm

My, = f, * As xz = 237 kNm/m
For fixed ended:

L

8
P, = = 833 kN

b

Arching section

2%d;=h—=2x*xxx*f
d; =90 mm

d, from the previous iteration is used. The contact area due to arching is then given
by:
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A= ax*byer+d; =228 %10° mm?
a = 1 for the first iteration, after 2 iterations a = 0.967

s|[/E*xA
Lg =1L, (K*L)+1=97Omm
e

Arching parameters

£, = 0.0043 — [(fog — 60) * 2.5 * 1075] = 5.2 + 10~3 > 0.0043. S0, &, = 0.0043
g,=2xg,x(1—pB)=86+10"*

Deformation
g * L, ?

4 % d?
0<R<0.26; u=-0.15+0.36 +v0.18 + 5.6 * R = 0.063

R = = 0.03

Contact Depth

=1 u—0976
a = > =0

a * dq is used for refined arching section above until value remains constant (iterative
process).

Arching Capacity

0<R<0.26; M, = 43 —16.1%+/3.3%10"*+0.1243*R) = 3.3
L
Mgy = 0.168 * bysf * f! + d? * M, * L—" = 269 kNm/m

r

When both sides are restrained (Pucher, 1964) gives:

Mar
P, = = 1172 kN
¢ 023

Flexural punching capacity

The ultimate capacity is the sum of the flexural and arching capacity:

P

;= Py + P, = 2006 kN
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Brittle Punching Capacity

0.43

Py = T ¥y feax (@ +d)m*d * (pe)O.ZS =503 kN
f

¢ = 509 mm (load surface 400 * 400)

77 = 1.15 (rectangular wheel load)

The bending capacity is higher than the punching capacity. However, the bridge
system is expected not to fail in punching and the higher slab bending capacity is used

for the calculations in the main report.
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Girder shear capacity ‘De Vecht’

I b, 5
VRd,C = T * chtd + a; * Ocp * fctd =997 kN

I =60.478 x 10° mm*
b, = 180 mm

S =70.9 * 10® mm? (47)
forg = 4.21 MPa
a = 1.0
O, = 6.6 MPa
Fmax
20 4
FUR JOA TR JE RN R JU JS SN JNNNT SN SN S S S S S N N S — N S S S - |
4 .
oe <
5o ’ : e ==
A ' T
....................................... Wonax
measurementsinm e
Figure 207 load location and relative deflection of the girder over its span
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Fmax

20 4
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i'-l'l' ]
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;
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_: Trasl
L] i m
- . L
e ——— e —— . e
I

F; F,

Figure 208 Shear force distribution

Two failure modes are possible: tensile splitting and flexural shear. Tensile splitting
failure is more likely to occur since the girder is not reinforced heavily with shear stirrups.
The mean tensile concrete strength f,qp, is used, giving the tensile splitting shear capacity
(calculation is given in Appendix F). With equilibrium of forces and the load position,

the support reactions are known. Using that the maximum design shear force equals the
tensile splitting strength, gives:

24
Fnax = 55 * B = 1.2 % Vgq = 1197 kN

Via = Vra (tensile splitting shear) (48)

For the test load at 2.25 m from the end, the following holds:

Hidden capacity of thin prestressed concrete deck slabs with T-beams 254



24
Fnax = 5772 % Fr = 11 % Vgg = 1097 kN

(49)
Vea = VRd,c

Fax is for when loading only a single beam. This means that when the beam is
integrated in a bridge system a higher bridge load is possible because of the load
distribution. The load distribution is used to determine an equivalent load for the bridge
Fyrigge (Figure 209):

F,; 1197
Foriage = S(l)"jle = -~ = 3420 kN (load at 4m)

F _ Fingte _ 1097 _ 0 kN (load at 2.25
bridge = 047 T 047 (load at2.25m)

However only redistribution was only possible up 80% of the total load (Figure 115):
0.8 x 3420 = 2736 kN

For the test load at 2.25 m, the percentage was 94%: 0.94 * 2812 = 2286 kN

Ffz-:':'fgp
Foingis Load distribution
|
’ 4 8 0s "
= = = -~ = .-.- =} .q — = — = —
30% 40% 30% 30% 40% 30%

Figure 209 converting single girder load, top, to full load on the bridge, bottom, using the linear load distribution
for test load at 4 m

Table 53 girder and equivalent load, and redistributed capacity for three-girder model without crossbeams

4

1197

/ age

3420

ea

2736

2.25

1097

2812

2286

Table 54 girder and equivalent load, and redistributed capacity for three-girder model with crossbeams

1197

/ age

3627

2430

2.25

1097

3226

2194
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Appendix G

Deflections estimated with use of Taylor tests

Deflections

Using the research from Chapter 8, an ultimate deflection of 35 mm and a deflection

of 25 mm at peak load (Figure 211 and Figure 212) is estimated. This means that it is

possible a deflection plateau, showing plastic behavior, of 10 mm is available for the

bridge during which the slab has the opportunity to redistribute loads. These deflections

are considered upper bound deflections, since they occur when the slab fails in bending,

which gives an upper bound slab capacity. When the slab’s failure mode punching is

governing, a deflection of 10 mm is assumed as a lower bound (Figure 210). The slab is

assumed to be fixed ended (FE) and laterally restraint, since the stiffness factor K, is

much larger than 1221 kN/mm (Figure 30).

= F
E =g
E 35
= 30
(=]
= 25
ﬂ Fitm] A
w I
o £U
= F 3
J 1!:
g ¢
m 10 N g L ——
g1 T T Pervew m— -
—_ c L ]
£ - “
o | i =
0 z 10 128 15 70

Slenderness ratio[-]

Figure 210 lower bound ultimate deflection estimated, using Vecht slenderness 12.6

L
]

L=

45 & 53
= in
E 40 careon ® 55
E * 54
';35 & i a.n_'__s,g_nhnﬁ-‘u-'”
(=] n
5 30 52
w
= 23
=
[ 5}
— 20
bt

[
E 15
= 10
3

5

- =

0 20 40 45 &0 20 100

concrete cube strength [M/mm?]

o Other [eg.
Purniching Shear)
& Bending

Figure 211 upper bound ultimate deflection using Taylor’s test results of concrete strength vs ultimate deflection
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Lid
(=]

deflection atpeak load [mm]

0 20 an &0 80 100 120

concrete cube strength [M/mm?]

Figure 212 upper bound delection at peak load using Taylor results

Table 55 estimated values using test results

Estimated values

Deflection at peak load (upper) | 25 mm
Ultimate deflection (upper) 35 mm
Plastic deflection plateau 10 mm
Ultimate deflection (lower) 10 mm

The values determined from Figure 210 till Figure 212 are given in Table 55. Basically
there are two possibilities for the slab, an upper and lower bound deflection pattern. For
the first, bending is the governing failure mode, and for the second, punching shear.

The slab is assumed to reach its full bending capacity and arching action at peak load.
After that, the deflection plateau starts and eventually ends at the ultimate deflection.
During this period of deflection, redistribution of loads is assumed to be possible.
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Total bridge load

Using the numerical model (Figure 114), the linear bridge load of the system is
determined, using the ultimate slab deflection of 35 mm as a limit for the numerical
model (Figure 211).

The two most important elements are the slab and main beam. On one hand, the slab
is governing, since after it fails, redistribution cannot take place anymore, and the main
beam, not able to take the load anymore, fails as well. So the slab bending capacity and
slab deflections are important.

But on the other hand the beam is important too. Especially the beam capacity and
deflection. An ultimate deflection of 37 mm for a single girder was observed earlier
(Figure 47). The beams of ‘De Vecht’ could displace more or less. They are less reinforced,
possibly causing it to behave less ductile and deflect less. The actual deflections obtained
from test results of ‘De Vecht’ beams are discussed later.

For an ultimate deflection of 35 mm, a total bridge load of 2469 kN, without
crossbeams, is found (Figure 213). Which is an upper bound value, because the ultimate
deflection of 35 mm was assumed to be an upper bound limit, which only occurs when
bending of the slab is the governing failure mode.

The slab is governing in this case, and the maximal load, for the maximal assumed
deflection, is considered an upper bound limit of the bridge (Table 56).

Furthermore, the numerical model behaved stiff, and the neighbor beams as well, due
to the short considered span. This resulted in very low relative girder deflections of the
main beam, which is of importance in the calculation of activated parts of the deck.

3000

2564

2
°00 2469

2000

1500

Load [kN]

1000

500

0 5 10 15 20 25 30 35 40
displacement [mm]

main beam 4 m with crossbeams

main beam 4 m no crossbeams

Figure 213 load displacement graph bearing capacity with and without crossbeams
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The same test load was placed on the numerical model with cross beams--at the ends,
one-third, and two-third of the length--to see the difference in capacity. A bearing
capacity of 2564 kN was found (Figure 213), and a small difference in capacity is found
95 kN, with a factor 1.04 larger, compared to the model without cross beams.

But for the remainder of the calculations in this chapter the numerical model with
crossbeams is used since one wants the most realistic representation of the actual bridge
system, and the most accurate calculations and predictions. And the crossbeams are
especially important for the load distribution and the determined deflections. Concluding,
‘De Vecht’ has four crossbeams, two at the end and two intermediate ones, and leaving
them out is a significant deviation of the reality.

Redistribution of load

For the three methods, SCIA, UK, and RK Bending, redistribution of the load is
assumed to be possible after the slab reaches its peak load and starts to behave
plastically, indicated with the deflection plateau. For the possibilities where punching
occured, redistribution is assumed not to occur, since the slab would have failed brittlely,
failing without warning and without a chance to redistribute the loads.

Deflection condition

The relative girder displacements are very low, since the clear span was very short,
and the neighbor girders displaced almost as much as the main girder. This results in
relative girder deflections not exceeding the slabs deflections at midspan, the critical
condition in order for membrane action to activate. At the maximal deflection of the
bridge, the calculation shows the relative girder deflection to be about 2 mm, since the
neighbor beams displaced almost as much as the main beam (Figure 214). Again, the
fact that the three girders displace almost the same makes it logical to use a numerical
model with more girders, five or seven.

So, instead of the relative deflection, just the deflection of the bridge system is used
(e.g. Figure 216), in order to make the calculation for the total slab capacity provided
by membrane action. This capacity is necesary for redistribution. The critical deflections
are considered to be the deflections occuring at the peak load of the slab (Figure 216 and
Figure 221).
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Figure 215 numerical slab model to determine deflections at midspan
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SCIA punching capacity (lower bound limit)

A slab punching capacity of 455 kN was found (Table 16 and Figure 216). No
redistribution is assumed to occur after punching slab failure. However, it is assumed
that it is not likely that punching occurs at all, since the main beam (Figure 109) is
loaded directly. But, however, if punching occurs, the bridge is assumed not to have any
capacity left, since the slab fails brittle and instantly without warning.

SCIA bending capacity (upper bound limit)

A slab bending capacity of 1136 kN was found (Table 16 and Figure 216).
Redistribution is assumed to be only possible after the slab reaches full arching action at
its peak load, 1136 kN. The remaining load that the activated slab needs to carry and
redistribute, using the model with crossbeams: 2546 — 1830 = 716 kN (Figure 216).
Simply said, the slab, after reaching the full arching action, needs to activate a surface
area which can contribute a capacity of 716 kN.

load to redistribute

__ 2000 1830
=
iy
= 1500
]
8 1136 .113E

1000

redistribution
500 il
—u 453
0 5 10 15 20 25 30 35 40
displacement [mm]
main beam 4 m with crossbeams skab SCIA bending shkab SCIA punching

Figure 216 total bridge load capacity and slab bending capacity determine with SCIA and Taylor test results
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CAN punching capacity (lower bound limit)

Using the empirical method (CAN) the punching capacity was determined: 467 kN
(Figure 219). And using a numerical slab model of ‘De Vecht’ (Figure 215) the
displacement, at which this load occurs, was determined at 11 mm, which is in the same
order as 10 mm, derived from the Taylor slab test results (Chapter 8) for failure in
punching. So, the numerical model and the calculation seem to correspond with that.

UK method punching capacity (lower bound limit)

Using the UK method the slab punching capacity was determined: 635 kN (Figure
218). And using a numerical slab model of ‘De Vecht’ (Figure 215) the displacement, at
which this load occurs, was determined: 14 mm.

3000
2500 2564
2000

1500

Load [kM]

1000
500 467

[
Ln

i 15 20 25 30 35 40

displacement [mm]

— main beam 4 m with crossbeams

skab CAN punching

Figure 217 total bridge load and slab punching capacity according to empirical method

3000

2500 2554
2000
=
I
< 1500
m
(=]
—a

1000

635
500
o 14
0 5 10 15 20 25 30 35 40

displacement [mm]

main beam 4 m with crossbeams

slab UK punching
Figure 218 total bridge load and slab punching capacity UK method
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UK method bending capacity (upper bound limit)

The slab bending capacity with the simplified method (UK) was 558 kN (Figure 219).
Then using a numerical slab model of ‘De Vecht’ (Figure 215), the displacement, at
which this load occurs, was determined: 12.3 mm. This is the deflection at peak load,
and it was estimated that the slab behaves plastically for 10 mm, giving the slab an
ultimate deflection of about 22.3 mm. Which is reached around 1635 kN.

Redistribution is only possible after the slab’s peak load, 558 kN, is reached, and so
the load that the slab needs to carry and redistribute is: 1635 — 900 = 735 kN (Figure
219). Bending is assumed to be the governing failure mechanism and not punching.

2500 1564

2000
B 1635
= 1500
2 load to redistribute
~ 1000 500

. 58 558

o Redistribution

0 5 10 123 45 20 23 25 30 35 4p

displacement [mm]

main beam 4 m with crossbeams slab UK bending

Figure 219 bearing capacity, slab bending determined with UK method
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Rankin method punching capacity (lower bound limit)

Using the RK method the punching capacity was determined: 509 kN (Figure 220).
And using a numerical slab model of “De Vecht” (Figure 215) the displacement, at which
this load occurs, was determined: 12 mm.

Rankin method bending capacity (upper bound limit)

The bending capacity, determined by the Rankin method was 2006 kN (Figure 116).
And using a numerical slab model of ‘De Vecht’ (Figure 215) the displacement, at which
this load occurs, was determined: 43.5 mm. The slab could behave plastically for 10 mm,
which gives an ultimate deflection of 53.5 mm. However, the main girder reaches its
maximal failure load, 2564 kN, before the slab reaches its full capacity and is able to
redistribute the loads (Figure 220). Redistribution seems not possible in this situation,
using this specific method.

Also, the numerically determined deflections are larger than the estimated ultimate
slab deflection of 35 mm. In (Taylor, Rankin, & D.J., 2001), slab deflections above 40
mm were not measured, possibly meaning that the calculated slab capacity is too high,
or the numerical model behaves too stiff. Also, the heavily reinforced single girder test
in Chapter 5 showed a maximum deflection of 45 mm. And the girder of “De Vecht” is
not as heavily reinforced, so deflections this high might not occur. This is discussed later.

2564

S 2006 2006

Load [kM]
q
A

Redistribution out{of range
o 500 P

0 1012 20 0 35 o 44 5 54 g

displacement [mm]

main beam 4 m with crossbeams =——skab RK punching skab RK bending

Figure 220 bearing capacity and slab bending and punching capacity according to RK method
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Prediction for the bridge load

The results of all the methods are given in Table 56. It is assumed that only for the
methods which calculate bending capacities redistribution is possible. In this case, for a
linear situation (Figure 115), where the redistribution possibility limits the bearing
capacity, the slab capacity, and ductility, governs the upper bound capacity of the bridge
(Table 56).

Table 56 predictions bearing capacity bridge test load at 4m

Method Lower Bound Upper Bound Load to redistribute
Capacity [kN] Capacity [kN] [kN]
SCIA Punching 455 - N/A
SCIA Bending 1830 2546 716
CAN Punching 467 - N/A
UK Punching 635 - N/A
UK Bending 900 1635 735
RK Punching 509 - N/A
RK Bending - 2546 N/A
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Activated span

Now the slab capacity is determined that is available for redistribution of the loads
(Table 56). First, the activated span is determined. For SCIA bending, the activated
span is 8600 mm (Figure 221). A maximal deflection of 35 mm is used (for the maximal
load of 2564 kN after redistribution), and the critical deflection is 25 mm, at which
maximum arching action of the slab is assumed (Figure 216).

For UK bending, the activated span is 10800 mm (Figure 222), which is more than
the effective width, meaning extra capacity is available. But only the span activated
outside of the range of the effective width can provide extra capacity for redistribution,
since the effective width itself is responsible for the initial slab bending capacity and
maximum arching action. A maximum deflection of 22.3 mm is used, and the critical
deflection is 12.3 mm, at which maximum arching action of the slab, 558 kN, is assumed

(derived from Figure 219).
activated span 8600

Fmax

(0 D St o o o " - —" —" —"_V———" Vo o o W T n_l

/
/25
Measurements in mm \.
25 35

Figure 221 activated span SCIA bending (not on scale) for the test load at 4 m from the end

span providing extra capacity

effectiveI width
_ 7685 ..._2630 ..fl_8§.
activated span 10800
. Fmax -

R L L R B B Wn-ul

A 4 l =
12.3
MW./

22.3

Figure 222 activated span UK bending (not on scale) for the test load 4 m from the end
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Total slab capacity

Now the total slab capacity is determined. For UK bending:

The effective width (Figure 222) is smaller than the total activated span. So both parts
on the right and left side of effective width can provide extra capacity:

activated span for extra capacity: Legira = activated span — effective width

Lextra

bege
total extra capacity = n * slab bending capacity

10,8 -2.63 =8.17m
8.17
=3[

2.63
3558 = 1675 kN > 735 (Redistribution possible)

The same effective width calculated in the RK method is used for the UK method (Figure
108). The same calculation is done for SCIA bending method as well (Table 57).

Table 57 redistribution methods

Method Activated span  Total slab Extra Capacity Redistribution
[m] capacity for redistribution
kN kN
SCIA bending 8.6 1894 1894>716 Possible
UK bending 10.8 1675 1675>735 Possible
RK bending - - - -
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Nonlinear distribution

Earlier, a linear elastic distribution was assumed, which limited the maximal failure
load that the bridge could take, after redistribution (Figure 115). Assuming a nonlinear
situation, where the girder properties could change, the neighbor girders could take up
more of the distributed load (Figure 223). And here, the slab could deflect more until its
full plastic deflection plateau is developed, resulting in an overall higher bearing capacity
and failure load of the bridge (Figure 224). For RK bending the slab is assumed to be
able to deflect up till 53.5 mm, redistributing during that, and finally reaches the highest

possible capacity, which is calculated. Figure 225 shows the newly activated span.

||

i1

Non linear elastic X%

plastic behavior 30%

35%

40%

45%

keep loading 50%

Figure 223 nonlinear behavior

4500
3500
3000
2500
2000
1500
1000
500

Figure 224 nonlinear situation where slab is governing providing extra redistribution for RK bending

main beam 4 m with crossbeams

skb RK bending
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span providing extra capacity effective width
.. 238 2630

activated span 4450

Fmax

R e R e B B B BRI = S o= s o o s s ) s e | P = L

Measurements In mm 4?\ ./44
5

4

Figure 225 activated span RK bending nonlinear (not on scale)

Total slab capacity

For RK bending the calculation is as followed:

e 4 2 |

The effective width overlaps the right side of the activated span, so only the left side

of the activated span can provide extra capacity (Figure 225)

2.63

2.385_09[ |
296

0.9 x 2006 = 1800 kN > 730 (Redistribution possible)
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Summary

From the calculation for RK bending, in the nonlinear situation, it shows that for the
assumed deflection plateau of 10 mm the load which needs to be redistributed is around
730 kN. Which means about 73 kN/mm needs be redistributed, this is useful to know
when assuming other plateau sizes for other slabs.

It was shown that redistribution is possible. And Table 58 gives the new lower and
upper bound capacity of the bridge, where RK bending gives the highest possible capacity
of all the three considered methods.

A quick check with a linear load distribution to determine what the maximal load is
for the single main girder gives, 3230 * 0.4 = 1290 kN and 3960 * 0.4 = 1500 kN. It is
plausible that the main girder could be loaded up to this range of loads.

Table 58 prediction bearing capacity with upper and lower bound limit nonlinear situation

Method Lower bound capacity [kN]  Upper bound capacity [kN]
RK bending 3230 3960
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Second test load: 2.25 m from the end

The same calculations are done, but now the point load changes location (Figure 106).
The same slab capacities are used, as they do not change with the change of point load
location.

When the point load changes location, at 2.25 m from the end, closer to the supports,
the numerical model behaves stiffer. Therefore it reaches a higher maximal bearing
capacity of 5422 kN for the estimated ultimate deflection of 35 mm, compared to the test
load at 4 m with. So, shifting the load from 4 to 2.25 m from the end, leads to almost
double the capacity according to the numerical model. The reason why is probably
because the load is placed closer to the end beams.

However, redistribution was only possible up till 2194 kN, which is governing as an
upper limit value of the bridge load in this case.

6000

5422
5000
4000

3000

Load [kN]

2564
2000

1000

0 5 10 15 20 25 30 35 40
displacement [mm]

main beam 2,25 m with crossbeam main beam 4 m with crossbeams

Figure 226 comparing bearing capacity with the load at 2.25 and 4 m with crossbeams
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Table 59 overview deflections test at 2.25 m from the end

Method Deflection [mm]

For Punching For Bending
SCIA 10 25-35
Empirical (CAN) 6 N/A
Simplified (UK) 8.4 7.4-17.4
Rankin (FE) 6.7 26.4-36.4

Deflections

In Table 59 an overview of the deflections are shown. A plastic plateau of 10 mm is
assumed again, since the slab properties have not changed, during which redistribution
is possible (Figure 227). For punching, deflections below 10 mm were found, since the
numerical model behaved stiffer, and this is still in the order of the estimated range for
slabs failing in punching, according to the Taylor tests in Chapter 8.

Redistribution

The three methods, SCIA, UK, and RK Bending, for which redistribution is possible,
are given with their respective slab capacities (Figure 227 and Figure 228). Here, it is
shown that only for UK bending the maximal assumed load, 2194 kN (Table 54), falls
within the range of the deflection plateau, the decisive period when redistribution can

take place. Then the load which needs to be redistributed after the slab reaches its peak
load: 2194 — 1170 = 1024 kN
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:
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Figure 227 bearing capacities and slab bending capacites with possible redistribution
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Figure 228 slab bending capacity according to UK method with possible redistribution
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effective width 2630

activated span 11500

Measurements In mm 74 /7‘4

Figure 229 activated span UK Bending

Activated span

The maximum deflection for the maximal assumed load, 2194 kN, is 14.2 mm (Figure
227 and Figure 229). The critical deflection is 7.4 mm (Table 59), since this is the instant
at which the plastic plateau initiates and redistribution is possible.

Total deck capacity
For UK bending the calculation is as followed:

The effective width overlaps the right side of the activated span, so extra capacity is
provided only by the left side for redistribution of the loads (Figure 229).

2.63
11.5 - — = 10.185m

10.185_38[ |
263 7

3.8 * 558 = 2160 kN > 1024 (Redistribution possible)
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Prediction capacity of the bridge

Table 60 predictions bearing capacity bridge test load at 2.25 m

Method Lower Bound Upper Bound Load to redistribute
Capacity [kN] Capacity [kN] [kN]

SCIA Bending | - 2194 -

SCIA Punching | 754 - N/A

CAN Punching | 467 - N/A

UK Bending 1170 2194 1024

UK Punching 635 - N/A

RK Bending - 2194 -

RK Punching 509 - N/A
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Nonlinear situation

A nonlinear situation is possible again (like Figure 223). Figure 230 shows the load
redistribution and Figure 231 shows the activated span for RK bending. The rest of the
load redistribution in the load-displacement graphs and activated spans are given in
Appendix G (Figure 232 and Figure 235).

6000
h

3000 load to redistribute

g

Load [kN]
g

:

l/__‘zuuﬁ 42006

 redistribution

g

0 3 10 15 20 13 26.4 30 33 36.4 40

displacement [mm]

shab RK bending

— main beam 2,25 m with crossbeam

Figure 230 full slab capacity nonlinear behavior for RK bending

span providing extra capacity effective width

4685 2630

Ry
activated span 6600
1

Fmax

Measurements in mm 26.4

°
36.4

Figure 231 activated span RK bending nonlinear (not on scale)
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Total deck capacity

For RK bending the calculation is as followed:

The effective width overlaps the right side of the activated span, so only the left side
of the activated span can provide extra capacity (Figure 231):

2.63

6—T=4685m
4.685_18[ ]
2.63

1.8 % 2006 = 3611 kN > 1562 (Redistribution possible)

The rest of the methods follow the same calculation process, and the results are given in
(Table 61).

Table 61 overview redistribution nonlinear situation

Method Load to Activated Extra capacity for Redistribution
redistribute  span [m] redistribution [kN]
[kN]
SCIA bending 1560 7.82 3720 > 1560 Possible
UK bending 1522 12.5 2373 > 1522 Possible
RK bending 1562 6.6 3611 > 1562 Possible
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Summary

Table 61 shows, for the assumed deflection plateau of 10 mm, the load which is
redistributed, to be around 1550 kN, averaging the load for the three methods. Which
means about 155 kN/mm needs to be redistributed, this is useful to know when assuming
other plateau sizes for other slabs. Table 61 shows redistribution is possible for all three
methods.

Table 62 gives the new range of lower and upper bound capacity of the bridge for the
three methods. UK bending gives the most conservative capacity, and RK bending the
maximum. Figure 236 of Appendix G summarizes the method used in this chapter.

Table 62 prediction bearing capacity with upper and lower bound limit nonlinear situation

Method Lower bound capacity [kN]  Upper bound capacity [kN]
SCIA bending 3862 5422
UK bending 1170 2692
RK bending 4078 5640

Nonlinear load distributions graphs for test load at 2.25 m on ‘De Vecht’

n
)
P

crnn
load to redistribute
4000 3362 .
=
et
o 3000
@
3 1‘;!9!':
o0 2ES S22
2000 1""1- ]
1000 R —
redistribution
0 5 10 15 20 25 50 35 40
displacement [mm]
main beam 2,25 m with crossbeam =kab SCIA bending

Figure 232 full slab capacity nonlinear behavior for SCIA bending
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Figure 233 full slab capacity nonlinear behavior for UK bending
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Activated spans

span providing extra capacity
ei’fect:iveI width
4900 2630 290
r -
activated span 7820

Fmax

Figure 234 activated span SCIA bending nonlinear (not on scale)

span providing extra capacity effective width

11185 2630
activated span 12500

Fmax

Figure 235 activated span UK bending nonlinear (not on scale)
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‘ slab failure mode|
I

[ 1
‘ punching (lower bound value) ‘ | bending (upper bound value) |

| redistribution not possible | | redistribution possible |

|def|ection at peak load till ultimate deflection
|
‘ determine girder shear capacityI

[
| location point load |

| linear load distribution| nonlinear load distribution H slab governing
girder
governing
l 0 0 0 0
redistribution not possible | |red|str|but|nn possible |

activated span >|effective width’—{extra capacity | redistributed load H redistribution possible

activated span|< |effective width

|extra capacity|< |redistributed load

redistribution not possible |

Figure 236 flowchart calculative method Chapter 9
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Appendix H

Bridge system test results

Testload at4 m

Load [kN]

1134
F rll 4

o i i i i i i i i
] 2 4 55 6 8 10 12 14 1%
& [mm]
[ beam® beam 10 beam11 beam12 beam13|

Figure 237 load displacement graph for the load at 4 m
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Testload at 2.25 m
B S 3400 ......

[ 8 10 10.5 1? 13
& [mm)
| beamd beams beamé beam? beams]

Figure 238 load displacement graph for the load at 2.25 m
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Single girder test results

1600

1400

1200

800

Load [kN]
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400

|
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Figure 239 load displacement test single girder with the load at 2.25 m (1)
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10 20 30 40 50 60
& [mm]
beam11

Figure 240 load displacement test single girder with the load at 2.25 m (2)

Hidden capacity of thin prestressed concrete deck slabs with T-beams

284



Comparison test results with numerical models with multiple girders
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‘seven girders

§ five girders

Figure 241 comparison load-displacement behavior of ‘De Vecht’ with numerical model for three, five, and seven

girders. The load is 4 m from the end.
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2500

2000
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& [mm]
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seven girders
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three girders

Figure 242 comparison load-displacement behavior of ‘De Vecht’ with numerical model for three, five, and seven

girders. The load is 2.25 m from the end.
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Information of Numerical Model De Vecht
General information plate

Concrete class: C35/45.
Concrete density: 2500 kg/m?.
E-modulus: 34100 MPa.
G-modulus: 14000 MPa.
Poisson ratio: 0.2 [-]
FEM-model: orthotropic plate.
Linear numerical model.
Thickness: 180 mm.

Spring supports.

Size 2D-plate element: 0.25 m.
Plate theory: Mindlin-reissner.
Type solver: direct.

General information girder

Concrete class: C55/67
Concrete density: 2500 kg/m?.
E-modulus: 38400 MPa.
G-modulus: 15917 MPa.
Poisson ratio: 0.2 [-]

A: 0.27 m?

I,: 2.8%102 m*.

Woey: 5.5%102 m?.

General information crossbeam

Concrete class: C35/45
Concrete density: 2500 kg/m®.
E-modulus: 34100 MPa.
G-modulus: 14000 MPa.
Poisson ratio: 0.2 [-]

Cross section: 820400 mm.
A: 0.328 m?.

I,: 1.8%102 m*.

Wy 4.4%1072 m?.
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6.6% 13.2% 193% 21.7% 19.3% 13.2% 6.6%

Figure 243 load distribution determined with the seven-girder model of ‘De Vecht’ with the load at 2.25 m

Test load at 2.25 m

1800
1600

1400

600
400

200

Figure 244 determining at what load the ultimate deflection of the bridge system of the main beam is reached, for
the load at 2.25m
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Figure 245 determining ultimate deflections of the neighbor beams, witht the load at 2.25 m
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Figure 246 determining at what load the ultimate deflection of neighbor beam is reached, for the load at 2.25m
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3400 kN

3 mm 3 mm

4.5 mm 4.5 mm
10.5 mm

Figure 247 displacements of the main beam and neighbor beams at the peak load 3400 kN, for the load placed at
2.25m

1150 kN

13% 20% 34% 20% 13% =100%

Figure 248 load distribution determined with the tests results, over five girders with the girder load on each
beam, for the load at 2.25 m
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Required slab capacity
Comparison actual and predicted slab capacity

Now the deck capacity, with compressive membrane action, that should have been
activated, is estimated. In line with hypothesis one from Chapter 5, this is done by
subtracting the girder capacity, obtained from the single girder test results (Table 20),
from the total bearing capacities, obtained from the test results on the bridge system
(Table 17). An initial estimation, option 1, of the required deck capacities is given in
(Table 63).

For the load at 4 m, 2000 kN is needed, while for the load at 2.25 m, 1700 kN is needed.
From all the slab capacities determined in Chapter 11, the RK bending method with a
slab bending capacity of 2006 kN meets the requirement (Table 63 and Table 64).
Moreover, the method of Rankin was shown in the Taylor tests to be an underestimate
of the actual strength, with a margin of error of about 16%, leading to a strength of
1.16 * 2006 = 2327 kN. And the effect of prestressing is not taken into account into the
calculation of the slab capacity. Also the design concrete strength was used instead of
the actual one, taking into account hydration.

Table 63 results bridge bearing capacity, girder capacity, and required deck capacity

load total total girder  required total calculated slab
location  load load slab capacity bending capacity
[m] [kN] [kN] [kN] RK [kN]

2.25 3400 1700 1700 2006

4 3000 1000 2000 2006

Table 64 comparison actual and predicted deck capacity

load location [m] required total  calculated slab Margin of error
slab capacity bending capacity  [%]
[kN] [kN]
2.25 1700 RK 2006 18%
UK 558 67%
SCIA 1136 33%
4 2000 RK 2006 0.3%
UK 558 2%
SCIA 1136 43%
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The calculated slab bending capacities generally are a safe but conservative
underestimate of the reality, and with the RK bending having the smallest margin of
error. The capacity determined with the SCIA numerical model and the estimated
deflections, derived from the trendlines from the Taylor tests, also shows promise. If more
data was available for more trendlines with the proper slenderness ratio, and the actual
concrete strength was known, then the slab capacity could be determined again with the
numerical model, probably with a lower margin of error.

Option 2

Aside from option 1, a nuanced calculation shows that the deck requires a capacity of
3400 — 1150 = 2250 kN or 3000 — 625 = 2375 kN, for the load at 2.25 or 4 m (Table
65). The percentual difference between option 1 (Figure 249) and 2 (Figure 250) is given
too. The calculation needs to be redone with the actual concrete strength to see if the
required slab capacities are reached.

So there are two options to calculate the required slab capacity. Option 1 subtracts
the girder load from the total load, leaving the required slab capacity. And option 2 uses
the ultimate deflections determined from the load-displacement of the bridge system, and
then finds the girder capacity at which these deflections are reached, using the load
displacement graph of the single girder (Figure 121), and this girder capacity is then
subtracted from the total load. Or options 1 and 2 could be combined, use option 1, but

2% _ 4 100 = 2250 kN.

compensate for the percentual difference. For example: ————
(100—24.4)

Table 65 required deck capacities options 1 and 2

Load location |Total load |Girder load Required deck capacity

[m] [kN] [kN]

Difference
[kN] [kN] (%]
2.25 3400 1150 2250 1700 24 .4
4 3000 625 2375 2000 15
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Testload at4 m
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Figure 249 determining slab capacity with total capacity and girder capacity, option 1, based on the first hypothesis
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Figure 250 determining slab capacity with total capacity and girder capacity, option 2, based on the test results

of the bridge system and single girder
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Critical deflection and deflection range

Option 2 implies two other conclusions. First, the critical condition, to use membrane
action, would have been met in the linear loading phase of the bridge system, before 1500
kN (Figure 237 and Table 17). Since only after this instant, membrane action is allowed
to be summated with the girder capacity. The load, 625 kN, is reached around 2 mm
(Figure 250). It is hard to say if the girder deflection at this point exceeds the deflection
at midspan of the slab, which is the critical deflection condition in order for membrane
action to be taken account, since there is no actual data for the slab’s deflection, and
modelling gives the same inaccuracies as discussed before.

Second, the slab is assumed to redistribute the loads, meaning it does not fail and
keeps deflecting, starting at 2 mm, and the slab keeps contributing its capacity combined
with the individual main beam capacity to form the total load. This happens up till 22
mm, when failure is reached.

Since the load distribution is known (Figure 125), this gives the load-displacement
graph of the single girder (Figure 251). And if the girder load is known during the whole
loading process, then by subtracting the total load with the girder load, the slab’s load-
displacement graph is also known (Table 66 and Figure 251).

The same is also done in Appendix H, for the neighbor beams for the load at 4 m
(Figure 252, Table 67 and Table 68), and for the load at 2.25 m (Figure 253 and Figure
254, and Table 69 till Table 71).

Overall, the load-displacement behavior of the single girder, and the slab is shown to
be non-linear. Since these two key elements, slab and girder, behave non-linear, it is wise
to model these with a FEM model capable of non-linearity for future bridge situations.

Table 66 determining the girder load, with use of the total load on the bridge system and the load distribution,
and then subtracting the girder load from the total load, giving the slab load

Deflection of bridge system Total load Girder load (20.8% of Slab load

[mm] [kN] total) [kN] [kN]

2 625 130 495

4 1200 250 950

6 1700 354 1346
8 1900 395 1505
10 2200 458 1742
12 2400 500 1900
14 2500 520 1980
16 2700 562 2138
18 2800 082 2218
19 3000 625 2375
22 2900 603 2297
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Figure 251 girder and slab capacity determined with use of the load distribution

Important notes on option 2

The slab is determined to carry 2375 kN. And RK slab bending capacity was between
2006-2327 kN. This two capacities are in the same order, so it is possible that the slab

might carry this load.

However, the slab redistributest the load to the neighbor beams. And these beams do
not have the capacity to carry this high load. In a linear approach, the neighbor beams
are assumed to have same capacity as the main beam, and they will not carry more than

the main beam.
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Table 67 determining the girder load for the neighbor beam 10,12, with use of the total load on the bridge system

and the load distribution, and then subtracting the girder load from the total load, giving the slab load

Deflection of bridge system Total load Girder load (15.8% of Slab  load

[mm]| [kN] total) [kN] [kN]
2 750 119 631
4 1400 221 1179
6 1900 300 1600
8 2400 380 2020
10.5 3000 475 2525

Table 68 determining the girder load for the neighbor beam 11,13, with use of the total load on the bridge system
and the load distribution, and then subtracting the girder load from the total load, giving the slab load

Deflection of bridge system Total load Girder load (11.7% of Slab  load

[mm] [kN] total) [kN] [kN]
2 1000 117 883
4 1750 205 1545
6 2500 293 2207
7.5 3000 350 2650
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testload at 4 m
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Figure 252 girder and slab capacity determined for the neighbor beams with use of the load distribution

Table 69 determining the girder load for the main beam with the load at 2.25 m, with use of the total load on the

bridge system and the load distribution, and then subtracting the girder load from the total load, giving the slab

load
D

2 1250 425 825
4 2000 680 1320
6 2600 884 1716
8 3000 1020 1980

10.5 3400 1150 2250
13 3300 1122 2178
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Figure 253 girder and slab capacity determined for the main beam with use of the load distribution, for the load
at 2,25 m
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Table 70 determining the girder load for the neighbor beam 5,7, with use of the total load on the bridge system
and the load distribution, and then subtracting the girder load from the total load, giving the slab load, for the load
at 2,25 m

Deflection of bridge system Total load Girder load (20% of total) Slab  load

[mm] [kN] [kN] [kN]
2 1750 350 1400

4.5 3400 630 2720

Table 71 determining the girder load for the neighbor beam 4, 8, with use of the total load on the bridge system
and the load distribution, and then subtracting the girder load from the total load, giving the slab load, for the load
at 2,25 m

Deflection of bridge system Total load Girder load (13 % of total) Slab  load

[mm] [kN] [kN] [kN]
2 2250 293 1957

3.9 3400 442 2958

test load at 2.25 m
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Figure 254 girder and slab capacity determined for the neighbor beams with use of the load distribution, for the
load at 2,25 m.
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